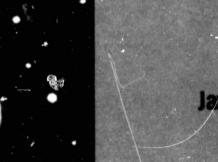
General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)



Unclas G3/12 28462

OF CELESTIAL DIGEST X-RAY MISSIONS AND EXPERIMENTS

la/nua 002

NSSDC/WDC-A-R&S 82-01

8.11

DIGEST OF CELESTIAL X-RAY MISSIONS AND EXPERIMENTS

Author/Coordinator

Maureen C. Locke

January 1982

National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

CONTENTS

1.	INTR	ODUCTION	1
2.	DESC	RIPTIONS OF SPACECRAFT AND EXPERIMENTS	3
3.	INDE	XES	
	3.1 3.2 3.3 3.4	Spacecraft Alphabetical Name Index Observing Catalogs X-ray Source Catalogs X-ray Instruments	19 23 27 31
	3.5 3.6	Experiment Energy Ranges	37 45
	957 3.8	Data Listing	49 53
	ENDIX ENDIX		A-1 B-1

1. INTRODUCTION

Since the discovery of celestial X-rays in 1962, more than 52 experiments have been flown in space to study these phenomena. The past two decades of exploration in X-ray astronomy represent continuing advances not only in scientific discovery, but also in experiment and spacecraft technology. This document presents in a ready reference form, information on these instruments, the platforms that carried them, and the data they gathered. Instrument selection has been confined to detectors operating in the 0.20 to 300 keV range. Included are brief descriptions of the spacecraft, experiment packages and missions. Crossreferenced indexes are provided for types of instruments, energy ranges, time spans covered, positional catalogs and observational catalogs. Data sets from these experiments that are available from the National Space Science Data Center (NSSDC) are described and references are given for those data sets that are still held by individual investigators or other institutions. All referenced information in this document is contained in the files of NSSDC. Although we do not claim our coverage to be complete, we have used all available information to make this document as accurate and up-to-date as possible. The information on NASA and NASA-cooperative programs is based to a large extent on project office reports. For non-US programs, information from ESA reports, reports of individual countries to COSPAR, press releases, and scientific journals have been used. All comments, corrections, and additions are appreciated.

2. DESCRIPTIONS OF

SPACECRAFT AND EXPERIMENTS

This section contains descriptions of spacecraft and experiments pertinent to this report.

Each spacecraft or experiment entry in this section is composed of two parts, a heading and a brief description. The headings list characteristics of spacecraft and experiments.

The heading for each spacecraft description in this section includes a set of orbital parameters: orbit type, epoch date, orbit period, apoapsis, periapsis, and inclination for the spacecraft. In addition, the heading contains the spacecraft weight, launch date, site, vehicle, spacecraft common and alternate names, NSSDC ID code, sponsoring country and agency, and spacecraft personnel codes as follows:

CODE	CO	(general contact)
CODE	MG	(program manager)
CODE	MM	(mission manager)
CODE	MO	(mission operations
		manager)
CODE	MS	(mission scientist)
CODE	\mathbf{PC}	(project coordinator)
CODE	PD	(project director)
CODE	PE	(project engineer)
CODE	PM	(project manager)
CODE	PS	(project scientist)
CODE	SC	(program scientist)
CODE	TD	(technical director)

This terminology is standard for NASA missions; the equivalent functions for the missions of other countries or agencies have been given the same position names. The spacecraft brief description is immediately below each heading.

Each experiment entry heading includes the experiment name, the NSSDC ID code, the investigative program, the investigation discipline, and the name and affiliation or location of the principal investigator (PI) or team leader (TL) for the experiment as well as other investigators (OI), team members (TM), deputy team leader (DT), co-investigator (CI), experiment manager (EM), experiment scientist (ES), or general contact (CO) associated with the experiment. The investigators are not listed in any particular order within each experiment. The experiment brief description is immediately below each heading.

The addition of /CO-OP to any code indicates a cooperative effort between NASA and another agency.

If the common name, as used by NSSDC, is not known, the reader should refer to his own common name in Index 3.1 (Spacecraft Alphabetical Name Index) to obtain the cross reference.

HARVARD COLLEGE OBS

ORIGINAL PAGE IS ······OF-POOR OUALTTY.

SPACECRAFT COMMON NAME- 050 3 Alternate Names- 050-6/ 02703

NSSDC ID- 67-020A

LAUNCH DATE- 03/08/67	
OBBIT PARAMETERS	
ORBIT TYPE- GEOCENTRIC	EPOCH DATE- 03/09/67
ORBIT PERIOD- 95.53 MIN	INCLINATION- 32.87 DEG
PERIAPSIS- 534. KM ALT	APOAFSIS- 564. KH ALT
PERSONNEL	
SC - H.J. SMITH	NASA HEADQUARTERS
PM - L.T. HOGARTH	NA SA-GSFC
PS - W.E. BEHRING	NASA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE OBJECTIVES OF THE OSO SATELLITE SERIES WERE TO PERFORM SOLAR PHYSICS EXPERIMENTS ABOVE THE ATMOSPHERE DURING A COMPLETE SOLAR CYCLE AND TO MAP THE CELESTIAL SPHERE FOR DIRECTION AND INTENSITY OF UV LIGHT, X-RAY, AND GAMMA RADIATION. THE OSO 3 PLATFORM CONSISTED OF A SAIL SECTION, WHICH POINTED TWO EXPERIMENTS CONTINUALLY TOWARD THE SUM, AND A WHEEL SECTION, WHICH SPUN ABOUT AN AXIS PERPENDICULAP TO THE POINTING DIRECTION OF THE SAIL AND CARRIED SEVEN EXPERIMENTS. ATTITUDE ADJUSTMENT WAS PERFORMED BY GAS JETS AND A MAGNETIC TORQUING COIL. DATA WERE SIMULTANEOUSLY RECORDED ON TAPE AND TRANSMITTED BY PCM/PM TELEMETRY. A COMMAND SYSTEM PROVIDED FOR 94 GROUND-BASED COMMANDS. THE SPACECRAFT PERFORMED NORMALLY UNTIL THE SECOND ONDARD TAPE KECORDER FAILED IN JULY 1968. THE SPACECRAFT WAS PUT IN STANDBY CONDITION ON NOVEMBER 10, 1969, AND BECAME INOPERABLE SHORTLY THEREAFTER.

INVESTIGATION NAME- SOLAR AND CELESTIAL GAMMA-RAY TELESCOPE

NS50C 10- 67-020A-07

PERSONNEL PI - L.E. PETERSON

U OF CALIF, SAN DIEGO

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE EXPERIMENT WAS DESIGNED TO INVESTIGATE THE EMISSION OF X RAYS IN THE 7.7- TO 200-KEV RANGE FROM COSMIC AND SOLAR SOURCES WITH APPROXIMATELY 50 PERCENT FULL WIDTH HALF MAXIMUM SPECTRAL RESOLUTION AND 15-S TIME RESOLUTION. THE DETECTOR, MOUNTED ON THE WHEEL SECTION OF THE SPACECRAFT, CONSISTED OF A 0.5-CM THICK NAI CRYSTAL SURROUNDED BY A 4.8-KG CYLINDRICAL CUP-SHAPED CSI (1L) SHIELD CRYSTAL POINTED RADIALLY OUTWARD. THE ANTICOINCIDENCE SHIELD HAD A 5-CM WALL AND DEFINED A 13-DEG HALF-ANGLE FIELD OF VIEW FOR THE INNER HAI DEFECTOR, WHICH HAD A 0.5-MM BERYLLIUM FOIL WINDOW 9.2 SQ CM IN AREA AND HAVING A GEOMETRIC FACTOR OF 1.5 SQ CM-STER. THE OUTPUT PULSE WAS PULSE-HEIGHT ANALYZED INTO SIX LOGARITHMICALLY SPACED CHANNELS AND TWO INTEGRAL CHAMELS. THE EXPERIMENT PERFORMED NORMALLY DURING THE LIFETIME OF THE SATELLITE.

SPACECRAFT COMMON NAME- OSO ALTERNATE NAMES- 050-D, 03000

NS50C ID- 67-100A

LAUNCH DATE- 10/18/67

ORBIT PARAMETERS Orbit type- geocentric Orbit period- 95.58 min	EPOCH DATE- 10/19/67 Inclination- 33.04 deg
PERIAPSIS- 546. KM ALT	APOAPSIS- 560. KN ALT
PERSONNEL	
SC - H.J. SMITH	NASA HEADQUARTERS
PM - L.T. HOGARTH	NASA-GSFC
PS - W.E. BEHRING	NA SA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE OBJECTIVES OF THE OSO SATELLITE SERIES WERE TO PERFORM SOLAR PHYSICS EXPERIMENTS ABOVE THE ATMOSPHERE DURING A COMPLETE SOLAR CYCLE AND TO MAP THE ENTIRE CELESTIAL SPHERE FOR DIRECTION AND INTENSITY OF UV LIGHT, X-RAY, AND GAMMA RADIATION, THE OSO A PLATFORM CONSISTED OF A SAIL SECTION, WHICH POINTED TWO EXPERIMENTS CONTINUOUSLY TOWARD THE SUN, AND A WHEEL SECTION, WHICH SPUN ABOUT AN AXIS PERPENDICULAR TO THE POINTING DIRFCTION OF THE SAIL AND CARRIED SEVEN EXPERIMENTS. ATTITUDE ADJUSTMENT WAS PERFORMED BY GAS JETS AND A MAGNETIC TORQUING COIL. A POINTING CONTROL SYSTEM PERMITTED THE POINTED EXPERIMENTS TO SCAN THE REGION OF THE SUN IN A 40- BY 40-ARC-MIN RASTER PATTERN. DATA WERE SIMULTANEOUSLY RECORDED ON TAPE AND TRANSMITTED BY PCM/PM TELEMETRY. A COMMAND SYSTEM PROVIDED FOR 140 GROUKD-BASED COMMANDS. THE SPACECRAFT PERFORMED NORMALLY UNTIL THE SECOND TAPE RECORDER FAILED IN MAY 1968. THE SPACECRAFT, WHICH WAS PUT IN STANDBY CONDITION IN

NOVERBER 1969, WILL BE TURNED ON NOW ONLY FOR RECORDING SPECIAL Events in real time, such an event occurred on march 7, 1978, When OSO 4 recorded data during the solar eclipse.

INVESTIGATION NAME- COSMIC X RAY MEASUREMENTS

N550C ID- 67-100A-02

PERSONNEL GTACCONT

ò	î			ŰŘ	Ϋ́́Υ.

BRIEF DESCRIPTION BRIEF DESCRIPTION THIS EXPERIMENT WAS DESIGNED (1) TO MAKE A SURVEY OF THE DIRECTIONAL INTENSITY OF MONSOLAN COSMIC X RAYS, (2) TO MAKE A THOROUGH SURVEY OF THEIR SPECTRAL COMPOSITION BETWEEN 0.1 AND 10 A, (3) TO DISTINGUISH BETWEEN THE STELLAR AND THE SYNCHROTRON COMPONENTS, (4) TO CORELATE REGIONS OF STRONG INTENSITY WITH OPTICAL AND RADIO OBJECTS OF SPECIAL INTEREST, AND (5) TO STUDY AURORAL X RAYS, FOR THE 0.1 - 1.0 A RANGE, A THIN, CSI CRYSTAL AND TWO PHOTOMULITIERS, WERE USEDS AND FOM THE 1.0 - 10 A RANGE, SRF2 ON TOP OF A PLASTIC SCINTILLATOR. THE EXPERIMENT FAILED SOON AFTER LAUNCH, AND NO BATA FROM IT EXIST. EXIST.

SPACECRAFT CONMON NAME- VELA 54 Alternate Name! > Vela 9 (TRW), 03954

NSSDC 10- 69-0460

LAUNCH DATE- 05/23/69

ORBIT PARAMETERS

ORBIT TYPI	E- GEOCENTRIC	EPOCH DATE- 05/24/69
ORBIT PERI	100- 6763. MIN	INCLINATION- 32.8 DEG
PERIAPSIS	- 110900. KH ALT	APOAPSIS- 112210. KM ALT
ERSONNEL		
MG 🖛	ARPA-STAFF	ARPA/WASH, DC
P#	CANSO	IICAF-IAC

PM	-	SAMSO	USAF-LAS	
PS	- R.W.	KLEBESADEL	LOS ALAMOS SCI I	LAB

BRIEF DESCRIPTION

BRIEF DESCRIPTION VELA 5A WAS ONE OF TWO SPIN-STABILIZED, POLYHEDRAL SATELLITES THAT COMPRISED THE FIFTH LAUNCH IN THE VELA PROGRAM, THE ORBITS OF THE TWO SATELLITES ON EACH LAUNCH WERE BASICALLY CIRCULAR AT ABOUT 17 EARTH RADII, INCLINED AT 60 DEG TO THE ECLIPTIC, AND SPACED 180 DEG APART, THUS PROVIDING A MONITORING CAPABILITY OF OPPOSITE SIDES OF THE EARTH. THE OBJECTIVES OF THE SATELLITES WERE (1) TO STUDY SOLAR AND COSMIC X RAYS, EUV, SOLAR PROTONS, SOLAR WIND, AND NEUTRONS, (2) TO CARRY OUT RESEARCH AND DEVELOPMENT ON METHODS OF DETECTING NUCLEAR EXPLOSIONS BY MEANS OF SATELLITE-BORNE INSTRUMENTATION, AND (3) TO PROVIDE SOLAR FLARE DATA IN SUPPORT OF MANNED SPACE MISSIONS. VELA 5A, AN IMPROVED VERSION OF THE EARLIFE VELA SERIES SATELLITES, HAD BETTER COMMAND CAPABILITIES, INCREASED DATA STORAGE, IMPROVED POWER REQUIREMENTS, BETTER THERMAL CONTROL OF OPILCAL SENSORS, AND GREATER EXPERIMENTATION WEIGHT. POWER SUPPLIES OF 120 W WERE PROVIDED BY 22,500 SOLAR CELLS MOUNTED ON 24 OF THE SPACECRAFT'S 26 FACES. A ROTATION RATE OF 78 RPP DURING TRANSFER ORBITS AND I RPM AFTER FLARAL ORBIT INSERTION MAINTAINED NOMINAL ATTITUDE CONTROL. EIGHT WHIP ANTENNAS AND FOUR STUD ANTENNA ARRAYS AT OPPOSITE ENDS OF THE SPACECRAFT STRUCTURE WERE USED FOR GROUND COMMANDS AND TELEMETRY. TELEMETRY.

INVESTIGATION NAME- COSMIC X RAYS

NSSDC ID- 69-0460-06

PERSONNEL				
P1 - J.P.	CONNER	LOS	ALAMOS SC	I LAB
0I - W.D.	EVANS	LOS	ALAMOS SC	I LAD
01 - R.D.	DELIAN	LOS	ALAMOS SC	I LAB

BRIEF DESCRIPTION THE COSMIC X-RAY DETECTOR WAS A LARGE-AREA (26 S0 CM) SODIUM IODIDE SCINTILLATOR WITH A 5-MIL BERYLLIUM WINDOW. THE EXFERIMENT WAS DESIGNED TO PROVIDE MEASUREMENTS OF THE LOCATION, INTENSITY, AND INTENSITY WARIATIONS OF NONSOLAR X-RAY SOURCES OVER A LONG PERIOD OF TIME. THE DETECTOR WAS SENSITIVE TO X-RAY PHOTONS IN TWO ENERGY INTERVALS (3 TO 6 KEV AND 3 TO 12 KEV), AND WAS SUFFICIENTLY SENSITIVE TO MONITOR FROM SIX TO TWELVE GALACTIC X-RAY SOURCES. ANY ONE SOURCE WAS VIEWED FOR APPROXIMATELY 1 H, AND EVERY 2 DAYS EACH SOURCE WAS BACK IM VIEW. THREE MODES OF READOUT WERE AVAILABLE: (1) THE REAL-TIME NORMAL MODE IN WHICH COUNTS FROM EACH ENERGY CHANNEL WERE TRANSMITTED EVERY S, (2) THE HIGH-RESOLUTION MODE IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS TGANSMITTED EIGHT TIMES PER S, (3) THE STORE MODE IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS STORED. STORED.

SPACECRAFT COMMON NAME- VELA 58 Alternate Names- Vela 10 (TRW), 03955 Vela 58 (USAF)

NESDC 10- 69-046E

L/UNCH DATE- 05/23/69

ORBIT PERI	ÉRS - GEOCENTRIC OD- 6709, MIN 110920, KM ALT	EPOCH DATE- 05/25/69 Inclination- 32.8 Apoapsis- 112283. Km	
PERSONNEL MG -	ARPA-STAFF	ARPA/WASH- DC	

PH =	SAMSO	USAF-LAS
PS - R.W.	KLEBESADEL	LOS ALAMOS SCI LAB

BRIEF DESCRIPTION

BRIEF DESCRIPTION VELA 50 WAS ONE OF TWO SPIN-STABILIZED, POLYHEDRAL SATELLITES THAT COMPRISED THE FIFTH LAUNCH IN THE VELA PROGRAM. THE ORBITS OF THE TWO SATELLITES ON EACH LAUNCH WERE BASICALLY CIRCULAR AT ABOUT 17 EARTH RADII, INCLINED AT 60 DEG TO THE ECLIPTIC, AND SPACED 180 DEG APART, THUS PROVIDING A MONITORING CAPABILITY OF OPPOSITE SIDES OF THE EARTH. THE OBJECTIVES OF THE SATELLITES WERE (1) TO STUDY SOLAR AND COSMIC X RAYS, EUV, SOLAR PROTONS, SOLAR WIND, AND NEUTHONS, (2) TO CARRY OUT RESEARCH AND DEVELOPMENT ON METHODS OF DETECTING NUCLEAR EXPLOSIONS BY MEANS OF SATELLITE-BORNE INSTRUMENTATION, AND (3) TO PROVIDE SOLAR FLARE DATA IN SUPPORT OF MANNED SPACE MISSIONS. VELA 50, AN IMPROVED VERSION OF THE EARLIER VELA SERIES SATELLITES, HAD BETTER COMMAND CAPABILITIES, INCREASED DATA STORAGE, IMPROVED POWER REQUIREMENTS, DETER THERMAL CONTROL OF OPTICAL SENSORS, AND GREATER EXPERIMENTATION WEIGHT. POWER SUPPLIES OF 120 W WERE PROVIDED BY 22,500 SOLAR CELLS MOUNTED ON 24 OF THE SPACECRAFT'S 26 FACES. A ROTATION RATE OF 78 RPM OURING TRANSFER ORBITS AND I RPM AFTER FINAL ORBIT INSERTION MAINTAINED HOMINAL ATTITUDE CONTROL. EIGHT WHIP ANTENNAS AND FOUR STUD ANTENNA ARRAYS AT OPPOSITE ENDS OF THE SPACECRAFT TRUCTURE WERE USED FOR GROUND COMMAND ANN TELEMETRY. TELEMETRY.

INVESTIGATION NAME- COSMIC X RAYS

NSSDC 10- 69-046E-06

PERSONNEL				
PI - R.D.	BELIAN	LOS ALAMOS SCI LAB		
01 - W.D.	EVANS	LOS ALAMOS SCI LAD		
01 - J.P.	CONNER	LOS ALAMOS SCI LAB		

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE COSMIC X-RAY DETECTOR WAS A LARGE-AREA 26 SQ CM SODIUM IODIDE SCINTILLATOR WITH A 5-MIL BERYLLIUM WINDOW. THE EXPERIMENT WAS DESIGNED TO PROVIDE MEASUREMENTS OF THE LOCATION, INTENSITY, AND INTENSITY VARIATIONS OF NONSOLAR X-RAY SOURCES OVER A LONG PERIOD OF TIME. THE DETCCTOR WAS SENSITIVE TO X-RAY PHOTONS IN TWO ENERGY INTERVALS (3 TO 6 KEV AND 3 TO 12 KEV), AND WAS SUFFICIENTLY SENSITIVE TO MONITOR FROM 6 TO 12 GALACTIC ''-RAY VIEW. THREE 'JODES OF READOUT WERE AVAILABLE: (1) THE REAL-TIME NORMAL MODE, IN WHICH COUNTS FROM EACH ENERGY CHANNEL WERE TRANSMITTED EVERY S, (2) THE HIGH-RESOLUTION MODE, IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS TRANSMITTED EIGHT TIMES PER S, AND (3) THE STORE NODE, IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS STORED.

SPACECRAFT COMMON NAME- VELA 64 Alternate Names- PL-7028, Vela 11 (TRW) 04366

NSSDC 10- 70-027A

LAUNCH DATE- 04/08/70

ORBIT PARAMETERS Orbit type- geocentric orbit period- 6729. Min periapsis- 111210. KM Alt	EPOCH DATE- 04/09/70 Inclination- 32.41 deg Apoapsis- 112160. KM Alt
PERSONNEL Mg – Arpa-Staff PM – Samso	ARPA/WASH/ DC USAF-LAS
PS - R.W. KLEBESADEL	LOS ALAMOS SCI LAB

BRIEF DESCRIPTION

- 8.45

BRIEF DESCRIPTION VELA 6A WAS ONE OF TWO SPIN-STABILIZÊD, POLYHEDRAL SATELLITES THAT COMPRISED THE SIXTH LAUNCH IN THE VELA PROGRAM. THE ORBITS OF THE TWO SATELLITES ON EACH LAUNCH WERE BASICALLY CIRCULAR AT ABOUT 17 EARTH RADII, INCLINED AT 60 DEG TO THE ECLIPTIC, AND SPACED 180 DEG APART, THUS PROVIDING A MONITORING CAPABILITY OF OPPOSITE SIDES OF THE EARTH. THE OBJECTIVES OF THE SATELLITES WERE (1) TO STUDY SOLAR AND COSMIC X RAYS, EUV, SOLAR PROTONS, SOLAR WIND, AND NEUTRONS, (2) TO CARRY OUT RESEARCH AND DEVELOPMENT ON METHODS OF DETECTING. NUCLEAR EXPLOSIONS BY MEANS OF SATELLITE-BORNE INSTRUMENTATION, AND (3) TO PROVIDE SOLAR FLARE DATA IN SUPPORT OF MANNED SPACE MISSIONS. VELA 6A WAS AN IMPROVED VERSION OF THE EARLIER VELA SERIES SATELLITES HAVING BETTER COMMAND CAPADILITIES, INCREASED DATA STORAGE, IMPROVED POWER REQUIREMENTS, BETTER THERMAL CONTROL OF OPTICAL SENSORS, AND GREATER EXPERIMENTATION MEIGHT. POWER SUPPLIES OF 120 W WERE PROVIDED BY 22,500 SOLAR CELLS MOUNTED ON 24 OF THE SPACECRAFT'S 26 FACES. ROTATION RATES OF 78 RPM DURING TRANSFER ORBITS AND 1 RPM AFTER FINAL ORBIT INSENTION MAINTAINED NOMINAL ATTITUDE CONTROL. EIGHT WHIP ANTENNAS AND FOUR STUD ANTENNA ARRAYS AT OPPOSITE ENDS OF THE FRACECRAFT STRUCTURE WERE USED FOR GROUND COMMANDS AND TELEMETFY. THE LAUNCH OF VELA 6A AND 6B), COMPLETED THE OBJECTIVES OF THE VELA PROGRAM. OF THE VELA PROGRAM.

INVESTIGATION NAME- COSMIC X RAYS

NSSDC 10- 70-027A-06

PERSONNEL		
$PI = J_*P_*$	CONNER	LOS ALAMOS SCI LAB
01 - W.D.	EVANS	LOS ALAMOS SCI LAB
01 - R.D.	BELIAN	LOS ALAMOS SCI LAB

BRIEF DESCRIPTION THE COSMIC X-RAY DETECTOR WAS A LARGE-AREA (26 SQ CM) SODIUM IODIDE SCINTILLATOR WITH A 5-MIL BERYLLIUM WINDOW, THE EXPERIMENT WAS DESIGNED TO PROVIDE MEASUREMENTS OF THE LOCATION, INTENSITY, AND INTENSITY VARIATIONS OF NONSOLAR X-RAY SOURCES OVER A LONG PERIDD OF TIME. THE DETECTOR WAS SENSITIVE IG X-RAY PHOTONS IN TWO EMERGY INTERVALS (3 TO 6 KEV AND 3 TO 12 KEV), AND WAS SUFFICIENTLY SENSITIVE TO MONITOR FROM SIX TO TWELVE GALACTIC X-RAY SOURCES. ANY ONE SOURCE WAS VIEWED FOR APPROXIMATELY 1 H, AND EVERY 2 DAYS EACH SOURCE WAS BACK IN VIEW. THREE POOES OF READOLY WERE AVAILABLE: (1) THE REAL-TIME NORMAL MODE IN WHICH COUNTS FROM EACH EMERGY CHANNEL WERE TRANSMITTED EVERY S, (2) THE HIGH-RESOLUTION MODE IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS TRANSMITTED EIGHT TIMES PER S, AND (3) THE STORE MODE IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS STORED.

SPACECRAFT COPMON NAME- VELA 6B Alternate NAMES- PL-702C, VELA 12 (TRN) D4368, VELA 68 (USAF)

NSSDC ID- 70-0278

LAUNCH DATE- 04/08/70

ORBIT PARAME, 27		
ORBIT TYPE-	GEOCENTRIC	EPOCH DATE- 04/11/70
ORBIT PERIOD	- 6745. MIN	INCLINATION- 32.52 DEG
PERIAPSIS- 1	L11500. KH ALT	APOAPSIS- 112210. KM ALT
PERSONNEL		11
MG - /	ARPA-STAFF	ARPA/WASH / DC

MG	-	ARPA-STAFF	ARPA/WASH / DC
PR	-	SAMSO	USAF-LAS
PS	- R.H.	KLEBSADEL	LOS ALAMOS SCI LAB

0

BRIEF DESCRIPTION VELA 6B WAS ONE OF TWO SPIN-STABILIZED, POLYHEDRAL SATELLITES THAT COMPRISED THE SIXTH LAUNCH IN THE VELA PROGRAM. THE ORBITS OF THE TWO SATELLITES ON EACH LAUNCH WERE BASICALLY CIRCULA? AT ABOUT 17 EARTH RADII, INCLINED AT 60 DEG TO THE ECLIPTIC, AND SPACED 180 DEG APART, THUS PROVIDING A MONITORING CAPABILITY OF OPPOSITE SIDES OF THE EARTH. THE OBJECTIVES OF THE SATELLITES WERE (1) TO STUDY SOLAR AND COSMIC X RAYS, EUV, SOLAR PROTONS, SOLAR WIND, AND NEUTRONS, (2) TO CARRY OUT RESEARCH AND DEVELOPMENT ON METHODS OF DETECTING NUCLEAR EXPLOSIONS BY MEANS OF SATELLITE-BORNE INSTRUMENTATION, AND (3) TO PROVIDE SOLAR FLARE DATA IN SUPPORT OF MANNED SPACE MISSIONS. VELA 6B WAS AN IMPOVED VERSION OF THE EARLIER VELA SERIES SATELLITES HAVING BETTER COMMAND CAPABILITIES, INCREASED DATA STORAGE, IMPROVED POWER REQUIREMENTS. BETTER THERMAL CONTROL OF OPTICAL SENSORS, AND GREATE EXPERIENTATION NEIGHT. POWER SUPPLIES OF 120 W WERE PROVIDED BY 22,500 204AR CELLS MOUNTED ON 24 OF THE SPACECRAFT'S 26 FACES. A ROTATION RATE OF 78 RPM DURING THANSFER ORBITS AND I RPM AFTER FINAL ORBIT INSERTION MAINTAINED NOMINAL ATTITUDE CONTROL. EIGHT WHIP ANTENNAS. AND FOUR STUB ANTENNA ABRAYS AT OPPOSITE ENDS OF THE SPACECRAFT STRUCTURE WERE USED FOR GROUND COMMANDS AND TELEMETRY. THE LAUNCH OF VELA 6A AND 6B, PLUS THE TWO ACTIVE VELAS STILLI NO ORBIT. VELA 5A AND B), COMPLETED THE OBJECTIVES OF THE VELA PROGRAM.

OF POOR QUALITY

INVESTIGATION NAME- COSMIC X RAYS

NSSDC 10- 70-0278-06

PI				

LOS ALAMOS SCI LAB
LOS ALAMOS SCI LAB
LOS ALAMOS SCI LAD

BRIEF DESCRIPTION THE COSNIC X-RAY DETECTOR WAS A LARGE-AREA (26 50 CM) SODIUM IDDIDE SCINTILLATOR WITH A 5-MIL BERYLLIUM WINDOW. THE EXPERIMENT WAS DESIGNED TO PROVIDE MEASUREMENTS OF THE LOCATION, INTENSITY, AND INTENSITY VARIATIONS OF NONSOLAR X-RAY SOURCES OVER A LONG PERIOD OF TIME. THE DETECTOR WAS SENSITIVE TO X-RAY PHOTONS IN TWO ENERGY INTERVALS (3 TO 6 KEV AND 3 TO 12 KEV), AND WAS SUFFICIENTLY SENSITIVE TO MONITOR FROM SIX TO TWELVE GALACTIC X-RAY SOURCES. ANY ONE SOURCE WAS VIEWED FOR APPROXIMATELY 1 H, AND EVERY 2 DAYS EACH SOURCE WAS BACK IN VIEW. THREE MODES OF READOUT WERE AVAILABLE: (1) THE REAL-TIME NORMAL MODE IN WHICH COUNTS FROM EACH ENERGY CHANNEL WERE TRANSMITTED EVERY S, (2) THE HIGH-RESOLUTION MODE IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS TRANSMITTED EIGHT TIMES PER S, AND (3) THE STORE MODE IN WHICH ONLY THE 3- TO 12-KEV CHANNEL WAS STORED. STORED .

SPACECRAFT COMMON NAME- SAS-A Alternate Names- Sas 1, explorer 42 Uhuru, pl-7010 04797

NSSDC 10- 70-107A

LAUNCH DATE- 12/12/70

ORBIT PARAMETERS Orbit Type- Geocentric Orbit Period- 95.7 Min Periapsis- 531. Km Alt	EPOCH DATE- 12/13/70 Inclination- 3.0 deg Apoapsis- 572. Km alt
PERSONNEL Mg - J.R. Holtz Sc - N.G. Roman	NASA HEADQUARTERS NASA HEADQUARTERS

	NASA HEADQUARTERS
	NASA HEADQUARTERS
END	NASA-GSFC
EL	NA SA-GSFC

BRIEF DESCRIPTION

PM - M.R. TOWNS PS - C.E. FICHT

BRIEF DESCRIPTION SAS-A WAS THE FIRST OF A SERIES OF SMALL SPACECRAFT WHOSE OBJECTIVES WERE TO SURVEY THE CELESTIAL SPHERE AND SEARCH FOR SOURCES RADIATING IN THE X-RAY, GAMMA-RAY, UV, AND OTHER RECTRAL REGIONS. THE PRIMARY MISSION OF SAS-A WAS TO DEVELOP A CATALOG OF CELESTIAL X-RAY SOURCES BY SYSTEMATIC SCANNING OF THE CELESTIAL SPHERE IN THE ENERGY RANGE FROM 2 TO 20 KEV. THE SPACECRAFT WAS LAUNCHED DECEMBER 12, 1970, FROM THE SAN MARCO PLATFORM OFF THE COAST OF KENYA, AFRICA, INTO A NEAR-CIRCULAR EQUATORIAL ORBIT. THE ORBITING SPACECRAFT WAS IN THE SHAPE OF A CYLINDER APPROXIMATELY 56 CM IN DIAMETER AND 116 CM IN LENGTH. FOUR SOLAR PADDLES WERE USED TO RECHARGE A 6-AMP-HR, EIGHT-CELL, NICKEL-CADMIUM WATTERY AND TO PROVIDE POWER TO THE SPACECRAFT AND EXPERIMENT. THE SPACECRAFT WAS STABILIZED BY AN INTERNAL WHEEL, AND A MAGNETICALLY TORQUED COMMANDABLE CONTRCL SYSTEM WAS USED TO POINT THE SPIN AXIS OF THE SPACECRAFT TO ANY POINT OF THE SKY. THE ASPECT SYSTEM CONSISTED OF BOTH A STAR AND SUN SENSOR THAT SHARED THE SAME PROCESSING ELECTRONICS. DATA WERE STORED ON A ONE-ORBIT STORAGE TAPE RICORDER AND TELEMETERED DURING A 3.4-MIN PLAYBACK CYCLE. A 1000-BPS PCM/PM SYSTEM WAS USED.

INVESTIGATION NAME- ALL-SKY X-RAY SURVEY

NSSDC 10- 70-107A-01

PERSONNEL

GIACCONI	HARVARD	COLLEGE	OBS
KELLOGG	HARVARD	COLLEGE	085
GURSKY	HARVARD	COLLEGE	085
TANANBAUM	SAO		
	KELLOGG GURSKY	KELLOGG HARVARD GURSKY HARVARD	KELLOGG HARVARD COLLEGE GURSKY HARVARD COLLEGE

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE X-RAY INSTRUMENT ABOARD SAS-A (EXPLORER 42) CONSISTED OF TWO NEARLY IDENTICAL SIDES, BOTH PHYSICALLY AND ELECTRONICALLY. EACH SIDE CONTAINED AN X-RAY DETECTION SYSTEM COMPOSED OF A COLLIMATOR, PROPORTIONAL COUNTERS, ASSOCIATED PROCESSING ELECTRONICS, AND AN ASPECT SENSING SYSTEM. THE HIGH-RESOLUTION (SPATIAL) SIDE HAD A VIEWING AMGLE OF 0.5 DEG BY 5 DEG FWHM AND A DETECTION RANGE FROM 1 TO 20 KEV, THE OTHER SIDE HAD A HIGH-SENSITIVITY (INTENSITY) COLLIMATOR WITH A VIEWING ANGLE OF 5 DEG BY 5 DEG FWHM. THIS SIDE HAD A DETECTION RANGE FROM 1 TO 10 KEV. THE CENTERS OF THE FIELDS OF VIEW OF THE TWO BANKS WERE DISPLACED FROM THE EQUATORIAL PLANE OF THE SATELLITE, SUCH THAT THE FULL BANDMUTD COVERED BY THE TWO DETECTORS DURING EACH SPIN WAS APPROXIMATELY 127 DEG. SIX PROPORTIONAL COUNTERS, COMPOSED OF A BERYLLIUM SHELL WITH

2.5-RIL BERYLLIUM FOIL WINDOWS, WERE BEHIND EACH COLLIMATOR. THE INTERIOR CONTAINED A 2-MIL TUNGSTEN ANODE WIRE AND A GAS COMPOSITION OF 90 PERCENT ARGON, 9.5 PERCENT CARBON DIDXIDE FOR GUENCHING, AND 0.5 PERCENT HELJUM AT A PRESSURE OF 940 MM OF MERCURY. LON-INTENSITY RADIOACTIVE SOURCES WERE USED FOR IN-FLIGHT CALIBRATION OF THE INSTRUMENT, THE SPIN AXIS OF THE SPACECRAFT WAS HELD FIXED IN THE SKY FOR ABOUT A DAY AT A TIME. DURING THIS PERIOD A BAND OF APPROXIMATELY 18 DEG ABOUT THE EQUATOR OF THE SPIN AXIS WAS SCANNED. THE PRIMARY DATA REDUCTION OBJECTIVE WAS TO SUPERIMPOSE THE X-RAY BATA RECORDED AS 'COUNT RATE VS TIME' TO 'COUNT RATE VS AZIMUTH'SO THAT THE SUPERIMOSITION DATA WOULD BE EQUIVALENT TO A SINGLE SWEEP THROUGH THE OBSERVING 10-DEG BAND WITH A TOTAL OBSERVING TIME OF 1 DAY. AN ARRAY WAS CREATED OF X-RAY SUPERPOSITION (REPRESENTING THE 350-DEG CINCLE SCANNED) BROKEN INTO 9326 ELEMENTS OF AZIMUTH OF D MIN EACH FOR THE 5-DEG DETECTOR.

SPACECRAFT	COMMON	NAME	SOLRAD	10	
ALTERNATE	NAMES -	EXPLORE	R 44/	SOLAR	EXPLORER-C
		SE-C/ 5	OLRAD.	·C	
	1	PL-703/	1		

NSSDC ID- 71-058A

LAUNCH DATE- 07/08/71

ORBIT PARAMETERS Orbit type- geocentric Orbit period- 95.3 min Periapsis- 436. KM Alt	EPOCH DATE- 07/09/71 Inclination- 51.0 deg Apoapsis- 630, km Alt
	NFONF313- 830. KH AC)
PERSONNEL	
NG - J.R. HOLTZ	NASA HEADQUARTERS
SC - J.D. BOHLIN	NASA HEADQUARTERS
PM - E.W. PETERKIN	US NAVAL RESEARCH LAB
PS - R.W. KREPLIN	US NAVAL RESEARCH LAB

BRIEF DESCRIPTION SOLRAD 10, A SPIN-STABILIZED SATELLITE, WAS ONE IN A SERIES OF SPACECRAFT DESIGNED TO PROVIDE CONTINUOUS COVERAGE OF MAVELENGTH AND INTENSITY CHANGES IN SOLAR RADIATION IN THE UV, SOFT, AND HARD X-RAY REGIONS, (THI FIRST SPACECRAFT IN THIS SERIES WAS LAUNCHED IN 1960.) S LRAD 10 ALSO MAPPED THE CELESTIAL SPHERE USING A HIGH-SENSITIVITY X-RAY DETECTOR. THE SPACECRAFT WAS A ,12-SIDED CYLINDER THAT NEASURED 76 CM IN DIAMETER AND 58 CM IN HEIGHT, FOUR SYMMETRICALLY PLACED 17.8-BY 53.3-CM SOLAR CELL PANELS, HINGED AT THE CENTER SERIED AXIS OF THE SENSED AT THE CENTER SERIED AXIS OF THE SALLITE, WHICH POINTED BIRECTLA T THE SOLAR DISK. THE PLANE OF ROTATION SHIFTED ABOUT 1 DEG/DAY SØ THAY A STELLAR DETECTOR MOUNTED TO POINT RADIALLY OUTWARD FROM THE ANIS SCANNED THE CELESTIA SPHERE, DATA FROM ALL DETECTORS WERE STORED IN A 54-KBS CORE HEMORY AND TELEMETERED ON COMMAND TO THE NRL TRACKING STATION AT BLOSSOM POINT, MD. DATA WERE ALSO TRANSMITTED IN REAL TIME AT 137.710 MHZ. BRIEF DESCRIPTION

INVESTIGATION NAME- ALL-SKY X-RAY SURVEY

NSSDC ID- 71-058A-02

7

PERSONNEL PI - R.W. KREPLIN

US NAVAL RESEARCH LAD

BRIFF DESCRIPTION THIS EXPERIMENT WAS DESIGNED TO MAP THE SOURCES OF X-RAY EMISSION IN THE SKY IN THE 0.5 - 15-A REGION. THE DETECTOR, MOUNTED ON THE SIDE OF THE SPACECRAFT, WAS A LARGE-AREA PROPORTIONAL COUNTER MOUNTED TO POINT RADIALLY OUTWARD FROM THE SPIN AXIS, WHICH POINTED CONTINUALLY TOWARD YHE SUN. THE DETECTOR WINDOW WAS MADE OF 1/8-MIL-THICK MYLAR WITH AN EFFECTIVE AREA OF 100 SQ CM. THE GAS FILLER WAS A MIXTURE OF 0.45 ARGON, 0.45 XENON, AND 0.10 CARBON DIOXIS'2 MAINTAINED AT 4 LB/SQ CM. A COLLMATOR LIMITED THE FIELD OF VIEN TO 8 DEG, FULL MIDTH AT HALF MAXIMUM (FWHM) IN A PLANE CONTAINING THE SPIN AXIS AND 1 DEG IN THE PLANE PERFENDICULAR TO THE SPIN AXIS. CHARGED PARTICLE INFORMATION WAS PROVIDED BY PROPORTIONAL COUNTERS MOUNTED ON THREE SIDES OF THE X-RAY DETECTOR. ASPECT INFORMATION WAS PROVIDED BY A BLUE-SENSITIVE PHOTOMULTPLIER CAPABLE OF DETECTING ALL FOURTH-MAGHITUBE AND NOT FIFTH-MAGNITUDE STARS. THE RESOLUTION OF THE ASPECT SYSTEM AND THE ACCUMACY WITH WHICH THE EXPERIMENT COULD LOCATE X-RAY SOURCES WAS BETTER THAN PLUS OR MINUS 0.25 DEG. THE DETECTOR MAS CONNECTED TO A 400-CHANNEL PULSE TIME ANALYZER WHICH WAS SYNCHRONIZED WITH THE SPIN PERIOD TO GIVE A 2-DEG SPATIAL RESOLUTION IN THE SPIN DIRECTION. THE WHOLE CELESITAL SPHERE MAS SUVEYED VEYEN & MONTH. DURCTION. THE WHOLE CELESITAL SPHERE MAS SUVEYED WITH THE SPIN DIRECTION. THE WHOLE COUNT AT ALL TIMES. THIS HACKGROUND LIMITED THE USEFULNESS OF THE DATA, AND NO RESULTS FROM THIS EXPERIMENT WERE PUBLISHED. BRIEF DESCRIPTION

PERSONNEL

SPACECRAFT COMMON NAME- APOLLO 15 CSH ALTERNATE NAMES- 05351

PETRONE

NSSDC ID- 71-063A

LAUNCH DATE- 07/26/71

ORBIT PARAMETERS EPOCH DATE- 07/30/72 ORBIT TYPE- SELENCCENTRIC ORBIT PERIOD- 119.0 MIN PERIAPSIS- 90.0 KM ALT NCLINATION- 26. DEG POAPSIS- 115.0 KM ALT APOAPSIS-

PERSONNEL PH - R.

NASA HEADQUARTERS

BRIEF DESCRIPTION

BRIEF DESCRIPTION APOLLO 15 WAS THE FIFTH SPACECRAFT (FOURTH ACCOMPLISHED) AND THE FIRST OF THE J-SERIES APOLLO MISSIONS DESIGNED TO LAND MEM ON THE MOON. THE LUNAR LANDING SITE FOR THE 12-OAY SCIENTIFIC MISSION WAS THE HADLEY RILLE-APENNINE MOUNTAIN REGION AT 26 DEG 06 MIN 94 SEC N. 3 DEG 39 MIN 30 SEC E JN THE LUNAR SURFACE. THE DATE OF LAUNCH WAS JULY 26, 1971. THE LWAR MODULE (LM) CARYING ASTRONAUTS DAVID SCOTT AND JAMES IRWIN AND THE LUNAR ROVING WEHICLE (LRV) LANDED ON THE MOON ON JULY 31, 1971. THE COMMAND MODULE (CN) PILOTED BY ALFRED WORDEN REMAINED IN A SLIGHTLY ELLIPTICAL ORBIT AT AN ALTITUDE OF 93 BY 120 KM WITH AN INCLIMATION OF 23 DEG. THE PROJECTS CARRIED OUT ON THE SURFACE INCLUDED THE DEPLOYMENT OF THE APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE (ALSEP), GEOLOGICAL FIELD EXPLORATION IN THREE EVA EXCURSIONS, DOCUMENTING PHOTOGRAPHY AND ACQUISITION OF SAMPLES OF THE LUNAR TERMAIN. PHOTOGRAPHS USING 16- AND TO-MM FILM WERE OBTAINED FROM BOTH THE SURFACE AND FROM ORBIT, AND 35-MM AND TWO KINDS OF 5-IN. FILM PHOTOGRAPHS WERE ODTAINED FROM ONBHIT. SPECIAL UV AND DIMLIGHT PHOTOGRAPHS WAS THE LUNAR ENVIRONMENT, A SUBSATELLITE WITH AN EXPERIMENTS PACKAGE WAS RELEASED FROM THE COMMAND SERVICE MODULE (CSM) ON AUGUST 4, 1971, INTO AN ORBIT 135 BY 97 KM. THE LRV WAS USED TO EXPLORE REGIONS WITHIN 5 KM OF THE LM LANDING SITE, THIS WAS THE FIRST TIME A VEHICLE OF THIS TYPE HAD BEEN USED, AND ITS PERFORMANCE ON THE LUNAR TERRAIN WAS VERY SUCCESSFUL. THE CM AND LM VEHICLES REJOINED ON AUGUST 2, 1971, PERFORMED FURTHER THE A VEHICLE OF THIS TYPE HAD BEEN USED, AND ITS PERFORMANCE ON THE LUNAR TERRAIN WAS VERY SUCCESSFUL. THE CM AND LM VEHICLES REJOINED ON AUGUST 2, 1971, PERFORMED FURTHER THE AVENTERD IN A KM OF THE LM LANDING SITE, THIS WAS THE FIRST THE LM WAS SEPARATED FOR LUNAR IMPACT, AND ITS PERFORMANCE ON THE LUNAR TERRAIN WAS VERY SUCCESSFUL. THE CM AND LM VEHICLES REJOINED ON AUGUST 2, 1971, PERFORMED FURTHER THE AVENTIEL ENFERTION ON SUTH THE AD BERVICE MOUND FOR 2 DAYS.

INVESTIGATION NAME- X-RAY FLUORESCENCE

NSSPC ID- 71-063A-09

PERSONIEL		Ĺ	É	đ	N	٥	s	R	E	P
-----------	--	---	---	---	---	---	---	---	---	---

P1 = I.	ADLER	NASA-GSFC
01 - A.E.		NASA-JPL
01 - P.	GORENSTEIN	HARVARD COLLEGE OBS
0I + H.	GURSKY	HARVARD COLLEGE OBS
01 - J.1.	TROMBKA	NASA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT, CARRIED IN THE SCIENTIFIC INSTRUMENT MODULE (SIM) OF THE COMMAND AND SERVICE MODULE (CS) ON THE APOLLO 15 MISSION, WAS USED FOR ORBITAL MAPPING OF THE LUNAR SURFACE COMPOSITION AND X-RAY GALACTIC OBSERVATIONS DURING THE TRANSEARTH COAST. THE INSTRUMENT CONSISTED OF THREE LARGE-AREA PROPORTIONAL COUNTERS WITH STATE-OF-THE-ART ENERGY RESOLUTION, A SET OF LARGE-AREA FILTERS FOR ENERGY DISCRIMINATION AMONG THE CHARACTERISTIC X RAYS OF ALUMINUM, SILICON, AND MAGNESIUM, AND A DATA HANDLING SYSTEM FOR COUNT ACCUMULATION, FOR EIGHT-CHANNEL PULSE-HEIGHT ANALYSIS, AND FOR RELAYING THE DATA TO THE SPACECRAFT (SC) TELEMETRY SYSTEM. ALSO INCLUDED WAS A SOLAR X-RAY MONITOR. THE LARGE-AREA PROPORTIONAL COUNTERS WERE COLLIMATED TO FIELDS OF VIEW OF ABOUT 60 DEG AND YIELDED A RESOLUTION ON THE LUNAR SURFACE OF 111 BY 148 KM.

SPACECRAFT COMMON NAME- 050 7 Alternate Names- 050-H, 05491

NSSDC 10- 71-083A

LAUNCH DATE- 09/29/71

ORBIT PARAMETERS ORBIT PERIOD- 93.2 MIN PERIAPSIS- 321. KH ALT

EPOCH DATE- 09/30/71 Inclination- 33.1 DLG Apoapsis- 572. KM AL/

MG	-	M.E.	MCDONALD
S C		G.K.	OERTEL
PM		R.H.	PICKARD
P \$	•	S.P.	MARAN

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE OBJECTIVES OF THE OSO SATELLITE SERIES WERE TO PERFORM SOLAR PHYSICS EXPERIMENTS ABOVE THE ATMOSPHERE DURING A COMPLETE SOLAR CYCLE AND TO MAP THE ENTIRE CELESTIAL SPHERE FOR DIRECTION AND INTENSITY OF UV LIGHT AND X-RAY AND GAMMA RADIATION. THE OSO 7 PLATFORM CONSISTED OF A SAIL SECTION-WHICH POINTED TWO EXPERIMENTS CONT/NUALLY TOWARD THE SUN, AND A WHEEL SECTION, JHICH SPUN ABOUT AN AXIS PERPENDICULAR TO THE POINTING DIRECTION OF THE SAIL AND CARRIED FOUR EXPERIMENTS. ATTITUDE ADJUSTMENT WAS PERFORMED BY GAS JETS AND A MAGHETIC TORQUING COLL. A POINTING CONTROL PERMITTED THE POINTED EXPERIMENTS TO SCAN THE REGION OF THE SOLAR DISK IN A 60- BY 60-ARC-MIM RASTER PATTERN. IN ADDITION, THE POINTED SECTION COULD BE COPMANDED TO SELECT AND SCAN ANY 7.5- BY 5-ARC-MIN REGION NEAR THE SOLAR DISK. DATA WERE SIMULTANEOUSLY RECORDED ON TAPE AND TRANSMITTED BY PCM/PM TELEMETRY. A COMMAND SYSTEM PROVIDED FOR AT LEAST 155 GROUND-BASED COMMAND SYSTEM PROVIDED FOR AT LEAST 155 GROUND-BASED COMMAND SYSTEM PROVIDED FOR AT LEAST 155 GROUND-BASED TO SINCE MAY 3973, WHEN THE SECOND TAPE RECORDER FALLED. THE SPACECRAFT XEENTERED THE EARTH'S ATMOSPHERE JULY 9, 1974.

INVESTIGATION NAME- COSMIC X-RAY EXPERIMENT

NSSDC 10- 71-0834-03

PERSONNEL PI - L.E. PETERSON

BRIEF DESCRIPTION

U OF CALIF, SAN DIEGO

BRIEF DESCRIPTION THE UCSD COSMIC X-RAY INSTRUMENT WAS A SENSITIVE DETECTOR MOUNTED IN THE ROTATING WHEEL PECTION OF THE SPACECRAFT SO THAT IT VIEWED THE COLESTIAL SPHERE IN SIX MONTHS. THE OBJECTIVES OF THE EXPERIMENT WERE (1) TO LOCATE ACCURATELY KNOWN AND NEWLY DETECTED X-RAY SOURCES, (2) TO MEASURE THE INTENSITY OF THE SOURCES, AND (3) TO ANALYZE SPECTRALLY THE SOURCES OVER THE RAMGE OF 10 TO 550 KEV. THE EXPERIMENT CAPABILITIES WERE (1) A FULS ONICAL LOOK ANGLE OF 6.4 DEG, (2) A SPATIAL RESOLUTION OF PLUS-MINUS 0.2 DEG, (3) A SENSITIVITY OF 5.E-4 PHOTONS/GE (H-5), (4) AN ENERGY RESOLUTION PROVIDED BY THE USE OF 126 CHANNELS FOR THE 10-550 KEV RANGE, AND (5) A MAXIMUM DETECTION RATE OF 3.12 PHOTONS/S. THE X-RAY DETECTOR WAS A 4-IN-DIAMETER BY 3/8-IN-THICK NAI(TL) SCINTILLATION CRYSTAL VIEWED BY A 3-IN PHOTOMULTIFLIER TUDE (PMT). THE DETECTOR WAS SURMOUNDED BY A THICK CSI(MA) SCINTILLATION CRYSTAL SHIELD BUTH 10 HOLES BORED THROUGH IT ALONG THE OPTICAL AXIS TO DEFINE THE FIELD OF VIEW OF THE DETECTOR. THE SHIELD SCINTILLATOR WAS VIEWED BY SIX PM TUDES. LIGHT PULSES IN THE NAI CRYSTAL CAUSED BY X RAYS WHICH HAVE PASSED THROUGH THE HOLES IN THE SHIELD HAVE RELATIVELY SLOW RISE TIMES AND HAVE INTENSITIES PROPORTIONAL TO THE ENERGY OF THE PHOTONS. THE CORRESPONDING PROPORTIONAL TO THE ENERGY FIROUGH THE CSI SHIELD CAUSED LIGHT PULSES WITH FASED THROUGH THE CSI SHIELD CAUSED LIGHT PULSES WITH FASED THROUGH THE CSI SHIELD CAUSED LIGHT PULSES WITH FASE AND CORRESPONDING PULSES IN THE SHIELD PM TUBES. PULSES FROM THE SHIELD PM TUBES FROM THE DETECTOR PM. IN THIS WAY ONLY X RAYS PASSING THROUGH THE COLLIMATING HOLES WERE PROCESSED AS WISEFUL DATA.

Investigation name- cosmic X-ray sources in the range 1.5 to 9 a

NSSDC ID- 71-083A-04

PERSONNEL

PI - G.W. CLARK	MASS	INST	0F	TECH
OI - H.V.D.BRADT	MASS	INST	0F	TECH
OI - W.H.G.LEWIN	MASS	INST	0F	TECH
OI - H.W. SCHNOPPER	MASS	INST	0F	TECT

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE PURPOSE OF THIS EXPERIMENT WAS TO SURVEY THE ENTIRE SKY FOR COSMIC X-RAY SOURCES IN THE EMERGY RANGE 1 TO 60 KEV WITH AN ANGULAR RESOLUTION OF ABOUT 1 DEG, AND PERFORM SPECTRAL ANALYSIS IN 5 BROAD BANDS. EACH PORTION OF THE SKY WAS VIEWED SEVERAL TIMES DURING EACH YEAR OF OPERATION. TWO MULTICOMPARTMENTED FROPORTIONAL COUNTERS EQUIPPED WITH HONEYCOMB COLLIMATORS (3.5 SQ DEG SOLID ANGLE) WERE MOUNTED IN ONE SEGMENT OF THE OSO WHEEL SECTION, WITH THE CENTERS OF THEIR FIELDS OF VIEW ORIENTED 15 DEG ABOVE AND 15 DEG BELOW THE SPACECRAFT EQUATOR. X RAYS WERE DETECTED IN ONE OR ANOTHER OF FOUR COMPARTMENTS DEPENDING UPON THEIR ENERGY. LOW-ENERGY PHOTONS WERE STOPPED IN THE FIRST COMPARTMENT, AND PHOTONS OF EVEN HIGHER ENERGIES PENETRATED THROUGH THE FIRST AND SECOND COMPARTMENTS TO THE THIRD AND FOURTMENT, AND PHOTONS OF EVEN HIGHER ENERGIES PENETRATED THROUGH THE FIRST AND SECOND COMPARTMENTS TO THE THIRD AND FOURTMENT, AND PHOTONS OF EVEN HIGHER ENERGIES PENETRATED THROUGH THE FIRST AND SECOND COMPARTMENTS TO THE THIRD AND FOURTMENT, AND PHOTONS OF EVEN HIGHER ENERGIES PENETRATED THROUGH THE FIRST AND SECOND COMPARTMENTS TO THE THIRD AND FOURTMENT, AND PHOTONS OF EVEN HIGHER ENERGIES PENETRATED THROUGH THE FIRST AND SECOND COMPARTMENT COUNTER WITH A THIN ALUMINUM WINDOW DETECTED PHOTONS BETWEEN 1.0 AND 1.5 KEV. COUNTS FROM EACH COMPARTMENT WERE STORED IN OME OF 256 ACCUMULATORS CORRESPONDING TO A DIVISION OF THE SPACECRAFT SPIN INTO 256 SECTORS, IN-FLIGHT CALIBRATION WAS PROVIDED BY PERIODIC EXPOSURE TO A HADIOACTIVE

NASA HEADQUARTERS NASA HEADQUARTERS NASA-GSFC

NASA-GSFC

SOURCE. ACCURATE ASPECT INFORMATION WAS PROVIDED BY A STAR SENSOR.

SPACECRAFT COMMON NAME- TD 1A Alternate Names- PL-721e, TD 1 08879	
N850C ID- 72-014A	
LAUNCH DATE- 03/12/72	
ORBIT PARAMETERS	

ORBIT TYPE- GEOCENTRIC Orbit Period- 95.6 Min Periapsis- 536, KM Alt	EPOCH DATE- 03/19/72 Inclination- \$7.5 dec Apoapsis- 981. Km ali		
PERSONNEL			
SC - NOHE ASSIGNED			
PM - T.I. CURL	ESA-ESTEC		
PM - R.J. GOSS	NASA-GSFC		
P5 - J. VON VOCHEL	ESA-ESTEC		

BRIEF DESCRIPTION

.

DRJEF DESCRIPTION THE TD-1 SATELLITE CARRIED SEVEN EXPERIMENTS DEVOTED TO ASTROPHYSICAL STUDIES. ITS SCIENTIFIC MISSION WAS TO MAKE A SYSTEMATIC SKY SURVEY IN THE ULTRAVIOLET AND HIGH-ENERGY REGIONS (F THE SPECTRUM. THE EMPERIMENTS WERE DIVIDED INTO TWO MAIN CATEGORIES: FIVE EXPERIMENTS-MEASURING ULTRAVIOLET, X AND GAMMA RAYS, AND HEAVY NUCLEI--SCANNED STRIPS OF THE SKY; THE OTHER TWO VIENED ALONG THE SUN-POINTINC X AXIS AND MEASURED SOLAR X AND GAMMA RAYS. THE SATELLITE WAS A TRIANIALLY STABILIZED PLATFORM WITH THE X AXIS ALWAYS POINTED AT THE CENTER OF THE SUN WITH AN ACCURACY OF 1 ARC MIN. THE SATELLITE ROTATED AROUND THIS AXIS AT A CONSTANT RATE OF 1 REVOLUTION PER ORBIT DURING NORMAL OPERATIONS WHEN SUN SENSORS WERE USED FOR STABILIZATION BUT IT WAS SPUM UP DURING ECLIPSE PERIODS TO MAINTAIN ATTITUDE. THE SKY-SCANNING INSTRUMENTS WERE ABLE TO SCAN A NARGU BAND OF THE SKY DURING EACH ORBIT AND THE WHOLE CELESTIAL SPHERE IN 6 MONTHS. TWO AND ONE-HALF COMPLETE SCANS OF THE CELESTIAL SPHERE WERE COMPLETE DEFORE THE ATTITUDE CONTROL WAS LOST IN MAY 1974 FOLLOWING EXHAUSTION OF THE CALESTIAL SPHERE AND MANY AREAS WERE OBSERVED DURING TWO OR THRE SEPARATE SCANS. THE SOTOM COMPARTMENT CONTAINING THE SFACECRAFT SUBSYSTEMS AND A TOP COMPARTMENT CONTAINING THE OWHORD VIEWING SCIENCE INSTRUMENTS. IT KAD A CROSS SECTION OF THE CELESTIAL SPHERE SAND A TOP COMPARTMENT CONTAINING THE SPACECRAFT SUBSYSTEMS AND A TOP COMPARTMENT CONTAINING THE SPACECRAFT DUBSYSTEMS AND A TOP COMPARTMENT CONTAINING THE SUTURE AND COMPLISED A BOTTOM COMPARTMENT CONTAINING THE SUTURE AND COMPLISED A DOTOM COMPARTMENT CONTAINING THE SUTURE AND COMPLISED A NOTION COMPARTMENT CONTAINING THE SUTURE AND COMPLISED A SOTOM COMPARTMENT CONTAINING THE SUTURE AND COMPLISED AND A TOP COMPARTMENT CONTAINING THE SUTURE AND COMPLISED A DOTOM COMPARTM

INVESTIGATION NAME- SPECTROMETRY OF CELESTIAL X RAYS 2-30 **KEV (577)**

NSSDC ID- 72-0144-04

PERSONNEL

÷

PI - J. LABEYRIE

BRIEF DESCRIPTION

CENS

BRIEF DESCRIPTION A 100-SQ-CM PROPORTIONAL COUNTER WAS USED TO MEASURE THE SPECTRA OF CELESTIAL X-RAY SOURCES IN 10 CHANNELS DETWEEN 2 AND 30 KEV. THE PROPORTIONAL COUNTER WAS LOCATED BEHIND A CROSSED PAIR OF SLOT COLLIMATORS, WHICH TYGETHER YIELDED A 5- BY 1-DEG FIELD OF VIEW. THE PROPORTIONAL COUNTER HAD A 0.5-MM DERVLLIUM WINDOW AND A XENON FILLER GAS. IT WAS CONSTRUCTED IN TWO PARTS, WHICH WERE THEN AMTICOINCIDENCED TO REMOVE THE BACKGROUND DUE TO COSMIC-RAY PARTICLES. SEVERAL MONTHS AFTER LAUNCH THE EXPERIMENT WAS SWITCHED OFF WHEN PROBLEMS WERE ENCOUNTERED WITH THE SPACECRAFT'S ENCODER. DURING THE SECOND SCAN PERIOD, ON JULY 1, 1973, THE EXPERIMENT WAS SUCCESSFULLY SWITCHED ON. CALIBRATION SHOWED THAT THE INSTRUMENT HAD NOT SUFFERED ANY DEGRADATION IN SENSITIVITY NOR IN ENERGY RESOLUTION AND THE EXPERIMENT WAS ABLE TO FULFILL ITS SCIENTIFIC MISSION. DURING SPIN-UP MODE THE EXPERIMENT SCANNED THE EARTH AS WELL AS THE SKY AND WAS ABLE TO MONITOR X-RAY RADIATION FROM THE AURORAL ZONES.

SPACECRAFT COMMON NAME- APOLLO 16 CSH ALTERNATE NAMES- 06000

HSSDC ID- 72-031A

LAUNCH DATE- 04/16/72

ORBIT TYPE- SELENOCENTRIC Orbit Period- 120.0 Min Periapsis- 94.0 Km Alt	AVATE	7 A A J	API 6, i			
ORBIT PERIOD- 120.0 MIN	ORB	IT 1	TYPI	2= 51	LENO	ENTRIC

PERSONNEL PETRONE PH + R.

BRIEF DESCRIPTION

.....

BRIEF DESCRIPTION APOLLO 16 WAS THE FIFTH MISSION IN THE APOLLO SERIES IN WHICH MEN LANDED ON THE MOON. THE 11-DAY SCIENTIC MISSION BEGAN ON APRIL 16, 1972, AT 1754 UT. (THE LAUNCH WAS USTPONED FROM THE ORIGINALLY SCHEDULED DATE, MARCH 17, BECAUSE OF A DOCKING RING JETTION MALFUNCTION.) NAVY CAPT. JOHN W. YOUNG AND AIR FURCE LT. CHARLES W. DUKE LANDED ON THE LUNAR SURFACE IN THE LUNAR MODULE (LN) ON APRIL 21. NAVY LT. THOMAS K. MATTINGLY REMAINED IN THE COMMAND MCDULE (CN) PERFORMING SCIENTIFIC EXPERIMENTS WHILE THE CM WAS IN AN EQUATORIAL ORBIT ABOUT THE MOON. THE LM LANDED IN THE DESCARTES REGION OF THE SURFACE EXPERIMENTS PACKAGE (ALSEP) WAS DEPLOYED ON THE SURFACE, TERRAIN SAMPLES WERE ACGUIRED, AND PHOTOGRAPHS WERE OBTAINED BY THE SURFACE ASTRONAUTS AND FROM THE CM USING 16-, 35-, AND 70-MM FILM, DE BY 48-IN. PANORAMIC FILM, AND D- BY S-IN. MAPPING FILM. THE SURFACE ASTRONAUTS ALSO TESTED THE SECOND LUNAR ROVING VEHICLE TO BE TAKEN TO THE MOON BY EXPLORING REGIONS WITHIN 4 KM OF THE LM LAUNDING SITE. A SUBSATELLITE CARRYING AN EXPERIMENT FACKAGE WAS LAUNCHED INTO THE MOON BY AND APPLORING REGIONS WITHIN 4 KM OF THE LM LAUNDING SITE. A SUBSATELLITE CARRYING AN EXPERIMENT FACKAGE WAS LAUNCHED INTO HE MOON BY EXPLORING REGIONS WITHIN 4 KM OF THE LM LAUNDING SITE. A SUBSATELLITE CARRYING AN EXPERIMENT FACKAGE WAS LAUNCHED INTO HE MOON BY EXPLORING REGIONS WITHIN 4 KM OF THE LM LAUNDING SITE. A SUBSATELLITE ON APRIL 24, 1972, AND IMPACTED WITH THE MOON AFTER SUBSATELLITE CARRTING AN EXPERIMENT PACKAGE WAS LAUNCHED INTO LUNAR ORBIT ON APRIL 24, 1972, AND IMPACTED WITH THE MOON AFTER 425 REVOLUTIONS ON MAY 29, 1972. THE APOLLO 16 SPACECRAFT WAS LAUNCHED ON APRIL 16, 1972, AND WAS INJECTED INTO LUNAR ORBIT ON APRIL 19. THE LM LANDED ON THE MOON ON APRIL 21 AND SFTURNED TO THE LM CANDED ON THE MOON ON APRIL 21 AND SFTURNED TO THE LM ON APRIL 24, THE CM LEFT LUNAR ORBIT ON APRIL 26 AND RETURNED TO EARTH ON APPIL 27, 1972,

INVESTIGATION NAME- X-RAY FLUORESCENCE

HSSDC 10- 72-031A-08

PERSONNEL

PI = 1.	ADLER	NASA-GSFC
01 - A.E.	METZGER	NASA-JPL
01 = P.	GORENSTEIN	HARVARD COLLEGE OBS
0I = H+	GURSKY	HARVARD COLLEGE OBS
01 + J.1.	TROMOKA	HASA-GSFC

DRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT, CARRIED IN THE SCIENTIFIC INSTRUMENT MODULE OF THE COMMAND AND SERVICE MODULE ON THE APOLLO 16 MISSION, WAS USED FOR ORBITAL MAPPING OF THE LUNAR SURFACE COMPOSITION AND X-RAY GALACTIC OBSERVATIONS DURING TRANSEARTH COAST. THE INSTRUMENT CONSISTED OF THREE LARGE-AREA PROPORTIONAL COUNTERS WITH STATE-OF-THE-ART ENERGY RESOLUTION, A SET OF LARGE-AREA FILTERS FOR ENERGY DISCRIMINATION AMONG THE CHARACTERISTIC X PAYS OF ALUMINUM, SILICON, AND MAGNESIUM, AND A DATA HANDLING SYSTEM FOR COUNT ACCUMULATION, FOR EIGHT-CHANNEL PULSE-HEIGHT ANALYSIS, AND FOR RELAYING THE DATA TO THE SPACECRAFT TELEMETRY SYSTEM. ALSO INCLUDED WAS A SOLAR X-RAY MONITOR. THE LARGE-AREA PROPORTIONAL COUNTERS WERE COLLIMATED TJ FIELDS OF VIEW OF ADOUT 60 DEG AND YJELDED A RESOLUTION ON THE LUNAR SURFACE OF 111 DY 148 KM.

SPACECRAFT COMMON NAME- DAD 3 ALTERNATE NAMES- PL-7010, 0A0-C COPERNICUS, 06153

NSSDC 10- 72-065A

LAUNCH DATE- 08/21/72

ORBIT PARAMETERS Orbit type= geocentric Orbit period= 99.7 min	EPOCH DATE- 08/21/72 Inclination- 35.0 deg
PERIAPSIS- 739. KM ALT	APOAPSIS- 751, KM ALT
PERSONNEL	
MG - H.B. CHISHOLM	NASA HEADQUARTERS
SC - E.J. WEILER	NASA HEADQUARTERS
PM - J.P. CORRIGAN	NASA-GSFC

SC.	*	E.J.	WEILER	NASA I
PM	-	J.P.	CORRIGAN	NASA-C
PS	*	JiEi	KUPPERIAN, JR.	N AS A -G

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS MISSION WAS THE THIRD IN THE DAD PROGRAM AND ITS SECOND SUCCESSFUL SPACECRAFT TO OBSERVE THE CELESTIAL SPHERE FROM ABOVE THE EARTH'S ATMOSPHERG, A UV TELESCOPE MITH A SPECTROMETER MEASURED HIGH-RESOLUTION SPECTRA OF STARS, GALAXIES, AND PLANETS WITH THE MAIN EMPHASIS ON THE DETERMINATION OF INTERSTELLAR ABSORPTION LINES. THREE K-RAY TELESCOPES AND A COLLIMATED, PROPORTIONAL COUNTER PROVIDED MEASUREMENTS OF CELESTIAL K-RAY SOURCES AND INTERSTELLAR ABSORPTION BETWEEN .1 AND T NM. THE CAO-3 SPACECRAFT WAS AN OCTAGONALLY SHAPED, ALUMINUM STRUCTURE WITH A 1.21-M HOLLON, CENTRAL, TUDULAR AREA, WHICH HOUSED THE EXPERIMENT CONTAINER. SOLAR PAMELS WERE MOUNTED ON EACH SIDE OF THE SPACECRAFT AT ANGLES OF 34 DEG AND HAD AN AREA OF 38.2 SG M, A SUN BAFFLE PROTECTED THE EXPERIMENTS AND INCREASED THE LENGTH OF THE

EPOCH DATE = 04/20/72 INCLINATION- 12.0 DEG Appapsis- 120.0 km alt APDAPSIS-

NASA HEADQUARTERS

SPACECRAFT TO 4.9 M. TWO INERVIAL BALANCE BOOMS, ONE FORMARD AND ONE ATT, EXTENDED APPROXIMATELY 6.8 M. THE SPACECRAFT WAS COULPPED WITH AN INERTIAL REFERENCE UNIT (A HIGH-PRECISION, INREE-AXIS GYAO INERTIAL SYSTEM), SUN SENSORS, A MAGHETOMETER, AND STAR TRACKERS, WHICH ENABLED SPACECRAFT POINTING TO BE DETERMINED IN MANY DIFFRENT WAYS. A BORESIGHT STAR TRACKER, SENSITIVE TO SIXTH MAGNITUDE, CONTROLLE DITCH AND YAW TO WITHIN 5 ARC S. IN ADDITION, THE HIGH-RESOLUTION TELESCOPE EXPERIMENT HAD A FINE POINTING CONTROL, WHICH COULD CONTROL THE PITCH AND YAW TO WITHIN ONE-TENTH ARC S ON BRIGHT STARS, SFACEC~1FT ATTITUDE WAS CONTROLLED BY INERTIA WHEELS AND THRUSTERS, REDUNCANT TRACKING BEACONS FACILITATED GROUND TRACKING OF THE SFACECRAFT. TWO UHF (ADD.S5 MR2) TRANSMITTERS PROVIDEW WIDEBAND TELEMETRY FOR TRANSMITTING DIGITAL DATA TO THE GROUND STATIONS. TWO REDUNDANT VHF (136.26 MH3) TRANSMITTERS WERE USED IN A NARROW-BAND TELEMETRY LINK PRIMARILY FOR TRANSMITTING SPACECRAFT HOUSEKEEPING DATA. ALTHOUGH THEY SERVED AS BACKUPS FOR THE WIDEBAND TELEMETRY LINK PRIMARILY FOR TRANSMITTING SPACECRAFT HOUSEKEEPING DATA. ALTHOUGH THEY SERVED AS BACKUPS FOR THE WIDEBAND TELEMETRY LINK PRIMARILY FOR TRANSMITTING DIGITAL DATA TO THE GROUND SERVED AS BACKUPS FOR THE WIDEBAND TELEMETRY LINK PRIMARILY FOR TRANSMITTING SPACECRAFT HOUSEKEEPING DATA. ALTHOUGH THEY SERVED AS BACKUPS FOR THE WIDEBAND TELEMETRY LINK PRIMARILY FOR TRANSMITTING DIGITAL DATA TO THE ORDUNDANT PAIRS OF VHF COMMAND RECEIVERS WERE CARRIED AS PART OF A COMMAND SYSTEM CAPABLE UF STORING 1280 COMMANDS, DATA WERK STORED ON AN ON-BOADA TAPE RECORDER AND IN CORE STORAGE. AN ON-BOARD PROCESSOR MONITORED TELEMETRY DATA. ISSUED COMMANDS, AND WAS PROGRAMMED VIA THE COMMAND RECEIVER UPLINK. THE OBSERVATIONAL LIFE OF THE MISSION WAS AUG, 1972 -FEB. 1981 (9-1/2 YEARS).

INVESTIGATION NAME- STELLAR X RAYS

NSSDC 10- 72-0654-02

PERSONNEL	
PI - R.L.F.BOYD	U COLLEGE LONDON
OI - P.W. SANFORD	U COLLEGE LONDON

BRIEF DESCRIPTION THIS EXPERIMENT USED THREE REFLECTING MIRROR SYSTEMS AND A COLLIMATED PROPORTIONAL COUNTER TO OBSERVE CELE(?) AL X-RAY SOURCES BETWEEN .1 AND 10 NM. BETWEEN .1 AND 4.50 NM. THE COLLIMATED PROFORTIONAL COUNTER WAS USED IN CONJUMT 10N WITH PULSE-SHAPE DISCRIMINATION TO REJECT BACKGROUND COUNTS. FROM .3 IO .9 NM AND .6 TO 1.8 MM, PROPORTIONAL COUNTERS LOCATED AT THE FOCUS OF TWO GRAZING-INCIDENCE REFLECTING TELESCOPES (B.5 SG CM AND 1.2 S SG CM. RESPECTIVELY) WER USED, WITH AN ANTICOINCIDENCE SCINTILLATOR ALSO EMPLOYED TO REJECT BACKGROUND COSMIC-RAY COUNTS. AN OPEN-CHANNEL MULTIPLIER LOCATED AT THE FOCUS OF A GRAZING-INCIDENCE TELESCOPE (23 SG CM) WAS USED TO ODSERVE BETWEEN 2 AND 10 NM. A SIX-CHANNEL MULSE HEIGHT ANALYZER COULD BE SWITCHED TO ANY OF THE THREE PROPORTIONAL COUNTERS TO IMPROVE THE ENERGY RESOLUTION. THE .3 TO 9 NM AND .6 - 1.8 NM SYSTEMS BECAME INOPERABLE IN JUNE 1973 WHEN THE BACKGROUND SHUTTER STUCK IN THE CLOSED POSITION. MOST OF THE OBSERVATIONS AFTER THIS WERE MADE WITH THE .1 - .3 NM SYSTEM.

SPACECRAFT COMMON NAME- ANS Alternate Names- Astro Netherland Sat.

N55DC 10- 74-070A

LAUNCH DATE- 08/30/74

ORBIT PARAMETERS Orbit Type- Geocentric Orbit Period- 99.2 Min Periapsis- 266. Km Alt	EPOCH DATE- 09/14/74 Inclination- 98. Deg Apoapsis- 1176. Km Alt		
PERSONNEL MG = J.R. HOLTZ	HASA HEADQUARTERS		
	NACA UEADOUADTERE		

SC - N.G.	ROMAN	NASA HEADQUARTERS
PH - W.	BLOEMENDAL	FOKKER AIRCRAFT CO
PM - E.W.	HYMOWITZ	NASA-GSFC
PS - T.P.	STECHER	NASA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE ASTRONOMICAL NETHERLANDS SATELLITE (ANS) WAS AN EARTH-ORBITING SUN-SYNCHRONOUS SATELLITE, DESIGNED AS AN ASTRONOMICAL OBSERVATORY. THE SPACECHAFT WAS ATTITUDE-CONTROLLED BY MAGNETIC COILS, REACTION WHEELS, AND A YO-YO. ATTITUDE SENSING WAS CARRIED OUT BY SOLAR SENSORS, HORIZON SENSORS, AND STAR SENSORS. TWO GUIDE STARS NEAR THE OBJECT DEING OBSERVED SERVED AS THE FINAL POINTING REFERENCES. EXPERIMENTS ON BOARD OBSERVED CELESTIAL OBJECTS IN UV AND X-RAY WAVELENGTHS. DURING ITS OBSERVING LIFETIME OF 20 MONTHS (SEPT. 74 - JUNE 76) ANS MEASURED THE POSITIONS, SPECTRA, AND TIME VARIATIONS OF GALACTIC AND EXTRAGALACTIC X-RAY SOURCES IN THE ENERGY RANGE 2 TO 15 KEV, OBTAINED UPPER LIMITS TO THE STRENGTH OF SILICON LINE EMISSION AROUND 2 KEV, AND OBTAINED OVER 18,000 OBSERVATIONS OF ABOUT 400 OBJECTS IN THE UV RANGE 1500 TO 3300A. 3300A.

INVESTIGATION MARES SOFT WHEAT EXPERIMENT (SXX)

H550C 10- 74-070A-02

PERSONNEL PI - A.C. BRINKRAN

U OF UTRECHT

BRIXF DESCRIPTION

BRIAF DESCRIPTION THE INSTRUMENTATION CONSISTED OF A MYLAR-WINDOW PROPORTIONAL COUNTER (44- TO 55-A PASSBAND), LOCATED AT THE FOCUS OF A GRAZING INCIDENCE RING PARABOLOID TELESCOPE, AND A TITANIUM-WINDCW PROPURTIONAL COUNTER (PASSBANDS OF 27- TO 35-A, - TO 12-A, AND 2- TO 4-A) LOCATED BEIND A HONEYCOMB COLLIMATOR, THE SENSORS, WHICH OBSERVED X RAYS FROM COSMIC SOURCES, NEGUIRED AN INSTRUMENT-POINTING ACCURACY OF B.1 BEG. PART OF THE EXPERIMENT BECAME INOPERABLE ON JUNE 21, 1975, WHEN THE MYLAR-WINDOW ON 7/16 44-55 A PROPORTIONAL COUNTER APPARENTLY RUPTIMED. RUPTURED.

INVESTIGATION NAME- HARD X-RAY EXPERIMENT (HXX)

NSSDC 10- 74-070A-03

PERSONNEL

PI - J.E. GRINDLAY OI - H.W. SCHNOPPER

PIER J.E. GRINDLAY DI-H.W. SCHNOPPER HARVARD COLLEGE OBS HARVARD CONSTICUTION SECENTIC OBJECTIVES OF THE EXPERIMENT WERE (1) TO GATHER SECENTAL DATA WITH AN ENERGY RESOLUTION OF 28 PERCENT, (2) TO DETECT SILICON EMISSION LINES IN THE 1- TO 4-KEV RAMGE AT AN ENERGY RESOLUTION OF 0.15 PERCENT, (3) TO STUDY PERIODIC AND RANDOM INTENSITY VARIATIONS OF SOURCES OVER A TIME RANGE OF 4 MILLISECONDS TO SEVERAL RINUTES, (4) TO OBTAIN DATA ON X-RAY LIGHT CURVES, AND (5) TO DEFINE POSITIONS OF SOURCES MITH A FRECISION APPROACHING 1 ARC-MIN. THE EXPERIMENTAL PACKAGE CONTAINED THREE MAJOR COMPONENTS; (1) A COLLIMATOR ASSEMBLY (2) A LARGE AREA DETECTOR (LAD) UNIT FOR MEASURING 1- TO 39-KEY K RAYS, AND (3) A BRAGG-CENSIAL SPECTROMETER TUMED FOR DETECTION OF SILLCON LINES ON THE 1- TO 4-KEV INTENVAL. THE LAD AND BARG SPECTROMETER DETECTORS WERE VERY SENSITIVE, BEING ADLE TO DETECT 3.E-S PHOTOMS/(58 CM-5). X-RAYS INCLOENT ON THE FRONT FACE OF THE PACKAGE PASSED THAOUGH THE COLLIMATOR ASSEMBLY ONTO EITHER THE LAD OR A SERIES OF FOUR BRAGG CRYSTALS THAT WERE ORIENTED AT ABOUT AS DEG WITH REPECT TO THE INCIDENT BAN, THE COLLIMATOR IN FRONT OF THE LAD WAS A COMBINATION OF A FINE COLLIMATOR IN FRONT OF THE LAD COARSE COLLIMATOR META SEPARATE ARGON FILLED PROPORTIONAL COUNTER WITH A 7-4-MC/SB CM BERVILLUM WINDOW. THE OFFERENTY ON THE SKY. EACH COLLIMATOR MAD A SEPARATE ARGON FILLED PROPORTIONAL COUNTER WAS PACESSED BY A 15-CHANNEL LGGARITHRIC FULSE-HEIGHT ANALYZER, ALL CHANNELS OF WIGH WER RECORDED IN MEMORY EITHER EVERY AS ONG OT HE INFEGRATED THE WAS ABOUT AS DECENTING WAS SECOND THE THE ODSIBLE THROUGH THE USE OF A SCHEME, WHICH RECORDED THE THEN DESISTICE THROUGH FIRST SI

SPACECRAFT COMMON NAME- UK 5 Alternate Names- United Kingdom-5, PL-7328 ARIEL 5

NSSDC 10- 74-077A

LAUNCH DATE- 10/15/74

ORDIT PARAMETERS ORBIT TYPE- GEOCENTRIC ORBIT PERICD- 95.3 MIN PERIAPSIS- 512.0 KM ALT

EPOCH DATE- 10/16/74 Inclination- 2.9 Deg Apoapsis- 557.0 km alt

HARVARD COLLEGE OBS

MASS INST OF TECH

**

ORIGINAL PAGE IS OF POOR QUALITY

PERSONNEL

* J.R.		NASA HEADQUARTERS
₩ Asês	OPP Corrigan	NASA HEADQUARTERS NASA-GSFC
- 5.5.	ROLT	HASA-GSEC

BRIEF DESCRIPTION

BRIEF DESCRIPTION UK B WAS THE FIFTH SCIENTIFIC SATELLITE IN A UK/US COLLAWORATIVE SPACE RESEARCH PROGRAM. IT CARRITD SIX EXPERIMENTS (S UK AND 1 US) FOR COSMIC X-RAY STUDIES THAT MEASURED THE SPECTRA, POLARIZATION, AND PULSAR FEATURES OF X-RAY SOURCES. THE SPACECRIFT WAS SPIN STABILIZED. TWO EXPERIMENTS SCANNED THE SKY PERPEMDICULAR TO THE SPIN AXIS, WHILE FOUR EXPERIMENTS POINTED PARALLEL TO THE SPIN AXIS. DATA WERE STORED ON BOARD THE SPATERATI IN A CORE STORAGE AND DUMPED TO GROUND STATIONS ONCE PER ORBIT. ALL SATELLITE OPERATIONS WERE DIRECTED FROM A CONTROL CENTER AT THE APPLETON LAB. LAB, UK.

INVESTIGATION NAME - ROTATION MODULATION COLLIMATOR (RMC)

N550C 10- 74-0778-01

PERSONNEL	
PI - R.L.F.BOYD	U COLLEGE LONDON
01 - A.P. WILLHORE	U OF BIRMINGHAM
OT - P.W. SANFORD	U COLLEGE LONDON

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT COMBINED THE FUNCTION OF OBSERVING K RAYS IN DIFFERENT ENERGY RANGES WITH THAT OF STAR TRACKING. THE EXPERIMENT CONTAINED A ROTATION COLLIMATOR, UTILIZING THE SATELLITE SPIN, BENIND WHICH THERE WERE THREE DETECTORS. THE FIELD OF VIEW WAS A CONE WITH A HALF-ANGLE OF 10 DEG TO 20 DEG. DEPENDING ON THE TYPE OF RADIATION VIEWED BY THE DIFFERENT DETECTORS. THE THREE DETECTORS FUNCTIONED AS FOLLOWS: (1) A VISIBLE-LIGHT PHOTOMULTIPLIER ENADLED THE BACKGROUND OF OPTICAL STARSJ (2) AN ARRAY OF CHANNEL ELECTRON MULTIPLIERS, WITH SELECTABLE FILTERS, COVERED THE WAVELENGTH RANGE 0.3 TO 6 KEV; (3) A GROUP OF PROPORTIONAL COUNTERS COVERED THE RANGE 2.5 TO 30 KEV, IT WAS ESTIMATED THAT SOURCE POSITIONS COULD BE DETERMINED TO WITHIN 2 ARC MIN FOR BRIGHT BOURCES.

INVESTIGATION NAME= 2- TO 10-KEV SKY SURVEY INSTRUMENT (SSI)

NSSDC ID- 74-0774-02

PERSÖNNEL		
P1 - K.A.	POUNDS	U OF LEICESTER
01 - B.A.	COOKE	U OF LEICESTER
01 - D.J.	ADAMS	U OF LEICESTER
01 - R.E.	GRIFFITHS	U OF LEICESTER

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT CONSISTED OF A LARGE-AREA PROPORTIONAL COUNTER ARRANGED TO VIEW IN A DIRECTION PERPENDICULAR TO THE SATELLITE SPIN AXIS. THE SATELLITE ROTATION, THEREFORE, ALLOWED A SCAN OF A 360-DEG BAND OF THE SKY, WHEN THE SATELLITE SPIN AXIS WAS ARRANGED TO POINT AT A GALACTIC POLE-THE WHOLE OF THE MILKY WAY COULD BE SCANNED AT ONCE. THE EXPERIMENT COVERED THE PHOTON ENERGY RANGE 1.5 TO 20 XEV AND EFFECTED A HIGH-SENSITIVITY SURVEY, OBTAINING SOURCE LOCATIONS, INTENSITY, AND SPECTRA. A MUMBER OF DIFFERENT MODES OF OPERATION WERE USED IN WHICH THE AVAILABLE STORAGE SPACE IN THE EXPERIMENT ALLOWED THE DETECTION AT THE EXPENSE OF SPECTRAL RESOLUTION OR CONVERSELY. THE SENSITIVITY OF THE EXPERIMENT ALLOWED THE DETECTION AT THE EXPENSE OF SPECTRAL RESOLUTION OR CONVERSELY. THE SENSITIVITY OF THE EXPERIMENT ALLOWED THE DETECTION A GIVEN PART OF DETERMINE THE OF ABOUT 1 DAY. THE ABILITY OF THE SURVEY INSTRUMENTS TO DETERMINE THE POSITIONS OF A SOURCE DEPENDED IN A GIVEN PART OF THE SKY. A SOURCE OF 5.E-S TIPES THE STRENGTH OF SCO X-1 COULD BE LOCATED WITH A PRECISION OF ABOUT 15 ARC MIN.

INVESTIGATION NAME- HIGH-RESOLUTION SOURCE SPECTRA

NSSDC 10- 74-077A-03

PERSONNEL

PI - R.L.F.BOYD	U COLLEGE LONDON
OI - A.P. WILLHORE	U OF BIRMINGHAM
OI - P.W. SANFORD	U College London

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT CONSISTED OF A HIGH-RESOLUTION₄ PROPORTIONAL-COUNTER SPECTROMETER WITH A 128-CHANNEL PULSE-HEIGHT ANALYZER, AND RESPONDED TO PHOTONS IN THE 2- TJ 30-KEV ENERGY RANGE. THE SPECTRA OF SOURCES WERE EXAMINED IN GREATER DETAIL THAN HAD BEEN PREVIOUSLY POSSIBLE. LINE EMISSION FOR CERTAIN ELEMENTS (E.G., IRON) COULD ALSO BE IDENTIFIED. THE DETECTOR VIEWED IN A DIRECTION PARALLEL TO THE SPIN AXIS AND, THEREFORE, CONTINUED TO OBSERVE THE SAME PIECE OF SKY FOR AS LONG AS THE POSITION OF THE SATELLITE SPIN AXIS REMAINED UNALTERED. THE EXPERIMENT AXIS POINTED APPROXIMATELY

2 DEG OFF THE SPIN AXIS, SO THAY WHEN OBSERVING A SOURCE ALGO B DEG OFF THE SPIN AXIS THE SOURCE PASSED IN AND OUT OF THE FIELD OF VIEW DURING CACH ROTATION. THIS PERMITTED THE BACKGROUND FLUX TO BE SAMPLED EVERY SPIN PERIOD BY RECORDING THE SPECTRAL INFORMATION IN FOUR SETS OF LOCATIONS, EACH CORRESPONDING TO A QUADRANT OF THE SPIN CYCLE. THIS SHOULD HAVE OVERCOME THE LACK OF INFORMATION ON POSSIBLE FLUCTUATIONS IN THE BACKGROUND FLUX DURING AN ORBIT'S INTEGRATION. THE EXPERIMENT COULD ALSO HAVE DEEN OPERATED IN A MODE IM WHICH PERIODICITIES IN THE RANGE TYPICAL OF PULSAR FREQUENCIES WERE DETECTED.

INVESTIGATION NAME- BRAGG CRYSTAL SPECTROMETER (BCS)

NS50C ID- 74-077A-04

PERSONNEL

PI	-	K . A .	POUNDS		LEICESTER
01		6 A .	COOKE		LEICESTER
			ADAMS		LEICESTER
01	۰	R.E.	GRIFFITHS	UQF	LEICESTER

BRIEF DESCRIPTION

BRIEF DESCREPTION THIS EXPERIMENT WAS A POLARIMETER/SPECTROMETER OPERATING IN THE 2- TO B-KEV RANGE. IT URED TWO LARGE PLANE CRYSTALS, LITHIUM HVDRIDE AND GRAPHATE, IN A BRAGG SPECTROMETER WITH A HONEYCOMB COLLIMATOR. IT WAS MOUNTED TO VIEW ALONG THE SATELLITE SPIN AXIS AND TO EXAMINE THE RADIATION OF INDIVIDUAL X-RAY SOURCES FOR POSSIBLE POLARISATION AND/OR THE EXISTENCE OF LINE EMISSIONS. IN A SOUNCE OF THE BRIGHTNESS OF THE CRAB NEBULA, A POLARIZATION OF 2.5 PERCENT COULD BE DETECTED. THE EXPERIMENT ALSO CONDUCTED SEARCHES FOR PULSAR ACTIVITY. THE NATURE OF THE EXPERIMENT MADE IT POSSIBLE TO EXAMINE THE POLARIZATION OF THE PULSAR ITSELF DY LOOKING FOR DIFFEGENT PULSAR BEHAVIOR IN THE SEPARATE POLARIZATION COMPONENTS.

INVESTIGATION NAME- HIGH-ENERGY COSNIC X-RAY SPECTRA

NS5DC 10+ 74+077A+05

REPSONNEL		

ERDVANE.			
PI - H.	ELLIOT	IMPERIAL	
01 - 1.1.	QUENBY	IMPERIAL	
01 - A.R.	ENGEL	IMPERIAL	COLLEGE

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EMPERIMENT WAS DESIGNED TO EXTEND THE SPECTRAL INFORMATION ON SELECTED X-RAY SOURCES IN THE ENERGY REGION ADOVE 20 KEV. THE DETECTOR WAS AN 8 50 CM X 4 CH CSI (NA) SCINTILATOR ACTIVELY COLLIMATED TO PROVIDE 8 DEG FWHM. MEASUREMENTS WERE POSSIBLE UP TO 2 MEV, ALTHOUGH THE EFFICIENCY OF THE DETECTOR FELL STEEPLY AT THIS ENERGY. THE DETECTOR AXIS SO THAT IT CONED AS THE SATELLITE SPUN. THE COUNTING RATE RESULTING FROM A POINT SOURCE A FEM DEG FROM THE SPIN AXIS SO THAT IT CONED AS THE SATELLITE SPUN. THE COUNTING RATE RESULTING FROM A POINT SOURCE A FEM DEG FROM THE SPIN AXIS SO THAT IT CONED AS THE SPIN PERIOD. THIS MODULATION WAS DETECTED BY DIVIDING THE SPIN CYCLE INTO FOUR SECTORS AND AMALYZING THE DIFFERENT COULTING RATES IN EACH. IN THIS WAY THE SOURCE INTENSITY COULD BE DETERMINED FROM THE AMPLITUDE OF THE MODULATION. FOR PULSAR OBSERVATIONS. A LARGE ENERGY WINDOW AT THE LOWER END OF THE DETECTOR RANGE WAS USED. THE OBSERVATIONS IN THIS ENERGY REGION WERE ANALYZED FOR A PULSAR PERIODICITY IN A SPECIAL SYSTEM THAT WAS PART OF THE SPACECRAFT HANDLING ELECTRONICS.

INVESTIGATION NAME- ALL-SKY MONITOR

NS.	5 D	C	1	D- 1	7	4=	C	7	71	•	0	6
-----	-----	---	---	------	---	----	---	---	----	---	---	---

PERSONNEL		
P1 - 5.5.	HOLT	NASA-GSFC
01 - E.A.	BOLDT	NASA-GSFC
01 - P.J.	SERLEMITSOS	NASA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE PURPOSE OF THIS EXPERIMENT WAS TO MONITOR THE ENTIRE SKY CONTINUOUSLY FOR TRANSIENT X-RAY PHENOMENA AND, AT THE SAME TIME, TO MONITOR ALL THE STRONG X-RAY SOURCES IN THE SKY FOR LONG-TERM TEMPORAL EFFECTS. THE EXPERIMENT UTILIZED TWO X-RAY PIN-HOLE CAMERAS TO IMAGE THE SKY. POSITION-SENSITIVE PROPORTIONAL COUNTERS RECORDED THE PHOTONS IMAGED THROUGH THE PINHOLES. THE FAN BEAM RESPONSE OF THE CAMERAS ALLOWED THE WHOLE SKY TO BE MONITORED AT LEAST ONCE PER SPACECRAFT ROTATION. THE ENERGY WINDOW WAS 3-6 KEV. IT WAS A VALUABLE AID IN PROGRAMMING SATELLITE MANEUVERS SO THAT TRANSIENT EVENTS IN THE X-RAY SKY, SUCH AS NEARBY NOVAE AND X-DAY FLARES, COULD BE RAPIDLY MADE AVAILABLE FOR STUDY WITH GREATER RESOLUTION BY THE OTHER EXPERIMENTS AND OTHER SPACECRAFT. OTHER EXPERIMENTS AND OTHER SPACECRAFT.

SPACECRAFT COMMON NAME- ARYABHATA Alternate Names- Ariabat, Indian Scientific Sat. Indagat

NSSOC 10- 75-033A

81 61

LAUNCH BATE+ 04/19/75

OABIT PARAMETERS Orbit Type- Geocentric Orbit Period- 96.5 min Periapsib- 568.4 km alt	EPOCH DATE- 04/20/75 Inclination- 50.7 Deg Apoapsis- 611. Km alt
PERSONNEL PD U.R. RAO Mg - Unknown	ISRO SATELLITE CENTER Unknown

	- 2	66								1	U	11	1	ΙQ	¥	Ņ																					Q														
	ŧ	•	5	*		Ų	,		•	Į	R /	A ()																					1	5 (ţġ		6/	1	E	L	L	1	11	E	¢	ĒĮ	ų I	E	Ŗ	
R:	1 6			p	£	5	ti	i I	P	Ť.	14	34	1																																						
						t				5														Ņ								E pi					£										11				
\$																																																			
E ;	51	į Ç	i N	Ē	ø																																														
0																												D																							
U,	AS	1	15	P	Ħ	Ę	R.	l	C A	L	1	1)	\$	\$	H	A	PI	Ľ.	(; 0	N	T.	A	1	N)	E N	Ģ	1	2	6	1	11	Þ	ŧ.	5	A	N	Þ.	ç	0	N	11	١,	Ð	N B	P		,	i R	Æ	ļ

GUASISPHERICAL IN SHAPE CONTAINING 26 SIDES AND CONTAINED THREE EXPERIMENTS FOR THE MEASUREMENT OF COSMIC # RAYS, SOLAR NEUTRONS, AND GAMMA RAYS, AND AN IONOSPHERIC ZLECTRON TRAP-ALONG WITH A UV SENSOR. THE SPACECRAFT WEIGHED 360 KG, USED SOLAR PANELS ON 24 SIDES TO PROVIDE 46 WATTS OF POURP, USED A PASSIVE THERMAL CONTROL SYSTEM, CONTAINED BATTERIES, AND A SPIN-UP GAS JET SYSTEM TO PROVIDE A SPIN RATE OF NOT MORE THAN 90 RPM. THERE WAS A SET OF ALTIFUDE SENSORS COMPRISED OF A TRIAXIAL MAGNETOMETER, A DIGITAL ELEVATION SOLAR SENSOR, AND FOUR AZINUTH SOLAR SENSORS. THE DATA SYSTEM INCLUDED A TAPE RECORDER AT 256 B/S WITH PLAYBACK AT 10 TIMES THAT RATE. THE PCM-FM-PH TELEMETAY SYSTEM OPERATED AT 137.44 MHI. THE NECESSARY GROUND TELEMETRY AND TELECOMMAND STATIONS WERE ESTABLISHED AT SHAR CENTRE IN SRIHARIKOTA, ANDHRA PRADESH.

INVESTIGATION NAME- X-RAY ASTRONOMY

NSSDC 10- 75-033A-01

PERSONNEL マエー U.R. RAO 空流 中間。 KASTURIRANGAN

ISNO SATELLITE CENTER ISSP, V8SC

WOFUE ADDERIPTION

UNIT COSCRIPTION LAIS EXPERIMENT USED AN ARGON PLUS CARBON-DIOXIDE-FILLED PROPURTIONAL COUNTER WITH AN 8-DEG FWHM FIELD OF VIEW PARALLEL TO YHE SPACECRAFT SPIN AXIS TO DETECT X RAYS IN THE 2.5-15 NEV RANGE AND TWO NAI SCINTILLATION TELESCOPES, ONE BLOCKED FOR INSTRUMENTAL BACKGROUND, MOUNTED PERPENDICULAR TO THE SPIN AXIS TO DETECT EMISSION IN THE 10-100 KEV RANGE.

SPACECRAFT COMMON NAME- SAS-C Alternate Names- pl-743D, sas 3 Explorer b3

NSSDC 10- 75-037A

LAUNCH DATE- 05/07/75

OPDIT PARAMETERS ORBIT TYPE- GEOCENTRIC ORBIT PERIOD- 94.9 MIN	EPOCH DATE- 05/08/75 Inclination- 3.0 Deg
PERIAPSIS- 509, KM ALT	APOAPSIS- 516, KM ALT
PERSONNEL	
MG - J.R. HOLTZ	NASA HEADQUARTERS
SC - H.G. SOMAN	NASA HEADQUARTERS
PM - J.E. KUPPERIAN, JR.	NASA-GSEC
PS - C.E. FICHTEL	NASA-GSFC

BRIEF DESCRIPTION

DRIEF DESCRIPTION SAS-C WAS THE THIRD OF A SERIES OF SMALL SPACECRAFT WHOSE OBJECTIVES WERE TO SURVEY THE CELESTIAL SPYERE FOR SOURCES RADIATING IN THE X-RAY, GAMMA-RAY, UV, AND OTHER SPECTRAL REGIONS. THE PRIMARY MISSIONS OF SAS 3 WERE TO MEASURE THE X-RAY EMISSION OF DISCRETE EXTRAGALACTIC SOURCES, TO MONITOR THE INTENSITY AND SPECTRA OF GALACTIC X-RAY SOURCES FROM 0.2 TO 60 KEV, AND TO MONITOR THE X-RAY INTENSITY OF SCORPIO X-1. THE SPACECRAFT WAS LAUNCHED FROM THE SAN MARCO PLATFORM OFF THE COAST OF KENYA, AFRICA, INTO A NEAR-CIRCULAR, EQUATORIAL ORBIT. FOUR SOLAR PADDLES WERE USED IN CONJUNCTION WITH A 12-CELL, NICKEL-CABMIUM DATTERY TO PROVIDE 65 W OF AVERAGE POWER OVER THE ENTIRE ORBIT. THE SPACECRAFT WAS STADLIZED ALLONG THE 2-AXIS AND ROTATED AT ABOUT 0.1 DCG/S. CHANGES TO THE SPIN-AXIS ORIENTATION WERE BY GROUND COMMAND, EITHER DELAYED OR IN REAL TIME. THE SPACECRAFT COULD DE MADE TO DITHER BACK AND FORTH PLUS OR MINUS 2.5 DEG ACROSS A SELECTED SOURCE ALONG THE X AXIS AT 0.01 DEG/S. THE EXPERIMENTS LOOKED ALONG THE X AXIS OF IENTATION WERE TO FOR THE SOURCE ALONG THE X AXIS AT 0.01 DEG/S. THE EXPERIMENTS LOOKED ALONG THE X AXIS OF THE SPACECRAFT, PERPENDICULAR TO IT, AND AT AN ANGLE.

INVESTIGATION NAME- EXTRAGALACTIC EXPERIMENT (EGE)

NSSDC ID= 75-8374+81

PERSONNEL	
PI - G.W. CLARK	MASS INST OF TECH
01 - H.V.D.BRADT	MASS INST OF TECH
OI = W.H.G.LEWIN	MASS INST OF TECH
OI - H.W. SCHNOPPER	MASS INST OF TECH

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT DETERMINED THE POSITIONS OF VERY WEAK EXTRAGALACTIC X=RAY SOURCES. THE INSTRUMENT VIEWED A 100-DEG-SQ REGION OF THE SKY AROUND THE DIRECTION OF THE SPIN AXIS OF THE SATELLITE. THE NOMINAL TARGETS FOR A I-VEAR STUDY WERE (1) THE VIRGO CLUSTER OF GALAXIES FOR 4 MONTHS, (2) THE GALACTIC EQUATOR FOR 2 MONTHS, (3) THE ANDROMEDA NEBULA FOR C NONTHS, AND (4) THE MAGELLAMIC CLOUDS FOR 3 MONTHS. THE INSTRUMENTATION CONSISTED OF ONE 2.5-ARC-MIN AND ONE 4.5-ARC-MIN FUNCH MOBULATION COLLIMATOR, AS WELL AS PROPORTIONAL COUNTRS SENSITIVE OVER THE ENERGY RANGE FROM 1.5 TO 10 KEY. THE EXFECTIVE AREA OF EACH COLLIMATOR WAS ABOUT 225 SQ CM. THE ASPECT SYSTEM PROVIDED INFORMATION ON THE ORIENTATION OF THE COLLIMATORS TO AN ACCURACY OF 15 ARC %.

INVESTIGATION NAME- GALACTIC MONITOR EXPERIMENT (GNE)

NS50C 10- 75-037A-02

PERSONNEL

,R2VANEL	
PI - G.W. CLARK	MASS INST OF TECH
OI - H.V.D.BRADT	MASS INST OF TECH
01 - W.H.G.LEWIN	MASS INST OF TECH
OI - H.W. SCHNOPPER	MASS INST OF TECH

DRIEF DESCRIPTION THE OBJECTIVES OF THIS EXPERIMENT WERE TO LOCATE GALACTIC X-RAY SOURCES TO 15 ARC S AND TO NONIYOR THESE SOURCES FOR INTENSITY WARIATIONS. THE SOURCE POSITIONS WERE DETERMINED WITH THE USE OF THE MODULATION COLLIMATORS OF THE EXTRAGALACTIC EXPERIMENT DURING THE NOMINAL 2-MONTH OBSERVATION OF THE GALACTIC EQUATOR. THE MONITORING OF THE X-RAY SKY WAS ACCOMPLISHED BY THE USE OF THREE SLAT COLLIMATORS. ONE COLLIMATOR, 1 BY TO DEG FWHM, WAS ORIENTED PERPENDICULAR TO THE EQUATORIAL PLANE OF THE SATELLIFE? WHILE THE OTHER TWO, EACH D.5 BY 4D DSG FWHM, WERE ORIENTED SG DEG ABOVE AND 30 DEG BELOW THE FIRST. THE DETECTOR BEHIND EACH COLLIMATOR WAS A PROPORTIONAL COUNTER, SENSITIVE FROM 1.5 TO 13 KEV, WITH AN EFFECTIVE AREA OF ABOUT 100 °M CM. THE 1.0-DEG COLLIMATOR HAS A PADDITIONAL COUNTER OF THE SAME AREA, SENSITIVE FROM 8 TO 50 KEV. THREE LINES OF POSITION WERE ORTAINED FOR ANY GIVEN SOURCE WHEN THE SATELLITE WAS BEING SPUN AT A STEADY ROTATION OF 4 ARC MIN/S ABOUT THE 2 AXIS. A ARC MIN/S ABOUT THE 2 AXIS.

INVESTIGATION NAME- SCORPIO MONITOR EXPERIMENT (SME)

NSSDC 10- 75-037A-63

PERSONNEL	
PI - G.W. CLARK	MASS INST OF TECH
OI - H.V.D.BRADT	MASS INST OF TECH
OI - W.H.G.LEWIN	MASS INST OF TECH
OI - H.W. SCHNOPPER	MASS INST OF TECH

BRIEF DESCRIPTION

BRIEF DESCRIPTION A 12-BY-50-DEG FWHM SLAT COLLIMATOR WAS OPIENTED WITH ITS LONG AXIS PERPENDICULAR TO THE SATELLITE SPIN AXIS SUCH THAT A GIVEN POINT ON THE SKY COULD BE MONITORED FOR ABOUT 25 PERCENT OF A ROTATION. THIS COLLIMATOR WAS INCLINED BY 31 DEG WITH RESPECT TO THE EQUATORIAL PLANE OF THE SATELLITE, SC THAT SCORPIO X-1 WAS OBSERVED WHILE THE Z AXIS WAS ORIENTED TO THE VIRGO CLUSTER OF GALAXIES. THE DETECTORS USED IN THIS EXPERIMENT WERE PROPORTIONAL COUNTERS WITH 1-MIL DETVLLIMM WINDOWS. THE ENERGY RANGE WAS FROM 1.0 TO 60 KEV, AND THE TOTAL EFFECTIVE AREA WAS ABOUN 40 59 CM.

INVESTIGATION NAME- GALACTIC ABSORPTION EXPERIMENT (GAE)

NSSDC ID- 75-037A-04

PERSONNEL	
PI - G.W. CLARK	MASS INST OF TECH
01 - H.V.D.BRADT	MASS INST OF TECH
OI - W.H.G.LEWIN	MASS INST OF TECH
01 - H.W. SCHNOPPER	MASS INST OF TECH

BRIEF DESCRIPTION

GRIEF DESCRIPTION THE DENSITY AND DISTRIBUTION OF INTERSTELLAR MATTER WAS DETERMINED BY MEASURING THE VARIATION IN THE INTENSITY OF THE LOW-ENERGY DIFFUSE X-RAY BACKGROUND AS A FUNCTION OF GALACTIC LATITUDE. A 1-MICROMETER POLYPROPYLEME WINDOW PROPORTIONAL COUNTER WAS USED FOR THE 0.1- TO 8.25-KEV AND 0.5- TO 1.0-KEY ENERGY RANGES, WHILE A 2-MICROMETER TITANIUM WINDOW COUNTER COVERED THE ENERGY RANGE FROM 0.3 TO 0.5 KEV. IN ADDITION, TWO 1.-MIL BERYLLUM WINDOW COUNTERS WERE USED FOR THE 1.0- TO 18-KEV ENERGY RANGE. THE COLLIMATORS IN THIS EXPERIMENT HAD FIELDS OF VIEW OF 3 DEG FOR THE 1-MICROMETER COUNTER, 2 DEG FOR THE 2-MICROMETER COUNTER, AND 2 DEG FOR THE 1-MIL COUNTERS.

SPACECRAFT COMMON NAME- 050 8 ALTERNATE NAMES- 050-1, 050-EYE 7310

N550C ID- 75-057A

LAUNCH DATE- 06/(1/75

ORBIT PARAMETERS Orbit type- geocentric Orbit Period- 95.7 Min	EPOCH DATE- 06/22/75 Inclination- 32.9 deg
PERIAPSIS- 544. KN ALT	APOAPSIS- 559. KM ALT
PERSONNEL	
MG - M.E. MCDONALD	NASA HEADQUARTERS
SC - J.D. BOHLIN	NASA HEADQUARTERS
PM - J.P. CORRIGAN	NASA-GSFC
PS - R. THOMAS	NASA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE OBJECTIVES OF THE OSO SATELLITE SERIES WERE TO PERFORM SOLAR PHYSICS EXPERIMENTS ABOVE THE ATMOSPHERE DURING A COMPLETE SOLAR CYCLE AND TO MAP THE ENTIRE CELESTIAL SPHERE FOR DIRECTION AND INTENSITY OF UV LIGHT, X-RAY RADIATION, AND GAMMA-HAY RADIATION, THE OSO 8 PLATFORM CONSISTED OF A SAIL SECTION, WHICH POINTED TWO EXPERIMENTS CONTINUALLY TOWARD THE SUN, AND A WHEEL SECTION, WHICH SPUN ABOUT AN AXIS PERPENDICULAR TO THE POINTING DIRECTION OF THE SAIL AND CARRIED FIVE EXPERIMENTS. GAS JETS AND A MAGNETIC TORQUING COIL PERFORMED ATTITUDE ADJUSTMENT. POINTING CONTROL PERRITED THE POINTED EXPERIMENTS TO SCAN THE REGION OF THE SOLAR DISK IN A 40- BY 40-ARC-MIN TO 60- BY 60-ARC-MIN RASTER PATTERN. IN ADDITION, THE POINTED SECTION WAS CAPABLE OF DEING COMMANDED TO SELECT AND SCAN A 1- BY 1-ARC-MIN OR 5- BY 5-ARC-MIN REGION A%YWHERE ON THE SOLAR DISK. DATA WERE SIMULTANEOUSLY RECORDED ON TAPE AND TRANSMITTED BY PCM/PM TELEMETRY. A COMMAND SYSTEM PROVIDED FOR AT LEAST 512 GROUND-BASED COMMANDS. PROVIDED FOR AT LEAST 512 GROUND-BASED COMMANDS.

INVESTIGATION NAME- HIGH-SENSITIVITY CRYSTAL Spectroscopy of Stellar and Solar X Rays

NSSOC 10- 75-057A-03

PERSONNEL

PI		R.	NOVICK	COLUMBIA U
01	-	J.R.	ANGEL	U OF ARIZONA
10	÷	P .A.	VANDENBOUT	COLUMBIA U
01	-	н.	WEISSKOPF	COLUMBIA U
01	-	R . 5 .	WOLFF	COLUMBIA U

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT WAS DESIGNED TO MONITOR CONTINUUUSLY THE SUN'S EMISSION IN THE 2-8 KEV RANGE, TO OBTAIN COMPLETS SOLAR SPECTRA OF THE SUN EVERY 10 S DURING FLARES, TO OBTAIN HIGH-RESOLUTION SPECTRA OF MANY CELESTIAL X-RAY OBJECTS, AND TO MEASURE THE POLARIZATION OF X-RAY EMISSION FROM STELLAR SOURCES. THIS INSTRUMENT PACKAGE WAS MOUNTED IN THE WHEEL SECTION. THE SPECTROMETER WAS ORIENTED PERPENDICULAR TO THE SPIN AXIS AND USED LARGE AREA PANELS OF CRYSTALS (1100 SQ CM OF GRAPHITE, 194 SQ CM OF PET) TO REFLECT, VIA BRAGG REFLECTION, HE POLARIMETER WAS ORIENTED PARALLEL TO THE SPIN AXIS AND UTILIZED BRAGG ANGLE REFLECTION TO MEASURE POLARIZATION IN X RAYS FROM CELESTIAL SOURCES. UTILIZED BRAGG ANGLE REFLI RAYS FROM CELESTIAL SOURCES.

INVESTIGATION NAME- SOFT X-RAY DACKGROUND RADIATION INVESTIGATION

NSSDC ID- 75-0574-05

PERSONNEL

PI	-	W.L.	KRAUSHAAR	
10	-	A N	BUNNER	

U OF WISCONSIN U OF WISCONSIN

ORIGINAL PAGE IS OF POOR OUALITY

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE EXPERIMENT WAS DESIGNED TO MEASURE GALACTIC LATITUDE DEPENDENCE OF THE X-MAY BACKGROUND RADIATION IN THE 0.150- TO 45-KEV REGION, EMPHASIZING THE SOFT X-MAY PORTION. TWO SETS OF THREE PROPORTIONAL COUNTERS MOUNTED ON THE OSO WHEEL VIEWED PARALLEL AND ANTIFARALLEL TO THE WHEEL SPIN DIRECTION THROUGH A 3.5- BY 3.5-DEG FWHM COLLIMATOR. SENSITIVITY WAS EXPECTED TO BE ABOUT 1 PERCENT STATISTICAL ACCURACY NEAR THE GALACTIC POLES, AND ENERGY RESOLUTION WAS PROVIDED WY SELECTED FILTERS. SINCE TWO OF THE COUNTERS HAD THIN POLYCANBONATE WINDOWS THROUGH WHICH METHANE DIFFUSED, A HIGH-PRESSURE METHANE RESERVOIR CARRIED ON THE SPACECRAFT REPLENISHED THOSE COUNTERS THROUGH A GAS FLOW SYSTEM.

INVESTIGATION NAME- COSMIC Y-RAY SPECTROSCOPY

NSSDC IN- 75-0574+06

PERSONNEL

P1			SERLENI TSOS	NASA-GSFC
01	÷	E.A.	BOLDT	NASA-GSFC
01	٠	\$.5.	HOLT	NASA-SSFC
01	. 2 0.	P.	SCHWARTZ	SAO

BRIEF DESCRIPTION

RAIEF DESCRIPTION THIS EXPERIMENT JAS DESIGNED TO DETERMINE THE SPECTAA OF SOURCES AND THE DIFFUSE COSMIC X-RAY BACKGROUND IN THE EMERGY RANGE 2 TO 60 KEV, AND TO MEASURE INTENSITY VARIATIONS AND POSSIBLE EMISSION LINES OF DISCRETE X-RAY SOURCES. PROPORTIONAL CHAMPERS) WERE USED AS DETECTORS, GRE DEVECTOR COMPLEMENT, CONSISTING OF A PROPAME-NEON-SILLED CHAMBER AND A XENOM-METHAME-FILLED CHAMDER (240 SG (M), WAS LOCATED BEHIND A S-DEG COLLIMATOR AND DRIENTED PARALLEL TO THE SPACECRAFT SPIN AXIS, A SINGLE-VOLUME, ANGON-METHAME-FILLED CHAMBER (75 SG CM) WAS LOCATED BEHIND A S-DEG COLLIMATOR AKD WAS OFFEST SLIGHTLY FROM ANTI-PARALLEL TO THE SPIN AXIS. A XENON-METHAME-FILLED CHAMBER (270 SG CM) WAS LOCATED BEHIND A 5-DEG COLLIMATOR AND WAS ORIENTED ANTI-PARALLEL TO THE SPIN AXIS. DATA WERE ACCUMULATION IN AUFER MEMORY FOR 2-MIN INTERVALS, THE DATA FROM THE OFFSET DETECTOR BEING SECTORED IN AZIMUTH.

INVESTIGATION NAME- HIGH-ENERGY CELESTIAL X RAYS

NSSDC 10- 75-057A-07

PERSONNEL

PI	- K.J.	FROST	NASA-GSFC
01	- 0.A.	DENNIS	NASA-GSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE PURPOSE OF THIS EXPERIMENT WAS TO MEASURE THE ENERGY SPECTRA OF ALL KNOWN X-RAY SOURCES ABOVE THE INTENSITY THRESHOLD OF 1.E-6 PHOTONS/SQ CM-S-KEV IN THE ENERGY REGION .01 TO 1 MEV. THE INSTRUMENT CONSISTED OF 57-SQ-CM CSI (NA) SCINTILLATION CRYSTALS SURROUNDED BY A MONEYCOMD-TYPE CSI (NA) ANTICOINCIDENCE COLLIMATOR, THAT PROVIDED AN ACCEPTANCE ANGLE OF 6.30 DEG FROM THE VIEWING AXIS. THE INSTRUMENT WAS MOUNTED ON THE OSO WHEEL SECTION NEARLY PARALLEL TO THE SATELLITE SPIN AXIS. AXIS .

SPACECRAFT COMMON NAME- ASTP-APOLLO Alternate Names- Apollo Soyuz Test Proj., Soyuz Apollo

NSSDC ID- 75-066A

13

LAUNCH DATE~ 07/15/75

ORBIT PARAMETERS Orbit type- geocentric Orbit Period- 88.91 min Periapsis- 217, KM Alt	EPOCH DATE- 07/18/75 Inclination- 51.75 deg Apoapsis- 231. Km alt			
PERSONNEL SC - R.T. GIULI PM - C.M. LEE	NASA-JSC NASA HEADQUARTERS			

NASA HEADQUARTERS

BRIEF DESCRIPTION THE UNITED STATES AND THE U.S.S.R. LAUNCHED AN APOLLO SPACECRAFT AND A SOYUZ SPACECRAFT, RESPECTIVELY, AS A JOINT EFFORT CALLED THE APOLLO-SOYUZ TEST PROJECT (ASTP). THE SOYUZ SPACECRAFT WAS LAUNCHED FIRST, WITH A TWO-MAN CREW WHO MANEUVERED THEIR SPACECRAFT INTO A DOCKING ORBIT. THE APOLLO SPACECRAFT WAS LAUNCHED 7-1/2 H LATER, WITH A THREE-MAN CREW WHO PLACED THEIR SPACECRAFT INTO A PROPER CONFIGURATION FOR DOCKING WITH THE SOYUZ SPACECRAFT. THE DOCKING OF THE TWO SPACECRAFT OCCURRED ON THE THIRD DAY. AFTER DOCKING, CREW TRANSFERS TOOK PLACE, WITH THE APOLLO CREW FIRST VISITING THE SOYUZ. THE COMBINED APOLLO-SOYUZ CREWS PERFORMED JOINT EXPERIMENTS AND PRESENTED RADIO AND TY REPORTS. AFTER JOINT BRIEF DESCRIPTION EXPERIMENTS AND PRESENTED RADIO AND TY REPORTS. AFTER JOINT Experiments were completed, the spacecraft disengaged and each CONTINUED ITS SEPARATE MISSION.

INVESTIGATION NAME- SKY-EARTH X-RAY OBSERVATIONS

NSSDC ID- 75-066A-04

PERSONNEL

PI - H.O. FRIEDMAN US NAVAL RESEARCH LAR BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS ASTP EXPERIMENT WAS INTENDED TO PRODUCE A DETAILED MAP OF CELESTIAL SOFT X-RAY EMISSIONS IN THE 0.1- TO 1.0-KEV RANGE. ROCKET OBSERVATIONS HAVE DETECTED A DIFFUSE BACKGROUND OF SOFT X-RAY RADIATION, BUT A SYSTEMATIC SKY SURVEY HAS NEVER BEEN MADE IN THE 0.1- TO 1.0-KEV ENERGY RANGE, SATELLITE OBSERVATIONS PROVIDED FINER ANGULAR RESOLUTION AND STATISTICS NEEDED TO DETERMINE THE VARIOUS SOURCES THAT CONTRIBUTE. THE THIN-WINDOW, SOFT X-RAY DETECTOR WAS MOUNTED IN A DAY OF THE DODLIO SERVICE MODULE. APOLLO SERVICE MODULE.

SPACECRAFT COMMON NAME- SOLRAD 11A ALTERNATE NAMES- SRD-11A, SOLRAD HI-TRIP SESP NO. NRL-111-0264, NRL-111 SESP P74-1C

N55DC 10- 76-023C

LAUNCH DATE= 03/15/76

ORBIT PARAMETERS ORBIT TYPE- GEOCENTRIC Orbit Period- 7344.3 min Periapsis- 118383. km alt	ËPOCH DATE- 07/01/76 Inclination- 25.7 dëg Apoapsis- 119180. km alt
PERSONHËL PM - E.W. PETERKIN PS - R.W. KREPLIN	US NAVAL RESEARCH LAB Us naval research lab

BRIEF DESCRIPTION

BRIEF DESCRIPTION SOLRAD 11A WAS ONE OF A PAIR OF IDENTICAL SATELLITES THAT WERE PLACED IN A CIRCULAR EQUATORIAL ORDIT OF 20 EARTH RADII. THE SATELLITES, WHICH WERE ORIENTED TOWARDS THE SUN, PROVIDED 100 PERCENT REAL-TIME, CONTINUOUS MONITORING OF SOLAR X-RAY, UV, AND ENERGETIC PARTICLE EMISSIONS. EXPERIMENTS INCLUDED BROADBAND ION CHAMBERS OBSERVING SOLAR X RAYS BETWEEN 0.1 AND 60 A, PROPORTIONAL COUNTERS AND SCINIILLATORS OBSERVING SOLAR X RAYS BETWEEN 2 AND 150 KEY, AN EUV DETECTOR COVERING THREE BANDS BETWEEN 170 AND 1000 A, A VARIABLE RESOLUTION EDERT-FASIIE SPECTROMETER COVERING THE WAVELENGTH RANGE OF 1100 TO 1600 A (RESOLUTION: 1 TO 25 A), A SOLAR WIND MONITOR, SOLAR PROTON, ELECTRON, AND ALPHA PARTICLE MONITORS, TWO X-RAY POLARIMETERS (ONE UTILIZING BRAGG SPECTROMETER OBSERVING) MAGNESIUM-11 AND -12 LINES, A LARGE-AREA AURORAL X-RAY DETECTOR, AND A PASSIVELY COOLED SOLID-STATE X-RAY DETECTOR TO MEASURE DACKGOUND X-RAY EMISSIONS. MEASURE BACKGROUND X-RAY EMISSIONS.

INVESTIGATION NAME- STELLAR/AURORAL X-RAYS

NSSDC 10- 76-023C-16

PERSONNEL			
P1 - E.Y.	BYRAM	US NAVAL P	RESEARCH LAB
01 - 0.M.	HORAN	US NAVAL I	RESEARCH LAD

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT CONSISTED OF THREE PROPORTIONAL COUNTERS SENSITIVE TO X RAYS BETWEEN 1 AND 8 A. THESE PROPORTIONAL COUNTERS WERE MOUNTED ON THE SIDE OF THE SATELLITE AND ORIENTED 45 DEG, 90 DEG, AND 135 DEG OFF THE SPIN AXIS. THE COUNTING CIRCUITS WERE CONTROLLED BY THE ROLL PERIOD AND SYNCHRONIZED TO THE STAR AND/OR EARTH PULSES SO THAT DATA SAMPLES COULD BE ASSOCIATED WITH PORTIONS OF THE SKY. THE STELLAR PORTION OF THIS EXPERIMENT WAS ABLE TO MAP COSNIC X-RAY SOURCES AND TO SWEEP THE ENTIRE CELESTIAL SPHERE IN ABOUT 6 MONTHS. THE AURORAL PORTION OF THE EXPERIMENT WAS DESIGNED TO MONITOR AURORAL X-RAY ENISSIONS FROM THE EARTH. THE STELLAR PORTION SAMPLING CYCLE TOOK 16 MIN, WHILE THE AURORAL PORTION REQUIRED 2 MIN FOR A SAMPLING CYCLG.

INVESTIGATION NAME- X-RAY BACKGROUND

N55DC 10- 76-023C-24

PI	ÉŔ	\$0	ΝŅ	EL.	

P1 -	6.6.	FRITZ	
01 -	R.	LUCKE	
- 10	R.C.	HENRY	

US NAVAL RESEARCH LAB US NAVAL RESEARCH LAB Johns Hopkins U

BRIEF DESCRIPTION

BRIEF DESCRIPTION A SOLID-STATE DETECTOR (LITHIUM-DRIFTED SILICON) WAS USED TO MEASURE THE GALACTIC N-KAY BACKGROUND IN THE 0.5-TO 20-KEY RANGE WITH AN ENERGY RESOLUTION OF BETTER THAN 0.3 KEY. TO REACH THE DESIRED 0.3-KEY XNERGY RESOLUTION, THE DETECTOR HAD TO BE PASSIVELY COOLED TO TO TO 100 DEG G. THE INSTRUMENT WAS MOUNTED ON THE ANTIBOLAR SIDE OF THE SPACECRAFT AND SWEPT'OUT A BAND' HEARLY 20-DEG WIDE, CUNTERED HEAR THE ECLIPTIC PLANE AS THE SATELLITE MOVED AROUND THE SUN. THE DETECTOR OUTPUT UNDERWENT A 256-CHANNEL ANALYSIS TO PRODUCE THE ENERGY SPECTRUM. ALL 256 CHANNELS WERE READ OUT IN 16 MIM. A RADIOACTIVE SOURCE MOUNTED ON A SHUTTER WAS USED TO PROVIDE INFLIGHT CALIBRATION OF THE DETECTOR.

SPACECRAFT COMMON NAME+ SOLRAD 1111 ALTERNATE NAMES- SOLRAD HI-TRIP/ SESP P74~10 SP74-10/ SESP NO. HRL-111-0264

SRD-11B

NSSDC 10+ 76-0230

LAUNCH DATE- 03/15/76

RUIT													
ORI	11	Ţ	٧F	'E	•	GE	0	CE	N.	Ţ Ŗ	11		
ORB	11	P	EF	11	0 p	-	7	11	6	. 1	i)	11N	
PER	IA	P S	15		1	15	7	20		K		ALT	

KREPLIN - R.H. PS - A.W. KREPLIN

BRIEF DESCRIPTION

BRIEF DESCRIPTION SOLRAD 11B (IAS ONE OF A PAIR OF IDENTICAL SATELLITES THAT WERE PLACED IN A CIRCULAR EQUATORIAL ORBIT OF 20 EARTH RADII. THE SATELLITES, WHICH WERE ORIENTED TOWARDS THE SUN, PROVIDED 100 PERCENT REAL-TIME, CONTINUOUS MONITORING OF SOLAR X-RAY, UV, AHD ENERGETIC PARTICLE EMISSIONS. EXPERIMENTS INCLUDED BROADBAND ION CHAMBERS OBSERVING SOLAR X RAYS BETWEEN 0.1 AND 60 A, PROPORTIONAL COUNTERS AND SCINTILLATORS OBSERVING SOLAR X RAYS BETWEEN 2 AND 150 KEV, AN EUW PETECTOR COVERING THREE BANDS BETWEEN 17G AND 1000 A: A MARIABLE RESOLUTION EBERT-FASTIE SPECTROMETER COVERING THE WAVELENGTH RANGE OF 1100 0 1600 A (RESOLUTION: 1 TO 25 A), A SOLAR WIND MONITOR, SOLAR PROTON, ELECTRON, AND ALPHA PARTICLE MONITORS, TWO X-RAY POLARIMETERS (ONE UTILIZING BRAGG SPECTROMETER OBSERVING), A BRAGG SPECTROMETER OBSERVING MAGHÉSIUM-11 AND -12 LINES, A LARGE-AREA AURORAL X-RAY DETECTOR, AND A PASSIVELY CODLED SOLID-STATE X-RAY DETECTOR TO MEASURE DACKGROUND X-RAY EMISSIONS. MEASURE BACKGROUND X-RAY EMISSIONS.

INVESTIGATION NAME- STELLAR/AURORAL X RAYS

NS50C 10- 76-0230-16

PERSONNEL PI - E.T. BYRAM OI - D.M. HORAN

		RESEARCH Research	
05	NAVAL	NESEARCH	LWR

EPOCH DATE- 07/01/76

APOAPSIS- 116645. KM ALT

US NAVAL RESEARCH LAB US NAVAL RESEARCH LAB

25.6 DEG

INCLINATION-

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT CONSISTED OF THREE PROPORTIONAL COUNTERS SENSITIVE TO X RAYS BETWEEN 1 AND 8 A. THESE PROPORTIONAL COUNTERS WERE MOUNTED ON THE SIDE OF THE SATELLITE AND ORIENTED 45 DEG, 90 DEG, AND 135 DEG OFF THE SPIN AXIS. THE COUNTING CIRCUITS WERE CONTROLLED BY THE ROLL PERIOD AND SYNCHRONIZED TO THE STAR AND/OR EARTH PULSES SO THAT DATA SAMPLES COULD BE ASSOCIATED HITH PORTIONS OF THE SKY. THE STELLAR PORTION OF THIS EXPERIATENT WAS ABLE TO MAP COSNIC X-RAY SOURCES AND TO SWEEP THE ENTIRE CELESTIAL SPHERE IN ABOUT 6 MONTHS. THE AURORAL PORTION OF THE EXPERIMENT WAS DESIGNED TO MONITOR AURORAL PORTION OF THE EXPERIMENT WAS DESIGNED TO MONITOR SAMPLING CYCLE TOOK 16 MIN, WHILE THE AURORAL PORTION REQUIRED 2 MIN FOR A SAMPLING CYCLE.

INVESTIGATION NAME- X-RAY BACKGROUND

NSSDC ID- 76-0230-24

PERSONNEL		
P1 - G.G.	FRITZ	US NAVAL REBEARCH LAB
01 - R.	LUCKE	US NAVAL RESEARCH LAB
01 - R.C.	HENRY	JOHNS HOPKINS U

BRIEF DESCRIPTION

A SOLID-STATE DETECTOR (LITHIUM-DRIFTED SILICON) WAS USED A SOLID-STATE DETECTOR (LITHIUM-DRIFTED SILICON) WAS USED TO MEASURE THE GALACTIC X-RAY BACKGROUND IN THE 0.5-TO 20-KEV RANGE WITH AN ENERGY RESOLUTION OF BETTER THAN 0.3 KEV. TO REACH THE DESIRED 3.3-KEV ENERGY RESOLUTION, THE DETECTOR HAD TO BE PASSIVELY COOLED TO 70 TO 100 DEG K. THE INSTRUMENT WAS MOUNTED ON THE ANTISOLAR SIDE OF THE SPACECRAFT AND SWEPT OUT A BAND NEARLT 20-DEG WIDE, CENTERED NEAR THE ECLIPTIC PLANE AS THE SATELLITE MOVED AROUND THE SUN. THE DETECTOR OUTPUT UNDERWENT A 256-CHANNEL ANALYSIS TO PRODUCE THE ENERGY

ORIGINAL PAGE IS OF POOR QUALITY

NASA-GSFC CALIF INST OF TECH

SPECTRUN. ALL 256 CHANNELS WERE READ OUT IN 16 MIN. A Radioactive bource mounted on a shutter was used to provide in Flight calibration of the detector.

SPACECRAFT COMMON NAME- HEAD 1 Alternate Names- High Energy Astron Obs-A, Head-A 10217

N550G 10- 77-075A

LAUNCH DATE- 08/12/77

ORBIT PARAMETERS Orbit Type- Geocentric Orbit Period- 93.5 Nin Periapsis- 441. Km Alt	EPOCH DATE- 08/13/77 Inclination- 22.8 deg Apoapsis- 452, km alt
PERSONNEL	
NG 🖛 R.E. HALPERN	NASA HEADQUARTERS
SC - A.G. 04P	NASA HEADQUARTERS
PM - F.A. SPEUR	NASA-MSFC
PS - F.B. MCDORALD	NASA-GSFC

BRIEF DESCRIPTION

URIEF DESCRIPTION HIGH-ENERGY ASTRONOMY OBSERVATORY 1 WAS THE FIRST IN A SERIES OF THREE SATELLITG OBSERVATORIES DESIGNED TO CONTINUE THE X-RAY AND GAMMA-RAY STUDIES INITIATED BY ANS, OAO 3, UK 5, THE OSO SERIES, THE SAS SERIES, AND THE GAMMA-RAY BURST DISCOVERIES OF THE VELA SATELLITES. THESE MISSIONS WERE DESIGNED TO SURVEY AND MAP THE CELESTIAL SPHERE FOR X-RAY SOURCES AT AN INTENSITY LEVEL OF 1.E-6 OF THE BRIGHTEST KNOWN SOURCE (SCO X-1), AND TO IMVESTIGATE THE STRUCTURE AND SHAPE OF GALACTIC AND EXTRAGALACTIC COSMIC-RAY NUCLEI THROUGH THEIR INFLUENCE ON THE EARTH'S ATMOSPHENE. EACH SPACECRAFT OF THE SERIES HAD A COMMON SPACECRAFT EQUIPMENT MODULE (SEM) AND A UNIQUE EXPERIMENT MODULE (EM). THIS MISSION WAS SPECIFICALLY DESIGNED TO MAP X-RAY AND GAMMA-RAY SOURCES FROM 150 EV TO 10 MEV, TO ESTABLISH THE SIZE AND PRECISE LOCATION OF X-RAY SOURCES WITH AN ENERGY RANGE OF 1 KEV TO 15 KEV. TO DETERMINE THE CONTRIBUTION OF DISCRIFE SOURCES TO THE X-RAY BACKGROUND, AND TO MEASURE TIME WARIATIONS OF X-RAY SOURCE2, CONTINUOUS CELESTIAL SCANS WERE MADE PERPENDICULAR TO THE 2 AXIS (POINTING TO THE SUN) DURING THE INITIAL PHASE OF THE MISSION. SCAN RATE WAS 0.03 REVOLUTIONS/MIN. THE ENTIRE CELESTIAL SPHERE WOULD BE SCANNED IN & MONTHS. SPECIAL MANEUVERS OF UP TO 5 TIMES/WERK, TO OFFSET FROM THE SUN UP TO 7 DEG FOR SHORT OBSERVATION DEFENDING. WERE PART OF THE MISSION'S DIJACTIVES. MHEN PASSING OVER THE SOUTH ATLANTIC ANDMALY (SAA), HIGH-VOLTAGE SUPPLIES WERE TURNED OFF OR REDUCED TO PREVENT DAMAGE DUE TO SATURATION EFFECTS. THE SIX-SIDED HEAOL 1 WAS 5.66 M HIGH, 2.67 M IN DIAMETER, AND WEIGHED 2552 KG INCLUDING 1220 KG OF EXPERIMENTS. DOWNLINK TELEMETRY WAS AT A DATA RATE OF 6.5 KB/S FOR REAL-TIME DATA AND L2B KB/S 700 RETHER OF THO TAPE RECORDER SYSTEMS. THE MISSION LIFETIME WAS AUG 12, 1977 TO JAN 9, 1979.

INVESTIGATION NAME- LARGE AREA COSMIC X-RAY SURVEY (A-1)

NSSPC JD- 77-075A-01

PERSONNEL

PI - H.D. FRIEDMAN

US NAVAL RESEARCH LAB

BRJEF DESCRIPTION THIS INSTRUMENT WAS A MODULAR ASSEMBLY OF SEVEN LARGE-AREA, THIN-WINDOW, PROPORTIONAL COUNTER SENSOR MODULES TO RECORD INCIDENT X-RAY FLUXES. THE OBJECTIVES WERE TO MAP THE CELESTIAL SPHERE IN THE ENERGY RANGE FROM 15 TO 20 KEV WITH GREATER SENSITIVITY THAN ACHIEVED HERETOFORE AND TO MEASURE THE SPECTRA, LOCATION, AND TIME VARIATIONS OF X-RAY SOURCES WITH A OL1 TO 1 DEG ANGULAR RESOLUTION. EACH OF THE SENSOR MODULES CONSISTED OF A PROPORTIONAL COUNTER BODY FRAME ON WHICH WAS MOUNTED A WINDOW SUPPORT STRUCTURE, COUNTER BACK STRUCTURE WITH INTEGRAL CONTROL COUNTER, COUNTER BACK STRUCTURE WITH INTEGRAL CONTROL COUNTER, COUNTER BACK STRUCTURE WITH INTEGRAL CONTROL COUNTER, COUNTER BACK STRUCTURE WITH ROTECTION AGAINST CHARGED PARTICLE EVENTS. THE FRONT LAYER WAS THE MAIN X-RAY SENSOR FOR MOST ENERGY RANGES. ALL THREE LAYERS PROVIDED DATA AT HIGHER ENERGIES. THE COLLIMATOR ON SENSOR MODULES 1 THROUGH A PROVIDED 1 DEG BY 4 DEG COLLIMATION, AND ON SENSOR MODULE 7 PROVIDED 1 DEG BY 0.5 DEG COLLIMATION, AND ON SENSOR MODULE 7 PROVIDED B ADECTION. SENSOR MODULES 1 THROUGH A PROVIDED 1 DEG BY 0.5 DEG COLLIMATION, AND ON SENSOR MODULE 7 PROVIDED B DEG BY 2 DEG COLLIMATION, SENSOR MODULES 3 AND 6 PROVIDED B DEG BY 2 DEG COLLIMATION, AND ON SENSOR MODULE 7 PROVIDED B DEG BY 2 DEG COLLIMATION, SOURCES TO PROVIDE A CHECK ON COUNTER OPERATION AND CHANNEL POSITION. THERE WAS ALSO A MAGNEY ASSEMBLY TO DEFLECT LOW-ENERGY RADIATION BELT ELECTRONS. THE CONTROL COUNTER WAS SMALL COUNTER AT THE BACK OF THE ASSEMBLY THAT SHARED THE COUNTING GAS WITH THE MAIN COUNTER. IT WAS EXCITED BY AN FE 55 SOURCE AND SERVED TO COMPENSATE FOR GAS DENSITY CHANGES AND HIGH-VOLTAGE DRIFTS. BRIEF DESCRIPTION HIGH-VOLTAGE DRIFTS.

ORIGINAL PAGE IS OF POOR QUALITY

INVESTIGATION NAME+ COSMIC X-MAY EXPERIMENT (A+2)

N550C 10- 77-075A-02

PERSONNEL

PI = E.A. HOLDT PI = G.P. GARMIRE

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT WAS DESIGNED TÙ MEASURE THE RIFFUSE X-RAY BACKGROUND IN THE ENERGY RANGE OF 0.15 TO 60 KEV. OBJECTIVES WERE TO MEASURE RELATIVE DIFFUSION AND ABSORPTION OF DIFFUSE HARD AND SOFT X RAYS AT HIGH GALACTIC LATITUDES, AND THEN CORRELATE THESE MEASUREMENTS WITH RADIO AND OPTICAL STUDIESJ DETERMINE DISCRETE SOURCE BACKGROUND CONTRIBUTION; DETECT LARGE-SCALE GLOBAL ANISOTROPIES ASSOCIATED WITH SOLAR SYSTEM MOTION WITH RESPECT TO DISTANT EMISSION SOURCES; MAKE BROADBAND SPECTRAL CLASSIFICATIONS OF DIFFUSE AND DISCRETE X-RAY SOURCES. THREE TYPES OF MULTIANODE, MULTI-COMPONENT SPECTRAL SOURCES. THREE TYPES OF MULTIANODE, MULTI-COMPONENT SPECTRAL SOURCES. THREE TYPES OF MULTIANODE, MULTI-COMPONENT SPECTRAL SOURCES. THREE TYPES OF MULTIANODE, MULTIAVER COUNTERS WERE USED FOR THIS EXPERIMENT. THREE HIGH-ENERGY DETECTORS (HED) WITH XENON-FILLED COUNTERS COVERED THE ENERGY RANGE OF 3 TO 60 KEV WITH AN EFFECTIVE AREA OF 900 SQ CM. THE MINIMUM DETECTABLE FLUX IN A 1.0E3 SOBSERVATION WAS 1.0E-4/SQ CM-S-KEV FOR. ENERGY DANDS 3 TO 20 KEV AND 20 TO 60 KEV. ONE MEDIUM ENERGY DETECTOR (MED) WITH AN ARGON-METHANE-FILLED COUNTER COVENCD THE ENERGY RANGE 1.5-15 KEV. THE EFFECTIVE AREA OF THIS COUNTER WAS 900 SQ CM. THE MINIMUM DETECTABLE FLUX WAS THE SAME AS FOR THE HED'S. THE TWO LOW-CHERGY DETECTORS (LED) WERE THIN-WINDOW, PROPANE GAS, FLOW COUNTERS TO COVER THE ENERGY RANGE OF 0.15 TO 3 KEV. THE LED ISED PERMENT MAGNETS TO PREVENT INCIDENT ELECTRONS FROM REACHING THE DETECTOR WINDOM AND A SUNSHADE WHENEVER DIRECT SUNLIGHT WAS NEAR THE FIELD OF WIEW. IT HAD A 600 SQ CM EFFECTIVE AREA. THE MINIMUM DETECTABLE FLUX FOR A 1.0E3 SOBSERVATION WAS 1.0C-3/SQ CM-S-KEV FOR THE 0.15 TO 0.28 KEV BAND AND FOR THE 0.5 TO 3.0 KEV GAND. THE LECTRONS FROM REACHING THE DETECTOR WINDOM AND A SUNSHADE WHENEVER DIRECT SUNLIGHT WAS NEAR THE FIELD OF WIEW. IT HAD A 600 SQ CM EFFECTIVE AREA. THE MINIMUM DETECTABLE FLUX FOR A 1.0E3 SO DESERVATION WAS 1.0C-3/SQ CM-S-KEV FOR THE 0.15 TO 0.28 KEV

INVESTIGATION NAME- X-RAY SCANNING MODULATION COLLIMATOR (A-3)

NS50C 10+ 77-075A-03

PERSONNEL	
PI - D. SCHWARTZ	SAD
PI - H.V.D.BRADT	MASS INST OF TECH

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT USED A SCANNING MODULATION COLLIMATOR (SMC) INSTRUMENT TO DETERMINE, FOR SELECTED X-RAY SOURCES, THEIR POSITION WITHIN 5 ARC SJ THEIR ANGULAR SIZE TO A PRECISION OF 5-10 ARC S IN THREE ENERGY INTERVALS FROM 1-15 KEWJ AND TO STUDY THE STRUCTURE OF THEIR X-RAY EMISSION TO A PRECISION OF 10 ARC SI NI THREE ENERGY INTERVALS FROM 1-15 KEWJ AND TO STUDY THE STRUCTURE OF THEIR X-RAY EMISSION TO A PRECISION OF 10 ARC SI NI THREE ENERGY INTERVALS FROM 1-15 KEWJ AND TO STUDY THE STRUCTURE OF THEIR X-RAY EMISSION TO A PRECISION OF 10 ARC SI NI THREE ENERGY INTERVALS FROM 1-15 KEWJ AND TO STUDY THE STRUCTURE OF THE INTERVALS FROM 1-15 KEWJ AND TO STUDY THE STRUCTURE OF THE INTERVALS FROM 1-15 KEWJ AND TO STUDY THE STRUCTURE OF THE OVERALL INSTANTANEOUS FIELD OF VIEW TO 4 DEG X 4 DEG FWHM FOR EAC?, SMC. THE OUTWARD VIEW DIRECTION 15 PERPENDICULAR TO THE SYACECRAFT SPIN AXIS (2-AXIS) AND HENCE THE INSTRUMENT SCANS A GREAT CIRCLE EAND ON THE SKY. THE TWO PARTS OF THE SMC DIFFER BY HAVING THEIR PLANE OF MAXIMUM TRANSMISSION INCLINED +10 DEG AND -10 DEG TO THE SCAN DIRECTION. PRECISE TWO-DIMENSIONAL LOCATIONS ARE DETERMINED BY THE INTERSECTIONS OF THE LOCATIONS OBTAINED FROM EACH OF THE COLLIMATORS. THE ANGULAR RESPONSE OF THE TWO SMC COMPONENTS WAS 30 AND 120 ARC S, WITCH EXTENDED THE DYNAMIC RANGE UP TO 16 ARC MIN OVER WHICH ANGULAR SIZE AND STRUCTURE MEASUREMENTS WERE MADE. THE SMC INSTITUOF 1.DE-3 THAT OF THE CRAB NEBULA. THIS EXPERIMENT WAS ALSO EQUIPPED WITH TWO ASPECT SENSORS TO PROVIDE DATA ON THE STELLAR ORIENTATION OF THE COLLIMATOR AXES TO ACHIEVE THE 5 ARC-5 POSITION OF SOURCES.

INVESTIGATION NAME- LOW-ENERGY GAMMA-RAY AND HARD X-RAY SKY Survey (A-4)

N550C 10- 77-075A-04

PERSONNEL			
PI = L.E. I	PETERSON	U OF	CALIF, SAN DIEGO
PI - W.H.G.	LEVIN	MASS	INST OF TECH

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT MEASURED POINT AND DIFFUSE SOURCES OF X RAYS AND GAMMA RAYS IN THE 10-KEV TO 10-MEV RANGE. THE INSTRUMENT CONSISTED OF SEVEN NAI(TL)/CSI(NA) PHOSWICH SCINTILLATORS SURROUNDED BY EIGHT LARGE CSI(NA) SCINTILLATORS THAT PROVIDED SHIELDING AND DEFINED THE FIELDS OF VIEW. THERE WERE THREE DETECTOR TYPES. THE INTERMEDIATE-ENERGY DETECTORS HAD AN ENERGY RANGE OF 10-200 KEV, AN AREA OF 225 SQ CM, CSI SHIELDING OF 2 IN., AND A FIELD OF VIEW (FWHM) OF 1 DEG X 20 DEG. THE SLAT COLLIMATORS OF THE INTERMEDIATE-ENERGY DETECTORS WERE POSITIONED AT 60 DEG RELATIVE TO THE SCAN DIRECTION, ALLOWING POINT SOURCE DETERMINATION TO 1 DEG OVER THE

APPROXIMATELY 40-DEG-WIDE BAND SCANNED EACH SPACECRAFT ROTATION. THE POINT-MODE DETECTORS HAD AN ENERGY RANGE OF 0.1-5 MEV, AN AREA OF 188 SR CM, CSI SHIELDING OF ABOUT 4 IN., AND A FIELD OF VIEW (FWH) OF 20 DEG. SOURCES DETECTED WERE IDENTIFIED WITH LOW-ENERGY SOURCES BY SPECTRAL SIMILARITY WITH MEASUREMENTS MADE BY THE INTERMEDIATE-ENERGY DETECTOR AT ABOUT 100 KEV. THE DIFFUSE-MODE DETECTORS HAD AN ENERGY RANGE OF 0.2-10 MEV, AN AREA OF 125 SQ CM, CSI SHIELDING OF ABOUT 6 IN., AND A FIELD OF VIEW (FWHN) OF 10 DEG. POINT SOURCES MEASURED BY THE DIFFUSE-MODE DETECTORS WERE RELATED TO THOSE WITH SIMILAR SPECTRA IN THE POINT-MODE DETECTORS. EACH OF THE DETECTORS WAS EQUIPPED WITH A PULSE-SHAPE ANALYZER AND DISCRIMINATOR WHICH DETECTED AND VENDE OCI (NA) EVENTS. THE COMBINATION OF SHIELD UPPER- AND LOWER-LEVEL DISCRIMINATORS (NOMINAL SETTINGS OF 5 MEV AND 0.1 MEV) USED FOR DETECTOR ANTICONCIDENCE CONDITION WERE PULSE-HEIGHT ANALYZER AND PERFORMED ENERGY AND PULSE-SHAPE ANALYZED AMD TELEMETERED ON AN EVENT-BY-EVENT DASIS DY A MAIN PULSE-HEIGHT ANALYZER (MPHA) SYSTEM. A ROVING PULSE-HEIGHT ANALYZER (MPHA) PERFORMED ENERGY AND PULSE-SHAPE ANALYZER (MPHA) PERFORMED ENERGY AND PULSE-SHAPE ANALYZER MAND NOMITORED SHIELD PERFORMANCE. IT WAS ALSO USED IN THE STUDY OF STRONG X-RAY SOURCES THAT WERE GREATER THAN THE MPHA SYSTEM'S READOUT RATE. THERE AN AUXING THE SIGNALS OF THE ENERGY RANGES. THERE WAS A HIGH-RESOLUTION THING SSTEM THAT MEASURED COSHIC GARMA-RAY BURSTS, BY SUMMING THE SIGNALS OF THE EIGHT LARGE CSI(NA) SHIELD PROTON AND ELECTRON FLUKES IN THREE ENERGY RANGES. THERE WAS A HIGH-RESOLUTION THING SSTEM THAT MEASURED COSHIC GARMA-RAY BURSTS, BY SUMMING THE SIGNALS OF THE EIGHT LARGE CSI(NA) SHIELDS THAT HAVE A TOTAL UMIDIRECTIONAL COLLECTION AREA OF ABOUT 2400 SG CM, AND DISCRIMINATING THE SUMMED SIGNAL IN A SYSTEM WITH THRESHOLDS OF 0.1, 0.2, 0.4, 0.8, AND 1.6 MEV.

SPACECRAFT COMMON NAME- HEAD 2 Alternate Names- High Energy Astron OBS-B, 11101 HEAD-B. EINSTEIN

HSSDC 10- 78-103A

LAUNCH DATE- 11/13/78

ORBIT PARAMETERS Orbit type- geocentric	EPOCH DATE- 11/14/78
ORBIT PERIOD- 94.0 MIN	INCLINATION- 23.5 DEG
PERIAPSIS- 465. KH ALT	APOAPSIS- 476. KM ALT
PERSONNEL	
MG - R.E. HALPERN	NASA HEADQUARTERS
SC - A.G. OPP	NASA HEADQUARTERS
PM - J.F. STONE	NA SA-MSFC
PS - S.S. HOLT	NASA-GSFC

PH - J.F. STONE NASA-MSFC PS - S.S. HOLT NASA-GSFC BRIEF DESCRIPTION THIS WAS THE SECOND OF THREE MISSIONS IN A PROGRAM OF RESEARCH IN HIGH-ENERGY ASTRONOMICAL PHENOMENA. THE SPECIFIC OBJECTIVES OF THIS MISSION WERE IMAGING AND SPECTROGRAPHYC STUDIES OF SPECIFIC X-RAY SOURCES AND STUDIES OF THE DIFF/SE X-RAY BACKGROUND. THE SPACECRAFT WAS IDENTICAL TO THE HEAOI VEHICLE WITH THE ADDITION OF REACTION WHEELS AND ASSOCIATED ELECTRONICS TO ENABLE THE TELESCOPE TO BE PGINTED AT SOURCES TO WITHIN 1 MIN OF ARC. THE INSTRUMENT PAYLOAD WEIGHED 1450 KG. A LARGE GRAZING-INCIDENCE X-RAY TELESCOPE PROWIDED IMAGES OF SOURCES THAT WERE THEN ANALYZED BY FOUR INTERCHANGEABLE INSTRUMENTS (HRI, IPC, SSS, FPCS) THAT WERE MOUNTED ON A CAROUSEL ARRANGEMENT AND COULD BE ROTATED INTO THE FOCAL PLANE OF THE TELESCOPE. THE TELESCOPE COLLECTION X RAYS OVER AM ANGULAR RANGE OF APPROXIMATELY 1 DEG X 1 DEG, WITH THE FOCAL PLANE INSTRUMENTS DETERMINING THE LITITING RESOLUTION FOR EACH MAGING PROPORTIONAL COUNTER (IPC) AND A HIGH-RESOLUTION FOR EACH MAGING DETECTOR (HRI). ALSO INCLUDED A SOLID-STATE SPECTROMETER (SSS), A FOCAL PLANE CRYSTAL SPECTROMETER (FPCS), AN IMAGING DETECTOR (HRI). ALSO INCLUDED, WER A MONITOR PROPORTIONAL COUNTER (MPC) WHICH VIEWED THE SKY ALONG THE TELESCOPE AXIS, BROADBAND FILTER AND DEJECTIVE GRATING SPECTROMETERS THAT COULD BE USED IN CONJUNCTION WITH FOCAL PLANE INSTRUMENTS. AND AN ASPECT SYSTEM. THE SCIENTIFIC OBJECTIVES WERE (1) TO ACCURATELY LOCATE AND EXAMINE X-RAY SOURCES IN THE ENERGY RANGE 0.2 TO 4.0 KEV WITH HIGH RESOLUTION; (2) TO PERFORM HIGH-SECTION SPECTROGRAPHS; (3) TO PERFORM HIGH-SENSITIVITY MEASUREMENTS OF TRANSIENT X-RAY BEHAVIOR. THE SPACECRAFT WAS A SIX-SIDED STRUCTURE 5.68 M ATAM HEADYIOR. THE SPACECRAFT WAS A SIX-SIDED STRUCTURE 5.68 M ATAM HEADYIOR. THE SPACECRAFT WAS A SIX-SIDED STRUCTURE 5.64 M ATAM HEADYIOR. THE SPACECRAFT WAS A SIX-SIDED STRUCTURE 5.64 M ATAM HEADYIOR. THE SPACECRAFT WAS A SIX-SIDED STRUCTURE 5.64 M ATAM HEADYIOR. THE SPACECRAFT WAS A SIX DEVICES.

INVESTIGATION NAME- MONITOR PROPORTIONAL COUNTER (MPC)

NSSOC ID- 78-103A-01

PERSONNEL		
P1 - 8.	GIACCONI	SPACE TELESCOPE SCI IN
01 - H.D.	TANANBAUM	SAC
01 - G.W.		MASS INST OF TECH
01 - 5.5.		NASA-GSFC
01 - R.	NOVICK	COLUMBIA U

BRIEF DESCRIPTION THIS EXPERIMENT CONSISTED OF A PROPORTIONAL COUNTER THAT VIEWED SPACE THROUGH A COLLIMATOR CO-ALIGNED TO THE HIGH-RESOLUTION YELESCOPE. THE SYSTEM HAD AN X-RAY COLLIMATOR, A THERMAL IMPEDANCE COVERING THE SPACECRAFT VIEWING APERTURE, AND AN IN-FLIGHT CALIBRATION SYSTEM. THE ACTIVE AREA WAS 667 SQ CM, THE SPATIAL RESOLUTION 1.5 DEG X 1.5 DEG FWFM, AND THE TEMPORAL RESOLUTION 2.56 S.

INVESTIGATION NAME + HIGH-RESOLUTION IMAGER (HRI)

NSSDC ID- 78-103A-02

PERSONNEL

NJUMMEL		
PI - R.	GIACCONI	SPACE TELESCOPE SCI IN
01 - H.C	. TANANBAUM	SAO
01 - G.W	. CLARK	MASS INST OF TECH
01 - 5.5	. HOLT	NASA-GSFC
01 - R.	NOVICK	COLUMBIA U

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS EXPERIMENT WAS EQUIPPED WITH THREE IDENTICAL HRI DETECTORS. THE HRI WAS A DIGITAL X-RAY CAMERA WHICH PROVIDED HIGH SPATIAL AND TEMPORAL RESOLUTION OVER THE CENTRAL 25 ARC MIN OF THE TELESCOPE FOCAL PLANE. IT WAS COMPOSED OF TWO MICROCHANNEL PLATES OPERATING IN CASCADE, A CHOSS-GRID CHARGE DETECTOR AND A SET OF ELECTRONICS. IT HAD A SPATIAL RESOLUTION OF 1 ARC 5, A TEMPORAL RESOLUTION OF 7.8125 MICROSECONDS, AND AN ENERGY RANGE OF .15 - 3.0 KEV. SPECTRAL STUDIES COULD BE PERFORMED USING THE INTFSCHANGEABLE BROADBAND FILTER AND THE OBJECTIVE GRATING.

INVESTIGATION WAME- FOCAL PLANE CRYSTAL SPECTROMETER (FPCS)

NSSDC 10- 78-103A-03

PERSONNEL		
PI - R.	GIACCONI	SPACE TELESCOPE SCI IN
01 - H.D.	TANANBAUM	SAU
01 - G.W.		MASS INST OF TECH
01 - 5.5.	HOLT	NASA-GSFC
01 - R.	NOVICK	COLUMBIA U

BRIEF DESCRIPTION THE FPCS WAS A CURVED CRYSTAL BRAGG SPECTROMETER WITH A THIN-WINDOW GAS-FILLED PROPORTIONAL COUNTER AS A POSITION-SENSITIVE DETECTOR. THERE WERE TWO IDENTICAL COUNTERS FOR REDUNDANCY, AND SUFFICIENT GAS WAS CARRIED TO COMPENSATE FOR CIFFERENTIAL LEAKAGE THROUGH THE WINDOWS. SIX DIFFERENT CRYSTAL DIFFRACTORS WERE AVAILABLE. THE SPECTROMETER AND DETECTOR HAD AN IMAGING CAPABILITY WITH AVAILABLE APERTURES OF 3 X 30, 2 X 20, 1 X 20 ARC MIN, AND 6-ARC-MIN DIAMETER. THE S x 30, 2 x 20, 1 x 20 ARC MIN, AND 6-ARC-MIN DIAMETER. THE INSTRUMENT COULD BE OPERATED AS A CONVENTIONAL CURVED-CRYSTAL SPECTROMETER OR USED IN A MODIFIED DEFOCUSED MODE TO ACHIEVE HIGHER RESOLUTION.

INVESTIGATION NAME- IMAGING PROPORTIONAL COUNTER (IPC)

NSSDC 10- 78-103A-04

PERSONNEL		
P1 - R.	GIACCONI	SPACE TELESCOPE SCI IN
01 - H.D.	TANANBAUR	SAO
01 - G.W.	CLARK	MASS INST OF TECH
01 - S.S.	HOLT	NASA-GSFC
01 - R.	NOVICK	COLUMBIA U

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE IPC WAS A POSITION-SENSITIVE PROPORTIONAL COUNTER WHICH PROVIDED GOOD EFFICIENCY AND FULL FOCAL-PLANE COVERAGE WITH A 75-ARC-MIN X 75-ARC-MIN FOUND AN EFFECTIVE AREA OF APPROXIMATELY 108 SG CM. IT HAD A SPATIAL RESOLUTION OF 1 ARC MIN, A TEMPORAL RESOLUTION OF 63 MICROSECONDS, AND 32 ENERGY CHANNELS IN THE RANGE OF 0.15 - 4.8 KEV. TWO IDENTICAL COUNTERS WERE INCLUBED FOR REDUNDANCY PLUS A BACKGROUND COUNTER FOR ANTICOINCIDENCE AND AN IN-FLIGHT CALIBRATION SYSTEM.

INVESTIGATION NAME- SOLID-STATE SPECTROMETER (SSS)

ORIGINAL PAGE IS OF POOR QUALITY

BRIEF DESCRIPTION THIS EXPERIMENT LOCATED AND MONITORED X-RAY BURST SOURCE AND OTHER VARIABLE X-RAY SOURCES OVER THE ENERGY RANGE 1 TO 100 Key Using Rotating Modulation Collimators and Other Collimators. SPACE TELESCOPE SCI IN SAO MASS INST OF TECH INVESTIGATION NAME- DIFFUSE SOFT X-RAYS AND SOFT X-RAY Sources N55DC ID- 79-014A-02 PERSONNEL NAGOYA U P1 - F. P1 - Y. HARTNO U OF TOKYO TANAKA BRIEF DESCRIPTION THIS EXPERIMENT SURVEYED THE SKY AND MONITORED TRANSIENT SOFT X=RAY SOURCES IN THE ENERGY RANGE 0.1 TO 2 KEV BY MEANS OF GAS-FLOW-TYPE PROPORTIONAL COUNTERS WITH THIN POLYPROPYLENE WINDOWS. **************** SPACECRAFT COMMON NAME- STP P78-1 ALTERNATE NAMES- SPACE TEST PROGRAM P78-1, P78-1 11278, Solwind SOLWIND NSSDC 10- 79-017A LAUNCH DATE- 02/24/79 ORBIT PARAMETERS ORDIT TYPE- GEOCENTRIC ORDIT PERIOD- 96.3 MIN PERIAPSIS- 560. KM ALT %POCH DATE- 02/24/79inclination-97.9 degapoapsis-600. KM ALT PERSONNEL USAF SPACE DIVISION Aerospace Corp PM - R.B. KEHL PS - J.R. STEVENS BRIEF DESCRIPTION THE SPACE TEST PROGRAM (STP) P78-1 HISSION WAS DESIGNED TO OBTAIN SCIENTIFIC DATA FROM EARTH AND SUN-ORIENTED EXPERIMENTS. THE SPACECRAFT WAS SUN-ORIENTED AND HAD ITS SPIN AXIS PERPENDICULAR TO THE ORBIT PLANE AND THE SATELLITE-SUN LINE. THE INSTRUMENTATION CONSISTED OF (1) A GAMMA-RAY SPECTROMETER AND PARTICLE DETECTORS, (2) A WHITE-LIGHT CORONAGRAPH AND AN EXTREME-ULTRAVIOLET (EUV) HELIOGRAPH, (3) SOLAR X-RAY SPECTROMETER AND SPECTROHELLOGRAPH, (4) AN EXTREME-ULTRAVIOLET (EUV) SPECTROMETER, (5) A HIGH-LATITUDE PARTICLE SPECTROMETER, (6) AN X-RAY MONITOR, AND (7) A PRELIMINARY AEROSOL MONITOR. BRIEF DESCRIPTION INVESTIGATION NAME- X-RAY MONITOR NSSDC ID- 79-017A-06 PERSONNEL PI - S.D. SHULMAN US NAVAL RESEARCH LAB BRIEF DESCRIPTION THIS INVESTIGATION USED AN X-RAY MONITOR TO DETERMINE THE FREQUENCY AND LOCATION OF SHORT-LIVED X-RAY BURSTS FROM SPACE. It provided a low-resolution mapping capability for Auroral X-RAY EMISSION. ******** SPACECRAFT COMMON NAME- UK 6 Alternate Names- United Kingdom-6, Ariel 6 11382 NSSDC 10- 79-047A LAUNCH DATE- 06/02/79 ORBIT PARAMETERS ORBIT TYPE- GEOCENTRIC ORBIT PERIOD- 97.3 MIN PERIAPSIS- 605. KM ALT EPOCH DATE- 06/02/79 Inclination- 55. Deg Apoapsis- 651. KM Alt PERSONNEL PM - J.E. FOSTER PS - J.L. CULHANE RUTHERFORD/APPLTON LAB U COLLEGE LONDON

HSSDC 10- 78-103A-05

PENSONT	NEL	
P1 -	- # .	GIACCONI
01	- H.D.	TANANBAUM
01 /	- G.W.	CLARK
01.	- 5.5.	HOLT
01 -	- R,	NOVICK

¥

Ę

BRIEF DESCRIPTION THIS INSTRUMENT WAS A COOLED SOLID-STATE SPECTROMETER AND WAS USED TO DETECT WEAK SOURCES AND WEAK SPECTRAL FRATURES OVER A BROAD BAND OF ENERGIES BY EMPLOYING A NONDISPERSIVE SPECTRAL TECHNIQUE. A LITHIUM-ORIFED, SOLID-STATE DETECTOR WAS OPERATED AT A TEMPERATURE OF 120 DEG K. THE PRIMARY DETECTOR WAS 6 MM IN DIAMETER AND WAS SURROUNDED BY TWO VETO GUARD COUNTERS. A TWO-STAGE SOLID CRYGEN REFRIGERATOR WAS USED TO COUL THE DETECTOR. SPECTRAL MEASUREMENTS WERE MADE BETWEEN 0.4 AND 4 KEV, WITH A RESOLUTION FROM 120 TO 130 EV, FWHM AND AN EFFICIENCY GREATER THAN 0.9. THE EFFECTIVE AREA WAS 200 SQ CMJ THE FOV, 6 ARC MIN IN DIAMETERJ AND THE TIME RESOLUTION, 2 - 5 MICROSEC/MOS. OBSERVATIONS WITH THE INSTRUMENT WERE TERMINATED WHEN TH5 SUPPLY OF THE SOLID AMMONIA-METHANE CRYOSTAT WAS EXPENDED AND OPERATING TEMPERATURES COULD NO LONGER BE MAINTAINED .

NASA-GSFC

COLUMBIA U

SPACECRAFT COMMON NAME- HAKUCHO ALTERNATE NAMES- COSMIC RADIATION SAT B, CORSA-B 11272

PSSOC 10- 79-0144

LAUNCH DATE- 02/21/79

ORBIT PARAMETERS Orbit type- geocentric Orbit period- 96. Min Periapsis- 545. KM Alt	EPOCH DAYE- 02/22/79 Inclination- 29.9 deg Apoapsis- 577. Km alt		
PERSONNEL PM - M. ODA	U OF TOKYO		

NAGOYA U PS = S. HAYAKAWA

BRIEF DESCRIPTION

DRIEF DESCRIPTION AFTER LAUNCH, THE SIXTH JAPANESE SATELLITE, COMSA-B WAS OFFICIALLY REMAMED HAKUCHO, THE JAPANESE WORD FOR SWAN. THE SPACECRAFT HAD THE SWAPE OF AN OCTAGONAL RIGHT PRISM WITH A MAXIMUM WIDTH OF BO CM AND A HEIGHT OF G5 CM. IT WAS SPIN-STABILIZED WITH A RATE OF 5 - 8 RPM. THE SPIN AXIS WAS MANEUVERED BY MEANS OF MAGNETIC TORQUING TOUMARDS THE CELESTIAL OBJECTS TO BE OBSERVED. ELEVEN X-RAY DETECTORS OF VARIOUS SPECIFICATIONS WERE DEVOTED TO THE OBSERVATION OF COSMIC X RAYS. FOUR DETECTORS HAD FIELDS OF VIEW (FOV) PERPENDICULAR TO THE SPIN AXIS AND PERFORMED A SCAN OVER A WIDE REGION OF THE SKY IN SEARCH OF X-RAY NOVAE AND TRANSIENTS. THE OTHER SEVEN DETECTORS HAD FOULD THE OR STORED ON AN ON-BOARD DATA RECONDER. TELEMETRY FREQUENCIES WERE 136.725 MHZ AT 500 M AND 400.450 MHZ AT 100 MM. THE SCIENTIFIC OBJECTIVES OF HAKUCHO WERE, (1) A SYSTEMATIC SURVEY AND WATCH OF SHORT-LIVED X-RAY WIDE SPECTRAL COVERAGE (0.1 TO 100 KEV), (3) STUDY OF SHORT-TERM VARIABILITIES AND PULSATIONS OF X-RAY SOURCES WITH A WIDE SPECTRAL COVERAGE (0.1 TO 100 KEV), (3) STUDY OF SHORT-TERM VARIABILITIES AND PULSATIONS OF X-RAY SOURCES, AND (5) STUDY OF THE X-RAY SKY IN THE SUB-KEV RANGE.

OSAKA U U OF TOKYD U OF TOKYD Rikkyo u

U OF TOKYO U OF TOKYO

U OF TOKYO

U OF TOKYO U OF TOKYO U OF TOKYO

U OF TOKYO U OF TOKYO

NAGOYA U NAGOYA U NAGOYA U NAGOYA U Nagoya u

OSAKA U

OSAKA U

INVESTIGATION NAME- MONITOR OF X-RAY SOURCES

NSSDC 10- 79-0144-01

PERSONNEL	P	Ē	R	s	٥	N	N	E	L
-----------	---	---	---	---	---	---	---	---	---

4

P1 - 5.	HIVAMOTO
PI - Y.	OGAWARA
PI - I.	KONDO
P1 - M.	YOSHIMORI
0I - H.	INCUE
01 - K.	KOYAMA
01 - K.	MAKISHIMA
01 - H.	MATSUOKA
01 - T.	HURAKAHI
01 - T.	OHASHI
01 - N.	SHIBAZAKI
01 - Y.	TANAKA
0I - H.	KUNIEDA
0I - F.	MAKINO
01 - K.	MASAI
01 - F.	NAGASE
01 - Y.	TAWARA
01 - H.	TSUNEMI
01 - K.	<u>YAMASHITA</u>

ORIGINAL PAGE IS OF POOR QUALITY

17

d.

BRIEF DESCRIPTION

BRIEF DESCRIPTION UK 6 WAS THE 6TH AND LAST SATELLITE IN THE ARIEL SERIES. THE OBJECTIVE OF THIS MISSION WAS TO UNDERTAKE STUDIES IN HIGH-ENERGY ASTROPHYSICS. TWO X-RAY EXPERIMENTS, ONE COSMIC-RAY EXPERIMENT, AND THREE TECHNOLOGY EXPERIMENTS WERE CARRIED. THE SPACECRAFT WAS SPIN STABILIZED, WITH THE SPIN AXIS COMMANDED INTO A SEQUENCE OF ORIENTATIONS TO ACCOMMODATE THE X-RAY EXPERIMENT REQUIREMENTS.

INVESTIGATION NAME = X-RAY PROPORTIONAL COUNTER SPECTROMETER

NSSDC 10- 79-0474-02

PI - K.A.	PAUNDS	U OF LEICESTER	

BRIEF DESCRIPTION

PERSONNEL

BRIEF DESCRIPTION THE INSTRUMENT CONSIGTED OF AN ARMAY OF XENON-FILLED PROPORTIONAL COUNTERS DESIGNED FOR DETAILED MEASUREMENT OF TIME VARIABILITY AND SPECTRA OF BOTH GALACTIC AND EXTRAGALACTIC SOURCES. THE DETECTOR ARRAY WAS SENSITIVE OVER THE EMERGY RANGE 1.2 - 50 KEV AND VIEWED ALONG THE SPACECRAFT SPIN AXIS THROUGH 3-DEG FWHM FIELD COLLIMATORS. BRIGHT X-RAY SOURCES COULD BE MEASURED TO SEVERAL MICROSECONDS TIME RESOLUTION, AND SPECTRAL DATA WERE OBTAINED IN 32 CHANNELS.

INVESTIGATION NAME- X-RAY GRAZING INCIDENCE SYSTEM

NSSDC 10- 79-0474-03

PERSONNEL

PI - R.L.F.BOYD	U COLLEGE LONDON
01 - A.P. WILLMORE	U OF BIRMINGHAM
OI - A.H. CRUISE	U COLLEGE LONDON
OI - C.V. GOODALL	U OF BIRMINGHAM

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS SYSTEM CONSISTED OF FOUR GRAZING-INCIDENCE HYPERBOLOID MIRRORS THAT REFLECTED X RAYS THROUGH AN APERTURE/FILTER TO FOUR CONTINUOUS-FLOW PROPANE GAS DETECTORS COVERED WITH A ONE-MICROMETER POLYPROPYLENE WINDOW, THE INSTRUMENT WAS SENSITIVE TO X RAYS FROM 0.1 TO 2 KEV AND HAD SEVEN SELECTABLE FIELDS OF VIEW FROM 0.2 TO 3.6 DEG. THE SYSTEM COULD BE OPERATED IN FOUR DIFFERENT MODES: SPECTRAL (32 CHANNELS OF PULSE HEIGHT), TIME (0.5 MS TO 16 S), PULSAR (PERIODS FROM 8 MS TO 4 H), AND AUTOCORRELATOR (PERIODIC VARIATIONS FROM 128 MS TO 2 S), THE DETECTORS POINTED ALONG THE SPACECRAFT SPIN AXIS.

SPACECRAFT COMMON NAME- BHASKARA Alternate Names- Seo, 11392

NSSDC 10- 79-051A

LAUNCH DATE- 06/07/79

ORDIT PARAMETERS	
ORBIT TYPE- GEOCENTRIC	EPOCH DATE- 06/07/79
ORBIT PERIOD- 95.2 MIN	INCLINATION- 50.7 DEG
PERIAPSIS- 512. PM ALT	APOAPSIS- 557. KM ALT
PERSONNEL	
PD - K. KASTURIRANGAN	ISRO SATELLITE CENTER
MG - U.R. RAO	ISRO SATELLITE CENTER
PS - D.P.N.CALLA	SPACE APPLICATIONS CTR
PS - G. JOSEPH	SPACE APPLICATIONS CTR

BRIEF DESCRIPTION BHASKARA

BRIEF DESCRIPTION BHASKARA, THE SECOND INDIAN SATEJLITE, WAS LAUNCHED AS PART OF THE SATELLITE-FOR-EARTH-OBSERVATIONS (SEO) PROGRAM. IT WAS PLACED IN ORBIT BY A U.S.S.R. VEHICLE LAUNCHED FROM A COSMODROME IN THE U.S.S.R. THE MAIN OBJECTIVES WERE TO CONDUCT EARTH OBSERVATION EXPERIMENTS FOR MPPLICATIONS RELATED TO HYDROLOGY, FORESTRY, AND GEOLOGY USING A TWO-BAND TV CAMERA SYSTEM, AND TO CONDUCT OCEAN-SURFACE STUDIES USING A TWO-FREQUENCY SATELLITE MICROWAVE RADIOMETER (SAMIR) SYSTEM. SECONDARY OBJECTIVES WERE TO TEST ENGINEERING AND DATA PROCESSING SYSTEMS, TO COLLECT LIMITED METEOROLOGICAL DATA 'ROM REMOTE PLATFORMS, AND TO CONDUCT SCIENTIFIC INVESTIGATIONS IN X-RAY ASTRONOMY. BHASKARA WAS A 26-FACED QUASI-SPHEMICAL POLYHEDROM. IT HAD A HEIGHT OF 1.66 M, AND DIAMETER OF 1.55 M. THE SATELLITE WAS NAMED AFTER THE TWO "BHASKARACHARYAS" ASTRONOMER-MATHEMATICIANS OF ANCIENTINDIA.

INVESTIGATION NAME- PINHOLE X-RAY SKY SURVEY

NSSBC TD= 79=0514=03

PERSONNEL			
PI - K.	KASTURIRANGAN	1580	SATELLITE CENTER
01 - P.C.	AGARWAL	TATA	INST OF FUND RES

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE OBJECTIVE OF THIS INVESTIGATION WAS TO CONDUCT INVESTIGATIONS ON TRANSIENT K-RAY SOURCES AND ON THE LONG TERM VARIABILITY OF STEADY K-RAY SOURCES IN THE 2 - 10 KEV RANGE. THE INSTRUMENT PERFORMED SATISFACTORILY DURING THE FIRST MONTH AFTER THE LAUNCH AND WAS THEN TURNED OFF. WHEN THE INSTRUMENT WAS TURNED ON AGAIN AFTER SOME TIME, IT WAS FOUND TO BE IN COUNT RATE SATURATION MODE. THE REASON FOR THE MALFUNCTION WAS NOT KHONN. NOT KNOWN.

SPACECRAFT COMMON NAME- HEAO 3 Alternate Names- High Energy Astron Obs-C/ 11532

NSSDC 10- 79-082A

LAUNCH DATE- 09/20/79

ORBIT PARAMETERS Orbit type- geocentric Orbit period- 94.5 min Periapsis- 486.4 km alt	ÉPOCH DATE- 09/21/79 Inclination- 43.6 deg Apoapsis- 504.9 km alt
PERSONNEL	

NG - R.E. HALPERN	NASA HEADQUARTERS
SC - A.G. OPP	NASA HEADQUARTERS
PN - J.F. STONE	NASA-MSFC
PS - T.A. PARNELL	NASA-MSFC

BRIEF DESCRIPTION

BRIEF DESCRIPTION THIS THIRD MISSION PERFORMED A SKY SURVEY OF GAMMA RAYS AND COSMIC RAYS IN A MANNER SIMILAR TO HEAO 1. IT HAD A HIGHER ORBITAL INCLIMATION THAN THE PREVIOUS MISSIONS IN THIS SERIES SINCE THE PAYLOAD CONSISTED PRIMARILY OF COSMIC-BAY INSTRUMENTATION; GREATER COSMIC-RAY FLUX OCCURS MEAR THE EARTH'S MAGNETIC POLES. THE SCIENTIFIC OBJECTIVES OF THE MISSION WERE (1) TO DETERMINE THE ISOT/FIC COMPOSITION OF THE MOST ABUNDANT COMPONENTS OF THE COS/(IC-RAY FLUX WITH ATOMIC MASS BETWEEN 7 AND 56, AND THE FLUX OF EACH ELEMENT WITH ATOMIC NUMBER (2) BETWEEN 2 = 4 AND 2 = 50J (2) TO SEARCH FOR SUPER-HEAVY NUCLEI UP TO 2 = 120, AND MEASURE THE COMPOSITION OF THE NUCLEI WITH 2.GT. 20; (3) TO STUDY INTENSITY, SPECTRUM, AND TIME BEHAVIOR OF X-RAY AND GAMMA-RAY SOURCES BETWEEN 0.06 AND 10 MEV, AND MEASURE ISOTROPY OF THE DIFFUSE X-RAY AND GAMMA-RAY BACKGROUND; AND (4) TO PERFORM AN EXPLORATORY SEARCH FOR X- AND GAMMA-RAY LINE EMISSIONS. THE NORMAL OPERATING MODE WAS A CONTINUOUS CELESITAL SCAN ABOUT THE 2 AXIS (WHICH NOMINALLY POINTED TO THE SUN). NOMINALLY POINTED TO THE SUN).

INVESTIGATION NAME- GAMMA-RAY LINE SPECTROMETER

NSSDC ID- 79-082A-01

PERSONNEL		
P1 - A.S.	JACOBSON	NASA-JPL
OI - JuR.	ARNOLD	U OF CALIF, SAN DIEGO
01 - A.E.	METZGER	NASA-JPL
01 - L.E.	PETERSON	U OF CALIF, SAN DIEGO

BRIEF DESCRIPTION

BRIEF DESCRIPTION THE BASIC GOALS OF THIS EXPERIMENT WERE TO SEARCH FOR GAMMA-RAY LINE EMISSIONS ARISING FROM A VARIETY OF SOURCE PHENOMENA. PARTICULAR EMPHASIS WAS PLACED ON FINDING LINE EMISSIONS FROM PROCESSES OF NUCLEOSYNTHESIS IN SUPERNOVAE, AND FROM POSITRON-ELECTRON ANNIHILATION AND NUCLEAR REACTIONS IN LOW-ENERGY COSMIC RAYS. IN ADDITION, CAREFUL STUDY WAS MADE OF THE SPECTRAL AND TIME VARIATIONS OF MOUNH HARD X-RAY SOURCES. THE EXPERIMENT WAS CAPABLE OF MEASURING GAMMA-RAY LINES FALLING WITHIN THE ENERGY INTERVAL FROM 0.06 TO 10 MEV, AND WITH AN ENERGY RESOLUTION BETTER THAN 2.5 KEV AT 1.33 MEV AT A LINE SENSITIVITY FROM 1.E-4 TO 1.E-5 PHOTONS/SG COM-S, DEPENDING ON THE ENERGY. THE EXPERIMENTAL PACKAGE CONTAINED FOUR COOLED DRIFTED-GERMANIUM DETECTORS SHIELDED BY CESIUM IODIDE. THE KEY EXPERIMENTAL PARAMETERS WERE (1) GEOMETRY FACTOR OF 11.1 SG (M-SR, (2) A FIELD OF VIEW OF 27 DEG FWHM AND, (3) A TIME RESOLUTION OF LESS THAN 0.1 MS FOR THE GERMANIUM DETECTOR AND 10 S FOR THE CESIUM IODIDE DETECTOR.

ORIGINAL PAGE IS **OF POOR QUALITY**

3. INDEXES

This section comprises eight different indexes that contain additional information and cross-referencing items to assist the user in finding specific information.

3.1 SPACECRAFT ALPHABETICAL NAME INDEX

This index is ordered alphabetically by spacecraft common name and is crossreferenced to the brief descriptions in section 1. Spacecraft alternate names and NSSDC IDs are included.

Original page is of poor quality

SPACECRAFT COMMON NAME	NSSDC 10	PAGE
ANS Apollo 15 CSM	74-070A 71-063A	10 8 9
APOLLO 16 CSM Apollo soyuz test proj.	72-031A 75-066A	13
ARIABAT Ariel 5	75-033A 74-077Å	12
ARIEL 6	79-047A	17
ARYADHATA Astp-Apollo	75-033A 75-066A	12 13
ASTRO NETHERLAND SAT.	74-070A	10
BHASKARA Copernicus	79-0518 72-0658	18
CORSA-B Cosmic radiation sat b	79-014A 79-014A	17 17
EINSTEIN	78-103A	16
EXPLORER 42 Explorer 44	70-107A 71-058A	777
EXPLORER 53	75-037A	12
HAKUCHO Heao 1	79-014A 77-075A	17
HEAO 2	78-103A	16
HEAO 3 HEAO-A	79-082A 77-075A	18 15
HEAO-B	78-103A 79-082A	16
HEAD-C High Energy Astron Obs-A	77-075A	18 15
HIGH ENERGY ASTRON OBS-B HIGH ENERGY ASTRON OBS-C	78-103A 79-082A	16 18
INDIAN SCIENTIFIC SAT.	75-033A	12
NRL-111 0A0 3	76-023C 72-065A	14
040-0	72-065A	9
050 3 050 4	67-020A 67-100A	5 5
050 7	71-083A	8
050 B 050 - D	75-057A 67-100A	13
050-E 050-EYE	67-020A	5
050-11	75-057A 71-083A	13 8
050-I P78-1	75-057A 79-017A	13
5A5 1	70-107A	7
5A5 3 5A5 -A	75-037A 70-107A	12
SAS-C	75-037A	12
SE-C SEO	71-058A 79-051A	7 18
SESP NO. NRL-111-0264	76-0230	14
SESP NO. NRL-111-0264 SESP P74-10	76-023D 76-023C	14 14
SESP P74-10 Solar Explorer-C	76-0230 71-058A	14
SOLRAD 10	71-058A	7
SOLRAD 11A Solrad 11B	76-023C 76-023D	14
SOLRAD HI-TRIP	76-0230	14
SOLRAD HI-TXIP Solrad-C	76-0230 71-058A	14
SOLWIRD Solwind	79-017A 79-017A	17 17
SOYUZ APOLLO	75-066A	13
SP74-1D Space test program p78-1	76-023D 79-017A	14 17
STP P78-1	79-017A	17
7D 1 TD 1A	72-014A 72-014A	9
UHURU UK 5	70-107A 74-077A	7 10
UK 6	79-047A	17
UNITED KINGDOM-5 United Kingdom-6	74-077A 79-047A	10 17
VELA SA	69-046D	5
VELA 5B Vela 5B (USAF)	69-046E 69-046E	6
VELA 6A	70-027A	6
VELA 68 Vela 68 (USAF)	70-0278 70-0278	6 6
VELA 9 (TRW)	69-0460 69-0468	5
VELA 10 (TRW) Vela 11 (TRW)	70-027A	6
VELA 12 (TRW)	70-027B	6

1

3.2 OBSERVING CATALOGS

c 2,4%

Experimenters usually maintain a log of observations made during the operational lifetime of their instrument. These catalogs provide a reference as to what objects or areas were observed by the experiment. The additional information varies from experiment to experiment and the format can range from a full catalog to a single page list. The following index lists the observing catalogs that are available through NSSDC and their form (see Appendix A).

ORIGINAL PACE IS OF POOR QUALITY

# SPACECRAFT NAME LAUNCH DATE				DATA SET INFORMATION				
*****	******	**************************************	NSSDC ID	****		TINE	SPAN	
1	* INVESTIGATOR NAME *	DATA SET NAME		FORM	QUANTITY		DATA	PÅG
N 5		08/30/74	74-070A					1
* #F	GRINDLAY	ANS, HARD (2+40 KEV) X-RAY EXP.	74-0708-03					1
		HXX OBSERVING CATALOG	74-070A-038	FR	1			
A0 2		11/13/78	78-103A					1
	GIACCONI	HEAD 2, HONITOR PROPORTIONAL CHTR	78-103A-01					. 3
		CATALOG OF OBSERVED TARGETS+TAPE	78-103A-01A	DD	1	11/16/78	04/25/8	
		CATALOG OF OBSERVED TARGETS-FICHE	78-103A-01B	FR	ģ .	11/16/78	04/25/8	1
	GIACCONI	HEAD 2, HIGH-RESOLUTION IMAGER	78-103A-02		×	11/16/78		
		CATALOG OF OBSERVED TARGETS-TAPE	78-103A-02A	\$D FR	1	11/16/78	04/25/8	
	571 6 6 6 11 h	CATALOG OF OBSERVED TARGETS-FICHE	78-103A-028 78-103A-03	r #	7	11110110	0472070	*
	GIACCONI	HEAO 2/ CRYSTAL XHAY SPECTROMETER Catalog of observed targets-tape	78-103A-03A	00	,	11/16/78	04/25/8	
		CATALOG OF OBSERVED TARGETS-FICHE	78-1034-038	Ek	1	11/16/78	04/25/8	
	614 F FR417	HEAO 2, IMAGING PROPORTIONAL CNTR	78-103A-04	1.15	•	******		•
	GIACCONI	CATALOG OF OBSERVED TARGETS=TAPE	78-103A-04A	DD	1	11/16/78	04/25/8	
		CATALOG OF OBSERVED TARGETS-FICHE	78-1034-048	FR		11/16/78	04/25/8	
	GIACCONI	HEAD 2, SOLID-STATE SPECTRM (\$55)	78+103A-05					-
	*****	CATALOG OF OBSERVED TARGETS-TAPE	78-103A-05A	DD	1	11/16/78	04/25/8	1
		CATALOG OF OBSERVED TARGETS-FICHE	78-1034-058	FR	Ā	11/16/78	04/25/8	ī
0 3		08/21/72	72-065A					
* *	BOYD	DAD 3, STELLAR X RAY EMISS. 1-100A	72-065A-02					
		UCL OBSERVING CATALOG	72-065A-02C	MP	1	08/26/72	12/14/8	Ô
0 8		06/21/75	75-057A					
	FROST	OSO BAHIGH ENERGY CELESTIAL X RAY	75-057A-07					
		CELESTIAL X-RAY SOURCES OBS	75-0578-078	нĭ	1	06/21/75	09/30/7	8
	SERLEMITSOS	050 B, COSMIC X-RAY SPECTROSCOPY	75-0578-06					
		SPIN AXIS POINTING MAPS	75-057A-05A	FR	5	07/02/75	10/01//	
15-C		05/07/75	75-037A					
	CLARK	SAS-C, SCORPIO MONITOR 0.4-BOKEV	75-0378-02	5. a				
		Y-AXIS POINTED OBSERVATION LOG	75-037A-02B	H1	8	05/30/75	03/23/7	
	CLARK	SAS-C, GALACTIC ABS. 0.2-10KEV	75-037A-03		Б		** /** /*	
		Y-AXIS POINTED OBSERVATION LOG	75-037A-03B	HI	8	05/30/75	03/23/7	
	CLARK	SAS-C, GALACTIC MONITOR 1.8-BKEV	75-0378-04		÷	05/30/75	03/23/7	0
		Y-AXIS POINTED OBSERVATION LOG	75-0374-048	HI	8	1019110	03/23//	7
K 6			79-0478 79-0478-02					
	POUNDS	UK 6. X-RAY PROPORTIONAL COUNTERS	79-0478-028	нт	4			
		X-RAY PROP COUNTER SOURCE LIST	13-0414-054	n i	+			

1.54

PRECEDING PAGE BLANK NOT FILMED

3.3 X-RAY SOURCE CATALOGS

The following is a list of X-ray source catalogs that are currently available from NSSDC. Included are the data form (see Appendix A) and quantity.

- 445

original page is of poor quality

DISCIPLINE

SOURCE DATA TYPE NAME DATA CONTENTS NAME	DATA SET INFORMATION				
DATA SET NAME			TIME SPAN		
法学会常常常常不要的公式的 的过去式 含义学生 法法 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化	FORM QU	ANTITY	OF DATA	NSSDC ID	
\STROPHYSICS					
SPACECRAFT RELATED DATA					
ASTRONOMICAL CATALOGS				5X-D	
X-RAY CATALOGS				5X*D1	
2ND ARIEL SELECTED X-RAY DATA	00	1		5X-D1A	
3RD UHURU SELECTED X-RAY DATA	PD	ī		\$X-018	
ATH UHURU SELECTED X-RAY DATA	D D	ĩ		SX-D1C	
AU CATALOS OF X-RAY SOURCES	FR	2	12/12/70 03/18/73	SX-DIJ	
ARIEL V 3A X-RAY CATALOGUE/MFICH	FR	ĩ	10/18/74 03/14/80	5X-D1F	
ARIEL V 3A X-RAY CATALOGUE, TAPE	DD	ĩ	10/18/74 03/14/60	SX-DIE	
COMPACT GALACTIC X-RAY SOURCES	78	2		SX=DÎI	
EXTRAGALACTIC X-RAY SOURCES	00	ĩ		\$X-D1K	
HAKUCHO LIST OF X-RAY BURSTERS	HI	1	04/00/79 07/15/81	\$X-01L	
HEAD A=1 XARAY SOURCE CATALOG	HP	î		5X-D1G	
HEAD / - 2 NEW HARD X-RAY SOURCES	DD	ĩ	09/01/77 03/09/78	\$X-01H	
X-RAY GOURCES ACCURATE POSITIONS	0 D	i		5X-010	

I REGEDELG PAGE BLANK NOT FILMED

3.4 X-RAY INSTRUMENTS

1%

The following index can be used as a quick reference to types of X-ray instruments. A categorization is made by the principal types of detection devices employed in the referenced experiments. Since each category is in chronological order, the index is a form of brief historical overview.

2

- ESA

ţ)

SPACECRAFT Common NAME	NSSDC ID	RAGE	
	SCINTILLATION COUNTERS		
050 3	SOLAR AND CELESTIAL GAMMA-RAY TELESCOPE	67-020 A -07	5
080 4	Cosmic X-ray measurements	67-100 - 02	5
VELA 5A	COSMIC X RAYS	69-046D-06	5
VELA 5B	COSMIC X RAYS	69-045E-06	6
VELA GA	COSMIC X RAYS	70-0278-06	6
VELA 6B	COSMIC X RAYS	70-0278-06	7
030 7	COSMIC X-RAY EXPERIMENT	71-083A-03	8
UK 5	HIGH-ENERGY COSMIC X-RAY SPECTRA	74-0778-05	11
ARYABHATA	X-RAY ASTRONOMY	75-033A-01 75-057A-07	12 13
050 B	HIGH-ENERGY CELESTIAL X RAYS	77-0758-04	15
HEAO 1	Low-Energy Gamma-Ray and Hard X-Ray Sky Survey (A-4)	//~0/5A~04	15
	PROPORTIONAL COUNTERS		
SAS-A	ALL-SKY X-RAY SURVEY	70-107A-01	7
SOLRAD 10	ALL-SKY X-RAY SURVEY	71-058A-02	7
APOLLO 15 CSM	X-RAY FLUORESCENCE	71-063A-09	ម
050 7	COSMIC X-RAY SOURCES IN THE RANGE 1.5 TO 9 A	71-083A-04	8
TD 1A	SPECTROMETRY OF CELESTIAL X RAYS 2-30 KEV (S77)	72-0148-04	9
APOLLO 16 CSM	X-RAY FLUORESCENCE	72-031A-08	9
OAO 3	STELLAR X RAYS	72-0651-02	10
ANS	SOFT X-RAY EXPERIMENT (SXX)	74-070A-02	10
ANS	HARD X-RAY EXPERIMENT (HXX)	74-070A-03	10
UK 5	ROTATION MODULATION COLLIMATOR (FMC)	74-077A-01	11
UK 5	2- TO 10-KEV SKY SURVEY INSTRUMENT (SSI)	74-077A-02	11
UK 5	HIGH-RESOLUTION SOURCE SPECIERA	74-077A-03	11
ARYABHATA	X-RAY ASTRONOMY	75-0331-01	12
SAS-C	EXTRAGALACTIC EXPERIM. T (EGE)	75-037A-01	12
SAS-C	GALACTIC MONITOR EXPERIMENT (GME)	75-037A-02	12
SAS-C	SCORPIO MONITOR EXPERIMENT (SME)	75-037A-03	12
SAS-C	GALACTIC ABSORPTION EXPERIMENT (GAE)	75-037A-04	12
080 8	SOFT X-RAY BACKGROUND RADIATION INJESTIGATION	75-057A-05	13
ASTP-APOLLO	SKY-EARTH X-RAY OBSERVATIONS	75-066A-04	14
SOLRAD 11A	STELLAR/AURORAL X RAYS	76-023C-16	14 14
SOLRAD 11B	STELLAR/AURORAL X RAYS	76-023D-16	
HEAO 1	LARGE AREA COSMIC X-RAY SURVEY (A-1) Cosmic X-ray experiment (A-2)	77-075A-01 77-075A-02	15 15
HEAO 1			15
HEAO 1	X-RAY SCANNING MODULATION COLLIMATOR (A-3) Monitor Proportional Counter (MPC)	77-075A-03 78-103A-01	15
HEAO 2 HAKUCHO	MONITOP PROPORTIONAL COUNTER (MPC) MONITON OF X-RAY SOURCES	79-014A-01	17
НАКИСНО НАКИСНО	DIFFUSE SOFT X-RAYS AND SOFT X-RAY SOURCES	79-014A-01	17
UK 6	X-RAY PROPORTIONAL COUNTER SPECTROMETER	79-047A-02	18
UK 6	X-RAY GRAZING INCIDENCE SYSTEM	79-047A-03	18
*** ×	للمراجع والمراجع والمراجع والمراجع والمراجع المراجع المراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع		

SPACECRAFT COMMON NAME	NSSDC ID	PAGE	
	PROPORTIONAL CHAMBER		
OSO 8	COSMIC X-RAY SPECTROSCOPY	75-057A-06	13
	CHANNEL MULTIPLIER		
UK 5	ROTATION MODULATION COLLIMATOR (RMC)	74-077A-01	11
	SOLID STATE DETECTORS		
SOLRAD 11 A	X-RAY BACKGROUND	76-023C-24	14
SOLRAD 11 B	X-RAY BACKGROUND	76-023D-24	14
HEAO 2	SOLID-STATE SPECTROMETER (SSS)	78-103A-05	17
HEAO 3	GAMMA-RAY LINE SPECTROMETER	79-082A-01	18
	CRYSTAL SPECTROMETERS/POLARIMETERS		
ANS	HARD X-RAY EXPERIMENT (HXX)	74-070A-03	10
UK 5	BRAGG CRYSTAL SPECTROMETER (BCS)	74-077A-04	11
OSO 8	HIGH-SENSITIVITY CRYSTAL SPECTROSCOPY OF STELLAR AND SOLAR X-RAYS	75-057A-03	13
нело 2	FOCAL PLANE CRYSTAL SYECTROMETER (FPCS)	78-103A-03	16
	IMAGING DETECTORS		
UK 5	ALL-SKY MONITOR	74-077A-06	11
HEAO 2	HIGH-RESOLUTION IMAGER (HRI)	78-103A-02	16
HEAO 2	FOCAL PLANE CRYSTAL SPECTROMETER (FPCS)	78-103A-03	16
HEAO 2	IMAGING PROPORTIONAL COUNTER (IPC)	78-103A-04	16
BHASKARA	PINHOLE X-RAY SKY SURVEY	79-051A-03	18

3.5 EXPERIMENT ENERGY RANGES

1 2.43

This index separates the different experiments into three basic energy ranges that span the X-ray spectrum. Instruments that were designed to operate over a wide range are included in all applicable categories. The spacecraft and experiments are listed in chronological sequence within each range. Crossreferences are provided to the descriptions in Section 1.

0.2 - 2.0 keV

SPACECRAFT Common NAME	EXPERIMENT NAME	NSSDC ID	PAGE
OSO 7	COSMIC X-RAY SOURCES IN THE RANGE 1.5 TO 9A	71-083A-04	8
ANS	SOFT X-RAY EXPERIMENT (SXX)	74-070A-02	1.0
UK 5	ROTATION MODULATION COLLIMATOR (RMC)	74-077A-01	11
SAS-C	GALACTIC ABSORPTION EXPERIMENT (GAE)	75-037A-04	12
SAS-C	SCORPIO MONITOR EXPERIMENT (SME)	75-037A-03	12
OSO 8	SOFT X-RAY BACKGROUND RADIATION INVESTIGATION	75-057A-05	13
ASTP-APOLLO	SKY-EARTH X-RAY OBSE WATIONS	75-066A-04	14
SOLRAD 11A	X-RAY BACKGROUND	76-023C-24	14
SOLRAD 11B	X-RAY BACKGROUND	76-023D-24	14
HEAO 1	LARGE AREAS COSMIC X-RAY SURVEY (A-1)	77-075A-01	15
HEAO 1	COSMIC X-RAY EXPERIMENT (A-2)	77-075A-02	15
HEAO 2	HIGH-RESOLUTION IMAGER (HRI)	78-103A-02	16
HEAO 2	IMAGING PROPORTIONAL COUNTER (IPC)	78-103A-04	16
HEAO 2	SOLID-STATE SPECTROMETER (SSS)	78-103A-05	17
HAKUCHO	DIFFUSE SOFT X-RAYS AND SOFT X-RAY SOURCES	79-014A-02	17
UK 6	X-RAY GRAZING INCIDENCE SYSTEM	79-147A-03	18

2.0 - 20.0 keV

- 14

SPACECRAFT			
COMMON NAME	EXPERIMENT NAME	NSSDC ID	PAGE
<u>,</u>			
OSO 3	SOLAR AND CELESTIAL GAMMA-RAY TELESCOPE	67-020A-07	5
OSO 4	COSMIC X-RAY MEASUREMENTS	67-100A-02	.5
VELA 5A	COSMIC X RAYS	69-046D-06	5
VELA 5B	COSMIC X RAYS	69-046E-06	6
VELA 6A	COSMIC X RAYS	70-027A-06	6
VELA 6B	COSMIC X RAYS	70-027B-06	7
SAS-A	ALL-SKY X-RAY SURVEY	70-107A-01	7
SOLRAD 10	ALL-SKY X-RAY SURVEY	71-058A-02	7
OSO 7	COSMIC X-RAY EXPERIMENT	71-083A-03	8
050 7	COSMIC X-RAY SOURCES IN THE RANGE 1.5 TO 9 A	71-083A-04	8
TD 1A	SPECTROMETRY OF CELESTIAL X-RAYS 2-30 KEV (S77)	72-014A-04	9
OAO 3	STELLAR X RAYS	72-065A-02	10
ANS	SOFT X-RAY EXPERIMENT (SXX)	74-070A-02	10
ANS	HARD X-RAY EXPERIMENT (HXX)	74-070A-03	10
UK 5	ROTATION MODULATION COLLIMATOR (RMC)	74-077A-01	11
UK 5	2- TO 10-KEV SKY SURVEY INSTRUMENT (SSI)	74-077A-02	11
UK 5	HIGH-RESOLTUION SOURCE SPECTRA	74-077A-03	11
UK 5	BRAGG CRYSTAL SPECTROMETER (BCS)	74-077A-04	11
UK 5	ALL-SKY MONITOR	74-077A-06	11
ARYABHATA	X-RAY ASTRONOMY	75-033A-01	12
SAS-C	EXTRAGALACTIC EXPERIMENT (EGE)	75-037A-01	12
SAS-C	GALACTIC MONITOR EXPERIMENT (GME)	75-037A-02	12
SAS-C	SCORPIO MONITOR EXPERIMENT (SME)	75-037A-03	12
SAS-C	GALACTIC ABSORPTION EXPERIMENT (GAE)	75-037A-04	12
OSO 8	HIGH-SENSITIVITY CRYSTAL SPECTROSCOPY OF		
	STELLAR AND SOLAR X RAYS	75-057A-03	13
OSO 8	SOFT X-RAYS BACKGROUND RADIATION INVESTIGATION	75-057A-05	13
050 8	COSMIC X-RAY SPECTROSCOPY	75-057A-06	13
050 8	HIGH ENERGY CELESTIAL X RAYS	75-057A-07	13
SOLRAD 11A	STELLAR/AURORAL X RAYS	76-023C-16	14
SOLRAD 11A	X-RAY BACKGROUND	76-023C-24	14
SOLRAD 11B	X-RAY BACKGROUND	76-023D-24	14
SOLRAD 11B	STELLAR/AURORAL X RAYS	76-023D-16	14
HEAO 1	LARGE AREA COSMIC X-RAY SURVEY (A-1)	77-075A-01	15
HEAO 1	COSMIC X-RAY EXPERIMENT (A-2)	77-075A-02	15
HEAO 1	X-RAY SCANNING MODULATION COLLIMATOR (A-3)	77-075A-03	15
HEAO 1	LOW-ENERGY GAMMA-RAY AND HARD X-RAY SKY SURVEY (A-4)	77-075A-04	15
HEAO 2	MONITOR PROPORTIONAL COUNTER (MPC)	78-103A-01	16
HEAO 2	HIGH-RESOLUTION IMAGER (HRI)	78-103A-02	16
HEAO 2	FOCAL PLANE CRYSTAL SPECTROMETER (FPCS)	78-103A-03	16
HEAO 2	IMAGING PROPORTIONAL COUNTER (IPC)	78-103A-04	16
HEAO 2	SOLID-STATE SPECTROMETER (SSS)	78-103A-05	17
HAKUCHO	MONITOR OF X-RAY SOURCES	79-014A-01	17
UK 6	X-RAY PROPORTIONAL COUNTER SPECTROMETER	79-047A-02	18
BHASKARA	PINHOLE X-RAY SKY SURVEY	79-051A-03	18

41

> 20.0 keV

SPACECRAFT

COMMON NAME	EXPERIMENT NAME	NSSDC 1D	PAGE
OSO 3	SOLAR AND CELESTIAL GAMMA-RAY TELESCOPE	67-020 <u>A</u> -07	5
OSO 4	COSMIC X-RAY MEASUREMENTS	67-100A-02	5
OSO 7	COSMIC X-RAY EXPERIMENT	71-083A-03	8
oso 7	COSMIC X-RAY SOURCES IN THE RANGE 1.5 TO 9 A	71-083A-04	8
TD 1A	SPECTROMETRY OF CELESTIAL X RAYS 2-30 KEV (S77)	72-014A-04	9
ΟΛΟ 3	STELLAR X RAYS	72-065A-02	10
ANS	HARD X-RAY EXPERIMENT (HXX)	74-070A-03	10
UK 5	ROTATION MODULATION COLLIMATOR (RMC)	74-077A-01	11
UK 5	HIGH-RESOLUTION SOURCE SPECTRA	74-077A-03	11
UK 5	HIGH-ENERGY COSMIC X-RAY SPECTRA	74-077A-05	11
ARYABHATA	X-RAY ASTRONOMY	75-033A-01	12
SAS-C	GALACTIC MONITOR EXPERIMENT (GME)	75-037A-02	12
SAS-C	SCORPIO MONITOR EXPERIMENT (SME)	75-037A-03	12
OSO 8	SOFT X-RAY BACKGROUND RADIATION INVESTIGATION	75-057A-05	13
OSO 8	COSMIC X-RAY SPECTROSCOPY	75-057A-06	13
OSO 8	HIGH-ENERGY CELESTIAL X RAYS	75-057A-07	13
HEAO 1	COSMIC X-RAY EXPERIMENT (A-2)	77-0751-02	15
HEAO 1	LOW-ENERGY GAMMA-RAY AND HARD X-RAY SKY SURVEY (A-4)	77-075A-04	15
HAKUCHO	MONITOR OF X-RAY SOURCES	79-014A-01	17
UK 6	X-RAY PROPORTIONAL COUNTER SPECTROMETER	79-047A-02	18
HEAO 3	GAMMA-RAY LINE SPECTROMETER	79-082A-01	18

INDEXES

(continued)

3.6 OPERATIONAL LIFETIMES

s LSA

This index provides a quick-reference to the operational lifetime of both the spacecraft and the X-ray experiments. It can be of use in determining what experiiments may have been taking data at any specific time. The information printed includes spacecraft common name, experiment names, NSSDC ID, the funding country for the spacecraft, the institution responsible for the experiment, and operational lifetimes.

SPACECRAFT AND EXPERIMENT OPERATIONAL LIFETIME

-

a **13,433**.

SPACECRAFT NAME	NSSDC 1D	FUNDING COUNTRY	*******	DATE DATE R++++++++ PLACED	PAGE
		* *ORIGINAL EXP INST *	EXPERIMENT NAME	DATE EXP INOP Turned ON	
ANS	74-070Å	NETHR UNT S T		08/30/74 07/30/76	10
	74-070A-02 74-370A-03		SOFT X-RAY EXPERIMENT (SXX) Hard X-ray Experiment (HXX)	09/05/74 07/30/76 09/08/74 07/30/76	10 10
APOLLO 15 CSM	71-063A 71-063A-09	UNTST NASA-GSFC	X-RAY FLUORESCENCE	07/26/71 08/07/71 07/30/71	8 8
APOLLO 16 CSM	72-031A 72-031A-08	UNTST NASA-GSFC	X-RAY FLUORESCENCE	04/16/72 04/27/72	9 9
ARYABHATA	75-033A	INDIA USSRN 15ro sat sys proj	X-RAY ASTRONOMY	04/19/75 09/23/76 04/19/75 09/23/76	12
ASTP-APOLLO	75-066A	UNTST		07/15/75 07/24/75	12 13
BHASKARA	75-066A-04 79-051A	US NAVAL RESEARCH LAD India	SKY-EARTH X-RAY OBSERVATIONS	07/15/75 07/24/75 06/07/79 Unknown	14
	79-0514-03	USSRN	PINHOLE X-RAY SKY SURVEY	06/07/79 06/30/79	18
НАКИСНО	79-014A 79-014A-01 79-014A-02	JAPAN Osaka city u Nagoya u	MONITOR OF X-RAY SOURCES Diffuse Soft X-rays and Soft X-ray Sources	02/21/79† 03/00/79† 03/00/79†	17 17 17
HEAO 1	77-075A 77-075A-01 77-075A-02 77-075A-03	UNTST US NAVAL RESEARCH LAB NASA-GSFC Harvard College obs	LARGE AREA COSMIC X-RAY SURVEY (A-1) Cosmic X-ray Experiment (A-2) X-ray Scanning Modulation Collimator	08/12/77 01/09/79 08/12/77 01/09/79 08/12/77 01/09/79 08/12/77 01/09/79	15 15 15 15
	77-075A-04	U OF CALIF, SAN DIEGO	(A-3) Low-Energy Gamma-Ray and Hard X-Ray sky Survey (A-4)	08/12/77 01/09/79	15
HEAO 2	78-103A 76-103A-01 78-103A-02 78-103A-03 78-103A-04 78-103A-04 78-103A-04		MONITOR PROPORTIONAL COUNTER (MPC) High-Resolution imager (HRI) Focal plane crystal spectrometer (FPCS) Imaging proportional counter (IPC) Solid-State spectrometer (SSS)	11/13/78 04/25/81 11/15/78 04/25/81 11/16/78 04/25/81 11/16/78 04/25/81 11/16/78 04/25/81 11/16/78 10/25/81	16 16 16 16 16
HEAO 3	79-082A 79-082A-01	UNTST Nasa-Jpl	GAMMA-RAY LINE SPECTROMETER	09/20/79 05/30/81 09/23/79 05/30/81	18 18
0A0 3	72-065A 72-065A-02	UNTST U COLLEGE LONDON	STELLAR X RAYS	08/21/72 02/15/81 08/21/72 02/15/81	9 10
050 3	67-020A 67-020A-07	UNTŠT U of Calify San Diego	SOLAR AND CELESTIAL GAMMANRAY TELESCOPE	03/08/67 11/10/69 03/08/67 11/10/69	5
050 4	67-100A 67-100A-02	UNTST Harvard College obs	COSMIC X-RAY MEASUREMENTS	10/18/67 12/07/71 10/18/67	5
050 7	71-083A 71-083A-03 71-083A-04		COSMIC X-RAY EXPERIMENT Cosmic X-ray sources in the range 1.5 To 9 A	09/29/71 07/09/74 09/29/71 07/09/74 09/29/71 07/09/74	8 8 8
050 8	75-057A 75-057A-03	UNTST Columbia u	HIGH-SENSITIVITY CRYSTAL	06/21/75 10/30/78 06/22/75 10/15/78	13 13
	75-0574-05	U OF WISCONSIN	SPECTROSCOPY OF STELLAR AND SOLAR X RAYS Soft X-ray background radiation	06/22/75 10/15/78	13
	75-057A-06 75-057A-07		INVESTIGATION Cosmic X-ray spectroscopy High-énergy celestial X rays	06/22/75 10/15/78 06/22/75 10/15/78	13 13
SAS-A	70-107A 70-107A-01	UNTST Harvard College obs	ALL-SKY X-RAY SURVEY	12/12/70 01/04/75 12/18/70 01/04/75	7 7
SAS-C			EXTRAGALACTIC EXPERIMENT (EGE) Galactic Monitor Experiment (Gme) Scorpio Monitor Experiment (Sme) Galactic Absorption Experiment (Gae)	05/07/75 04/09/79 05/10/75 04/09/79 05/10/75 04/09/79 05/10/75 04/09/79 05/10/75 04/09/79	12 12 12 12 12
SOLRAD 10	71-058Å	UNTST UNTST		07/08/71 07/00/78*	7
		US NAMAL RESEARCH LAD	ALL-SKY X-RAY SURVEY	07/08/71 11/00/73*	7
SOLRAD 11A	76-023C 76-023C-16 76-023C-24	UNTSÝ US NAVAL RESEARCH LAB US NAVAL RESEARCH LAB	STELLAR/AURORAL X-RAYS X-ray background	03/15/76 06/12/77 03/16/76 06/12/7/ 03/16/76 03/16/76	14 14 14
SOLRAD 118	76-023D 76-023D-16 76-023D-24	UNTST US NAVAL RESEARCH LAB US NAVAL RESEARCH LAB	STELLAR/AURORAL X RAYS X-ray background	03/15/76 10/31/79 03/16/76 12/00/76* 03/16/76 06/00/75*	14 14 14
STP P78-1	79-617A 79-017A-06	UNTST US NAVAL RESEARCH LAB	X-RAY MONITOR	02/24/791 02/24/791	17 17

• The exact day is not known. • This spacecraft was still operational at the time of publication.

ORIGINAL PAGE IS OF POOR QUALITY, \bigcirc

47

ORIGINAL PAGE IS OF POOR QUALITY

» 8.4%

SPACECRAFT AND EXPERIMENT OPERATIONAL LIFETIME

SPACECRAFT NAME	NSSDC 1D	FUNDING COUNTRY	****	DATE	PLACED	PAGE
		*ORIGINAL EXP INST *	EXPERIMENT NAME	DATE EXP TURNED ON	INOP	
TD 1A	72-0148 72-0148-04	INTHL CENS	SPECTROMETRY OF CELESTIAL X RAYS 2-30 KEV (577)		05/04/74 05/04/74	9 9
UK S	74-077A	UKING		10/15/74	03/14/80	10
	74-077A-01 74-077A-02 74-077A-03 74-077A-03 74-077A-04 74-077A-05 74-077A-06	UNTST U COLLEGE LONDON U OF LEICESTER U COLLEGE LONDON U OF LEICESTER IMPERIAL COLLEGE NASA-GSFC	ROTATION MODULATION COLLIMATOR (RMC) 2- TO 10-KEV SKY SURVEY INSTRUMENT (SSI) HIGH-RESOLUTION SOURCE SPECTRA BRAGG CRYSTAL SPECTROMETER (DCS) HIGH-ENERGY COSMIC X-RAY SPECTRA ALL-SKY MONITOR	10/18/74 10/18/74 10/31/74 10/18/74 10/18/74 10/18/74	03/14/80 03/14/80 03/14/80 03/14/80 03/14/80 03/14/80	11 11 11 11 11
UK 6	79-047A	UKING UNTST		06/02/791		17
	79-047A-02 79-047A-03	U OF LEICESTER	X-RAY PROPORTIONAL COUNTER SPECTROMETER X-Ray grazing incidence system	06/02/79† 06/02/79†		18 18
VELA 5A	69-046D 69-046D-06	UNTST Los Alamos Sci Lab	COSMIC X RAYS	05/23/69 05/23/69	06/00/70*	5 5
VELA 5B	69-046E 69-046E-06	UNTST Los Alamos Sci Lab	COSMIC X RAYS	05/23/69 05/23/69	06/15/79	6 6
VELA 6A	70-027A 70-027A-06	UNTST Los Alamos SCI Lab	COSMIC X RAYS	04/08/70 04/08/70	03/13/72	6
VELA 6B	70-0278 70-0278-06	UNTST Los alamos sci lab	COSMIC X RAYS	04/08/70 04/08/70	02/00/72*	6 7

• The exact day is not known. † This spacecraft was still operational at the time of publication.

3.7 DATA LISTING

This listing provides a convenient reference to space science and supportive data available through the NSSDC. It is ordered by spacecraft common name, followed by the X-ray experiment names. The data set name, NSSDC ID, time span of the data, data form (see Appendix A), and quantity of data are printed for each available data set. For data not at NSSDC but still held by individual investigators or institutions, refer to index 3.8.

ORIGINAL PAGE IS OF POOR QUALITY

INDEX TO HESDE DATA HOLDINGS BY SPACECRAFT COMMON NAME

	SPACECRAFT, EXPERIMENT, DATA SET NAME	+ NSSDC ID +	• TIME COVERAGE •	7.777 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	QUANTITY	77) 1 1 1	AGE 	к. Эм
	*********	*******	****		***********	****	***	dim:
15 507	T X-RAY EXPERIMENT (SXX)	* 74-070A * 74-070A-02	ė. V	*			10)
HAR	D X-RAY EXPERIMENT (HXX)	* 74-070A-03 * 74-070A-03A		* 00	o*	*	10	
	TTITUDE, ABSOLUTE TIME AND BACKGROUND	*			5	-		
	ATALOG OF THE 161 UHURU SOURCES BSERVED BY THE HARD X+RAY EXPERIMENT	* 74-070A-038	* *	* FR	•			
OLLO 15 CSM		* 71-063A	k:	*		*	8	5
	AY FLUORESCENCE Unar orbit X-bay data	* 71-063A-09 * 71-063A-09A	+ 07/30/71 - 08/04/71	* DD	1	÷		`
	RANSEARTH CORST X-WAY DATA	* 71-063A-098 * 72-031A	* 08/04/71 - 08/07/71	* DD	1	*	9	,
	AY FLUORESCENCE	* 72-031A-08				*	ĝ	1
	UNAR ORBIT %-RAY OLUORESCENCE DATA ON Agnetic tape	* 72-031A-08A *	* 04/20/72 = 04/24/72 *	:* DD	1	*		
X	-RAY FLUGRESCENCE GALACTIC SURVEY DATA	* 72-031A-08B	A	* PD	0*	*		
И Иавната (N MAGNETIC TAPE	* 75-0334	*	•		÷.	12	
	AY ASTRONOMY	* 75-033A-01 * 75-066A	*	*		*	12	
	-EARTH X-RAY OBSERVATIONS	* 75-066A-04	•	*		*	14	4
ASKARA PIN	HOLE X-RAY SKY SURVEY	* 79-051A * 79-051A-03	# #	.# 		*	18	
KUCHO		* 79-014A	b ' A	*		*	17	1
	ITOR OF X-RAY BOURCES Xperimenter Held Data Base Available	+ 79-014A-01 + 79-014A-01A	= * *	* DD	0*	₩. ₩	17	,
T	HROUGH ISAS UNIVERSITY OF TOKYO	* 79-0144-02	*	*		*	17	7
50L	FUSE SOFT X-RAYS AND SOFT X-RAY Irces	*	*	*	.*			`
	XPERIMENTER HELD DATA BASE AVAILPBLE Hrough Isas University of Tokyo	* 79-014A-02A	*	* DD	0*			
NO 1		* 77-075A	*	*		*	1	
	RGE AREA COSMIC X-RAY SURVEY (A-1) (-ray source catalog on microfilm	* 77-075A-01 * 77-075A-01A	л * н	# NP	1	*	1	
COS	MIC X-RAY EXPERIMENT (A-2)	* 77-075A-02	* * 09/14/77 - 10/21/78	* 3 * DD	11	*	15	5
•	COSMIC X+RAY PULSE HEIGHT DATA ON Magnetic tape	*	*					
r,	DISCOVERY SCALER ON MAGNETIC TAPE Status information data on tape		* 08/17/77 - 01/04/75 * 08/17/77 - 02/17/78		6 1	र्ष भे		
ł	NEW HARD X-RAY SOURCES DESERVED WITH HEAD		* 09/01/77 - 03/09/7		· 1			
	NZ ON MAGNETIC TAPE Catalog of High Latitude Extragalactic	* 77-075A+02E	* -	* 00	1	ŧ		
ý	(-RAY SOURCES ON MAGNETIC TAPE	*	*			*	1!	*
X-1 (A-	RAY SCANNING MODULATION COLLIMATOR -3)	* 77-075A-03 *		*		*	1:	Ļ
1	REDUCED X-RAY COUNT DATA ON MAGNETIC TAPE	* 77-075A-03A	# ** *	* DD.	3	* *	1	
	I-ENERGY GAMMA-RAY AND HARD X-RAY SKY Rvey (A-4)	* 77-075A-04 *	÷	÷.	9	÷	4	5
1	PRELIMINARY DATA SUBMISSION - PLOTS, Lists, Scan-Track Map, Day-date tables	* 77-075A-04A	* *	+ FR	4	*		
0 2		* 78-103A	*	*		*	1	
	NITOR PROPORTIONAL COUNTER (MPC) Catalog of All targets observed by the	* 78-103A-01 * 78-103A-01A	* * 11/16/78 - 04/25/8	* 1 * DD	1	* *	1	6
l l	EINSTEIN OBSERVATORY ON MAGNETIC TAPE	*	*	Ŧ	٨	+		
	CATALOG OF ALL TARGETS OBSERVED BY THE Einstein observatory - Microfiche	+	* 11/16/78 - 04/25/8 *	1 H FR	7	۹		
HI	GH-RESOLUTION IMAGER (HRI) Catalog of All targets observed by the	* 78-103A-02 * 78-103A-02A	* 11/16/78 - 04/25/8	* 1 * DD	1	*	1	1
1	EINSTEIN OBSERVATORY ON MAGNETIC TAPE	*	*		• •			
	CATALOG OF ALL TARGETS OBSERVED BY THE Einstein observatory - Microfiche	* 78-103A-02B	* 11/16/76 - 04/25/8 *	1 * FR	4	*		
FO	CAL PLANE CRYSTAL SPECTROMETER (FPCS)	* 78-103A-03	*			*	1	f
	CATALOG OF ALL TARGETS OBSERVED BY THE Einstein observatory on magnetic tape	· · · •	* 11/16/78 ~ 04/25/8 *		1	18		
1	CATALOG OF ALL TARGETS OBSERVED BY THE	* 78-103A-03B	* 11/16/78 - 04/25/8	1; * FR	4	*		
	EINSTEIN OBSERVATORY - MICROFICHE Aging proportional counter (IPC)	* 78-103A-04	*			*	1	f
	CATALOG OF ALL TARGETS OBSERVED BY THE Einstein observatory on magnetic tape	* 78-103A-04A	+ 11/1/78 - 04/25/8	1 * DD	1	*		
1	CATALOG OF ALL TARGETS OBSERVED BY THE	* 78-103A-048	# 11/16/78 - 04/25/8	1 * FR	4	*		
	EINSTEIN OBSERVATORY - MICROFICHE Lid-State Spectrometer (SSS)	* 78-103A-05		*		*	1	.7
	CATALOG OF ALL TARGETS OBSERVED BY THE		* 11/16/78 - 04/25/8	I * DD	1	*		
	EINSTEIN OBSERVATORY ON MAGNETIC TAPE Catalog of All targets observed by the	* 78-103A-058	* 11/16/78 - 04/25/8	1 * FR	4	*		
	EINSTEIN OBSERVATORY - MICROFICHE	* * 79-082A	*	*		*	1	
	MMA-RAY LINE SPECTROMETER	* 79-082A-01	÷	*.		*	1	1
03 ST	ELLAR X RAYS	* 72-065A * 72-065A-02	*	# #		*	1	5
	REDUCED DATA ON MAGNETIC TAPE		* 09/01/72 - 12/31/8	0 * DD * MP	28 2	*		
	QUICK LOOK PLOTS OF REDUCED X-RAY Flux vs time in 30 min bins with source id	*	*			-		
	UCL CATALOG OF OBSERVED SOURCES	* 72-065A-02C	* 08/26/72 - 12/14/8 *	0 * MP	1	*		
0 3	1972 - 1980	* 67-020A		*		*		1
50	LAR AND CELESTIAL GAMMA-RAY TELESCOPE Reduced Solar and Cosmic Source Data Per	* 67-020A-07 * 67-020A-07A	* * 03/09/67 - 04/08/6	* 8 * DD	100	*		
	ENERGY CHANNEL VS TIME ON TAPE	*	*					
0 4	SHIC X+RAY MEASUREMENTS	* 67-100A * 67-100A-02	*	#`- ₩		*		1
07		* 71-083A	■ 1	*				ł
	SMIC X-RAY EXPERIMENT	* 71-083A-03	1			*		ł
.co	UCSD COSMIC RAY SKYMAP	* 71-083A-03A	* 09/29/71 - 05/18/7	3 * FR	57	*		ŧ
CO	UCSD COSMIC RAY SKYMAP Smic X-ray sources in the range	* 71-083A-03A * 71-083A-04		'3 * FR *	57	*		

*Data not at NSSDC but still held by individual investigators or institutions.

original page is of poor quality

: : :

INDEX TO NEEDE DATA HOLDINGS BY SPACECRAFT COMMON NAME

1

	SPACECRAFT, EXPERIMENT, DATA SET HAME	+ NSSDC 1D +	TIME COVERAGE	FORM	QUANTITY	*PAGE
	MASTER DATA TAPES FOR CELESTIAL SOURCES OF X-RAYS, 1-60 KEY	* 71-0834-044	* 10/02/71 - 05/24/73 *		66	
	ANNOTATED PLOTS OF THE 1-60 KEV X-RAY Results on Microfilm	* 71-083A-048	03/27/72 - 01/11/74 -	HT.	115	*
50 8	HIGH-SENSITIVITY CRYSTAL	* 75-057A * 75-057A-03	#. 1 * 1			* 13
	SPECTROSCOPY OF STELLAR AND SOLAR X RAYS Stellar and solar X-ray spectroscope Merged Bata tapes	75-0574-034	* * 07/24/75 - 09/15/78 *	DD	370	*
	SOFT X-RAY BACKGROUND RADIATION Investigation	* 75-0578-05	# 4	F F		* 13
	REDUCED COSMIC X-RAY COUNTS BY DETECTOR, Energy channel, and sector on tape	*	* 06/25/75 - 09/01/77 i *		150	*
	COMPRESSED NIGHTIME DATA ON MAGNETIC TAPE Cosmic X-Ray spectroscopy	* 75-057A-058 * 75-057A-06	ŧ	• 00 •	23 5	13
	SPIN AXIS POINTING MAPS SAMPLE DATA BASE AND ANALYSIS PROGRAMS	* 75~057A-06B		r FR DD	12	* 13
	HIGH-ENERGY CELESTIAL X RAYS TABLE OF ALL CELESTIAL X-RAY SOURCES Observed by The High-Energy Detector	*	* 06/21/75 - 09/30/78	нз	1	*
\S-A	ALL-SKY X-RAY SURVEY	* 70-107A * 70-107A-01	*	¢ •		* 7
	SOURCE LIBRARY TAPE Daily Summary data on tape	★ 70-107A-01B ★ 70-107A-01C	* 12/16/70 - 05/17/71	* DD * DD	350	Å
	THE FOURTH UHURU CATALOG OF X-RAY SOURCES Analyzed superimposed data, detected	* 70-107A-010	+ 12/12/70 - 03/18/73 = + 12/18/70 - 01/04/75 =	• 7R	2 0*	*
	SOURCES, PULSE HEIGHT INFORMATION PLOTS OF SUPERIMPOSED OBSERVAITIONS	* * 70-107A=01F	* 12/18/70 - 01/04/75		0*	*
5-0	EXTRAGALACTIC EXPERIMENT (EGE) PLOTS OF DETECTOR COUNTING RATES AT 5 S	A 75-037A A 75-037A-01	* * 01/25/76 - 09/07/77	* * * FR	40	+ 12
	RESOLUTION PLUS HOUSEKEEPING DATA GALACTIC MONITOR EXPERIMENT (GME)	* 75-0374-02	*	~ 2.0- #	7.	* 12
	PLOTS OF DETECTOR COUNTING WATES AT 5 S Resolution plus housekeeping data		* 01/25/76 - 09/07/77	rs FR	40	
	Y-AXIS POINTED OBSERVATION LOG Scorpio Monitor Experiment (SME)	* 75-037A-02B * 75-037A-03	* 05/30/75 - 03/23/79 *	* HI *	8	* 12
	PLOTS OF DETECTOR COUNTING RATES AT 5 S Resolution plus housekeeping data	* 75-037A-03A	* 01/25/76 - 09/07/77 *		40	*
	Y-AXIS POINTED OBSERVATION LOG Galactic Absorption Experiment (GAE)	₹ 75-037A-038 * 75-037A-04	* 05/30/75 = 03/23/79	*	8	* 12
	PLOTS OF DETECTOR COUNTING RATES AT 5 S Resolution plus housekeeping data	*	* 01/25/76 = 09/07/77		40	*
LRAD 10	Y-AXIS POINTED OBSERVATION LOG	* 71-058A	* 05/30/75 - 03/23/79	+ .HI *	8	÷ 7
LRAD 11A	ALL-SKY X-RAY SURVEY Stellar/Auroral X-rays	* 71-058A-02 * 76-023C * 76-023C-16	₩ # #	*		+ 14
LRAD 118	X-RAY BACKGROUND	* 76-023C-24 * 76-023D		* *		* 14
	STELLAR/ÀURORAL X RAYS X-ray Background	* 76-0230-16 * 76-0230-24	± 	*		- + 14 - + 14
P P78-1	X-RAY MONITOR	* 79-017A * 79-017A-06	# +	* *:		* 17 * 17
D 1A	SPECTROMETRY OF CELESTIAL & RAYS 2-30	+ 72-014A + 72-014A-04	* *	*		* 9
: 5	KEV (577)	* 74+077A		*		20
	ROTATION MODULATION COLLIMATOR (RMC) 2- TO 10-KEV SKY SURVEY INSTRUMENT (SSI) Ariel V SSI 3A X-RAY Catalog on Magnetic	* 74-0778-01 * 74-0778-02 * 74-0778-028	* * * 10/18/74 - 03/14/80	+ DD	1	+ 11 + 11 +
	TAPE Ariel v 551 ja X-ray catalogue on Microfiche	* 74-077A-028	* * 10/18/74 - 03/14/80	+ FR	1	*
	HIGH-RESOLUTION SOURCE SPECTRA Bragg Crystal Spectrometer (BCS)	+ 74-0778-03 * 74-0778-04	*	π		* 11
	HIGH-ENERGY COSMIC X-RAY SPECTRA All-sky monitor	* 74-077A-05 * 74-077A-06	± 1 1	*		* 11
6	X-RAY PROPORTIONAL COUNTER SPECTROMETER	+ 79-047A + 79-047A-02	*			* 17 * 18
	LIST OF SOURCES OBSERVED BY THE X-RAY Proportional counter experiment	* 79-0478-028 *		* n1	1	* 18
ELA 5A	X-RAY GRAZING INCIDENCE SYSTEM	* 79-047A-03 * 69-0460	*			* 5
ELA 50	COSMIC X RAYS	* 69-0460-06 * 69-046E	唐 •	₩ ₩		* 5
ELA 6A	COSMIC X RAYS	+ 69-046E-06 + 70-027A	₩ ₩	= ★ ⊥		* 6
ELA 6B	COSMIC X RAYS	* 70-027A-06 * 70-027B	я •	π.		* 6
	COSMIC X RAYS	* 70-027B-06	*	•		* 7

*Data net at MSEDC but still held by individual investigators or institutions.

3.8 GUEST OBSERVER PROGRAMS

The acquired data from space science experiments is not always suitable or available for archiving in NSSDC. Some data bases require specialized software, some are held by other than U.S. facilities, and some are still being actively processed by science working groups. Many of these experimenters desire to participate in data exchange and collaborations. The following index lists the name and address of a representative for each experiment that has such a data base. Interested parties can contact representatives directly or through NSSDC.

PRECEDING PACE CLANK NOT FILMED

SPACECRAFT	EXPERIMENT	NSSDC ID	PAGE
ANS	Hard X-ray Experiment (HXX)	74-070A-03	11
	Prof. Johnathan E. Grindlay Narvard College Observatory 60 Garden Street Cambridge, MA 02138 USA		
	- · · · ·		
накисно	X-ray Monitor 1 to 100 keV Soft X-ray Sources 0.1 - 2 keV	79-014A-01 79-014A-02	17
	Prof. M. Matsuoka Inst. for Space and Aeronautical 4-6-1 Komaba Meguro-Ku, Tokyo Japan	Science	
HEAO-1	Large Area Cosmic X-ray Survey (A-1)	77-075A-01	15
	Dr. Kent S. Wood Code 4121 Naval Research Laboratory Washington, DC 20375 USA		
HEAO-1	Scanning Modulation Collimator (A-3)	77-075A-02	15
	Dr. Daniel A. Schwartz Center for Astrophysics 60 Garden Street Cambridge, MA 02138 USA		
HEAO-2 (Einstein)	All Experiments	78-103A	16
	Dr. Harvey D. Tananbaum Center for Astrophysics 60 Garden Street Cambridge, MA 02138 USA		

BPACECRAFT	EXPERIMENT	NSSDC ID	PAGE
SAS-3	All Experiments	75-037A	12
	Dr. Larry D. Petro 37-541 Mass. Inst. of Tech. Cambridge, MA 02139 USA		
UK 5 (Ariel 5)	Sky Survey (SSI) Dr. Ian M. McHardy Dept. of Physics University of Leicester University Road Leicester LE1 7RH England	74-077A-02	11
	Or		
	Dr. John F. Pye Dr. Robert S. Warwick		
UK 5			
(Ariel 5)	All-Sky Monitor	74-077A-06	11
	Dr. Stephen S. Holt Code 661 Goddard Space Flight Center Greenbelt, Maryland 20771 USA		
UK 6 (Ariel 6)	X-ray Proportional Counters Dr. Martin Ricketts	79-047A-02	18
	Dept. of Physics University of Leicester University Road Leicester LE1 7RH		
	England		
	Or		
	Dr. Robert Hall		

APPENDIX A:

;

List of Data Set Form Codes

APPENDIX A - LIST OF DATA SET FORM CODES

Hardcopy

BI 8- x 10-in. books or bound volumes BT various sizes of books or bound volumes HI 8- x 10-in. pages HK 16- x 20-in. pages HL 20- x 24-in. pages HT Various sizes pages

Digital Magnetic Tape (Reels)

- DA analog data tape
- DB reformatted data tape

. . .

DD data tape

Computer Printout

PJ 11- x 15-in. pages

Microfilm (Reels)

MO 35-mm

- 16-mm MP
- MT various sizes

Photographic Film (Frames)

QO	35-mm b/w slides	WI	8- x 10-in. b/w p
RO	35-mm color slides	YG	4- x 5-in. b/w ne
UG	4- x 5-in. b/w positives	УН	5- x 7-in. b/w ne
UI	8- x 10-in. b/w positives	YI	8- x 10-in. b/w r
UM	70-mm b/w positives	YK	16- x 20-in. b/w
ΰO	35-mm b/w positives	ХГ	20- x 24-in. b/w
UP	16-mm b/w positives	YM	70-mm b/w negativ
US	5- x 8-in. b/w positives	YN	9.5-in. b/w negat
UT	various sizes of b/w positives	YO	35-mm b/w negativ
UV	5- x 5-in. b/w positives	YP	16-mm b/w negativ
UW	· · · · · · · · · · · · · · · · · · ·	YT	Various sizes b/v
UΧ	9- x 80-in. b/w positives	YV	5- x 5-in. b/w ne
UY	5- x 12-in. b/w positives	YW	5- x 47.5-in. b/v
VG	4- x 5-in. color positives	YX	9- x 80-in. b/w m
VH	5- x 7-in. color positives	YY	5- x 12-in. b/w :
VI	8- x 10-in. color positives	ZG	4- x 5-in. color
VM	70-mm color positives	ZI	8- x 10-in. color
vo	35-mm color positives	ZM	70-mm color negat
VP	16-mm color positives	ZY	5- x 12-in. color
٨ū.	Various sizes color positives		

prints egatives egatives negatives negatives v negatives ves tives

- ves ves
- w negatives
- egatives w negatives
- negatives
- negatives negatives
- or negatives
- tives

or negatives

CQ 3 1/4- x 7 5/8-in.

Microfiche (Cards)

- FR 4-x 6-in. (b/w)GR 4-x 6-in. (color)

Punched cards

Photographic Film (Feet)

EM 70-mm color negative EP 16-mm color negative IM 70-mm b/w negative IN 9.5-in. b/w negative IO 35-mm b/w negative IP 16-mm b/w negative IV 5- x 5-in. b/w negative IW 5- x 47.5-in b/w negative IX 9- x 80-in. b/w negative IY 5- x 12-in. b/w negative

70-mm color positive LM 35-mm color positive LO LP 16-mm color positive TM 70-mm b/w positive TO 35-mm b/w positive TP 16-mm b/w positive TV 5- x 5-in. b/w positive 5- x 47.5-in. b/w/ positive TW 9- x 80-in. b/w positive TX TY 5- x 12-in. b/w positive

Strip or Brush Charts (Rolls)

SO 35-mm

ST various sizes

Abbreviations and Acronyms

APPENDIX B:

This list of abbreviations and acronyms, which was designed for the use of the National Space Science Data Center, contains many terms which are not included in this publication.

APPENDIX B - ABBREVIATIONS AND ACRONYMS

А.	angstrom
ABMA	Army Ballistic Missile Agency
AC	alternating current
ACAD	academy
ACIC	Aeronautical Chart and Information Center (now Defense
	Mapping Agency Aerospace Center)
ACS	attitude control system
AD	Dual Air Density Explorer (satellite, NASA)
A/D	analog to digital
AE	Atmosphere Explorer (satellite, NASA)
AEC	Atomic Energy Commission
AEM	Atmospheric Explorer Mission
AEROPROPUL	aeropropulsion
AEROSAT	Aeronautical Satellite (NASA-ESA)
AEROSP	aerospace
AFB	Air Force Base
AFCRL	Air Force Cambridge Research Laboratories (now US Air Force
AF CRU	Geophysics Laboratory)
AFGL	Air Force Geophysics Laboratory
AFO	Announcements of Flight Opportunities
AFSC	Air Force Systems Command
AGC AGCY	automatic gain control
AGCI	agency
	amp hours
AIMP	Anchored Interplanetary Monitoring Platform (satellite, NASA) Alaska
AK	Alabama
AL	
ALOSYN	Alouette topside sounder synoptic (data)
ALPO	Apollo Lunar Polar Orbiter (satellite, NASA); Association of Lunar and Planetary Observers
ALS	advanced limb scanner
ALSEP	Apollo Lunar Surface Experiments Package (NASA)
ALT	altitude
АМ	amplitude modulation
A.M.	ante meridien
AMP	ampere
AMPS	Atmosphere, Magnetosphere, and Plasmas in Space (satellite, NASA)
AMS	Army Map Service (now Defense Mapping Agency Topographic Center)
AMSAT	Radio Amateur Satellite Corporation
AMU	atomic mass unit; astronaut maneuvering unit
ANIK	Canadian Telecommunications Satellite; also referred to as TELESAT
ANNA	Army, Navy, NASA, Air Force (geodetic satellite)
ANS	Astronomical Netherlands Satellite (The Netherlands-NASA)
AOSO	Advanced Orbiting Solar Observatory
AP	magnetic activity index Ap
APL	Applied Physics Laboratory of Johns Hopkins University
APPL	application
APT	automatic picture transmission
A/R	acquisition/reference
	••••••••••••••••••••••••••••••••••••••

ĀR	Arkansas
ARC	Ames Research Center (NASA)
ARC MIN	arc minute
ARC S	arc second
ARDC	Air Research and Development Command (now AFSC)
ARPA	Advanced Research Projects Agency
ARSP	Aerospace Research Support Program (USAF)
AS+E	American Science & Engineering, Inc.
ASOS	antimony-sulfide oxy-sulfide
ASTP	Apollo-Soyuz Test Project (USSR-NASA)
ASTROPHYS	astrophysics
АТ	atomic
ATCOS	Atmospheric Composition Satellite (NASA)
ATDA	Alternate Target Docking Adapter
ATFE	advanced thermal control flight experiment
ATM	Apollo Telescope Mount; atmosphere
ATMOS	Atmospheric Trace Molecules Observed by Spectroscopy
ATS	Applications Technology Satellite (NASA)
AT+T	American Telephone & Telegraph Corporation
ATU	Adaptive Tracker Unit
AU	astronomical unit
AUST	Australia
AVCS	advanced vidicon camera system
AVG	average
AVHRR	advanced very high resolution radiometer
AWRE	Atomic Weapons Research Establishment (Australia)
AXIS	atmospheric X-ray imaging spectrometer
AZ	Arizona

	barium fluoride
BAF	
BCD	binary coded decimal
BCG	ballistocardiogram Beacon Explorer (satellite, NASA); beryllium
BE	billion electron volts
BEV	brillon electron volts barium iodide cloud
BIC	Bennett ion mass spectrometer
BIMS	
BIOS	Biological Satellite (NASA)
BPI	bits per inch
BPS	bits per second
BSU	basic sounding unit
BTL	Bell Telephone Laboratories
BUV	backscatter ultraviolet
B/W	black and white
BWF	Bundesminister fur Wissenschaftliche Forschung
	(Fed Rep of Germany)

CA	Califor	nia
CAF	calcium	fluoride
CAL	calorie	

CAL TECH California Institute of Technology CALSPHERE calibration sphere CAMEO Chemically Active Materials Ejected In Orbit (satellite, NASA) CAN Canada CAS Cooperative Applications Satellite (France-NASA) CAV composite analog video CBE controlled beam emissions CCD charged-coupled device CCE Charge Composition Explorer (satellite, NASA) CCP charged and current probes CD cadmium; crystal detector CDA command and data acquisition (station) CDC Control Data Corporation C+DH control and data handling CDHP Command and Data Handling Package CDS cadmium sulfide CEM channel electron multipliers Centre d'Etudes Nucleaires de Saclay (France) CENS CEP Cylindrical Electrostatic Probe crossed electric and magnetic field analyzer CFA CHASE coronal helium abundance Spacelab experiment CHEM charge and energy mass spectrometer; chemical CT co-investigator ĈĪD cathode imaging detector CM command module; centimeter CMD command composition measurement system CMS CN cellulose nitrate CNES Centre National d'Etudes Spatiales (France) CNET Centre National d'Etudes des Telecommunications (France) CNRS Centre National de la Recherche Scientifique (France) CO Colorado; general contact COBE Cosmic Background Explorer (satellite, NASA) COMM commission COMSAT Communications Satellite Corporation CONIE Comision Nacional de Investigacion del Espacio (Spain) CORSA Cosmic-Ray Satellite (Japan) COS Cosmic-Ray Satellite (ESA); cosmic COSPAR Committee on Space Research COUNC council CO2 carbon dioxide CPA comprehensive particle analysis CPS cycles per second CPT charged-particle telescope CPU central processing unit Communications Research Centre (Canada) CRC Centre de Rectification des Images Spatiales CRIS CRIE cosmic-ray isotope experiment Central Radio Propagation Laboratories (later ITSA; formerly CRPL part of ESSA; now NOAA/ERL) Cold Region Research & Engineering Laboratories CRREL Commission for Space Research (Italy) CRS CRT cathode ray tube

1

ß

ì

1

CSI	cesium iodide
CSM	command service module
CSTE	cesium telluride
CT	Connecticut
CTR	center
CTS	Canadian Telecommunications Satellite
CULER	cryogenic upper-atmosphere limb emission radiometer
CVF	circular variable filter
CXX	white light coronograph/X-ray XUV telescope
CZCS	coastal zone ocean color scanner
D	day
DAC	data acquisition camera
DADE	Dual Air Density Explorer (satellite, NASA)
DAN	Danish
DAPP	Defense Acquisition and Processing Program (DOD)
DASA	Defense Atomic Support Agency
DATS	Despun Antenna Test Satellite (DOD)
DB	decibel
DC	direct current; District of Columbia
DCLS	data collection and location system
DCP	data collection platform
DCS	direct couple system; data collection system
DDM	drop dynamics module
DE	Dynamics Explorer (satellite, NASA); Delaware
DEF	defense
DEG	degree
DENPA	Density Phenomena (satellite, Japan)
DEV	development
DFI	development flight instrumentation
DFVLR	Deutsche Forschungs-und Versuchanstalt fur Luft-und
	Raumfahrt; (Research Laboratory for Aeronautics and
	Astronautics, Fed Rep of Germany)
DIAL/MIKA	Diament Allemande/Mini Kapsel (satellite, Fed Rep of Germany-France)
DIAL/WIKA	Diament Allemande/Wissenschaftliche Kapsel (satellite, Fed Rep of Germany)
DIAM	diameter
DIAPO	Diapason (satellite, France)
DIRBE	diffuse infrared background experiment
DIT	Drexel Institute of Technology (now Drexel University)
DMA	Defense Mapping Agency
DMAAC	Defense Mapping Agency Aerospace Center
DMATC	Defense Mapping Agency Topographic Center
DME	Direct Measurements Explorer (satellite, NASA)
DMR	differential microwave radiometer
DMSP	Defense Military Satellite Program (DOD)
DMU	IUE data multiplex unit
DOD	Department of Defense
DODGE	Department of Defense Gravity Experiment (satellite, DOD)
DPL	VLF Doppler Propagation

DPU	data processing unit
DRID	direct readout image dissector (camera system)
DRIR	direct readout infrared radiometer
DRTE	Defense Research Telecommunications Establishment (now CRC)
DSAP	Defense System Applications Program (DOD)
DSCS	Defense Satellite Communications System (DOD)
DSIR	Department of Science and Industrial Research (England)
DSN	Deep Space Network
DTM	digital terrain model
DT	deputy team leader
DUS	data utilization stations
DV	digital video
DYN	dynamic
Е	energy; east
EASEP	Early Apollo Scientific Experiment Package
EBS	electron beam system
ECG	electrocardiograph
ECS	Experimental Communications Satellite (NASA)
EDS	Environmental Data Service (NOAA)
EEG	electroencephalogram
EFI	electric field instrument
EGO	Eccentric (Orbiting) Geophysical Observatory (satellite, NASA)
EGRS	Engineers Satellite (DOD)
EICS	energetic ion composition spectrometer
EIRP	effective isotropic radiative power
EL	electric (data camera carried on Apollo)
ELDO	European Launch Development Organization (ESA)
ELEC	electric
ELECTR	electronics
ELF	extremely low frequency
ELMS	Earth Limb Measurement Satellite (NASA-USAF)
EM	experiment manager
EME	environmental measurement experiment
EMG	electromyogram
EMR	Electromechanical Research (Company, England)
ENVIRON	environment; environmental
EOF	end of file
EOG	electro-oculogram
EOGO	Eccentric Orbiting Geophysical Observatory (satellite, NASA)
EOS	Earth Observation Satellite (NASA)
EPE	Energetic Particle Explorer (satellite, NASA)
E/Q	energy per unit charge
ERB	Earth radiation budget (experiment)
ERBI	Earth radiation budget instrument
ERBS	Earth Radiation Budget Satellite (NASA)
ERBSS	Earth Radiation Budget Satellite system
ERDC	Earth Resources Data Center
ERGS	Earth Geodetic Satellite (USAF)
ERL	Environmental Research Laboratory (NOAA)
EROS	Earth Resources Observation Service
ERS	Environmental Research Satellite (USAF)

ERT	extended range telescope
ERTS	Earth Resources Technology Satellite (NASA)
ES	experiment scientist
ESA	European Space Agency; diectrostatic analyzer
ESA-GEOS	Geostationary Earth-Orbiting Satellite (ESA)
ESM-GEOS	equipment support module
ESMR	electrically scanning microwave radiometer
	European Space Operations Centre (ESA)
ESOC ESP	energy spectrum of particles
	European Space Research Organization (now ESA)
ESRO	Environmental Science Services Administration (now NOAA)
ESSA	establishment
ESTABL	
ESTEC	European Space Technology Center (ESA)
ETR	Eastern Test Range (also referred to as Cape Canaveral)
ETS	Engineering Test Satellite
EU	europium
EUV	extreme ultraviolet
EUVE	Extreme Ultraviolet Explorer (satellite, NASA)
EUVS	extreme ultraviolet spectrophotometer
EV	electron volt
EVA	extravehicular activity
EVM	Earth-viewing (equipment) module
EXOS	Exospheric Satellite (Japan)
EXOSAT	European X-ray Observation Satellite (ESA)
EXTRATERR	extraterrestrial
FARO	Flare-Activated Radiobiological Observatory (satellite, DOD)
FAUST	far ultraviolet space telescope
FAUST FE	far ultraviolet space telescope iron
FAUST FE FES	far ultraviolet space telescope iron fluid experiment systems
FAUST FE FES FGS	far ultraviolet space telescope iron fluid experiment systems fine guide system
FAUST FE FES FGS FIRAS	far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer
FAUST FE FES FGS FIRAS FL	far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida
FAUST FE FES FGS FIRAS	far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN)
FAUST FE FES FGS FIRAS FL	far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation
FAUST FE FES FGS FIRAS FL FLT-SAT	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOS FOUND	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS FPEG	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer fast pulse electron gun Fabry-Perot interferometer</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS FPEG FPI FPR	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer fast pulse electron gun Fabry-Perot interferometer flat plate radiometer</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS FPEG FPI	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer fast pulse electron gun Fabry-Perot interferometer flat plate radiometer French Research (satellite, France)</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS FPEG FPI FPR FR FR FR FRC	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer fast pulse electron gun Fabry-Perot interferometer flat plate radiometer French Research (satellite, France) Flight Research Center (NASA)</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS FPEG FPEG FPEG FPE FPR FR FR FRC FRG	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer fast pulse electron gun Fabry-Perot interferometer flat plate radiometer French Research (satellite, France) Flight Research Center (NASA) Federal Republic of Germany</pre>
FAUST FE FES FGS FIRAS FL FLT-SAT FM FMDM FMRT FOC FOF2 FOS FOUND FOV FPCS FPEG FPI FPR FR FR FR FRC	<pre>far ultraviolet space telescope iron fluid experiment systems fine guide system far infrared absolute spectrophotometer Florida Fleet Satellite (USN) frequency modulation flex multiplexer/demultiplexer final meteorological radiation tape faint object camera frequency of F2 faint object spectrograph foundation field of view focal plane crystal spectrometer fast pulse electron gun Fabry-Perot interferometer flat plate radiometer French Research (satellite, France) Flight Research Center (NASA)</pre>

FSK	frequency shift key
FWHM	full width at half maximum
FWS	filtær wedge spectrometer
G	Earth gravity; geometry factor; gram
GA	Georgia
GAC	global area coverage
GARP	Global Atmospheric Research Program
GASTE	Gravity and Atmospheric and Solid Tides Experiment
GCA	Geophysics Corportizion of America
GE	General Electric (Company)
.GR.	greater than or equal to
GEMS	Geostationary European Meteorological Satellite (ESA)
GEOPHYS	geophysical
GEOS	Geodetic Earth-Orbiting Satellite (NASA); Geostationary Earth-Orbiting Satellite (ESA)
GES FUR	Gesellschaft für Weltraumforschung (Center för Space Research,
WELTRAUM-	Fed Rep of Germany)
FORSCH	
G.E.T.	ground elapsed time
GEV	giga electron volts (10 ⁹ ev)
GEX	gas exchange
GFFC	geophysical fluid flow cell
GGSE	gravity gradient stabilization experiment
GHZ	gigahertz
GI	guest investigator
GISS	Goddard Institute for Space Studies (NASA)
GLIMPSE	global limb photometric scanning experiment
GM	Geiger-Mueller
GMS	Geostationary Meterological Satellite (Japan)
GMT	Greenwich mean time
GOES	Geosynchronous Operational Environmental Satellite (NASA-NOAA; also called SMS)
GP	Gravitational Redshift Space Probe (NASA)
GPS	global positioning system
GRARR	Goddard Range and Range Rate
GRAVR	Gravitational Redshift Space Probe (NASA)
GRE	ground reconstruction equipment; ground reconstruction electronics
GREB	Galactic Radiation Experiment Background (satellite, USN)
GRI	Groupe de Recherche Ionospherique (France)
GRO	Gamma-Ray Observatory
GROC	Netherlands Committee for Geophysics and Space Research
GRS	German Research Satellite (NASA-Fed Rep of Germany)
GSD	Grid Sphere Drag (satellite, DOD)
GSE	geocentric solar ecliptic (coordinate system); ground
÷	support equipment
GSFC	Goddard Space Flight Center (NASA)
GSM	geocentric solar magnetospheric (coordinate system)
GSPC	gas scintillation proportional counter
•GT.	greater than

GUGMS	Glavnoye Upravleniye Gidrometeorologicheskoi Sluzhby
	(Main Administration of the Hydrometeorological Service, USSR)
GV	gigavolt
GVHRR	geogynchronous very high resolution radiometer
Н	hour; hydrogen
HAC	half-angle collimator
HALOE	halogen occultation experiment
HAO	High Altitude Observatory
HAPI	high-altitude plasma instrument
HCMM	Heat Capacity Mapping Mission (satellite, NASA)
HCMR	heat capacity mapping radiometer
НСО	Harvard College Observatory
HDRSS	high data rate storage system
HE	helium
HEAO	High-Energy Astrophysical Observatory (satellite, NASA)
HEOS	High-Eccentricity Earth-Orbiting Satellite (ESA)
HEP	high-energy protons
HEPS	high-energy particle spectrometer
HEPAT	high-energy proton alpha telescope
HET	health, education, telecommunications; high-energy telescope
HETS	high-energy telescope system
HEW	US Dept. of Health, Education and Welfare (now US Dept.
	of Education)
HF	high frequency
HFE	heat-flow experiment; heat-flow electronics
HG	mercury
HGI2	mercuric iodide
HI	Hawaii
HRDI	high-resolution Doppler imager
H2O	water
HOLE	high ionospheric depletion region
HR	high resolution
HRDI	high-resolution Doppler image
HRI	high-resolution imager
HRIR	high-resolution infrared radiometer
HRIRS	high-resolution infrared radiometer sounder
HRPT	high-resolution picture transmission
HRS	high-resolution spectrograph
HRTS	high-resolution telescope and spectrograph
H.S.	high school
HSP	high-speed photometer
HXIS	hard X-ray imaging spectrometer
HXRBS	hard X-ray burst spectrometer
HYDROMET	hydrometeorological
HZ	hertz (cycles per second)
IA	instrument assembly; Iowa
IAP	Institute of Atmospheric Physics (USSR)
IBM	
	International Business Machines (Corporation)

ICBM intercontinental ballistic missile

W

TOP	the animation of actuality and a
ICE	ion convection electrodynamics
ICEX	ice and climate experiment International Council of Scientific Unions
ICSU	
ID IDC	identification; Idaho
IDCS	image dissector camera image dissector camera system
IDCSP	
	Initial (or Interim) Defense Communication Satellite Program (or Project) (DOD)
IDM	ion drift meter
IDSCS	Initial Defense Satellite Communication system (DOD)
IDT	instrument definition team
IE	Ionospheric Explorer (satellite, NASA-NBS)
IEAS	ice evaluation altimeter system
IECM	induced environment contamination monitor
IEF	impedance & electric field
IFOV	instrument field of view
IGN	Institut Geographique National
IGRF	International Geomagnetic Reference Field
IGY	International Geophysical Year
IKI IL	Institute for Space Research (USSR) Illinois
IME	International Magnetospheric Explorer (satellite, NASA-ESA)
IMP	Interplanetary Monitoring Platform (satellite, NASA)
ims In	International Magnetospheric Study Indiana
IN IN.	inch
INDASAT	Inch Indian Scientific Satellite (ISRO-USSR)
	inoperable
INOP INSAT	Indian National Satellite (ISRO-USSR)
INSB	indian National Satellite (ISR)-USSR)
INST	institute
INTA	Instituto Nacional de Tecnica Aerospacial (Spain); the
	National Institute of Aerospace Science
INTASAT	satellite (INTA, Spain)
INTELSAT	International Telecommunications Satellite (NASA-COMSAT)
ION COMP IPA	ionospheric composition Institute for Physics of the Atmosphere (SAS)
IPC	imaging proportional counter
IPP	imaging photopolarimeter
IPS	instrument pointing system
IQSY	International Quiet Sun Year
IR	infrared
IRAS	Infrared Astronomy Satellite (The Netherlands-NASA-UK)
IRBM	intermediate range ballistic missile
IRIG	Inter-Range Instrumentation Group
IRIS	infrared-interferometer spectrometer; International Investigation
	Radiation Satellite (NASA-ESA)
IRLS	interrogation, recording, and location system
IRM	Ion Release Module (satellite, NASA)
IRR	infrared radiometry
IRTM	infrared thermal mapping
IRTRN	infrared transmission
ISAMS	improved stratospheric & mesospheric sounder

ISAS	Institute of Space & Aeronautical Science (Japan)
ISEE	International Sun-Earth Explorer (satellite, NASA-ESA)
ISIS	International Satellite for Ionospheric Studies (NASA-Canada)
ISPM	Internationa' Solar Polar Mission (ESA)
ISRO	Indian Space Research Organization
ISS	Ionospheric Sounding Satellite (Japan)
ITCZ	intertropical convergence zone
ITE	intersite transportation equipment
ITOS	Improved TIROS Operational Satellite (NOAA)
ITPR	infrared temperature profile radiometer
ITR	incremental tape recorder
ITSA	Institute for Telecommunication of Sciences and Aeronomy
	(formerly a subdivision of ESSA; now NOAA-ERL)
IU	instrument unit
IUE	International Ultraviolet Explorer (satellite, NASA-UK-ESA)
IUS	intermediate upper stage
IUWDS	International URSIGRAM and World Days Service
IVI	ion velocity instrument
IZMIRAN	Institute of Terrestrial Magnetism and Aeronomy of the
	Academy of Sciences (USSR)
~	Tabua Hauldan Hairmanika
JHU	Johns Hopkins University
JOP	Jupiter Orbiter Probe (Galileo Probe)
JPL	Jet Propulsion Laboratory (NASA)
JSC	Johnson Space Center (NASA)
ĸ	Kelvin
KBS	kilobits per second
KEV	kiloelectron volt
KG	kilogram
KHZ	kilohertz
KM	kilometer
KP	magnetic activity index Kp
KPNO	Kitt Peak National Observatory
KS	Kansas
KSC	Kennedy Space Center (NASA)
КY	Kentucky
LA	Los Angeles; Louisiana
LAB	laboratory
LAC	local area coverage
LACATE	lower atmosphere composition and temperature
LAGEOS	Laser Geodetic Earth-Orbiting Satellite (NASA)
LAMMR	e e se a company and an en
	large antenna multifrequency microwave radiometer
LANG	large antenna multifrequency microwave radiometer Langmuir probe instrument
LANG LAPI	Langmuir probe instrument
LAPI	Langmuir probe instrument low-altitude plasma instrument
	Langmuir probe instrument low-altitude plasma instrument Langley Research Center (NASA)
LAPI Larc	Langmuir probe instrument low-altitude plasma instrument

LCS	Lincoln Calibration Sphere
LDEF	long-duration exposure facility
.LE.	less than or equal to
LED	light-emitting diode
lee	low-energy electron
LEM	lunar excursion module
LEMMS	low-energy magnetospheric measurement system
LEPAT	low-energy proton alpha telescope
LEPEDEA	low-energy proton and electron differential energy analyzer
LERC	Lewis Research Center (NASA)
LES	Lincoln Experimental Satellite (DOD)
LET	low-energy telescope
LETS	low-energy telescope system
LF	light fine; low frequency
LI	lithium
LIF	lithium fluoride
LL	Lincoln Laboratory (MIT)
LM	lunar module
LMD	Laboratory of Meteorological Dynamics
LOFTI	Low-Frequency Trans-Ionospheric (satellite, USN-SRL)
LOGACS	Low-G Accelerometer Calibration System (USAF)
LP	Langmuir probe
LPSP	Laboratoire de Physique Stellaire et Planetaire (CNRS)
LR	labeled release; low resolution
LRIR	limb radiance inversion radiometer; low-resolution infrared radiometer
LRL	Lunar Receiving Laboratory (JSC)
LRV	lunar roving vehicle
LS	light smoothed
LST	Large Space Telescope (satellite, NASA; now called Space Telescope)
•LT•	less than
LTV	Ling-Temco-Vought (Company)
М	meter; milli- (prefix)
MA	Mercury Atlas; Massachusetts
MAG	magnetic field
MAG-A	magnetometer A
MAG-B	magnetometer B
MAPS	measurement of air pollution from satellite
MARENTS	Modified Advanced Research Environmental Test Satellite (USAF)
MAS	Ministry of Aviation Supply (UK)
MASC	magnetic attitude spin coil
MATER	material
MAWD	Mars atmosphere water detection
MB	millibar
MC	megacycle
MCC	Mission Control Center
MD	Mission Control Center Maryland
	Maryland Maine
ME	
M/E	mass to charge ratio

MED	medicine; medical
MEPA	medium-energy particle analyzer
MEPS	medium-energy particle spectrometer
MESA	miniature electrostatic accelerometer
METEC	Meteoroid Technology (satellite, NASA)
METEOSAT	Meteorological Satellite (ESA)
MEV	million electron volts
MG	magnesium; milligram
MGF	fluxgate magnetometer
MHZ	megahertz
MI	Michigan
MIDAS	Missile Defense Alarm System (USAF)
MIN	minute
MIT	Massachusetts Institute of Technology
MJS	Mariner Jupiter/Saturn (spacecraft, NASA)
MLS	microwave limb sounder
MM	millimeter
MMS	multimission modular spacecraft
MMW	millimeter wave
MN	Minnesota
MO	month; Missouri
MOL	Manned Orbiting Laboratory (satellite, DOD)
M-P	minus-plus
MPC	monitor proportional counter
MPD	magneto-plasma dynamic
MPI	Max-Planck-Institute (Fed Rep of Germany)
MR	medium resolvation
MRIR	medium-resolution infrared radiometer
MRSE	microwave remote sensing experiment
MS	microsecond; millisecond; Mississippi
MSC	Manned Spacecraft Center (now Johnson Space Center)
MSFC	Marshall Space Flight Center (NASA)
MSIS	mass spectrometer - incoherent scatter (model)
MSN	mission
MSS	Magnetic Storm Satellite (NASA-AFCRL); multispectral scanner
MSSCC	multicolor spin-scan cloudcover came/a
MT	Montana Motosudd Moshrolow, Scholldto (NRGR)
MTS	Meteoroid Technology Satellite (NASA)
MUSE	monitor of ultraviolet solar energy millivolts (10 ⁻³ volts)
MV	millivatt
MW	WITTIMACC
N	nucleon; north
NA	not applicable; Nora Alice (satellite, DOD)
NACE	neutral atmosphere composition experiment
NACS	neutral atmosphere composition spectrometer
NADUC	Nimbus/ATS Data Utilization Center
NASA	National Aeronautics and Space Administration (Washington, DC, Headquarters)
NASC	National Aeronautics and Space Council
NASDA	National Space Development Agency (Japan)

- 244

NATE	neutral atmosphere temperature experiment
NATL	national
NATO	North Atlantic Treaty Organization
NBS	National Bureau of Standards
NC	North Carolina
NCAR	National Center for Atmospheric Research
NCC	National Climatic Center (NOAA)
ND	North Dakota
NDRE	Norwegian Defense Research Establishment
NE	electron density (concentration); Nebraska
NEMS	Nimbus-E microwave spectrometer; Near-Earth Magnetospheric Satellite (ESA)
NESC	National Environmental Satellite Center (now NESS)
NESS	National Environmental Satellite Service (NOAA)
NGM	direct measurement of interstellar gas using HE as tracer
NGSP	National Geodetic Satellite Program
NGSE	New Hampshire
NHC	National Hurricane Center
NI	ion density (concentration)
NIH	National Institutes of Health
NIMS	near infrared mapping spectrometer
NJ	New Jersey
MM	nanometer; New Mexico
NMC	National Meteorological Center
NMRT	Nimbus meteorological radiation tape
NNN	no national name
NNSS	Navy Navigational Satellite System
NO.	number
NOAA	National Oceanic and Atmospheric Administration (formerly ESSA)
NOESS	National Operational Environmental Satellite Subsystem
NOMSS	National Operational Meteorological Satellite System
NORAD	North American Air Defense Command
NORW	Norwegian
NOS	National Ocean Survey (NOAA)
NOSS	National Oceanic Satellite System
NOTS	Naval Ordnance Test Station
NPW	natural plasma wave
NRC	National Research Council
NRL	Naval Research Laboratory
NSA	National Security Agency
NSF	National Science Foundation
NSSDC	National Space Science Data Center
NT	nanotesla
NUCL	nuclear
NWL	Naval Weapons Laboratory
NWRC	National Weather Records Center (presently NCC)
NV	Nevada
NY	New York

5

×

OAOffice of Applications (NASA)OAOOrbiting Astronomical Observatory (satellite, NASA)

01.D.D.	مريد المراجع ال
OAPS	orbit adjust propulsion system Office of Aerospace Research (USAF-AFSC)
OAR	
OART	Office of Advanced Research and Technology (NASA)
OAST	Office of Aeronautics and Space Technology (NASA)
OBS	observatory
0+0	operations and checkout
000	OPLE Command Center
OFO	Orbiting Frog Otolith (NASA experimental spacecraft)
OFT	orbital flight test
OGO	Orbiting Geophysical Observatory (satellite, NASA)
OGPC	orbiter general purpose computer
ОН	Ohio
or	other investigator
OIB	orbiter interface box
οκ	Oklahoma
OLS	operational linescan system
OMNI	low-resolution omnidirectional radiometer (on Explorer 7)
OMSF	Office of Manned Space Flight (NASA)
ONERA	Office National d'Etudes et de Recherches Aerospobiales
ONR	Office of Naval Research
OOI	orbiter operational instrumentation
OPEP	orbital-plane experiment package
OPF	Orbiter Processing Facility
OPLE	Omega position and location experiment
OP OFF	operational off
OR	Oregon Orbiting Padia Patron Tanggubaria Catallita (NDCD)
ORBIS	Orbiting Radio Beacon Ionospheric Satellite (NASA)
ORS	Octahedral Research Satellite (NASA); Orbiting Research Satellite (DOD)
OSCAR	Orbiting Satellite Carrying Amateur Radio
OSO	Orbiting Solar Observatory (satellite, NASA)
OSS	Office of Space Science (NASA); open source spectrometer
OSSA	Office of Space Science and Applications (NASA; now two separate offices)
OSTA	Office of Space and Terrestrial Applications
OT	Operational TIROS (satellite, NASA)
OTDA	Office of Tracking and Data Acquisition (NASA)
OV	Orbiting Vehicle (satellite, USAF)
OVT	organic vapor trap
PA	Pennsylvania
PAC	Packaged Attitude Control (satellite, NASA)
PAET	Planetary Atmosphere Experiment Test
PAGEOS	Passive Geodetic Earth-Orbiting Satellite (NASA)
PAM	pulse amplitude modulation
PC	proportional counter
PCB	power control box
PCM	pulse coded modulation
PD	project director
	plasma diagnostic package; passive dosimeter packet
PDP	Planetary Explorer
PE	LIGUELATA DYDIOLEL

internation	
PEA	planar electrostatic analyzer
PEM	particle environment monitor
PEP	platform electronic package
PES	photoelectron spectrometer
PFM	pulse frequency modulation
PHA	pulse height analyzer
PHASR	Personnel Hazards Associated with Space Radiation (satellite, USAF)
PHYS	physics
PI	principal investigator
PIPS	positive ion beam system
PICNO	picture number
PIMR	polar ice mapping radiometer
PIP	Payload Integration Plan
PIXEL	picture element
PL	prelaunch
PLACE	position location and aircraft communication experiment
PM	pulse modulation; photomultiplier
P.M.	post meridien
PMEL	Pacific Marine Environmental Laboratory (NOAA)
PMP	precision mounting platform
PMR	pressure modulation radiometer; Pacific Missile Range
	photomultiplier tube
PMT	
P-N	positive-negative (junction)
POCC	OFT Payloads Operations Control Center
POD	proton omnidirectional detector
POGO	Polar Orbiting Geophysical Observatory (satellite, NASA)
PPR	photopolarimeter radiometer
PPS	pulses per second
PR	pyrolytic release
PROT	protection
PS	picoseconds; pressure sensor
PSA	pressure sensor A
PSB	pressure sensor B
PSE	passive seismic experiment
PTL	Photographic Technology Laboratory (JSC)
PWI	plasma wave instrument
	0
Q	charge
QOMAC	quarter-orbit magnetic attitude control (system)
д	
	14 HA
RA	Ranger (spacecraft, NASA)
RAD	radium; radiation
RADCAT	Radar Calibration Target (satellite, ARPA)
RADCAT	Radiation Dosimeter (satellite, DOD)
RAE	Radio Astronomy Explorer (satellite, NASA); electromagnetic survey & unified radio and plasma wave
RAGE	Radiometry Altimetry Gravity Experiment
RAHF	Research Animal Holding Facility
RAM	random access memory (system)
RANICON	resistor anode image converter

~~1	we have been and the own (company)
RBV	return beam vidicon (camera)
RC	resistance capacitor
RCA	Radio Corporation of America
RCE	reaction control equipment
R+D	research and development
REP	republic
RES	research
REXS	Radio Exploration Satellite (Japan)
RF	radio frequency
RFI	radio frequency interference radioscope heater units
RHU RI	Rhode Island
RIMS	retarding ion mass spectrometer
RM	Radiation Meteoroid (satellite, NASA); Radiometric Measurement
N N	(satellite, DOD)
RMS	root mean square; Radiation Meteoroid Satellite (NASA); Radio-
	metric Measurement Satellite (DOD); remote manipulator system
RPA	retarding potential analyzer
RPM	revolutions per minute
RPQ	retarding potential quadrupole
RPS	revolutions per second
RRL	Radio Research Laboratories (Japan)
RSRS	Radio and Space Research Station (England)
RTD	Research Technology Division (USAF)
RTG	radioisotope thermoelectric generator
RTTS	real-time transmission system
Ċ	second: south
S	second; south
SAA	South Atlantic Anomaly
saa Sacu	South Atlantic Anomaly synchronization and control unit
SAA SACU SAGE	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment
SAA SACU SAGE SAI	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager
SAA SACU SAGE SAI SAM	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement
SAA SACU SAGE SAI SAM SAMIR	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aeroxol measurement satellite microwave radiometer
SAA SACU SAGE SAI SAM SAMIR SAMOS	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF)
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMS	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMS SAMSO	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF)
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMSO SAMSO SAO	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMS SAMSO	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aeroxol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMSO SAMSO SAO	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMS SAMSO SAO SAO SAPPSAC	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMS SAMSO SAAS SAPPSAC	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA)
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMOS SAMSO SAMSO SAA SAAPPSAC SAR SAR SAS	South Atlantic Anomaly synchronization and control unit stratospheric & erosol and gas experiment spin-scan auroral imager stratospheric aeroxol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA) satellite
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMOS SAMSO SAMSO SAMSO SAA SAMSO SAA SAAS SAR SAS SATAR	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA) satellite Satellite Antenna Test System (NASA)
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMOS SAMSO SAMSO SAO SAPPSAC SAR SAS SATAR SATELL SATS SBRC	South Atlantic Anomaly synchronization and control unit stratospheric & erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite Satellite Satellite Satellite Satellite Antenna Test System (NASA) Santa Barbara Research Center
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMOS SAMSO SAMSO SAMSO SAA SAMSO SAA SAMSO SAA SAMSO SAA SAMSO SAA SAMSO SAA SAMSO SAA SAMSO SAA SAA SAA SAA SAS SATAR SATELL SATS SBRC SBUV/TOMS	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aerowol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA) satellite Satellite Antenna Test System (NASA) Santa Barbara Research Center Solar Backscatter Ultraviolet/Total Ozone Mapping System
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMOS SAMSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SATAR SATAR SATAR SATAR SATS SBRC SBRC SBUV/TOMS SC SBC SBUV/TOMS SC	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aeroxol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA) satellite Satellite Antenna Test System (NASA) Santa Barbara Research Center Solar Backscatter Ultraviolet/Total Ozone Mapping System project scientist; spark chamber; South Carolina
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMSO SAMSO SAMSO SAO SAPPSAC SAR SAS SATAR SATELL SATS SBRC SBUV/TOMS SC S/C	South Atlantic Anomaly synchronization and control unit stratospheric & erosol and gas experiment spin-scan auroral imager stratospheric aerosol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA) satellite Satellite Antenna Test System (NASA) Santa Barbara Research Center Solar Backscatter Ultraviolet/Total Ozone Mapping System project scientist; spark chamber; South Carolina spacecraft
SAA SACU SAGE SAI SAM SAMIR SAMOS SAMOS SAMSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SANSO SATAR SATAR SATAR SATAR SATS SBRC SBRC SBUV/TOMS SC SBC SBUV/TOMS SC	South Atlantic Anomaly synchronization and control unit stratospheric &erosol and gas experiment spin-scan auroral imager stratospheric aeroxol measurement satellite microwave radiometer Satellite Mission Observation (satellite, USAF) stratospheric and mesospheric sounder Space and Missile Systems Organization (USAF) Smithsonian Astrophysical Observatory spacecraft attitude precision pointing and slewing adaptive control synthetic aperture radar Small Astronomy Satellite (NASA); Soviet Academy of Sciences Satellite for Aerospace Research (NASA) satellite Satellite Antenna Test System (NASA) Santa Barbara Research Center Solar Backscatter Ultraviolet/Total Ozone Mapping System project scientist; spark chamber; South Carolina

Scatha	spacecraft charging at high altitudes
SCEL	Signal Corps Engineering Laboratories
SCH	school
SCI	science
SCMR	surface composition mapping radiometer
SCORE	Signal Communication by Orbiting Relay Equipment (satellite, DOD)
SCR	selective chopper radiometer
SCS	selective combined plasma spectrometer
SD	San Diego; South Dakota
SDPF	Sensor Data Processing Facility
SE	Solar Explorer (satellite, NASA)
SEA	spherical electrostatic analyzer
SEASAT	Ocean Dynamic Satellite (NASA)
SEC	secondary electron conduction (vidicon tube)
SECOR	Sequential Collation of Range (satellite, USAF)
SEM	space environment monitor
SEO	Satellite for Earth Observations (Program, India)
SEPAC	space experiments with particle accelerators
SERT	Spinning Satellite for Electric Rocket Test (NASA)
SESP	Space Experiment Support Program
SESPO	Space Environmental Support Project Office
SFA	sweep frequency analyzer
SHS	Soviet Hydrometeorological Service
SIBS	Salk Institute for Biological Studies
SIDS	Space Investigations Documentation System (NASA)
SIG	selenide isotope generator
SIM	scientific instrument module
SIRE	satellite infrared experiment
SIRS	satellite infrared spectrometer; System for Information Retrieval and Storage (NSSDC)
SM	San Marco (satellite, NASA-Italy)
SMC	scanning modulation collimator
SME	Solar Mesosphere Explorer (satellite, NASA)
SMM	Solar Maximum Mission (satellite, NASA)
SMMR	scanning multispectral microwave radiometer
SMS	Synchronous Meteorological Satellite (NASA)
S/N	signal to noise
SNAP	systems for nuclear auxiliary power
SOEP	solar-oriented experiment package
SOLRAD	Solar Radiation (satellite, NASA-DOD)
SPADES	Solar Pertubation and Atmospheric Density Measurement Satellite (DOD)
SPHINX	Space Plasma High Voltage Interactive Experiment (satellite, NASA)
SPIDPO	Shuttle Payload Integration and Development Program Office
SPM	solar proton monitor
SPOT	Système Probatoire d'Observation de la Terre
SPW	stimulated plasma waves
SQ	square
SR	Solar Radiation (satellite, NASA); scanning radiometer; sounding
	rocket; steradian
SRATS	Solar Radiation and Thermospheric Structure (satellite, Japan)
SRC	Space Research Council; Science Research Council
_	A THE THE CONTENT A DECISION NOBORIES CONTENT

SRI	Stanford Research Institute
SRPA	spherical retarding potential analyzer
SRT	supporting research and technology
SS	Space Shuttle
SSC	Satellite Situation Center
SSCC	spin-scan cloudcover camera
SSD	Space Science Division (JPL)
SSH	spherical sensor H
SSLDEF	Space Shuttle Long-Duration Exposure Facility
SSM/T	special sensor microwave/temperature sounder
SSPP	Shuttle Spacelab Payloads Project
SSS	Small Scientific Satellite (NASA)
SST	satellite-to-satellite tracking
SSUS	solid spinning upper stage
ST	Space Telescope (satellite, NASA)
STADAN	Spacecraft Tracking and Data Acquisition Network (now STDN)
STARAD	Starfish Radiation (satellite, NASA)
STD	standard
STDN	Spaceflight Tracking and Data Network (NASA)
STL	Space Technology Laboratories (now TRW Systems Group)
STN	station
STP	Solar Terrestrial Probe (satellite, NASA); Solar Terrestrial
	Physics; Space Test Program
STRATOS	stratosphere
STS	Space Transportation Systems
STUD	studies
SUI	State University of Iowa (now University of Iowa)
SURCAL	Surveillance Calibration (satellite, DOD)
SUSIM	solar ultraviolet spectral irradiance monitor
SVC	service
	southwest
SW	
SWE	mass separating solar wind; solar wind experiment
SWRF	Sine Wave Response Filter (program)
SXR	solar X-ray flare and cosmic-ray burst investigation
SYNCOM	Synchronous Communication (satellite, NASA)
SYST	system
TAC	Technology Application Center
TACOMSAT	Tactical Communications Satellite (DOD)
TACOMSAT	Test and Training Satellite (NASA)
TATSACOM	Tactical Satellite Communications (program, DOD)
TBD	to be determined
TD	technical director; Thor-Delta (satellite, ESA); launch vehicle (NASA-USAF)
TDP	Tracking Data Processor (program)
T+DR	tracking and data relay
TDRSS	tracking and data relay satellite system
TE	electron temperature; tellurium
TEC	telemetry and command; transearth coast
TECH	technical; technology
TED	total energy detector

TEI	transearth injection
TELESAT	Canadian Telecommunications Satellite (also referred to as ANIK)
TEMP	temporal; temperature
TET	telescope and electron telescope
TETR	Test and Training (satellite, NASA)
TEV	tetra electron volts
THIR	temperature/humidity infrared radiometer
THORAD-AGE	Thor Augmented Delta Agena (launch vehicle)
TIMATION	Time Location System (USN)
TIP	Tracking Impact Prediction (satellite, DOD)
TIROS	Television and Infrared Observations Satellite (NASA)
TL.	team leader
TLD	thermoluminescence detector
TLI	translunar injection
TM	team member; thematic mapper
TN	Tennessee
TOMS	total ozone mapping system
TOPO	topographic
TOPS	Thermal Noise Optical Optimization Communication System (NASA)
TOS	TIROS Operational Satellite (or System) (NASA)
TOVS	TIROS operational vertical sounder
TPS	thick plastic stack
TRAAC	Transit Research and Attitude Control (satellite, USN)
TRANET	Doppler Tracking Network (USN)
TRANSP	transportation
TRS	Tetrahedral Research Satellite (USAF)
TRUST	television relay using small terminals
TRW	Thompson, Ramo, Wooldridge (Inc.)
TS	thermal smoothed
TT	triggering telescope
TTS	Test and Training Satellite (NASA) (also called TATS, TETR)
TWERLE	tropical wind energy conversion and reference level experiment
тх	Texas
U	university; atomic mass unit
UA	unified abstract
UARS	Upper Atmosphere Research Satellite(s)
UCLA	University of California at Los Angeles
UHF	ultrahigh frequency
UK	United Kingdom
UKSRC	United Kingdom Space Research Council
ULEWAT	ultralow-energy wide-angle telescope
ULEZEQ	ultralow-energy Z, E, Q
US	United States
USA	United States Army; United States of America
USAF	United States Air Force
USB	unified s-band; upper side band
USGS	United States Geological Survey
USN	United States Navy
TICCD	Union of Soviet Socialist Penublics

3

UT	universal time; Utah
UV	ultraviolet
UVNO	ultraviolet nitric-oxide experiment
UVS	ultraviolet spectrometer
v	volt
VA	Virginia
VAE	visible airglow experiment
VAR	variation
VAS	VISSR atmospheric sounder
VCGS	vapor crystal growth system
VCO	voltage controlled oscillator
VDC	volts DC
VEFI	vector electric field instrument
VHF	very high frequency
VHRR	very high resolution radiometer
VIS	visual imaging spectrometer
VISSR	visible infrared spin-scan radiometer
VLF	very low frequency
VOIR	Venus Orbiting Imaging Radar
VT	Vermont
VTPR	vertical temperature profile radiometer
W	watt; west
WA	Washington
WATS	wind and temperature spectrometer
WBM	wide-band module
WBVTR	wide-band video tape recorder
WDC	World Data Center
WDC-A-R&S	World Data Center A for Rockets and Satellites
WEFAX	weather facsimile
WFC	Wallops Flight Center (NASA); wave form channel
WGSPR	Working Group for Space Physics Research
WI	Wisconsin
WMO	World Meteorological Organization
WPM	words per minute
WRESAT	Weapons Research Establishment Satellitz (Australia)
WS	Wallops Station (NASA; now Wallops Flight Center)
WSIR	wide swath imaging radar
WSMR	White Sands Missile Range
WTR	Western Test Range (also referred to as Vandenberg AFB)
WV	West Virginia
WWW	World Weather Watch
WY	Wyoming
XRFS	X-ray fluorescence spectrometer
XRP	X-ray polychromator
VINI	oversome with the state of the

» 1 1

Ċ,

extreme ultraviolet

XUV

YR year

Ż

Z atomic number ZLE zodiacal light/background starlight investigation

· **