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BURGERS APPROXIMATION FOR TWQ-DIMENSTONAL
FLOW PAST AN ELLIPSE

' By

o

Jo M. Dorrepaal*
SUMMARY

This paper examines a linearization of the Navier-Stokes equation due
to Burgers in which vorticity is transported by the velocity field corre-
sponding to continuous potential flow. The governing equations are solved
exactly for the two dimensional steady flow past an ellipse of arbitrary
aspect, ratio. The requirement of no slip along the surface of the ellipse
results in an infinite algebraic system of linear equations for coefficients
appearing in the sélution. The system is truncated at a point which gives
reliable results for Reynolds numbers! R in the range 0 { R < 5.

Predictions of the Burgers approximation regarding separation, drag and
boundary layer behavior are investigated. In particular, Burgers lineariza-
tion gives drag coefficients which are closer to observed experimental
values than those obtained from Oseen's approximation. In the special case
of flow past a circular cylinder, Burgers approximation predicts a boundary
layer whose thickness 1s roughly proportional to R-1/2, ‘his is in agree=-
ment with the nonlinear theory despite the fact that the Burgers calcula-
tions are carried out using ¢only moderate values of the Reynolds number. In
the matter of separation, it is shown that standing eddies form on the down—
stream side of a circular cylinder at R = 1l.12. Interestingly enough, this
is the same value predicted by Skinner (1975) using singular perturbation
techniques on the full nonlinear problem (see Van Dyke, 1975).

The linearizations due to Oseen and Burgers both give spatially uniform
approximations to the flow past a finite obstacle. The main difference is
that vorticity is transported around the obstacle in Burgers flow rather
than through it. The results of this paper verify the superiority of
Burgers approximation in modelling the f£low near the obstacle at low to

moderate Reynolds numbers.

*Assoclate Professor, Department of Mathematical Sciences, Old Dominion
University, Norfolk, Virginia 23508.
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solution of the modified Mathieu equation
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coefficient in eigenvalue expansion
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An) elliptic coordinates

Ao particular value of A

A@) coefficient in least squares fit
®M,n) modified elliptic coordinates
€n) curvilinear coordinates

Eo particular value of &

pE M) the product a(§,n) * q¢,n)

g0 separation eigenvalue

¢E€ m)(,n) harmonic conjugate of Y,

dn coefficient in asymptotic expansion of stream function
X (x,0) exponentially small part of stream function expansion
Vv (x,¥y) stream function

Vo potential flow stream function

Ww(x,y),w(&,n) magnitude of vorticity vector

Al normal derivative of
an

>

v gradient operator

v2 Laplacian operator

1. INTRODUCTION
Owing to the formidable nature of the Navier-Stokes equation, the
history of fluid mechanics research is filled with simplifying approxima-
tions to this nonlinear problem. Included among these is a class of approx-
imations which replaces the nonlinear inertial term ('\: . v>3 by a linear
one (;o . 6).\5 where ’\*ro is given. Of particular interest are the Stokes

-5
and Oseen approximations where Vo is constant. These have contributed

significantly to the understanding of basic fluid dynamics behavior, espe-
cially in the low Reynolds number regime where they are related asymptot-
ically to the Haviur-Stokes solution.
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A linearization which has received considerably less attention is

Burger's approximation (1928) in which 30 is taken to be the continuous
potential flow around the body. As noted by Dryden et al, (1956), the

vorticity equation in this czse is identical to the temperature equation
used by Boussinesq in his study of the conduction of heat from a hot body

placed in an irrotational fluid. In Burgers approximation the convective

velocity field Vo follows the surface of the body in its immediate
neighborhood and approaches the velocity of a uniform stream at a great
distance from the body. Burgers flow is asymptotically equivalent to Oseen
flow far from the body, but in its immediate neighborhood Burgers flow

models the exact flow more accurately. Of course Burgers approximation

suffers from the defect that the convective velocity vector 36 does nnt
tend to 0 as onme approaches the surface of the obstacle. Furthermore
at moderate values of the Reynolds number R, separation occurs on the down-

stream side of a bluff obstacle and the resultant velocity field v no

longer resembles 30. This limits the suitability of Burgers approximation
to small values of R. Nevertheless Burgers linearization provides a
spatially uniform approximation to the solution of the Navier-Stokes equa-
tion and it is the purpose of this paper to investigate the extent to which
it improves upon the Oseen approximation. Attention is restricted to two

dimensional steady flows past circles, ellipses and flat plates.
2. MATHEMATICAL FORMULATION
The nondimensional Navier-3tokes equatiom has the form
R(Y « T)y = -Tp + V2 ¢ (2.1)

where R, ¥, p are Reynolds number, fluid' velocity and pressure,

respectively. The velocity must also satisfy the continuity equation
Vev=o0 : (2.2)

which is guaranteed by the introduction of a stream function ¥(x,y)
defined by




v = curl {yk} (2.3)
The problem for the stream function corresponding to (2.1) is given by

[v2 + RD(P)]w = O (2.4)

Y2y = -y (2.5)

where w(x,y) is the magnitude of the vorticity vector and

by =242

ox 9y 9dy ¥x

Consider a finite obstacle whose boundary is denoted by B, Let ¥,
be the stream function for the continuous potential flow around B which
approaches a uniform stream at infinity. The boundary value problem for

Yo(x,y) 1is given by

V2 $y = 0 (2.6)

Yo| =0, WYo~yasx?+ y?+o (2.7)
B

Burgers linearization is defined in the following way:

[v2 + RD(Yg)lw = 0 (2.8)

V2 = i (2.9)

‘P' =%|'0» bryasx2tyiae (2.10)
B B

Equation (2.8) is called the vorticity equation and (2.9) is Poisson's equa-
tion. The Oseen linearization is obtained by substituting y,(x,y) = y in
(2.8),

i d
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3, SOLUTION OF THE VORTICITY EQUATION

The exponential decay of the vorticity in Oseen flow suggests that we
attempt a solution of (2.8) of %he form

wix,y) = F(x,y) exp [£ (x,y)] (3.1)
The substitution of (3.1) into (2.8) gilves a second order partial differen-

tial equation for F(x,y) with non-constant coefficients involving deriva-

oF oF
tives of wo and foo If we set the coefficlients of ~— and ~— to zero, we

obtain the following: Ix 3y
9 f 3 3f W .
2alp_ . _2a.-ljz_»o (3.2)
9x 2 9y 3y 2 9x

These are the Cauchy-Riemann equations. They suggest that we chocse

fo(x,y) to be E.R times the velocity potential of the irrotational flow
2
past B. The resulting equation for F(x,y) 1s given by

vep -1 q(x,y)%> F =0 (3. 3)
4 «
3y 2 W 211/2
where q(x,y) = (._$> +-<-%> is the magnitude of the potential flow
J X dy

velocity. In Oseen flow we have q(x,y) = 1.

Consider a curvilinear coordinate system (§,n) defined by

x +1y = £(€ + in) (3.4)

where f 1is an entire function. The metric coefficient a(f&,n) for ‘this

2
+<?l> (3. 5)
an

transformation is defined by

a? (".i)z +<3_!_>2 (".’.‘.)2
3k 9/ \on
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The vorticity 4n (E,n) coordinates is expressible in the form

w(E,m) = F(E,n) exp [}1- R E )] (3.6)

where ¢ 1s the harmonic conjugate of Y,. From (3.3) the equation forv
F(E,n) 1is given by

2 2
¥E L ¥F 1l a2 r=o (3.7)
€2 2 4
3 2 L 21172
where p(E,n) = (5;;_‘1) +(5_.9.> =aE,n) q€E,n)s Equation (3.7) is
n

separable provided p2 is exnressible in the form

where g and h are arbitrary functions. Under this assumption we have

F(E,n) = E() H() (3.9)
where

E* - [o +%‘R2 g(€) E=0 (3.10)

H" + [0 -_‘l;.nz h(n)] H=0 (3.11)

and o 1s the separation eigenvalue.

There are three geometries in which the vorticity equation can be
solved exactly. Consider first the case of a circular cylinder of unit
radius. The appropriate function in (3. 4) is

£(z) = ez (3.12)

S
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which implies that x = e% cos n, ym= ef sin n. The connection with
polar coordinates i, r = ee, 0 = n and the unit circle is given by £ = 0,
The potential flow boundary value problem is given by:

o (3% 3%y
V2 \Po - a 25 ..-.-—.o + n---—--ao = () (3913)
9g2  oan?

Yol0,m) = 0, Yo(E,n) ~ ef sin nas £ + o,

The solution is

¢°(E,n) = 2 sinh E sin n

¢(E,n) = 2 cosh £ cos n (3.14)
from which we obtain
p(E,n)% = 2 cosh 2E - 2 cos 2n (3.15)

Thus the separability condition (3.8) is satisfied and the corresponding

separated equations are, from (3.10) and (3.11),

E" - [0 + L R2 cosh 2] E= 0 (3.16)
2

B' + [0 + L B2 cos 2n] H = 0 (3.17)
2

These are respectively the modified and the conventional Mathieu equatioms.

A brief discussies of their solutions is included in Appendix I.

In a streaming two dimensional flow past a symmetric body, the vortici-
ty must be odd in n and periodic with period 27. It must decay exponen-
tially as £ + », except possibly in the wake n = 0., The periodicity condi-
tion determines the eigenvalues o, in (3.17). The corresponding odd

eigenfunctions are denoted by aen(n, - l-RzJ. In (3.16) the eigenfunctions




which decay exponentially are denoted by Gekn(E; -1 R%). Thus from (3.6),
' 4

(3.9) and (3.14) the vorticity function has the form

w@E,n) = - exp [R cosh& cosn] } W, Gek (&, -~J‘-R2)
n=l 4
1
. sen(n , = -4- Rz) (3.18)

where the minus sign is included for convenience and the coefficlents W,
are constants to be determined. The amymptotic behavior of the vorticity
is, from Appendix I,

wEN)~ wn) exp [~

o]

£ -.;LR & (L = cos n]
= w(®) r~1/2 exp [--:-Rr (1 - cos 8)] (3.19)

where w(0) = 0, w'(0) # 0 and w(8) has period 27. For purposes of compari~-
son we have solved the vorticity equation for Oseen flow past a circle in
Appendix II and it is observed that the Oseen vorticity has the same
asymptotic behavior.

Consider next the flow past an ellipse where the major axis of the
ellipse is parallel to the flow at infinity. The appropriate coordinate
system (£,n) 1is defined by

x+ 1y = a cosh (§E + 1in) = a cosh & cosn + 41 a sinh § sin n (3.20)

The curve § = £ is an ellipse with major axis of length 2a cosh £, and

minor axis 2a sinh £, 1In order that the unit of length be the semi-major
axls, we choose

a = gech Eo (3.21)

It i1s convenient to make the transformation

;g =§ "50 (3.22)

10
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Thus from (3.20), the coordinate system (Z,n) is defined by

x + iy = a cosh (7 + ;o + in) (3.23)

and the ellipse is given by & = 0, The metric coefficient for this trans-
formation is a(Z,n) where

(2
14

The potential flow stream function Vy(g,n) satisfies the boundary value
problem

2
9z 2

2 2
2y, | 2%,

V2‘¢ = o2
3;2 3ﬂ2

o]

= 0 (3.25)
$°(O,n) =0, Wo(c,n) ~=% ae gin n = A et sin nas  + ®

£

1 o . .
where A = — a e . The solution is

2

wo(c,n) = 2A sinh Z sin n

¢(z,m) = 2A cosh ¢ cos n (3.26)

Because of the similarity between (3.,14) and (3.26), the solution of
the vorticity equation in the elliptical case follows the method already

outlined. Thus the vorticity function has the form

w(z,n) = - exp [AR cosh £ cos n] ) W Gekn(C, - L a%2)
n=1 4

. se_(n, - - A2R2) (3.27)
" 4

The Reynolds number R 1is based on semi-major axis as length unit. The
circular cylinder result in (3.18) is recovered by letting £, + @ and

observing that

11
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1 Eo
Aw—o¢@a  gech £ +» 1 (3.28)
9 o

1f the ellipse is oriented so that its major axis is perpendicular to
the flow at infinity, we use the coordinate system (A,n) defined by

x + iy = a ginh (X + in) (3.29)

The ellipse is given by A = A,. As before we define a modified coordinate
system (u,n) by letting p = A=~ XA;. The metric coefficient is a(u,n)

where

ol -l a? [cosh 2(u +~Ao) + cos 2n) (3.30)
2

The potential flow stream function Yy(u,n) saatisfies a boundary value
problem identical to that given in (3.25) and so the solution of the
vorticity equation proceeds exactly as before, The vorticity for this case

is obtained from (3.27) by making the following adjustments:

sech A (3.31)

4, SOLUTION OF POLSSON'S EQUATION

Poisson's equation (2.9) can be solved using a Green's function
approach. Equation (3,27) gives the form &£ the vorticity function for the
three geometries considered in section 3 and so the problem reduces to the

following:

2 2
v2p = (alz,m)]-2 |28 L 3V a e, (4.1)
9g2  an?

9

\"(0,"\) = 0) ‘P(C.n) ~ A e” sin nasg § o+ ™,

12
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The appropriate Green's function is defined by

Ro@Enlgt,nt) = =[a@,n))2 8¢E ~5') 8(n =)
G(O,nlg',n') = 0, G=,nlz'n') = 0(1) (4.2)

The solution of (4.2) is given by

Gealtnty == 2n [°°Bh (¢ -%') - cos (n - “')] (4 3)

& cosh (¢ +¢') = cos (n - n')
Proceeding in the usual way, we have

gt =[f (G2y - yv2G] o® drdn + [[ wG? dgdn (4o &)
A A

where A 1is the fluid region between the obstacle § = 0 and the curve § =T
with T Dbeing large.

Green's Identity transforms the first integral in (4.4) into contour
integrals around the boundary curves. The integral around § = O vanishes

because of the boundary conditions on G and V¥. Thus we have

[] 162y - ¢92G] o dgdn = [ g2 -y ¢ dn (4. 5)
A - o %), oy

Asymptotic expressions for G,) and their derivatives are given below:

Y~ A e” sinn + 0(1) (4. 6)

a -

—w-~Aec sinn +O(e;) 4. 7)

14

G~ .1‘._.;' +_l..sinhl;' e_c cos(n -n') +O(e-2c) ' (4. 8)
2n L

86 . -isinhz;‘ e-c cos (n =n') + O(e"ZC) (4. 9)

k4 m
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Substituting these into (4.5), we obtain the following result:

lim fn o2 . w,ﬁﬁ dn = 2A sinh ¢' sin n' = ¥ (z',n') (4.10)
[4oo =1 (14 14 zarT °

Thus in (4.4) we have

Wzt = v (gt + [T [T a®(g,m) w(z,m) 6(z,n|z',n")dgdn  (4.11)
T o

5. DETERMINATION OF VORTICITY COEFFICLENTS
The only boundary condition from (2.10) which remains to be satisfied

is the no-slip condition. Its invocation yields unique values for the

vorticity coefficients {W,}. Thus in (4.11) we require

M o0 =0 (5.1)
acl R

which implies that

0=24sinn' += [7 [ a2 sinh ¢ dzdn (5.2) -
2m "m o cosh £ = cos (n~-n')
From Gradshteyn and Ryzhik (1965), we have
inh T -k
sinh z =1+2 ) e % cos k(n=- n') (5.3)
cosh £ - cos (n=-n") k=1

But a2(z,n) w(z,n) is odd in n and so the even part of (5.3) makes no
contribution to (5.2). After substituting (5.3) into (5.2) and equating

coefficients of sin kn' to zero (k = 1,2,3, ...), we have

[T [ a2 0 e *% gin kn dzdn = ~2AMS k= 1,2,3,... (5.4)
T o

14

14



The substitution of (3.27) into (5.4) yields the following infinite linear
system for the unknowns (W}

]

zlwn an"A“le k = 1,2,3,000 (505)
n=

where

¢ =" /" exp [ + AR cosh z cosn] a(s,n)?
o o

+ Gek (5, - 1er) se (n, - L 2R sin kn dgdn (5. 6)
4 4

To obtain an approximate solution to (5.5), we truncated at n = k = 8,
This necessitated the calculation of 64 integrals of the form (5.6) which is
the chief drawback of this procedure. Nevertheless we were able to obtain
good results in the range 0 ¢ R< 5. Tn calculating the coefficients
an’ it is convenient to choose a modulus q for which the eigenvalues

On in Mathieu's equation are tabulated. The corresponding Reynolds
number can be found from the relation

R = 24~ [q /2 (5.7)
We examined five geometries: the circle, the ellipse with aspect ratio 3:1
oriented parallel and perpendicular to the flow and the flat plate oriented
parallel and perpendicular to the flows The first eight vorticity coef~

ficients for a sampling of geometries and Reynolds numbers are given in
Tables l- 5-

The rapid decay of the coefficients W, does not mean that the
vorticity series (3.27) converges rapidly in all regions of the flow. When
q = -1, for example, Geks(O,—l) = 0(106 ) and GekB(O,-l) = 0(1010) and
the decay of the W,'s 1is offset by the growth of the function values
Gek, (0,-1). The vorticity series may converge rather slowly therefore in
the vicinity of the obstacle and indeed this is observed in the elliptical
cases. The rate of convergence appears to be a maximum in the case of the
circle and we therefore investigated separation phenomena for this geometry
only.

15
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Table 1. Circle.
R = 2'0 R = 400
13. 250 773 03 |
-2, 2884 -617.12
0. 37690 x 10-1 11. 281
-0.24210 X 10 ~0. 71475

0. 62517 x 10-6
-0.78300 x 10-2
0. 53897 x 10-12
~0.21073 x 10-L5

0.12619 x 10~}
-0.11800 x 10~3
0. 60380 x 10-6
~0.15441 x 10-8

Table 2. Ellipse (aspect ratio 3:1) parallel to flow (E;o =1 Ln 2).

2

R =2.12

31649

-0.41325
0. 62398 x 102

-0.46197 x 107"
0. 20407 x 10-6

-0.56252 % 10-
0.10014 x 10-t1

-0.10497 x 10"

R = 4-24

-r

103. 41
~46. 711
1. 8916
-0.64596 % 10~}
0.11379 x 10-2
-0.12250 * 10 *
0. 78668 x 107
-0.25930 * 10~°

* e mvies

emans o
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Table 3.

Ellipse

(aspect ratio 3:1)

perpendicular to flow (Ao

R = 2,12 R = 4,24
W, 5. 8811 82.188
W =0.33473 -30. 625
Wy -0.10127 x 10-2 0.13610
W, 0.2525L X 10 0.15274 * 10~
Wg 0. 27597 x 10-7 -0.11094 x 10-3
Wg  ~0.30245 % 107 ~0. 23548 X 10-°
W,  =0.13758 x 10-12 0.14100 x 10=7
Wg 0.83636 x 10-'5 0.22353 x 10-'0
Table 4 Flat plate parallel to flow (£, = 0)
R = 2.83 R = 4.0
W, 6. 7127 25,215
W -0.58416 ~5.2619
Wy 0.11229 x 10-1 0.17616
W,  -0.10123 x 10— ~0. 32847 % 10-?
Wy 0. 55440 x 10-6 0. 34490 x 10-4
W =0.17737 x 10-8 ~0. 22002 * 10-°
W, 0. 35771 x 10-11 0. 82930 x 10-9
Wg  =0.41796 x 10" ~0.17796 x 10-%1

1
--E-R,n 2)0

i
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Table 5. Flat plate perpendicular to flow (Ao = 0)

R = 2,83 R = 4.0

W, 9. 0389 27,223

W =0.40074 -3, 0988

W, ~0. 73015 x 10-2 -0, 74847 x 10-1
W, 0. 62359 x 10-* 0.15255 x 10-%
Wy 0. 34806 x 106 0.13029 x L0~
Wg  =-0.13098 x 10-8 -0.12114 x 10-°
W, -0. 25803 x 10-11 -0. 37198 x 10-°
Vg 0.62502 x 10-1% 0.21338 x 10-1}

6. SEPARATION

Separation occurs on the downstream side of the circular cylinder
provided the Reynolds number exceeds a critical value R, defined as the
value of R for which

% (0,0 = 0 " (6.1)
an

For Burgers flow we find R, = 1.12 which is a new result. Yamada (1954)
has shown that R, = 1.51 for Oseen flow and Underwood (1969) has obtained

R, = 2.88 from a numerical solution of the full nonlinear equation.

The Burgers result should be less than the numerical value. The con-
vective velocity field in Burgers flow is potential flow past the cylinder
and this violates the no-slip condition at the cylinder's surface. The
velocity field which solves the full Navier-Stokes equation satisfies this

condition. Thus convection effects near the cylinder are more dominant in

Burgers flow than in Navier-Stokes flow and any phenomena related to convec-

tion, such as separation, should occur ai lower Reynolds numbers in Burgers

flow.
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The fact that the Burgers rgsult is less than the Oseen value also can
be explained. Separation beging st the rear stagnation point P of the
cylinder where locally the flow appears as in Figure l. At the onset of
separation two eddies of circulating £luid form about P, (We refer to this
pair of eddies as a separation vortex). The direction of motion along the
axis of symmetry inside the vortex is opposed to that outside (Figure 2).

In Oseen flow the convective velocity field is constant in magnitude and
perpendicular to the cylinder boundary in the viecinity of P as shown in
Figure 3. Oseen convection therefore deters the establishment of reverse
flow at P because it directly opposes the direction of fluid motion along
the axis of symmetry inside the vortex. 1In contrast the convective velocity
field in Burgers flow vanishes at the point P and 1s small in magnitude
near P (Figure 4). Burgers convection does not oppose the establishment
of a vortex aboutt P to the same degree that Oseen convec:ion does and

separation therefore initiates in Burgers flow at a lower Reynolds number.

As R increases beyond R, = 1,12 in Burgers flow, the separation
vortex grows in size. When R = 2.0 the flow appears as in Figure 5. The
length of the vortex is PQ = 0.53 where OP 4is the unit of length, and <SOP
= 34,8° Point T, whose 8-coordinate is 83°, marks the location where the
fluid pressure along the boundary is a minimum. The flow from T to S 1is

agalnst an adverse pressure gradilent.
7. CALCULATION OF DRAG COEFFICIENTS

Several authors (Imai, 1951; Kawaguti, 1953; Dennis and Dunwoody, 1966)
have shown that an obstacle's drag coefficient can be obtained from the term
of 0(l) 1in the asymptotic expansion of the stream function. This obviates
the calculation of stress components which often are difficult to obtain
accurately. The task therefore is to find the leading terms in the asymp=-
totic expansion of (4.11).

We first obtain a series representation for the Green's function in
(4. 3)s From Magnus et al. (1966), we have
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00
) -l:-e-ktcoskx-_l.c-.l.zn(Zcosht—2coax) t>0 (7.1)
k=1 k 2 2

Manipulation of (7.1) yields the following results:

o0
: — !
ceafgtay =Llg el p Lok
2m T k=l k
* sinh K& cos k(n = n') ;< g (7.2)
=l e ly 1ok -
om T k=l Kk
e sinh K' cos k(n - n') ;> (7.3)

Substituting these into (4.11) and simplifying, we obtain

-+
ke
yiE'nt) “‘l’o(C',ﬂ') + L ) -];e ke ain kn!
T k=1l k
' L7 o1
. [T fC o® w sinh ki sin kn dgdn + = )| = ginh k&' sin kn'
-T o T k=l k
. fn fm 2w e ginun dgdn (7.4)

_“C'

An expression for the second integral can be obtained from (5.4):

f" fm o w e ™ gin kn dgdn = -2AmS

-7 ;' 1

-7 f" o2 w ¢ sin kn dzdn

A (7.5)

Thus a series representation for the stream function is, from (7.4),

(-]
-tz ! 1
'P(C',ﬂ')=}. )) .l.ek; sin kn' f" fc e? w e sin kn dgdn
T k=1 k o o
hs ' ' -
- L ) L ekz; sin kn' f" f; a? w e kg sin kn dgdn (7.6)
T k=1 k o o .
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This expression can be written in the form

' -
/T /% a® we® sin n dzdn + A

]
‘P(c',n’)-‘Aec sin ""‘l-sin n' | 22
m ...c’
e
' -
P fﬂ f; o we kg sin knxgc(ln
- z 1 sin kn' °.2°
= - '
T k=2 k i ke
L kg
® f f a? we sin kn dgdn
+ L ) 1 ain kn' | 22 (7.7
T k=l k ! ek;'

It can be, seen from (5.4) that the first two bracketed expressions in

(7.7) are indeterminate forms 9 as g' + ®», The third expression is of
0

the form (;-) in the limit., By invoking 2'Hopital'’s rule we obtain con-

tribytions from each expression to the 0(1l) term in the asymptotic expan-

sion of V¢. The result is

' * o0
Y(g',n') ~ A e® sin n' + 2 ) L gin kn'
' T k=1 k2

« {1im [" o2 w =in kn dn} + O(e'—z’.') (7.8)
C-N» o

The limit can be computed and the series summed, The details are included

in Appendix III, The expansion has the form

\P(C',n')'"Aec' sinn' -L¢ (i'l-l'-)-fO(e_;.) (7.9)
2 P70 g

where, in the second term, the plus sign is chosen when 0 < n' < 7 and the
minus sign when -m < n' < 0, This term is analytic along n' = 7, but suf-
fers a finite jump discontinuity along n' = 0 which coincides with the wake.

Dennis and Dunwoody (1966) comment that this term must be present in order
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to give non-zero drag. Kawaguti (1953) shows that the constant Cp is the
drag coefficient for the obstacle in the flow.

Table 6 contains drag coefficients for the circular cylinder in Ossen
flows In table 7 the Burgers flow results are giveﬁ.

Table 6. Circular cylinder in Oseen flow.

R 1.0 .51 2.0 3.0 4. 0 5.0

CD 8.08% 6.62 5,85 4,98 450 4,18

*From Tomotika and Aol (1951).

N Table 7. Circular cylinder in Burgers flow.

R 1.0 1.12 1.25 1.50 2.0  2.83 346 4.0

Ch 7.76  7.30 6.86 6.22 5.34 4.47 4,04 3.75

Figure 6 is a plot of the results contained in Tables 6 and 7 along

with some of Tritton's (1959) experimental values. The graph indicates that

Burgers approximation is an improvement over the Oseen approximation in
modeling the flow past a circular cylinder.

In Tables 8-11, a sampling of Burgers drag coefficients is given for
elliptic geometries. The results are plotted in figure 7.

Table 8 Ellipse (aspect ratio 3:1) parallel to flow.

R 2,12 3.0 4e 24 5.20

CD 3.93 3.22 2.65 2.36
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Table 9. Ellipse (aspect ratio 3:1) perpendicular to flow,

R 2,12 3.0 4,24 5,20

CD 5,35 4,56 3,91 3.58

Table 10, Flat plate parallel to flow,

R 2.83 4.0 5,66 6,93

CD 2,42 1.94 1,56 1,34

Table 11, Flat plate perpendicular to flow.

R 2.83 4.0 5.66 6.93

CD 4.54 3.98 3.54 3.31

8. BOUNDARY LAYER THICKNESS

The procedure outlined in section 7 can be extended to obtain higher
order terms in the expansion of V. When expressed in polar coordinates
(r,0), this expansion has the form

-]
Y~ r ginb - l.CD (£1 - EJ + ¥ ¢ " sinnd + x(r,8) (8.1)
2 T n=1 P
where the ¢, (n = 1,2,3, ...) are constants and X(r,8) is exponentially

small in .
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Except along the line 6 = O, the algebraic part of the expansion is harmonic
and constitutes the potential flow far from the obstacle.

Because of the tedious nature of the calculation, the expansions were
computed for the circular case only. Both Oseen and Burgers expansions were

calculated for purposes of comparison. The results are presented in Tables
12 and 13.

Table 12. Oseen f£low.

R=1.51 ¢~ rsind - 33118 (il - f’.) - 0.5995 548 8 o(‘”‘“ 29)
\ » Coy r2
R = 2.0 2, 9247 0. 5777
R = 3.0 2.4888 0. 5485
R = 4.0 2. 2481 0. 5302
R = 50 2. 0918 0. 5171
Table 13. Burgers flow.
‘ 0
R = 1.12 ¢~ rsinb - 3.6509 (:1 -9-> - 1,125 208 o(‘““ 22>
T r r
R = 2,0 : 2. 6709 1.1396
R = 2,83 2.2327 1.1439
R = 4,0 1. 8763 1.1467
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Since both Oseen and Burgers flows are spatially uniform approximations
to the exact solution of the Navier~Stokes equation, they predict a boundary
layer surrounding the obstacle. The outer edge of the boundary layer is
defined to be the curve along which the algebrailc part of the asymptotic
expansion of ¢ vanishes. The curve so defined determines the displacement
body which the potential flow far fiom the cylinder "sees," The displace~-
ment body includes the cylinder, its separation vortex and the surrounding

boundary layer.

By setting the expansions given in Tables 12 and 13 equal to zero, we
obtain approximations to the displacement bodies for the various flows. A
typical example is given in Figure 8. The displacement body is semi-infi-
nite with its width at infinity numerically equal to the drag coefficient.
Since the boundary of the circular cylinder is given by r = 1, the thickness
of the boundary layer is easily calculated. Tables 14 and 15 compile these

results for a variety of Reynolds numbers and locations along the cylinder

boundary.
Table l4. Boundary layer thickness for Oseen flow.
120/t R=2.0 R=230 R=40 R=25.0 AB)/RY
12 0. 357 0. 236 0.169 0,125 0. 798/RL+134
11 0. 365 0. 243 0.175 0.131 0. 804/R1+113
10 0. 390 0. 264 0.194 0.148 0. 823/Rl-05k
9 0. 436 0. 301 0. 227 0.178  0.865/R0+972
8 0. 509 0. 361 0. 280 0.227 0. 941/R0880
7 0. 619 0. 451 0. 360 0. 300  1.071/R0-788
6 0. 786 0. 589 0. 482 0.412  1.,280/RO+704
5 1.048 0. 807 0. 674 0. 589 1. 618/R0°630
4 1. 484 1.169 0. 996 0. 885 2.188/R0+565
3 2,278 1.833 1. 589 1. 431 3.226/R0+508
2 3. 990 3.276 2. 883 2. 629 5. %49/R0*457
1 9. 414 7. 876 7. 028 6o 478 12, 438/R0403
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Table 15. Boundary layer thickness for Burgers flow.

12 6/mT R=2,0 R=2,83 R=3.,46 R=4.0 A(8)/RY

12 0.574 0.482 0.441 0.410  0,800/R0-482
11 0.581 0.488 0.445 0.415  0,811/R0-484
10 0.602 0.505 0.460 0.428  0.843/R0+489
9 0.639 0.535 0.487 0.453  0.900/R0:496
8 0.699 0.582 0.529 0.49%  0.991/R0+507
7 0.789 0.654 0.593 0.549  1.130/R0:520
6 0.927 0.765 0.690 0.638  1.342/R0:537
5 1.144 0.938 0.844 0.778  1.679/R0:555
4 1.510 1.231 1.102 1.014  2.244/Rr0+573
3 2.190 1.780 1.588 1.457  3,285/R0:587
2 3.694 3.007 2,681 2.459  5,541/R0-586
1 8.579 7.050 6.316 5.814 12.639/R0-560

In both cases the thickness of the boundary layer increases as one
moves around the cylinder from the forward stagnation point (6 = m),.
Increasing the Reynolds number serves to compress the boundary layer. The
iast column in each table is a least-squares fit of the data given in each
row to an expression of the form A(8)/RY. The function A(8) is similar
in both flows. The value of Y depends on 6 in the case of Oseen flow,

but appears to hover about the constant l-in Burgers flow in the range
2

T <o <m, This suggests that boundary layer thickness in Burgers flow is
2

roughly proportional to K 4/2,

Analytic studies of the boundary layer on a semi-infinite flat plate

using the full nonlinear equations show that the thickness is proportional
to K1/2, Our work, although not conclusive, suggests a similar result for

a circular cylinder using a linear model. The apparent agreement between
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this prediction of Burgers flow and that of nonlinear analysis verifies

again its superiority over Oseen flow in describing fluid behavior near the

cylinder.
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APPENDIX I
The standarZ form of Mathieu's equation is, from Mclachlan (1964),
y' 4+ (0 - 2q cos 20) y = 0 (1.1)

where ¢q is termed the modulus and o is the eigenvalue. In this
discussion we are only interested in solutions of (I.1l) which are odd in 6.
In many applications the eigenvalue is determined from the condition that
y(®) be periodic with period 2r. Thus if q = 0, the eigenvalue must be

the square of an integer (o, = r?) and the corresponding odd
eigenfunction is

yn(e) = gin nd (L. 2)

1If |q| 1is small but nonzero, the eigenvalue and eigenfunction can be

expanded in series of the form

s k
o = + ) B_.q (1. 3)
n Kol nk
y 8,q) =sinmd + J S (©8)" ‘ (1. 4)
n ke PR -

The coefficients Bnk and snk(e) are determined by substituting these

expansions into (I.1l), equating like powers of q, and requiring that
Snkﬂe) be odd in 68 and periodic with period 2m. The expression for
yn(e) can be rewritten in the form

y ©,q) = } ’Dé“)(q) ain kO (1. 5)
k=1

.

where each Dén)(q) is a power series in q. A normalized HMathieu function

is defined as follows:
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e @0 = 7,00/ T (n{® (q)}2]1/2

= 1 B™(q) sin i (1. 6)
k=l K

where kLl [Bén)(q)]2 = L.

The standard form of the modified Mathieu equation is

Y;(z) - [dn - 2q cosh 2z] Yn(z) = (1.7)

When q < 0, the eigenfunctions which decay exponentially as z + ® are
denoted by

Y (2) = Gekn(z,q) (1.8)

From McLachlan (1964), we have

~ /72 2
Gekn(z,q) cnKh(lql e )

~c (=) lq|=/* exp [-.i z - [q|}/2 7] (1.9)
2

where q < 0.
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APPENDIX II

' The vorticity equation for Oseen flow past a circular cylinder can be
solved using the method outlined in section 3. The appropriate coordinate
systen (E,n) is defined by

3 g

x = e’ cos 1, y=e” sin n (11.1)
and the metric coefficient is
a(E,m) = e (11.2)

The vorticity is given by

3

w(E,n) = F(E,n) exp EL R e’ cos n] (11.3)

2

where F(E,n) satisfies the equation

2 2
8°F L 3°F 1 g2 28 ., (11.4)

32 2 4

Solutions to this equation are of the form

Fn(E,n) = En(€) sin nn (11.5)

where EL(E) satisfies the equation

4

From Gradshteyn and Ryzhik (1965), we have

E (§) = AT L ref) B K Li R e°) (11.7)

2
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Since the vorticity must decay exponentially as § + =, the coefficilents

A, are all zero and the vorticity is given by

wE,n) = —-exp [_l. R eE cos n] Z BnK (..]; R eg) sin nn (L1.8)
2

n=l L)

In terms of polar coordinates (x,8), the asymptotic behavior of the Oseen
vorticity is

w(r,0) ~ w() r-1/2 exp [.., }. Rr (1 - cos 6)] (11.9)
2

where w(0) = 0, w'(0) # 0 and w(®) has period 2w.

31




ORIGINAL ta o
OF POOR QUALITY

APPENDIX IIT
The expansion of V¥ in (7.8) contains the expression

1im [T a2(z,n) w(g,n) sin kn dn (III.1)
g+ 0

which can be computed once the asymptotic behavior of o® and ® is known.
From (TIL. 2), (3.24) and (3.30), we have

2

a2 ,n) ~ A% e (I1L 2)
We. also know that
- -
w(,n) = - exp [AR cosh Z cos n] z wn Gekn(c’ 21 A2 RZ)
n=1 4
+ se (n, - e R?) (11L 3)
n 4

From (I.9) the asymptotic form of the vorticity 1is given by

1/2
N(C,Tl)"'—(E—) exp [—}-l; —-:-L-ARer’ (1 - cos n)]
. AR 2 2 :

o0

+ 1 e W se(n, - L 2re) (111 4)
n=1 4

Thus the integral in (IT1I.1l) simplifies to

3\1/2
/M a2 » sin kndn ~ -(T-I—A-—> exp[-lz'-(ARec - 35)]
o R

o«

. ): c W f" exp [LAReC cosn] sin kn
nn
n=1 o 2
1 2g
. sen(n, - — A°R%) dn (I1L.5)
4
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From McLachlan (1964), we have

se (n, - £ A2R2) = s gin (2m + € )n (111.6)
" 4 m=0 © n

where €, = 1 if n is odd,

= 2 if n is even.

Therefore, we have

00
se (n, - L A2R2) sinkn =21 J s™) [cos (2m + € - K)n
" 4 2 m=0 ™ n

- cos (2m + e+ k) nl (111.7)

The substitution of (IIL.7) into (III.5) yields integrals of the form

f" exp [u cos 6] cos nb d& = 7 in(u) (111.8)
o

where I, 1is the modified Bessel function of the first kind. After

evaluating the integral in (III.5) and replacing the Bessel functions by

their asymptotic forms, we have

] o0
/™ o2 gin kndn ~~ 2L K § c W, Yy (2m + e) s‘g“) + 0(e %) (111.9)
0 RZ2  n=1 m=0

Taking the limit in (III.1) and substituting back into (7.8), we obtain

] ® -t
z',n ~ A e sin n! - ~¢ — gin kn' + e III.
W' ,n') “sinn -t T Ltk o) (111.10)
i1 k=1 k
where
0 (-]
c =AT chn ¥ (2m+€)S(n) (I11.11)
D R2 n=1"" m=0 oo
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But

] Letnkn' =2 o -nn (111.12)
k=l k 2

where the plus sign is chosen when 0 < n' < 7T and the minus sign when
-t <{n " < 0. Thus the asymptotic form of the stream function for Burgers
flow past an elliptical cylinder is given by (7.9).

This work was supported by the National Aeronautics and Space Adminis~
tration under contract no. NAGl-197.
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Figure 1.
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Streamlines at the rear stagnation point P of the cylinder prior
to separation.
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Figure 2. Streamlines after separation.
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Figure 3.
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Convective velocity field at the rear stagnation point of the

cylinder in Oseen flow.
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Figure 4.
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Convactive velocity field in Burgers flow.
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Figure 5. Burgers flow past a circular cylinder at R = 2.0.
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Figure 6.

1.0 20

3.0

4.0

50

Drag coefficient vs. Reynolds number for flow past a circular
cylinder. =~ = - - - , Oseen flow; == - —— -~ —, Burgers flow;

experiment (Tritton).
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Figure 7.

Drag coefficient vs. Reynolds number for Burgers flow past a
variety of geometries. » flat plate perpendicular to

flow; - - - -, ellipse (aspect ratio 3:1) perpendicular to
flow; — - — -, circle; —— === —— -==, ellipse (aspect
ratio 3:1) parallel to flow; - - » flat plate

parallel to flow; Q§ s numerical solution (Dennis and
Dunwoody) of the full nonlinear equation for flow past a flat

plate.
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Figure 8.
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Displacement body for Burgers flow past a circular cylinder at
R = 2.0-
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