
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19820021743 2020-03-21T08:09:04+00:00Z



NASA Contractor Report 167897

"REEP CRACK-GROWTH: A NEW PATH-INDEPENDENT

• .q TEGRAL (T.), AND COMPUTATIONAL STUDIES

(4ASA-CCU-Iu7e97)	 CriEEP CdACK-k;Bow ,,i,:	 A N `W	 N'U- 4)4619
1, 1.Tl1 -INDEPr:NDEdT INTEGRAL (I' :)UB e) 	 ANG
COMPUTATIONAL STUDIES Ph.D *	h111,11
1 1 0port (r.eoryia inst. of rk ell.)	 1 12 p	 Uncla^
HC AO(,/,1h AJ1	 CECL 20K (,1/39	 28-)0,+

R. B. Stonesifer and S. N. Atluri

Georgia Institute of Technology
Atlanta, GeorVia

Q

July 1982

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center

Under Grant NAG 3-38

14
19



I	 •	 i

Table of Contents

Page

Abstract

I. Introduction 1

II. Derivation of the (AT) 	 J, and C* Integrals 10

III. Derivation of Finite Element Equations 27

IV. Elements for Singular Crack-tip Behavior 34

V. Creep Crack Growth Computations 47

VI. Conclusions 89

APPENDICES

A.	 Existence of Limits for Contour 93

Integral Definitions

B.	 Numerical Difference Between (T1)ess 96

C.	 Numerical Methods for Evaluation of 97

Contour Integrals

D.	 Simulation of ';rack Extension 99

E.	 Analytical Evaluation of Cl for the Strip Problem 103

REFERENCES 106



SUCTION I

INTRODUCTION

Fracture Problems and Fracture Criteria: A Review

Characterizing the displacement, stress and strain fields associated

with stationary and propagating cracks in solids characterized by various

idealized constitutive relations is one of the most important areas of study

in fracture mechanics. The importance of these studies is not only that we can

predict the stress or displacement fields in a cracked body, but also that

knowing the nature of such fields we can possibly correlate observed fracture

behavior with some aspect of these fields and thus arrive at valid fracture

criteria.

Criteria for Crack Growth Initiation

The two macroscopic aspects of fracture for which correlations are commonly

sought are the initiation of crack growth and the rate of crack growth. The

most notable initiation correlations are with the elastic stress intensity

factor, KI , for the elastic (and/or small scale yielding) case [1,2] and with

the J l-integral for cases in which plasticity may not be limited to the crack-

tip (3,4]. The conditions under which these correlations are independent of-

geometry are discussed in the cited references. The critical values of KI and

J 1 for a given material are denoted KIc and Jlc , respectively. It is implied

by the use of the subscripts "I" and "1" that these criteria are for the crack
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opening mode (i.e., mode I). While similar criteria might be expected for the

sliding and tearing modes (i.e., modes II and III), the experimental data for

such studies is lacking.

Both K  and J1 have been shown to be crack-tip field parameters and both

can be evaluated experimentally through energy considerations. The linear elas-

tic, mode I czo.ck-tip field determined in (5) shows that the asymptotic crack-

tip fields are proportional to KI . Similarly, the asymptotic, mode I, crack-

tip fields for power-law deformation theory plasticity have been shown [c.71 to

depend upon the single parameters J 1 . 1 In the case of small scale yielding, KI

is easily related to the energy release rate, C I [81, which is a measure of the

potential energy decrease due to an increase in crack length. The quantity J1

has a similar potential energy interpretation in the case of deformation theory

plasticity, and becomes identical to 
CI 

for small scale yielding of a stationary

crack.

In the foregoing discussion, the time dependence of the material's response

and of the applied loading is assumed to be negligible. For creep crack growth

these assumptions are no longer valid. We now consider crack growth initiation

in materials which exhibit creep behavior. While a significant number of creep

fracture experiments have been reported in the P terature, it appears that the

primary interest has been to find a creep crack growth rate criterion as opposed

to an initiation criterion. As a result of this emphasis, many investigators

use notched specimens rather than precracked specimens and many do not report

data which could be useful in addressing the question of initiation. At

present there seems to be sonic indication [9,101 that when precracked specimens

are used, the time required for creep crack growth initiation is negligible when

I The deformation theory of plasticity precludes elastic unloading from an elastic- s
plastic state and thus is mathematically equivalent to nonlinear elasticity. The
crack-tip fields associated with power-law deformation plasticity are commonly
referred to as HRR folds after the authors f references [61 and [71.

4
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compared to the life of the specimen. It should be understood that this is not

a universally acknowledged conclusion 1111 and that further study is indicated.

As noted previously, the second macroscopic aspect of fracture for which

correlations with crack-tip fields are commonly sought is crack growth or propa-

gation. The following summarizes the development of criteria relating to this

aspect.

Criteria fnr Crack Propngation

Slow crack growth occurring under constant load implies that the material

response is time dependent and is generally classified as creep crack growth.

If the material's time dependent nature is negligible under the subject con-

ditions, then it is assumed that cra, ,, k growth requires an increase in applied

load. This latter case is typical of situations in which small scale yield

conditions are not met and for which J 1 has been found to correlate with crack

growth initiation. The primary interest in this quasi-static mode of crack growth

is that for some materials and geometries, the increase in load carrying capacity

of the structure during quasi-static crack growth is significant. This implies

that design procedures can be developed to take advantage of this added margin

of safety. To justify such a procedure, however, there must be some dependable

means of predicting the crack growth versus load behavior as well as predicting

at what load the crack becomes unstable (i.e., is no longer quasi-static). As

noted, J 1 is generally accepted as a valid initiation criterion for this problem.

For prediction of the subsequent growth, however, there are at least two proposed

criteria which appear to provide reasonable correlations with experimental data.

The first growth criterion can be stated as J lWJ 1R(Aa), where J 1R (0) - Jlc and

J1R(pa) is assumed to be a material property which depends on the amount of

crack growth, a (12,13). The subscript "R" denotes that this quantity

characterizes the material's resistance to cracking. While strong theoretical

F
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arguments can be given as to why this criterion should not be valid (except

possibly for very limited amounts of crack growth (141), it has been demon-

strated that reasonable predictions can result from the use of this criterion

for at least some classes of problems 112,15).

Based on the theoretical objections to the use of J 
1 

except for limited

crack growth, a second criterion which is based on the crack-tip deformation

h4s been proposed [16,171. This criterion results from finite element simu-

lations of quasi-static crack growth experiments which indicate that the crack-

tip opening angle, CTOA (defined by the first finite element behind the crack-

tip) becomes constant during crack growth. Whereas the CTOA, so defined, is

clearly a mesh dependent quantity, the concept of crack-tip deformations becoming

constant with crack growth is physically meaningful. The procedure for applying

this criterion in finite element based predictions of crack growth behavior is

to use 
J 
1 for initiation and J 

1 
for crack growth prediction until the computed

CTOA has becume constant with crack growth. Continued growth is then governed

by this constant value of CTOA. Alternatively, a predetermined CTOA resistance

curve can be used throughout growth. Crack, growth instability is assumed to oc-

cur (for either CTOA or J 
1 

as the criterion) when further increase in crack

length results in the criterion for growth being !xceeded without further increase

in applied loading. The J 
1 

and CTOA criteria appear to provide reasonable

correlation of ductile slow crack growth behavior for a variety of materials,

geometries and load conditions (15,18,191.

Creep crack growth generally becomes a concern when components are operated

at elevated temperatures. Whereas quasi-static crack growth can be on the order

of mm/sec, typical creep crack growth rates are on the order of pm/sec. Compared

to elastic-plastic quasi-static crack growth, the problem of creep crack initiation

and growth is a relatively new area 4f study.
i
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Numerous experimental studies have been undertaken with the purpose of

finding a parameter which correlates with creep crack propagation rate. (See,

for example, the reviev- article (201 and (21-241.) Most of these investigations

consider as candidate parameters, KI , some form of net section (or reference)

stress, and in more recent studies C*. The C* parameter is the steady-state

creep analogue of J  (in the sense of (251) in that the definition of C* is the

same as that for J1 except displacements and strains are replaced by their res-

pective rates (261.

It is illustrated in Fig. 1.1 that the above three parameters can be expected

to correlate three distinctly different creep crack growth situations. In Fig.

l.la , a crack and its associated ligament are shown for a material and geometry

which results in negligible creep strains everywhere except in the vicinity of

the crack-tip. This condition is analogous to that of small scale yielding in

elastic-plastic fracture. Fig. 1. lb represents a situation in which C* might

be considered an appropriate parameter. This situation is characterized (i) by

the body being essentially at steady-state creep conditions (which implies very

slow crack propagation) and (ii) by the creep-damage process-zone being local

to, and therefore controlled by, the crack-tip field. Fig. l.lc illustrates

the type of situation for which net section stress might be expected to control

crack growth. In this case, the main feature is the widespread creep damage

zone.

It is seen from Fig. 1.1 that intermediate situations can occur. For

example, suppose a particular material and geometry results in a crack propagation

rate such that elastic strain rates are not negligible compared to creep strain

rates (i.e., nonsteady creep) and at the same time, creep strains are no longer

localized to the crack-tip region. While neither K  or C* could be valid

parameters for this case, it apoears reasonable to expect that crack growth
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creep zone

steady =state creep
	

b. C .(A jT controlled
behavior

creep damage
process zone,,

Fig. 1.1 Conditions for which creep crack growth

parameters are expected to be va'l.i.d
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t
rate is still determined by the local crack-tip field since the creep damage

process zone is still assumed to be local to the crack-tip.

A parameter which to apparently capable of spanning the gap between ICI a

controlled growth and C* controlled growth has been introduced !271. This

parameter is referral to as (AT) c and is defined by a path-independent vector

Integral. A detailed discussion of a generalised C* (i.e., C*) and 'A c

is given in Section II of this work with a principal result being that the

energy relationship commonly used for experimental measurement of C* does

not apply to C* but rather applies to the (AT)c parameter. This means that

the experimental results are actually showing a correlation with (AT) c rather

than with C*. Based on the theoretical validity of (AT) c as a crack-tip field

parameter for nonsteady as well as steady-state creep and based on the mounting

experimental evidence that crack propagation rate correlates wall with (AT) C,

it seems the creep crack growth rate problem is close to having a solution.

Motivation for the Present Work

In the foliowing, we review previous studies to the extent required to

place the present study in perspective and briefly introduce the present work.

The nonlinear nature of creep constitutive relations precludes analytical solu-

tions for either stationary or propagating cracks in a creeping material. For

stationary cracks in a power-law creep material, however, it is known that

the HRR fields are present in the vicinity of the crack-tip 126). (Since the

singularity in creep strain rates is greater than that in the stresses, and thus

elastic strains, it follows that the HRR field exists at the crack-tip during

nonsteady as well as steady-state creep.) For propagating cracks, it appears that

the HRR fields no longer exist at the crack-tip, but that analytical tools exist to determine

the fields which do exist [28,)91. While knuwledge of Lhe crack-tip field is

- 7 -
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valuable. the solution of boundary value problems must depend on numerical

methods. The finite element method, in particular, show promise for solving

creep crack growth problems.

Only a few studies on finite element modeling of creep crack growth have

been reported. The earliest is apparently that of Ohtani and Nakamura (30).

This study simulated crack growth with .9 node-release technique and assumed a

critical crack-tip plastic strain criterion for creep crack growth. The rate

constitutive law contained an elastic term and a creep term based on the gen-

eralization of the uniaxial Norton power law.

Ninnerche (31) uses the Dodner-Partom constitutive law (32) and a node-

release technique for modeling crack growth. In this work, several candidate

criteria are examined by simulating crack growth experiments. Due to the ap-

parently limited crack growth (40.5 mm), the short test durations (one hour)

and the lack of crack growth measurement data (which requires the development

of a so-called hybrid experimental-numerical procedure to estimate the crack

growth history), it seems the general applicability of the conclusions from

this study are questionable. It also seems likely that the methods for evalu- 	 4
k

sting C* in this study are incorrect  and thus the conclusions concerning C*

should be regarded accordingly.

Ehlers and Riedel (33) have conducted a finite element analysis of a

stationary crack in a compact specimen. The primary emphasis in this study

is on the nature of the crack-tip field during the transition from the initial

elastic field to the steady-state creep field.

1 While the details of the numerical procedures for evaluating C* are not given
in (31), it appears that the W* term of C* (see Section II) is incorrectly in-
terpreted as a history dependent quantity as opposed to a quantity dependent
solely on the steady-state stress and strain rate.

- 8 -



ORIGINAL r gGr iv
OF POOR QUALITY

1
The strength c,f the 11RR field slur Lnl; the t runs it l on period I.0 determined

through f It It Ing the nc.av t Lp oquivalems atrotib Hold. The calculations use

eight-noded isoparumetric celcmtents with quarter-point elements being used at , the

crack-tip so as to have can r- 7` - strain singulacit . Creep crack growth and

creep crack growth criteria are not considered in this study.

The finite element equations for the creep crack growth model being used in

the present study are derived from the principle of virtual work in Section 111.
	 1

Section V presents the re s nults of several analyses involving both stationary cracks

and propagating cracks. The creep crack growth simulation is via a mesh shifting/

remeshing procedure. Calculations are mach using t he quarter-point element tech-

nique as well. as with a specially developed (SectioniV) compatible element which

incorporates the 11RR, r -n/(1+n) , strain singularity.

An important aspect of the current work is the study of the (AT)c•parameter.

In particular, the meaning of tAT) c , its relationship co C1, and its calcula-

tion within the context of finite element analysis are explored in depth.

A series of crack propagation calculations are combined with analytical and

experimental remelts in Section V to show that creep crack growth in 304 stain-

leas stc of at 650 	 occurs under casent sally steady-state creep conditions. This

implies that the crack groWLo rate for a given crack length and load can be

determined from a steady-state c. cep solution which does not depend on the

previous load and crack growth histor.es. This observation implies that

simple crack growth prediction methoclujo ,'Jes may be developed.
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SECTION II

DERIVATION OF THE !AT) c , J AND C* INTEGRALS

Preliminaries

We shall consider problems which exhibit the following constitutive be-

havior:

Eij
	 to 

+ ! ij	 L ij kit ak-t + (3/2)Y(aeq) n-laij 	(2.1)

We denote the cartesian coordinates of the undeformed body as x i . Defining A 

as the rate of displacement (or velocity) of a material particle from the cur-

rent configuration, then 
8u 
i is the symmetric part of the rate of displacement
^

gradient ii j =_ (CDT M ^yi = E ij + w i j . The gradient operator V,t is with ran-
j

pact to the current coordinates y i where it is understood that y  • xi + ui.
Lijkt is the tensor of instantaneous elastic moduli. We let 

Ski 
denote the

corotational rate (or "Zaremba -Jaumann rate") of the Kirchhoff stress aij
8y

where aij is related to the Cauchy stress T ij by a ij a JT ij (J-dst(axm1). The
n

equivalent Kir,ahhoff stress aeq is related to the deviatoric Kirchhoff stress

aij (^ aij - 1/3 akkd ij ) by aeq	 (3/2)(a 
aij)1/2. 

The parameters Y and n are

those of the familiar Norton's law

E eq ' Y(aeq)n

were

Eeq ' ((2/3)iijiij11/2
.

t	 - to -
C

i
w



We will use the notation: (.) deno,

a vector;	 s S implies ai us ij cj ; 6 0 	 implies 
Aij • BikCkj=e

Ass a Aij B ij . Also note that VJIC implies

	

	 Cjk and vt . ! implies
i

8y i

Cgnservation Law for 8irite `lastic and

Nonsteady Cseen Material Behavior

:he discovery of conservation laws and the possibility of deriving path-

independent integrals from these laws are not Particularly recent occurrences as

discussed in (34). However, the literature in this area has been rather piece-

meal and therefore difficult to assimilate. The recent work of Atluri 1271 has

done much to unify and generalise this subject and is the basis for the following

presentation.

We will consider a very general conservation law which has been given by

Atluri, but will limit our discussion of this law to materials characterised

by (2.1). We will use cartesian coordinates exclusively. Note that by

special selection of material constants (i.e., Y-0), (2.1) can be specialized

to elasticity. Alternatively, by assuming that the stresses are invariant with

time, (2.1) can be specialized to steady-state creep behavior.

In the following presentation, the current configuration (i.e., the config-,

uration at time t) is the reference configuration. There may be initial stresses

existing for this reference configuration. If stresses do exist, then they are

assumed to satisfy the linear and angular momentum bal,ence condition (i.e.,

equilibrium)

9t 	t ♦ p t (f	 Tt - at ) - 0; T 0 t

where P t , ft and at are the current mass density, body force vector and accel-

eration vector.

- 11 -
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A conservation integral relation given by Atluri (27] for a closed volume

V  (at the current time, t), which is free from singularities and any other

defects (which would preclude the application of the divergence theorem), is:

o - V
 (V AW - Q T):A! - vt . [(^+AC)	 ee]	 (2.2) t
t

- p t (i-a)	 Ae)dV +(nt 	(T+At) - t_]	 AedS

fS

+ r at . Q+At) . Oa-A;) dS
Se

In (2.2), At is the incremental first -Piola-Kirchhoff (nonsymmetric) stress

(At - (Au - Ae . a]/J) where Ac is the material increment of Kirchhoff stress.

Tbo current mass density is denoted p t , and f and a are the body force and

acceleration vectors at time t+At, respectively. St and Se are the portions of

the boundary of V  upon which prescribed tractions, t, are acting and at which

prescribed displacement gradients, Ae, exist, respectively. The current outward

normal to S t or S e is nt . The quantity AW, discussed in detail in [27], is the
4

incremental stress -working density in time At, and is given by:

AW - T:Ae + 2 tT :Ae = T:Ae + AU	 (2.3)

where

AU - Pi : Ae	 (2.4)

The validity of (2.2) is readily verified through the two identities [27]:

DtAW - Vt (T:Ae) + EAU - VT: e 	(2.5)

+ VtAe:T + VtAe:AtT

and

Gt	 [(T+At) . Ae] - [V 't . (T+At)]	 Ae + VtAe:(T+At) T	(2.6)

12 -
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the satisfaction of linear momentum balance in Vts

Vt	(T+dtI + 0 t (f-a) - 0	 (2.7)

and the satisfaction of the boundary conditions:I

4 . ( T+ot 1 - t on St	(2.8)

As - Ae on S e	(2.9)

Note that identity (2.5) assumes that T ( the initial stress for the incre-

ment) is an explicit function of its position in V t . The existence of AU

is shown and discussed in the work of Atluri (.:51.

Having the relation (2.2) it is now possible to specialize this relation

to finite elastic behavior or to steady-state creep behavior. However, since

we are primarily interested in the path-independent integrals which can be ob-

tained from (2.2) we will postpone the specialization till after we have de-

rived the general path-independent integral (AT)c.

Path-Independent Integrals for Fracture Analysis

The conservation integral (2.2) is used (271 to obtain a path-independent

integral which is applicable to the analysis of cracks by considering a volume

V  - V  such as illustrated in Fig. 2.1. (Note that a two-dimensional case

is illustrated for simplicity). The use of the divergence theorem for the

region depicted in Fig. 2.1 results in (2.2) being rewritten

f	 ( - t	 ptn AW -	 . ( T+et) . Ae1dS
--

x234

(2.10)

+((-V T):Ae -p (f-a) . Ae]dV
Vt -VC —t'	 t —

The validity of (2.2) does not require S t+S e-8V where aV denotes the surface
bounding Vt . Therefore, aVt need not coincide with 	 the b8undary of the body
under consideration.

- 13 -
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+ f
r

n
rt

4WdS + 
fr 

n
rt
AWdS - f

St 

t . ^JdS

 12 	45 

fS
(t+At) . didS

 
e

	

J
(AtAW - n* 	 (T+At) . AejdS : (AT)' 	 (2.10)

r
E

In writing ( 2.10) it has been assumed that Se+St-r12+r4S , which implies that

r234 does not coincide with any exterior boundaries. This has been assumed

purely for convenience of notation. We have also used the notation r  - r1650

Noting that (2.10) contains two equalities, it can ta verified by inspection

that (AT)^ depends on a (or more generally rE ) but that it does not depend

on the selection of r 234 .	 (AIn this sense T)^ is path-independent (i.e.,

independent of the selected far-field path). Following the reasoning of Atluri

[271, we define (AT) c as the limit of (AY) as E goes to zero.l

	

(AT) c - 
E+0 

r [ n,tAW - at . ( 1+At) . Ae1dS	 (2.11)

r
E

fr	
[n,tAW - nt . (T+At) . Ae]dS

234

	

+ Lt0 f	 [(-GtT) : Ae - P t ( f-a) . Ag)dV

	

Vt-VE	
..

+ r n AWdS + f n AWdS - f
S

vedS

r12	 I45	 t

- r !It . (T+At)	 AedS(r
3 S	 )

e

1The existence of the limit is shown in Appendix A.

S

'r
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Fig. 2.1 Contours for applying the conservation lave to

a two-dimensional, cracked body
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By defining ( AT) c as the limit of (AT) I as E goes to zero, it to omen that

(AT) c is entirely determined by the asymptotic near -tip fields. It will be

shown later that the converse to this statement is also valid when tho near-

tip fields are the HRR fields. That is, it will be shown that ( AT) c entirely

determines the asymptotic near -tip fields.

Often it happens that only the first component of the vector quantity (AT)c

is of interest. We will write the first component of (AT) c as (AT 1 ) c* Also,

the quantities (T) c and (T1 ) c will often be used in place of (AT) c and (AT Oct

These quantities are related by

	

(AT)
Lt

(T) c 	 At►Q 	Atc	
(2.12)

However, in the presentation of numerical evaluations of (AT 1 ) c we use 61)c

as a convenient, approximate notation for (AT 1)c/At.

We now consider two special cases of (2.11). For symmetrical deformation

about the x  axis and cracks oriented along the x  axis with traction free

crack surfaces, no body forces and negligible inertial effects, the first

component of (AT) c is	 $

	

(AT	 Lt
E 0	 [n1AW - nj (tji+Atji)Ae i1 JdS	 (2.13)

Jr
C

]a

3

[n 1AW - n  (-r j i+Atj i)Ae il 
)dS

r234

	

('	 d'i
- J V - 'lAe^ idV

t

Note that the limit of the volume integral has been written in its explicit• 	 a

form as a result of the arguments for the existence of this limit, given in

Appendix A. If, in addition to the above conditions, the strains are in-

finitesimal and the deformations small, then there is no need to differentiate

16 -
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between x i and y i , Atji becomes identical to AT ij and we have (recalling

Ac ij	 aAu i
 
/ayj):

aA u
. (AT	

-0.0F-tO J r in
1AW - nj 0 ji+AT j i) ax	 (2.14)

E

aA u
•	 r	 (n1AW - nj ( T j i+ATji) ax i )dS

234

f
ITi

V ax AC
AE 

ij 
dV

t
The replacement of Aeij by AC 

ii
in the volume integral is made possible by

the symmetry of T ij and thus aT ij /ax 1.

Physical Interpretation of (AT)c

It has been shown by Atluri [27], that the vector (AS) c has the following

physical meaning. Let two bodies with non-propagating 1 cracks be identical

except for the second body having an additional, arbitrarily directed, in-

finitesimal increment in crack length characterized by the vector dc. It is

assumed that both bodies experience identical load histories. Define total

potential energy increments corresponding to the time increment At as 

AE1 • A*1 + AQ1 + AK 	 (2.15a)

AE  • A^ 2 + AQ2 + AK 	 (2.15b)

for the first and second bodies, respectively. In (2.15), -A^ is the incre-

mental work of external. forces, AR is the incremental stress-work and AK is

the increment in the kinetic energy. (It should be noted that AQ includes the

inelastically dissipated energy.) Then

)Atluri (271 has shown that the 1/r singularity in kinetic energy, which is as-
sociated with dynamically propagating cracks, changes the interpretation.

2Note that sign convention for AE  and AE  is opposite to (27) so as to conform
to conventional usage.

- 17 -



,^ R 4

4'A

F"

3e

VU -
De 3xau	

n - Ve:tT

mn	 1
(2.19)

(AT i ) c bdc i 0 -( AE2 - AF1)
	

(2.16)

whore b is the length of the crack front.

If one is only interested in self-similar crack extension in the xl-direction,

then dc  0 dc  a 0 and

AE2AE1
(AT

1 ) c 	 bdcl
(2.17)

Therefore, (AT) c is related to the incremental potential energy difference

between two bodies which are identical except for an incremental crack length

difference dc.

Finite Elasticity and J

As noted previously, the constitutive law (2.1) can be specialized to

elastic behavior by choosing y to be zero. Therefore, (AT) c as defined by

(2.11) is a valid crack -tip characterizing parameter for general nonlinear

elasticity with finite strains, large deformation, body forces and inertial

effects. Howerver, the basic premise of elastic behavior is that the con-

stitutive relations are independent of the histories of deformation and stress.

This means that the constitutive relations can be derived from a potential.

For instance, a potential, U, exists for t, the first Piola-Kirchhoff stress,

such that

t  - 3U
	

(2.18)

In the following, we consider the reference configuration to be the stress-free,

undeformed configuration at t-0, and therefore drop the subscript t for con-

venience. As a result of the existence of the relation (2.18), it is possible to

state two identities which are analogous to those of (2.5) and (2.6) for the case

T=O.

- 18 -
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E	 V It	 g) • v	 t.e + Ve:tT (2.20)

•	 Similarly, the linear momentum balance (i.e., equilibrium) condition is now

V t + p (f - A) • 0 (2.21)

and the boundary conditions

n t	 t on St (2.22)

e • i on Se (2.23)

Noting the similarity of equations (2.18) through (2.23) with (2.4) through

(2.9) it is easy to arrive at the following conservation law

0
 - f

(VU - V_ . It . eI - p (f - a)	 e)dv
V

(2.24)

+ f
S

 (n . t -- tj . gdS + f
S

n . t . (g - e)dS

	

t	
e

Following the procedure used in deriving (AT) c from ( 2.2) we apply the diver-

gence theorem to (2.24) for the volume V - V  and take the limit as a goes

to zero. The path-independent vector quantity resulting from this procedure will

be called J.

J •
 ^ fr

[nU - n	 t	 e]dS	 (2.25)

 E

[nU - n . t	 ejdS + ^ Ul	
p(a - f) . edV

	

r234	
V-VE

+ J** nUdS + fr nUdS - f t edS - f

	

n	 t	 edS

rl?45 	 t	 e

In writing (2.22) through (2.25) it is understood that o is the mass density

in the reference configuration, n is the unit normal in the reference configu-

ration, f are arbitrary body forces per unit mass, a is the absolute material

- 19 -
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Atluri (21] concludes that

ORIGINAL QUALM

acceleration, and t arc prescribed tractions per unit undeformed area St.

we now consider several special cases of (2.25). If the problem being

considered involves a crack oriented along the x  coordinate direction and is

loaded so that only mode I crack-tip behavior occurs, then J 1 is of primary

interest and we have:

J l 	 (n 1U - n it ij ej1 JdS +
Lt I *01 	 fi)eildV	 (2.26)
 f V_V

234	 E

- 

fStieildS - fnit iisjidS

 t	 e

If in addition the problem involves infinitesimal strains, small displacements

and traction-free crack surfaces, we have

aui 	 8uJl	 fr	 [nlU - nitij 
ax 

dS + fV p(a i - f i ) ax i dV	 (2.27)
234	 1 	 1

where use has been made of the existence arguments of Appenix A in taking the

limit of the volume integral.

For elastic behavior and non-propagating cracks, Atluri (27) shows that

J has the meaning of energy release rate to a process zone V  in the sense that:

DE
Jkbde - - 

Dt

[

	
dt	 (2.28)

where b is the length of the crack front,

DE	 Day	 DQ	 DK

Dt	 Dt + Dt + Dt

and

DC
--s- dt - E (t + dt) - E (t)
Dt	 C	 E

For an elasto-dynamically propagat i ng crack (i.e., singular kinetic energy)

00



ORN

UL	
OF I

Jkbdek	
Dt dt

	

where L c is the Lagrangian (i.e., LE r	 <

DLc 	DBE	 DflE 	DKr

Dt	 Dt - Dt + Dt

Therefore, J  has the meaning of "rate of change of Lagrangian per unit crack

growth".

We now consider the special case of steady-state creep behavior.

Steady-State Creep and C*

It has been shown that ( AT) c characterizes the crack-tip field for mat-

erials which exhibit creep behavior such as in (2.1). It is known that under

certain conditions of applied loading, the constitutive relation ( 2.1) can (after

long times) result in a steady-state. This steady-state is primarily charcter-

ized by the time independence of the stresses (i.e., AU - Atji - 0). Specializing

(2.13) to steady-state conditions, we define the steady -state value of (AT_1)c'

(AT 1 ) css 0 Lt
Jfr 

[
niTijeeij - nj TjiAe il )dS	 (2.30)

E

.f	

'Ti

•	 r	 (n1TijAeij - nj TjiAe ilJdS - f a^- AeijdV

234	 t

Because ( 2.1) results in a power-law relation at steady -state, which is

analogous to the power law deformation-theory plasticity (or essentially non-

linear elasticity), Goldman and Hutchinson [261 have suggested a path - independent

C1 integral,

f	 c^ U

C*1 -	 n1W* - nj T ij aXi (is

r 	 1

where

E

W* -	 ij 
TijdF ijJ

(2.31)

(2.32)

- 21 -
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The question of how C* and (AT 1 ) csa are related, is a natural one. Before

obtaining an equation rolating CI to (AT
1 ) coo , 

however, the conservation integral

(2.2) will be used to derive a generalized vector integral C*.

In specializing (2.2) to steady-state we note that now stress is a

function of the strain rate, and that stress increments or(- zero. Thus,

AW:=T:Ae. Also we may write:

f1
7 A W - (VT):Ae)dV 

JV 
TtV AWV t

	 t

Thus, at ste..dy-state, we may write (2.2) as:

0 - , f 	 ( T :(VtAe) - V t . kT.Ae) - P t (f - a) . AV)dVJ Vt

+ f AedS
S 

	 + r nt 	 T	 (Ae - Ae) dS

t	 ,J e

or equivalently, in rate form,

0
	

J(T:Qt6) - Vt 	 ( t.e) - P t (f - a) . e)dV

V 

+ fS (nt 	 T - t) . 6dS +	 nt	 T	 (6 - e)dS
J t
	 e

Using the symmetry of t we note that:

.
T :V t 6 M T :Vt 2

1 
(e + QT )]	 T:t

and	 W*	 tj TijdEij
0

which leads to

(2.33)

(2.34)

(2.35)

(2.36)

As a result of the incompressibility condition (L' ii . 0) we 'lave

T: Vt Z 	 T':Vtc

- 22 -
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Combining tho results of the above manipulations we have:

vtw* r
a^aw*	

a,-ErW*— a 
mn	 ^':

_vt ^ 	 z:_vt^
y i 	 mn	 yi

(2.36)

Using (2.35) and the divergence thecrem while applying (2.33) to Vt - V E , we

define the vector quantity (C*)s:

fr

[!^W* - nt . t . #jdS
f

- J	 Pta) . hdV
V

(2.39)

234 Vt

+ fr n W*dS + Jn
t 	fS-
W* - f

S

t. JdS -	 n
t

. s. Td

-12 -t
	

r45	 t	 e

fr In
tw* - "tz	 6JdS w (C*)

f

If we define the limit of (C*) r as e-*0 to be C *, we have a quantity which

characterizes the crack -tip field and is independent of the selection of r234'

Restricting our attention to problems involving symmetric deformations about

the x  axis and cracks oriented along the x  axis, with traction -free crack

faces, no body forces and negligible inertia effects, we find that

C1 - 
C-0  

J In1W* - 
n1jj1611JdS - (C*

)e

r
E

(2.40)

In 1W* - n  11611JdS

^^234

In computing W* it is convenient to invert (2.1), substitute the re-

sult into ( 2.36) and use the following identity to complete the integration:

l+n
•	 d(ceq n

di ij
2 l+n	

1-n
• 3 (--n ) U eq) n k ij (2.41)

•

- 23 -
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l+n
W*	 1*n (Y) n ( r eq ) n	 (2.42)

i
or	 W* 

l+n Y(o
eq lM	 (2.43)

Relationship of (T1)cs• an ,' Ct1 for Steady -State Creep

w	 ^

Now we will relate C* of (2.40) taw the steady-state value of (AT )CO

First we rewrite ( 2.30) in rate fora► as:

(T 1 ) cs• a e
Lt

 0 f r ln1Tiji^	 n'Tjiyil)dS	 (2.44)
E

aT

fr	
fn1Tij41j	 nj T'iiil )dS - `r	 -Ii 4 d•J

234	 t

Using the notation 
W.T11411 

we have

(T1)css
	 f
	 (n1W
	

nj,ji611)dS
	 (2.45)

2

-

 f

3ti

V aye eijdV

t
Noting that:

W	 T
lj

&	 tip 
1 

( 6 i, + eji) M 'r i	 (2.46)

it is seen that W is the rate of stress-working, density, while W* is Just a

mathematical potential for Tij . As a result of incompressibility we can writel

1	 l+n

W	 oeq ^ eq	 Y0eq)1+n
	 (Y)n 

(e eq ) n	 (2.47)

as contrasted to W* of (2.42) and (2.43). Comparing the left equalities of

This result is only valid for steady-state creep and is obtained through the
substitution of the steady-estate specialization of (2.1) into (2.46).

- 24 -l
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(2.40) and (2.44), it is soon that(T 1 ) css and C* are related by:

(T1)css	
C1 +	 f nl (W - W)dS	 (2.40s)

me	

r

C1 + n+ e•t J n
l(oeq)

n+1
dS	 (2.46b)

r

Appendix D gives several numerical examples of relation (2.48) for two rather

extreme values of n.

It is now clear that C* and (AT) c are not equivalent quantities under

any condition despite their being derivable from the same conservation law l . The

quantity (AT) c follows more directly from the ^onservation law and is the more gen-

eral quantity not only in that it is applicable to nonsteady as well as steady-

state creep but also in that it is applicable to constitutive laws which are more gen-

eral than (2.1). The quantity C* relies on the special property of (2.1) whist: allows

the existence of a potential W* for the stresses (t'). Furthermore, since W* does

not have any physical meaning, whereas W has the meaning of stress-working density,

it is understandable that (AT) c has an energy interpretation whereas C* does not.

It is for this :eascn that it seems more appropriate to refer to experimental measure-

^..rnt4 of - da as measurements of (T l ) c as opposed to measurements of C* or Jl.

The HRR Field

We omw dive the HRR field in terms of (AT 1) c . Whereas similar relations

have been written in terms of C1 for steady - ,state creep ( 36), the relations in

terms of (AT 1 ) c will be valid for nonsteady creep as well as steady-state creep.

The HRR field as given in (371  but modified for creep by replacing E i j and u  by

e ij and 
6  

respectively, ;,d:

1Note that these equations are derived on tho assumption that f ij =.0 (i.e., creep

steady-state). Therefore, in order to have a well defined creep constitutive
law we must have YO0 and n finite.

- 25 -
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-1

[tijoaQq) 
M Korn+l [a

ij (o) ' beq (e))	 (2.49a)

-n

E ij • YKt r
n+1

 eij (9)	 (2.49b)

1

u i	 YKE r
n+1

 u i (0)	 (2.49c)

where a eq (©) has been normalized to have a maximum value of unity and Ka and

KE are amplitude factors which are related by

Kt. - (K0 ) n	(2.49d)

It can therefore be seen that the asymptotic crack-tip fields are entirely

determined when K0 (or Kam ) is known or specified. Combining (2.49a,b,c) with

the first equality of (2.14), using (2.49d) and rearranging, gives:

	

1	 1
((AT,)	 n+1	 (T )	 n+l

KYI*t 	 Yi*	 (2.50)

where I* is analogous to I defined by Eq. (24) of [6) except for the factor

n/(n+l; multiplying the energy density term. To be explicit,

n
I* I + n+1 f [ aeq Ml 

n+l  cos
©d9	 (2.51)

n

It is therefore seen that knowing the value of (T 1 ) c is equivalent to knowing

Ka and thus is sufficient for defining all aspects of the asymptotic cracv-tip

field during nonsteady creep as well as under steady-state creep conditions.

-l6 -
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SL+'CTION III

DERIVATION OF FINITE ELEMENT EQUATIONS	

A

Before stating the variational principle and deriving the finite element

equations, it is beneficial to illustrate the constitutive behavior to which

the finite element model is addressed.

Elastic/Viscoplastic Constitutive Relations

A rather general rate constitutive law proposed by Perzyna 1 381, can be

written in incremental form as:

where u, E and v are the elastic shear modulus, Young ' s modulus and Poisson's

ratio, respectively, T , ("t	 - 3 T
kk6i^) is the deviatoric stress and Y is aii	 11

viscosity constant of the material. In writing (3.1) it is implied that

Ae ii 0 Ac 
e
ij + Ae 

vp
ii

where Ae e and aeip are the elastic and viscoplastic strain increments, res-
ii

pectively. The yield function F(T
ii

,Ekp) governs the magnitude of the incremental

viscoplastic strains through the function <m(F)> where

0	 for F < 0
OM> -	 (3.2)

O(F) for F > 0

- 27 -



The relative magnitudes for the incremental viscoplastic strain components

are seen to depend on the factor af/aT ij . l This implies that Aar, when con-

sidered as a vector in nine-dimensional stress space, is always directed along

the normal to the surface f(Tij,ckp).

By choosing F = f u aaq [ aeq m (3/2t^.^ Tij ) 1/2 j such that a f /aT
ij
 . (3/2)

	

(Tij /aeq), and choosing m(F)	 (F) n we find that ( 3.I) becomes

AC 'J. 1 
AT, + 1-2v AT 6	 + (3/2)Y( a )

n-1T , At	
(3.3)2u	 ij	 3E	 kk ij	 eq	 ij

This represents the special case of creep behavior which is considered exclusively

in this study. 2 It should be understood, however, that the finite element

model which is described below is applicable to the more general behavior rep-

resented by (3.1).

Derivation of Finite Element Equations

The finite element model is derived from the principle of virtual work

fV T
ij 6C ii,- f

S

 t i6u idS - 0
	

(3.4)

 a

rh the present finite element analysis, we assume only infinitesimal defor-

mations and strains; hence there is no need to differentiate between the deformed

and undefo rmed configurations.

In writing (3.4) it should be noted that T {j are the stresses

existing at time t + At (where t is the current time), t i are the prescribed

tractions on So at t + At, and 6u i [6e ij - (1/2)(6ui'j +6uj'i) J are arbitrary

compatible virtual displacements.

Following customary procedures we introduce the element displacement

shape functions which relate element displacement u  to element nodal

` It is common to choose f°F in which case we have what is called an associative
law.

2While (3.3) is known to deviate from real material behavior (especially for primary

d
	 creep) it is a widely used constitutive law and therefore has been adopted in the

present utudy.
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displacements (q)

u i - (u) - (N](q); 6u1 - {6u} - [N}(dq)	 (3.5)

We again use the customary notation wherein strain ( and stress) components

are placed in one-dimensional arrays

{E} - (S]{q); {6e} - MOOO (3.6)
Substituting ( 3.5) and ( 3.6) into ( 3.4) and applying conventional procedures
for assembling element matrices into global matrices we have

;ele f
V

(T)T[B]dV

e

fSj(t)T[N]dS]
jle{6q}

)	
{F)T{6Q} - 0

v
e

Since (dq) are arbitrary virtual nodal displacements, it follows that

lelel

E

	

	 _

fV 
 

{T} T [B]dV -	 (t}[N]dS, _ { F }T	 {0}T 	(3.7)
e
	 fT

 o
e

We now express the stresses {T} at t + At in terms of the current

stresses, { T} I , and the incremental stresses corresponding to the time in- 	 a

crement 0t: v

{ T } _= (T)I+1 - {T} I + (AT)I+1
	

(3.8)

:a

In (3.8) and in the following, the I and I+1 subscripts designate the
a

incremental solution with which the quantity is associated. Application of
i

the incremental elastic constitutive law results in	 r

(T)
I+1 - {T} I + ( E]{6ee1}I+1	 (3.9)

• { T } I + (cJ((Dc}I+1
	 (^evp}I+1]

where 
(4evp)I+1 

are the incremental viscoplastic strains and ( E] is the matrix

- 2^

^,
i



., a	 N. +^ Mt

a

of elastic constants. Substituting (3.9) into (3.7), taking the transpose,

and placing the known terms on the right hand side we have the final form of

the finite element equations:

[K)(AQ) I+1 - {T)I+1 + ( Svp)I+1 - 
(R) I 	(3.10)

where

[K)	 ele J 
V

[B)T [E][B]dV	 (3.11)

e

{T) I+1 0 ele 
fS	

[N]T (t)I+1dS
	 (3.12)

Q

e

(Svp ) I+1 a ele 
fV 

[B]T[EI(AEvp
) I+1dV
	 (3.13)

e

(R) I 	 ele J	
[B]T {t} IdV	 (3.14)

• V
e

The above volume integrals are evaluated in the current work by 2x2 Gauss

quadrature. Vie array [T} is input directly in terms of node point forces.

Solution Procedures

It should be noted that [K] of (3.10) is just the elastic stiffness

and therefore only needs to be formed and decomposed  once. This results in

significant savings in the number of computations per time step as compared to

methods using s t iffness matrices which must be reformed at each step (i.e.,

tangent stiffness methods). It should also be noted that the term 
{Svp)I+1

is computed from incremental viscoplastic strains { Ac 
Vp)I+l 

which are esti-

mated using k) 
I  
and the material constitutive law (3.1). Only for the

1The equations ( 3.10) are solved in the current work by the decompo6ition [K}-
[L)[D)(L) T where [D] is a diagonal matrix (the only nonzero entries are those
on its diagonal) and [L) is a lower triangular matrix (the only nonzero entries
are those below its diagonal); see for example [39).

-3n-
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special situation when the stresses do not change with tLme will this estimate

be exact. Having obtained the incremental nodal displacements (AQ) I+1 by

solving (3.10). one can easily find the total incremental strains (4E) 1+1 via

the incremental analogue of (3.6). We now describe two procedures for ob-

taining (T)1
+1'

The first and simpler method to obtain (T) 
1+1 

is to substitute the esti-

mated t&E vp ) 1+1 used in solving for 
(AQ)I+l 

into (3.9). If one does this, then

it happens that

(R) I+1 a {T}I+1
	 (3.15)

and therefore (3.10) becomes for the next step l	 b
k

[ K]{AQ}{T}	 + (S }{T}	 (3.16)
I+2	 I+2	 vp I+2	 I+1

- (AT) 1+2 + {Svp)I+2

This method was compared to the following method and was found to require smaller

time steps to achieve similar results.

Rather than using the estimated values of (Ac 
vp}I+l 

and (3.19) to

determine 
(T)I+1' 

the constitutive relation (2.1) is integrated over the cur-

rent time step at each Gaussian quadrature point with the condition that total

strain {e} varies linearly with respect to time from {e}I to (e} 
I+1' (The

present study uses an Eulerian scheme with each time step being divided into

five subincrements.) The result of this procedure is better adherence to the

postulated constitutive law at the expense of introducing a somewhat unequili-

brated stress state. The amount of disequilibrium depends on the accuracy of

the original estimate for the incremental viscoplastic strains and thus on the

time step size.

At this point one has two alternatives. The first is to use the

This procedure results in the current model reducing to that of Zienkiewicz
and Cormeau (40).
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viscoplastic strain increments obtained through the time integration procedure

as an improved estimate and to re-solve (3.10) for the current time step. This

procedure would, after several iterations, result in a stress state which is

equilibrated to within some small user specified tolerance. With this type of

procedure the time steps could be as large as those used with tangent stiffness

methods. Further, it is reasonable to expect the solution to be at least as

accurate as if a tangent stiffness method were used.1

The second alternative is to go immediately to the next time &tep with

the understanding that the term (R)I in (3.10) results in the disequilibrium

from the Ith step being corrected in the I+1 step. This feature is the result

of the virtual work statement (3.4) being written in terms of total stress and

tractions rather than incremental quantities. Owing to this corrective nature

and to the diminishing returns one obtains from additional iterations, the

second alternatiie is used in the present study.

Regulation of Time Steps

The creep calculations use a variable time step size which is auto-

matically regulated by the finite element program based on two criteria. The

first criterion is the maximum percent difference between the incremental

equivalent estimated creep strain and the incremental equivalent integrated

creep strain for all the Gauss points in the mesh:

C 1 = Max 
nEEST - FEINT

AEINT

(3.17)

The second criterion is the maximum ratio of incremental equivalent integrated

This procedure could actually be more accurate if similar constitutive law
integration procedures and equilibrium iterations are not performed with the
tangent stiffness procedure. Also, it has been shown [41) that many element
types become overly stiff when using the tangent stiffness method for modeling
constitutive behavior approaching incompressibility. This problem is not en-
countered with the current method.
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creep strain to the equivalent elastic strain:

C2 Max CAEINT a JL	 o
( 3.18)

The user specified, maximum permissible values for C1 and C2 are C 1 and CZ,

respectively. The size of the next step is then obtained from

	

At 1+1 0 At  . Min 
C
l , C2
	

(3.19)
1	 2

Note that the initial time increment cannot be determined from (3.19) and must

be specified by the user so as to satisfy the two step size criteria.

In the present study, the values of C 1 and C2 are 0.2 and 1.0, res-

pectively. With these values, it has been found that the initial time steps

are controlled by CI while later time steps are controlled by C 2 . The values

of C 1 and C2 are strongly affected by the mesh refinement since a finer mesh

results in Gauss points being closer to the crack-tip and therefore having larger

stresses and strain rates. To determine the sensitivity of the solution to the

selection of C 1 and C 2 , a compact specimen was analyzed with the above criteria

and also with C 1 and C2 being halved (i.e., C1 - 0.1 any C2 a 0.5). It was

found that the load point displacement differed by less than 0.5% for all

time and that the steady-state solutions were essentially identical. It there-

fore appears these values of C 1 and C2 are small enough to ensure that the

solutions to be discussed do not detpend on these step size criteria.

A
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one must resort to sepcially formulated elemei

In the following sections, we consider

- 34 -

SECTION IV

ELEMENTS FOR SINGULAR CRACK-TIP BEHAVIOR

This section describes and compares several two-dimensional crack-tip

singularity elements. Perhaps the primary motivation for introducing singu-

lar crack-tip elements into finite element models is the significant savings in

computational expense. It is shown in Section V, for example, that 57 element

model with elastic, r-1/2 , singular elements results in a more accurate solution

than a non-singular 102 element model. The savings in CP time in this case is

greater than 50%. Generally, one must consider that some additional effort

is required to develop and implement a special crack-tip element and that this

tends to offset the savings in CP time. It has been discovered, however, that

the very commonly used, eight- noded, isoparametric element can be made to

produce an r-1/2 strain singularity by merely shifting mid-side node locations

via the node definition input data (42,43). Therefore, a very convenient

means for modeling linear elastic crack-tip behavior exists. It has also been

shown (441 that a 1/r type strain singularity can be obtained with this element

type thus providing a suitable element for non-hardening plasticity problems.

For more general singularity behavior, such as the 
r-n/(n+1) 

strain singularity

associated with the HRR crack-tip field of power-law plasticity or creep,



elastic problem (r 
1/' 

strain singularity) as well as special elements for

problems involving the HRR, r 
-n/(n+1)

p ng , strain singularity. In discussing

these elements, an attempt is made to point out their advantages and dis-

advantages.

Elements for Linear Elastic Materials

Although many special elements have been used for linear elastic frac-

ture analysis (see Atluri (45) for review), we consider here only the eight-

noded isoparametric element. There are two basic forms in which the eight-

noded isoparametric element can be used as a linear elastic crack-tip element.

In the first form, the two midside nodes adjacent to the corner node located at

the crack-tip are shifted toward the corner node so that they occupy the quarter-

point of their respective sides. This form is illustrated in Fig. 4.1 by the

Type A crack-tip mesh. The second form in which the element can be used is

il.Lustrated in Fig. 4.1 by the Type H crack-tip mesh. In this form, the eight-

noded element is degenerated to a triangular element by defining two corner

nodes and their midside node to be the same node which is located at the crack

Lip. Then the two midside nodes adjacent to the crack-tip corner node are

shifted to their quarter-points. It is important that only one node be used

at the crack-tip, as opposed to three superposed nodes, since the latter case

has been shown (44) to result in the 1/r type strain singularity.

Barsoua (43,44] notes that numerical experimentation shows the degen-

erate triangular form yields more accurate results than the nondegenerate

element. lie goes on to recommend that the four-sided configuration be abandoned

based on the premise that the r -1/2 singularity exists only along the edges

of the element and also that the strain energy fur this element becomes unbounded

if exact integration is used (44). Ping (46), on the other hand, concludes

that the r-1/Z singularity does exist within the four-sided element as well as

along its edges and that the strain energy for the element is bounded (and thus
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the element stiffness is well defined).

Apart from the above considerations, there are two aspects of the

degenerate Type B element which inherently make it preferable to the nondegenerate

element. The first is that the process of collapsing one side of the element

to coincide with the crack-tip results in the element local coordinates being

transformed into a form of polar coordinates. Since the element's shape

functions are defined in the element local coordinates it is to be expected 	

A
that angular bias will be much less apparent for this element type. The second

feature of the degenerate triangular element which makes i preferable is that

it is geometrically better suited for creating crack-tip finite element

meshes of arbitrary refinement. Since the angular dependence of the near tip

solution is significant, this flexibility for increasing the mesh refinement

in the angular direction is important. Combining these two aspects with the

numerical evidence cited by Barsoum, it seems the triangular, degenerate

element is the better element for modeling the elastic crack-tip singularity.

For this reason, all quarter-point element calculations in the present study

use the degenerate triangular form. In particular, the mesh configuration

Type a of Fig. 4.1 has been used exclusively.

Elements for Materials with HRR Crack- ip Fields

In the previous section, we disc + issed crack-tip elements for linear

elastic material ,)ehavior. 1.. has been seen that the standard eight-noded

isoparametric element can be made to have the r -1/2 strain singularity and thus

is useful for analysis of cracks in linear elastic materials. It can be shown

(see for example, Atluri (45)) that this isthe only singularity which this eight-

noded element can exhibit. However, it can also be shown that higher order

elements of the isoparametric family can result in singularities of the type

r-n/(n+l), provided n is an integer. If we denote the order of the isoparametric

- 37 -
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interpolation as m, then singularities of the type r (1-t)/t can be obtained for

t an integer such that t<m (45). In terms of the HRR power law exponent n,

this means we can have singularities of the type r n/(n+1) where n in an integer

such that <m-1.

Based on the above discussion, it can be seen that it is possible to

employ isoparametic elements as HRR crack-tip elements provided one is satisfied

with integer values of the power law exponent, n. By choosing the highest value

of n which one is interested in modeling, one can then program the n+l order

isoparametric element. The problem with this approach is that values of n

for common materials can be as high as 20. This implies that one would need to

program an isoparametric element of order 21. While this is perhaps within

reason, it will be shown that nonisoparametric elements can be derived which are

more readily implemented.

Two Crack-Tip Elements from the Literature

In this discussion of special elements we limit consideration to two-

dimensional, triangular elements with straight sides. The elements are derived

in terms of the triangular polar coordinates (p,e) illustrated in Fig. 4.2

and which are related to the global cartesian coordinates (x i) by

X 	 xi + P(x1 - xi) + Z(o + 1)(xi - xi))	 (4.1)

In (4.1), the superscripts denote the node number. The crack-tip is assumed

to be located at node 1 (i.e., at p-0). The geometric mapping of (4.1) is

similar to circular polar coordinates in that the transformation cannot be

inverted at p-0.

We now consider several choices for the assumed displacement fields

within the triangular region. The first choice is

u (0,o) - u 1 + p X (u2 - u 1) + 1(0 + 1)(u 3 - u2))i	 i	 i	 1	 2	 1	 1
(4.2)
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It can be seen that (4.2) is similar in form to (4.1) except that P is replaced

by P A (0<a<l) so as to induce a singularity in the displacement derivatives. The

three-noded element resulting from (4.1) and (4.2) is of Out type proposed by
M

Tracey and Cook (47). Inspection of (4.2) reveals that this element permits

rigid body translation but does not permit rigid body rotations or constant

strain modes. While problems exist for which this element provides reasonable

results, the lack of rigid body and constant strain modes make this an un-

desirable element for general anlaysis.

We now consider a straightforward procedure which allows an alternative

to (4.2) to be written which (i) provides all the rigid body modes as well as

all the constant strain modes, (ii) results in the desired r  displacement be-

havior and (iii) results in compatible displacement fields with adjacent

elements. First note that we can be assured our assumed displacement field

contains all rigid body and constant strain modes provided it can accomodate

the following general displacement field

u l a a l + b lx l + c 
1 
x 
2
	 (4.3a)

u2 = a2 + b2x 1 + c2x2	(4.3b)

where ai , b  and c  are constants. Clearly, a l and a2 provide for rigid

translation modes, while b  and c 2 provide for constant strains, e ll and e22,

respectively. The constants c l and b 2 provide a rigid rotation if c l . -b2	0

and a constant shear strain, e 12 , if c  = b 2 f 0. If we substitute (4.1)	 a
t4

5

into (4.3) and regroup terms we have the result

ul S ai + biu + ciPo	 (4.4a)

u2 - a2 + b2 ,) + c2 po	 (4.4b)

Starting from (4.4), we can now proceed to add terms as desired with the

only condition being that we maintain compatible displacements with neighboring

singular and nonsingular elements

— 40 — ea
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We now consider a general approach for establishing displacement shape

functions for triangular crack-tip elements. Since both displacement com-

ponents will follow the same form, we drop the subscript for simplicity. We

now write

u(P,a) - 2(1 + o)f 3(P) + Z(1 - O f 2 (P)	 (4.5)

with

f 2 (P) - a2 + b 2 P + c2 P^	 (4.6a)

f 3 (p) - a 3 + b 3 P + c3P l 	(4.6b)

Inspection of (4.5) shows that on the element side 1-2,u(p,-1) - f 2 (p) and

on side 1-3,u(p,l) - f 3 (P). It can also be seen that u(l,a) is linear on

side 2-3. Since f 2 and f 3 each have three unknowns, it UA lows that element

sides 1-2 and 1-3 must have three nodes. This means two new nodes must be

created. Since the geometric properties of the element do not depend on the

locations of these nodes their positions along the edges of the element are

arbitrary. In the following, however, we choose to place these nodes at the

midaides. These new nodes correspond to positions 4 and 5 in Fig. 4.2. De-

noting the nodal displacements by u j , J-1,5, we now use the following con-

ditions to determine the six unknowns in (4.6a) and (4.6b)

u(O,o) - u l ; u(1,-1) - u2 ; u(1,1) - u 3	 (4.7)

u(,-1) - u4 ; u(2,1) - u5

The result is

a 2 -a3 - u 1 ; b 2 - u2 -u 1 -c2 ; b 3 - u3 -u l -c 3	(4.8)

2u4 - u2 __ul 	 2u 5 - u3 - U 
c 2 -	 21-a _ 1
	

c3	 21-X _ 1

Substituting ( 4.8) and (4.6) into ( 4.5) and defining the functions multiplying

- 41 -
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(4.9)
iU as Ni we have

5
u(P,o)	 E Nlui

in 1

ORIGINAL
POOR QUALITY

OF i'

where

N1 1 - P - T(P^ - P). N2 • Yi;

N3	
^22' 

N4	 ^1^2' NS	 ^22
with

S	 21-X - 1

01.2(1-a)	 02 .2(1+

^1 • P - 1(P X - P)
	

2 ' R (P
X
 - P)

By examination, it can be seen that (4.9) has terms similar to those of (4.4)

and thus can represent all the rigid body and constant strain modes. From the

form of (4.5,6,8) it can be seen that the element must be compatible with

neighboring elements. Therefore, we have an element whicc satisfies all the

requirements which we originally stipulated. If the a in Fig. 4.2 and in (4.9)

is replaced by 2v' - 1 we recover the form of the equations suggested by Stern

[48].

As a result of the appearance of 
p  

in the shape functions for this

element, the integration involved in evaluating the stiffness matrix (particularly

the integration with respect to P) is not suited to Gauss quadrature. In (481,

Stern derives a special integration rule, which when combined with standard

Gauss quadrature for integration with respect to a, results in exact stiffness

integrations. Unfortunately, the expression (28) in (481 which specifies

the relative radial location of the quadrature points is apparently in error.

The corrected expression is as follows:- 42 -
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f	 1 + A - 2Ax2-1
	 X11

xl	 Fx2	 2J1 - all +70x2-1
(4.10)

where x l and x2 denote the values of P at which the sampling points are located.

The corresponding weights are then given by

	

1 'X-1	 1
s 2 x2 - a+1

x l	 a-1	 A	
(4.11)

x 
1 

x 2 - x 

1 ^-1 _ 1

	

w2 ' 2 
X
2-1	 dal	 (4.12)

x2 1x	 - x2

This quadrature rule integrates terms of the type P, P  and P 2X-1 exactly.

Since the rule has four parameters (x
19

x
20
wl ,w2 ) and is only required to integ-

rate three types of terms, the locations of the quadrature points are not

uniquely defined. Selection of x2 according to the following cirterion results

in both the numerator and denominator of the bracketed term of (4.10; being

positive and thus results in a valid quadrature rule.

1

	

l.A(1+^) 
1-A <x2	1	 (4.13)

2A j

Stern (48] presents a family of elements which are developed so as to

be compatible with surrounding nonsingular polynomial based elements of arbit-

rary order. While it should be possible to verify that each member of this

family does indeed satisfy the requ)rements which were discussed in deriving

the above element, his procedure provides little insight to the method for

deriving such elements. In the next section, we generalize the procedure used

in arriving at (4.9) to derive an element which is compatible with quadratic

elements (e.g., eight-noded isoparametric elements).

Derivation of a New Crack-Tie Element

In this section we generalize the procedure used in the previous section

-43-
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to derive a crack-tip element which (i) contains all rigid body and constant

strain modes, (ii) results in compatible displacement fields with neighboring

singular and nonsingular elements and (iii) results id an arbitrary strain singu-

larity at the crack-tip fo the type rA-1 (0<a<1).

We start in the same manner as before by writing the displacement field

in the form

u( p , 0 ) - ( 1-0 2 )f 1 ( p ) + 2(0-1)f2 ( p ) + 2 ( 0+l)f 3 ( p )	 (4.14)

where

f i ( p ) - a  + b ip + c ip x	(4.15)

Noting that the form of (4.15) requires three displacements being specified

along each of three radial line segments (0- -1, 0 - 0, a - 1) we introduce

node points at locations 4 through 7 as illustrated in Fig. 4.2. At this

point it is seen that this procedure will result in an interior node. It

will be shown later that this node can be eliminated in a number of ways.

Denoting the nodal displacements by uj , j-1,7 we now use the following

conditions to determine the nine unknowns in (4.14,15):

u(0,0) - ul ; u(1,-1) - u2 ; u(1,1) - u3

u(2,-1) - u4 ; u(z,l) - u 5 ; u(1,0) - u6

u(2,0) • u7

The result is

a l • a2-a3-u
1

b i u6 -ul -c l; b2-u2-u1-c2;

c l R(2u7 - u6 - ul ); c 2 • S(2u4 - u2

C 3 - S(2 u 5 - u 3 - ul)

- 44 -
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where
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•	 Substituting (4.17) and (4.15) into (4.14) and defining the functions multiplying

u  as N i we have

N1	 1 - P - 1(P^ - P)

N2	 ^22' N3 	 ^3^2' 
N4	

^21

N5	
^31' 

N6	
^12' 

N7	
^1^1

with

Q2 t ^ 7 ' 1 ( a m7 V11	 2	 2	 3 V ( a 4. 1)

^1 2(P X - P)	 2 	 1[( 1 
+ OP - P 

X 
I

Inspection of the derived shape functions verifies that this element satisfies

all the requirements which we stipulated at the beginning of the derivation. It

was noted that this element has an interior node. While interior nodes are

generally avoided so as to reduce the bandwidth of the equations to be solved,

it seems that in the case of crack-tip elements the advantage of having additional

degrees of freedom in the vicinity of the crack-tip more than compensates for

the few additional equations which are involved.

We now consider several alternatives for eliminating the interior node

of this element and note that one of these results in the corresponding element

of Stern [481. We start by substituting (4.15) into (4.14); using the condition

that f 1 (0) - f 2 (0)	 f 3 (0) and regrouping terms we can write

u(p,a) - [a 1 + b 
1 
P + c1P^)	 ( con't on next page) 	 ( 4.19)
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+	 ((b 3 - b
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) p + (c3 - c2)pl1

+ v2 ( 2
b) b

+ 2 - bl 11p +
(C2
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+ 2 _ c11pA
	 e

It should be understood that any arbitrary condition relating u 7 to one, several

or all of u  through u6 will suffice to remove the interior node (i.e., node 7)

from the element relations. However, it seems more natural to eliminate the

node by the removal of one of the terms of (4.19). Noting that the first

two terms of the first square bracket and the first term of the second square

bracket represent the rigid body modes and constant strain modes, we are left

with four terms which can possibly be deleted so as to eliminate the interior

node.

If we choose to eliminate the term c 
1 
P A by constraining c  to be zero

we see from (4.17) that this implies u 7 a Z(u 6 + ul). This choice would some-

what defeat the objective of having singular displacement derivatives and thus

is not advisable. Furthermore, it is inconsistent to retain the higher order

terms op t and a2  while not retaining p A
. Note that the term ap p cannot be

used to eliminate u 7 since u7 does not appear in its coefficient (i.e., in

either c2 or c 3 ). Therefore we are left with the terms a2  and a2 p
X
. Either

of these terms can be chosen to eliminate u 7 . Stern's element (481 corres-

ponds to the case in which the coefficient of o2p is set identically to zero.

Of the elements discussed above, only the seven-noded element has been

implemented in the present study. In Section V, this element is used for

elastic analysis as well as for creep analysis. The special quadrature rule

proposed by Stern (481 and summarized in (4.10) through (4.13) has been used-

exclusively in evaluating this element's stiffness.
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SECTION V

CREEP CRACK GROWTH COMPUTATIONS

Description of Problems

The creep crack growth analyses which will be presented in this chapter

deal with three distinct problems. The following sections introduce each

problem by describing the physical aspects such as geometry, loading

and material properties as well as by describing why the problem was selected

and what is hoped to be gained by its consideration.

All calculations in this chapter assume infinitesimal strains and small

deformations. The crack propagation calculations use quarter-point crack-tip

elements and a mesh shifting/remeshing procedure.

Problem I: Non-Steady Creep of a Compact Specimen

The compact specimen geometry war chosen for study because of its wide-

spread use in fracture experiments and because numerical solutions for this

problen, have appeared in the literature thus providing results with which to

compare. The dimensions of the specimen as well as the material properties

and applied loading (see Fig. 5.1) were chosen to coincide with those used

recently by Ehlers and Riedel (33). The problem is used for a mesh refinement

sensitivity study and for exploring various aspects of the (T 1 ) c and Ct con-

tour integrals during both nonsteady and steady-state creep.

Several finite element meshes have been uased in the analysis. All
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of these meshes employ two-dimensional, eight-noded, isoparasetric elements.

The integrations for these elements are accomplished with 2x2 Gauss quadrature

and therefore only elements with straight sides are employed. As seen from

the meshes in Fig. 5, 2, the pin-loading hole is not modeled. In all models

the horizontal placement of the point load corresponds with the load line of the

ASTM standard geometry (x - 25.0 mm). The vertical position is y - 32.5mm.

A sensitivity study showed that shifting the load to y - 40 sin has virtually

no effect on the pertinent aspects of the solution.

Most of the meshes contain collapsed eight-noded isoparametric elements

at the crack-tip as illustrated in Fig. 6.2. In several calculations, the

midside nodes of these crack-tip elements are shifted to their quarter-points

so as to produce an r-1/2 strain singularity at the crack-tip. Also, several

calculations are performed with a special conforming seven-noded, Triangular

element which imposes the HRR, r 
n/(n+1), 

type strain singularity. Tablt4 5.1 iden-

tifies the meshes for which calculations are made and also gives the load point

displacement and J 1 for the elastic solutions. These J 1 values are compared to

those based on the expression for K  given by Srawley (49).

Problem II: Constant Velocity Propagation in a Creeping Strip

This problem is concerned with a finite height, infinitely wide strip,

with a semi-infinite. crack. Loading consists of unifornOy applied displacement

rates at the top and bottom edges. This problem has been chosen for two

reasons. First, since the strip in infinitely wide and the boundary conditions

do not change with time, the propagating crack-tip fields can be expected to

reach a "convecting steady-state" creep condition. Here we use the phrase

"convecting steady-state" to mean that the field remains unchanged in time with

respect to a coordinate system which is centered at and moving with the crack-

tip. This terminology is used so as not to confuse this condition with the usual

steady-state creep condition in which material stress rates are zero.

- 49 -
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In the convecting steady-state case, stress rates for material paints

are not zero. An a result, Ci cannot (in a strict sense) be a valid crack-tip

parameter. As should be clear from earlier discussions, 6
I 
)
c

is a valid	 .

parameter at all crack speeds since it does not require material stress rates

to be zero. From a practical point of view, if the crack speed is low enough,

then one can expect Ci to be a useful quantity. By varying the crack propagation

speeds for this problem over the range of velocities observed experimentally

(for a given material), it should be possible to determine if this range has

any portions in common with the range of velocities for which Ci is a useful

parameter.

The second reason for choosing this problem is that Ci can be evaluated

analytically for the special case when the crack is stationary. This allows an

in.ependent check on the finite element calculations and serves as a reference

for the analyses in which the crack is propagating. The analytical evaluation

of Ci parallels the evaluation of J 1 for a similar elastic strip problem as

discussed by Rice [50). (See Appendix E) It should be noted that Ci has been

shown to be related to the steady-state value of (T 1 ) c and therefore it is

possible to obtain 61 )coofor the stationary crack case from Ci and equation

(B.1) of Appendix B. The direct evaluation of (T 1 ) c in terms of either its in-

tegral representation or its energy representation requires lu ►owledge of the

stresses in the region of the strip adjacent to the crack-tip and therefore is

not a trivial task.

The material properties used in this problem are representative of 304

stainless steel at 650 0C. These material properties and the finite element

discretization are given in Fig. 5.3. The mesh for phis problem may at first

appear rather coarse; however, elastic and steady-state creep solutions obtained

with this mesh are sufficiently accurate to justify its use. The comparison

of computed elastic J 1 values and steady-state Ci values with their analytic

- 52 -
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values is given in Table 5.2.

Problem III; Creeg Crack Growth in Double-midge-Crack 52ecimens

The purpose of considering this problem is to apply the model to a

problem for which experimental data exists. While much experimental data has

been reported in the literature, most authors do not include sufficient in-

formation to allow a numerical simulation of their experiments. The current

problem is based on the experiments of Koterazawa and Iwata [51). The primary

reasons for selecting this work for study are that crack length versus time

t,istories were given and that the experiments were performed on 304 stainless

steel for which high temperature elastic and creep properties were already

available.

The geometry of the experimental specimens is given in Fig. 5.4. The

finite element mesh for the calculations is shown to Fig. 5.5 with contour

integral paths being indicated by dashed lines. It can be seen that the mesh

takes advantage of the two planes of symmetry for the specimen .ind does not

model the 600notch. 1 The initial crack length indicated in Fig. 5.5 corresponds

to the notch depth in the specime„ 	 All. calculations for this specimen assume

plane stress conditions and use the material properties given in Fig. 5.3.

Elastic J 1 results for two crack lengths are compared in Table 5.3 with those

(based on formulas for K I ) from [52] and are seen to be in good agreement.

Compact Specimen Analyses

The following describes several calculations for a compact specimen

during transition from an initial elastic state to one of steady-state creep.

The geometry, loading, material properties and other details were described in

the first section of this chapter as Probelm I. We first consider results for

the 300 element mesh of Fig. 5.2 in terms of C, and then (T 1 ) c . Then we address

1Modeling the notch would have req;tired the mesh shifting subroutines to be
generalized,

0
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the topics of mesh refinement and the use of special crack-tip singularity ele-

ments.

Calculation of 0
1 ) c

and Ci for Nonsteady Creep

The path-independence of (C*) t during nonsteady creep is illustrated

in Fig. 5.6 using results from the 300 element mesh. The 4 superscript

designates the particular T234 contour which is used, with C being the

non etimensional distance from the crack-tip to the point where the contour 	 r^'

crosses the crack plane. Therefore, & is zero at the crack-tip and has a

maximum value of unity when the contour is at the boundary of the specimen.

Values of M) & are plotted as a function of time for nine values of & ranging

from 0.03 to 0.92. It is seen that (C*) & is largest for contours close to the

crack-tip ( small 0 and that as steady-state is approached, the values from

all contours converge to Ci. The solution has essentially reached steady-

state at 300 hours. After 300 hours, the values of ( C1)& for all nine contours

are within 1.5 percent of their average value. This value of Ci, as well so;

values from calculations with the other meshes, is given in Table 5.1.

Now we consider computed values of (T 1) e as approximated by (AT CC

The values of (AT1 ) E are obtained through the specialization of (2.10) to the

case of infinitesimal strains, small deformations, symmetric mode I behavior

and traction-free surfaces:

2^u
(AT 1)^ - fr	 nlow - n

1
( t ij + ATj ) ^ dS	 (5.1)

J 
234

aTi

fV-V 3x DEijdV

t e
1

Since (T 1 ) c 
is the limit of (T 1)C as E goes to zero, (T 1)

c 
is plotted as a

function of a for several times (see Fig. 5.7). In this figure, a is the

nondimensional size of V and is measured in the same manner as &, the
E
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1

nondimensional size of 
r234' 

The open points are the values of (T 1 )
C
, as coo-

puted by (5.1), for nine contours in the 300 element model. The value of the

crack-tip parameter (T 1 ) c is given by the intersection of each respective curve

with the e - 0 axis. Due to the large gradient in 0 C for small a it is

seen that the accuracy of any extrapolation based solely on these evaluations

of (T1 ) c (i.e., open points) would be of questionable accuracy, except perhaps

near steady-state conditions. The solid points at c - 0 in Fig. 5 . 7 have been

obtained using ( 2.14). It is seen that these values of (T 1 ) c appear to be reasonable

extrapolations of the curves of 0 )^ (5.1) thus giving some degree of confidence in their
accuracy.

Path Independence of (T 1)c

Based on arguments put forth in earlier portions of this paper, the

value of (f 1 ) c obtained through (2.14) should be independent of the path

(i.e., r234) which is used in its computation. This path-independence is

illustrated by Fig. 5.8a where (T 1 ) c is plotted as a function of the nondimen-

sional distance of r234 from the crack-tip, &, for several times. Generally,

the path-independence is seen to be quite good. The largest deviation from

path-independence in this figure is for the intermediate time of 10.8 hours

with the difference between the extreme contour values being less than three

percent. To further emphasize this path-independence, (T 1 ) c is plotted as a

function of time in Fig. 5.6. As a result of its path-independence,is(T1)c 

represented by a single curve. Interestingly, this curve is a straight line

for times before approximately 10 hours.

Riedel and Rice (36) have arrived at the following approximation for

K0 (which they call A(t) based on the assumed approximate path-independence of

1 1 during the initial portion of nonsteady creep:

K2 (1 - v2 ) /E	 1	 1
KJ	

(n+1)ylt	

n+1	
(5.2)
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comparing (5.2) with (2.50) one concludes that 0 c should behave like 1/t for
times when (5.2) is valid. In a log-log plot of (T 1 ) c versus time this would

result in a straight line with a slope of -1. The straight line shown in Fig.

5.6 ij inclined from the horizontal by 400 and therefore has a slope of -0.84.

The current work has resulted in some evidence that J 1 is approximately path-

independent during initial nonsteady creep but that its value tends to increase

with time. This tendency for J 1 to increase with time could explain the rather

significant departure of the current results from the behavior of (5.2).

Quarter-Point Singularity Element Calculation

We next consider the results of computations using 57 and 102 element

meshes with quarter-point singularities. The purpose of considering these lugs

refined meshes is to determine if the expense and effort in using the 300 element

model is necessary for obtaining accurate results. Table 5.1 summarizes the

results of these meshes for the limiting cases of purely elastic behavior

and steady-state creep behavior. For the elastic problem it is seen that the

results from these meshes agree with the 300 element mesh results to within

one percent. At steady-state the 102 element model still agrees with the 300

element mesh (in terms of Ci) to within one percent while the 57 element

model now differs by approximately eight percent.

The contours used for the 57 and 102 element mesh are indicated in Fig.

5.2. The 57 element mesh has four contourb while the 102 element mesh has

eight. The path-independence of (T 1 ) c , as computed from (2.14), is illustrated

for these two meshes in Fig. 5.8b and 5.8c. It is seen that the degree of

path-independence in both is similar to that observed for the 300 element mesh.

Since we have evidence that the 57 element mesh is less accurate than the other

meshes at steady-state, it appears that high quality of the path-independence

. . 
I



To determine the adequacy of the 57 and 102 element meshes for the non-

steady creep problem we now compare their (T 1 ) c histories with that obtained

with the 300 element mesh (see Fig. 5.9). The curve appearing in this figure

has been placed through computed points from the 300 element slash. The results

of the 102 element mesh agree almost perfectly with this curve for times between

0.2 hours and 16 hours. Prior to this period and after this period the results

fall below the curve by as much as 20 percent. While little can be said about
	

A

the absolute accuracy of the calculations for early portions of nonsteady creep,

we know (based on Appendix B) that( T 1 ) c should agree numerically with Ci at

steady-state to within a few percent. Therefore it can be said that the
 C

values of(T 1 ) c from the 102 element mesh are significantly in error at steady-

state. Recalling that this model gave a steady-state value of Ci which agree

quite well with the 300 element mesh results (see Table 5.1) it is perhaps our-

prising that such a significant error in the steady-state value of (t l ) c can

exist. To better understand the results of this model,($ 1 )
c
 is plotted as a

function of C in Fig. 5.10. It is noted from this figure that the values of

(T 
1
)
c
based on (2.14) (i.e., the solid points) appear to be reasonable extrapo-

lations for times when the results are in agreement with the 300 element mesh

results. However, as steady-state is approached, it is seen that these solid

points no longer appear reasonable. If, however, one extrapolates the values

of (T 1)^ to E - 0 for the bottom two curves of Fig. 5.10, it is found that

these values of('T i 1 c are in good agreement with the 300 element mesh results.

In comparing the equations for evaluating Ci, (T L)c and (T1 ) c , it is

seen that ( T l ) c is the only one of the three which involves an integration

over the crack-tip quarter -point elements. Based on this and the apparently

good accuracy of Ci and (T 1)c it is believed that the integration over

these elements is the major cause of discrepancy in ('f l ) c between the 102

and 300 element mesh calculations.
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The 57 element results do not compare favorat',y with the curve of Fig. 	 .

5.9 for any significant portion of the solution. For most times the values of

(T 1) c fall below thu curve with tho percent difference ranging from 50 percent

,st t - 0.02 hr. to 15 percent at steady-state. Based on the discrepancy of Ci

indicated in Table 5.1 and in the generally bad comparison of ( T1) c in Fig.

5.9, it appears that the 57 element mash with quarter-point singularity is not

sufficiently refined for accurate creep calculations. This conclusion is per-

haps a bit unexpected considering the degree of accuracy which this mash displayed

for the elastic probelm (see Table 5.1). The reason for this drastic change

of accuracy in going from elastic to creep bahavior.may be that the crack-tip

strain singularity (i.e., t 1/2 ) is inappropriate for the r n/(n+l) type be-

havior expected to exist during creep. This topic is addressed in the following.

HRR Singularity Element Calculations

Based on the above observations, several analyses have been made using the

seven-noded variable singularity element descr!bed previously (Section IV). The

elastic solutions obtained with this element agree very well with those using

the quarter-point isoparametric element as can be seen from the entries of

11 in Table 5.1. Also included in Table 5.1 are the quasi-steady-state values

of Ct. The introduction of the correct strain singularity for steady-state

creep (r n/(n+l)) does not significantly affect the 102 4lement mode's Ci but

does imporve that of the 57 element model.

The analyses which use the seven-node singular element have the same

singularity for the elastic solution and the subsequent creep solutions.

tempts at changing the singularity from the elastic r -1 2 to the r n (n+l,

value between the elastic and first creep solution have created numerical

ficulties due to the disequilibrium introduced in the process. No attempt

at a gradual transition has been made.
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The(T1)c results using the seven-noded singular element are shown in

Fig. 5.11. The solid curve represents the results of the 300 element model.

The evaluation of (T 1 ) c is according to (2.14) with the numerical procedures

E	 being identical to those employed with the quarter -point elements except for

the contribution of the singular elements to the volume integral. For the

quarter-point elements, the stresses are assumed to be distributed lineraly with

respect to the local coordinates. The volume integral is then evaluated in

terms of quantities at the 2x2 Gauss ponts. For the beven -node element, linear

interpolation is used and in addition, several calculations are done assuming

radial dependence of the type o - a + b -/(l+n). It can be seen from Fig. 5.11

that none of the calculations agree well with the 300 element results.

Based on this set of calculations, the general disagreement in 
(T1)c

between the singular crack-tip element models and the 300 element model does not

appear to be due to the strength of the singularity which is introduced at

the crack-tip. The general accuracy of C* for all the solutions with either

elastic or creep type strain singularities supports this view. Rather, it seems

likely that the difficulty in computing the volume integral of (2.14) stems from

the crack--kip element fields not satisfying the condition

	

fLC	 i (r,^)	 0)d6 - 0

	

r. ►0 	 rr	 ax l 	ij
(5.3)

From the discussion of Appendix A it can be seen that if this condition is not

satisfied while at the same time the fields have the correct asymptotic (ringu-

• lar) radial dependence, then the volume integral of (2.14) does not exist.

It therefore appears that accurate evaluation of (T 1 ) c using (2.14)

cannot be accomplished if one uses crack-tip singular elements which provide

-69-
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for the satisfaction of condition (5.3). At this point, it appears that one must

use a rather refined non-singular mesh (such as the current 300 element mesh)

or introduce special crack-tip elements which satisfy (5.3) in order to compute

(fl)c accurately. The next section illustrates that for many probelms of

practical importance, a more attractive alternative may exist.

C
(T 1 ) c as a Crack-Tip Field Parameter

The previous discussion has pointed out some computational difficulties

involved with evaluating (Tl) c . It was concluded that these difficulties

are associated with the contirbution of the crack-tip singularity elements to the

volume integral of (5.1). It has been seen that despite the elastic strain

singularity introduced by the quarter-point element scheme, the 102 element

mesh gives accurate values of Ci. Assuming this reflects the general accuracy

of this solution, it is desirable to use this relatively inexpensive model as

opposed to using a very refined non-singular mesh of =.:o introducing a special

crack-tip element which satisfies condition (5.3).

The effect of deleting the crack-tip singular elements from the volume

integral of (2.14) is shown in Fig. 5.12. Deleting these elements means that

we are in fact evaluating(T l ) C where V is the volume encompassed by the

crack-tip elements. We will denote this particular (T 1 ) c as (T 1 ) c . It will

be shown that depending on the relative size of the crack-tip elements and the

proximity of the solution to steady-state condition, (T 1)C is a good approxi-
oration to (T1)c.

The solid curve in Fig. 5.1 1" represents the results of the 300 element

mesh. The dashed curves are (T 1 ) c in the case of the 57 and 102 element

meshes and is (T 1) with k - 0.03 in the case of the 300 element mesh. The

crick-tip element sires for the 57 and 102 element meshes are 10 mm and 2.5 mm

(or 20 and five percent of the ligament size), respectively.

i
71 -



' 	 ^! K HF	
,,.

	 ..	

a s ..mat .....'*..° f°"Fro9*!}..

ORIGINAL i

Di - POUR QUALWI

101000

5000

200

100

mesh
-----	 300 (T,)c

..........	 300 (Ti )C" (. =3 percent)

-- —	 102 (t'),
—•—•	 57 (tai

N 2000
m 

hr 1000

500

1	 2	 5 10 20 50 CO 200

time, hr

Fig. 5.12 Comparison of (T 1 ) 6 and(T 1 ) o histories

for several finite element meshes

3

- 72 -

c	 ^

i^

z

t?y



Therefore, the procedure for this set of calculations is to select three val

- 73 -

The values of (T
1
) 6 for the 102 element mesh coincide with the solid

cuve for times after about 30 hours. Therefore 0 6 is a valid, path indepen-

dent, crack-tip parameter for times after about 30 hours and for values of (T1)c
beginning at approximately 1.6 of the steady-state value. Fig. 5.6 shows that

Ci is still significantly path- dependent at 30 hours and thus is not an acceptable

crack-tip parameter until much later.

The curve of (T 1)C, (e - 0.03), for the 300 element model "ems to indi-
cate that the validity of 0 ) 6 can be expanded to earlier times by reducing

the size of the quarter-point elements. For example, a d of three percent of the

ligament would apparently result in (T1 ) 6 being valid as early as seven hours and

for values of (T 1 ) 6 as large as 4.3 the steady-state value of (T l ) c . The curve of

d
(T1 ) c for the 57 element mesh tends to approach the solid curve as steady-state is

approached but never acutally converges even at steady-state. This indicates that

this mesh is too coarse for (T
I )

6 to be a useful parameter.

Constant Velocity Propagation in a Strip

We now present some calculations for the cracked strip problem previously

referred to as Problem II. The geometry, loading and material properties for

this problem are summarized in Fig. 5.3. The purpose of this problem is to

determine how significantly the crack-tip fields are affected by crack propa-

gation velocities commonly observed In experiments. If for realistic crack

speeds, the crack-tip field is essentially the same as for a stationary crack,

then Ci is path independent and characterizes the crack-tip fields. In any

case, (T 1 ) c is a valid parameter.

As noted previously, the steady-state Ci values for the infinite strip

problem can be obtained analytically without much difficulty. (See Appendix E.)

A
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of Ci which span the range of values reported in the literature. The values

which have been chosen are 0.05, 5.0 and 50 N/mm.hr . Having these values, the

corresponding remote steady-state t yy is determined as well as the edge dis-

placement which will result in the same remote elastic tyy . These displacements

are applied to the model elastically at t w 0. The resulting values of J 1 are

compared to the analytic values in Table 5.2. Next, the steady-state edge dis-

placement rates are determined. Using the elastic solution as an initial

state, the displacement rate, S, is applied until the model reaches steady-

state. The computed steady-state values of Ci are compared to their analytic

values in Table 5.2. The next step is to determine an upper bound crack

velocity for each of the chosen values of Ci. The following formula is based

on the experimental data reported in [23,24] and represents data from center-

crack, double-edge-crack, single-edge-crack, compact, and round-bar specimen

types.

d ' a 
Ci 1.173	

(5.4)

where

1.68 . 10-2 (upper bound)
a

3.36 . 10-3 (average

Having reached steady-state, the crack is propagated at the upper bound velocity

given by (5.4) until it is determined that a convecting steady-state has been

reached.

As noted previously, these calculations use the quarter-point crack-tip

element. The crack growth simulation is accomplished through a combination of

mesh shifting and remeshing as described in Appendix D. The nominal size of

the crack growth increments is 0.4 mm or two percent of the crack-tip element

width. For the highest velocity case (Ci - 50 N/mm.hr ), this procedure re-

sults in crack growth at approximately every fifth solution step.
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Rosults for a Plane Strain Strip

The results of the plane strain strip calculation with C* - 50 N/mm.hr

and dL - 1.65 mm/hr are given in Fig. 5.13. The values of (fi 1) c and Ci are
given for the portion of the calculation prior to steady-state as well as

during the crack propagation protion. The band represents the range of values

obtained from the four contours illustrated in Fig. 5.3. Both (T 1) c and Ci

converge to the 50 N/mm.hr value at steady-state. During the crack propagation,

It is seen that (i
1 ) c

and Ci do not depart significantly from their steady-

state value. This means that this combination of loading and crack speed

results in the crack-tip fields being essentially at steady-state conditions.

This in turn means that both (i
1 ) c

(or (T1 ) c) and Ci are valid crack-tip

field parameters.

A closer view of the crack propagation portion of these curves is given

in Fig. 5.14. The dashed curves braceting the initial portion of the solid

curves represent the degree of path-independence and continue to be representative

of the path-independence observed during the crack propagation steps. For both

( T 1 ) c and C*1 , it is seen that the strip has essentially returned to its steady -

state condition prior to each crack growth increment. It is thought that the large

departure of (T
I ) c (as compared to C*) is more representative of the nonsteadiness of

the crack-tip field, since the validity of C* in general, and the numerical evalua-

tion of W* (2.43) in particular, are based on the existence of stead y-state conditions.

The effect of remeshing is seen at approximately eight hours. The

first two steps after the remeshing were found to result in rather erratic con-

tour integral values and are not indicated in these figures. The equilibrium

correction feature of the present model and the automatic time step regulation

procedure both act to quickly restore equilibrium at the crack-tip.

The propagation portion of the calculation with C* = 5 N/mm.hr  and

r
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da
Ft . 0.111 mm/hr is given in Fig. 5.15. Here again it is seen that both 

(Tl)c

and Ci have converged to the analytical value of Ci (to within two percent, which

is also about the degree of path-dependence). Comparing these results with

those in Fig. 5.14 for the higher Ci and crack speed it is soon that steady-

state creep conditions were not reached until 12 hours as opposed to approximately

two hours in the previous case. Also, the return to the steady-state value after

mesh shifting takes more time (two hours compared to 0.25 hours). However, when

compared to the time between crack growth steps (both use 0.4 mm) it is seen

that the lower velocity case return to steady-state well before the next growth

step occurs. This result indicates that lower load levels and crack speeds

are inherently closer to steady-state conditions. While this behavior may

seem intuitively correct, it should be kept in mind that these results depend

on the empirical formula (5.4) which is only valid for 304 stainless steel.

It remains to be seen if similar behavior occurs in other materials.

A calculation has also been done for the case of Ci-0.05 N/mm.hr . As

a result of the large number of solution steps between crack growth steps, when

using the maximum velocity of 5 . 10-4 mm/hr, the calculations used a higher

velocity (5 . 10-3 mm/hr). Even at this unrealisitcally high velocity (for this

level of ioading), the behavior is more steady-state-like than the case of Ci-5.ON/mm.
hr described above.

Results for a Plane Stress Strip

In both plane strain problems discussed above, the steady-state value of

(T 1 ) c is equsl to Ci to within the accuracy of the calculations. This is con-

sistent with the relationship and comparison of Ci and steady-state (T 1 ) c given

in Appendix B. According to the approximate numerical values of this •%ppendix,

there should not be as close agreement between Ci and (T 1 ) c in the case of

plane stress. The primary purpose of this analysis is to verify this predicted

behavior.
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For this plane stress analysis, Ci was chosen to be 50 N/ma . hr and

the crack was again propagated at 1.65 ma/hr. The remote t
YY . 

the steady-state

.,isplacemcnt rate. 6, and the elastic displaeewart,, d. are 171 MPa, 0.168 ma/hr

and 0.114 mm, respectively.

The results of this calculation nre

is seen from these figures that ( T 1 ) 6 does

value at steady-state then Ci. The steady.

approximately 52 N/mm . hr which is higher

this is a somewhat smaller difference than

given in Fig. 5.16 and 5.17. It

converge to a somewhat higher

-state is seen from Fig. 5.17 to be 	
00

than Ci by four percent. While

suggested by Appendix B, the sign of

the difference is the same. In light of the approximate integration used in

obtaining the numeric values in the appendix, this discrepancy is within reason.

As expected, the general behavior for plane stress conditions is essentially the

same as for the previous plane strain analyses. Therefore, previous observations

concerning the steady-state nature of the crack-tip field.during crack props-

gation are t&nchanged by the shift to plane stress conditions.

Double-Edge-Crack Specimen Analysis

The following describes several calculations and their results for the

problem previously referred to as Problem III. The geometry and finite element

mesh for the double-edge-crack specimen are given in Figs. 5.4 and 5.5, respec-

tively. The material properties are those of 304 stainless steel at 6500  and

are assumed to be the same as those used in the strip analyses. (See Fig.

5.3) Calculations have been made for remote applied stresses of 157 and 176 MPa.

The experimental crack growth histories for these two stress levels are repro-

duced from (51) in Fig. 5.18. It is seen from these curves that the first two-

thirds of the specimen lives are characterized by crack velocities of less than

0.01 mm/hr compared to nearly 0.5 mm/hr as rupture is approached.	 s

The primary pucpose of the following calculations is to verify the

conclusions which were reached in the previously described strip calculations;	 -
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that is, that the crack-tip fields are essentially creep steady-state fi

even for the most rapid creep crack velocities. These calculations will be a

valid check because the input to the calculations is only the remote applied stress

and the measured crack velocity history, and does not in any way depend on experi-

mental determination of Ci or (T 1) c as did the strip calculations. In fact,

Koterazawa and Iwata do not report such measurements it, [51).

Analysis of Initial. Low Velocity Crack Growth

This section describes the simulation of the initial portion of the

crack velocity histories given in Fig. 5.18. In all of these calculations, the

entire load is applied elastically at t - 0 and held constant throughout the

subsequent creep solution steps. The convergence of (T
1 ) c

and Ci to their

steady-state values is shown in Fig. 5.19, with the dashed lines in the Ci

plots denoting the degree of path-dependence. It is seen that steady-state

conditions are reached between a half and one hour after the load is applied.

(Table 5 .3 summarizes the computational aspects of this portion of the calcu-

lation.) Therefore, it is seen by refereing to Fig. 5.18 that crack growth does

not begin in the two specimens until well after steady-state conditions are

reached. Since the current calculations assume small displacements and infinitesi-

mal strains, and since only the strain and displacement magnitudes depend on time

once steady-state is reached, there is no reason to continue the numerical calcu-

lations to the crack initiation times indicated by the experimental results.

Therefore, the initial crack propagation is simulated at times after steady-state

conditions are reached but much earlier indicated by the experiments.

The crack growth simulation results are shown in Fig. 5.19. The crack

increment size for this study was approximately 0.01 mm which is nominally 2.4

percent of the crack-tip element size. It can be seen that only one mesh shift

(i.e., crack growth step) was modeled. It is clear from this figure that the

time it takes for the specimen to return to steady-state is signific?atly less
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than the tim(; io the next crack growth increment (indicated by dashed lines).

Therefore, the initial portion of the crack growth histories of Fig. 5.18 are

clearly occurring under essentially steady-state conditions and thus Ci as

well as 6
1 
)
c
are valid crack-tip parameters. Since an increase in Ci re-

sults in a more rapid return to steady -state conditions, the above conclusion

will remain valid for the initial constant velocity portions of the curves of

Fig. 5.18.

When crack growth occurs so slowly that the crack -tip is essentially

at steady-state, the crack-tip field does not depend on the history of the

specimen. Therefore, assuming steady-state conditions continue to exist, it is

possible to skip to the final stages of crack growth without modeling the

intermediate crack growth. If it is found that crack growth is still slow

enough for steady-state conditions to exist, then it seems reasonable to expect

that the bevaivor at intermeiate crack lengths is also of a steady-state type.

The following describes the results of this procedure when applied to the

two double-edge-crack specimens.

Analysis of Final Stake of Crack Growth

To analyze the final stage of crack growth, the crack length is in-

creased to 2.75 mm and the process of applying the load elastically and creeping

to steady-state is repeated. Table 5.3 summarizes the computational aspects of

this process. The convergence of (tl 
d 

and C1 to their steady-state values is

shown in Fig. 5.20. Having reached steady-state, the cracks are gtown at the

rate suggested by the last portion of the crack histories (Fig. 5.18) as shown

in Fig. 5.20. The significant increase in the frquency of mesh shifting (compared

to that in Fig. 5.19) due to the velocity increase mak.2s the details of the

curve difficult to distinguish in this figure. Hotiever, the time step size is

such that :six or seven :steps occur between each :rack growth increment. Unlike

the strip problem, the values of (T 1) 6c and Ci are clearly increasing during
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this crack propagation process.

It is necessary to determine whether this increase in the crack-tip

parameters is due to the crack-tip no longer being at steady-state conditions

or whether it is due to the increase in crack length. This is accomplished

by continuing the calculation without further crack extension. If the value

of the parameters do not change significantly with time, this means the increase

was largely due to the crack length increase and that crack growth is still.

occurring under essentially steady-state conditions. Examination of the final

portions of the curves of Fig. 5.20 shows that this is the case.

Based on this analysis; it appears that the conclusions reached as a

result of the strip calculations are still valid. Since, (i) the strip analy-

sea are much less expensive than this analysis of the double-edge-crack geometry,

(ii) the steady-state Ci for the strip is easily obtained analytically and (iti)

the crack-tip parameters do not depend on crack length for the strip geometry,

it seems that similar studies for other materials and/or other temperatures could

most effectively be accomplished through the use of the strip geometry. The

need for such studies follows from the vast simplification of fracture analysis

and prediction which results if crack growth ,.-curs under steady-state conditions.

More will be said about this point in the conclusions.
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SECTION VI

CONCLUSIONS

Summary of Results

A finite element model has been derived which is generally applicable

to viscoplastic material models. This model uses an initial strain approach

which reduces computation time spent on forming and decomposing stiffness

matrices and also circumvents the problem of element incompressiblity constraints.

Through special featuree, including a correction term in the finite element

equation, this model provides for improved adherence to the postulated constitu-

tive behavior (as compared to the standard initial strain approach) and

allows time steps which approach in size those used in tangent stiffness

methods. The accuracy and efficiency of this model with eight-node isopara-

metric elements and the quarter-point crack-tip element approach have been

verified through several calculations for a compact specimen geometry and a

strip geometry. Also, a method of simulating crack growth through shifting

of the quarter-point singularity elements and periodic remeshing has been

described and demonstrated.

It has been shown that despite the °act that Ci characterizes the

crack-tip fields under steady-state creep conditions, it does not have an

energy or energy rate interpretation. A related path-independent integral

parameter (T 1 ) c , however, does have the energy rate interpretation commonly
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	 " [(i )1csSlR (6.1)

c :R

attributed to Ci. Since experimentalists use this energy interpretation to

correlate creep crack growth rates, it appears that( Tl ) c (as opposed to C*)

is gaining acceptance as a useful creep crack growth rate criterion . Further-
.

more,(T l ) c does not rely on the existence of steady-state creep conditions

and thus might be expected to be a valid criterion even if creep crack growth

should occur at rates which preclude the existence of steady-state creep

conditions at the crack-tip.

A creep crack growth simulation for 304 stainless steel has shown that

for realistic load levels and corresponding crack speeds the crack-tip field

is essentially at a steady-state creep condition. This means that for this

material, the propagating crack-tip field is largely unaffected by the

history of crack growth or the history of loading. This feature can greatly

reduce the analysis required for predicitng creep crack growth behavior

in a component as can be seen from the following suggested methodology.

We assume that t;: ,^ crack propagation speed dais related to (T'
T1)css

(i.e.,- dt) through the powe, law suggested by experimental data (23,

241.

Next we determine (e.g., by steady-state creep finite element analysia)

(T CBSas a function of crack length. Because of the assumed steady-state

crack-tip behavior, this can be accomplished by considering several discrete

crack lengths and then fitting a curve. No crack growth simulation procedures

are necessary. Combining (6.1) with this result provides the following

relationship between time and crack length;

P(t) ^(T1) css l-Rt •
fa
	da + t	 (6.2)
u	

u	 i

where a  is the initial crack length and t i is the time when crack growth initiates.
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The only unknown quantity in (6.2) is the initiation time t i . If the initiation

time for creep crack growth is assumed to be negligible (as might be suggested

from the results of (9,101) then (6.2) immediately provides the predicted crack

growth history.

Vitek "Ill does not consider t i to be negligible based on several

experiments (compact and double-edgy-craek specimens) on two CrMoV steels.

Using a dislocation model he further concludes that a measure of crack opening

displacement (COD) correlates well with the initiation of crack growth in these

experiments. If the same conclusion is valid for 304 stainless steel, then

one can presumably predict t i based on a transient finite element analysis of

the initial flawed configuration and a critical value of COD. If initiation

occurs long after steady-state conditions are reached, it is then reasonable

to estimate t i using the rate of COD obtained from a steady-state finite

element solution. The use of (6.2) and of tae critical COD concept has not

been investigated in this study.

All of the creep calculations have used the constitutive law which is

obtained by generalizing the Norton constitutive law to three dimensions.

Whereas this ldw is a good representation of steady-state creep behavior, it

does not, in general, represent the primary stage of creep. Future work should

include a study of other creep constitutive laws (such -is that of Bodner and

Partom (321). Also, the present model is derived on the assumption that dis-

placements are small and strains infinitesimal. The strains in the vicinity of

the crack-tip for the present calculations with 304 stainless steel material

properties are on the order of 5-10% and therefore suggest that a finite

strain formulation may be more appropriate. A study should be undertaken to

examine this aspect of the model.

As noted previously, the creep crack growth prediction methodology

expressed in (6.1) and (6.2) has not been tested. A study to assess the
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utility of this methodology should therefore be undertaken. This study

should consider crack growth initiation as well as crack propagation and

should include a range of load levels and several specimen geometries. If

the methodology is found to be successful for constant applied loads, then

the study should be extended to consider more general load histories.

i
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APPENDIX A

Existence of Limits for Contour Integral Defin tion

This appendix discusses the existence of the various limits which have

been taken in defining OD C . (^ c and CR . In considering these limits, we

make use of the generally accepted result (see 1 61 for example) that the

strain energy density quantities W and W as well as the quantity W* behave

as 1/r in the vicinity of the crack-tip. This is assumed to be valid for

nonsteady as well as steady-state creep and also for the elastic state

existing at t 0 0.

Based on the known asymptotic behavior at the crack-tip (i.e., the

HRR fields) the limits of r  contour integrals for equations ( 2.11,13,14,25,30,

40,44) can be written in the following form provided one takes r E as being a

circular contour centered at the crack-tip.

00

W

E^ frE)f(E,O)EdO^fff(0)dO
c

(A. L)

A

The nonsingular function f(c,O) becomes equal to f(0) when the limit is taken

and reflects the asymptotic nature of tht HRR fields.

In the following we limit the discussion to symmetric problems involving

only mode I crack-tip deformation. Further, we assume that crack surface trac-

tions and body forces are identically zero. With these conditions, we need only

consider (ATl ) c and we can therefore rewrite (2.11)

(AT 1 ) c ° Lt f
r

[ n l &W - n ( tj i + Jtj d4e jdS	 (A.2)

C
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i 	1

Now consider the limit of the Vt -V[ integral of (A.2). Inspection of this

integral shows that it can be put into the forma

i

C+ E ^ f	 Z &(r,e)rdrde
•J Vt -VE r

(A.")

R it

C + E U f(^(1)g(r , 9)d0dr

J^
where Vt is a small circular region centered at the crack-tip and C is the

integral over the region V 	 VC. The function 4(r,0) is a nonsingular

function which becomes g(0) in the limit as r go*" to zero, where g(e) is

known in terms of the NRR fields. Upon a first inspection of (A.3) one is

tempted to conclude that the limit does not exist since the integrand has

a non-integrable singularity "t r - 0. If, however, we look at the right

equality of (A.2) it is seen that this conclusion results in a contradiction.

Since we have shown that the limit of the integral on r  does exist (and

therefore (A.2) requires that the limit of the integral over V  - V C must

exist). A re-inspection of (A.3) shows that the only way for this apparent

contraction to be resolved is if the g(r,0) of (A.3) has the following

.
property:

it	 rt

fTr-
g(r,0)d0	 g(0)d0 • 0
 n

(A.4).

•	 If function g(()) is known explicitly for the linear elastic case and there-

,	 fore (A.4) can be directly verified. For the 11RR field 80) is not known

explicitly and therefore (A.4) can only be verified numerically.
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For infinitesimal *train, nonlinear elasticity, the following relation

provides an alternative to verifying (A.4) direclty

ao	 au	 au

fV-V	
lie dV " fr n' do i' ^x d3 - f n' Ao i' ^ d8 (A.5)

 234	 r

The relation (A.5) (which assumes zero crack surface tractions and no body

forces) illustrates that this volume integral of type (A.3) can be expressed

in terms of the contour integral of type (A.1). The relation (A.5) can be

verified through the divergence theorem, the linear momentum valance condition

and the following identities:

aO ij , ,. a	 aw	 - a (crmnaEmn 	 mnaemn
axk 	 axk ac i 	 af i 	 axk , 	ac	 ax

	

J	 J	 iJ

as

De 	
AC ij - 

Aomn
ij

au

	

	 of
mn

ax 	
s

Ad a x k	 Aomn axk
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APPENDIX B

Numerical Difference 
Between(T1)css 

and C*,

The purpose of this appendix is to give some examples to illustrate

the numerical difference between 
(T1)CBS 

and C* as given by (2.48). Using

(2.50), (2.49a) and (2.51), we have

(T )	 R n+1
Tcss I 1 + (n+1)I
 

fn aeq 
(e)cosede	 (B.1)

1 

The values tabulated in Table B.1 were computed approximately from values of

I and plots of aeq(0) given in (6) and should be viewed accordingly.

Table B.1 Comparison 
of(T1)cas 

and C*

Plane Strain	 Plane Stress

n- 3 n- 13	 n- 3 n- 13

(T1)css
C*	 0.98 1.00	 1.11 1.14
1

It is seen that for the range of n commonly encountered, 
(T1)CBS 

and C* are

numerically very similar for plane strain but differ significantly fo g plane

stress.

G --) -
' h	 ,
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APPENDIX C

Numerical Methods for Evaluation of Contour Integrals

The numerical procedures for evaluating J 1 as defined by (2.2

as defined by (2.14) and C* as defined by (2.31) are described in the following.

General Procedures

In studying the contour integral paths indicated in the finite element

meshes of Figs. 5.2,3,5 (dashed lines) it is seen that the paths always pass

through the centers of elements as opposed to along their edges. This procedure

has been adopted so as to benefit from the presumably more accurate solution

within the elements. Each element contour is divided into two segments with

the integration being accomplished by two point Gaussian quadrature. All of

the integrations are performed in the element local coordinates.

The J CIntegral for Linear Elastic Analyses

The contour integral portion of (2.27) involves the stresses, T ij , and

the displacement derivatives, au j /ax l . Both of these quantities can be evalu-

ated at the required Gauss points through the element nodal displacements and

simple manipulations with element matrices. In the current study, J 1 is only

considered as a parameter for linear elastic material behavior and therefore

U - ( 1 12)uijeij.

The C*-Integral

The C* integral of (2.31) consists only of a contour integral. The W*

of (2.31) is evaluated using (2.43). The gradient rates are approximated by

8ui _ 1 ^^.^.

3x 1	t Jxl
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and therefore are average rates for the increment as opposed to the rates at

the end of the increment. The contour integration procedure for Ci is as

described above and uses two point quadrature for each element segment. Whereas

stresses are easily computed at the required contour Gauss points in the elastic

case, the stresses must be computed incrementally in creep analyses and there-

fore stress information must be stored for each contour integration point

unless nonstandard element interpolations are used. In the present study,

the stres_os at the contour Gau i points are interpolated from the 2x2 element

Cause points through bilinear Lagrangian interpolation (in local coordinates),

thus eliminating the need for additional storage.

The ( T1)c-Integral

In the evaluation of (2.14) it is understood that 
Tii 

are the stresses

at the beginning of the time increment being considered. The procedures for

evaluating the contour integral portion of (2.14) are the same as used in evalu-

ating C1. The incrmental stress-work density, AW, is computed from

N - ( T ij + 
2 AT11)AC

The stress derivative appearing in the area integral of (2.14) is evaluated

based on the 2x2 element Gauss point values and the assumption that the stresses

are distributed bilinearly with respect to element local coordinates. Elements

which are entirely within V  are integrated with the usual 2x2 Gauss: quadrature.

Elements which are only partially within V  have each applicable quadrant in-

tegrated by one point Gauss quadrature.
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APPENDIX D

Simulation of Crack Extension

Modeling .he propagation of a crack using the finite element method

requires some special procedure for representing the creation of new crack

surface. A common procedure is to relax the nodal forces at the crack-tip

node, thus in effect allowing the crack to extend to the next node along its

path of propagation. This relaxation process can be accomplished in one

time step but usually is allowed to extend over several time steps due to the

large change in nodal forces which is inherent in the process. The major attrac-

tion of this node-release procedure is its simplicity. There are two draw-

backs of this procedure which resulted in an alternate procedure being adopted

in this study. The first is that the increment in crack growth is directly

determined by the nodal spacing in the mesh, therefore restricting the flex-

ibility one has in selecting a time step size, the mesh size and /or the

number of nodal force relaxation steps. The second and perhaps more important

drawback is that the method is not adaptable to models which use crack-tip

singularity elements.

A typical mesh in the vicinity of a crack-tip is shown in Fig. D.1. The

region A represents the region being modeled by singular crack-tip elements

which in the present case remain centered on the crack-tip. The Type B

elements are eight-noded isoparametric elements which distort so that the

region A can remain centered on the crack-tip. The sequence of element configu-

rations in Fig. D.1 illustrates the shifting/remeshing procedure used in [53,

54] and adopted here. The region A is moved by shifting nodes without altering

element connectivity until the Type B element ahead of the region A becomes
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Fig, D.1 Example of mesh shifting/femeshing procedure

for simulation of crack growth



overly distored. At this point, the elements in the vicinity are redefined

so that further shifting is possible. It can be seen that this procedure allows

the increment in crack length to be arbitrarily small and does not involve

release of nodes in the same sense As for the previously described node-

release procedure.

The added flexibility afforded by this shifting procedure does require

some additional work. For example, in the creep crack growth application, nodal

displacements and element integration point stresses are interpolated. The

method of interpolation which is employed in this procedure is discussed next.

We consider that the solution at time t, has been obtained and we now

must find the solution at time t 2 . During the interval ( t
11

t2 ) the crack has

grown by an amount Aa. Since the crack growth simulation procedure requires

that nodes be shifted, and since the solution at t  must be represented in terms

of nodal and Gauss point quantities for the shifted mesh, it is necessary to

submit the affected nodes and Gauss point to an interpolation or fitting pro-

cedure.

The simplest interpolation procedure for nodal displacements and the one

used in {53,541 as well as for calculations in the present study is one which

directly uses the element shape functions. In this method, the nodal positions

for t e mesh at t 2 are located in the mesh at t l . Knowing which element

of the mesh at t l encompasses this new node position allows the immediate

calculation of displacements by use of the element shape functions and the

nodal quantities for the mesh at t l . While this is a consistent procedure

for transferring the solution at t  to the mesh at t 2 , it should be understood

that the transfer cannot be perfect. That this must be the case can be seen

by considering that spatial derivatives of displacements, etc., are not continu-

ous across element boundaries. Since the element boundaries change position

during the shifting process, points which had continuous derivatives at t  will
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have discontinous derivatives in the mesh at 
c
  and vice-versa.

.
When the mesh is shifted, the element Gauss points are also shifted; this

means the Cause points represent different material points before and after the

shift. In order that the new Gauss point stresses accurately represent *_hfi cur-

rent stress state, it in necessary to interpolate stresses for the new Cause

point locations using the old Gauss point values and locations. The procedure

for doing this is to assume the element stresses are distributed bilinearly with

respect to the element local coordinates. Then it becomes possible to use

bilinear Lagrangian interpolation polynomials and the 2x2 element Gauss point

stresses to interpolate within each element. For all creep crack growth

calculations in this study, the crick growth increment sires were chosen small

enough that the new Cause point stresses for each shifted element were always

the result of interpolation within that same element.
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APPENDIX E

Analytic&: Evaluation of C* for the Strip Problem

This appo"dix briefly outlines the anlaytical evaluation of C* for two

infinite strip problems and that uummarizes the resalts in tabular form.

The first strip problem is that which is illustrated in Fig. 5.3. We shall

refer to this problem as Cas:,i A. The second problem, or Case B, is similar

to Case A in every respect except the top and bottom edges of the strip are

"clamped" rather than "on rollers". These boundary conditions are summarised

as follows:

Case A: 6y (x,h)	 uy(x,-h) - Z	 (E.1)

Txy (x,h) - T xy (x,-h) - 0

Case B: 4y (x,h)	 uy(x,-h) - d	 (E.2)

ax (x,h) - ux(x,-h) - 0

The crack surfaces are traction-free in both cases.

We can select a Ci-integral contour which allows C l* to be evaluated

quite easily. I Consider a contour of rectangular shape which coincides with the

top and bottom edges of the strip, extends far enough ahead of the crack-tip

so as to be in a steady-state stress field which is unaffected by the presence

of the crack-tip:, and extends far enough behind the crack-tip so as to be in

stress-free material. We now evaluate Ci, as defined by (2.31), through the

use of this contour. It can be seen that for both Caie A and Case B, the

horizontal portions of the contour at y - + h do not contribute to the

-This procedure parallels that used by Rice 150J for the evaluation of J 1 in
a similar elastic strip problem.

- 103 -



r

integral, nor does the portion in the stress-free material. At the veritcal

portion of the contour ahead of the crack-tip, the only non-zero term is that

involving W*. Therefore, it is seen that for both Case A and Case B we have

C1 - 2W*h	 (E.3)

where W** Implies W* existing far ahead of the crack-tip. Using the boundary

conditions (E.1) and (E.2) and the assumption of steady-state conditions, it

is possible to evaluate the remote steady-state stresses, Tii. Using (2.43) re-

sults in W.* and-thus Ct. The results of this exercise are summarised in Table

E.1.

The corresponding linear elastic strip problem which is obtained by re-

placing the displacement rate boundary conditions by the corresponding dis-

placement boundary onditions has been treated in a similar manner. These re-

cults are also given in Table E.1.
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.	 Table E .1 Analytical Solutions for the

Infinite Strip Problem

Steady-State Creep	 Linear Elasticity

E h	
^ ^ ++,^.1Bnj /h\,7

ya/

n+i 	
cnd\ X^o

y \4 ll^nh/  	 E0^ I

Case A

plane stress 1 1 1

plane strain ?
^43

)n+1 2
.5

1

i -v

Case B

plane stress
2 n+1 22

1-v 2J,

plane strain * * v(1+v	 1-2v

This case does not have a steady-state solution since the
boundary conditions require a volumetric strain rate.
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