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MEASUREMENT ACCURACIES IN BAND-LIMITED EXTRAPOLATION'

“’NO Kriti“ﬂ
Moore School of Electrical Engineering

University of Pennsylvania
Philadelphia, PA

ABSTRACT

It is shown that in band-limited (or visible angle limited)
extrapolation the larger effective aperture L' that can be realized
from a finite aperture L by over sampling is a function of the accuracy
of measurements. It is shown that for sampling in the interval

'% < |x| <L, b>1 the signal must be known within an error e, 8iven

by

[J

where
L 1is the physical aperture
L' is the extrapolated aperture
k = 2m/2 » A is the wavelength
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1. BACKGROUND

The axtrnpolntion problem finds its origin in the original in-
vestigation reported by D. Stepian and H. Pollnckl’z on the Spheroidal
functions and the results on the Uncertainty Principle reported by
H. Landau and H, Polllck.2’3 Recently a resurge of interest iﬁ this
area has resulted in large mumbers of published papers two of %bich

: 1|
written by A. Jain4 and R, Schnfers give an excellent review of the

scope of the present research. K, Abendy

also has given a review of
the limitations of extrapolation methods.

One of the recurring problems occurs in any attempt to implement
a useful algorithm of extrapolation is the numerical instability. Since
the problems are nearly ill posed small errors are capable of generating
totally erroneous results. In this communication an attempt will be
made to estimate the bounds for the acceptable errors and then place a

ceiling of the measurement accuracy and computational accuracy needed

for the extrapolation,

2, PROBLEM STATEMENT

Consider the function F(x) of finite norm known in the interval
~L/2 € x < L/2, The Fourier transformF(u) is band limited in the in-

terval |u| < 10. One has the well known relation

L/2
h(x - x') g(x') dx* = F(x) (1)
-L/2
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The problem of interest here is as follovgs

Given the function F(x) in the internal -L < x < L find the source
function g(x') and then extrapolate into the region Ix[ > L. In its
corresponding discrete form Stepian has shown that although in general
a non unique answer exist the requirement that the solution has a minimum
norm ensures the uniqueness of the solution,

Despite the simplicity of the formulations numerical solutions are
very difficult or almost impossible to obtain, The g(x') is wildly vary-
ing function as can be inferred from the following argument.

In the space of spheroidal orthogonal functions wn(x) one observes

the following:

F(x) =Za, Y x , [|[FG|| =20 <= @)
h(x=x') = I ¢ (x) $&') , Ilwn(xHI -1 3)
2
and g(x') = 235‘- &), |ls@)|| =2 ! )
Kn n _X;~ :

where An are the eigenvalues of the spheroidal functions. The problem
here is that for any functions F(x) with bounded norm ||F|| < o« the
gsource function g(x) may not be bounded.

The reason is that when one attempts to extrapolate beyond fﬁe
degrees of freedom dictated by the bandwidth and time iﬁtérval Slepian
and later H. Landau6 has shown that the asymptotic form of the eigen-

values is giwven by
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A (e) + ; (5)
" @ + e’
when the index n is given by
n . ngugipgrz c + b logvc (6)
i

where n(no) is the measure of the u internal and m(T) is the measure of

a finite set such that [c m(s)] = 2L. Notice that the product

IE?H&%%lJEL-l - Ndr is known as the degrees of freedom of the interval
2L.

The important observation here is the exponential decay of the
eignvalues corresponding to indexes n larger than the incex Ndr which is
the degree of freedon of the intery~1l. One concludes that the terms of

the norm of g(x) corresponding to n > N, are of the form of an exponen~

tially increasing sequence, i.e.,

g, %0 Q+ eb) -1 » B> Ny 7)

One might insist that the product ;&- should converge and obtain
a converging result. This requirement however eliminates interesting
and useful applications. In order to counter this difficulty the
problem will be looked at from a different point of view in the next

section.
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3. THE GREEN'S FUNCTION EXPANSION

L]

!
Observing that E—:—(_E%-.—;‘—)- is the real past of the free space

Green's function one for axially symmetric fields obtains the expansion

(220 , Jxxt|=lxl-|x!|

sla kOeX) w 2(ant)) 4, (o 3 Ok ) (8)
P.(M P (0), |x=x'|m|x|+|x|

/

Pn(m m ] the integral equa‘t:is‘m becomes Pn('ﬂ) - (;~1)n

F6 1, ) mFx) , |x] <L/2 (2)

where

L/2
G, = (2n+1) f (g(x') - (-1)" g(~x")] dn(x') dx', a constant (10)
0

The problem now is that of finding some convenient numerical technique
for a) deciding when to truncate the series to some point N and b)

inverting the N x N matrix below

N
! Gn Jn(xm) - F(xm) n=0, m=0,.,...N (11)
1 ; 1

For small values of x 1.e,, x <n the Bessel functions are small mmbers
and the matrix becomes 1l1 conditioned. In the next section an estimate

on the required number of temis will be made.
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4, THE APPROXIMATE DIMENSION OF INDEX SPACE

In order to atrive at some precise criterion of performance we

consider the following problem. Consider a plane wave distribution

‘ik°

bution describes a source of angular size o thus establislitng the

resolution limft of the reconstructed aperture,

which results from a step function distribution T (k).

The distri=

One obtains the one dimensional distribution in the image plane

below
for P w kx and u = coe §

-§.«:
00 - v
F(x) = f (T 1@ dk_] = f e Atw) du

-00 w 00

For a constant source of A(u) = 1 , |ux| < cos O

one obtains A(u) =0 , |u|l > cos a

Y
F (x) -f eip“ du = ,2u

sin u, p
u; P

uj = cos q
Alternatively observing that

u

1
F(p) = 2 f cos u p du
0

and cos up= I{2n + 1) cos (-‘gl) In ) P (w)

-5~

(13)

(14)

@as)
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F(x) = I % i“ (p) | (16)
where @, = 2 cos %}- IPn-l (ul) -2 (ul)J (17)
or
a, ™ 2 cos %1_[ ﬁ%:—i—l-) (2n + 1) P!" (cosa) (18)

It is instructive to estimate the approximate dimension of the index

space. The distribution directly in terms of the angle 0 is

F(O) =1 , 6<a

In the space of the orthogonal functions {va + 1/2 P (cos0)} one has
F(8) = Zao {A+1/2 P (cosd)} (19)

_ I,n--].(“II.) - ?n-i-l(ul)
e M/ TS |

(20)

In order to find the effective dimension one compares the above with the
flat spectrum of the delta function which is

§)y = T VYm+1/2) {van+1]2 ‘[Pn cos ] } (21)

o

The spectrum is vY(n + 1/2)
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Using Parseyals theorem one has

cosol
.]. lr(a)lz d (cos®) » I anz = [1 - cosa] (22)

o

Normalizing and comparing with N temms of the delta function spectrum one

obtains

N-1
I m41/2) =5, 00D ____—-l(; —tosd (23)
o
o [+

where o, is the amplitude of the first term

1- Pl (cosa)

Oy " T (24)
and 1 - coso is the quadratic content of F(6)
One obtains

¥ = T @3)
or for large N and small G

N 2 ' (26)

This result complies with our notion of resolution i.e., the
accuracy of observation is inversely proportional with the number of
dimensions nf our observations, The following conclusion can now be

reached.



1. A resolution cell of dimension 2¢. ra2quires
N -‘é dimensions in the aperture.

A consequence of this is that if one sample at the Nyquist rate
which for antennas is Ax = %-corresponding to a field bl'vicw of
%; %-. The dimension of the aperture are LN = 2N A

2 L]
other hand 1f the aperture is less than the standard aperture L < LN

< 0K On the

one has to oversample in order to acquire the needed required dimension-
ality, Oversampling however imposed conditions on the accuzacy of

measurements and this will be examined in the next section.

5. MEASUREMENT ACCURACY

Let us assume that we have a flat delta function spectrum vyn + 1/2

of dimensions N which is oversampled N times a segment given by

L <ix| < , b is a constant (27)

2b

N

The bessel functions for small arguments are given by

n

1000 —F— p = lx (28)
(2n + 1)1} ‘

one then can obtain the smallest term which corresponds to the smallest
x and largest N as follows. The amplitude of the smallest normalized

term is

2
IVZ o, AFITZ 5 () |% = @ - cosn) /IRFT §_(x) (29)

where Oy is obtained from eqn. 24

-8~
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More precisily from the Appendix and recognizing that

l- colot-*%

N

N - 2
o e )78 s
172 ;1(:)1 =2 N (2N+1)( N3

(30)

In order to carry out mesningful calculations one must contain the errors

‘“2 to levels below the smallest term which is

2 1 (g-)” v ( o2 ) (31)
e o e e 1=~ sesen 31

where p = 'z_b'

For large N corresponding to small & the above equation reduces to

2N

: | 52

5 |
e P sirvmm—

SIE
zio

The above result can also cast into a different form by considering the
natural degrees of freedom No corresponding to the loﬁg aperture of length ifl‘

of L. They are Y

N, = 2L (33)
The error becomes
e N 2N
e O | (34)
4N ’
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Finally in terms of an extrpolated aperturs L' defined by

' NO
viae obtains
4L’
1 e L
“ e’ (T"- T') o9

6.  NUMERICAL EXAMPLE

In order to illustrate the above extrapolation the following example

was considered, A target in u space of the form

F(u) = 1 [u] < .5
F(u) = 0 lu] > .5

was viewed in the image plane in an aperture
o L
L/2 = ,810 k 7" (2m) .810
The aperture sustains

No = 2,2 degrees of freedom N= 1,610

The target however requires at least

N = « 1l - comsat =2

or more degrees of freedom,

Using equal sampling 1l points were observed in the image plane

from - ,810 < x < + ,810, Because of the even symmetry however only 6

~10-
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points were necessary., Tor 12 degrees of freedom one obtains that the
error should be below

2 12

e £2.92x 10

Figure 2 shows the results of the extrapolation that indicate that the
aperture has been extended by roughly a factor of four.
If, on the other hand, only three points were taken Corresporiding

to 6 degrees of freiddom the error would be
-3
ey 2 1.91 x 10

Figure 1 however shows that only a factor of 2 has been achieved.

7. DISCUSSION OF RESULTS

In this study one more extrapolation algoritlm has been introduced
to the many that already exist in the literature. Questions of unique-
ness and contamination by noise were not addressed because they are
adequately treated in the literature. The question which was examined
here was the following: Given that we have an aperture of length L
having No = 2kL degrees of freedom and an angular resolution of-% (A
is the wivelength) how accurate should the measurements be in order to
increase the effective size to L'. In the absence of noise the results
of our study show that the accuracy of measufements has to ﬁe at least

as good as the term e, , shown below

(o [

(37)

1

» 2KL'
kL'
w4 (&b

11
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Parameter L is an important factor in the sampling strategy. lit lies
in the range l<b<a and it is desirable that it is as close as it is
possible to .L.

This indicates that the important region is the area closa to the
edges of the aperture. It is this area that has to be well surveyed in
order to produce effective extrapolation.

The exponential behavior shown in equation (37) 1s similar to the
one indicated by H. Landau in the asymptotic form of his eigenvalues,

It seems that this is an inherent property of the extrapolation problem

which makes it so difficult to implement in practice.

]2
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APPENDIX

BOUNDS FOR BESSEL FUNCTION

The product of Bessel Functions is

k

k & ptqt+2 ;
Jp(x) Jq(x) =¥ (-1) 2 I (p+q +2k +1)
k! T(prqHkl) D(ptk+l) T (qHk+l)

forp-q-n+1/2andjn- E‘;— Jh+1 (x) one has
Zz

2n4+2k+2
2 s k x.2ntk (2n4+2k-1)! 2"

(x) ==L (1) &) —
I, =7 2 %1 (Zn+kn) PP
because I' (n + —;-) - -L,-—:— (2n - 1)1!

2

2n+2k (2n+2k+1) |
ki (2n+k+l)! [(2nb2kti;11]2

Jgi@x) = £ (-1) p

. o { L (2n+3)p:}+R
[(2+1) 1] [(2n43) 11]

2n

2 .
CGoviyir 1 - Adntd 77— +R

(2n+3)
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2n 2
[(2043) 117 (2nt3)

The remainder R is a positive quantity because the k+l term is always less

! than the k term.

The ratio of the Ak+1 to the Ak term is

Akl (2nt2ked) P
A G ZoHt2) [ onaian)?)
5 for p<1
“ One obtains then
2n 2 2n
L o G 40 o
[(2n+1) [(2n+1)11]

or gince

2) " ;‘;‘_‘_‘% T(n) 28
then
@n41) !} = —4-2-“—*9——;5 = (2n+1) (20-1)!! = (2041) —ZRLE
(n#1)! 2 (n!) 2°
and since 1
Jom @ e P s Mim @




	GeneralDisclaimer.pdf
	1982022098.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf


