General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Low Energy, Left-Right Symmetry Restoration in SO(N) GUTS

Richard Holman

MAY 1982

National Aeronautics and Space Administration

Goddard Space Fight Center Greenbelt, Maryland 20771

LOW ENERGY, LEFT-RIGHT SYMETRY restoration in so(n) Guts

BY

R. HOLMAN*

LABORATORY FOR HIGH ENERGY ASTROPHYSICS NASA/GODDARD SPACE FLIGRT CENTER
 GREENBELT, MD. 20771

Abstract

It is show that a general n-step symetry breaking pattern of $\mathrm{SO}(4 \mathrm{X}+2)$ down to $\mathrm{SU}_{\mathrm{C}}(3) \mathrm{SU}_{\mathrm{L}}(2) \times \mathrm{V}_{\mathrm{Y}}(1)$, which uses regular subgroups only, does not allow low-energy left-right symetry restoration. In these theories, the suallest mass scale at which such restoration is possible is $\sim 10^{9}$ GeV as in the so(10) case.

We also find that the unification mass in $\operatorname{SO}(4 \mathrm{~K}+2)$ GUTS mast be at least as large as that in $\operatorname{SU}(5)$. These results assume standard values of the Weinberg angle and strong coupling constant.

I. Introduction

The unification group $80(5)$ of Georgi and Glachow (1) is the anallaet simple group which containe the low-energy gauge group $G_{\text {w }} \equiv$ $\mathrm{SU}_{\mathrm{C}}(3) \times \mathrm{SU}_{\mathrm{L}}(2) \times \mathrm{V}_{\mathrm{Y}}(1)$. Although the $\mathrm{SU}(5)$ model hat been quite auccensful in some areas, it leaves some questions unanswered. One of these questions concerns the nature of parity violation. In the $\operatorname{sU}(5)$ model, left-right symetry ${ }^{(2)}$ violation is intrinsic, that is, it is imposed at the outset. This is aesthetically unappealing and leads us to consider theories with spontaneously broken left-right spmetry. The simplest grand unified theory which is left-right symetric is the SO(10) theory of Fritzech and M1nkowski ${ }^{(3)}$ and Georgi ${ }^{(4)}$. It contains the eubgroup $\mathrm{SO}_{\mathrm{LR}}(4) \cong \mathrm{SO}_{\mathrm{L}}(2) \times$ $S U_{R}(2)$ under which the left-handed fermions transform as ($2, \underline{1}$) and their charge conjugates transform as (1,2). Thus, as long at $S_{L_{R}}(4)$ remins unbroken, left-right symaetry exists (for the phenomenology of $\operatorname{SU}_{\mathrm{L}}(2) \times S U_{\mathrm{R}}(2)$ $x \quad U(1)$ theories, see ref.(5)). At what energy scale is $\mathrm{SO}_{\mathrm{L}}(4)$ a good symmetry? Using the method of Georgi, Quinn and Weinberg ${ }^{(6)}$ and known vaiues of the Weinberg angle, θ_{w}, and of the strong fine otructure constant, α_{g}, (both evaluated at M_{W}), it has been shown that $\mathrm{SO}_{\mathrm{LR}}(4)$ symmetry can be Lestored only at energies larger than $10^{9} \mathrm{Gev}{ }^{(7)}$. The question we ask (and answer) in this paper is the following: can $\mathrm{SO}(4 \mathrm{~K}+2)(\mathrm{K}>2)^{(8)}$ grand unification groups be found which exhibit low-energy ($O\left(M_{,}\right)$) list-right symmetry restoration? If we assume standard charge, color and weak I-spin assignmente for the feraions ${ }^{(9)}$, that only regular subgroups ${ }^{(10)}$ are alloved in the symetry breaking pattern and that standard values of $\sin ^{2} \theta_{w}$ and a_{s} are used, then we find that the anawer is no. The lowest mase scale for leftright symmetry restoration is $0\left(10^{9} \mathrm{GeV}\right)$ as in the $\mathrm{s} 0(10)$ case. This result 18, in a sense, akin to that of Dawson and Georgi(11) for SU(N) groups. They
show that under our asmaptions, the unification ass in all such sy(V) vodela is the same as in the $\operatorname{SU}(5)$ case.

This paper is organised at follows: in sec. II, we collect eem gemeral reaults on n-step symetry breaking pattaras. Ia sec. III, we vite Aown theps
 regular subgroups which could allow lowenergy left-right symetry restoration. Sec. IV uses the known ranges of values for $\sin ^{2} \theta_{\mathbf{w}}\left(\mu_{0}\right)$ and $a_{8}\left(M_{w}\right)$ to impose cons risints on the laft-right symantry reatoration maes scale: In the symmetry breaking pattern of sec. III. Sec. V sumarizes our results and lists possible ways to evade the conclusions of our analyais.

II. N-Step Symmetry Breaking in General

Let G be the unification group. As previousiy stated, we assume standard charge: color and weak I-spin assignments for the feraions. As in ref. (12), we consider an N-step symetry breaking pattern of G down to $G_{w s}$ of the form

$$
\begin{align*}
& \stackrel{M}{M_{1}} G_{1}^{C} \times G_{1}^{P} \times U_{1}^{C}(1) \times U_{1}^{P}(1) \rightarrow \ldots{ }^{M} A_{G}^{C} \times G_{j}^{P} \times \underset{1=1}{j} \\
& {\left[U_{1}^{C}(1) \times U_{1}^{P}(1)\right] \ldots \xrightarrow{M} G_{w s}} \tag{2.1}
\end{align*}
$$

In Eq (2.1), the superscript C (F) indicates that the non-abelian group $G_{j}^{C}\left(G_{j}^{F}\right)(j=1 \ldots N)$ contains $S U_{C}(3)\left(S U_{L}(2)\right)$. We also have

$$
\begin{equation*}
G_{1-1}^{(r)} \supseteq G_{j}^{(r)} \times v_{j}^{(r)}(1), j=2,--N, r=C \text { or } F, \tag{2.2a}
\end{equation*}
$$

with

In Eq (2.2b), I denotes the hypercharge operator of the weinbert-8alen theory.
Thus, in Eq (2.1), the unfication mas (at which color and flavor hre first separated) is M_{1} and the weak $I-s p i n$ mase scale is $M_{1} M_{M+1}$ 。

Next, we use the renormalization group equations ${ }^{(13)}$ for the various sauge couplinge to obtain equations for $\alpha_{s}\left(M_{w}\right), a_{I}\left(M_{w}\right)\left(a_{s} \equiv \frac{g_{8}^{2}}{4 \pi}, a_{I} \equiv \frac{g_{I}^{2}}{4 \pi}\right.$, where g_{g} and g_{I} are the gauge couplinge of the $g r o u p s \mathrm{SO}_{\mathrm{C}}(3)$ and $\mathrm{SU}_{\mathrm{L}}{ }^{(2)}$ respectively) in terus of the intermediate mass scales in Eq (2.1). Following ref. (12), we define

$$
\begin{align*}
& A^{2} \equiv \frac{\operatorname{Tr}\left(Y^{2}\right)}{\operatorname{Tr}\left(I_{3}^{2}\right)} \tag{2.3a}\\
& \Gamma \equiv \frac{6 \pi a_{e}^{-1}}{11}\left[1-\left(1+A^{2}\right) \sin ^{2} \theta_{w}\right], \tag{2.3b}\\
& \Lambda \equiv \frac{6 \pi a_{e}^{-1}}{11}\left[\sin n^{2} \theta_{v}-\frac{a_{e}}{a_{i}}\right], \tag{2.3c}\\
& x_{i} \equiv \ln \frac{M_{1}}{M_{i+1}} \quad i=i,-N, \tag{2.3d}
\end{align*}
$$

where a_{e} is the electrongnetic fine structure constant, I_{3} is the diagonal generator of $\mathrm{SO}_{2}(2)$,

$$
\begin{equation*}
\sin ^{2} \theta_{w} \equiv \frac{a_{e}}{\alpha_{I}} \tag{2.4}
\end{equation*}
$$

and all coupling constants are evaluated at $Q^{2}=\left(2 M_{w}\right)^{2}$. For standard charge assignments, A^{2} is given by its value in the $\operatorname{SU}(5)$ model, i.e.

$$
\begin{equation*}
A^{2}=5 / 3 \tag{2.5}
\end{equation*}
$$

Using the results of ref. (12), we may write:

$$
r=\sum_{j=1}^{N} a_{j} x_{j} \quad \begin{align*}
& \text { ORIGINAL PAGE IS } \tag{2.6a}\\
& \text { OF POCR OUIALITY } \tag{2.60}
\end{align*}
$$

where

$$
\begin{align*}
& a_{j} \equiv C_{j}^{F}\left(A^{2}-\left[N_{j}^{F}\right]^{2}\right)-C_{j}^{C}\left[N_{j}^{C}\right]^{2} \tag{2.7a}\\
& b_{j} \equiv C_{j}^{C}-C_{j}^{F} \tag{2.7b}
\end{align*}
$$

Here, $c_{j}^{(r)},\left[N_{j}^{(r)}\right]^{2}(r=C$ or $F)$ are the eigenvalue of the second Casimir operator acting on the adjoint representation of $G_{i}^{(r)}$ and the embedding coefficient of the hypercharge Y into $G_{j}^{(r)}$, respectively. $\left[N_{j}^{(r)}\right]^{2}$ is a measure of the fraction of generators of $G_{j}^{(r)}$ which go into the makeup of Y. If we write

$$
\begin{equation*}
Y=Y_{j}(r)+Y^{\bullet}, \tag{2.8}
\end{equation*}
$$

with $Y_{j}(r)\left(Y^{-}\right)$contained (not contained) in $G_{j}(r)$, then

$$
\begin{equation*}
\left[N_{j}^{(r)}\right]^{2} \equiv \frac{\operatorname{Tr}\left[\left(\mathrm{Y}_{j}{ }^{(r)}\right)^{2}\right]}{\operatorname{Tr}\left[\mathrm{I}_{3}{ }^{2}\right]} \tag{2.9}
\end{equation*}
$$

The formalism of Appendix B of ref. (12) gives a straight-forward way of calculating $\left[N_{j}{ }^{(r)}\right]^{2}$ for any group (for the $\operatorname{SU}(N)$ case, these way be found in ref. (11) and ref. (14). We list the values of $C_{i}{ }^{(r)}$ and $\left[N_{i}{ }^{(r)}\right]^{2}$ below:

$$
C_{f}^{(r)}=\left\{\begin{array}{rl}
N & G_{f}^{(r)} \equiv S U(N) \tag{2.10a}\\
N-2 & G_{f}^{(r)} \\
\equiv S O(N) \\
0 & G_{i}(r)
\end{array}>U(1), ~ \$\right.
$$

$$
\left[N_{j}^{C}\right]^{2}=\left\{\begin{array}{c}
2\left(\frac{1}{3}-\frac{1}{n}\right) G_{j}^{C} \equiv S U_{C}(n) \\
\frac{2}{3} \\
G_{j}^{C} \equiv S O_{C}(n)
\end{array},\left[N_{1}^{F}\right]^{2}=\left\{\begin{array}{l}
2\left(\frac{1}{2}-\frac{1}{m}\right) G_{1}^{F} \equiv S U_{F}(m) \\
1
\end{array} \quad G_{j}^{F} \equiv s 0_{F}(m)\right.\right.
$$

Using Eq: (2.10a,b), we evaluate a_{1}, b_{1} of Eqs (2.7a,b) for the intermediate subgroups which will be relevant to later discussions. Let K_{1} denote the intermediate symmetry group which is unbroken at the ith-step of symmetry breaking. Then we have:

$$
\begin{align*}
& a_{j}=-\frac{2}{3} \Delta_{j}, \quad b_{j}=\Delta_{j} \text { if } K_{j} \equiv \operatorname{SO}_{C}\left(n_{j}\right) \times S O_{F}\left(m_{j}\right) \\
& a_{j}=-\frac{2}{3} \Delta_{j}+\frac{2}{3}, \quad b_{j}=\Delta_{j}+2 \text { if } K_{j} \equiv S U_{C}\left(n_{j}\right) \times S 0_{F}\left(m_{f}\right) \times U_{j}^{C}(1) \\
& a_{j}=-\frac{2}{3} \Delta_{j}+\frac{10}{3}, \quad b_{f}=\Delta_{j}-2 \text { if } K_{f} \equiv S O_{C}\left(n_{j}\right) \times S U_{F}\left(m_{f}\right) \times U_{f}^{F}(1) \tag{2.11c}\\
& a_{j}=-\frac{2}{3} \Delta_{f}+4, \quad b_{j}=\Delta_{j} \text { if } K_{f} \equiv S U_{C}\left(n_{f}\right) \times S U_{F}\left(m_{f}\right) \times U_{j}^{C}(1) \times U_{f}^{F}(1), \tag{2.11d}
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{1} \equiv n_{f}-m_{j} . \tag{2.12}
\end{equation*}
$$

III. N-step Symmetry Breaking for $50(4 \mathrm{k}+2)$

We now let $G \equiv S O(4 K+2)$ and consider an $N-s t e p$ symmetr: breaking pattern of G down to $G_{w s}$, subject to the contraint that only regular subgroups of G be allowed to appear. From Dynkin ${ }^{(15)}$, we see that the subgroups $G_{j}{ }^{(r)}$ can only be of the form $\operatorname{SO}(2 l), \operatorname{SU}(l)(l \leq 2 K+1)$. This constraint also implies that once an $S O(2 l)$ group has broken down to an $S U(m)$ subgroup, this $S U(m)$ can only break. down into subgroups of the form $\operatorname{SU}\left(n_{1}\right) \times \operatorname{SU}\left(n_{2}\right) \times U(1)\left(n_{1}+n_{2} \leq m\right)$.

We consider the following symetry breaking pattern:

For this petcern, Eqs (2.6a,b) become:

$$
\begin{align*}
& r=-\frac{2}{3} \sum_{i=1}^{N-1} \Delta_{i} x_{i}+\frac{2}{3} \sum_{i=\alpha}^{\beta-1} x_{i}+4 \sum_{i=\beta}^{N-1} x_{i}+\frac{10}{3} x_{N} \tag{3.2a}\\
& A=\sum_{i=1}^{N-1} \Delta_{i} x_{i}+2 \sum_{i=\alpha}^{\beta-1} x_{i}+\quad+x_{N}, \tag{3.2b}
\end{align*}
$$

where Δ_{1} is defined as in Eq (2.12)(16). The relevant quantity in our analysis will be Ω, defined by:

$$
\begin{equation*}
\Omega \equiv \frac{1}{4}\left[r+\frac{2}{3} \Lambda\right]=\frac{6 \pi a_{e}-1}{11} \frac{1}{4}\left[1-2 \sin ^{2} \theta_{w}-\frac{2}{3} \frac{a_{e}}{a_{s}}\right] \tag{3.3}
\end{equation*}
$$

where all couplings are evaluated at $Q^{2}=\left(2 M_{v}\right)^{2}$. Dawson and Georgi ${ }^{(11)}$ have shown that if M_{G} denotes the unification mass in the $G \equiv \operatorname{SU}(N)$ case, then

$$
\begin{equation*}
\Omega=\ln \frac{M_{G}}{M_{w}} \tag{3.4}
\end{equation*}
$$

From Eqs (3.2a, b) we find (17)

$$
\begin{equation*}
\Omega=\sum_{i=\beta}^{N} x_{i}+1 / 2 \sum_{i=\alpha}^{\beta-1} x_{i} . \tag{3.5}
\end{equation*}
$$

If we set

$$
\begin{equation*}
x_{1}=0 \quad 1=1, \ldots, \varepsilon-1 \tag{3.6}
\end{equation*}
$$

then only groupe of the form

$$
\begin{equation*}
S U_{C}\left(n_{j}\right) \times S U_{F}\left(n_{j}\right) \times I\left[U_{1}{ }^{C}(1) \times U_{j}{ }^{P}(1)\right] \tag{3.7}
\end{equation*}
$$

can appear in Eq (3.1). The unification mase M_{B} is given by

$$
\begin{equation*}
\ln \frac{M_{B}}{M_{W}}=\sum_{1=\beta}^{N} x_{1}=\Omega, \tag{3.8}
\end{equation*}
$$

which is the $S U(N)$ result stated above. That this should be the case can be seen by realizing that all abgroups of the form in Eq(3.7) are contained within the $S U(2 K+1)$ subgroup of $S O(4 K+2)$. Thus, the fact that they are also embedded in $S O(4 R+2)$ becomes irrelevant.

IV. Constratnes on Mas Scales

We now proceed to find constraints on some of the intermediate mass scales appearing in Eq(3.1). We are especially interested in constraints on M_{B}. the scale at which the flavor group changea from an orthogonal group to a unitary one. This change signals the breakdown of left-right symetry amongt the fermions ince $S O_{F}(w)$ treats both particles and their charge ronjugates in an identical fashion. Thus, it is at M_{B} that the flavor interactions becone left-handed.

$$
\text { We shall use values of } \sin ^{2} \theta_{w}\left(M_{w}\right) \text { and } \alpha_{s}^{-1}\left(M_{w}\right) \text { in the ranges }(18)
$$

$$
\begin{align*}
& \sin ^{2} \theta_{w}\left(M_{w}\right)=0.19-0.24 \tag{4.1a}\\
& a_{s}^{-1}\left(M_{w}\right)=7.5-9.3 \tag{4.1b}
\end{align*}
$$

We shall also take $a_{e}^{-1}\left(M_{w}\right)$ to be ${ }^{(18)}$

$$
\begin{equation*}
a_{e}^{-1}\left(M_{w}\right)=128.5 \tag{4.2}
\end{equation*}
$$

The quantity that we are interested in is

$$
\begin{equation*}
\ln \frac{M_{B}}{M_{w}}=\sum_{1=\beta}^{N} x_{1} \equiv \emptyset \tag{4.3}
\end{equation*}
$$

Since all the $x_{i}(1=1, \ldots, N)$ are non-negative, we may use $\mathrm{Eq}(3.5)$ to find the crude bound:

$$
\begin{equation*}
\Phi \leq \Omega \tag{4.4}
\end{equation*}
$$

with equality if and only if all $x_{i}(1=\alpha,--, \beta-1)$ vallish. In this case only groups of the form $\mathrm{SO}_{\mathrm{C}}\left(\mathrm{n}_{\mathrm{f}}\right) \times \mathrm{SO}_{\mathrm{F}}\left(\mathrm{m}_{\mathrm{f}}\right)$ appear in Eq (3.1). Since we have the bound

$$
\begin{equation*}
\Omega \geq 28 \tag{4.5}
\end{equation*}
$$

for $\sin ^{2} \theta_{w}$ and $a_{s}{ }^{-1}$ as in Eqs (4.1a,b), this implies that when $x_{1}(1=a, \ldots \beta-1)$ vanish, left-right symmetry can only be restored for $M_{B} \geq 10^{14} \mathrm{GeV}$. This would also imply that the unification mass, M_{1}, of Eq(3.1) could be iarger than $10^{14-15} \mathrm{GeV}$. This result agrees with those found in ref. (19) where the twostep case
is treated.
We can find a better bound on as follows: from Eq(3.5), we have

$$
\begin{equation*}
+1 / 2 \int_{i=\alpha}^{8-1} x_{1}=\Omega \tag{4.7}
\end{equation*}
$$

Let us compute $\ln \frac{M_{a}}{H_{B}}$:

$$
\begin{equation*}
\ln \frac{M_{\alpha}}{M_{\beta}}=\sum_{1=\alpha}^{\beta} x_{1}=\sum_{i=\alpha}^{\beta-1} x_{1}+x_{\beta}=2(n-\theta)+x_{\beta} . \tag{4.8}
\end{equation*}
$$

Uaing Eq(4.3), we find

$$
\begin{equation*}
\ln \frac{M_{\alpha}}{M_{w}}=\ln \frac{M_{\alpha}}{M_{\beta}}+\ln \frac{M_{\beta}}{M_{w}}=2 \Omega \cdots+\pi_{\beta} \geq 2 \Omega-1, \tag{4.9}
\end{equation*}
$$

since $x_{B} \geq 0$. If we now make the reasonable assumption that the unification mase, M_{1}, mat be less than the Planck wase $M_{p}-10^{19} \mathrm{GeV} \cdot 10^{17} \mathrm{M}_{\mathrm{w}}$, we arrive at the constraint:

$$
\begin{equation*}
\ln \frac{M_{p}}{M_{w}}=39 \geq \sum_{1=1}^{N} x_{1} \geq \sum_{1=\alpha}^{N} x_{1}=\ln \frac{M_{\alpha}}{M_{w}} \geq 2 \Omega-\Phi_{1} \tag{4.10~s}
\end{equation*}
$$

or

$$
\begin{equation*}
\oplus \geq 2 \Omega-39 \geq 17 \tag{4.10b}
\end{equation*}
$$

Or

$$
M_{B} \geq 10^{9} \mathrm{GeV},
$$

where Eq (4.5) was used in Eq (4.10b). Thus we see that the pottern of Eq (3.1) does not allow low-energy leftright symetry restoration. Since the pattern of Eq (3.1) is the mos general one (subject to our earlier conetraints) which could give rise to low-energy left-right smaetry restoration, we wet conclude that this phenomenon is not compatibie with our assumptions.

We may extract one more piece of information from this analysis; using Eq: (4.4.4.9), we find that

$$
\begin{equation*}
\ln \frac{M_{a}}{M_{w}} \geq \Omega \tag{4.11}
\end{equation*}
$$

This iaplies that the unification wass for the pattern of Eq (3.1) can in general be no smaller than $10^{14-15} \mathrm{GeV}$.

```
v. Conciusiont
```

Given our essumptions on the aseigntant of firraion quantim numbre, the form of the symetry breaking pattem of $S(4 R+2)$ down to G and the values of $\operatorname{on}^{2} \theta_{v}$ and a_{s}^{-1}, the mass scale at which left-right symetry restoration occurs wust be $\geqslant 10^{9} \mathrm{GeV}$. In this refpect, the general so(4R+2) case and the SO(10) case are identicel. If we want left-right aymetry to be reatored at energies of the order of M_{w}, we must relax some of the assumptions made here. The possibilities are as follows:

1. We may allow non-standard assignment of fermion quanzum numbers. In ref. $(12,20)$, an $S O(14)$ based $G U T$, with non-standard charge assignments is examined. In this theory, renoraalization group arguments allow the appearance of $S_{L_{R}}(4)$ at assacales M_{B} such that $3 M_{w} \leq M_{B} \leq 10^{2} M_{w}$.
2. We can argue that $\operatorname{in}^{2} \theta_{w}\left(M_{w}\right), \alpha_{g}{ }^{-1}\left(M_{w}\right)$ do not have to lie in the ranges given in EqB(4.1a,b). Rizzo and Senjanovie ${ }^{(21)}$ hate argued that $\sin ^{2} \theta_{w}$ may be as large as $0.27-0.31$, when right handec current effecte are taken into account. This would then allow M_{B} to be $O\left(M_{v}\right)$.
3. Non-regular subgroups of $S O(4 K+2)$ could be allowed in the symmetry breaking pattern ${ }^{(22)}$. This possibility will be treated in e later work.
[^0]We also found that unification mass scale in the $S 0(4 X+2)$ theorice has to be at least as large as that in SO(5). If proton decay is not seen in the sear future, it may be because Nature prefers an SO(4K+2) unification group.

Acknowledgenents

We thank Prof. G. Peldman for interesting discussions. This work was supported by an NRC/NAS Posdoctoral Fellowship.

1. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
2. If all particles are lefthanded, this is equivalent to charge conjugation symmetry.
3. H. Fritzsch and P. Minkowski, Ann. of Phys. (N.Y.), 193 (1975).
4. H. Georgi, Particles and Fields (1974) (APS/DPF Williamsburg) ed. C. E. Carlson (AIP, New York, 1975).
5. R. N. Mohapatra and G. Senjanovit Phys. Rev. Lett 44, 912 (1980); Phys. Rev. D23, 165 (1981); T. Rizzo, Iowa Preprint ISJ 672 (1981).
6. H. Georgi, H. Quinn, S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).
7. B. Georg1, D. V. Nanopoulos, Phys. Lett. 82B, 392 (1979); Nuc1. Phys. B155, 52 (1979); B159, 16 (1979); S. Rajpoot, Phys. Rev. D22, 2245 (1980); Q. Shafi, M. Sondermann, Ch. Wetterich, Phys. Lett. 92B, 304 (1980).
8. SO(4K+2) ($\mathrm{K}>2$) is used since only these have fermion representations compatible with the requirements of anomaly freedom, complexity with respect to $\mathrm{SU}_{\mathrm{c}}(3) \times \mathrm{SU}_{\mathrm{L}}(2) \times \mathrm{U}_{\mathrm{Y}}(1)$, having only $1,3, \overline{3}$'s of color, irreducibility and the ability to contain more than one feraion generation.
9. This means that only 1, 3, 3 of $S U_{C}(3), 1,2$ of $S U_{L}(2)$ and quarks with charges $Q=-1 / 3,+2 / 3$, leptons with charges $Q=-1,0$ are allowed.
10. Regular subgroups have as generators subsets of the generators of the unification group. Non-regular subgroups have non-trivial inear combinations of these generators as their generators.
11. S. Dawson and H. Georgi, Phys. Rev. Lett. 43, 821 (1979).
12. G. Feldman and R. Holman, John Hopkins Preprint JHU-HET 8201; this is an extension of the SU(7) model of J. E. Kim, Phys. Rev. Lett. 45, 1916 (1980), Phys. Rev. D23, 2706 (1981).
13. H. D. Politzer, Phys. Rep. 14C, 131 (1974); we neglect two-loop and higher effects as well as Higgs boson effects.
14. F. Bordi, R. Holman and C. W. Kim, John Hopkins Preprint JHU-HET 8! ! 0 (Phys Rev D, in press).
15. E. B. Dynkin, Amer. Math. Soc. Transl. Ser. 2, 6, 111 (1957).
16. This result is true for any group G that breaks down as in Eq (3.1).
17. This is also the result for Ω in a symmetry breaking pattern where $S O_{F}\left(m_{j}\right) \rightarrow \operatorname{SU}_{F}\left(m_{j+1}\right) \times U^{F}{ }_{j+1}(1)$ before $\operatorname{SO}\left(n_{k}\right) \rightarrow \operatorname{SU}\left(n_{k+1}\right) \times U_{k+1}(1)$.
18. J. E. Kim, P. Langacker, M. Levine and H. H. Williams, Rev. Mod. Phys. 53, 211 (1981); P. Langacker, Phys. Rep. 72, 185 (1981); W. Marciano and A. Sirlin, Phys. Rev. Lett. 40, 163, (1981).
19. F. Bordi, R. Holman and C. W. Kim, Phys. Lett. 1068, 58 (1981).
20. R. Holman, Johns Hopkins Preprint, JHU-HET 8205 (1982); other SO(14) based GUT models are presented in J. E. Kim, Seoul preprint on Supersymmetric Grand Unification in SO(14); Y. P. Kuang and S. -H. H. Tye, Cornell Univ. Preprint CLNS 82/529; L. F. Li and D. G. Unger Carnegie-Mellon preprint CMU-HEG 82-2; F. W. Lczek and A. Zee, Princeton Univ. Preprint "Spinors and Families" (19:9).
21. T. Rizzo and Senjanovic, Phys. Rev. Lett. 46, 1315 (1981); Phys. Rev. D24, 704 (1981).
22. Our results are also true if the n. n-regular $\mathrm{SO}(2 \ell+1)$ subgroups of so ($4 \mathrm{~K}+2$) are used.
23. R. N. Mohapatra and M. Popovic, CUNY Preprint CCNY-HEP-81/II; J. C. Pati and A. Mohanty (Private Communication).

[^0]: 4. ... include Higis boson effects in the renormalization group
 equatiol:s (see ref (23)).
