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THE ABSENCE OF RAPID X-RAY VARIABILITY IN ACTIVE GALAXIESI

Allyn F. Tennant2 and R.F. Mushotzky

Laboratory for High Energy Astrophysics
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

We have searched for variations on time scales ranging from minutes to

several hours in the X-ray flux from 54 observations of 38 active galaxies.

Our sample is composed mostly of Seyfert I galaxies but also includes radio

galaxies, NELG's, BL Lacs and 3C 273. Only NGC 6814 varied or time scales as

short as 100 sec. No other source was observed to vary with a time scale of

less than 12 hours. We conclude that large-amplitude short-term variations

are not a characteristic of the X-ray emission from active galaxies. Upper

limits on aI /I ranged from 2% for Cen A, 5% for NGC 4151, to - 20% for sources

giving 1 ct/sec in our detector. Three objects NGC 3227, NGC 4151 and MCG 5-

23-16 show variability consistent with a time scale of - 1 day.

We consider ways to reconcile the rapid variability seen for NGC 6814

(and NGC 4051) with the general stability observed for the other objects. If

the lack of variability is due to the growth of a new, constant source of soft

photons (such as thermal re-radiation from dust) then the X-ray plasma must be
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much larger than the size implied by the variations seen in NGC 6814. Other

possibilities are that the "originally lumpy" accretion flow stablizes or that

NGC 6814 is different from other galaxies.

Subject headings -- Galaxies: nuclei - Galaxies: Seyfert - X-ray: sources
	 J

iFrom a dissertation to be submitted to Graduate School, University of

Maryland, by Allyn F. Tennant in partial fulfillment of the requirements for

the Ph.D. degree in Physics.

2Also Dept. Physics a AstrononW, Univ. of Maryland
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I. INTRODUCTION

It is currently popular to assume that the X-rays from active galactic

nuclei a. •e produced deep in the potential well near a super massive object

(see Rees, Begelman and Blandford 1981 for recent discussion). If the X-ray

flux from this dense gravitationally confined plasma is observed to vary then

the shortest time scale for variability will be on the order of the light

travel time across the most stable orbit in a Schwarzschild geometry. This is

given by

AT - R/c - 10 GM/c2 - 50 sec M6

where M6 is the mass of the central object in units of 10 6 Mo . Since M6 is

expected to be in the range of 1 to a 1000 the relevant time scales range

from - 1 minute to - 112 day. Lack of variability on these time scales could

be an indication that the X-ray emitting plasma is not gravitationally

confined.

Recently, Guilbert, Ross and Fabian (1982) have discussed a model which

accounts for the simple power law energy spectrum observed from these

sources. In their model a region of hot electrons produces X-rays and cools

via inverse Comptcnization. Since the cooling time is much shorter than the

period in which a good spectrum can be obtained the observed spectre- will be

a time average. Sources powered with this mechanism should show a low

amplitude flicker with a time scale of minutes.

On the observational side, before the launch of the HEAO observatories

only two active galaxies, Cen A and NGC 4151, were bright enough to have had

their X-ray flux accurately measured in less than 12 hours. Both snow

va ► ^ihility on time scales less than one day. Winkler and White (1975) . ,aw a
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factor of 1.6 change during a 6 daffy observation of Cen A. The angular size

implied by such a change is less than i marc sec. Delvaille, Eptein and

Schnopper (1978) found evidence of a 25% increase in Cen A during a few hours,

confirming rapid variability. Lawrence. Pye and Elvis (1977) have shown that

Cen A is continuously variable in its X-ray flux over extended periods of

time.

The second brightest c-tragalactic X-ray source NGC 4151 also has a long

history of observations of X-ray variability. Mushotzky, Holt and Serlemitsos

(1978) reported a flare with r factor of 2 change observed over 1.5 days.

Lawrence (1980) using Ariel 5 data extending over several years finds that

such flare-like events are rather common. Although the absorption column does

vary in NGC 4151 and causes some of the observed flux variations (Barr et al.

1977) there are no indications of changes in the absorption or spectral index

during the more rapid changes (Mushotzky, Holt, Serlemitsos 1978; Baity et al.

1982).

Since the two brightest active galaxies are highly variable on time

scales as short as one day, it was expected that this should be a property of

all active galaxies. In the pre-HEAD days it was difficult to detect rapid

variability due to small collecting areas and low on source duty cycles.

Ariel 5 results (Pounds 1979; Marshall. Warwick and Pounds 1981) support the

possibility that all active galaxies (occasionally at least) show variability

on time scales as short as one day. However, it was impossible for Ariel 5 to

measure time scales shorter than one day for weak sources.
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In this paper we report on the results of a. search for rapid variability

from active galaxies using the HEAO-1 A2 * experiment (Rothschild et al.

*The A2 experiment on HEAO-1 is a collaborative effort led by E. Boldt of GSFC

and G. Garmire of CIT, with collaborators at GSFC, CIT, JPL and UCB.

1979). Since we are interested in the most rapid time scales we have used the

pointed data. In this mode the spacecraft observed the source of interest more

or less continuously for a period lasting from 3 to 18 hours. There were 54

pointings which gave data useful for this analysis. The high on source duty

cycle combined with the low background, large bandwidth a rnd large collecting

area resulted in high sensitivity to variations with time scales ranging

from - 1 minute up to - 3 r,ours. Longer time scales will be discussed by

Mushotzky et al. 1982.

II. METHOD OF ANALYSIS

For this analysis we used data from one Xenon detector, HED 3, which

means that we are most sensitive to X-rays from 3 to 15 keV. We selected data

with low veto rates (electron quiet) and low McIlwain L values (see below).

We also excluded times when the earth or earth's atmosphere was in the field

of view. These data selection criteria resulted in - 70% of the data being

rejected for further analysis. We subtracted a constant background rate and

then corrected for effective exposure to the source to obtain the source

flux. Errors in the source flux were assumed to be purely statistical with an

additional term due to the uncertainty in the absolute level of the

background.

3

It was then possible to compute X2 testing the assumption that the source

did not vary during a given observation. Since the probability of observing
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any given value of reduced X2 (that is X2 per degree of freedom denoted by XN)

is a strong function of the number of degrees of freedom N, we computed

X(x - 1)//27R.
	 (1)

For large values of N one can convert X into a probaLility of X being less

than or equal to this value by chance, using Table 26.1 of Abramowitz and

Stegun (1970). We have found that for N ranging from a few to infinity using

X = 1.3 gives a 90% confidence upper limit for detection of variability. The

usefulness of X is lost if 
X 2 

< 1.0, thus for X values of less than 1.3 we

define a 90% confidence upper limit by computing how much the source would

have had to vary to generate an X value of 1.3 exactly.

We have separated the variance aI in the source intensity I from the

variance introduced by counting statistics using

B2 =_ (-T) _ ((XN - 1)N /E aj-
2)/

<I>2.
a 2

i

	 (2)

In equation (2) a  is the error in I i for the 3 th data bin (see Appendix A);

where 8 is a measure of the source variability and is a function of the time

scale over which one averages and the "true" timescale for source

variability.	 Since a  is normalized by dividing by the source intensity the

resulting number is dimensionless and so measure6 an intrinsic property of the

source (independent of distance). We have numeM cally tested equation (2) by

generating "phantom" data with a -known amount-of "soiirce" variance and adding

in the correct amount of counting statistics variance. We have found that for

X > 1.3 equati-n (2) did allow us to separate "source" variance from photon

noise.
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For a variable source the value of 0 is a function of the size of the

time bins one used to calculate X2 . For example if the bin size 1s shorter

than all relative time scales B will be at a high and roughly constant

value. However, for longer bin sizes one starts to average more than one

"event" into a single bin and the value of B will decrease. 	 For a plot

of a vs bin size for Cyg X-1 see Doi (1980). An early version of this

analysis was done by Boldt et al. (1975).

It will be useful below to consider the value of a for the case where the

intensity is uniformly and randomly distributed between a low of Io and a high

of I 1 . When the bin size is smaller than the transition time, we find

2	 1 1 - I o= a I

s= 7T7 II +To-Mviz

where nI - I 1 - 1  and <I> is the average. For bin sizes equal to or longer
than the variation time scale, one starts to average over fluctuations which

will cause the observed value of B to be reduced from the value given above.

Thus on a a vs. bin size plot, the location at which the curve rolls over is

related to the time scale of the dominant source of variance in the data.

III. SOURCES OF ERROR

In any search for variability one expects to find a few events that are

statistically quite rare but nonetheless are not "real" events. This can

arise from two quite different causes. First, extremely rare non-X-ray

related events can occur in the detector giving rise to spurious

variability. Secondly, there can be a small amount of residual noise in the

detector which gives rise to an excess variance (above Poisson noise). The

residual noise can be totally invisible in a single observation but can, in

the case of a large number of observations, give rise to more than the

(3)
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expected number of "3a" detections of excess variance. In this section we

consider both types of errors.

A. Non-k-Ray Events

Twice out of a total of 102 observations, once observing NGC 526A and

once observing NGC 4593, we observed a short duration "flare". For the case

of NGC 4593 the flare increased the "source intensity" by greater than a

factor of 5 on a time scale of - 500 sec. In both cases the counting rate in

the detector not observing the source (see Tennant et al. 1981, Appendix A)

also increased. Therefore, in neither case can the variability be considered

to be coming from the source. We believe these events occur during times when

the particle flux has an unusual energy spectrum and a flux low enough not to

trigger any of our flags indicating particle events.

B. Aspect

The standard aspect solution provided by Goddard can b y in error by up to

.15 0 during pointed observations. We ob + ained - 25 aspect solutions from the

A-3 eAperimenters who generate better solutions. We found that for most cases

the Goddard supplied aspect was accurate to better than .05 0 . An error in

aspect of this magnitude will produce a a I /I of less than 2Z for our 3 0 x 30

field of view. Since we have used the A3 solution for most of the brighter

sources and the more variable weaker ones we believe that the residual

variations found for some of these sources is not related to aspect

uncertainties.

C. McIlwain's L Parameter

The background counting rate in our detector is related to the value of

McIlwain's L parameter (McIlwain 1961). Roughly speaking McIlwain L is the

distance from the center of the Earth of a trapped particle when it crosses

the geomagnetic equator. Observations during points at "blank sky" (that is



showed that the excess counting rate AC, which is correlated with L,a fits the

model AC • 2(L-1) ct/sec for 800 cm2 of detector. This linear fit is accurate

to - 20% for L ranging from 1 to 1.5 (units of earth radii). Since HEAO-1 was

in low earth orbit, L was generally below 1.2 but occasionally values of 1.5

or more were encountered. We decided to discard all data with L values of 1.2

or greater.

This has become one of the standard data selection criteria which was

used to analyze all pointed observations of active galaxies and blank sky.

This flag caused - 30% of previously good data to be discarded but decreased

the excess variance by a factor of greater than 60%. If we assume that the

remaining L values are uniformly distributed bet,veen 1 and 1.2 we can then

apply equation 3 to estimate that the excess variance due to the residual

McIlwain L effect is roughly

0  = 
AC/(V12 A)

= .20 ct/c4sec

where we have assumed that the mean area A during pointed observations is

close to 600 cm2 . We note that AC/V12 = .12 ct/sec is only 0.8% of the total

(internal and diffuse X-ray) background counting rate of - 14 cts/sec.

D.	 Background Fluctuations and Source Confusion

The background is uncertain to about 3% at any point on the sky in our 3

x 30 beam. This is due to weak unresolved sources below our source confusion

threshold. This absolute uncertainty in the background flux introduces two

types of errors into our results. First, this "sky confusion" noise, also

called fluctuations in the diffuse X-ray background, introduces an irreducible
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uncertainty in our absolute flux level of - 0.5 ct/cm 2-ksec. For this reason

we have not considered any sources with fluxes less than 1 ct/cm2-ksec.

The second way background fluctuations can affect our results has its

origin in the fact that HEAO-1 was not always pointed at the source of

interest during a given observation but rather drifted over a band that

allowed cffsets up to 1/2 0 . Although the counting rate has been corrected ;or

mean exposure, we find that the different sky backgrounds observed by the

detector as it looks at slightly different parts of the sky can cause an

excess variance to appear in the data. To estimate the amount we first note

that if the detector explores the entire area of the sky that it is allowed

to, then only 50% of the total solid angle viewed during the observation is in

the field of view at all times. We expect the variance for overlapping fields

to be less than the - 3% observed for independent 3 0 x 30 fields. To first

order, background fluctuations will introduce uncertainties of up to 0.32

ct/cm2 -ksec 0.5% of total detector background). Therefore, including both

residual particle events and background fluctuations, the maximum excess

variance we expect is - 0.4 ct/cm2 -ksec. We note that the observed excess

variance can be much smaller than this if the sky background flu* is
a

relatively uniform in the observed region or if the detector does not explore

the full region of sky available to it or if the value of McIlwain's L

parameter was unusually constant for a given observation.

IV. RESULTS

A.	 Variance

In Table 1 we have summarized the results of our tests for source

variability (the list is alphabetic by source name). Columns 7 and 8 give the

value of o T /I for two different bin sizes. Also included in Table 1 is the

day the observation was made where day 1 = Julian day 2441344.5 = Jan 1, 1977,



report fluxes with units of c ►/cm2 -ksec. A flux of 1 ct/cm2 -ksec in the Xencn

detector corresponds to 1 x 10-11 ergs/cm2-sec in the 2-10 keV band or 1.8 x

10-11 ergs/cm2-s,c in the 2-20 keV band assuming a power law spectrum with

energy slope a - 0.7. Again we point out that <I> is uncertain by • 0.5

ct/cm2 -ksec due to the 3% uncertainty in the sky background.

We have plotted 0, obtained using a 328 sec bin size vs. source intensity

in Figure I. Since g is computed using the entire observation, Figure 1 is

relevant for time scales ranging from 300 sec to about 3 hours. the solid

line in Figure 1 corresponds to a constant standard deviation of 0.4

ct/cm2 -ksec which was estimated in the last section to be the upper limit for

systematic errors. Thus any positive detections below this line could be due

to residual sky plus detector noise. Orly three objects. NGC 6814, NGC 4151

(one time) and Cen A (one time), lie significantly above the curve.

We have examined 8 down to a bin size of 5.12 sec (a detector readout

time). uue to counting statistics )ur upper limits at 5.12 sec are about two

times larger than the corresponding values at 328 sec. Since there are fewer

positive detections of variability at 5.12 sec than at 328 sec we conclude

that there is not a large source of variance with time scales of less than 328

sec. We conclude that large .-amplitude. aI /I > 10% , short term variations on

timescales 5 < t < 104 sec are not a characteristic of the X-ray emission from

active galaxies.

As one goes to longer bin ;, y es then most of the residual non-source

related noise is averaged into a single bin. Since the spacecraft look

position generally samples the entire area available to it during one

spacecraft orbit, sky noise is greatly reduced for a 90 min bin size. For a

90 min bin size one also averagas over the particle background for one
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spacecraft orbit. A plot of 8 vs. source flux for a - 90 min bin size is

shown in Figure 2.

We have attempted to determine our systematics for the 90 min bin size by

performing the equivalent test for variability during observations of "blank

sky". Of 49 observations of "blank sky". 17 were not constant at the 90%

confidence level. Since for all active galaxies, except Cen A, the background

gives more counts than the source, we would expect a similar fraction of the

active galaxies to show variability. Thus we expect 18 t 4 positive

detections when in fact the observed value was 21. Thus. to first order, the

majority of our positive detections only indicate that there is a small amount

of excess variance. beyond counting statistics, not included in our X2 test

for variability.

If the same excess variance accounts for both the increaseh number of

positive detections for the "blank sky" and the active galaxies then the

magnitude of the variance should help us decide if any detected variability is

real or not. In Figure 3b we have plotted a histogram of the standard

deviation a  in the background counting rate 8 normalized by dividi--- ev 8 for

a - 90 min bin size. The white areas represent upper limits and the shaded

boxes correspond to observed values. We have computed the excess variance for

the entire set of observations by adding together the excess variance from

each observation. For the 90 min bin size this gave aB/B of 0.7% which is

what one would expect if most of the excess noise was due to background

fluctuations only. Thus the observed distribution is consistent with the

expected excess variance being Niue to "confusion noise".

For	 "*.ions of active galaxies we expect a slightly different

distri	 :_	 rirs t, when the detector is pointed at an active galaxy the

counting rate is hi gher (by definitian). This means that our sensitivity to

12
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non-source related variance is smaller during observations of active

galaxies. This is shown by the fact that the distribution of upper limits has

moved to the right (Figure 3a). Since the flux from active galaxies was first 	 1

area corrected for effective exposure, to convert to a I /B we

j	 multiplied al /I by S/B where S is the source counting rate (source flux times

mean area). This means we have effectively ignored corrections due to

changing area as the detector passes over the source.

Based on the results of Figure 3, we divide the sources into 3 groups:

1) Those with aI /B > 2%, 2) Those with 1.5% < aI /B < 2% and 3) those with aI /B

< 1.5%. Sky fluctuations cannot account for the variability seen for the 3

sources in group 1, whereas any variability seen in group 3 can be totally due

to sky noise. Sources in group 2 are suspect and need further checks. In the

next section we will consider tine sources in groups 1 and 2 in greater detail

B.	 Light Curves

The most variable source was NGC 6814 (Figure 4). As was discussed

before in Tennant et al. (1981) this source is highly variable and shows

factor of two changes in flux on all time scales down to a few minutes. Table

1 shows B maintains a value near 43% for all the bin sizes considered up to 90

min. Using the published light curve from the Einstein Observatory Imaging

Proportional Counter (IPC) observation of NGC 6814 (Tananbaum 1980) we find

that B - 21% for a 3 hour bin size. This could indicate that either the

dominant source of variance has a time scale of hours or that a decreased

perhaps due to a decrease in flux between the HEAO-1 A2 and the IPC

observations.

In Figure 5 we illustrate the difficulties in determining the time scale

for a poorly sampled observation. The light curve is for our most variable

observation of NGC 4151. In the top panel we fit all 6 points to a straight
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lire and calculate a X2 of 11.12 for 4 degrees of freedom (dof) which is an

unacceptable fit to the data. (This compares to X2 - 39.80 for 5 dof

calculated assuming the source was constant). In the second panel we have

tried a model of a step function. For this case X2 = 5.39 for 4 dof which is

acceptable. Although it appears to the eye at least) that the transition

occurred over the 3 bins nearest where we located the step we point out that a

small systematic deviation lasting 45 min could easily be introduced by a

spacecraft orbital effect. In the 3rd panel we have again fitted a straight

line to the data but in this case have thrown out the first point. For the

third case X2 = 4.76 for 3 dof. If the source continued to brighten at the

rate indicated in the 3rd panel then it would double its intensity in 12

hours. Thus statistically we cannot distinguish between a 12% flux increase

on a time scale of 15 min or the start of a 12 hour flare. We prefer the

latter interpretation since it is consistent with previous observations of

variability from NGC 4151 (Mushotzky et al. 1978; Lawrence 1980). This

ambiguity as to the correct model is not resolved as one goes to shorter bin

sizes, for this case at least, since the smaller bin size generates no new

information.

The third most variable source is Cen A (Fig. 4). We note that HEAO-1

scanning data for Cen A show it to be slightly extended, presumably due to

weak nearby sources. Marshall and Clark (1981) have reported a nearby source

which will appear in our field of thew. This source confusion can explain

most of the observed variability. Notice that there is no indication of a

linear charge over the 12 hour observation.

We now consider the sources with only weak evidence for intrinsic

changes. First consider the light curve for H1649-595 in Figure 4 01649-595

was tentatively identified with NGC 6221 by Marshall et al. 1979). This light

j
i
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curve clearly shows that most of the excess variance is due to short duration

"flares" near the end of the observation. For this source the three high

points are due to M bright confusing source. This was clear when we noticed

the source "flared" only when the detector was looking at a certain region of

the sky. Since all light curves were looked at by eye, we know that no other

source showed such flare like events. We have included H1649-595 in our

sample as a warning that "statistically real" variability could have many

causes.

Both NGC 3227 and MCG 5-23-16 showed evidence for a linear increase in

flux. If such a rate increase continued then the source f'ux would double in

10 hours for NGC 3227 and 28 hours for MCG 5-23-16. Although the "time

required to double the source flux" is not a measure of source "size" it is

still a very useful time scale. For example, it can be applied to the Fabian

and Rees relation (1979).

Finally, we come to the MCG 8-11-11 observation shown in the center panel

of Figure 4. In this figure we see small peaks near 2.1, 3.9 and 5.5 hours.

Since these points are - 1.5 hour apart, i.e. one spacecraft orbit, we suspect

that these are not real events. A a l f6 of - 1.6% confirms that the

variability seen can be due to confusion noise. If one ignores the short term

variability then a weak linear increase is seen which will double the source

flux in a few days. We are unable to Judge the reality of such a trend.

It is interesting to note that all the variable objects in our sample.

NGC 3227, NGC 4151, NGC 6814 and MCG 5-23-16 are low luminosity objects with

L x < 3 x 1043 erg/sec. This agrees with the HEAO-1 longer time scale data

(Mushotzky et al. 1982) which show that lower luminosity sources have a

greater probability of being variable. In addition, with the exception of

NGC 6814. the observed variability is consistent with a time scale of about
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one day. Thts result agrees with the Ariel 5 observation (Marshall, Warwick

and Pounds 1981) that many sources show a one day time scale.

Variability on longer time scales will be reported by Mushotzky et al.

(1982). However, we can compare the count rate for different pointed

observations of the same source to obtain some information about longer time

scales. We find that Cen A and NGC 4151 show large changes over 6 months. W

509, observed four times in two weeks, shows a large amplitude charge. This

was reported by Dower et al. (1980) using the HEAO-1 A3 data. Our data for

days 657 to 666 show that the time required for AL = <L> is 22 days. Thus we

confirm the general nature of the variability reported by Dower et al. but

indicate a slightly longer time scale.

V. DISCUSSION

Our observations lead us to conclude that the active galaxies in our

sample do not vary on time scales ranging from minutes up to a few hours

(upper limits from Table I) with a I /I > .1. In our sample only NGC 6814

showed evidence of variability on time scales of less than 10 4 sec. NGC 4151,

the source with the second largest value of a i , had a S of less than

one-eighth the value for NGC 6814. To our knowledge the only other active

galaxy which clearly varies on a time scale of less than 104 sec is NGC 4051

(Marshall et al. 1981). In this section we try to reconcile the rapid

variability observed from NGC 6814 and NGC 4051 with the lack of similar

variability from other galaxies. Although we will consider ways that NGC 6814

is similar to other objects, we note that it could be quite different.

A.	 A Wew Class of Active Galaxies?

In this section we will consider NGC 6814 and NGC 4051 together and

search for any characteristic that sets them apart from other active

galaxies. Rieke (1978) found both of these objects had low, but not unusually



low, IR luminosities.	 When he compared his measurements with those from Stein

and Weedman (1976) the two objects that differed the most were NGC 4051 and

NGC 6814, although Rieke points out that Stein and Weedman's value for NGC

6814 was probabl y in error.	 The difference may be considered as weak evidence

for IR variability.	 More recently. Glass (1979), reporting on IR observations

of active southern galaxies, notes that from an IR point of view NGC 6814 (and

NGC 3783?) are only marginally Seyfert like.

Concerning optical correlations Yee (1980) reports on the very strong

correlation between the luminosity in Hg and the "nonthermal" luminosities for

quasars and both broad and narrow line active galaxies.	 NGC 6814, NGC 4051 1

and NGC 3227 lie near each other on the correlation but are a factor of 50

weaker than the next strongest Seyfert I galaxy in Yee's sample.	 Lawrence and

Elvis (1981) have shown that the X-ray flux correlates with various optical

and IR parameters for mast objects.	 However, NGC 6814 and NGC 4051 are under

luminous in LOIII], 3.5u and 10u flux relative their X-ray luminosities
compared to the sample as a whole.

We speculate that these correlations are consistant with the idea that

the X-ray emission began only a short time (- 100 yrs) ago for these

objects.	 The probability of seeing one object in about 40 in the process of

turning on depends greatly on the totally unknown X-ray lifetime of these

objects.	 Consider the following possibility.	 After the X-ray source turns

on, it will take some time T = R/c to illuminate the entire broad line

region.	 This will be the turn on time.	 The clouds quickly heat up and

accelerate to v/c • 1/50 and proceed to escape from the nuclear region. 	 The

escape time will be 50T. 	 After the clouds escape both the X-ray source and

the broad lines turn off.	 Thus one expects to see one object in - 50 in the

process of turning on, which is consistant with our interpretation. 	 Of
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course, if this is true then it implies that an active nucleus has gone

through many on-off cycles in the hi_tory of the galaxy.

If one turns on an X-ray source in an originally "normal" nucleus then

one expects first to detect the effects on material closest to the nucleus.

Since the broad line region is often less than one pc in size, an external

observer would see the entire region illuminated in only a few years.

However, the narrow line region which is 100-1000 pcs across will only be

partially illuminated for "new" objects. Thermal reradiation from dust

exterior to the nucleus should turn on with the narrow line region. In this

picture Seyfert II galaxies represent the class which is turning off. Thus a

large faction of the observed differences in Seyfert galaxies would represent

different snapshots of a single process. However tempting such a model is we

note it does have problems. Oust near the nucleus will be at the highest

temperature and will be observed to turn on first. This is contrary to

observations in that NGC 6814 does have 10u emission (Rieke 1978) indicating a

cool temperature and NGC 1068 (a Seyfert II) has an IR spectra requiring a

dust temperature of - 1000 K (Jones et al. 1977).

B.	 Inverse Compton Reflection

In the inverse Compton reflection model, low energy (soft) photons enter

a region of energetic electrons. The soft photons inverse Compton scatter

from the electrons to emerge from the cloud as X-rays. In this section, we

will examine the inverse Compton reflection process (Lightman and Rybicki

1980) and find a constraint on the temperature of the soft photon source. We

will make no assumptions about the electron population i.e., the distribution

can be either thermal or non-thermal. We will assume that the X-ray emitting

plasma is quite small and stable. By stable we mean that any variability seen

is due to variations in the soft photon source and not due to changes in the
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plasma itself. Tennant et al. 1,1981) using the results of Lightman and

Rybicki (1979) pointed out that the lack of spectral change during the

lntensi4y variations observed in NGC 6814 is consistent with this

interpretation. Thus the lack of rapid variability in most sources could be

explained by the growth of another "stronger" but more constant source of soft

photons. If the X-ray source is slowly heating up its environment as

mentioned in the last section then thermal re-radiation could be the new,

constant, strong source of soft photons. This is consistent with the observed

deficient IR flux for the rapidly varying galaxies.

We will now find the minimum temperature that a thermal source can have

and still provide enough photons (for Comptonization) to generate the observed

spectrum. If the soft photons are at a temperature of kT then the observed

power law will extend from - 3 kT out to energies determined by the

temperature of the scattering cloud. For the case of NGC 6814 the total

number of photons radiated in the Comptonized spectrum is given by

Nc = 4.7 x 10
-3 

4w 
d2f 1 3 kTV E-1.7 dE
	

(4)

which corresponds to 1.2 x 1052 s—P (^) 0.7 at a distance d of 16 Mpc. The

number of clack body photons impinging onto the X-ray region is given by

Ngg 4	 4.5 x 1049 r100 s
-e (i-kT)3

	
(5)

where r100 is the radius of the X-ray emitting region in units of 100 It

sic. Ngg is maximum when the dilution factor is equal to unity. Since for

Compton scattering photon number is conserved, we set Nc =Ngg and find that

19
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kT > 4.5 ri1/2 eV.

If r100 e. 1 then we find the thermal source must have kT > 4.5 eV (52,000

K). Dust grains at this temperature would quickly vaporize. This leads us to

conclude that thermal radiation from dust cannot provide enough photons to

generate the observed spectrum for a small X-ray source. This problem is

serious for NGC 6814 where the "hot spots" which provide the soft photons must

be small and few in number in order to account for the rapid, large amplitude

variability seen. If these spots reside outside the X-ray region then the

dilution factor must be very small and hence kT >> 4.5 eV.

C.	 Source Size

To summarize, if the source of soft photons is thermal in nature and if

some of the optical and/or IR emission comes from the X-ray plasma directly,

then the X-ray cloud must have r100 >> 1. Since there appears to be some

correlation between 3.5u IR emission and X-ray flux for most active galaxies

(Lawrence and Elvis 1981) and since a large source size is consistent with the

absence of rapid X-ray variability reported here, we will consider the

possibility of large X-ray regions. In order for 1000K blackbody photons to

be the soft photon source we find that r100 > 2100 (= 3 It days). This size

is consistent with previous observations of variability (Marshall, Warwick and

Pounds 1981). An X-ray plasma this large could be generated in one of two

ways in the black hole accretion picture. Either the central object is large,

hence very massive, or else the X-rays come from a large region not directly

related to the central object.

If the X-rays cone from a region only - 10 gravitational radii from the

central object and if the general lack of variability on time scales of less

than one day tells us anything about the size of the region then the central

i
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object must have a mass of 109 Mo's or greater. Pounds (1979) speculated that

all active galaxies contained a 109 Mo central object. The Eddington limit

for such an object is 1047 erg/sec which is much greater than the luminosity

of any object in our sample. Of course, if most active galaxies contain a 109

Mo object then one is forced to explain why NGC 6814 is so small. It is

possible that most active galaxies contain dead quasars (Lynden-Bell 1969)

whereas objects like NGC 6814 might never have gone through a "quasar like"

phase.

If the X-ray plasma is not confined to the central object then it could

fill a large volume of space. In this picture electrons are heated via some

unknown mechanism, perhaps in a small volume and then proceed to fill a volume

of space about one light day across. This may occur in a two temperature disk

model (Shapiro, Lightman and Eardley 1976). Since the virial temperature of

the protons is much higher than the corresponding electron temperature an

accretion disk can have two temperatures. If the electrons are not

effectively cooled then interactions with protons can heat them to

temperatures greatly exceeding their virial temperatures. Lightman (1982),

considering the possibility of relativistic electron plasmas, listed several

non-gravitational ways to confine the electrons. Since it is notoriously

difficult to confine plasmas via electromagnetic forces, it is entirely

possible that the central object is boiling off some matter. Thus the X-ray

emission can come from two components, the region near the black hole and the

extended volume.

To further consider a two component model for the X-ray source let us

assume that the total power produced by a . galactic nucleus canes out in two

forms, first the immediate production of X-rays L i , and some initially

unobserved power P. The latter could be in the form of relativistic electrons
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as mentioned above or in y rays as in the Penrose photoproduction model

(Leiter 1980). ^ will slowly fill a reservoir with energetic electrons. When

steady state i!c reached, the luminosity of the reservoir will be <P>.

Therefore, the total X-ray luminosity L x will be

L x = L i + a <P> = L i + r <Li>

where a is the fraction of the reservoir's luminosity which comes out as

X-rays and r is a <P>/<L i >. Below we will assume r is constant and
that a - I.

Since only L i will show rapid variability let us consider what happens
to B when one adds a variable source to a source of constant intensity Io. If

we assume that the intensities of the variable component are uniformly

distributed between 0 and eI then a for the sum is given by

B = a I /I - eI/{ 33 (2 1  + Al H.
	

(6)

We will now assume that the reservoir does not vary on the time scales we have

sampled and also that the X-rays produced near the central object are highly

variable. If we set I o = r <L i > (the luminosity of the reservoir) and Al = 2
<L i > (the range of luminosities for immediate X-ray production) then

B1 +r .	 (7)

We define F to be the fraction of the total X-ray flux coming from the

compact-variable region which is given by 1/(1+r) _ V3	 F.

We can check the consistency of this model by assuming that F - 75% and
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that the average flux is 4 for NGC 6814. Thus, if the assumption of a uniform

distribution of intensities is correct, we would expect to see the source vary

from - 1 to • 7. The NGC 6814 flux shown in Figure 4 varies from - 2 to - 7

cts/cm2 -k sec which is in rough agreement with our model.

Since our upper limits typically lie in the range of 10X► we find that F

is typically less than 17%. For NGC 4151 which has a g = 6% we find that

F : 10%. Thus the constant component would have to grow by a factor of 10

(relative to the variable component) in order for B to decline from the NGC

6814 value to the level observed for NGC 4151. One possibility is that NGC

6814 has not filled its reservoir and thus has not cane to steady state. This

is unlikely since it implies that when steady state is reached the luminosity

will be 10 times what it is now. As shown in Tennant et al. (1981) such a

high total luminosity, if it were variable, would clearly violate the Fabian

and Rees relation (1979). However it is unclear as to whether the Fabian and

Rees relation applies in this case since we are talking about a steady state

condition. If the X-rays from the variable component pass through the

reservoir, electron scattering could reduce the amplitude of variability. If

the electrons have the correct power law distribution, scattering will not

greatly alter the spectrum. One could also argue that NGC 6814 does not have

a reservoir for ;ome unknown reason or that the X-ray production

efficiency a for the reservoir is low.

D.	 Shot Noise

In the Guilber l;, Ross and Fabian (1982) model a cloud is heated via some

unknown mechanism i,nd then allowed to cool via inverse Comptonization. Since

the cooling times are very short the observed X-ray spectrum is a time

average. Their calculated " averaged" spectrum is in good agreement with

observations of the X-ray spectra of active galaxies. However, if the X-rt,

a^



source is powered by discrete events, these events should give rise to low

amplitude variability. To illustrate we apply the shot noise model. In this

model a events per time interval each rise to amplitude h and then

exponentially decay away with time scale r. Thus using I n ahr and aY n

02 r/2 we construct

We set N = ar which represents the number of "simultaneous" events taking

place. If we assume that r is longer than the smallest bin size we used (see

Sutherland, Weisskopf, and Kahn 1978 Appendix A, to see how a2 is a function

of bin size) and that a is greater than one shot per day, then we can

use 8 from Table 1. For NGC 6814 N - 10 which says that at any one time on

the averge 10 clouds dominate most of the X-ray flux. A more typical value

of 8 near 10% implies that N • 200, and for Cen A, N is greater than 1000.

Since Cen A, NGC 4151 and NGC 6814 all have roughly the same luminosity,

accounting for the lack of rapid variability in Cen A and NGC 4151 by

increasing the number of shots only works if the shots become much more

numerous and as a result each event much less luminous.

One way to reconcile the Guilbert, Ross and Fabian model with the lack of

variability is to assume that the heating and cooling are taking place in a

continuous manner. This argues for a stable accretion flow.

24

E.	 Stabilized Accretion Flow

Here we point out that a lack of variability can be due to dynamic

stability. It is clear from our observations of Cen A that there are periods

when this highly variable source is quite stable. Fur example, if the source

w,is in the process of doubling its flux in N days, we can apply equation 3 and
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find, in a 12 hour observation, that p n i/(2*5'22).	 If the observed value

of 0 near 2% was mainly due to a linear trend then the doubling time must be 7

•	 4ays (or longer). Thus periods of stability are observed in addition to the

variability previously reported in the literature.

It is possible that flares could be created whenever a cloud is fed into

the ventral engine. If NGC 6814 is young then there may be many clouds close

to the central engine. As the environment heats up the clouds would disperse

and the accretion flow becomes a uniform stream of gas. Cowie, Ostriker and

Stark (1978) showed that objects radiating with L > 1% of the Eddington

luminosiity will be highly variable and that less luminous objects will be more

stable. However, their model fails to generate the rapid time scale observed

for NGC 6814. They assumed that the central object we- in a homogenous gas

and the shortest time scale they obtained was related to the sound travel time

across the sonic radius. Faster time scales may require the accretion of

clouds. Although the idea of lumpy vs smooth flow is interesting, an honest

treatment of the problem requires detailed work beyond the scope of this

paper.

VI. CONCLUSIONS

HEAO-1 observatio-, *- o.` 38 active galactic nuclei have show* that rapid

X-ray variability is a rare occurrence. Of the objects in our sample only NGC

6814 showed significant variability on time scales less than 10 4 seconds.

Three other objects, all low luminosity Seyfert galaxies: NGC 4151, NGC 3227

and MCG 5-23-16. showed variations consistent with doubling times of > 1

day. Our upper limits on variability correspond to roughly a I /I < 10% on time

scales from 300 to 104 sec and oI /I < 20% on timescales from 5 to 300 sec.

For the brightest objects in our sample cI /I < 5% and for the weakest a I /I <

20%.
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We discuss the constraints these observations place on scenarios of X-ray

production in active galactic nuclei. If these sources consist of two

components, one highly variable and one quiescent them the ratio of the

quiescent to variable flux is typically greeter than 10. If the X-ray

emission is due to inverse-Compton scattering of a thermal (• 1000K) source of

soft photons we find that the typical X-ray emitting region must be larger

than 3 light days.

The general lack of variability on short time scales indicates that 1)

the X-ray region is typically a light day or more across or 2) the process

producing X-ray radiation is extremely stable. If the X-ray region is large

then we can infer that either the central object has a mass of ` 109 NO

(implying that the luminosity is typically < 10- 3 of the Eddington ?"mitl or

the X-ray emitting plasma is not gravitationally confined to a few

Schwarzschild radii. Our present data do not allow us to discriminate among

these possibilities. We also speculate that the difference between the

average object and the two objects that show rapid variability, NGC 6814

(Tennant et al. 1981) and NGC 4051 (Marshall et al. 1981) (but see Matilsky,

Shrader and Tananbaum 1982) is because these two are in a sense, "newer"

objects than the typical Seyfert. That is. many of their properties can be

explained if their X-ray emission began recently (t < 100 years).
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Appendix A

An Expression for aI

The value of x2 that one calculates is related not only to intrinsic

source variability (real or upper limits) but also to many experimental

parameters such as the number of photons collected and the amount of

background. therefore, we have developed a simple expression which will

relate the observed value of x2 to a measure of the "true" source variability.
t

For most of the sources we observed the background contributed more

counts than the source. This means that for the smallest bin size of 5.12 sec

we had more than 50 total counts (source and background) per bin. This large

rate implies that the statistical errors are likely to be Gaussian and thus we

can estimate the total variance with

Q2 - 3 W^ (x3 -<x>)2 - 	2	
(Al)

^ 3

where W3 = 1 /ai
2
 and we have used the definition of x2 . Since our background

rate is extremely stable we will assume the total variance has two components,

one due to photon ncise a P 2 and another due to source variability a12.

Substituting into equation Al and solving for a12

v 12 = 0 
2 

(-2-X--- - 1)	 (A2)
P vP L W^

The statistical errors are based on the total number of counts seen in that

data bin, thus we estimate

27

cP-2 = 1 L W^	 (A31
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which when substituted into Equation A2 gives

12 _ ( " ) (
XN
2	

(M)rW 
i i

For the case of no background and no data gaps one can set 
a P 
2 equal to

the mean source count rate and then equation A2 reduces to the expression used

by Forman, Jones and Tananbaum (1976). For observations with a large

background one sets 
a P 
2 equal to the total (source plus background) count

rate. The resulting equation was used by Parsignault and Grindley (1978).

W
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TABLE i

(1) (2) (3) (4) (3) (8) (7) (8) (9)
OBJECT RA-DEC DATE LENGTH FLUX L Q'/I Cr/I 078

CEN A 1322-428 384.5 4 48.5 0.57 1.4 <0.7 <1.8
CEN A 1322-428 587.7 11 38.8 0.43 2.8 1.8 3.0
CYC A 1957+408 488.0 6 8.5 95 5.8 <3.3 <0.8
ESO 141-CSS 1917-588 488.4 9 3.4 16 <8.1 <5.7 <0.8
H 1649-595 1848-591 029.7 9 4.2 0.28 11,3 10.0 1.9
IC 4329A 1346-301 573.8 8 5.1 4.1 9.7 4.8 1.1
MCC 2-58-22 2302-090 523.2 6 4.3 34 <8.0 <4.0 <0.8
MCC 5-23-10 0945-307 497.7 0 8.1 1.9 7.0 5.7 2.0
MCC 8-11-11 0551+464 843.7 9 3.5 5.1 9.1 9.8 1.8
MK 142 1022+519 699.4 6 1.6 11 <21.7 <13.8 <0.7
MK 279 1352+890 879.4 13 1.2 3.8 38.5 15.7 0.9
MK 279 1352+898 697.4 7 t.2 3.9 <18.4 <11.2 <0.7
MK 335 0003+199 553.8 13 1.1 2.4 31.2 18.3 0.6
MK 421 1067+385 513.1 9 1.8 8.0 28.9 11.0 0.8
MK 421 1057+385 704.4 7 1.2 4.0 <27.5 <17.4 <0.8
MK 484 1353+388 555.8 10 1.4 13 <14.4 <8.9 <0.6
MK 501 1852+398 816.8 6 2.7 10 <t0.4 <8.8 <0.7
MK 589 2041-109 493.7 8 4.8 20 5.4 3.7 0.8
MK 509 2041 -1N 653.5 4 5.3 23 <8.8 <5.3 <1.3
MK 509 2041-109 857.4 18 5.4 24 <4.3 5.3 1.3
MK 509 2041-109 86P,.3 1q 4.0 20 7.3 8.4 1.4
MK 509 2041-109 668.4 12 3.6 18 7.0 8.0 1.0
MK 590 0212-010 564.7 8 1.1 2.8 <19.8 <11.6 <0.8
M 82 0951+099 474.1 5 2.5 0.007 <7.4 <3.9 <0.5
NCC	 628A 0121-353 526.8 8 2.1 2.4 17.3 <8.2 <0.6
NCC	 931 0225+311 585.0 8 1.5 1.4 <18.7 <12.9 <0.7
NCC 2110 0549-075 647.6 5 5.0 0.87 <5.3 <3.3 <0.8
NCC 2992 0943-141 509.4 3 7,8 1.4 7.4 <2.5 <0.9
NCC 3227 1020+201 892.9 5 1.7 0.004 25.5 20.3 1.8
NGC 3783 1130-375 370.8 3 3.5 1.0 <8.4 <5.5 <0.9
NGC 3783 1136-375 554.8 13 3.1 0.89 14.7 8.7 1.2
NGC 4151 1208+397 340.5 3 10.1 0.38 4.7 3.4 1.5
NGC 4151 1208+397 524.1 3 19.3 0.73 5.8 8.5 5.7
NCC 4151 1208+397 532.1 4 22.8 0.88 <4.6 <4.2 <2.3
NCC 4151 1208+397 533.0 3 18.8 0.71 <2.8 <2.1 <1.8
NCC SS06 1410-030 574.0 6 S.0 0.84 8.0 8.1 1.S
NGC SS48 1415+254 580.9 8 5.7 5.4 <4.9 <3.1 <0.8
NCC 5548 1415+254 738.9 9 4.3 4.1 <5.4 <3.8 <0.8
NGC 0814 1940-104 483.0 7 4.1 0.40 43.8 43.3 8.4
NCC 7213 2208-474 511.4 8 4.2 0.48 <8.4 <5.8 <0.8
NCC 7409 2300+080 547.9 12 1.8 1.7 19.4 10.9 1.3
NGC 7582 2315-428 518.3 8 3.1 0.28 9.2 9.9 1.5
PKS 0548-322 0549-323 838.9 8 2.8 43 <10.1 <6.S 0.7
PKS 2151-304 2151-306 077.7 5 8.1 810 <5.2 5.1 1.0
2A 1219+305 1219+305 518.2 8 3.0 180 <8.5 <5.4 <0.8
3C	 111 0415+379 611.2 9 3.9 29 <8.3 <6.4 <1.2
3C 120 0430+052 015.6 9 3.1 12 <7.2 0.7 <0.7
3C 273 1228+023 533.9 8 9.4 800 4.8 3.3 1.5
3C 273 1226+023 540.4 6 8.5 720 <3.3 <2.3 <0.9
3C 273 1226+023 548.3 8 9.0 M <3.4 <2.4 <1.0
3C 273 1226+023 551.2 10 8.7 740 <3.3 <2.4 <1.0
3C 382 1833+327 801.5 9 3.2 38 12.2 <6.1 <0.9
3C 390.3 1845+797 723.2 10 2.2 25 <14.1 <9.4 <0.8

NOTES:
(1) Alphabetic by source name

(2) RA(hours and mine) Dsc(dsgrses and tenths)

(3) Beginning of observation, day of year 1977

(4) Length of observation in hours

(S) Cts/cm2-ksec

(6) 2-20 Kev luminosity (H-79 km/sec/Mpc) assuming no absorptlon ► unite-10 43 ergs/sec

(7) 328s bin size

(8) 86m	 bin size

(9) 86m bin size

4
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FIGURE CAPTIONS

Figure 1 - Shows B, a measure of intrinsic source variability (eq. 2). vs

source flux. The data was collected into • 5 min bins in order to

construct this figure. The line is an estimate of the error introduced

by source confusion (see text). The solid dots are positive detections

of source variance while the bars are upper limits (see Table 1).

Figure 2 - Same as Figure 1 except now the bins are about one spacecraft

orbit long.

Figure 3 top - A histogram of a  divided by the background counting rate for

our observations of active galaxies. The hatched regions represent

positive detections of variability whereas the white area above the

hatched region represent the 90% confidence upper limit for the

non-variable objects.

bottom - Same as top panel except in this case no HEAO-1 sources were

in the field of view.

Figure 4 - A sample of 9 of our X-ray light curves. The top 6 panels

represent the more variable objects in our sample whereas the bottom 3

represent typical light curves. In all cases a 20 min bin size was used

to construct the light curves. The first number is aI /I and the number

in parentheses is a I /B. Both Y1 and aI /B are constructed for the bin

size given in the plot. The best fitting linear trend is indicated by a

solid line for MCG 5-23-16 and NGC 3227.

Figure 5 - The most variable observation of NGC 4 1 51 has been fitted to

three models: (top) a straight line Through all the points. (middle) a

step function, and (bottom) a straight line through the last 5 points.
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