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1.	 INTRODUCTION

1.1	 BACKGROUND AND INVESTIGATION OBJECTIVES

The satellite microwave altimeters aboard GEOS-3 and

SEASAT provided nearly global data on sea surface height (SSH)

with respect to the reference ellipsoid. The altimeter data

were used for a variety of oceanographic investigations, e.g.,

Gulf-Stream dynamics (Ref. 1), estimation of mean sea surfaces

(Refs. 2 and 3), and SSH mesoscale variability (Refs. 4 and 20). 	 G

The feasibility of detecting and locating dynamic

ocean currents using SSH data has been demonstrated with GEOS

and SEASAT altimetry (e.g., Refs. 5 and b). Proposed future

satellite altimeter missions, such as the National Oceanic

Satellite System (idOSS), would provide global SSH data for

both oceanographic research and the generation of operational

products (e.g., maps of geostrophic boundary currents, ring

currents, and geostrophic velocity estimates).

The purpose of this investigation is twofold:

•	 Quantify the oceanographic information
content of SEASAT altimeter SSH data

•	 Develop and verify algorithms, suitable
for use by NOSS, for automatically de-
tecting and locating geostrophic ocean
currents, eddy boundaries and rings, and
for estimating geostrophic velocities
from single tracks of satellite altimeter
SSH data.

6
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1.2	 TECHNICAL APPROACH

The technical approach used in this investigation is

based on three complementary techniques! 	 y

9	 ^

•	 Autoregressive statistical modeling of 	 E.
the altimeter data

I
0	 Matched-filter signal detectors for op-

timally discriminating between noise and
ocean - current signatures in the altimeter
data

•	 Kalman smoothing techniques for estimating
oceanographic signal waveforms in the
altimeter data.	 t

i

The application of these techniques is outlined in the follow-

ing three sections.

1.2.1 Study of the Oceanographic Information Content
of SEASAT Altimeter Data

i

SEASAT altimeter data along nearly repeating ground

, tracks ( repeat-track data) are used to study the oceanographic

information content of the altimeter data. Geoid profiles are

`y

	

	 subtracted from each track of altimeter data. The statistical

properties of the resulting residual time series are quantified

by using autoregressive (AR) modeling to estimate the power

spectrum of the residual data process. In addition, quantile-

quantile plots are computed to characterize the probability .

r
distribution of the residuals.

To reduce the geoid modeling errors to negligible

magnitudes and to provide direct observations of the temporal

variability of the oceanographic signals in the residual data,

the data from repeating tracks are averaged, and the devia-

tions of each track of data from this average are computed.

1-2



The statistics of the resulting difference data are analyzed

by autoregressive modeling, and Kalman-smoothing techniques

are used to estimate the waveforms in the data caused by meso-

scale time-varying signal components.

1.2.2 Development of an Ocean-Current Detection Algorithm

Matched-filtering techniques are used to develop an

ocean-current detection algorithm that incorporates bath de-

terministic and statistical information about the ocean cur-

rents, the altimeter data, and the estimated geoid profiles.

This approach is flexible and suited for both boundary cur-

rents and eddies. The matched-filtering approach is optimal

with respect to reasrz.^able models for the noise signals and

the ocean-current signatures in the altimeter data.

1.2.3 Development of a GeeostroPhic-Velocity
Estimation Algorithm

A bank of matched filters is used to detect the bound-

ary current signature in the altimeter data and to compute

maximum-likelihood estimates of the coefficients of a parametric

model signature. The sea-surface slope is estimated from the

parametric signature model, and the geostrophic equation yields

an estimate for the cross-track component of the geostrophic

current velocity.	 a i

1.3	 ORGANIZATION OF REPORT

•	 The report is organized as follows. The study of the

oceanographic information content of SEASAT altimeter data is

described in Chapter .?. These results provide the foundation

for the ocean-current detection algorithm, the development and

1-3
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verification of which is presented in Chapter 3. Chapter 4

summarizes the development of the geostrophic-velocity estima-

tion algorithm and its verification with SEASAT altimeter data

in the western North Atlantic. The report concludes with a

summary, conclusions, and suggestions for further study in

Chapter 5.
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2.	 OCEANOGRAPHIC INFORMATION CON'S'ENT

e

	

2.1	 INTRODUCTION

The approach for determining the oceanographic infor-

mation content of SEASAT altimeter data starts with the selec-

tion of tracks for analysis from areas for which TASC has

precise local geoid models. Geoid profiles are subtracted

from each track of altimeter data to yield residual data sets,

which consist of oceanographic signals as well as error signals

caused by such factors as residual geoid modeling errors, orbit

uncertainties, instrumentation noise, and errors in corrections

for tides, barotropic pressure, and atmospheric influences.

To study the signal components. caused by time- varying
oceanography, the residual data are analyzed along nearly re-

peating tracks at 3-day intervals. Repeat-track analysis con-

sists of first computing the point-wise ensemble mean of all

the tracks in a given set. This ensemble mean is a time series

that consists primarily of geoid modeling error together with

the mean dynamic sea surface topography. The second step is

to subtract this mean time series from each track in the set.

The resulting difference data show how each track differs from

the ensemble mean. These tracks of difference data give direct

observations of the time-varying components of oceanography in

the original altimeter data.

The time-varying oceanographic signals in the differ-

ence data are caused by both mesoscale and microscale variations

in sea surface height. To determine the distribution of power

with wavelength, the difference data are spectrally analyzed

.,
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by using autoregressive (AR) modeling techniques. The result-

ing AR models yield an estimated power spectrum for each track. 	
{

The differences among these spectra quantify the changes in

the distribution of power in the oceanographic signals from

one track to the next. The differences among these spectra

may also be caused, in part, by time-varying residual error

signals associated with the data corrections for atmospheric

effects and instrument errors (as provided in the Geophysical

Data Records).

The power spectra provide estimates of the average

porker distribution in the difference data for wavelengths

ranging from approximately 1500 km to 14 km. Based on this

information, optimal Kalman smoothers are designed to extract

the mesoscale (correlated) signal waveforms in each track of

data. The optimal smoothers also compute theoretical rms

values for the errors in the estimated mesoscale waveforms.

These data provide direct quantitative measures ^f tk oceano-

graphic information content of the SEASAT altil— Yetr data.

2.2	 SELECTED SEASAT ALTIMETER DATA

Twenty-nine tracks of SEASAT altimeter data (1 sample/

second) were analyzed. These tracks were selected in the Gulf

of Alaska and the North-Atlantic region south of Iceland, areas

for which TASC has precise local 5-min gravimetric geoid esti-

mates. Figures 2.2-1 and 2.2-2 show maps of these regions

with 500-meter bathymetry contours. The selected SEASAT tracks

are labeled with their REV numbers.

Geoid profiles were computed along each track by using
01

bilinear interpolation on precise 5-min local gravimetric geoid

estimates. An example of a geoid profile is shown in Fig. 2.2-3

2-2
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for Rev. 1159D in the North Atlantic. The corresponding track

of SEASAT altimeter data is shown in Fig. 2.2-4. Subtracting

the geoid profile from the altimeter data produces the residual

data shown in Fig. 2.2-5. The abrupt 0.4-meter feature located

at 1050 km in Fig. 2.2-5 is caused by a seamount, while the

offset and linear trend in this figure are attributed primarily

to radial orbit uncertainty and long-wavelength geoid estimation

error. The process of subtracting geoid profiles was carried

out for all of the Revs. shown in Figs. 2.2-1 and 2.2-2. The

resulting collection of SEASAT-minus-geoid residual data forms

the basis for the analyses described in the following sections

of this chapter.
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for Rev. 1159D in North Atlantic
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2.3	 REPEAT-TRACK DATA

In the Gulf-of-Alaska region, nine of the satellite

tracks (spanning 15 September - 7 October) were nearly repeating

with an rms separation of 1.9 km, Eight more repeat tracks

(spanning 16 September - 7 October) were available in the North-

Atlantic region with an rms separation of 3.1 km. To analyze

the time-varying oceanographic signals in these data, the long-

wavelength errors caused by radial orbit uncertainties were

attenuated by subtracting a least-squares linear trend from

each track of data. The resulting sets of residual data are

shown in Figs. 2.3-1 and 2.3-2. For clarity, the plots are

vertically offset from each other by 0.5 m. There are common

features shared by all tracks in each set; these features are

attributed to geoid estimation error and the mean sea-surface

height signature.

NORTH-ATLANTIC REPEAT TRACKS
A-73084

4.0

E
t^Y

^,. 3A

C9

MU
x
U 2.0

0:

1.0
U)

DAY REV. NO.

0 1169D

3 1209D

•	 ^I 1	 6n" 1245D

9 1208D

12 1331D
18 1374D

• , ,^ ^	 ^	 18 1417D^ 
^JiIV"	

21 1460D

0
0	 200	 400	 600	 Soo	 1000	 1200	 1400

DISTANCE (W

Figure 2.3-1	 Ensemble of Detrended SEASAT-Minus-Geoid
Residuals for Repeat Tracks in North Atlantic
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Figure 2.3-2	 Ensemble of Detrended SEASAT-Minus-Geoid
Residuals for Repeat Tracks in Gulf
of Alaska

2.4	 AUTOREGRESSIVE DATA ANALYSIS

To determine the distribution of average signal power

with wavelength (frequency), selected tracks of data were sta-

tistically analyzed by using an autoregressive modeling tech-

niqul:^.. This method of spectrum estimation is better suited

for the analysis of individual tracts of data than the clas-

sical method based on periodgrams.

An autoregressive (AR) model of order p for a time

series D(t), t = 1,..., N, is the difference equation

p

D(t) _	 CkD(t-k) + w(t),	 t = p+l,..., N	 (2.4-1)

k=1

"I



a

a

twhere
w(t) = residual. noise	 j

The coefficients Ck , k = 1,..., p, are chosen to minimize the

mean -square residuals ( COVAR algorithm, Ref. 9)	 'I
G

N	 I

VAR = Nlp ^ w2 (t)	 (2.4-2)
t=p+1

i
If the AR model is appropriate for the process gener-

ating the data, then the residuals w(t), t = p+l,..., N, are a

sample of approximately white noise. It follows that the power

spectral density ( power spectrum) of the discrete-time process

generating the data D(t) can be estimated as

S0 (F)-	
p VAR	 (2.4-3)

1 -	 C ei2nFk
k

k=1

i

where
1
i

F = dimensionless frequency ( cycles/sample)	 (2..4-4)

F = 0.5 is the folding frequency. The variance of the random

process having the power spectrum So (F) is

variance =	 So(F)dF	 (2.4-5)

A natural estimate for the power spectrum of the under-

lying continuous-time process (of which the data D(t) are

uniformly-spaced sample values) is

2-8
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f
S(f) = So (f/fs )/fs , 1f^ _ 2-
	

(2.4-6)

v

where

f  = data sampling frequency = 1.0 Hz

f = spectrum frequency in hertz

r

The altimeter data D(t) are measured in meters, and it follows

that S(f) has the units m2 /Hz. The wavelength X corresponding

to frequency f is

A = v/f
	

(2.4-7)

{

where

v = altimeter subtrack velocity = 6700 m/s 	 (2.4-8)

For each track of data, the best choice of the AR

model order p is estimated by computing the Akaike information

criterian (AIC) for a family of AR models, p = 0 9 ..., N/20

(Refs. 10-12):

AIC = N loge (VAR) + 2p	 (2.4-9)

The model for which AIC is smallest is chosen as the best AR

model for the underlying process that generated the observed

data D(t).
f>
F

Several applications of this AR-modeling technique to

the analysis of SEASAT data are described in the following

sections of this chapter.

2-9
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PROBABILITY DENSITY FUNCTION 0r' "aaluunji t11.1Lr&QL1%&

Selected tracks of SEASAT-minus-geoid residual altim-

eter data were analyzed to determine if their statistical be-

havior is nearly Gaussian. Information about the probability

distribution of the residual altimeter data is needed for de-

signing optimal algorithms for detecting and estimating ocean

currents and for computing the theoretical performance of these

algorithms.

To investigate the probability distribution of the

altimeter data, the following approach was used:

•	 Each track of residual altimetry was
approximately whitened by applying a
suitable linear transformation to the
data. This linear transformation was
determined from the minimum-AIC AR data
model and was unique for each track of
data. Mathematically stated, the data
D(t) were transformed to the nearly white
sequence w(t) by using the AR equation

w(t) = D(t) - C1D(t-1) - ... - CpD(t-p)

(2.5-1)

where the coefficients C k , k = 1, ... ,p,

and the order p were determined as de-
scribed in Section 2.4.

A	 The whitened data w(t) were then analyzed
to determine how nearly their empirical
distribution function matched the normal
(Gaussian) distribution. The use of
whitened data is necessary because the
statistical tests for normality are based
on the assumption that the data are sta-
tistically independent samples.

The whitened data w(t) were listed in order from smal-

lest to largest. These ordered values were then plotted versus

2.5

1j

a
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their theoretical deviation from the median, expressed in stan-

dard deviations (quantiles) of the normal probability distribu-

tion. The resulting graph is called a normal QQ plot, and (as

depicted in Fig. 2.5-1) it shows departures of the data values

•	 from a normal distribution. Nearly Gaussian data yield a near-

ly straight line, while short- or long-tailed empirical dis-

tributions produce marked deviations from the straight line.

R-73345

LONG-TAILED ---V-/	GAUSSIAN

'''

SHORT-TAILEDF^-d
G

G
W
U.
W
O

Q

NORMAL QUANTILES

Figure 2.5-1	 Example QQ Plots

A typical QQ plot for residual SEASAT altimeter data

is shown in Fig. 2.5-2; the plot indicates nearly Gaussian

behavior. In contrast, Fig. 2.5-3 shows the worst-case (least

Gaussian) result for all the tracks analyzed. The departures

from Gaussian behavior are caused by atypical events such as

the occurrence of data errors, extreme weather, and seamounts.

2-11
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Data Showing Departure from Gaussian Behavior
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The conclusion reached from this analysis is that

both Atlantic and Pacific residual altimeter data are nearly

Gaussian in their statistical behavior. No systematic depar-

ture from Gaussian behavior was detected.

2.6	 ANALYSIS OF TEMPORAL VARIABILITY IN REPEAT-TRACK DATA

To study the time-varying signals in the repeat-

track residuals, an ensemble -mean time series X was computed

for each set of repeat - track residual data:

m

X(t) = m !: xj (t), t = 1,..., N	 (2.6-1)

j=1

^rh ere

xj (t) = t-th datum in j-th track of residual data

m = number of repeat tracks in set

N = number of data in each track.

The ensemble -mean series was then subtracted from

each track of residual data to produce the difference-data

time series Dj.

Dj(t) = xj (t) - X(t),	
(2.6-2)j = 1,..., m, t = 1,..., N

The D.W time series (difference data) are direct observa-
tions of the time -varying oceanography in the original altimeter

data. Because of the differencing operations, these difference

r •	 data contain a negligible signal component caused by geoid

estimation error. ( The residual geoid estimation error in the
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difference data has an estimated rms value of less than 0.3 cm

based on the known rms separations of the repeat tracks and

the known rms value of the first differences (X(t-1) - X(t))

of the ensemble-mean time series.)

An example of SEASAT difference data is shown in

Fig. 2.6-1 for Rev. 1159D in the North Atlantic. Because these

data have a significant uncorrelated signal component, each

data sample is plotted for clarity as a vertical spike. The

rms value of these data is 6.4 cm. The average rms value for

the ensemble of eight tracks of difference data in the North-

Atlantic region is 6.3 cm, the smallest rms value is 4.4 cm,

the largest is 9.2 cm. In the Gulf-of-Alaska region the aver-

age rms value for the nine repeat tracks of difference data is

4.2 cm, the smallest rms value is 3.0 cm, the largest is 6.5 cm,

and the standard deviation of the rms values is 1.2 cm,

R-73093

0.3

RM'Sm0.4am
E..r

W
.T.

w 0V
W
O~

Q^

-0.3 `

0
	

500	 1000

DISTANCE (W

Figure 2.6-1	 Difference Data for Rev. 1159D
in North Atlantic

ty

.
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An AR spectrum estimate from the difference data along

Rev. 1159D in the North-Atlantic region is shown in Fig. 2.6-2.

t
	

This spectrum is representative of those computed for the other

repeat tracks. The spectrum attains its largest values on the

plateau at low frequencies (wavelengths greater than 1000 km).

There is a downward transition to another plateau at high fre-

quencies (wavelengths shorter than 100 km). This high-frequency

plateau is sometimes obscured by ripples in the spectrum esti-

mate, as seen, e.g., in Fig. 2.6-2. These ripples may be caused

in part by the inherent sampling variability of the spectrum

estimator. The ripples may also be caused in part by high-

frequency structure in the altimeter data. In either case,

the overall structure of each AR spectrum estimate is repre-

sented by a white-noise floor at high frequencies plus a lst-

order Markov spectrum that models the transition to the raised

Plateau at lvvi frequencies.

W73O9U

^. 10°N

N
E
r 10.1

Z
WCJ
ac	 10.?

85

Iat•ORDER MARKOV PROCESS
RMS - 4.3cm

CORRELATION DISTANCE 	 77km
CORRELATED

^OCEANOORAPi4IC
SIGNAL

MWN
	

SPEC'I UM

WFHTE•NOISE PROCESS
RMS r 4.6cm
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- 401L

10-3

10.3	10•2	 10'1	 0.5
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Figure 2.6-2	 Power Spectra for Difference Data Along
Rev. 1159D in North Atlantic
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Such a model spectrum is shown as the smoothly vary-

ing soli curve in Fig. 2.6-2, labeled "MWN MODEL SPECTRUM".

The asymptotes of this model spectrum are shown as dashed

lines. The lower horizontal asymptote is the spectrum of the

white -noise component alone. The sloping asymptote is the

high-frequency trend of the Markov component in the absence of

white noise. The sum of the Markov noise and the white noise

has the smooth spectrum shape shown as the MWN (Markov plus

White Noise) model in Fig. 2.6-2.

The corner frequency of 1.4 X 10 -2 Hz marks the inter-

section of the low-frequency plateau and the sloping asymptote

of the Markov spectrum. The wavelength of this corner frequency

is 480 km.

With some tracks of data from the Gulf of Alaska, the

low-frequency raised plateau is missing from the power spectrum

because the Markov component i s statistically ir^;a^^^^^^^*•J	 r.^s.aiiv4li.b,

this situation is modeled by setting the variance of the Markov

component equal to zero.

The white-noise component of the difference data is

attributed to uncorrelated altimeter instrument noise plus

microscale oceanography. The lst-order Markov component, in

contrast, is caused by a correlated signal that is attributed

primarily to mesoscale time-varying oceanography. The Markov-

plus-white-noise (MWN) model for the difference data is impor-

tant because it provides quantitative information about the

oceanographic information content of the altimeter data.

Data Model - The power spectrum of the MWN model has

the following representation:

I`
n-

14
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S(f) = amm o/n + Sww	 (m2/Hz)

f + f a

(2,6-3)

A

k

or v—,
e	 u U

where

am = standard deviation of Markov component (m)

fo = corner frequency (hz)

SW = spectral density of white noise (M 2
 /Hz)

The autocorrelation function of the MarkoNr process is the in-

verse Fourier transform of the Markov spectral density

2

(t) =	

M 
am fo/n e12nft,Rmm f f 2

-^	 o

(2.6-4)

Rmm(t) 
= a m 2 e-2nfoltl	

(m2)
	

(2.6-5)

where

t = time shift parameter (s)

The correlation time to of the Markov signal is defined as

that value of the time shift for which Rmm (t0 ) = RHM(0)/e:	 4 

t0 = 
RI
	

(2.6-6)

The correlation distance do is computed by using the altimeter

subtrack velocity v:



The variance of

bounded by the

frequency):

the white noise .Liu %.WH9 %4U-;.%4 LVL

folding frequency (half the data sampling
I

fs/2

owl = f	 Sww df = Swwfs	 (2.6-8)

_fs/2

where

fs = 1.0 Hz for 1-sample/second SRASAT data.

For Rev. 1159D in Fig. 2.6-2, the rms value of the

Markov component is am = 4.3 cm, the correlation distance is

do = 77 km, and the rms value of the white noise is ar w = 4.6 cm.

The model parameters for all tracks of difference data are

listed in Table 2.6-1 for theNorth [A+-I itic a:ad iia Table 2. %J

for the Gulf of Alaska. The average rms value of the Markov	
I

component in the North Atlantic is 4.0 cm as compared to 1.8 cm

in the Gulf of Alaska. There is less difference between the

average rms values of the white noise components: 4.8 cm in

the North Atlantic as compared to 3.8 in the Gulf of Alaska.

These rms levels are consistent with a recent study of meso-

scale oceanographic variability described in Ref. 4.

All of the analyzed repeat-track difference data were

consistent with MWN models. As the data in Tables 2.6-1 and

2.6-2 indicate, the parameter values of the MWN models vary 	 1r

significantly from track to track in both the North-Atlantic

and Gulf-of-Alaska regions. The variability of model param-

eters is depicted in Fig. 2.6-3, which shows the average of

the spectrum aymptotes for the North-Atlantic data together

with their minimum, maximum, and rms variations.
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TABLE 2.6-1

MODEL PARAMETERS FOR REPEAT-TRACK DIFFERENCE DATA
NORTH ATLANTIC

U

REV. NO.	 DAY
RMS OF MARKOV

COMPONENT
(cm)

CORRELATION
DISTANCE

(km)

RMS OF
WHITE NOISE

(cm)

1159D	 0 4.3 77 4.6

1202D	 3 3.5 52 3,.1

1245D	 6 4.9 137 5.4

1288D	 9 5.5 10 7.4

1331D	 12 2.6 15 4.0

1374D	 15 2.9 49 3.3

1417D	 18 3.6 28 5.4

1460D	 21 4.4 21 5.1

Average Value 4.0 49 4.8

Standard 1.0 42 1.4Deviation

Maximum Value 5.5 137 7.4

Minimum Value 2.6 10 3.1

The observed variability indicates that the time-

varying signals in repeat-track data are best modeled as non-

stationary from track to track. Along single tracks the

difference data are consistent with stationary models*(for

track lengths of 1300 km in the North Atlantic and 1000 km in

the Gulf of Alaska). The parameter values of these stationary

models sometimes change significantly over the three-day inter-

val between successive repeat tracks.



TABLE 2.6-2

MODEL PARAMETERS FOR REPEAT-TRACK DIFFERENCE DATA
GULF OF ALASKA

REV. NO. DAY
RMS OF MARKOV
COMPONENT

(cm)

CORRELATION
DISTANCE

(km)

RMS OF
WHITE NOISE

(cm)

1155A 0 2.6 21 4.7

1198A 3 3.3 30 3.9

1241A 6 0 NA 4.0

1284A 9 0 NA 3.0

1327A 12 1.9 69 3.1

1370A 15 2.4 7 2.2

1413A 18 1.6 44 2.9

i456A 21 0 NA 3.5

1499A 24 4.1 8 5.1

Average Value	 1.8 30 3.6

Standard	 1.5 24 0.9Deviation

Maximum Value	 4.1 69 5.1

Minimum Value	 0 7 2.2

NA = Not Applicable

Kalman Smoothing - An important question bearing on

the information content of the altimeter data is

•	 How accurately can the signal waveforms
of the mesoscale components in the dif-
fereuce data be separated from the addi-
tive white noise?
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	 Summary of Model Power Spectra for
Difference Data in North Atlantic

To answer this question, a Kalman fixed-interval

smoother (Ref. 13) was designed for each track of difference

data in the North Atlantic. Each smoother was optimal for

estimating the mesoscale (Markov) waveform in a particular
G

track of altimeter data. The waveform estimates were optimal ;j

in the sense that the estimation error variances were mini-

mized, given the data model derived from AR analyses for each

track of data.'
'i

t'
The smoothed estimates of the mesoscale waveforms in

the North-Atlantic data are shown in Fig. 2.6-4. Beside each 	 r

waveform is the day number for the track and the rms error of

the smoothed estimate as computed by the Kalman smoother for 	 la

G
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that track. The theoretical rms errors of the estimates range

from 1.3 cm to 2.5 cm, with an average of 1.9 cm. By comparing

Fig. 2.6-1 (which shows the raw difference data for day 0)

with the smoothed waveform at the top of Fig. 2.6-4, one sees

how effectively the smoother suppresses the white noise in the

data.

4	 lam

•	 "MO	 2.6

U	 UM1D	 1.3

w..,^	 ^r^	 1{	 1174O	 1A

	

V	
r	 14W	 M

0	 M	 low
DISTANCE am)

Figure 2.6-4	 Smoothed Estimates of Time-Varying
Mesoscale Signals in Repeat-Track Data
from North Atlantic

The smoothed waveforms in Fig. 2.6-4 show statistically

significant peak-to-peak differences from one track to the

next. A good example of this variability is provided by the

estimates for days 6, 9, and 12. The smoothed estimate for

day 6 has a 19-cm peak-to-peak variation, while the day-9 and

day-12 estimates are not significantly different from zero

over most of their lengths.
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2.7	 TEMPORAL VARIABILITY OF GDR DATA CORRECTIONS

The estimated mesoscale waveforms in Fig. 2.6-4 may

be affected by errors associated with the data corrections

provided in the Geophysical Data Record (GDR) for the altimeter

instrument and atmospheric effects. This potential error source

was investigated by analyzing the sum of the GDR instrument

corrections plus the atmospheric corrections for the set of

repeat tracks in the North Atlantic.

The method of analysis followed the same pattern as

the analysis of differenced altimeter data described earlier

in this chapter. The analysis technique consisted of three

steps:

•	 The time series of GDR corrections for
all the repeat tracks were averaged to
form an ensemble-mean time series for
the set of eight tracks

•	 This ensemble-mean time series was sub-
tracted from each track of correction
data to form a time series of difference
data for that track

•	 The power spectrum was estimated for
each track of difference data (one for
each repeat track) by subtracting a least-
squares linear trend from each time series
and then using the autoregressive (AR)
modeling technique described in Section 2.4.

The difference data contain the time-varying components

of the correction signals, and the power spectra measure the

distribution of power in these signals as a function of fre-

quency. The rms magnitudes of the time-varying correction

signals varied from track to track: the minimum was 0.2 cm;

the maximum was 1.6 cm; and the mean was 0.8 cm. The standard

deviation about the mean was 0.4 cm. These rms magnitudes are



:mall compared to

mesoscale signals

the rids vaiueu wunu iuj;- 4ne t.uue-vacyiur,

in the sea surface height data.
ft

The estimated power spectra for the time-varying cor-

rection signals were compared with the corresponding spectra

for the time-varying signals in the sea-surface height (SSH)

data. The comparison showed that the time-varying SSH data

typically have more than ten times the power of the time-

varying correction data for wavelengths shorter than 1000 km.

If the assumption is made that the errors in the GDR

corrections for instrument and atmospheric effects are smaller

than the corrections themselves, then the analysis of the cor-

rection data supports the following conclusion: in the nearly

repeating tracks of altimeter data used for this study, the

instrument and atmospheric effects are significantly smaller

than the observed temporal variability.

2.8	 CONCLUSIONS ON INFORMATION CONTENT

Based on the analyses of North-Pacific and North-

Atlantic residual SEASAT altimeter data, the following conclu-

sions are reached:

•	 Residual altimeter data have the statis-
tical properties of correlated Gaussian
random noise

•	 Residual data are statistically modeled
as the sum of white (uncorrelated) noise
plus a Markov (mesoscale) process

•	 Mesoscale signal components in the resid-
ual data are attributed primarily to
geoid estimation errors and mean sea-
surface height signatures

a

2-24



.

C

•	 Each track of repeat-track difference
data has the statistical properties of a
Gaussian process consisting of white
noise plus a mesoscale 1stTorder Markov
process. The rms values of the white
and mesoscale signal components often
vary significantly over 3-day intervals
within each set of repeat tracks. The
average rms values of these signal compo-
nents (and sample standard deviation a
of the rms values) are listed for the
two study regions:

RMS WHITE-NOISE LEVELS
North Atlantic: 4.8 cm (a = 1.4 cm)
Gulf of Alaska: 3.6 cm (a = 0.9 cm)

RMS MESOSCALE SIGNAL LEVELS
North Atlantic: 4.0 cm (a = 1.0 cm)
Gulf of Alaska: 1.8 cm (a = 1.5 cm)

o	 Kalman smoothers for the difference data
provide minimum-variance estimates of
the time-varying mesoscale signal wave-
forms. The nonstationary data require a
unique smoother for each repeat track,
and Lhe rms estimation accuracy varies
from track to track. Average rms estima-
tion accuracy for North-Atlantic data is
1.9 cm.

•	 The mean-square temporal variability of
instrumental and atmospheric corrections
for the altimeter data (Sept. 1980 GDR
tape) is less than 10 percent of the
variability in the difference data for
wavelengths < 1000 km.

2.9
	

QUESTIONS FOR FURTHER STUDY

The results of this study raise the following ques-

tions for future study:

s	 Now much of the observed mesoscale vari-
ability in the repeat-track difference
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data is correlated with variations in
the significant wave height on the GDR
rape?

•	 If there is significant correlation, how
does it vary with wavelength?

The answers to these questions may be found on a track-by-track

basis via multi-channel AR modeling techniques for estimating

spectral coherence.

q

f
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3.	 OCEAN-CURRENT DETECTION ALGORITHM

	

3.1	 INTRODUCTION

Approach - The approach to developing an automatic

algorithm for detecting specific ocean-current signatures in

single tracks of altimeter data is based on the results of the

study of the oceanographic information content of SEASAT data

in Chapter 2. The approach consists of three steps:

The residual altimeter data are modeled
as samples of Gauss-Markov noise plus
the possible occurrences of specific
ocean-current signatures (boundary cur-
rents, cold-core rings, etc)

..n.e a;vtLCldi.1011 structure of the noisy
signal components in the data are identi-
fied for each track of data with a data-
adaptive AR modeling algorithm

The hypotheses that specific current
signatures are present in the data are
tested by using optimal matched filters
and threshold detectors.

Algorithm Structure - The ocean-current detection

algorithm processes single tracks of residual satellite altim-

eter data and yields the following outputs:

0 Detected locations of specified ocean-
current signatures along the satellite
subtrack

•	 Estimated amplitudes of the detected
signatures

3-1
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Estimated rms errors for the locations
and amplitudes of detected signatures

•
	

Expected number of false alarms.

The residual altimeter data are inputs to the algo-

rithms and are computed from raw altimeter data in three steps

by

•	 Applying corrections for known error
sources

•	 Interpolating the data through intervals
in which the data are in serious error
(e.g., outliers)

•	 Subtracting an estimated gravimetric
geoid profile along the satellite
subtrack.

The resulting residual data are noisy measurements of

the dynamic sea-surface height. The characteristics of the

noise in these data depend on the noise in the raw altimeter

data and on the accuracies of the error corrections and the

geoid profiles. The detection algorithm exploits both the

statistical properties of the noise in the residual data and

the known average properties of ocean-current signatures in

the altimeter data. For specified models of the noise and

oceanographic signature, the algorithm maximizes the probabil-

ity of detection at a specified probability of false alarm and

minimizes the rms errors of the estimated current signature

parameters.

As depicted in Fig. 3.1-1, the detection algorithm

consists of four subalgorithms that perform separate functions.

•	 AUTOREGRESSIVE MODELING - The residual
data are analyzed to determine a sto-
chastic autoregressive (AR) model for

3-2
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Figure 3.1-1	 Structure of Data-Adaptive Current
Detection Algorithm

the process that generated the data.
The order of the AR model is selected to
minimize the Akaike information cri-
terion (AIC).

•	 MATCHED-FILTER DESIGN - The AR model,
together with a user-specified generic
ocean-current signature, are used to
compute the impulse response of the op-
timal matched filter for detecting and
locating the generic signature in the
noisy residual data.

•	 MATCHED FILTER - The impulse response of
the matched ilter is convolved with the
residual altimeter data to compute a
sequence of sufficient statistics for
the threshold detector.

•	 THRESHOLD DETECTOR - The detector compares
the sufficient statistics with a threshold
value that is chosen to yield a specified
false-alarm rate. A detection occurs
when the statistic exceeds the threshold.
The estimated location of the detected
signature is given by the location of
the local maximum of the statistic.
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Overview - This chapter describes the dev,,:lopment and

verification of the detection algorithm. Section 3.2 describes

the SEASAT data selected for the verification of the algorithm. 	 j

Generic ocean-current signature models are presented in Sec-

tion 3.3. The results of procestting SEASAT data to detect the

Gulf Stream and cold-core ring currents in the western North

Atlantic are discussed in Sections 3.4 and 3.5. After discus- 	 r

sing the verification results in Section 3.6, the mathematical	 k

t

basis of matched-filter detection is discussed in Sections 3.7 	 t

and 3.8. Algorithm performance is discussed in Sections 3.9

and 3.10. The chapter concludes with a summary in Section 3.11

and a discussion of areas for future study in Section 3.12.

3.2	 DATA SELECTED FOR DEMONSTRATING CURRENT-
DETECTION ALGORITHM

Four tracks of SEASAT altimeter data from the western

North Atlantic were selected to verify the performance of the

detection algorithm. The tracks are Revs. 234A, 277A, 478A,

and 572D. These tracks crossed cold ring No. 4 as depicted in

Fig. 3.2-1. The motion of this ring currant had been tracked

-using a variety of oceanographic data (Ref,. 6). These four

tracks also intersected the Gulf Stream and therefore provided

data to verify the algorithm performance with respect to the

detection of both boundary currents and eddy currents.

The tracks of data used to verify the algorithm ex-

tend beyond the latitude limits shown in Fig. 3.2-1; the test

!.	 data extend from 25 deg to 39 deg north latitude.
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Figure 3.2-1

3.3	 GENERIC OCEAN-CURRENT SIGNATURE MODELS

This section describes two parametric families of
ocean-current signatures. The first family is used for design-
ing matched filters to detect warm-core and cold-core current
rings. The second family is intended for detecting boundary
currents, such as the Gulf Stream, and for estimating geo-
strophic current velocities.

Ring-Current Signatures - A family of generic altim-
etric signatures is described for modeling the dynamic sea-
surface features caused by cold-core and warm-core current
rings. The sea-surface height H(x) at radial position x with
respect to the ring's center is modeled as
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H(x) _ - D exp (-9.21 (x/W)2)

D = signature depth

W = signature width (10 percent depth)

(3.3-1)

D is positive for cold rings and negative for warm rings.

This parametric model has a simple mathematical form and ap-

pears to be in reasonable agreement with available data on

ring signatures (e.g., Refs. 6-8).

The width W is defined as the diameter at which the

signature is 10 percent of its central value:

H(W/2) = H(0)/10
	

(3.3-2)

Equation 3.3-1 has the form of a Gaussian probability

density. Therefore, these are referred to as Gaussian ring

signatures. An example of a Gaussian ring signature is shown

in Fig. 3.3-1, where the central depth is 0.5 meter and the

width is 150 km.

GAUSSIAN COLD-RING MODEL s -78012.

-75	 0	 76
ALONG -TRACK LOCATION (km)

Figure 3.3-1	 Gaussian Cold-Ring Signature,
Depth = 0.5 m, Width = 150 km
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The tangential current-velocity distribution implied

by a ring signature may be computed by setting the radial slope

of the sea surface equal to the sum of the horizontal Coriolis	 j

acceleration and the centrifugal acceleration divided by the

acceleration of gravity:

dH(x) - f v(x) + v2(x)/x
dx	 -	 g	

(3.3-3)

it
i

f = 20 sino = Coriolis parameter ,i

0 = earth's rotational velocity

- latitude

v(x) = tangential current velocity

g = acceleration of gravity.

The geostrophic velocity component is

dH(x)
ug(x) _	 dx	 (3.3-4)

Solving Eq. 3.3-3 for the total current velocity v(x) yields

4v (x)
v(x)	 1 +_ 	L. 	 - 1	 (3.3-5)

For a Gaussian 0.5-m 150-km ring signature at 45-degrees

latitude, Eqs. 3.3-4 and 3.3-5 yield the velocity distributions

shown in Fig. 3.3 -2. The geostrophic approximation is seer to
i

over-estimate the maximum velocity by approximately 0.1 m/s
t

(18 percent).

Boundary Current Signatures - A family of generic

altimetric signatures for boundary currents is defined with
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Gaussian Cold Ring. Crosses = geostrophic
approximation; circles = geostrophic approx-
imation with centrifugal correction.

the aid of Fig. 3.3-3, which depicts a satellite subtrack cros-

sing a current at angle e. At position x along the subtrack,

the dynamic height H(x) is modeled with the hyperbolic tangent

function:

H(x•) = -(A/2) tanh(3 x sine/Wd	 (3.3-6)

A = amplitude of dynamic height change

e = track angle with respect to current velocity

We = width of current (90 percent height change)

!'1
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Figure 3.3-3	 Geometry of Geostrophic Current
and Satellite Subtrack

As shown in Fig. 3.3-4, the tanh model signature pro-

vides a reasonable fit to the SEASAT altimeter data for Rev.

234A where the Subtrack crosses the Gulf Stream centered-at

sample number 233. The tanh model provides similar fits to

other tracks of SEASAT data; further examples are discussed in

Section 4.3.

H4178

GULF-STREAM SIGNATURE
1

E

C9

ul

a °
oc

w

-1

216	 233	 261

SAMPLE NUMBER

Figure 3.3-4	 Comparison of Tanh Model Signature
with SEASAT Data Rev. 234A
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The along-track slope of the tanh signature is

dH x = _ 33A__sin9 sech2 3 xWsinO	 (3.3-7)
c	 c

For the coordinate system in Fig. 3.3-3, this slope is related

to the cross-track component Vc (x) of the geostrophic velocity

as follows

VC  _ _ g dH(x)	 (3.3-8)

For tracks that cut across the current, the geostrophic

velocity profile V9 (x) along the subtrack is proportional to

the cross-track velocity Vc(x)

V IwN = V twl/ainA	 !'^_'^-A1

For the signature slope given by Eq. 3.3-7, the geo-

strophic velocity profile is therefore

V9(x) = 33A W sech2 
3 xWsine	 (3.3 - 10)

C	 C

The signature amplitude parameter A is proportional

to the maximum geostrophic velocity Vg(0)

2 f W
A = - -g	 Vg (0 )

	
(3.3-11)

M

. i

For tracks that intersect the current, the signature width Ws

is proportional to the current width We

Ws = We /sing
	

(3.3-12)
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Typical model parameters for the Gulf Stream in the

western North Atlantic are an amplitude of A = 1 m, a maximum

geostrophic velocity of V g (0) = 2 m/s, and a latitude of
^ = 45 deg. From Eq. 3.3-11 the current's width is W e = 71 km.
For a nominal track crossing angle of 60 deg, the along-track

width of the signature is W s = 82 km. Figure 3.3-5 shows the
dynamic sea-surface height signature for these parameter values,

while Fig. 3.3-6 depicts the geostrophic velocity profile im-

plied by the height signature.

TANH GULF-STREAM MODEL "180333

E
0.5

p
i0

W 0
Q

-0.5

yr

VHS	 i

........... ............ i...	 ....

'A

A-1m
B 60 dea
Wo • 70km........... .............s......................

i

-100	 -50	 0	 50	 100
ALONG-TRACK LOCATION (km)

Figure 3.3-5	 Dynamic Sea-Surface Height Signature
A4WN7

OEOSTROPHIC VELOCITY OF TANH MODEL

2.0

1.5

1.0

0 
0.5

w 0
0

LATITUDE • 45 DEC)

..........i .............:........ ........ .;............ ;............

2................................... ...............................

r

•100	 -60	 0	 60	 100
4

ALONG-TRACK LOCATION (km)
E

Figure 3.3-6	 Geostrophic Velocity Profile
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3.4	 DEMONSTRATIONS OF GULF-STREAM DETECTION

r

This section presents four examples of using the algo-

rithm (Section 3.1) to detect automatically the Gulf-Stream:r	 E

signature in SEASAT data from which Marsh-Chang geoid estimates 	 k

(Ref. 14) were subtracted. The tank model signature (Eq. 3.3-6

with Ws = We/sin8) was used with the signature width W s ranging

t	 from 35 km to 150 km. 	 .t

Example 1 - As depicted in Fig. 3.4-1, the residual

SEASAT data for Rev. 572D are used as input to the detection

algorithm. The algorithm is optimized in this example for the

tanh model signature having a width of'60 km. The scaled out-

put of the matched-filter is shown with the detection threshold

chosen for a false-alarm rate (FAR) of 0.01 false alarm per

megameter of track length (A/Mm).

The filter output is seen to rise above the threshold

and reach a local maximum at data sample number 64. This is a

correct detection of the Gulf Stream. There are no other cross-

ings of the threshold, which means that there are no false

alarms. 1 he algorithm successfully discriminates against the

signature in the altimeter data due to cold ring number 4.

Figure 3.4-2 shows the same input data for Rev. 572D

along with the resulting scaled outputs of three matched fil-

ters. Each filter is optimized for a different signature width

(40 km, 60 km, and 150 km). All filters correctly detect the

Gulf Stream with no false alarms, which demonstrates that the

algorithm performance is insensitive to the choice of model

signatures. The detection threshold in each case is chosen to

yield FAR = 0.01 A/Mm. The 60-km filter produces the largest

Gulf-Stream response, and for that reason its estimate of the

current's location (sample number 64) is the most likely of

the three estimates available. The theoretical basis for using	
i
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the filter that produces the largest scaled output is explained

in Section 3.7. The autoregressive (AR) model for the data is

•	 computed by the detection algorithm operating on the last

230 samples of the altimeter data; this avoids Gulf-Stream

bias in the modeling of the background noise in the altimeter

data.

The output of each matched filter is scaled so that

the random noise in the output signal has a standard deviation

of unity. Therefore, the detection threshold of the 60-km

filter, which is labeled 3.0, corresponds to an output level

that is three sigmas (three standard deviations) away from the

mean. The three filters differ in their dynamics, as indicated

by the smoother output waveforms from the filters optimized

for the wider signatures. Because of t;-se differing dynamics,

the fixed false-alarm rate leads to slightly different detec-

tion thresholds (when expressed in standard deviations) for

the three filters.

Example 2 - Figure 3.4-3 depicts the results of proc-

essing the residual SEASAT data for Rev. 478A with three matched

filters optimized for widths of 35 km, 100 km, and 150 km; the

detection thresholds are chosen to yield FAR = 0.01 A/Mm. In

this example, the Gulf Stream is located at the right end of

the data set becaitseRev. 478A is an ascending track in which

the Gulf Stream occurs at the end of the time series. All

three filters are successful in detecting the Gulf Stream, and

there are no false alarms. The AR model for the data is gen-

erated by the algorithm using the first 215 samples of data to

avoid the Gulf-Stream signature. Experience shows that the

algorithm performs well even if the Gulf-Stream signature is

included in the data used to develop the AR model. The primary

consequence of using all the data for AR modeling is that the

detection thresholds are moved to slightly higher values, because

F
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r

the algorithm then underestimates the ease with which the Gulf-

Stream signature can be detected..

Example 3 - Figure 3.4-4 is an example of Gulf-Stream

detection using Rev. 277A. This Rev, is interesting because 	 a
it contains erroneous data caused by the island of Bermuda. 	

1
The outputs of two matched filters are shown, one matched to a

narrow 35-km signature and the other matched to a 60-km signa-

ture; these filters use an AR noise model based on the first 	 E

225 data samples. Both filters correctly detect the Gulf Stream,

and there are no false alarms. The data errors due to Bermuda

cause a relatively large response from the narrow 35-km filter, 	 1

which is the more sensitive filter to narrow waveforms in the

data. This example illustrates that the 60-1cm matched-filter

detector is robust against naturally occurrin g loeali np ed data

errors.

Example 4 - This last example uses SEASAT data from

Rev. 234A as shown in Fig. 3.4-5. The data set contains an

isolated data error and the edge of a warm-ring signature.

The scaled outputs of two matched filters are shown with detec-

tion thresholds corresponding to FAR = 0.01 A/Mm. The filters

are matched to signature widths of 35 km and 100 km, and the

AR noise model is based on the first 225 data. Both filters

correctly detect the Gulf Stream without any false alarms.

The data error causes a relatively large output from the 35-km

filter, but has little effect on the output of the 100-km fil-

ter. Both filters discriminate well against the signature of

warm ring S.
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3.5	 DEMONSTRATIONS OF COLD-RING DETECTION

This section presents four examples of using the ole-

section algorithm to detect automatically the signatures of

cold ring number 4 in SEASAT data from which Marsh-Chang geoid

estimates (Ref. 14) were subtracted. The data sets used here

are the same as the ones used in Section 3.4. The Gaussian

model signature (Eq. 3.3-1) is used in the algorithm with two

values for the signature width: 150 km and 300 km.

Example 1 - Figure 3.5-1 shows the SEASAT data for

Rev. 572D and the outputs of two matched filters. The algo-

rithm designed these filters for signature widths of 150 km

and 300 km by using an AR noise model based on the last 230

data (to avoid the Gulf-Stream signature). The detection

thresholds correspond to FAR = 0.1 A/Mm. This false-alarm

rate is ten tirues larger- than the value used in Sc^tivia 3.4
for Gulf-Stream detection. The larger FAR is used in this

example b,&cause cold-ring signatures are more difficult to

detect than boundary-current signatures; the ring signatures

are more difficult to discriminate against the ambient noise

signals in the data.

Cold ring number 4 is correctly detected by the 300-km

filter. The 150-km filter misses the ring because the model

signature is too narrow. Both filters produce false alarms

due to the Gulf Stream, but these are the only false alarms.

Experience shows that the Gulf Stream consistently causes false

alarms when the algorithm is attempting to detect cold rings.

The conclusion to be reached is that the data must be processed

in two passes. The first pass is used to detect the possible

occurrence of boundary-current signatures. If a boundary-

current signature is detected, then the data set is truncated

to exclude the detected current during the second pass. The

second pass is then used to detect the possit?e occurrence of

E

i

}

.
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eddy currents. This strategy requires a small amount of com-

putation (0.5 s pec per pass using an IBM 4341 computer) and

prevents false alarms due to boundary currents. This two-pass

technique is used in the following examples.

Example 2 - Figure 3.5-2 shows SEASAT data from

Rev. 478A, which are used as input for two filters matched to

signatures having widths of 150 km and 300 km. The algorithm

implemented these filters using an AR model based on the first

140 data. This selective use of data leads to the most accu-

rate detection thresholds to achieve a specified false-alarm

rate. When the algorithm uses all the data to compute the AR

noise model (as it likely would in operational data analysis),

the detection thresholds are raised slightly because the algo-

rithm then overestimates the likelihood of false alarms.

The 300-km filter correctly detects cold ring number

4 at a false-alarm rate of 0.03 A/Mm. In contrast, the 150-km

filter misses the ring even with the larger FAR of 0.1 A/Mm,

which demonstrates the ability of the algorithm to discriminate

between narrower and wider current signatures. There are no

false alarms.

'

	

	 Example 3 - Figure 3.5-3 shows the SEASAT data from

Rev. 277A, which contains data errors caused by the island of

Bermuda and a signature due to cold ring number 4. The data

are processed by two filters matched to cold-ring signatures

having widths of 150 km and 300 km. The algorithm implemented

E;
the filters using do AR noise model based on the first 134 data

'°j

	

	 to avoid any bias from the Bermuda signature. The 300-km filter

correctly detects cold ring number 4 at a false-alarm rate of

0.2 A/Mm. The depression in the altimeter data to the left of

Bermuda also causes an alarm in the output. This maye3

	

	 P	 Y be a

false alarm; no data are available for certifying the origin of

the signature. The 150-km filter misses cold ring number 4.
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Example 4 - Figure 3.5-4 shows the SEASAT data from

Rev. 234A; the isolated data error has been corrected by sim-

ple interpolation. The edge of cold ring number 4 is visible

and spans approximately 200 km in the data. To detect this

signature, the data are processed twice with the detection

algorithm, once to implement a detection filter matched to a

signature width of 150 km, and again for a filter matched to a

width of 300 km. For this example, the algorithm uses all

220 data in computing the AR noise model.

The scaled outputs of the filters show that the cold

ring is correctly detected by both filters at a false-alarm

rate of 0.5 A/Mm. There are no false alarms with the 150-km

filter. Whether the alarm in the middle of the 300-km filter

output is false cannot be certified because surface truth data

are not available.

3.6	 DISCUSSION OF DEMONSTRATION RESULTS

The verifications of algorithm performance described

in Sections 3.4 and 3.5 lead to several conclusions:

•	 The required computing time is modest:
less than 0.5 sec per track for a one-
signature (one-filter) analysis using an
IBM 4341 computer

•	 The Gulf Stream is easily detected at a
low false-alarm rate: a single model
signature is adequate; and FAR < 0.01 A/Mm

•	 Cold rings are detected with some risk
of false alarms. Processing the altim-
etry with two or three filters (to search
for two or three model signatures) in-
creases the likelihood of detection for
a specified false-alarm rate. The detec-
tion of cold ring number 4 typically

i
f
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occurs at false-alarm rates in the range
of 0.05 to 0.5 A/Mm

•	 The detection results are insensitive
to localized data errors, which suggests
that special preprocessing to correct
erroneous data is unnecessary

•	 A two-pass technique for detecting bound-
ary currents and ring currents is recom-
mended for processing individual tracks
of residual altimeter data: the first
pass is used to detect possible boundary
currents with a single model signature
(one filter). If a boundary current is
detected, the data set is truncated to
remove the detected current signature.
In the second pass, the truncated data
set is processed with two or three fil-
ters, each matched to a different-width
ring signature (e.g., 300, 200, 100 km).
At each position along the track, the
threshold detector uses the filter with
the largest scaled output value.

•	 Since the model signatures for warm ring
currents are the negatives of correspond-
ing cold-ring signatures, a single filter
serves to detect both cold and warm rings
when a two-sided threshold detector is
used. For example, if the filter is
matched to a cold-ring signature and the
detector uses a threshold TH > 0, then
corresponding warm rings can. be mapped
by using a detector that flags those
excursions of the filter output that
fall below the negative threshold
value -TH.

3.7
	

MATCHED-FILTER DETECTION THEORY

The theory of optimal matched filters for detecting

deterministic signatures in additive colored noise is discus-

,	 sed in several text books (e.g., Refs. 15, 16, 18). The key

results of that theory for ocean-current detection are summa-

rized in the following.
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4

Statement of the Detection Problem - The problem of

detecting ocean-current signatures in residual altimeter data

is formalized as follows.

GIVEN: D(t) = time series of residual altimeter data

m(t) = ocean-current signature time series

N(t) = stationary Gaussian noise model for
residual altimeter data that are free
of current signature m(t)

T = specified time (location) in the data D(t)

As = unknown si*nature amplitude scale factor

HT = hypothesis that D(t) = N(t) + Asm(t-T)
with As X 0

HO = null hypothesis that D(t) = N(t)

FIND:	 An optimal decision rule for correctly choosing
between hypotheses HO and HT ; and an optimal

estimate of the amplitude As when HT is chosen.

OPTIMALITY: Maximize the probability of correct detection
for a specified probability of false alarm.

SOLUTION:	 Compute the likelihood ratio

Likelihood of D(t) under HT

LR ' Likelihood of t under H0

Select HT when LR > threshold value.

Select HO when LR < threshold value.

As depicted in Fig. 3.7-1, the optimal decision rule can be

efficiently implemented by processing the residual altimeter

data D(t) with one matched filter and a threshold detector to

test HT against H0 for all possible values of T. Once a de-

tection is made (i.e., HT is selected), the maximum-likelihood

estimates of the location T and the amplitude scale factor As

are easily computed from the matched-filter output.
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Optimal Matched Filter - The optimal matched filter

for long data sets is a convolution operator having the fre-

quency response H(F) and the impulse response h(t) (e.g.,

Ref. 18, pp. 325-329)

k
h(t) _	 H(F) ei2nFt dF	 (3.7-1)

H(F) = S -FF	 (3.7-2)
NN

F = normalized frequency (cycles/sample)

M(F) = Fourier transform of the ocean-current
signature m(t)

SNN(F) = power spectrum of the residual altimetry N(t)
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The Fourier transform of m(t) is defined as

o^

MM _ 
	 m(t) a-12nFt	 (3.7-3)

t=-o0

MW =	 MM e12it t dF	 (3.7-4)

The power spectrum of N(t) is the Fourier transform of the

autocorrelation sequence RNN(t)

RNN (t) = ECN(t + t') N(t')]	 (3.7-5)

M

C! isj - X n t..N a-32nFt	 iq 7_4%
uNNN & j — ! , "NNN ul c	 as 0, -v^

t=^d-0

FIR Matched-Filzer Algorithm - When the residual al-

timeter noise model N(t) is autoregressive (AR), the optimal

matched filter can be implemented as a finite-impulse-response

(FIR) ;filter. This means that the matched-filter impulse re-

sponse h(t) has finite support, i.e., h(t) = 0 for t< tmin and
t > tmax, for finite tmin and tmax.

The AR model for the noise N(t) is a difference equa-

tion of order p driven by zero-mean Gaussian white noise W(t)

N(t) = C1 N(t-1) + C2 N(t-2) +...+ c  N(t-p) + W(t)

r
(3.7-7)

t = ...-1,0,1...

Mean(W(t)) = 0; Variance MO) = v2

	
4

4
{
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The use of a Gaussian noise model is consistent with

the observed Gaussian behavior of SEASAT -minus -geoid residual

•	 altimeter data described in Section 2.5.

From linear - system theory (Refs. 17 and 18), the power

spectrum of N(t) is

P
GM = 1 - 1; Gk e - i2nFk	

(3.7
- 9)

k=1

From Eqs. 3 . 7-2 and 3.7-8, the matched filter frequency response

may be expressed as

H(F) = S (-FF) = a -2G(F) G(-F) M(-F)	 (3.7-10)
NN

The Fourier transform of Eq. 3.7 - 10 yields the follow-

ing expression for the impulse response h(t) of the matched

filter (asterisks denote convolutions)

h(t) = v -2 g ( t) * g(-t) * m(-t)	 (3.7-11)
F

g(t) =

	

	 GM 
e12nFt 

dF	 (3.7 -12)
J1

i

g(t) = 0; t < 0	 (3.7-13)

g(0) = 1
	

(3.7-14)
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g(1) = -C1 	(3.7-15)

g(p) = -Cp	(3.7-16)

g(t) = 0 0 t > p	 (3.7-17)

Since the convolutions in Eq. 3.7-11 contain only a finite

number of non-zero terms when m(t) has finite support, the

impulse response h(t) also has finite support. Figures 3.7-2

and 3.7-3 show examples of optimal impulse responses for cold-

ring and Gulf-Stream signatures.

Matched-Filter Performance Measures - The theoretical

rms signal-to-noise ratio of the m"a rched filter is defired as

SNR = Peak Filter Output Due 'to Signature m(t)
s Fi ter Output Due to Noise N(t) (3.7-1^)

M-80396b
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Typical Impulse Response for
Gulf-Stream Detection

The SNR of an optimal matched filter is an important

parameter. As shown in the Appendix, SNR may be computed with

the formula

Co

SNR =

	

	 h(j) m(-j)	 (3.7-19)
j=_oo

where only a finite number of terms contribute. 'she rms value

of the noise in the filter output is numerically equal to SNR

when the filter is optimized:

Rms Noise in Filter Output = SNR 	 (3.7-20)



The peak filter output value due to the signature m(t) is also

expressible in terms of SNR:

Peak Filter Output Due to Signature m(,^i = SNR2 (3.7-21)

Equations 3.7-20 and 3.7-21 are derived in the Appendix.

Since the SNR equals the rms value of the modeled

noise in the filtered output, it is convenient to scale the

filter output by the factor 1/SNR as shown in Fig. 3.7-1.

This yields a convenient test statistic Y(t) that contains a

random component havir7 a standard deviation of unity.

The mean output frequency Fm of the filter is a num-

ber that measures the average rate at which the filter output

changes sign

Fm = Half the Average Rate of Zero Crossings 	 (3.7- 22)
of Noise in Filter Output 

As shown in the Appendix, the mean output frequency of the

Gaussian noise in the filter output is given by

Fm = 1 cos - 1 [X/SNR2 ] (cycles/sample)
	

(3.7-23)

where
	

4

{

m

X =	 h(k) m(1-k)
	

(3.7-24)
	 i

k=-C*
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3.8	 THRESHOLD DETECTION THEORY

As depicted in Fig. 3.7-1, the threshold detector

compares the sequence of scaled test statistics Y(t) from the

matched filter against a detection threshold. When Y(t) ex-

ceeds the threshold, an alarm is said to occur. These alarms

are classified into three categories:

•	 Correct Detection caused by occurrences
of modeled-current signatures in the
residual altimeter data

N	 False Alarms caused by random excursions
of the modeled  noise in the residual
altimeter data

•	 Unmodeled Detections caused by unmodeled
current signatures or unmodeled noise in-
the resi rual altimeter data.

The statistics of correct detections and false alarms

are computed for the specific ocean-current signature and the

specific noise model for which the filter was designed. On

the basis of these statistics, the expected average performance

of the detector is predicted, and the detection threshold is

adjusted for a desired tradeoff between detection probabilities

and false-alarm rates.

Formulas are listed below for computing the following

performance statistics of the detector: the probability of

false alarms; the average false-alarm rate, the maximum-

likelihood estimates of signature 'location and amplitude (and

their rms accuracies), and the probability of detecting a sig-

nature with a prescribed amplitude.

Probability of False Alarm - Let TH denote the detec-

tion threshold and P  the probability of a false alarm. The
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P f is the probability that the noise component alone in Y(t)

will exceed TH and is given by the standardized normal proba-

bility distribution function:	 ;^G

i^

P f = ProbjY ( t) > TH; noise alone) 	 ( 3.8-1)	 ?

CO
E

P  = Q(TH) = f 1 exp( -x2/2) dx	 (3.8-2)

TH 2n	 I

^k
The detection threshold that yields a prescribed probability 	 E

of false alarm is
i

TH = Q-1(Pf)
	

(3.8-3)	
1

Average False-Alarm Rate - The threshold detector

processes data from individual tracks of altimeter data; it is

often reasonable to set the detection threshold so that a speci-

fied number of false alarms is expected to occur per unit dis-

tance along the track ( expressed in the units of alarms per

data sample). This false-alarm rate (FAR.) is computed as

FAR = F exp(-TH2/2) (alarms/sample)M

	

(3.8-4)	 I
Fm = mean output frequency of modeled

noise in filter output

Equation 3.8-4 is derived from results in Ref. 17, p. 492.

The expected number of false alarms (EN) along a track of data

having N samples of the test statistic Y(t) is

EN = N-FAR	 (3.8-5)

	

Detection Threshold - It is recommended that the de- 	 .

tection threshold TH be chosen to yield a specified false-alarm

rate FAR in accordance with the equation
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TH = -2 1n(FAR/Fm )
	

(3.8-6)

Equation 3.8-6 is obtained by solving Eq. 3.8-4 for TH.

Detected Signature Location and Amplitude - The

maximum-likelihood estimate of the location of a detected

signature is the value of t for which Y(t) achieves its local

maximum value above the threshold TH. Let t o denote this esti-

mate of signature location. The Cramer-Rao (C-R) lower bound

on the rms error of this estimate depends on the maximum scaled

filter output Y(to):

C-R Lower Bound = n F1 Y t	 (samples)	
(3.8-7)

m	 o

This lower bound on the variance of to can be re-

expressed in »nits of ki1ometers

C-R Lower Bound = n 
FM

 10-3
Y t	 (km)	

(3.8-8)
m s	 o

v = Altimeter along-track
velocity (m/s)

f  = Data sampling frequency
(samples/sec)

Nominal values for SEASAT altimeter data are v = 6700 m/s and

f  = 1.0 sample/sec. The false-alarm rate can also be expres-

sed in terms of distance:

FAR (alarms/sample) = v-

	

	 [FAR (alarms/megameter)] (3.8-9)
s

The maximum-likelihood estimate of the signature am-

plitude scale factor A s is

r,  J
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..	 Y(t )

As 	 SNR	 (3.8-10)

and the rms (one-sigma) error in this estimate is 11SNR, The

maximum-likelihood estimate of the detected signature is then

As•m(t-to).

Probability of Detection - The probability of detecting

the model signature m(t-to ) with a filter matched to m(t) and

a detector operating with threshold TH is

Pd = Prob Mto ) > TH; m(t) + noise)
	

(3.8-11)

The peak filter output due to m(t-t o ) is SNR2 (Eq. 3.7-21).

Therefore the peak scaled output is

Y(tn ) = SNR + (zero -mean unit-variance noise)	 (35.8 -12)

Equation 3.8-12 implies that Eq. 3.8-11 may be expressed in

the equivalent form

Pd = Prob = { noise > TH - SNR) (3.8-13)

Pd = Q(TH - SNR) (3.8-14)

For studying the ability of a matched filter to dis-

criminate between different signatures, it is useful to compute

the probability of detecting a signature m l (t-to ) when the

filter is matched to a different signature m(t). Let SNR be

the rms signal-to-noise ratio of the filter with respect to

m(t) (Eq. 3.7-19). Let the peak output of the filter due to

the other signature m'(t-t 0 ) be denoted x'. If this peak out-	
o

put occurs at time to, then
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(3.8-16)SNR' = x'/SNR

a

00

XI = E h(k) m'(tol  - k)
k=-oo

The rms value of the noise in the filter output is SNR

(Eq. 3.7-20). Therefore, the rms signal-to-noise ratio

(SNR') of the filter with respect to signature m'(t-t o ) is

The probability of detecting signature m l (t) with a detection

threshold TH as in Fig. 3.7-1 is therefore

Pd (m') = Q(TH - SNR')
	

(3.8-17)

In the special case where m l (t) = As m(t), the probability of

correct detection is

Pd (As m) = Q(TH - As -SNR)	 (3.8-18)

3.9	 SAMPLE PARAMETER VALUES

Gulf-Stream Detection - Table 3.9-1 shows typical

parameter values computed by the detection algorithm operating

on residual SEASAT altimeter data from Rev. 234A. The table

permits a comparison of parameter values for two Gulf-Stream

model signatures that differ only in their heights. Since

their widths are the same (100 km), both of these signatures

can be optimally detected by a single matched filter.

3-39

-	 --	 _



lr^ q
	.. ••	 A tl4"I

OF POo;-^ (D k^ z%u y

TABLE 3.9-1

SAMPLE PARAMETER VALUES FOR GULF-STREAM DETECTION

SEASAT REV 234A

MATCHED-FILTER PARAMETERS THRESHOLD-DETECTOR PARAMETERS

MODEL SNR C-R LOCATION
SIGNATURE Fm ERROR BOUND FAR TH Pd

( CYc/Mm ) (km) (A/Mm)

HEIGHT = 1 .7 10-6 5.5 0.96

WIDTH = 100 km 7.2 4.1 5 10
-4

4.6 1.00

10-2 3.5 1.00

DAIrE, 	 = 1.0 m
f

10-6 5.5 0.36

WIDTH = 100 km 5.2 4:1 7 10
-4

4.6 0.71

10-2 3.5 0.95

The larger 1.4-m signature yields an rms signal-to-

noise ratio (SNR) of 7.2 while for the smaller 1.0-m signature

SNR = 5.2. The mean frequency (Fm ) of the noise in the filter
outputs is 4.1 cycles/megameter for both filters, because Fm

is independent of the model signature amplitude. The Cramer-

: Rao (C-R) rms error bounds on locating the two signatures are

5 km and 7 km; the smaller error corresponds to the larger-

amplitude signature.

The right side of Table 3.9-1 displays parameter val-

ues for the threshold detector that compares the scaled output

Y(t) of the matched filters with the threshold TH. Three

false-alarm rates (FAR) are considered, ranging from 10-2

alarm/megameter (A/Mm) to 10
-6 

A/Mm. The detection thresholds

(TH) range from 3.5 to 5.5 independently of the model signature
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amplitude. The interpretation of the threshold values is sim-

ple because the test statistic Y(t) is scaled to have a vari-

ance of unity. For example, with a threshold of 3.5, a false

alarm occurs if the noise in Y(t) makes a positive excursi7n

that exceeds 3.5 standard deviations from the mean (zero).

The last column in the table lists the probabilities of de-

tecting the signatures with the three false-alarm rates. The

results show that the probability of detecting the smaller

signature is sensitive to the false-alarm rate. The results

in this table verify that typical Gulf-Stream signatures are

expected to be reliably detected.

Cold-Ring Detection - Table 4.9-2 shows sample param-

eter values computed by the detection algorithm operating on

residual SEASAT altimeter data for Rev. 234A. This table com-

pares p^rawe ter. :ral::ev for UW%A %iWL%A r.64AE,, Yfodcc°l aYgi^u turc3 taint

differ in both width and amplitude. Because their widths are

different, two different matched filters are required to detect

these signatures optimally.

The filter for the narrower (150-km) signature has

the larger mean frequency (Fm ) and the lower Cramer-Rao loca-

tion error bound. This occurs because the 150-km signature is

more compact and leads to a higher signal-to-noise ratio than

the 300-km signature. The 300-km signature is slightly more

difficult to distinguish from the noise in the altimeter data

as revealed by the values of SNR and the probabilities of de-

tection (Pd).

A study of the parameter values for the threshold

detector shows that the cold-ring signatures are detectable

(Pd > 0.8) at false-alarm rates of FAR > 0.1 alarm/megameter

(FAR > 1 alarm per 10,000 km of data).

Y
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TABLE 3.'W ..

SAMPLE PARAMETER VALUES FOR COLD-RING DETECTION

SEASAT REV 234A

MATCHED-FILTER PARAMETERS THRESHOLD-DETECTOR PARAMETERS

MODEL SNR
Fm

C-R LOCATION
SIGNATURE ERROR BOUND FAR TH Pd

(CYc/MM ) (km) (A/Mm)

DEPTH = 0.5 m 0.01 3.6 0.61

WIDTH = 150 km 3.9 6.7 6 0.1 2.9 0.84

0. 5 2.3 0.95

DEPTH = 0.7 m 0.01 3.4 0.49

WIDTH = 300 km 3.4 3.0 16 0.1 2.6 0.77

0.5 1.9 0.93

3.10 ALGORITHM CAPABILITY FOR DISCRIMINATING BETWEEN
TWO COLD RINGS

Matched filters can be used to discriminate between

cold-ring signatures having different widths. To study this

discrimination capability, the probability of detection is

plotted as a function of the false-alarm rate for signatures

of different sizes. These plots are like the "operating char-

acteristic" of the detector, except that the false-alarm rate

is used in place of the false-alarm probability,

As i an example, consider a filter that is matched to a

0.5-m x 150-km cold-ring signature (the signature is given by

Eq. 3.3-1 with D - 0.5 m and W = 150 km). For a typical track

of residual SEASAT altimeter data in the western North Atlantic,

the filter has an rms signal-to-noise ratio (SNR, Eq. 3.7-19)
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of 3.9. The probability of detection (P d) Eq. 3.8-14) for

this SNR is plotted as function of the false-alarm rate (FAR,

Eq. 3.8-4) in the upper part of Fig. 3.10-1. The different

values of FAR correspond to different detection thresholds,

M40388b

10.2	10'1	 100
FALSE-ALARM RATE (A/Mm)

Figure 3.10-1	 Filter Matched to 0.5-m x 150-km Signature

When the 150-km filter is used to detect (suboptimally)

a larger 0.7-m x 300-km cold-ring signature, the probabilities

of detection are significantly reduced as indicated by the
curve in the lower part of Fig. 3.10-1. (The SNR with the

300-km signature is 2.2 as computed with Eq. 3.8-16, and the

Pd is computed with Eq. 3.8-17.) The vertical separation of

the curves in Fig. 3.10-1 is a quantitative measure of the

discrimination capability of the 150-km filter as a function

of FAR.

	

Figure 3.10-2 is like Fig. 3.10-1, except the matched 	 }

	

filter is optimized here to detect the wider 300-km signature. 	
;E

C
	

0
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Because the filter is optimized for the wider signature, the

SNR (3.4) is larger than it is in Fig. 3.10- 1, where SNR = 2.2

The performance of the 300-km filter for detecting (suboptimally)

the 150-km signature is depicted by the curve in the lower

part of Fig. 3.10-2. A comparison of Figs. 3.10-1 and 3.10-2

shows that the wider 300-km filter is less discriminating and

more robust than the narrower 150-kin filter, as quantified by

i
the smaller separation of the curves in Fig. 3.10-2.

I	 n•o3ea.

1.0

2	 0.7-m x 300-km SIGNATURE

V CW

	 SNR - 3.4

LL. 
as

O

_M Q4
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0.5-m x 150-km SIGNATURE
SNR - 2.5

10.2	10'1	 100
FALSE-ALARM RATE (A/Mtn)

Figure 3.10-2
	

'Filter Matched to 0.7-m x 300-km Signature

The results presented here for detecting cold rings

are considered typical and may be summarized as follows:

•	 The filter matched to the narrower sig-
nature is the more discriminating

•

	

	 The filter matched to the wider signa-
ture is the more robust. j

^I
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3.11 SUMMARY OF OCEAN-CURRENT DETECTION STUDY

An ocean-current detection algorithm for processing

single tracks of residual satellite altimeter data has been

developed and verified. The algorithm is data-adaptive and is

based on autoregressive statistical modeling, matched detection

filters, and models for generic altimetric signatures caused

by boundary and ring currents.

The algorithm performance was verified for Gulf-Stream

and cold-ring detections using SEASAT altimeter data, the Marsh-

Chang geoid, and surface truth data in the western North Atlantic.

The algorithm performance was quantified in terns of

Fal cp-A1 arm ,Rates

e	 Probabilities of Detection

•	 Location Estimation Errors

e	 Signal-to-Noise Ratios

i	 Mean Output Frequencies.

The study results indicate that the automatic detec-

tion of Gulf-Stream and cold-ring signatures is feasible with

a processing time (IBM Model 4341 computer) of approximately

0.5 sec per data track using one matched filter. The algorithm

is also applicable to warm-ring detection.

The results of verifying the algorithm with SEASAT

data lead to the following conclusions:

•	 The algorithm performance is insensitive
to localized data errors

0	 Filters matched to narrower signatures
discriminate against wider signatures

4
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•	 Filters matched to wider signatures are
robust; i.e., they are especially insen-
sitive to localized data errors, and
they are able to detect (subopti.mally)
narrower signatures of similar shape.

Formal specifications for the detection algor3.i:hm are

given in Ref. 19.
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AREAS FOR FUTURE STUDY IN OCEAN-CURRENT DETECTION

The following three areas are suggested for future

study.

•	 rithm
J L. L L W& 1[{ a l A%.	 V *%A 

v-Although t e agorit m is data a aptive
and can therefore be used with any geoid
estimates, the sensitivity of the algo-
rithm performance to the accuracy of the
geoid estimates remains to be studied.

•	 Develop a recursive implementation for
the matched tilter, s. Becausethe a tim-
eter data are mo a ed autoregressively,
the matched filters can be rigorously
implemented with a recursive algorithm,
as opposed to the straight convolutions
used in the present algorithm. A recur-
sive implementation will reduce the time
to filter the data by a factor of five
and will be useful for applications to
multi-signature detectors for ring currents.

•	 Process all relevant SEASAT data in the
western North Atlantic. This will pro-
vi7le additional statistics describing
the algorithm performance in an opera-
tional setting. The western North
Atlantic has the dis:.inctioa of being an
oceanographically interesting region for
which geoid estimates and surface truth
data are available.
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	4.	 GEOSTROPHIC-VELOCITY ESTIMATION ALGORITHM

	

4.1	 INTRODUCTION

A nearly geostrophic boundary current, such as the

Gulf Stream in the western North Atlantic, produces a charac-

teristic signature in satellite altimeter data where the sat-

ellite subtrack intersects the current. The along-track slope

of this signature is proportional to the cross-track component

of the geostrophic current velocity as expressed by the geo-

strophic relation. Therefore, the cross-6rack geostrophic

velocity can be inferred from estimates of the signature slope.

This chapter describes a velocity estimation algorithm based

on estimating signature slopes via matched filtering,

The chapter is organized as follows. Section 4.2

describes an automated data-adaptive algorithm for computing

estimates of geostrophic velocity. The algorithm uses the

matched-filtering detection algorithm described in Chapter 3.

Verifications of the velocity estimation algorithm with SEASAT

altimeter data are discussed in Section 4.3. A summary and

conclusions are presented in Section 4.4, and suggestions for

further study are offered in Section 4.5.

	

4.2	 ALGORITHM DESCRIPTION

The velocity estimation algorithm processes single

tracks of residual satellite altimeter data (sea surface height

minus geoid estimates). Each track of data is assumed to have

been previously processed with a single matched filter that

detected a boundary-current signature in the data.

4-1
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The outputs of the algorithm are the estimated along-

track location of the maximum geostrophic velocity, the esti-

mated maximum cross-track geostrophic velocity, and rms

accuracy measures for the location and velocity estimates.

The algorithm uses several matched filters to esti-

mate the parameters Ws and As in the following hyperbolic-

tangent model signature (which is discussed in Section 3.3):

H(x) = - As (A/2) tanh(3 x/Ws )	 (4.2-1)

H(x) = Sea surface height

x = Position along subtrack

A = Amplitude of model signature (arbitrary
initial value used to design matched filter)

As = Amplitude scale factor. (chosen for best fit
with data)

Ws = Signature width (90 percent height change).

The cross-track geostrophic velocity is estimated 	 j

from the geostrophic relation applied to the slope of the model

signature. By using equations in Section 3.3, the cross-track

velocity implied by the model signature can be written as

Vc (x) = As 3 t W sech2 (3 x/Ws )	 (4.2-2)
s

VI (x) = Cross-track component of geostrophic velocity

x = Position along subtrack

f = 20sino = Coriolis parameter

f2 = Earth's rotational velocity

0 = North latitude

g = Acceleration of gravity.
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The maximum cross-track geostrophic velocity is

-IVC]max V  (0) - As I- f —Ws
 (4.2-3)

The uncertainty in the velocity estimate is estimated from the

rms uncertainty in the estimate of parameter A s . As discussed

in the following, the algorithm consists of five steps.

Step 1 - The residual altimeter data are processed

with five matched filters, each optimized for detecting a

different-width signature. For example, signature widths of

50, 60, 75, 100 and 150 km are reasonable for the Gulf Stream

in the western North Atlantic.

Step 2 - The most likely width of the signature in

the altimeter data is estimated by comparing the scaled out-

puts (Y(t) in Fig. 3.7-1)) from each of the matched filters to

determine that filter which yields the largest response to the

signature. This filter is said to be best-matched to the sig-

nature in the data. The signature width of this filter is
A

selected as the best estimate Ws for the width of the signature

in the data.

A

Step 3 - The maximum-likelihood estimate As of the
a.;,)lirude scale factor is computed from the observed maximum

output Y(to ) of the best-matched filter in accordance with the

theory discussed in Section 3.8:

A

As = Y(to )/SNR
	

(4.2-4)

SNR = Theoretical rms signal-to-noise ratio of the
best-matched filter

I
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sNK is computed by using Eq. 3.1-19.

as a sample from a random process wit]
A	 n

uncertainty 6A  in the estimate A s is

6A  = 1/SNR = Standard deviation

since Y(to ) is modelea

z unit variance, the rms a
given as

of As	(4.2-5)

The estimated maximum cross-track geostrophic velocity

Vc (0) and its rms uncertainty 8V c (0) are given as

V (0) = A 3-g--A	 (4.2-6)c	 s 2 f Ws

6Vc (0) = 6As

	

	(4.2-7)
2 f Ws

i
Equation 4.2-7 is a useful working estimate of veloc-

ity estimation accuracy. It is recognized that a more compli-

cated error analysis is possible, which accounts for the error
R

6Ws in Ws and the correlation between 6Ws and 6As . Since no

stochastic model is available to support such an analysis, the

simpler estimate in Eq. 4.2-7 is recommended.

Step 4 - The maximum-likelihood estimate of the loca-

tion of the maximum geostrophic velocity is that time t o at

which the best-matched filter achieves its maximum scaled out-

put Y(to ). The rms uncertainty 6t 0 of this estimate is given

by the Cramer-Rao lower bound (Eq. 3.8-7):

6to - n Fl Y F_7 (4.2-8)	 #'
m 

where the mean frequency Fm is computed by using Eq. 3.7-23.
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4.3	 DEMONSTRATION OF GULF-STREAM VELOCITY ESTIMATION

The performance of the velocity estimation algorithm

is verified by using it to estimate Gulf-Stream velocities.

•	 Four examples are presented, which use the same tracks of SEA-

SAT residual altimeter data as the demonstrations of the de-

tection algorithm in Sections 3.4 and 3.5. The time required

to process a track of data containing one boundary-current

signature is 1.5 seconds on an IBM Model 4341 computer. (Only

the data in the vicinity of the detected boundary current are

used for geostrophic velocity estimation.)

Example 1 - Figure 4.3-1 shows two plots of sea sur-

face height as a function of position along the SEASAT sub-

track for Rev. 234A. The solid curve is the residual altimeter

data that were used as input to the velocity estimation algo-

rithm described in Section 4.2. The dashed curve is the tanh

model signature that the algorithm fitted to these data. The

vertical positioning of the model signature has no effect on

the estimate of geostrophic velocity, which depends only on

the slope of the signature. Therefore, the algorithm does not

estimate the vertical positioning of the signature; the verti-

cal position of the tanh signature is manually selected in

these examples to provide easy visual comparisons with the

SEASAT data. In contrast, the vertical and horizontal scales

and the horizontal position of the tanh signature are each

important for estimating the current velocity; these features

of the signature are determined automatically by the algorithm.

The fit of the tanh signature to the SEASAT data looks reason-

able in the Gulf-Stream transition region centered on data

sample number 233. The maximum cross-track component of the

geostrophic velocity is 1.54 m/s (Eq. 4.2-6) with an estimated

rms accuracy (Eq. 4.2-7) of 0.22 m/s (14 percent of the velocity

estimate).

L.
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Figure 4.3-1	 Gulf-Stream Signatures, Rev. 234A

Example 2 - Figure 4.3-2 shows data for SEASAT Rev.

277A. The estimation algorithm provides a reasonable-fit to

the altimeter data in the transition region centered on sample

number 233, where the algorithm estimates that the cross-track

velocity achieves a maximum value of 2.82 m/s. The rms accu-

racy is estimated by the algorithm to be 0.70 m/s (25 percent

of the velocity estimate). This estimate of rms uncertainty

may be too large, because in this example the algorithm used

data (for noise modeling) that contained significant data errors

due to the island of Bermuda as depicted in Figure. 3.4-4.

The deviation between the tanh signature and the altim-

eter data on the right of Fig. 4.3-2 is caused by warm ring U, i

whose existence is verified by independent oceanographic data
t	 (Ref. 6). Fortunately, the estimation of maximum geostrophic

f,

	

	 velocities requires only that the sea surface slope be estimated

ain the relatively narrow transition zone where the geostrophic

flow is located. i

i

4-6

a



OF P001R

R-80304b

°w

U 0

U4.

RED' 277A

TANH MODEL
SIGNATURE

-- -- -- -- -- --. ^. 	 SEASAT

WARM RING U

Ws = 60 km

VcITI - 2.82 m/s

ar	 - 0.70 m/s

1

E

.1
215
	

233
	

251

SAMPLE NUMBER

Figure 4.3-2
	

Gulf-Stream Signatures, Rev. 277A

Examples 3 and 4 - The model signatures selected by

the estimation algorithm for SEASAT Revs. 478A and 572D are

shown in Figs. 4.3-3 and 4.3-4. The tank signatures provide

reasonable, fits with the altimeter data in the transition

regions of the Gulf Stream. The results in Fig. 4.3-4 demon-

strate that the fit of the model signatures to the maximum-

slope of the altimeter data is insensitive to . nearby ring cur-

rents. The estimated maximum cross-track geostkophic velocity

for Rev. 478A is 1.78 m/s with an estimated rms accuracy of

0.36 m/s (20 percent of the velocity estimate). For Rev. 572D

the estimated maximum velocity is 1.96 m/s with an estimted

rms accuracy of 0.26 m/s (13 percent of the velocity estimate).
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4.4	 SUMMARY AND CONCLUSIONS OF GFOSTROPHIC-VELOCITY
ESTIMATION STUDY

Summary - An algorithm has been developed to estimate

the velocities of geostrophic surface currents by the analysis

of single tracks of satellite altimeter data. The algorithm

performance is verified by four examples of Gulf-Stream veloc-

ity estimation using SEASAT altimeter data and the Marsh-Chang

geoid.

The algorithm utilizes the data-adaptive matched-filter

algorithm developed for ocean-current detection and automatically

performs the following analysis of the altimeter data. A bank

of five matched filters estimates the location and the best

width and amplitude for a model signature of the sea-surface

height where the satellite subtrack crosses the geostrophic

current. The cross-track component of the geostrophic current

velocity is estimated from the slope of the model signature by

using the geostrophic relation. The rms accuracy of the veloc-

ity estimate is computed from the theoretical rms uncertainty

of a maximum-likelihood estimate of the signature amplitude.

Conclusions - The results of this study lead to the

following conclusions:

r	 The automated estimation of cross-track
geostrophic velocities from satellite
altimeter data is feasible for boundary
currents such as the Gulf Stream

0	 The velocity estimation algorithm is a
simple extension of the data-adaptive
matched-filter algorithm for detecting
and locating boundary and ring currents

•	 Processing time is about 1.5 sec per
data track using an IBM Model 4341 com-
puter; 0.5 sec for detecting the current
signature with one matched filter, and

4-9
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current velocity with four additional
filters operating on the data in the
vicinity of the current signature

•	 The performance of the velocity estima-
tion algorithm is insensitive to isolated
data errors and to the occurrence of
warm-ring and cold-ring signatures in
the altimeter data.

Formal specifications for the velocity estimation

algorithm are given in Ref. 19.

4.5	 SUBJECTS FOR FURTHER STUDY

Based on the results of this investigation, the fol-

lowing subjects are recommended for further study.

c	 Determine the best choice of model sig-
natures. The use of ive moael signa-
tures in this study (50, 60, 75, 100,
and 150 km) yields reasonable results,
but other choices may be preferable in
terms of the trade-offs between accuracy
and computational complexity.	 r

Quantify the sensitivity of the velocity
estimates to the accuracy ot the geoid?
estimates. Although the algorithm is r
data-adaptive and can be used with any
geoid estimates, the sensitivity of the
velocity estimates to geoid error has
not been studied.

1#

•	 Compare current velocities estimated by
the algorithm with surface truth data.
Because no sur ace truth data on Gu
Stream velocities were available for the
subtracks used in this study, a direct
comparison of satellite-derived velocities
with surface data has not been possible.

t

f
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•	 Develou a faster recursive al gorithm for
implementing the matched filters in the
a1 orLtim. Such recursive algorithms
are teasible, because the altimeter data
noise model is autoregressive. A recur-
sive algorithm would permit larger numbers
of model signatures to be used for in-
creased accuracy. Alternatively, recur-
sive filters could be used to reduce the
computational requirements.

4-11



	

5.	 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

	

5.1	 SUMMARY

This report documents the study of the oceanographic

information content of SF,ASAT altimeter data and describes the

development of NOSS algorithms for ocean-current mapping and

their verification with SEASAT altimeter data. The inputs to

the algorithms are individual tracks of residual satellite

radar altimeter data from which estimated geoid profiles have

been subtracted. The algorithms are based on the fact that

cold-core and warm-core current rings and boundary currents

can be detected by identifying the occurrence of characteristic

sea-surface height signatures in the residual altimeter data.

In the case of nearly geostrophic boundary currents, the cross-

track component of the current velocity can be inferred by

estimating the along-track sea-surface slope.from the altimeter

data and then using the geostrophic equation to compute the

velocity.

In the study of the oceanographic information content

of SEASAT altimeter data, autoregressive modeling techniques

were used to analyze the statistical behavior of residual al-

timeter data. The analysis results show that residual altim-

eter data have the statistical properties of Gaussian random

noise with a correlation structure that varies from track to

track. The results of the study were used as a basis for the

development of the NOSS algorithms.

The NOSS algorithms are based on optimal matched fil-

ters, which are used to detect, locate, and estimate the ampli-

tudes of generic current signatures in the residual altimeter

5-1
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data. The algorithms automatically analyze each track of resid-
ual altimeter data and compute an optimal autoregressive model

for the noise signal in the data. Using this noise model,

together with a parametric model for the deterministic ocean-

current signature that is to be detected, the algorithm designs

a statistically optimal matched-filter detector for discriminat-

ing between the noise and the signature. The detector is op-
timal in the sense that the probability of detecting the ocean-

current signature is maximized for a specified probability of

false alarm (a false alarm occurs when the random noise excur-

sions in the altimeter data masquerade as a current signature

and cause a false detection). The algorithm adjusts the sensi-

tivity of the detector to achieve a specified average false-

alarm rate (e.g., 1 false alarm per 10,000 km of data along

the satellite subtrack). The algorithm performance was demo::-
strated with SEASAT altimeter data and Marsh-Chang geoid esti-

mates in the western North Atlantic, where known boundary-

current and ring-current signatures occur in the altimeter

data.

The algorithm frr;r estimating the geostrophic veloci-

ties of boundary currents employs a bank of five matched-filter

detectors; each filter is matched to a different width for the

current signature. The algorithm determines that signature

width which is most probable (given the available altimeter

data) and computes a maximum-likelihood estimate of the current

signature amplitude. From this information, the algorithm

estimates the maximum along-track slope of the sea surface and

uses the geostrophic equation to compute the estimated cross-

track component of geostrophic velocity. The rms accuracy of

the velocity estimate is also computed by using the Cramer-Rao

lower bound on the variance of the estimated signature ampli-

tude. The algorithm performance was demonstrated with SEASAT

data containing Gulf-Stream signatures.
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The formal specifications for the NOSS algorithms are

documented in Ref. 19.

5.2	 CONCLUSIONS

The primary conclusions of this study are sr-amarized

in the following. More detailed discussions are provided in

Section 2.8, 3.6, 3.11, and 4.4.

•	 The residual SEASAT altimeter data (SSH
minus geoid) analyzed in this study has
statistical properties of correlated
Gaussian random noise. No systematic
departure from Gaussian behavior was
observed.

•	 By using a unique Kalman smoother to
process each track of data, the time-
varying mesoscale SSH waveforms in sets
of difference data from nearly repeating
SEASAT tracks can be estimated with an
average theoretical rms accuracy of 2 cm.
The results of using such smoothers on
data from the region south of Iceland
indicate that statistically significant
mesoscale variations (larger than 6 cm)
occur during several %.9 the 3-day inter-
vals between Revs.

•	 Verification tests with residual SEASAT
altimeter data from the western North
Atlantic indicate that the Gulf Stream
is reliably detected and located with
the NOSS detection algorithm developed
in this study. The required computing
time is less than 0.5 sec per track using
an IBM 4341 computer.

•	 The feasibility of using the NOSS detec-
tion algorithm to detect and locate cold-
core current rings in the western North
Atlantic was verified with residual SEASAT
altimeter data. To increase the probabil-
ity of detection and to discriminate be-
tween rings of different widths, it is
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recommended that ei
processed by the algorithm with two or
three matched filters optimized for
different-width current signatures.

0

0	 'verification tests with SEASAT data indi-
cate that the automated estimation of
cross-track geostrophic velocities from
residual satellite altimetry is feasible
for boundary currents such as the Gulf
Stream. The required processing time
with the NOSS algorithm is about 1.5 sec
per data track with ar. IBM 4341 computer.

0 Both the current-detection and velocity-
estimation algorithms yield outputs that
are insensitive to isolated data errors.

5.3	 SUBJECTS FOR FURTHER STUDY

Based on the results of this investigation, the

following subjects are recommended fo further study. More

detailed suggestions are provided in ections 2.8, 3.12, and

4.5.

e Develop statistical models for the tem-
poral variations in SEASAT significant-
wave-height data and their correlations
with the observed mesoscale variability
over 3-day intervals in SEASAT repeat-
track SSH data.

a For both current detection and velocity
estimation, quantify the sensitivity of
the NOSS algorithm performance to geoid
estimation error.

Develop a recursive implementation for
the matched filter in the NOSS algorithm
to provide increased computational.
efficiency.

O

0	 Process all relevant SEASAT altimeter
F;	 data in the western North Atlantic to
a	 provide additional statistics describing

NOSS algorithm performance.
r
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APPENDIX A

DERIVATIONS OF MATCHED-FILTER EQUATIONS

This appendix brings together in a consistent notation

the derivations of several key results in matched-filter theory.

Previously publishes:; derivations span a variety of mathematical

notations, are scatty red in th y.- literature, and do not address

the discrete-time theory in detail.

Derivation of Eq. 3.7-20 - The frequency response of

the optimal matched filter is (e.g., Ref. 18, pp. 325-329)

H(F) = S(-FF	
(A-1)

NN

ii(F)

	

	 Fourier transform of signature to be de°
tected (M(-F) = M*(F ) = complex conjugate)

SNN (F) = Power spectrum of noise in data.

Let X(t) denote the output of the filter at time t.

When the data consist of noise only, tihe mean-square value of

X(t) is

k

E[X 2 (t)1 =	 IH(F)I2 SNN (F) dF	 (A-2)

k

E1X 2 (01 =	 IM(-F)12/SNN(F) dF	 (A-3)

A-1
t

i
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Since M(-F) = M*(F) = complex conjugate of M(F),

k

E[X 2 (01 =	 M(-F) M(F) dF
fk `S^I—N 

"F

k

E[X 2 (01 
= fk 

H(F) M(F) dF

k

E[X 2 (01 = 
f 

H(F) M* (-F) dF

00

E[X 2 (01 = E h(k) m(-k)
k= -oo

is

(A-4)

(A- 5)

(A- 6)

(A-7)

r ^i	 where

k
h M = f H(F) 

ei2TtFk 
DF	 (A-8)

k

m(k) =	 M(F) ei2nFk dF	 (A-9)
fk

Therefore, the ms value of the noise in the output of the
optimal matched filter is

00

RMS = rE, X2(t)]	 E h(k) m(-k)	 (A-10)
k= -co

Derivation of Eqs- 3.7-20 and 3.7-21 - The maximum
output X max from the filter specified by Eq. A-1 occurs at
time t=O when the input is m(t)

A-2
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k

Xmax = X(0)	 X(F) dF	 (A-11)

where

00

X(F)	 AE x (t) e- 
i2nFt	 (A-12)

t= _CO

But X(F)	 H(F) M(F), therefore

k

Xmax 
= fk H(F) M(F) dF	 (A-13)

Comparing Eq. A-13 with Eq. A-5 shows that

X	 E[y2(t))	 (A-14)max

This result can be rewritten as follows by using Eq. A-10

2
Xmax = RMS	 (A-15)

The rms signal-to-noise ratio (SNR) is defined as

X
SNR =	 max—

	

(A-16)

TE 7[( t) I

Substituting Eqs. A-15 and A-10 in Eq. A-16 yields

2
•	 SNR - RMS	 RMS

which verifies Eq. 3.7-20. Equation 3.7-21 is verif:

using Eq. A-17 to rewrite Eq. A-15 as

A-3
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Xmax = SNR2 	(A-18)

Derivation of Eq. 3.7-23 - Let U(t) denote the unit

step function defined as

U(t) = 1 for t > 0
(A--19)

U(t) = 0 £or t < 0

The average number C(N) of zero crossings in N samples of a

stationary time series {X0 is

N

C(N) _

	

	 EU(-Xk Xk^.1 )	 (A-20)

k=1

Tile meanfrcquc :cy Fm f XkI is de f ined as half the

expected value of C(N)

N

Fm =	 E[C(N)] _	 21 E[U(-Xk Xk+1 )]	 (A-21)

k=1

Because (Xk) is stationary, the expectation in Eq. A-21 is inde-
pendent of k. Therefore, Eq. A-21 may be .written as

Fm =	 E[U(-Xk Xk+l )]	 (A-22)

But E[U(-Xk Xk+l )] = Probability that Xk Xk+l < 0, which is

expressed as

Fm =	 Prob {Xk Xk+1 < 0]	 (A-23)

Let

r - Rxx(1)/Rxx(0)	 (A-24)

.i
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where Rxx (k) is the autocorrelation sequence of Xk:

Rxx(k) = E [X,j+k Xi
I	 (A-25)

The analysis in Ref. 17, p. 199, shows that

Prob(Xk Xk+l < 0) = B/n	 (A-26)

B = cos -l (r)	 (A-27)

From Eqs. A-23, A-26, and A-27, it follows that

F = cos-1(r)	
(A-28)m

The last step in this derivation is to establish a

formula for parameter r, which is valid when X0 is the out-

put of an optimal matched filter with frequency response H(F)

(Eq. A-1) that is driven by zero-mean Gaussian noise with power

spectrum SNN (F). The power spectrum Sxx (F) of ( Xk ) is

Sxx (F) = IH(F)1 2 SNN (F)	 (A-29)

In view of Eq. A-1, Eq. A-29 may be written as

M(-F) 1 2
Sxx (F) - S	 F	 (A-30)	

1NN

But JM(-F)j 2 = M(-F) M(F) because m(k) is real. Therefore

M(-F)
h	 Sxx(F)	 SNN F M(F)	 (A-31)	

P

Sxx (F) = H(F) M(F)	 (A-32)

A-5
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Taking the inverse Fourier transform of Eq. A-32 yields the

following expression for the autocorrelation sequence of the

output noise	 a f a

3i ^i

f	 Rxx(k) _	 h( j) m(k- j )	 ( A-33)	 IE

h(k) = Impulse response of filter

m(k) = Signature to be detected ,a
G	 ^	 „

With this result, it follows from Eqs. A-10 and A•17 that
^^	 1

Rxx (0) = SNR2 	(A-34)

ic 
±i

Let x R^ (1) , then	 j

h

X =	 h (j) m(1- j )	 (A-35)
a

1

Combining Eqs. A - 34, A- 35, A-24, and A -28 yields the desired

result:

Fm =	 cos-1(x/SNR2)	 (A-36)
,i

ii

r

t
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