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ABSTRACT	 Mo	 Mach number

	

An iterative finite element-integral technique is 	 m	 spinning mode number, see Eq. (3)
used to predict the sound field radiated from the JT15D
turbofan inlet. The sound field is divided into two 	 N	 finite element weighting function
regions: the sound field within and near the inlet
which is computes using the finite element method and 	 n	 node number

the radiation field beyond the inlet which is

calculated using an integral solution technique. The 	 p	 pressure normalized by poCg
N velocity potential formulation of the acG-istic wave

	

W equation was employed in the program. For some single 	 R	 far field position (distance from exit plane
mode JT15D data, the theory and experiment are in good 	 centerline) normalized by do

agreement for the far field radiation pattern as well

as suppressor attenuation. Also, the computer program 	 r	 radial coordinate normalized by duct diameter do

is used to simulate flight effects that cannot be
performed on a ground static test stand. 	 ro	 do/2

NOMENCLATURE	 t	 time normalized by do/Co

A	 area	 Z	 impedance

A1,2,.. flow coefficients	 Zi	 exit impedance internal region

C	 velocity of sound normalized to the stagnation 	 Ze	 exit impedance external region

speed of sound Co
z	 axial coordinate

Co	 stagnation speed of sound
y	 specific heat ratio

do	 internal duct diameter (normalized by do to a
dimensionless value of unity)	 a	 angular coordinate

E	 total number of elements 	 p	 density normalized by Po

e	 element number	 po	 stagnation density

F	 function equation, see Eq. (4)	 •	 general flow potential normalized by Codo

f	 initial condition function, see Eq. (14) 	 4	 acoustic flow potential

g	 surface potential in far field, Eq. (16) 	 j	 mean flow potential
W	 angular frequency normalized by Co/do

k	 wd. _ nt.uioer	 Superscripts

N	 Luta	 ;tuber of unknowns	 -	 mean value



e	 element number

:ubscripts

t r:;:formed value

i.j.k.l	 index number

I	 iteration index

n	 normal

s	 surface

INTRODUCTION

For over a decade, the generation, suppression, and
propagation of noise in turbofan engines has been

investigated at the NASA Lewis Research Center. From
the standpoint of design and capital costs, as well as
operational manpower, test facilities are expensive to
operate, to help reduce future costs, both in-house
and contractual efforts have been used to develop
finite difference and finite element programs to
simulate sound propagyation in turbofan engines.
References (1) and (2) contain a literature review of
the techniques. advantages, and limitations associated
with the various numerical solutions of the sound

propagation equations in ducts. The purpose of the
present paper is to investigate how accurately a newly
developed hybrid finite element-integral program (3)
simulates the measured noise radiated from the JT13b
inlet.

The velocity potential formulation of the acoustic
wave equation was employed in the finite
element-integral program presented herein, since it
reduced the computer storage and running time by an
order of magnitude compared to the more general
linearized gas dynamics formulation. On the other

hand, when rotational flow exists in the inlet (wall
and center body boundary layers), the potential flow
cannot be used to estimate the effects of shear (4).
However, since the flow into an inlet is reasonably
modeled by potential flow and since boundary layers are
small, the acoustic velocity potential is ideally

suited for acoustic inlet calculations.
The turbomachinery noise produced within the engine

propagates down the inlet duct (also the exit) and
ridiates to the surrounding environment. One major
problem in numerical simulation of the inlet is what
boundary condition to use at the exit of the duct (1.
p. 273, or 5). To overcome this problem, the present
analysis separates the acoustic field into two regions:

the "interior" region within the inlet and in the vicin-
ity of the inlet lip, and the exterior region consist-
ing of the unbounded region surrounding the inlet. The
interior region contains multidimensional flow while

the exterior region is assumed to contain only uniform
flow. In this hybrid method, a finite element program
is used to solve for the interior acoustic field, while
an integral technique (6) is employed in the far
field. Numerical iteration between the interior and
exterior regions is required to obtain a continuous
acoustic field across the interface.

For comparison between experiment and theory, the
inlet data from acoustic treatment experiments with a

JT15O engine were chosen. In the special JT15U
experiment, documented in Ref. (7). one acoustic mode
was made to dominate the noise spectrum. Thus. the
usual problems of noise floors and separation of
acoustic nodes were to a large extent eliminated in the
data reduction. The results of the present paper will

include the effects of the center body, inlet lip

shape, and flow gradients on the far field radiation
pattern and the attenuation of suppressors used in the

JT150 experiments of Ref. (7).
Finally, for a static engine or fan test rig. one

major limitation is the inability to simulate the
effects of flight on the flow characteristics in the
inlet and one the fan source noise and its radiation.
A secondary purpose of this paper was to determine the
changes in the acoustic radiation due to flow entering
the inlet as seen by an engine in flight.

STATIC TEST DATA

As described in the Introduction, theoretical
comparisons will be made with the previously published
inlet acoustic data for the JT15D engine (7). The

acoustic tests outlined in Ref. (7) were performed at
the NASA Lewis Vertical Lift FaciTity. A photograph of
the JT15D engine mounted on the test stand is shown in
Fig. 1. The spherical inflow control screen covering
the inlet was used to reduce turbulence and distortion
in the inlet flow. The engine exhaust was connected to
a large muffler to suppress aft fan and jet noise. The
engine was mounted 2.9 m or 5.4 fan diameters above the
concrete pad to minimize ground plane effects on the
inlet flaw.

The JT15D engine is a two-spool turbofan engine
with a nominal 3.3 bypass ratio and a rated thrust of

9790 N. The fan is 53.5 cm in diameter and has 28
blades with 66 exit guide vanes. The blade to vane
number ratio for this fan results in a cutoff
fundamental rotor-stator interaction tone. The inlet
used with this engine is shown in Fig. 2. This inlet
has a constant 53.3 cm internal diameter and is fitted

to a bellmouth which in turn is attached to a large

constant diameter nacelle.
A spool piece with 41 equally spaced radial rods

was attached to the engine front flange, as shown in
Fig. 2. The wakes of these rods interact with the 28

fan blades to produce a BPF tone with 13
circumferential lobes. At fan speeds between 6400 and
84OU rpm only the lowest order radial mode can
propagate, which is ideal for the theoretical
comparisons.

Provisions were made for an SDOF (single degree of

freedom) acoustic liner to be placed just upstream of
the rod section of the inlet (see Fig. 2). This
suppressor section was replaceable so that different
treatment designs could be tested. The acoustic liners
were designed by theory to attenuate the 13 lobe mode
produced by the interaction of the inlet rods and the
engine fan. Maximum attenuation efficiency was sought
for this mode at the blade passage frequency of 3150 Hz
with an average duct Mach number of -0.147.

The experimental data will later be presented along
with the theoretical results.

MATHEMATICAL FORMULATION

The formulation of the problem first involves
specification of the governing equations and boundary
conditions. Next, finite element theory will be used
t: solve for the acoustic parameters within the inlet,
while an integral technique will be employed to
determine the acoustic parameters outside the engine.
Two different mathematical techniques are employed here

to overcome the classical closure problem of specifying
a nonreflective exit boundary far from the engine.
Since a direct extension of the finite element
technique into the far field is not possible, the
integral technique was used in conjunction with the
finite element algorithm. Iteration will be required
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2to obtain a continuous solution for the acoustic
quantities at the interface separating the interior and
exterior domains. Each of these topics will now be
briefly discussed.

Acoustic Equations
ConsIder thi7nlet shown in Fig. 3. The flow of

air is assumed to be inviscid, nonheat conducting, and
irrotational. Under these assumptions, the flow in the
duct can be described in cylindrical coordinates by the
flowing nondimensional nonlinear partial differential
equation for the flow potential • (B):

C2 ( e rr + Or 
/r + •ee/r2 + ezz) - 

O
tt - 2erett + 2eeeet/r2

+ 2ezezt + 
#2 	

2 + #e eee
/r4 + iezz

+ 2ireeere/r2 + Lerei rz

+ 2e zeee ze/r2 - eree/r3	
(1)

with the Z axis coinciding with the turbofan inlet axis
and

A4 - -( Y - 1) •rrjr - 2 Ir
j

z + C
c /r -( Y - 1) #r/r

-(Y - 1) ;razz - i [2- r)	 (8)

A5 - -(Y + 1) jzzjz - 2 ^rjr - (Y - 
1) 

;rriz

- (Y - 1) IzTr/r - i [24z ]	 (9)

A6 - w2 - m2c /r2 - u(Y - 1) ( irr + jr/r + -o22 )	 (10)

where the A's contain all the mean flow quantities.
The acoustic potential ♦ is complex.

Since the steady flow is assumed to be
axisymmetric, the equation expressing conservation of
acoustic momentum in the a direction can be
integrated to give the following relationship between
the pressure perturbation P and the velocity
potential ♦:

C2 - 1. - (Y - 1) r et + 7 (ar + •e/ r2 + ez 	 (2)

	 p - -o 0W# + # Z4 Z + r1)
	

(11)

where the subscripts indicate partial differentiation

with respect to the subscripted variables. These
symbols and those following are listed in the
nomenclature.

To obtain the acoustic equations for the inlet,
first the flow potential a is rewritten as the sum of
a steady axisymmetric mean flow potential j(r,z) and

an acoustic potential 4

• _ j + ♦( r
.z) a i(Wt - me)	

(3)

To account for spinning modes, the acoustic potential

in Eq. (3) has been modified to include eime
Alsp, the solutions have been assumed to be harmonic

(e- 111t ) in time
The mean flow quantities, s, are independent

of time and thereby satisfy the steady mean flow
equation. Substituting Eq. (3) into Eq. (1),
eliminating the mean flow quantities, and neglecting
nonlinear acoustic quantities yields:

Boundary Conditions
To prescribe the boundary conditions, the engine is

divided into a finite interior region and an exterior
region, as shown in Fig. 3 The rear portion of the
inlet is replaced b) an ellipsoidol termination since
it has been previously established that the geometry of
this region has very little effect on the sound
radiated from the inlet (6).

Along the axis of symmetry, and the acoustically
hard walls (centerbody, part of the duct wall and the
nacelle exterior wall) the normal gradient of the
acoustic velocity potential is

O n =0
	

(12)

The boundary condition at the surface of a locally

reacting sound absorbent soft-wall duct can be
expressed in terms of a specific acoustic impedance.
Z. Majjigi (9) has shown that a proper formulation of
the requirement of continuity of particle displacement
yields

F (o) = Al*rr + A2*zz + A3#rz + AO Or + AS # z + A 6 a - 0 (4)

	
,n's as (Z> + 47 'nn

	 (13)

where

A l 	c2 - ^r2
	

(5)

A z - c2 - i z 2	(6)

where p is given in Eq. (11). In this analysis, it
is assumed that the last term in Eq. (13) is negligible
since -inn is quite small and cannot be accurately
calculated by the method currently used for computing
the steady flow.

The fan plane is the interface between the inlet
and the turbofan engine noise source (rotor and stator
blades). Generally, the noise source can be a velocity
potential or a pressure source. In the problem
considered herein a sound pressure source of the form

A3 - -2_* z	
(7)	 P (r) - f (r)
	

(14)

will be used. As will be shown, a plane radial profile
(f(r) - constant) and a Bessel function representation
for f(r) will be used. The pressure P(r) is
related to ♦( r) through Eq. (11).

3



Finally, at the interface between the interior and	 with # only at the centroid. Thus the total number
exterior regions an impedance condition 	 of unknowns M can be expressed as

Zii . -P . 1.0
n

is used to initially close the interior problem. Since
the value of ZIi is not known a priori, an iteration
scheme is used to determine the correct value of

ZIi. The subscript I represents an iteration
counter, while i stands for interior region. I
equals 1 in the first iteration as shown in Eq. (15).

Un axis of symmetry in the exterior field, Eq. (12)
holds again. Along the interface separating the
interior and exterior regions, the potential in the
exterior region g(s) must equal the potential in the
interior region.

g l (a) _ 0 1 (s)	 (16)

and the impedances at the interface must be equal

Z 1e . Z Ii	 (17)

Again,	 j♦I and g(s) as well as the impedances
are not known a prori. The iteration procedure to

determine these values will be discussed shortly.
Finally, only outward propagating waves can exist

in the far field as the distance from the inlet
approaches infinity. By using the free space Green
function in the integral solution (6), the absence of
reflections in the far field is automatically achieved.

Interior Solution

A finite element method is used to obtain the
solutions to Eq. (4) in the interior portion of the
inlet. To accomplish this task on the JT15U inlet, the
inlet has been divided into a number of triangular
Hermitian elements, as seen in rig. 4. For clarity,
the number of elements shown have been greatly reduced
from the actual number used. As shown in Fig. 3, the
indices i,j, and k represent the vertices of the
triangle and the index t denotes the centroid
node. The centroid node is not shown in Fig. 4.

To represent the variation inside the elements of
the field variable and its derivatives, the
interpolation function for the Hermitian elements is
written as follows

#(r,z) . Ne, i + Ne#zi + NeOri + Ne#j + Ne4zj

+ N6arj + N^ak + N80zk + N9^rk + N10 41	 (18)

where r and z subscripts represent derivatives
while the i,j,k,t subscripts represent the node
positions. Values of the weighting functions

Ne ,N2.... are given in Ref. (10).

The unknown nodal values of the velocity potential
4 and its derivatives are now constrained to satisfy
the wave Eq. (4) and the previously discussed boundary
conditions by using the Galerkin form of the method of
weighted residuals. For the simpler Lagrange
interpolation functions (11) the total number of
unknowns would be the toter number of vertices and
centroids representing the unknown ♦ values at each
node. However, using the Hermitian formulation,
4, 4r, and oz are unknowns at each vertex

(19)

where E is the total number of elements each having
one centroidal unknown. Obviously, the bandwidth of
the solution matrix increases with the Hermitian
formulation; however, fewer elements are needed to
resolve the pressure field. Also, use of the Hermitian
formulation tends to reduce spurious oscillation
excited by inaccurate matching at boundaries (12).

Application of the Galerkin finite element method
yields the following relationship

E
r^ e F(#)dA(e) . 0e E 1 ff

where F(#) represents the wave Eq. (4) and the area
of integration is over the element tabled e. As given
in Eq. (18), NA is the known weighting function
for each unknown m associated with a node m of
element e. It should be noted that N$ is zero
for all elements not having the unknown m (0 or its
derivative) associated with a particular element. For
example, vertix node 16 in Fig. 4 will require a
summation over only six adjacent elements, while the

vertix node 18 along the boundary will require a
summation over only three elements. The centroid nodes

will require only one integration over only a single
element.

When Hermitian elements are used, the analytical
integrations of the element equations required by Eq.
(20) became formidable. In this case, it is far more
practical to evaluate the integrals numerically using a
Gauss quadrature scheme. Since the weighting functions
are polynomials, the Gauss quadrature is exact (13) and
the chance of error is substantially reduced by Tetting
the computer perform the integration.

Equation (20) provided M equations for the M
unknown nodal values of # and its derivatives. The
remaining task of assembling and solving the matrix
equation follows the general approach of finite element
methods (3 and 10). In this case, however, the
acoustic velociTies represented by ar and az
are contained in the solution vector and need not be

calculated by differentiating the potential.

Exterior Solution

Th e integral technique is used to solve the wave
equation in the far field. In the integral technique,
the Green's theorem is used to transform the partial
differential equation within a region to an equivalent
problem of solving an integral equation over the
boundary of the region. For acoustic problems, the
integrals vanish at infinity and on the axis of
symmetry leaving only the body surface, or in this case
the "interface" shown in Fig. 3. The integral
technique developed by Meyer et al. (6) will be
employed here. It uses a Green's function that
satisfies the Somnierfield condition of no reflection at
infinity.

The integral technique can only be applied in cases
where the properties of the medium are constant or the
differential equation describing the medium can be
transformed into a constant property problem.
Consequently, the interface separating regions I and II
in Fig. 3 must be extended sufficiently far from the
exit so that the flow is approximately uniform, In
this case, the wave Eq. (4) reduces to

(15)	 M . 3x (Number of vertices) + E

(20)



F(*)	 err ' *rlr	
(k2 ^1 - ^o]*::' 	-

	

* 21kmo sz - 0 	 (21)

where

It - wic	 (22)

and

No • jzlc	 (23)

Using the transformations employed by Tester (14)

r*. r, 2*- z' 1 - MT, k*- k/^ ' - "o

** • ♦ exp (ikmz-/f, - o2 
1	

(24)

Eq. (21) becomes

*r*r* ' *r*ir* + *z*z* ' (k *2 - 
T
2
^, r* - 0	 (25)
r

In Ref. (6), Meyer et al, have transformed t-. (25)
along with the appropriate boundary conditions into the
integral form. The Meyer et al, approach was used here
since their computer codes were made available and the
accuracy of the codes has been previously demonstrated.

Iteration Scheme

—mss mentioned earlier, at the interface between the
interior and exterior regions, the initial impedance
condition, Eq. (15), is only an approximation. To
determine the exact value of the exit impedance as well
as the acoustic velocities and pressures, a simple
iterative procedure based on the method of successive
substitution is formulated as follows:

1. Employ the exit impedance condition (Zli - 1.)
and use the finite element method to obtain a solution

within the interior region. From this solution compute

the acoustic potential 4(s) at the interface.
2. Let the acoustic potential at the interface as
computed in S tep 1 equal g(s). Use the integral
technique to compute the exterior field. From the
exterior solution, compute the impedance at the
interface (i.e.,Zle) where the subscript a denotes
the external impedance at the interface.
3. If Zl	 is not equal to Zli, set lli
equal to 11 1 , and repeat the solution of the
interior region using the finite element method and
obtain a new acoustic potential 4(s) at the
interface.
4. Repeat Steps (2) and (3) until Zli and Zle
agree within a specified tolerance.

DISCUSSION OF RESULTS

As previously outlined, the finite element-integral
program is now applied to the JT15D engine
configuration tur the m - 13 mode to determine the
far field radiation pattern, suppressor effectiveness,
and effect of flight Mach number. Each of these topics

will now be considered in order.

For the calculations reported in this paper, the
finite element computer code subdivided the interior
region into 320 Hermitian elements. These elements use
1003 nodal points of which 683 are triangle vertices
with 2049 degrees of freedom (*, *r, ez
unknowns) and 320 centroid unknowns for a total of
2369 unknowns. The computer code for the integral
technique subdivided the interface into 59 segments.

Far Field Radiation Pattern
The calculated far field radiation pattern for the

(13,0) mode at 3150 Hz is shown in Fig. 5 at 24.4 m and

5.42 m. The similarity between the two far field
distributions indicates that near field effects are
absent. The jump at 30' is not real and results from
insufficient elements. Fewer elements produce a larger
jump. These results are replotted in Fig. b along with
the experimental data from Ref. (7), for which the

single m - 13 mode dominates the noise source. The
data, presented in graphical form in Ref. (7), are
tabulated here in Tables I and II for convenience. For
the noise source at the fan plane, both the radial
pressure distribution of the (13,0) erode and also a
uniform radial pressure distribution in the annulus
were used. Since only the (13,P) mode propagates, the
far field pressure distribution was identical for both
source inputs. This, of course, will not be the case
when more than one spinning mode can propagate. As
seen in Fig. 6, the analysis and experiment agree
reasonably well. The peaks, however, are about 10
degrees apart.

Also shown in Fig. 6 is the far field distribution
for a sharp edged inlet based on Savkar's (15)
Wiener-Hopf analytical solution. Savkar's T eory was
modified for convection effects using a velocity
correction factor from Ref. (16) (Eq. (8)). As seen in
Fig. 6, the sharp lip solution predicts slightly more

radiation to the higher angles than the thick bellmouth

finite element solution.

Soft Wall Ducts
As ^mentioned earlier, soft wall suppressors were
run in the JT150 inlet to attenuate the sound in the

far field. The axial position of the suppressor is
shown in Fig. 2. In t^s experiment only half of the
suppressor was active. As seen by the slanted lines
originating at nodes 18 and 44 in Fig. 4, the finite
element nodes were positioned exactly at the entrance
and exit of the active liner. The second half of the
suppressor was taped to give a hard wall. With the
full suppressor open, the tone level fell below the

broadband noise level which prevented a quantitative
evaluation of the suppressor's performance. Three
suppressor designs were built having estimated nominal
values of resistance of 2.272, 1.136, and O.b38 (Taole
1, (7)). The suppressors were all specially built to
have identical reactances of U.5 which is stiffness
controlled at 3150 Hz.

. Figure 7 displays the calculated far field
radiation pattern for the same source as in Fig. 5 but
with a soft wall supp essor having a resistance of
0.638 and reactance of 0.5. A comparison of Fig. 5
with Fig. 7 shows the sound has the same far field
shape but is decreased in magnitude by about 22 dB.

A comparison with the experimental data will now be
made with data between 50 and 80 degrees. These angles
were chosen since in the experiment the sound pressure
level for these angles stood well above the broadband

noise floor. At 60 degrees, subtracting the SPL of
69.02 in Fig. 7 from the hard wall value of 91.23 in
Fig. 5 yields a calculated attenuation of 22.21 dB.
The other angles also have the same theoretical
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potential flow formulation does not include the effects
of a boundary layer. In this situation, the complete

solution to the separate linearized continuity,
momentum, and energy equations will be required. With
this increased number of unknowns, the wave envelope
technique or a transient approach (21 and 22) looks

very attractive.

attenuation. This attenuation along with other
calculated attenuations for the other resistance values
are plotted in Fig. 8. As seen in Fig. 8, the

xperiment and theory are again in reasonable agreement.
Also .1hown in Fig. 8 is the attenuation calculated

using a semi-infinite soft wall duct theory (solid
circular point) which considers only the lowest radial
mode for m . 13. The maximum attenuation for the semi-
infinite duct analysis is 30 dB ((1), pg. 8 or Fig. 9)
which is approximately 6 dB higher than the peak
numerical prediction and about 13 dB higher than the
numerical prediction at e . 1.14.

Note also that the numerically determined maximum
attenuation (at X - 0.5) occurs at a lower resistance
(- 0.5) than that determined using a single radial mode
(e 1.14). This difference can be explained using
the argument presented in Ref. (7) that modal
scattering is important for this extreme case of a
single source mode entering a very short acoustic liner
(L/D - 0.15). The impedance discontinuity causes the
single hardwall mode to scatter into several radial
modes in the soft wall section. Since the liner is so
short the higher radial modes contribute significantly
to the overall suppression. It was shown in Ref. (17)
that higher radial modes have progressively lower
optimum resistance. It would thus be expected that a
multimodal liner solution (which the numerical solution
is) would produce a lower optimum resistance than the
lowest radial mode solution used L, design these
liners. This explanation of modal scattering being

significant is reinforced by the calculations shown in
Fig. 9. As the acoustic liner is lengthened (smaller
D/L), the numerically calculated attenuation approaches

the single mode attenuation shown at D/L . 0. For an
extremely long duct this lowest mode would uominate the
sound attenuation.

Flight Mach Number
s mentio-n-eTTn the introduction, static

experiments on test stands as shown in Fig. 10(a)
cannot simulate the true flight situation as shown in
Fig. 10(b). Although a bellmouth inlet is not a
realistic inlet to fly, a calculation will now be
performed to demonstrate the capability of the
program. Figure 11 shows the far field radiation
pattern for the case of flight at 44.7 m/sec (100
miles/hr). A comparison to the static case of Fig. 5
is shown in Fig. 12. As seen in Fig. 12, the noise is

shifted by flight to lower angles although the peak did
not seem to move. These results cannot be generalized

to flight, because a bellmouth inlet would not be used
in flight.

LIMITATIONS OF THEORY

As seen in the previous section, the theory is

versatile and gives reasonable predictions of the far

field radiation pattern and suppressor attenuation.
This data was for a nearly cutoff mode with a
relatively long wave length. For well propagating
moaes with relatively short axial wavelength, however,

the present computer does not have the storage capacity
to resolve the many axial wavelengths. This is
particularly true when the Mach approaches unity and
the convective effects further shorten the sound
wavelength. Therefore, research is continuing (2)
using special numerical techniques such as the wave

envelope concept (18 and 19) to reduce the required
computer storage and the Transient technique (20) to
completely eliminate matrix storage requirements.

Finally, for well propagating modes the boundary
layer can have significant effects (17). The present

CONCLUSIONS

Finite element theory coupled with the integral

technique is a versatile tool for handling noise
propagation in engine inlets and radiation to the far
field. The theory can also be applied to any situation
where the axial wavelength of sound is relatively
large, such as an inlet with low frequency sound

excitation and low Mach number and an exhause duct
where convective effects tend to increase the sound
wavelength.

For the single mode JT15D data, the theory and
experiment are in reasonably good agreement for the far

field pattern as well as the suppressor attenuation.
Flight effects are also easily handled by the program.
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TABLE I

HARD WALL JT15D TEST INLET - Fig. 6
(Far field 24.38 m, 3150 Hz, m - 13, Ref. (7))

SPL
Angle from inlet, degrees

40	 50	 60	 70	 80	 90

TABLE II

FAR FIELD SOFT WALL JT150 SPL ATTENUATION - Fig. 8
(x - 0.5, Ref. (7))

Run 1 88.5 94.0 95.6 95.4 90.0 85.5
Run 2 87.2 94.4 96.4 96.0 90.5 87.7
Run 3 88.5 96.3 96.0 95.7 89.5 84.6
Run 4 88.1 96.2 97.7 96.3 90.2 85.0
Run 5 88.8 96.7 97.8 96.1 90.0 86.4
Run 6 88.5 96.3 96.7 95.2 90.3 85.7

Average 88.3 95.7 96.7 95.8 90.1 85.8

Normalized 91.6 99.0 100.0 99.1 93.4 89.1

SPL
Wall Runs Angle from inlet, degrees

Resistance 50 60 70 80

2.272 Run 1 8.5 9.6 9.6 9.0
Run 2 7.4 8.8 10.7 10.0
Average 8.0 9.2 10.2 9.5

1.136 Run 3 19.2 17.6 20.7 18.3
Run 4 16.2 17.9 20.3 20.8
Average 17.7 17.8 20.5 19.6

0.638 Run 5 23.7 24.0 21.6 19.0
Run 6 22.2 20.6 20.0 20.5
Average 23.0 22.3 20.8 19.8

7



CRIG:NAL IAA"
BLACK AND WHITE PHOTGGRAP14

lv,

Figure 1. - JT15D engine •.!th inflow control device on test stand with exhaust muffler.
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Figurek - Division of JT15D inlet into Hermitian triangular elements.
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