@ https://ntrs.nasa.gov/search.jsp?R=19820023201 2020-03-21T07:55:38+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



= |

|
[
I
!
[
i
i
[
|
[
|

P Lo —‘!:,-fb‘- 1 ‘M. o
+ o At gl £ -
v A iy

bﬁ '_. 1.4 . i , I H-;. . s ad e 2 : !
~ (NASA-CKE-169250) QUANTUM CHEEICAL N82-31077
CALCULATION OF THE EQUILIEEIUM STRBUCTUERES OF
SMALL METAL 4ATOM CLUSTERS Final Progress
Report (Battelle Columbus Latks., Ohio.) Unclas
83 p HC AQS5/MF AQ1 CSCL 20H G3/72 L2€737
LT L T T : M T e C b i e

o
DI LS e i
gt : -,




L S

| e Al TR UG i B (UL

|

pah |

FINAL PROGRESS REPORT

QUANTUM CHEMICAL CALCULATION OF THE
EQUILIBRIUM STRUCTURES OF SMALL
METAL ATOM CLUSTERS

to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
AMES RESEARCH CENTER

August 11, 1982

by
Luis R. Kahn
Grant NSG-2027

BATTELLE
Columbus Laboratories
£J5 King Avenue
Columbus, Ohio 43201

Battelle is not engaged in research for advertising,
sales promotion, or publicity purposes, and this report may
not be reproduced in full or in part for such purposes.

[P

AR 1 e




EXECUTIVE SUMMARY

Clusters of metal atoms are of importance as models of substrates
in studies of Chemisorption on metal surfaces and of catalysis of chemical
reactions; they are also of increasing interest as novel molecular species
in their own right that, surrounded by certain 1igands, are possibly a whole
new class of catalysts. Moreover, clusters of metal atoms are useful as
prototype atomic-level host systems for the development and testing of models
on interatomic forces. These interatomic forces are a basic ingredient to
the much more complex atomic modeling of the mechanical properties of metals
that are used to address important materials problems such as the effect of
hydrogen on crack propagation.

The approach we have taken to the study of metal atom clusters is
based on the application of ab initio quantum mechanical approaches. This
final report discusses our current research effort in the application of
these methods. Because these large "molecular" systems pose special practical
computational problems in the application of the quantum mechanical methods,
there is a special need to find simplifying techniques that do not compromise
the reliability of the calculations. Our current research is therefore
directed towards various aspects of the implementation of the Effective Core
Potential (ECP) technique for the removal of the metal atom core electrons
from the calculations. This final report discusses our recent progress in
this area.
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INTRODUCTION

The goal of this research is to gain quantitative fundamental
understanding about the properties of clusters of metal atoms. The in-
creasing interest in these novel "molecular" species stems from their use
to model substrates in the study of chemisorption, and from the prospects
that such studies will yield the long-sought understanding of the mecha-
nisms of heterogeneous catalysis of chemical reactions. Moreover, these
metal atom clusters surrounded by carbonyl groups, are indeed being thought
of as new types of catalysts in their own right. In every case, however,
there is still very little known yet about these interesting new molecular
species. Since the atomic level properties of these clusters are not yet
readily available from experiment, the most reliable approach to their

determination lies in the development and application of predictive ab initio

quantum mechanical approaches.

This final report describes our current research effort designed
to continue the development of a reliable, more accurate, and more efficient
quantum mechanical method necessary for the calculation of the properties of
clusters of metal atoms. The method deals with the important simplification
in the quantum mechanical calculation of metal atom clusters of the removal
of the metal atom core electrons from the calculations. The method is the
Effective Core Potential (ECP) approach to simulate the effect of the core
electrons on the valence electrons.

SCIENTIFIC PROGRESS

A New Theoretical Analysis of the ECP Method

A long standing issue in the Approach of Effective Core Potentials
(ECP's) has been the absence of a theoretical analysis on the basis of which
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the properties of the ECP's could systematically be improved, a theoretical
analysis that would unify the evolving but seemingly disparate proposed
improvements to the approach. We have succeeded in finding this needed unify-
ing theoretical analysis for the ECP approach, and a paper describing this
work will be appearing in the International Journal of Quantum (:hemistry.(2
A preprint of this paper is found in Appendix A of this final report.

We summarize here the background to this theoretical development.
As is well known, the first ECP's were based on valence pseudo-orbitals con-
structed from linear combinations of atomic orbitals of the same orbital
angular momentum. While these first ECP's led to some excellent comparisons
with molecular all electron calculations, they also led to some perplexing
failures. An ad-hoc remedy was proposed by Hay et a].(3) based on the dis-
covery of the sensitivity of the molecular potential energy curves to the
long-range properties of the ECP's. Whereas the ad-hoc remedy was found to
lead to molecular potential energy curves that were in much better agreement
with all electron results, a fundamental explanation was lacking. A funda-
mental understanding of the problem was found in the recognition of the
charge redistribution that was unwittingly being introduced in the valence
pseudo-orbitals by the linear-combination-of-atomic-orbitals aspect of its
definition. The improper long-range behavior of the ECP's was in retrospect
only a symptom of this more fundamental deficiency in the valence pseudo-
orbitals. The result has been the development of the "shape consistent"
valence pseudo-orbitals. Whereas it appears that a number of workers dis-
cussed this 1dea.(4'8) Christiansen et al(ﬁ) were the first to demonstrate
the important implications of "shape consistency" for the reliable calcula-
tion of molecular potential energy curves. Moreover, the practical proce-
dures of the Christiansen et al approach for the construction of "shape"
consistent" valence pseudo-orbitals appear to be the most widely adopted
presently.

Notwithstanding the practical success of the "shape consistent”
approach, a common concern has been not only that the core segment of the
valence pseudo-orbital is arbitrary except for the single condition of
normalization, but that no physical criteria had been established to decide
even in principle just what additional conditions the core segment of the
valence pseudo-orbital should satisfy. This concern has been heightened
by the observation in praciice of unexpectedly sharp spatial characteristics
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in the "shape consistent" ECP's. In the absence of a comprehensive theoret-
ical analysis it has been difficult to decide whether these properties of
the ECP are physically important properties or merely artifacts of the in-
sufficient physical definition of the core segment of the valence pseudo-
robital.

Through the valence pseudo-orbitals and the ECP one is, of course,
attempting to simulate as closely as possible the parent atomic all-electron
Hartree-Fock sulution. Indeed, Rappe et al 9) have proposed that the core
segment of the valence pseudo-orbital also be required to minimize the error
in the valence-valence interactions. Their approach, named the "hamiltonian
and shape consi_tent" approach, points to an important additional physical
criterion on the basis of which to remove some of the arbitrariness left in
the definition of the core segment of the valence pseudo-orbitals. The
minimization of the valence-valence interactions is a global property of the
orbitals and, notwithstanding its importance, is a quite disparate property
of the parent all electron Hartree-Fock orbitals than the normalization condi-
tion. Moreover, the details of the valence-valence interactions are closely
dependent on the particular electronic state, and change from one atom to the
next in a complicated manner.

Our solution to these important issues in the ECP approach is de-
scribed in detail in Appendix A. We point out here the main properties and
conclusions of this novel developnent.(z)

(1) A new set of attributes of the atomic orbitals is

found that alone determine the valence-valence inter-
actions fully. These new physical measures of orbital
characteristics are found in the "moment accumulation”
functions defined as

Y r 'y
Mz | 2Bt P mat 0{T (A
Q“"“'ll = S. “l If ?
where P , and P ,,, are atomic radial functions.

(2) Since these "moment accumulation" functions determine
the valence-valence interactions, the minimization of
the error in these orbital properties in turn mini-
mizes the error in the valence-valence interactions.
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The latter is shown to be equivalent to the require-
ment that the core segment of the the valence pseudo-
orbital satisfy the conditions

~l 3 . Y g
{ Q'\\t.\\'l' ()= Q“t,‘,l.("u) 3 L= l,t*‘-,z ) nle! )llé!}

The point at which the core and valence segments of
the valence pseudo-orbital are joined is denoted as r
In the above,the superscript tilde indicates the
terms constructed fram valence pseudo-orbitals
rather than the parent valence Hartree-Fock orbitals.
The set of valence orbitals is denoted as !'

M

The previous sole requirement of normalization is found

now to be only one of the new conditions. The new requirements,
however, are also shown to be discrete individual conditions on
the orbitals of the same succint nature as the

normalization condition. Since the satisfaction

of these conditions minimizes the error in the -
valence-valence interactions, the "Hamiltonian

and shape consistent”" condition is, through these

conditions, shown in fact not to be a disparate

set of conditions from the normalization condition.

Moreover, the satisfaction of the "Hamiltonian and

shape consistent" condition is hereby extricated

from the complexities of the state dependent atomic

energy expressions.

Indeed, it is possible to extend the required set

of conditions systematically to attain an ever in-

creasing simulation of the orbital characteristics

(that, in turn, determine the interactions among

electrons) without being limited by the difficulties

of finding some pertinent model energy expression.

There is, of course, a 1imit to such a generaliza-

tion imposed by our overriding goal to project out

core states through the requirement of nodelessness

in the valence pseudo-orbital, as well as our prac-

tical requirement of obtaining valence pseudo-orbitals

that are "smooth" over the core region,
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(5) A novel expression for the ECP is obtained in terms
of the "moment accumulation" functions that allows
us to prove that the residual in the valence-valence
interactions strictly vanishes For r 2 ry if the
valence pseudo-orbital satisfies the "hamiltonian
and shape consistent" conditions. This explains in
large measure the extremely sharp behavior already
observed in "shape consistent" ECP's around rery.
Whereas the residual in the valence-valence inter-
actions is preseat for r < rme the residual is forced
to vanish for r 2Ty by virtue of the conditions
built into the core-segment of the valence pseudo-
orbital. This effect takes place at whatever value
™ is given, and, therefore, explains the observed
change in the shape of the ECP's with changes of n-

In summary, this new theoretical analysis yields understanding of
previously observed yet unexplained properties of the "shape consistent"
ECP's, it unifies the previous "shape consistent" approach with the more
recent "shape and hamiltonian consistent” approach, it shows that the orbital
attributes that control the valence energy are the "moment accumulation
functions, it affords an analysis of the long-range behavior of the ECP in
terms of the "moment accumulation” tunction, and it provides a foundation
for the future construction of systematically improved ECP's.

Evaluation of Matrix Elements of the ECP

In the semiannual progress report of October 23, 1981, we presented
the reformulation of the integrals over cartesian gaussian basis functions
(GTO) of the molecular ECP so that the shell structure of the GT0's could be
exploited. A computer program that yields all the terms in these formulae
shell by shell has been prepared and a copy is given in Appendix B. This pro-
gram yields all the unique non-zero terms, and is thus the replacement for the
ENCODER routines of the current SPDF ECP integral program. The other major in-
put to these formulae are the radial integrals, In,z and Jn;t,t" The routines
that calculate these latter integrals are the same ones that are 21ready
present in the current SPDF ECP integral program.



Whereas the calculation of the ECP integrals over shells is likely
to yield a large computational savings, there are other efforts under way by
workers at the National Bureau of Standards that have promise to improve
the efficiency of the evaluation of the radial In’z and J ¢ integrals.

nie,e
This work aims at the direct numerical calculation of the integrals over

the ECP on a grid of points. This approach may find advantages in the irter-
change of the sum over terms with the sum over quadrature points. Another
goal of the latter work is to bypass the step of fitting the numerical ECP
with GTO's. This step has become one of increased difficulty as a result

of the very sharp approach to zero of the "shape consistent" ECP's as r
approaches ry; this property of the ECP can be expected to remain in the
"hamiltonian and shape consistent" approach on the basis of the analysis
presented above in terms of the "moment accumulation" functions.

There remain, thus, well defined technical problems in the imple-
mentation o° various ideas for the improved efficiency of the ECP integral
calculation. The prospects are gooa, however, that these will be solved,
and that thereby the use of the ECP approach will be extended from a research
tool to a bonafide “engineering" tool for chemical research.
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ABSTRACT

A one-component approach to molacular electronic structure is
discussed that includes the dominant relativistic effects on valence
electrons and yet allows the use of the traditional quantum chemistry tech-
niques. The approach starts with one-component Cowan-Griffin relativistic
orbitals that successfully incorporate the effects of the mass-velocity and
Darwin terms present in more complicated wavefunctions such as the Dirac-
Hartree-Fock. The approach then constructs “relativistic" effective core
potentials (RECP's) from these orbitals, aqq uses these to bring the
relativistic effects into the molecular electronic calculations. The use
of effective 1-electron spin-orbit operators in conjunction with these one-
component wavefunctions to include the effects of spin-orbit coupling is
discussed. Applications to molecular systems involving heavy atoms and
comparisons with avaflable spectroscopic data on molecular geometries and
excitation energies is presented. Finally, a new approach to “he construc-
tion of RECP's encompassing the Hamiltonian and shape consistent approach
is presented together with a novel analysis of the long-range behavior of

the RECP's.



1. INTRODUCTION

This paper reviews various aspects of a practical but nontraditional
approach to molecular relativistic electronic structure calculations. Where-

as it is traditional to approach relativistic electronic structure in terms

P—

of four-component(]'3). or even two-component(4’5). wavefunctions, the
present approach is based on one-component wavefunctions familiar from the %é
nonrelativistic theory. It appears, moreover, that the relativistic contri- -
butions to molecular properties of chemical interest are being reliably calcu-

lated in all cases examined by this approach despite the approximations from

which the simplicity of the approach derives.

2. APPROACH

This one-component approach to molecular relativistic electronic
structure calculations has two basic ingredients. These are:
(1) One-component Cowan-Griffin relativistic
atomic orbita]s(s) .
(2) "Relativistic" effective core potentials(7).
We review the essential properties of these two ingredients to the present

approach next.

2.1 Relativistic Atomic Orbitals

The one-component relativistic atomic orbitals that are the basis

of this approach are obtained from the Cowan-Griffin equations.(ﬁ) The

TS R ARTTN, B0
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latter may be derived qualitatively from the local potential approximation

to the Dirac-Hartree-Fock equations

U

Q=-%&+%[G-V(ﬂ+%]0x (1)
l- < - L

Q=+ [vn e]R + +Q (2)

where PK and QK are the "large" and “small" components, respectively,

where a = 1/137.036 is the fine-structure constant, and where

Ke d if j=€--;-: (3)

Ke-l-~1 if i-!’-i--;: (8)

Solving Equation (1) for Qy and Qk, inserting these in
Equation (2), and averaging the explicitly j-dependent K term,

, (5)
Y Qje K =1
zt*' i.z.%

=
K =
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one obtains an equation that in its form is the Cowan-Griffin equation.

The actual Cowan-Griffin, or relativistic Hartree-Fock (RHF), equation is

[y + Hy + H|e,mece, P, (6)

where HNR contains the non-relativistic terms found in the Hartree-Fock

equation,

& UL
——-'-l —
Hy = T o + et V., (7)

whereas HHV and HD are the relativistic terms known as the mass-velocity

and Darwin terms, respectively,

Ry ---:-%[G‘t - V‘.(rl]z- (8)
2 Vyy 4
Hbz-g-‘sh[u-—(e,.-v o] 255l @

The potential Voo 10 Equation {7) contains the usual nonlocal Hartree-Fock
potential. However, the analogous potential in Equations (8) and (9) is

replaced by a "local exchange" potential,(s’s)vnl(r)-



The atomic orbitals obtained from the RHF equation show the
typical qualitative contraction of low £ quantum number orbitals and the
expansion of the high £ quantum number orbitals when compared to the non-
relativistic orbitals. This is illustrated in Figures 1 and 2 where the
comparisons are for the 7s and 5f orbitals of Uranium atoms, resoectively.
One also finds good quantitative agreement between the orbital properties
obtained from the average of Dirac-Hartree-Fock (DHF) and RHF orbitals.
This is illustrated in Table 1 for both orbital radial characteristics and
orbital energies in the Uranium atom. Moreover, virtually identical
excitation energies are shown in Table 2 for the DHF and RHF calculations
on the Au atom, whereas the nonrelativistic results predict even the

incorrect ordering of the states for the 5d + 6s and 6s » 6p transitions.

2.2. "Relativistic" Effective Core Potentials

The second ingredient to the approach is the use of Effective
Core Potentials (ECP's) to bring the relativistic effects on the valence
electrons from the atomic calculations into the molecular calculations. The
ECP approach was first developed to serve as a device to bring into a
molecular calculation the effects onto the valence electrons of the
chemically inert core electrons. Since the sources of the relativistic
direct and indirect effects on the valence electrons also are localized
about the atomic¢ nucleus, the role of the ECP's was expanded to bring the
relativistic effects from the atomic calculations into the molecular calcu-
lations as well. In this expanded role the ECP became an “"relativistic"

ecp or recp. ()
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FIGURE 1. COMPARISON OF THE NON-RELATIVISTIC (NR) AND RELATIVISTIC (R)
HARTREE-FOCK 7s ORBITALS IN URANIUM ATOM
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FIGURE 2. COMPARISON OF THE NON-RELATIVISTIC (NR) AND RELATIVISTIC (R)
HARTREE-FOCK 5f ORBITALS IN URANIUM ATOM




ORIGINAL PR3N 15
OF POOR GQUALITY

Table 1. Comparison of Orbital Sizes and Energies for the Uranium
Aton. (Ref. 6)
- —_— -
rr* RAF® DHFC DAr
(average)
<r?> (bohr?)
S5f 2,53
£y 1.94 2.57 2.67 2.61
6d 11.1 -
64: 9.63 12.4 13.3 12.7
1s 28.8 21.5 21.8 21.8
6p 3.
- 4.11 3.73 o7
6p4 4.08 3-76
Orbital Energy (a.u.)
St ~0.352
sf; "0-634 -0-331 -0.297 -0-320
64 -0.208
643 0.267 -0.188 -0.172 -0.186
7s -0.167 -0.201 ) -0.199 -0.199
6P_ - - -l 0363 -
6pa 1.04 1.086 -0.959 1.094

l;onrelativistic Hartree-Fock.

Relativistic Hartree-Fock (Cowan-Griffin).
Dirac-Hartree-Fock.
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Table 2. Excitation Energies for the Au Atom. (Ref. 9)

—g—
———

e ——

Excitstion Energy (eV)

nr RRF B, Expt
5al® gel(2s) 0.00 0.00 0.00 0.00
sa? 62 () 5.13 1.86 1.86 1.7%
sa!® ¢! (%m) 2.71 424 424 4.95

!
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We review the basic properties of the RECP's next, and for this
purpose confine the illustrative example to a nonrelativistic case. Con-
sider for the sake of illustration an atom with a single valence electron
such as the Li atom. The atomic equation for the valence orbital is written

schematically as

(10)

o)~

2 A
el L) paer

where U physically represents all the interactions with all other electrons
which, in this illustration, are the core electrons. This equation is
assumed to have been solved. We define a local potential to simulate the

effect of the nonlocal ﬁ by(lo)

()

with the property that it ensures by construction that, given 0 and P,
Equation (10) is simulated by

L
4 Wy 2 Lo
(-E dr'-+ TR +U (")?'EP a2

We show in Figure 3 a nodeless valence orbital (P/r) corresponding

(10)

to the 2s orbital in Li atom. This figure also shows another choice




10

ORIGIN"' 7.7 3
OF PO GLALTY

] ' ] '
Li

- 1,14
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5 0.10
o . J
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=
& -0-20f- -
=
g

«0.30- d

-0.40 1 1 1 | __ 1 1 1 1-‘
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DISTANCE FROM NUCLEUS (ao)

FIGURE 3. A NODELESS 25 ORBITAL IN LITHIUM ATOM, ¢°1

» AND THE CORRE-
SPONDING NODEFUL 2s HARTREE-FOCK ORBITALZ2S
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for the 2s orbital which contains a node. We want to gloss over the
important complications of the various other choices of P here and focus
on the nodeless one in order to maintain the simplicitv of the discussion.
Using the nodeless 2s orbital one obtains the potential shown labeled as
Ug in Figure 4.(10) Indeed a different potential 1s obtained depending on
whether the valence orbital is the 2p or 3d orbital, etc., and this yields
the other potentials in Figure 4 labeled as Up and Ud.(“) It is found
that each such potential is the appropriate one for the spectrum of states
of its own angular momentum as is schematically illustrated in Figure 5.
This points out the important angular momentum dependence of the local
potentials, and it explains the construction of the net ECP in terms of
these local potentials combined with angular momentum projection operators

(1)

as in

o -8 Loeat
Um a ) ) Jiw) U.c ") {tm ] (13)

20 med
The effects onto the valence electrons embodied in the ECP's are

brought into the molecular calculations via the effective valence electron

molecular hamiitonian, .

H n Z [-3v'+ Z ( *+ U )]' -é—- (e
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FIGURE 4. THE s, p, AND d LOCAL EFFECTIVE CORE POTENTIALS FOR THE
LITHIUM ATOM
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FIGURE 5. SCHEMATIC REPRESENTATION OF THE ONE-ELECTRON ORBITAL SPECTRUM
ASSOCIATED WITH THE s, p, and d LCCAL EFFECTIVE CORE POTENTIALS
FOR THE LITHIUM ATOM, RESPECTIVELY
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Apart from the ECP, all other operators in Equation (14) are the usual non-
relativistic operators, and they range only over the valence electrons.

Thus, the only new element in carrying out a molecular calculation with

ECP's 1s the evaluation of integrals of the ECP in a molecular basis. Com-
puter prrgrams to calculate these new integrals routinely are found inte-
grated in various quantum chemistry packages. Whereas in special cases

(e.g., diatomic molecules) it is efficient to evaluate the integrals using

the ECP in 1ts numerical form(']). for polyatomic calculations in a gaussian
basis this direct approach has as yet been found prohibitively 1neff1c1ent.(]1)
It is found, however, that if the ECP is first fit with analytical gaussian

forms such as
LA Mgt (15)
)

then the multicenter integrals can be effigiently calculated.(lz) Therefore,
polyatomic calculations with ECP's presently use the above noted expansions
of the cp's. (13)

A direct comparison of the valence molecular orbitals resulting
from all-electron (AE) ard valence-electron (VE) calculatfons fcr the
molecules LiH x]z+ and L12* xzzg+ was possible since the AE and VE orbLitals
could be calculated from directly comparable generalized Valence Bond wave-
functions(]]). This comparison is shown in Figures 6 and 7 for the LiH and
Liz+ molecules, respectively. The comparison shows the AE and VE molecular
orbitals to be virtually identical thereby establishing confidence in the

validity of the basic ECP approach.(}l)
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The relativistic ECP's, or RECP's, are based on the one-compcnent
Cowan-Griffin (RHF) equation. The RHF equation for a valence orbital PM

is assumed to have been solved, and to have the form
&t

where UCORE consists of the interactions with the core electrons, UREL con

UVAL consists

sists of the relativistic mass-velocity and Darwin terms, and
of the interactions with the other valence electrons. To construct the RECP
from this starting point, one seeks to obtain a new valence orbital (pseudo-
orbital), an' and a local potential, Ul(r), that combine to satisfy the

equation

-;—- -t $ UM ¢ Um'

r ] ! g\!g Gnl P\C (17)

44

The local potential is defined as(7’]4)

N I ({70 I ST 1R
("z‘]ir'** art T"Uu)&t
U.tm = C‘l - (18)

fu

term of Equation (16) in that, where

VAL
The U term differs from the UVAL
appropriate, the valence interactions are constructed from the valence pseudo-

4"
orbitals, Pnn’ rather than the original valence orbitals, Pnz’
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The detailed properties of the valence pseudo-orbitals, an' in
Equation (18) are of critical importance in determining the reliability of
the RECP's. The RECP itself may be thought of as a device for the embedding
of the valence orbital properties. We shall discuss some of these orbital
properties in greater detail in a subsequent section. Here we only point
out three broad desired characteristics in constructing the valence pseudo-
orbitals(]2'13):
(1) Nodelessness
(2) Maximum similarity with the parent valence orbital,
Prs
(3) Minimal special characteristics in the core region.
A schematic comparison of the parent valence orbital, Pnz’ with two possible

N
choices for the valence pseudo-orbitals, P is shown in Figure 8.

ne’

3. SPIN-ORBIT COUPLING

The one-component approach to molecular relativistic electronic
structure calculations reviewed here does not include the effects of the
spin-orbit coupling operator. The important effects of spin-orbit coupling
have to be obtained in a subsequent calculation in which the energies EI
and states Y obtained from the RECP calculations are used to set up a net

hamiltonian matrix

HI,! ) 81,: EI * (?xlvs. ws> e
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The hamiltonian matrix is then diagonalized to obtain the molecular energy
in the presence of the spin-orbit operator, QSO'
Three levels of decreasing sophistication but also of
decreasing computational difficulty have emerged in recent years for the
calculetion of the spin-orbit matrix elements.<<yllgso|v;:} These are:
(1) Use of the rigorous spin-orbit interaction of the
Breit-Pauli hamiltonian requiring the computatior
of one-electron and two-electron multi-center
integrals

(2) Use of an effective one-electron operator of the

form
A -\ a
Y = 5‘:% g,"m) t&,a"i (20)

where is sum is over the nuclear centers,A .

(3) Use of the "atoms-in-molecules" method.

3.1. Atoms-In-Molecules

The computationally simplest and quickest approach to obtain some
semiquantitative measure of the effect of spin-orbit coupling on the
molecular states calculated using the RECP's is the atoms-in-molecules
approach.(ls) The approximation is valid when the molecular states retain
the same spin-orbit coupling as the parent atomic states. The spin-orbit
matrix element<:vllcsolv3:>are assumed to depend on the spin-orbit splittings
of the constituent fragments, and remain constant as the atoms are brought

together to form the molecule.
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To 1llustrate this approach we consider the XeF molecule.(ls)

The potential energy curves calculated with an RECP but prior to including
spin-orbit coupling are shown in Figure 9. The atomic ionic limit splits

upon introducing spin-orbit coupling

‘P)+F('S)

e FLs) < - o

Let A be half of the spin-orbit splitting between the Xe+(2P ) and Xe+(2P )
1/2 3/2

states. The atoms-in-molecules approximation yields the net hamiltonian

matrix.(]7)
Ez‘z*m =\ v 0 \
AR El,“(l) A 0 2
1) 0 B, -1
e J

The molecular states obtained by diagonalizing this matrix are
shown in Figure 10. In turn, the emission wavelengths to the ground states
calculated from these curves are given in Table 3.(]6) This table shows
that the correspondence between the calculated and the experimentally ob-
served emission wavelengths is unambiguous. The ready assignment of the

emission wavelengths that follows in this example shows the usefulness of
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Table 3. Emission Wavelengths (nanometer) in XeF Molecule.?

TRANSITION _ CALCULATED EXPERIMENT
I, —~ I, 340 352
v,—I, 249 264
II*'—' 3y 422 450
12 zi-__b 12 2+ 307’

20— |1 368

2 W.R. WADT, P.J. HAY, L.R, KAHN, J. CHEM. PHYS. €8,
1752 (1978)
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this simple approximation in giving a quick broad guide to the effects of
spin-orbit coupling. Note that the emission wavelengths prior to including
the atoms-in-molecules spin-orbit effects, also giver in Table 3, provide no

correlation with the experimental emission wavelengths.

3.2. Effective One-Electron Spin-Orbit Operators

The most rigorous approach to the inclusion of spin-orbit effects

is the use of the full molecular spin-orbit term in the Breit-Pauli hamil-

tonian(IB), A ‘} 2
A2 < -
\Qo ) '{ jé:jé: ;E;T (';} A Pi “bi
+ZZ(§**"")(%+23‘J)} (23)

{ﬁ , r;j

This is also the computationally most difficult approach since it requires
the computation of multicenter integrals of both one-electron and two-electron
integrals. Although such molecular computations are now feasible(lg'zz).
they remain the exception rather than the norm because of the associated
computational difficulty. There is therefore a need to find reltable
approximations to Equation (23) that go beyond the atoms-in-molecules approach
in dealing with the changes that occur as the atoms are brought together,
and that yet remain computationally practical.

The increasingly large numbers of chemically inert core electrons

as one moves down the periodic table are an even larger computational obstacle

to the use of the rigorous molecular spin-orbit interaction, Equation (23),
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than they are for the calculation of the nonrelativistic molecular energy.

The problem 1ies in the presence of the two-electron spin-orbit operators.

There 1s, however, good reason to think that the dominant contribution of

these two-electron spin-orbit operators is contained in the interaction

between core and valence electrons mediated by this operator. Indeed,

examination of values of all integrals needed for the evaluation of the

matrix element((?z;lVso']x;:>for the oxygen molecule, for example, shows

the core-valence two-electron spin-orbit integrals to be one order of

magnitude larger than the valence-valence two-electron spin-orbit 1ntegrals.(2])
It is possible to isolate the specific form of the two-electron

core-valence spin-orbit interaction. We take as example the manner in which

the analogous problem has been solved in the nonrelativistic case.(23) It

is well known that the two-electron core-valence nonrelativistic interactions

can be expressed as a net potential due to the core electrons,
A A
Z(“c Kb) — (24)
¢

acting on the valence electrons (the sum in Equation (24)) is over all core
orbitals). This potential is combined with remaining valence operators to

yield the nonrelativistic effective valence-electron hamiltonian,

Hm.z ["';','Vt"z‘: _%: +Z(n".,i‘)] +Z}: -rl- (25)

o W
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where the operator indexes range only over the valence electrons.(za)

Applying the same approach to the rigorous spin-orbit interaction,
Equatfon (23), we start by partitioning the many-electron wavefunction. We
divide the all-electron one-component wavefunction into a Cowan-Griffin set
of core orbitals, {e )y and an unspecified valence wavefunction orthogonal

to these core-orbitals, 9'"'.
il L AWM.
?'a(‘“’,'“t 0) ) (26)

where CI stands for the antisymmetrizer. Integrating the rigorous spin-
orbit interaction, GSO’ over the core-electrons and combining the resulting
core-valence terms with the valence-valence terms, we find the tollowing

effective valence-electron spin-orbit 1nteraction:(24)

Dt AL RN

+ZZ(.§.I!"?’).[.;’§1:'1) } (27)

)
" ’. r'.'.

where the operator indexes range only over the valence electrons. The

remaining core-core terms are all zero.
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The core electrons are shown by Equaticn (27) to formally
contribute to the effective valence-electron spin-orbit interaction via

the gradient of the potential
A A
Z(N‘N.K,] (28)
¢

Since this potential is of opposite sign to the nuclear potential, the

core electrons can be said to "shield" the nucleus in the spin-orbit inter-
action analogously as in the nonrelativistic energy. On the basis of the
localized atomic nature of the core orbitals, the potential in Equation (28)
may be expressed as a superposition of atomic potentials each centered on
one of the nuclei. Combining these atomic potentials with the nucl.ar
potentials to obtain a net potential on each nucleus, veff. one may reexpress
Equation (27) as

uhl_%{ Z(Vv ‘;?.

Yoo P

A
By g )iaenh,
PET 0], e '}

o (29)

where again the operator indexes range only over the valence electrons.
The bare nuclef one-electron spin-orbit terms are found in practice
to be two orders of magnitude larger than the valence-valence two-electron

spin-orbit interactions. The effective one-electron spin-orbit terms in
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V!SL. Equation (29) in turn contain the “shielded" bare nuclei terms. These

ore-electron terms are expected to be thus at least an order of magnitude
larger than the two-electron spin-orbit interaction remaining in Equation (29).
On this basis, it is reasonable to expect approximate one-electron spin-orbit
operators to account already for most of the chemically important molecular
properties.

Whereas one-electron operators of some sophistication have been

(25,26) we wish to illustrate here how

described recently in the literature,
well even simpler one-electron approximation appear to work.(]7) This
simplest of approximations is based on letting

a3

to obtain the following approximation to Equation (29),

off
A
wl L ] a
a ¢ A 1
V, % YY) = tm-é, (31)
A e
ZEff is a parameter adjusted to match either theoretical or experimental

atomic spin-orbit parameters. Moreover, in molecular calculations all but
the one-center integrals of Equation (31) are neglected. The latter con-

22 to have a

dition can probably be removed by allowing the parameter
radial dependence reflecting the increased shielding at larger distances

from the nucleus. Table 4 shows spin-orbit parameters calculated for states
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Table 4. Comparison of Silicon atom spin-orbit constants (in cm")
calculated by Stevens and Krauss (SK) (ref. 26) and by the
effective one-electron one-center spin-orbit operator.

i

(ref. 27)

—————————————
State VE SK SK(3+)2  Expt

{5s7p)

st [3s23p2) p 8.9  157.8  152.7 8.9
s1*[3s23p'] % 179.8  201.4  196.3  191.3
si*(3s24p'] % 32.7 3.9 3.6 40.0
si>*[3p'] % 250.2 -- 310.1  306.9

aSame as SK except that the spin-orbit operator is derived ﬁ;om
Si(3+) with the (1s22s32¢®) core orbitals frozen as in Si (2P)

TR EE
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of silicon atom wherein the valence 3p orbitals undergoes large changes.
A reasonable comparison is still shown in Table 4 with the more sophisti- i
cated one-electron approximation as well as with experiment for all states 3
(except Si3+). notwithstanding the extreme simplicity of this effective

one-electron approximation. Surprisingly good agreement with spin-orbit

coupling matrix elements using the full Breit-Pauli hamiltonian between

electronic states of the rare gas oxides Ar0, KrQ, and Xe0 as a function of

(22)

internuclear distance is obtained by Langhoff and shown in Figure 11.

4. REPRESENTATIVE APPLICATIONS

We briefly review next some representative molecular applications
of the one-component approach to relativistic structure calculations dis-
cussed here.

To illustrete the relativistic effect on chemical bonds, we
compare relativistic (R) and nonrelativistic (NR) calculations of the
potential energy curves of the AuH and AuCt in their ot ground states.(g)
The potential energy curves are compared in Figure 12 and Tables 5 and 6.

It is observed that the equilibrium bond length is predicted to be smaller

by the relativistic calculations in both cases. In AuH, for example, a bond
contraction of 0.3 R is predicted that yields a bond length differing by only
0.01 A from the experimental value of 1.52 A.

Since it has been traditional to correlate binding characteristics
directly with orbital properties, we have 1nterpreted(9) this bond contrac-

tion as originating in the relativistic contraction of the Au 6s bonding
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OF THE RARE GAS OXIDES COMPUTED BY LANGHOFF (REFERENCE 22)
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1-ELECTRON 1-CENTER EFFECTIVE SPIN-ORBIT OPERATOR (CIRCLES
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Table 5. Spectroscopic Properties of Aull mo1ecu1ea

——
ov—

aus (x5 R (A) D (eV) U.(ﬂ-l)
Noarel. ECP
b1 4 1.763 0.99 1387
Gve-1 1.820 1.52 1203
POL-CI 1.807 1.57 “12.17
el BECP
.1 1.508 1.55 2014
cv3-1 1.514 2.14 1891
POL-Cl 1.522 2.23 1871
Exptl 1.5237 ‘3.37 2305
1-Center Dirac-Fock
Nonrel. 1.745 -— 2296
Rel. 1.659 -_— 2178

ap,. J. Hay, W. R. Wadt, L. R. Kahn, F. W. Bobrowicz, J. Chem. Phys.,
64, 984 (1978).
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Table 6. Spectroscopic Properties of AuC! Molecule®

acr (2 R (A), D, (eV) o (=)
Nonrel. ECP

GVB-1 2.447 2.58 n
Rel. ECP

GV3-} 2.283 1.96 298

POL~-C1 2.291 2.39 306

P. J. Hay, W. R. Wadt, L. R. Kahn, F, W. Bobrowicz, J. Chen.

Phys., 69, 984 (1978)

|

E
3
3
3
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orbital (<:r;>65 is reduced from 3.7 Bohr to 3.0 Bohr). Ziegler, Snijders
and Baerends(za). however, have established that the bond contraction first
has its origin in the relativistic mass velocity and Darwin terms prior to
their effect on the Au 6d orbital. It is indeed reasonable, in retrospect,
that the same relativistic terms that would further attract the Au 6s orbital
to the Au nucleus, and cause its relativistic contraction, should also
attract the approaching hydrogen 1s orbital, the other bonding orbital, and
thereby lead to the bond contraction.

The decrease in the binding energy in AuCl, an ionic molecule, is
interpreted to be a result of the deferral to smaller internuclear distances
of the onset of the admixture of the ionic configuration atcr. The
delay of this onset is the result of the increased energy of the act ¢ 01”
asymptote relative to the covalent neutral atoms asymptote; it is caused
by the relativistic energy stabilization of the Au 6s orbital.

Some of the important and exciting research problems for the
applicacion of relativistic molecular methods 1ie in the chemistry of
transition-metal complexes.(zg) We 1llust;ate the applicability of the
present one-component approach to these types of molecules with some results

by Hay(30)

on the PtC13(CzH4)' complex (Zeise's salt). Figure 13 shows good
agreement in a comparison of the calculated geometric parameters of Zeise's
salt computed using a Pt RECP, and the geometric parameters ottained from
neutron diffraction experiments. Moreover, the perpendicular orientzi:on of
the ethylene 1igand relative to the PtCl3' plane is correctly predicted to
be the stable form with the coplanar configuration lying 15 kcal/mol higher
in energy. Finally, the bending of the CH2 groups away from the Pt atom is

also predicted by these calculations.
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Actinide compounds have important roles in nuclear fuels, and
recent attempts to develop more efficient methods to enrich uranium using
lasers have focused attention on UFe. In this connection, we carried out
calculations on UF6 to expand on the fragmentary knowledge about the nature
of chemical bonding in actinide compounds.(31) We 1llustrate here how some
of the calculated properties compared with their experimentally observed
values. The bond length of UF6 in the ground state ]A‘g configuration was
optimized. The predicted value of 3.70 bohr was found in good agreement(3])
with the experimental value of 3.777 Bohr,

in Table 7 we compare the calculated excitation energies in UFS'.
after introducing spin-orbit coupling using the simple approach defined by
Equation (31), with the experimentally determined energies. The comparison
is quite favorable, with the theoretical values only 0.1-0.2 eV higher in
energy.(3]) Table 8 compares experimental vertical jonization potentials of
UFg with orbital energies calculated using Koopman's theorem. The orbital
energies shown in this table overestimate ?he experimental ionization poten-
tials by nearly 3.9 eV. Shifting the calculated values by 3.9 eV brings the
calculated levels into hammony with the experimental photoelectron spectrum.
Similar experiences have been found in all electron ab initio calculations
on SF6, for example. The problem is well known; it lies in the inadequacy
of the delocalized molecular orbitals of the neutral molecule for describing
the relaxation effects associated with the "localized hole states" of the
jonized molecule. Since relaxation effects appear to alter only the
absolute positions of the states of UF6+. an assignment could be made of the

notoelectron spectrum by use of the shifted results in Table 8. The first
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Table 7. Excited States of UFG'. Comparison of Theoretical and Experimental Results

(Ref. 31) )

Excitation energy (eV)

Exptl Rel. ECP DVM Xa-SO

State (Ref. 3 ) (Ref. 31) (Ref.b)  (Ref. ¢ )

Iy, 0.00 0.00 0.00 0.00
Ty, 0.97 0.67 1.00 0.85
Ty, 0. 86 0.97 1.13 1.06
) 4 1.58 1.80 2,51 2,53
T, 1.77 1.95 2.69 2.50

M. J. Reisfeld and G. A. Crosby, Inorg. Chem,, 4, 65 (1965).
bD. D. Koelling, D. E. EVlis, and R. J. Bartlett, J. Chem. Phys., 65, 3331 (1976).

A N Boring and J. H. Wood.
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Comparison of Experimental Vertical Ionization Potentials of UF
with calculated orbital erergies(Koopmans' theorem). (ref. 31)

6

——— e —— — —
Rel. HF  Rel. HF with spin—orbit coupling  Exptl®

4,, 18.43 8u 17.88 (13.98)* 13.9
6u 19.11 (15.21) 15.35

1t,, 18.56 8g 18. 55 (14.65) 14.8
6g 18.57 (14.67)

1t,, 19.64 Tu 19.63 (15.73) 15. 98
8u 19.65 (15.75)

3a;,, 19.73 6g 19.73 (15.83)

3t, 20.11 84 20. 09 (16.19) 16.58
6u 20.16 (16. 26)

1t,, 20.58 g 20.55 (16.65) 16. 85
8g 20.59 (16. 69)

2¢e, 20.74 8¢ 20. 74 (16.84) 17.30

2t,, 37.76 8u 35.20
6u 41.95

2a,, 44.50 6g 44.50

le, 44.71 8g 4.7

1t,, 46.44 8u 46. 04
6u 48. 56

la, 170.82 6g 70.92

b

32EL. HF WITH SPIN-ORBIT COUPLING RESULTS SHIFTED BY -3.9 eV,
L. KARLSSON, L. MATTSSON, R. JODRNY, T. BERGMARK, AND K. SIEGBAHN,
PHYS. SCR. 14, 230 (1976).
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peaks then coincide, and the remaining peaks 1ie no farther than 0.6 eV
from a predicted fonization potential.(3‘)

5. SYNOPSIS

We close this part of this paper by listing the main character-
i{stics of the method discussed here.
(1) This approach to the calculation of molecular relativistic

electronic structure is based on one-component wavefunc-

tions familiar from the nonrelativistic theory. The two
principal ingredients to this approach are: (a) Cowan-
Griffin relativistic Hartree-Fock atomic orbita1s(6).
and, (b) "relativistic" effective core potentials.(7)

(2) The relativistic effects on molecular properties of
chemical interest such as the relativistic effects on the
bond lengths and on the energy ordering of states appear
from all cases examined to be reliably obtained by this
method. The molecular wavefunctions and energies are first
calculated including only the relativistic mass-velocity
and Darwin terms. If the effect of spin-orbit coupling
is expected to be important, then the results of the first
calculation are combined with the calculation of the spin-
orbit matrix. The latter is calculated using an effective
one-electron spin-orbit interaction approximation. The net
interaction matrix obtained in the end is diagonalized to

obtain the final molecular states.
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(3) This approach allows the molecular cal' :.itions to be
performed by direct application of the tull range of
the traditional quantum chemistry techniques, including
MCSCF and CI, to include electron correlation in ob-
taining the ground and excited states of molecules. All
computational aspects of the approach that pertain to the
RECP's have been tested and implemented in standard quan-
tum chemistry programs.(]3’32)
(4) This approach is applicable to polyatomic molecules of
arbitrary geometry.(33) Gradient assisted RECP searches
for the critical points of the potential energy surfaces of
a transition metal complex have recently been reported.(34)
(5) Large computational simplifications over traditional all-
electron treatments are obtained via the "relativistic"

effective core potentials in their role as a device to

reduce the molecular problem to just the valence electrons.

6. CRITICAL ASPECTS OF THE CONSTRUCTION OF RECP's

The reliability of the RECP's for molecular calculations rests
on the properties given to the valence pseudo-orbital $nz through 1ts
definition, and the details thereof are thus of critical importance. Indeed,
every improvement in the approazch has been associated with a revision of the

properties of the valence pseudo-orbital.

e

T T TR U v T L TRLE o Dot
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5.1. Linear Combination of RHF Orbitals

The traditional definition of a valence pseudo-orbital has been

to take it first as a linear combination of the core and valence crbitals

of the same orbital angular momentum.(35'35o12-13)
N
P ¢ 04 M {0
) ‘3':“ P TR (32)

The coefficients ckz ng Were chosen to satisfy the broad criteria given in
Section 2.2. These crileria were indeed satisfied almost optimally by
requiring, in the following order, that:(]3)

a %ﬁw~ ( 3' /Y') = (

(2) r-»0 | »

~n
(b) P te normalized
11

~N
(c) F:l maximize a functional of .the "smoothness" of the orbital.

The major deficiency of this definition has been found to 1ie in the restric-
tion of the pseudo-orbital to the expansion given by Equation (32). Since

tha valence pseudo-orbital ;nz is normalized, the expansion by necessity has
less amplitude than the original valence orbital Pnz at large radial distances.
The net effect is to introduce a charge redistribution into the valence space
that is unphysical and can seriously impair the reliability of calculated
potential energy curves. A comparison between the Hartree-Fock valence

orbital and the vaience pseudo-orbital is shown in Figure 14 that illustrates

the charge redistribution for the case of the silicon atom 3s orbital.
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6.2. Shape-Consistent RHF Pseudo-Orbitals

The remedy to this deficiency has been found to lie in abandoning
the traditional expansion, Equation (32), as a part of the valence pseudo-
orbital definition. Instead, motivated by the importance of preserving the
charge distribution characteristics of the original valence RHF space, the

valence pseudo-orbital is first defined as identical to the RHF valence

orbital over the valence segment of the orbital.(37'4])
N
P f r3 % (33)

where RM is a radial distance larger than the outermost node of Pnz’ yet

not much larger than the radius of the outermost valence maximum. The defi-
LY

nition of P . in the core segment of the orbital, 0 < r< Ry, is based in

turn on satisfying at least the requirements of:

(a) Nodelessness

(b) Matching of end-point (at r=0 and r-RM) continuity
conditions on the orbital and its derivatives (up
to the third derivative at r=Ry)

(c) Normalization.

(39), or even exponential

The core segment of Bnu is expanded in polynomials
functions‘38'41) However, only as many parameters are introduced in these
expansions in practice as are required to fulfill the above listed require-
ments. The criterion of smoothness has ot been used explicitly in this
approach. Only the choice of RM has loosely been connected in practice

. v (39)
with the desired ultimate smoothness of Pnz'

3
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The valence pseudo-orbitals obtained by this definition are
referred to as "shape-consistent" pseudo-orbitals. A typical "shape-
consistent" valence pseudo-orbital is compared with the previous pseudo-
orbital obtained from the linear-combination-of-atomic-orbitals defini-
tion in Figure 14 for the case of the silicon atom 3s orbital. The
restoratfon of the proper amplitude in the valence region is shown in
Figure 14 to be accompanied by a commensurate adjustment in the amplitude
over the core region. Whereas the "shape-consistent" definition of valence
pseudo-orbitals has been discussed by a number of workers, Christiansen,
Lee, and Pitzer were the first to demonstrate the implications of the "shape-
consistent" ECP's for the reliable calculation of potential energy curves.(39)
One of their conclusive results for the case of the potential energy curve
of the C12 X'):g+ molecule is shown in Figure 15. The result of the "shape-
consistent" ECP is shown in this figure to be in excellent agreement with
the comparable all-electron (AE) result. In contrast, the previous ECP
clearly led to a much poorer comparison.(]3) Figure 15 also shows another
potential energy curve in reasonable agreement with the all-electron result.
This other potential energy curve was obtained by an intermediate remedy

to the problem(42) that has now been superseded by "shape-consistent"

approach.

6.3. Hamiltonian and Shape Consistent RHF Pseudo-Orbitals

The replacement of the RHF valence orbitals by the valence pseudo-

orbitals in the valence-valence interactions causes a modification in the

interactions commensurate to the modification in the orbitals. There is a
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FIGURE 15. COMPARISON OF THE ALL-ELECTRON POTENTIAL ENERGY CURVE FOR THE

_APPROACH, AND THE *INTERMEDIATE-FIX" APPROACH.

Cl, MCLECULE IN THE X'rj STATE (CALCULATED WITH A GENERALIZED
VAEENCE BOND HAVEFUNCTISN) WITH THE CORRESPONDING VALENCE
ELECTRON RESULTS USING ECP's FROM THREE DIFFERENT APPROACHES:
THE "SHAPE-CONSISTENT" APPROACH (CHRISTIANSEN, LEE, AND PITZER;
REFERENCE 39), THE OLD "LINEAR-COMBINATION-OF-ATOMIC-ORBITALS"
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change in these important interactions even in the case of the "shape
consistent" definition of the valence pseudo-orbitals. In this case,
although the "shape-consistent” psuedo-orbital is identical over the valence
segment with the RHF orbital, the core segment of the pseudo-orbital only
satisfies the normalization condition among all the important other orbital
properties that determine the valence-valence interactions. Rappe, Smedley,
and Goddard have proposed to enhance the definition of the core segment of
the valence pseudo-orbital so as . to minimize the remaining error in the
valence-valence 1nteractions.(43) This enhanced definition of the valence
pseudo-orbitals is referred to as the "hamiltonian and shape consistent"

approach.

6.4. The Method of Moment-Accumulation Functions: A New Approach

The minimization of the error in the valence-valence interactions
supplies important additional conditions for the definition of the core
segment of the valence pseudo-orbital. However, the relationship between
the satisfaction of this criterion and the requisite characteristics of
the individual core segments of the valence pseudo-orbitals is complex and
indirect. We show below a new approach whereby the specific orbital proper-
ties that affect the minimization of the error in the valence-valence inter-
actions can be isolated from the peripheral intricacies of the energy inter-

(42)

actions. In fact, these new specific orbital properties are found to

constitute a set of conditions on the individual orbitals of the same
(44)

simplicity as the normalization condition.
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The sum of the valence-valence interactions is contained in the

atomic valence energy. The atomic valence energy is given by(45)

=¥ o, I, + ™

eV
Oyg ~!
7 S - ”‘ Zuzuﬂmc))
ey A Hoams
u" A '

LT e fbon-1 5 oG]

w>wley L1 (34)
The terms in this expression range only over the set of valence orbitals
{Pnz}' denoted as Y. The orbital occupation numbers are denoted an. while

the Ax(z,z') coefficients are the Roothaan vector coupling coefficients(46);

the latter are simply related to the Clebsh-Gordan ccefficients. The Inz
terms are one-electron integrals of the effective one-electron operator

containing the RECP. The term sE'AL

stands for the deviation of the multiplet
energy from the average energy of configurations. This energy contribution
introduces only additional combinations of the type of interactions already
present, and its detailed structure is therefore of no importance here.

The two-electrons interactions among the atomic valence orbitals

are given by the well known F and G integrals. These interactions are

defined by(45)
\ ° % r(*
Fota)= | | of 00 <5 i L drde
o (35a)
and N o0 rﬁl N
' NS ' '
G lattls ! ] ?ulm ’:‘l'(r) r:‘“ t‘(r) l:'l‘(r) or (35b)
.
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In this traditional form, the properties of the core segment of the valence
pseudo-orbital are interwoven in the intricacies of the energy expression,
EVAL. and no discrete succinct measures of the valence pseudo-orbital
characteristic can be seen to relate to the minimization of the error in
the valence-valence interactions.

We show next a new expression for the formula of the F and G
integrals that does indeed bear out through these integrals the dependence of
the valence-valence interaction on a set of discrete succinct measures of orbital

characteristics. We define the function

Y r N
t)at 0fr (%
Q“’“m = ! ?u(t)t 1:“,( )at |, o¢ (36)

We shall name this orbital characteristic the "moment accumulation" function.
These functions become the various A-order transition moments of the valence

set of functions as the radial distance from the nucleus approaches infinity.

0
nL,nL

the amount of charge deriving from the Pn!(r) orbital as the radial distance

The special case of the function Q (r) describes the physical increase in

from the nucleus increases; we refer to it as "charge accumulation" function.

In particular

L)
b Q@ (M= | (37)

A—>00 n!,\\!
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because of the normalization of the radial functions. Analogously,

Lirww Q,. (N= 0 (38)

because of the orthonormality of the radial functions.

The function ng.nz(r) first serves to clearly bring out the
nature of the improvement of the orbital properties brought about by the
‘shape consistent" pseudo-orbital definition. Figure 16 shows a comparison
of the Qgs’as(r) function deriving from the Hartree-Fock valence orbitals
with those deriving from the valence pseudo-orbitals for the case of the 3s
orbital of silicon atom. Apart from an expected small discrepancy in the
core region, the "shape consistent" 3s pseudo-orbital leads to an exact match
with the Hartree-Fock charge distribution over the whole valence region. The
overall improvement in the charge distribution over that obtained from the
older pseudo-orbital deriving from the 1inear-combination-of-atomic-orbitals
definition is shown in Figure 16. The latter pseudo-orbital yields a charge
distribution that differs from the Hartree-Fock distribution not only over

the core region but over a large part of the valence region.

We note, as a digression, that the "charge accumulation" function,
Qgs 3s(r). serves also to give a measure of the onset of the physically meaning-
ful valence segment of a valence orbital. The outermost maximum of the 3s

orbital is shkown in Figure 14 to be at about r=1.26 Bohr. This point might

perhaps be interpreted as already in the midst of what one would call the
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FIGURE 16. COMPARISON OF THE CHARACTERISTICS OF THE "CHARGE ACCUMULATION"
FUNCTION OF THE HARTREE-FOCK 3s ORBITAL OF SILICON ATOM, AS A
FUNCTION OF RADIAL DISTANCE, WITH THE "CHARGE ACCUMULATION"
FUNCTION OBTAINED FROM THE VALENCE PSEUDO-ORBITALS CF THE "SHAPE-
CONSISTENT" APPROACH AND THE OLD "LINEAR-COMBINATION-OF-ATOMIC-
ORBITALS" APPROACH
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physically meaningful valence region. We note, however, that Figure 16
shows the amount of charge accumulated up to this outermost maximum, at
r=1.26 Bohr, to be only about .05, 5% of the total charge.
The properties of the "charge accumulation" function are also
directly related to the basic electrostatic interactions among the electrons.
The traditional expression for the Coulomb potential with the 3s orbital density

as its source is

!

R /e
e - [Rer/r] i
A je-r' (39)

Carrying out the angular integrations yields the well known formula

X
i

4

)

®
T =3[R mdt + [ dt (40)
v

.‘-"‘-.1

The contribution of the P3s orbital is spread out over two distinct terms
in this expression. Integrating by parts, however, we find that both terms
can be consolidated into a single term that depends concisely on P3s

through the "charge accumulation" function, Qgs 3s(r) We obtain

[
o Q. M
1A,
(R el -
r

The asymptotic expansion of the above expression for the Coulomb potential

for large r yields the well-known poin® <harge-1ike expression
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This {1lustrates the central role that the -rbital properties contained in
the charge accumulation function have in the basic electrostatic interactions
among electrons.

Figure 17 shows a comparison of the Coulomb potentials resulting
from the three different "charge accumulation" functions shown previously in
Figure 16. The Coulomb potential deriving from the "shape-consistent"
valence pseudo-orbital is seen to agree perfectly in the valence region with
the potential derived from the Hartree-Fock orbital. In contrast, the
pseudo-orbital deriving from the 1inear-combination-of-atomic-orbitals
definition yields a Coulomb potential that, consistent with the corresponding
“charge-accumulation" function shown in Figure 16, is too repulsive even in
the valence region of the valence orbital.

Indeed, the F and G integrals themselves may be reexpressed in
terms of the "moment accumulation" functions. Starting from the definition
given by Equations (35a) and (35b), and integrating by parts repeatedly,
we find that

)
L 1 % &t
lv = uvl") "t) 1gl ot |(t‘ Vs
F(ﬂt,‘ ) { Q“'ﬂ Q‘ R Y S 3 ' (43a)

and

0y )
G‘l(nl,wv) » (lhl) J [Q (g)] —_—
0

al,wi!

(43b)
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This proves that through these expressions for the F and G integrals, the
valence-valence interaction in EVAL. Equation (34), depends on the valence
pseudo-orbital properties embodied in the set of "moment accumulation"
functions.

It follows that minimization of the error in the valence-valence
interaction is equivalent to the requirement that the core-segment of the
valence pseudo-orbitals in the "shape consistent" definition satisfy the

Hartree-Fock values of

\
e0 1 .. Vv
{Qu.atu”) e, '“} , ek (44a)

and

{Q" (%) 4 ),-.-lc-t'l,hl',t} , nle!n’l'é!,

!’ (44b)
This set of conditions contains the normalization conditions,
{Q’ R,) teV (
(R } wl 6 45)
“"“ ) o~

as a subset. The replacement of the single condition of normalization by
the above "moment accumulation" set of conditions appears to provide the

most natural transition from the "shape-consistent" into the "hamiltonian
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and shape consistent" approach. Indeed, the increase of the required set

of "moment accumulation" functions beyond Equation (44) provides a systematic
procedure ‘or the definition of pseudo-orbitals that increasingly tend to the
original Hartree-Fock valence orbitals and is independent of the availability
of a pertinent energy cxpression. The limit is, of course, inconsistent with
the desired criterinn of nodelessness in the definitions of valence pseudo-
orbitals, and is, therefore, primarily of interest as a generalization of the

approach.

The transition from the "normalization" condition to the "moment
accumulation" conditions in the "shape-consistent" approach requires an
extension of the form of the expansion of the core segment of the valence
pseudo-orbital. Rather than simply expand in a single continuous polynomia
of increasingly higher degree, it appears to be preferable to expand in a
large num~er (p~ssibly simulating a complete basis) of piece-wise continuous
polynomials such as, for example, cubic splines of finite support. Moreover,
the condition of "smoothness" of the valence pseudo-orbital can simply be
added to determine all degrees of freedom in the expansion not fixed by the
"moment-accumulation" conditions. This provides a systematic procedure
for obtaining valence pseudo-orbitals wherein the final form of the resulting
RECP's 1is independent of constrainzs on its shape that may result from an
expression for the core segment of the valance pseudo-orbital with just
a minimal set of parameters. Finally, we note that the "moment accumulation"
conditions include conditions that couple the various valence pseudo-orbitals.
The satisfaction of the "moment accumulation" conditions hence requires that
all the valence pseudo-orbitals be solved simultaneously. In contrast, the
old "shape-consistent" procedure allowed each valence pseudo-orbital to be

obtained independently since no recognition was given to the interdependence

of these orbitals.
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7. THE LONG-RANGE BEHAVIOR OF THE RECP: A NEW ANALYSIS

The characteristics of the long-range segment of the RECP's have
been shown to be an important factor in the reliability with which molecular
potential energy curves can be calculated using the RECP's.(42) This inter-
dependence is not surprising in view of the large overlap between the long-
range segment of the RECP's and the electron densities of neighboring atoms
at equilibrium internuclear distances. Atomic calculation:, in contrast,
provide almost no test of the long-range properties of the RECP's because
of the small overlap of the atomic charge density with the long-range segment
of the RECP.

We present next the first detailed analysis in terms of moment
accumulation functions of the characteristics of the long-range behavior
of RECP's. Starting from the expression for the RECP given in Equation {18),

and using the properties of the P orbitals, one obtains

U(r)-__._. ( lpnl at nl)
¢ ?Il. 1§.t

(46)

for r > Ry. The first term is the local core-valence interaction. and the
second term is the local residual in the valence-valence interactions. These
terms consist of radial Coulomb and exchange potentials, the general form

of which is traditionally given in terms of the Y functions. The latter are
defined as

r
A \
J
Y "”in?u““ g,j.mdnr jP ) 5o

r

(t)dt @)

st P W '-' '
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We first obtain an alternative expression for the Y functions in terms of

"moment accumulation" functions,

5
Y\l.n-t'( = [ . I Q m mz (48)

by integration by parts.
We first analyze the residual of the valence-valence interactions.
Using the expressions for the Coulomb and exchange potentials in terms of

the "moment accumulation" function, we obtain

VAL MVAL & T a0
(Uu_?,; - Ut Pt ), (0“_.){ j [Q‘m(t)- Q‘httl:)] -tl-"-“

ent |
1@& Y 2 1
N B-Q W]——é
Jm Ez.z( )A(u)r ][ch") Q.. ]th }
Ry
*,E! { S [Q_.l. - °~w w®l
wlenl
Lt &
t) - t )
M%‘(':IMAX(U) r ( )“QT” " .()]J“m} (49

The residual of the valence-valence interactions is seen to depend on the
difference between the "moment accumulation" functions calculated from the
valence RHF orbitals and from the valence pseudo-orbitals (indicated by a
superscript tilde). We have restricted the expression for the valence-valence

interaction to the case of the average-energy-of-configurations since it

suffices to illustrate the long-range characteristics of the RECP.
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The core segment of the valence pseudo-orbital of the "shape-

consistent" approach satisfies the normalization condition

§, o0e ) kel

Consequently, in the "shape-consistent" approach the first and third terms
of the residual in the valence-valence interaction, Equation (49), are zero.
However, the remaining terms in the residual of the valence-valence inter-
actions are not equal to zero for "shape consistent"-only orbitals. In the
"moment accumulation" formulation of the "hamiltonian and shape consistent"
approach, we require that the core segment of the valence pseudo-orbital

satisfy the full set of conditions

~ A

8
Qll,ﬂ('kn) = Qﬁl‘ﬂl (Rn) ’ ,ogolz)“')at ) “t 6 cvv (51a)

?i RE - Q ) o ML ey > wl'ey
(51b)

It follows from Equation (49) that in the "hamiltonian and shape consistent"

approach the full residual in the valence-valence interactions vanishes for

r> RM’ j.e.,
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The RECP is therefore reduced to the local core-valence interaction,

0 ryku (52)

cone
U, () = St ' b
4

7, ra Ry (53)

provided the moment accumulation conditions given by Equation (51) are satis-
fied. Expressing the Coulomb and exchange interactions in terms of "moment
accumulation" functions, we obtain for r > Ry

U "= (n“) 0 i 5
‘EC { 'j, Q '-'. I‘! (' ‘t
Wt
- ) (ARt Wy U
h‘z!:!(h{l)k )r ( )3 Qng’,,g 'tm” } (54)

The set of all coie orbitals is denoted as (.
Finally, we discuss the long-range behavior for r>>RM. The

asymptotic expansion of the Y functions for large radial distances yields

% 1 AN
= r r (55)
Vo ™~ 7 S >Ry
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In turn, the asymptotic expansion of the RECP for large radial distances is

(56)

U, ) ~ -'7 - M""%‘ ALt Q.gaz" ( L )
* wieC  Asi-tie r A

under the assumption that the residual in the valence-valence interactions

is zero. The leading term is the point-charge potential Nc/r where NC is

the number of core electrons. This is indeed in accord with what is expected
on physical grounds. If the core segment of the valence pseudo-orbital only
satisfies the normalization condition, then the residual in the valence-
valence interactions unfortunately also contributes a term to the long-range

interaction. We find in that case that, for r>>R

M’
VAL MVAL &
e P"‘?.U"' p“'] ~ (01 )”“ Z ALY — w[" m-Q m]
nd

e

“',’:L: 0 2. MY m[ V1wl ”- Q'y ](yﬂ )(57)
!f!. aelt-0

» fh
This long-range contribution, however, is clearly an artifact of the

insufficient definition of the valence pseudo-orbital.
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A nodeless 2s orbital in lithium atom, ¢ ', and the corre-

The s, p, and d local effective core potentials for the

1ithjum atom.

Schematic representation of the one-electron orbital spectrum
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The relativistic (R) valence electron (VE) potential energy
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using the full Breit-Pauli hamiltonian (solid Vines) and the 1-
electron 1-center effective spin-orbit operator (circles and
crosses)

The potential energy curves for the ground states of AuH and
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ECP and a generalized valence bond wavefunction.
Geometrical and energetic parameters calculated by Hay (Reference
30) for Zeise's salt, and comparison with experimentally ob-
served values (in parentheses).

Comparison of the Hartree-Fock valence orbitals with the valence
pseudo-orbitals of the "linear-combination-of-atomic-orbitals"
approach and the "shape consistent”" approach for the case of
the 3s orbital of silicon atom in the 3P state.

Comparison of the all-electron potential energy curve for the
Cl2 molecule in the X'z; state (calculated with a generalized
valence bond wavefunction) with the corresponding valence
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approach, and the "intermediate-fix" approach.
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Figure 16.

Figure 17.

Comparison of the characteristics of the "charge accumulation”
function of the Hartree-Fock 3s orbital of silicon atom,as a
function of radial distance,with the "charge accumulation"
function obtained from the valence pseudo-orbitals of the
"shape-consistent" approach and the old "linear-combination-
of-atomic-orbitals" approach. _
Comparison of the characteristics of the Coulomb potential, as

a function of radial distance, obtained from the density of the
Hartree-Fock 3s orbital of silicon atom with the Coulomb poten-
tial obtained from the valence pseudo-orbitals of the "shape
consistent" approach and the old "linear-combination-of-atomic-

orbital" approach.
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APPENDIX B

LISTING OF THE COMPUTER CODE THAT GENERATES THE
NON- UNTQU N THE
UL H POV TESTAN
GAUSSTAN BASTS FUNCTIONS




¢
¢

R
v

é_»‘i\ﬁjw;’v. v Wt

OF POCR QUALITY

PROGRAM SHELL(INPUT DUTPUT)

¢ e
DIMENSJON LABL (4)
DATA LABL/1HSy1HP, 1D, 1HF/
c
CAL. 27AR
i CALL FTAR
¢

Cess LOOP CVER SHELLS
DO 240 NS=1,4
DO 230 NSP=i,NS

PRINT 400

(& N el ©

eseoLOOP OVER COMPONINTS OF THE SHEL.S
00 220 LS=3,NS
NSMAK®2® | S-1
DO 210 MS=1,NSMAX,2

D0 2uv0 LSPxl,NSP
MSPMAX=22*_ SP=2
GO 190 MSPwi,NSPMAX,2
c
NXE(MS-1)/2 —— -
NYz(28LSeM5-11/72 T
N2=N3y=LS
C
NXP= (MSP=-1)/2
NYFs (2% L 5P=M5P=1)/2
o NZP=NSP=_SP L e . e
c
PRINT SO0 LABLINS) ;LABLINSP)
PRINT S5ECoNS=1yLS=1¢MS=LSyNXyNYyNZsNSP=1 ,LSP=g NSP=_SPNXPNYP ;NZP
e
C

CeeelLOOP OVER THE TEPMS IN A PARTICULAR INTEGRAL o
CALL INKENDINS LS M3 NEP,LSF, NSP)

c
13C CONTINUE
2)0 CONT]INUE

2140 CONTINUE S | S
220 CONFINUE it : N .
230 S ONTINUE
<%0 CONIINUE

svop

60U FORMAT (1M1}

S00 FORMAT (MO +//7 10X AL 43%,A%,7)

510 FOAMUT (2Xs2(SX oA H(33TZ 1K) oAH/Z 41 H(,3]2021H)))
END



e -7 xoe
(fgrg\‘p.“ H REEFPS

OF PUOR QuUALITY

FUNCTION DCOILyMyYX <Y oKZyLPyHP)

Cees THIS ROUTING EVALUATES THE ANGULAR MOMENTUN COUPLING CONSTANTS
< OMMOM/FTABCM/FPQR(13,13,13)
COMMON/ZTABCM/LMF(43) o LML (49) ¢ ZLM(130) oLMX(130)4LMY (130D, LMZ(130)

I0=L* (L +1) =M+t
IMN2LNFLIC)
IMX=LML(ID)

JOSLP* (LP+1)=-NPs1
JUN= LMFLJID)
JMx=LMLUJD)

SUMI=0,.0EQ
00 20 4=IMN,iHX
SUMJ=).0E0
00 10 J=JMN, JMX
IX=LMXAT) AKX+ MX () +1
JYSLMY (TP OKYSLMY ()) ¢4

TTITMZCIN eKZOLNZ L) o
10 SUMJ=SUMJ & ZLitJ)*FPARIIX, JY 9 J2)
21 SUMI=SUMI 4 ZLM(I)*SJMY

DCO=SUMI
RETJIN
END




<«

ic

RETJRN

ORIC! N ik,
OF POCR QUALITY

FUNGTION ECOUKXoKYoKZoLoMoKXPKYPyKZP)

COMMON/ZTABCM/LMF LL9) o LHL (69) o ZLMIL30) oLHX (1300, MY(1300,LMZI1X0)

LOMMON/FTABUM/FPQR(13,13,13)

ID=L* (Le1) =Neg
IMNz_MF(ID)
INXeLMLULD)

SUM=(. 050
00 10 I=IMN,IMX
LAXSKXSLMX(I)eXKXP+q
IYSKYSLMY (1) 4KYPey
I2=KZ¢LHZ(I)+K2Pe1
SUMSSUM*ZLMII) *FPQRUEX 4IY912)
CORTINUE

ECO=SUM

a8

END



ORI, o b . 3
OF PLCT iy

_ SUBROUTINE FTAB . __ .
Coes THIS OUTINE SETS UP A TABLE OF F-FUNSFION VALUES
c

INTEGER P,Q4R
COMMON/FTABCWFIQR{13413,13)
DATA P17/ 3.1615926535898E0/

c

Cees ZERQ-0JT THE TABLE
00 30 P=1,13
DO 2C Qx1,13
00 10 R=1,13
10 FPQR(P,Q,R)=0.0E0
20 CONTINUE
30 CONFTINUE
c
Ceeo RECURSIVELY GENERATE THE NON=-ZERO ENTRIES TO THE TABLE
FPQR(1+41,1)=4,0E0*P]
N0 60 Px1,13,2
rPYzPe] . ~ B

go 10 0=1Qt3’2
Q0=Q-1
30 60 R=1,13,2
RR=R~-1

IF (P.EQ.1) GO TO w0

FPQA(P,Q4RIZIPP-1,0E0) *FFQR (P-2,Q4R) 7/ IPP+QT¢RR*1, CED)
60 TO 60
40 IF (Q.tQ.1) GO 1O 50
FPQRIP,Q,RI=(QQ=1,0E0) *FPQR(Py Q=2)RI 7 (PP +QQA+RR +1, GEO)
GO TD 60
S0 IF (R.EQ.4rGOTOGO
FPARIP,QyR)=(RR=1.0ED) SFPQR (P, QyE=2) 7IPP+QQ+RR +1 . GED)

6C CONTINUE
70 CONTINUE
80 CONTINUE

RETURN
END

it -



Coee THIS ROUTINE SETS UP THE REAL SPHERICAL HARWMONICS IN THE PORW OF LINEAY

SUBROUTINE ZTAB

CoeooCOMBINATIONS OF CARTESIAN PRODUCTS=(L MIZLIL*1) =M+

c

T ZLM{160=5,0E0%SQRT( 21, 0ED/ (8, OEO*FPII)

COMNON/ZTABCN/LMF (49) g LML (L9) o ZLMEA30D 4L MX (130D 4 LMY (1300 ,LMZ(130)

DATA FF1/712.5663706L4359E0/

DATA L"F/10203'“'517!§!{pl119}2!19!1§!1§9230zg1?§gg§g?00391§21§§1"_
x390“1'“3;“5.“'|50'5305'06‘065.67.70.72"6".'31 84987993,97,163,
X106+1100313022601200124y127/

CATA LML/10293009697:9520521513)15417919922,22,24427429¢33,35, 38,
Xu0yl2obyb6909,52,56,60063,66969,71,75+77:680+83,66,92,96,102,1C5,
X109,1124115+119,123,1264130/

DATA LMX/0919000029391 900050921039 29200+291909090:09892005%02+0,3y

X1929090029392909000900Go2sde290030205939000002+093900389502900240910
X19doOolvO0s09000020002029050939200020055:37895939190929004920003¢1
X193929090290020008 0808009090 0Us0e09092ulolo2ede200030103919obs29096,
X&o2007

OATA LMY /0s0909190929000009892+042¢0929090:09052,292020390452,04,0,
X2+s0229240,0, O0v0sColUvlolololole30103000299904920090902029000+2404240,

X0,0,00CoUrislolod, 101010393v1'30113.5.1'3'500123“10121‘09320500’2'
X244,6/

DATA LMZ/Z709092+000+002 929092890 ¢G90 0292 ¢2909392429091904050,0,5041,
X19292900093+19802909 3010298292900 000009091019392¢29G509303510294,
X290G9Se 30l obno20Uy 39392909240, 191¢09090909090,191919242029000,043,3,

Xlolv“Q‘020200'0'59391'th02o°’§93010502v3'303'101v2020606}191oioﬂ'
XUe0y0/

ILM(1)=SART (1. GEO0/7FPIY
ILM(2)=5QRT (3. 0E0/FPI)
ILME3) =ZLM(2)

ILMi) =2LM2)
ZLMIS)=SQRT(15.0E3/FP1)/ 2,0E0
ILMLBY ==2LM(5)

ZLM(7)=2.0E0®ZLM(5)

ZLN(8) =23, 0E0*SQAT (5, 3EO/FPL)/2.0ED
ILM{9)==ZLM(8)/3.0EC

LM(L0)2ZLM(T)
ILM(LL)=2LM(T)
ILM(12)=SQART(35. CEO/ (8 .0EOCFPY )
ILMIL13)=2=3,0Eu"ZLMIL2)
ZLMI14)=SQRT(135,0€07 (4. OEO*FPI})
ZLM(1S2=2LM(14)

ZLMULT Vs =ZLM(16) /5,020
2LM(18)=5.0E0*SQRT (7, 0EQ/FPI)/ 2,020
ZLM(19)==3,0EN*ZLM(13) /5.0E0
ILMI20)=ZLM(16)

ZLMI2U)=ZLMILT) »
ZLM22052.0E0*ZLMLk)
ILR(23)==ZLH(1 D)

ZLM2)2=2LM(12)
ZLM(25)3SQKT (315, CE0/ (6L 0ELSFPI )
ILM(26)=-6,050%2LM(25)
ILMI27)=ZLM(25)
ZLM(28)=SORTU315. 0ED7 (8, 0EO*FPY))
ZLM(29)==3,060°ZLM(28)



g

I

OF poCh CUALITY

TEMP=SQRT (45 .0E0/FPI)/4e 0EOQ

ZLMt30ds7. GEO*TENP — T T - T
ILML3L ) ==ZLM(3D)

ZLMLI32)aTEMP

ILMI33)z=TENP

TEMPESQRT (45,0607 (8. 0EQ*FPI))

ZLM(34 )27 JOEC*TENP
2LML35 x-3, DEOSTEMP
TEMP=SORT(9.0EQ0/FPI)/8,0E0
ZLMU36)235,060°TENP
ZLMU3T)==3u . 0EQ*TEN®
ZLM(38)s3,0E0*TENP
ZLHI39)EZLNI3e)
ZLMta0 )2 2LMi3S)
TEMP=SORT (45.0E0/ (4, REO*FPL))
ILMt&1)=7, 0EQ*TEMNP
ZLMlu2)2=-TEMP
ZLMIL3)==2L MC(29)
_ ILMLub)==2LMC28) } o
ZLM(45)=SORTI315,0237 (4. OEQFFPT)
ZLMIL6Iz=ZLHILS5)
ZLM(47)=SQRT(693.0E0/ (128, 0E0"FP) )
ZLMEGBY=2=10.CEO* ZLM{LT)
ZLM{49)=5,0E0%ZLMLLT)

ZLNMI50)25QRT (3865,020/(64.0E0*FPI) )
ILMI51)=-6.0E0*ZL H{500 -
ZLM(52222LM(50)

TEMP=SORT (385,0:0/(128.0EN*FPI))

ZLM(53)29, 050 TEMP

ZLM(56)2=27,0E0*TENP

ILMI55923,0EC* TEMP

ILMI56)3=-TEMP T/ — T " - T T
TEMPzS QRT (1155,0E0/FPI )/ 4. 05D
ILME5T )23, GEQ®TEMP
ILMI58)x=ZLM(5T)

ZLMI59)==-TEMP

ILM(60)=+TENP .
TEMP=SQRT (165.,0£0/7FP1i78.060
ILM(62 1221 LGEOCTENP
ILMEB2)2=14.,0ED*TEND
ILM(631=TEMP

TEMP=SQRT (11.0E)/FPI) /8. 0E0
ILMI6L)Z63LNENTENP
ILMIE5 )= =70, DEQ* TEMNP
ILML660=15.0c0*TENP
ILMEET)IZZLM(B1)
ILMI{B8)=ZLM(R2)
ZLMI69)2ZLM(63)
TEMP=SQIT(1155.,050/FPI)/2,0€E0
ZLMI70)=3.3E0%TEMP
ILM{7L)z=-TEMP

ILMIT2)2=-20M(S4)

ILM(73)=z=2, M(55)
ILM{T&)2=2LM(5)
ZLU4(TS)I=2-2LM(56)
ZLMI76)°SORT (3465, 0ZN/7FPI)/2,0E"
TLMLTT)I==2LM(T6)




D L.

ORIGT o s
OF POUR .- .7

-
1
.
b

ZLMI78)52L ML)
ZLM(79)=2ZLM (08)

ZUMLED)=ZLM(4T)

TEMP=SQRT (3303,0E0/ (512, 0EC*FPI) )
ZLM(B1)=6,0EG*TEMP
ZLM(82)=-2C, 0EN* TENP
ZLM(33)=ZLM(81)
ZLM(o4)=SQRT (3009, 0E0/ (128, 0E0%F F))
ZLM(B85)==10,GEQ*ZLM( &)
ZLM(56)25,0E0%ZLM(84)

TEMP=SQRT (619.0EG/ (256.0E0%FPI))
ZLMUE7)w11, 0EQ TEMP
ZLNEE8B)==66,CEOPTEND
ZLM(89)=ZLM{8T)

ILMCS0)=-TEMP

ZLMI91)26,0EQ°TEMP

ZLM(92)=-TENP

TEMP=SQRT (1365.0E0/(128,0E0*FPI) )
ZLM193)=11,0E0°TENP

7UMIu)=-33,0E0°TEMP ~

TL1t(95) =9, 0EU*TINP
ILM(53512=-3.0EQ*TEMNP

TEMP23ART (1365.0E0/(542.0E0°FPI))
ILM(97)333.0E0°TEMP

T M{38)=-2LM(37)

ILM(393==18. CEC*TENP
ILNMCL00)=+18.0E0*TEMP
ZLMUL101)=TENP
ILMIL02)=~TEMP
TEMPzSQRT (27 3.0EQ0/FPI)/B8.0ED
ILMILu3) =33, 0E0TENP

ZLMUL06) ==30.0E0%TENP
ILM{105)=5.0E0*TENP
TEMP=SQRT (13.0E0/FPL)/716.0E0
ILMU106)=231.0E0°TENP
LLM(107)=2-315,00*TEMP
ILM(108)=105,0E0*TENP

ZLM(109)2-5,0E0  TEMWP ~——— — — — — T T
ZLMU110)22LN(1]3)

ILM(L111) 2L M(104)

ZLMIE112)Y=ZLML105)

TEMP=SQRT (1365.,0E0/(128.0E0*FPI))
TLMI113) =33, 0E0°TENP
ILM(LLW) 2 =18, JE0TENP
ZLM{115) = TENP
ZLN(L16)==ZLM(9%)
LML 7Y ==2M(93)
ILMULLE)2=ZLM(95)
ILM(11Q) 22 M(96)
TEMP=SOPT (819, 0E0/FPL) /4. 0ED
2LM(120)=11.0E0°TEMP
LMl121)==ZLM(120)
ILM(122)=-TEMP

ILM(123)=TENP
ILME124)2ZLMI86)
ILM1125)= 2L M(85)
LLME126) =2 M(AL)

ZLM(127)=SQRT (3003,020/(512. 0EQ°FPIN)
ILMi128)=-15,0E3%2 9 (127) ~ T T
ILM(129)==ZLHL128)

ILMUL3U) =20 ML127)

KETURN

END



SUBROUTINE EXPANDINSoLSsMSs LYo NToNTPoNSP,LSP,NSP) e s
CoesGENERATE THE TRANSLATION INDUCED EXPANSION TERMS FOR THE ECP
CeesTHE FIRST KIND
C

IFLAG=0

LYNINSMAXO(OsNTOLS=NS~1)+1
LTMAX=NINO(LS=1,NT=1)4]

00 50 LTSLTMIN,LTHMAX
MTMINSHAXO(=LT+1,N5-28LS+LT)
MTMAXeNINO(LT=1,NS5-LT)
MTMAX=MTHAX=MTHMIN¢]

DO 40 MT=1,NTHAX,2 .

c
NXTs{LT*NT+ATNIN-2)72
NYT=(LT=-NT=-MTNIN) /2
NZITeNT-LT
c
¢ e e
LTPMIN=MAXO(Os NTP+LSP=NSP-1)+1
LTPHAX=MINO(LSP=1,NTP=1)¢1
DO 30 LTP«LTPNMIN,LTPMAX
NTPHIN=MAXO(=LTP¢1,NSP=2¢LSP4LTP)
MTPMAX=MINO(LTP=1,ASP-LTP)
_MTPRAX=MTPNAK=-NTPMIN®Ll _
DO 20 HTPs1l,MTPNAX,2
C
NXTPas{LTP+NTP+MTPNIN-2)72
NYTPs(LTP=-MTP=-NTPMIN)/2
NZTPesNTP=LTP
¢ e
c
JFLAG=20
MiMAXs2$L1~-1
DO 10 M1=1,MINAX
c
TEMP=ECOINXTHNYT)NZT)LL-2)M1-L1sNXTPoNYTPoNZTP)
IF (ABS(TEMP).LT.1,0E~-10) 6O TO 10
c
IFLAGeIFLAG*]
IF (IFLAG.GT.1) GO TO S
PRINT 520,11-1oNT-1,NTP-1
5 CONTINUE e —_
c
JFLAGOJFLAG+]
IF (JFLAG.GT.1) GO TO 7
PRINT S530sNT=1,LT=1)MTeNTHIN=L,NXT)NYTsNZT,NTP=1,LTP-1,
1 MTP+MTPHIN=-1s NXTP,NYTPpNITP
T CONTINUE oL e e
C
PRINT 540,M1-L1,TENP
C
10 CONTINUE
C
20 CONTINUE
30 CONTINUE
C
40 CONTINUE ; R - i —_—
50 CONTINUE
¢
RETURN
¢

520 FORMAT(1HO,10Xp3HL1=p12,2Xy3HNLe,12,2X,3HN2e,]12)
530 FORMAT(15Xs9Xs kHp3L1253H)/ (5312, 1M 32X»3Xp LH{5,312,3H) /(2 31201H))
540 FORMAT(42X,2HN=»12,3X2E15.08)

END



c

(o} [gXaXal (2] (2]

OfiCeiie. v

OF POOw Q. wnin¥

) SUBROUTINE INKIND(HS»LSo NS»NSPoLSP,nSPY)
CeossLOOP OVER THE TERMS IN THE ECP ENTEGRALS OF THE FIRST KIND

L1NMAXSNS+NSP-1
DO 30 L1l=1,L1MAX

00 20 NT=1,NS
00 10 NTP=1,NSP

e+ GENERATE THE TRANSLATION INDUCED EXPANSIDN TERMS

CALL EXPAND(NSsLSsMS)LLpNToNTPoNSP,LSPyNSP)

10 CONTINUE
20 CONTINUE
30 CUNTINVE

_ _RETURN . =

END




.. . . SUBROUTINE EXPAND(NS)LSyMSosLysLly L2/NTyNTP,NSP,LSP,MSP)
Cess GENERATE THE TRANSLATION INDUCZD TxXPANS

Cess OF THE SECOND KIND

c

IFLAG=0

LTMINSMARD (0 yNTeLS=N5=1) ¢1

toN TERRE FOR THE 5P INTEGRALS OF

LTMAXSMEIND(LS=1,NT-11 "1
20 70 LT=LTHIN,.TMAX ) ORI~
MTMINZMAXO (=LT ¢g 4y MS=2*LSeLT) Rh&ﬁ?ﬂi Pan- 1o
HTMAX=MINU (LT=1,MS=LT) OF POUS upar i
T MAX=NT MAX=HT NI N1 SURQUALITY
_ .00 B0 MT=1,MTMAX,2

NXT2(LTeMT +MTHIN=2)7 2
NYTs(LT-MT=HTNIN) /2
NZT=NT-LT

LTPHI N=NAXO (0, NTPELSP=NSP=17 ¢1
LTPMAXSHINO (LSP-1 yNTP=1) 1

GO 50 LTP=LTPMIN,LTPMAX
MTPMIN=NAXO (=LTPe1,HSP=2°LSP+LTP)
MIPMAXEMING (LT P=t,MSP=LTP)
MTPMAX=MTPMAX-MTPMIN¢1

NXTPs (LTPeMTPe¢MTPHIN-2)/2
NYTP=(LTP-MTP-MTPHIN}/2
NZTP=NTP=LTP

<

JFLAG=D

[ 2NN o]

MIMAX 22%L1-1
D0 30 Miz1,MiMAX
 M2MAX=2%L2-1

20 25 M2=i4M2MAX
MMAXE2*L =1
30 0 Mz1,MMAX

TENI 1 230CN(L1=1 yMi=0L1 yNXT JNYT NIT s =1 ,M=L)
TEMF220CO(L2"14M2 L2 NYTP NYTP NZTPyL=1yM=_}

IF (LABS(TEMPL) oLTo1aBE-a0)oORIABSETEMP) (LTI FE-IIVRO YO 10— "~

(&)

IFLAS=]IFLAG+L

IF (IFLAG.GT.1) GO TO §

PRINT 40UsL=1sLli=1y.2=4yNT=1,NTP-1
S CONTINUE

<)

JFLAG=JFLAG+L
4F CJFLAG.GT.1) GO TO 7
PRINT S07yNT=1 g Tt o MTEMTMIN-L {NXT yNYT JNZTNTP=1,LT>-1,
1 MT FOMT PHIN-L ¢NXTPyNYTP (NZTP
7 CONTINUE

(&)

PEANT S104ML1=L1sM2-L2 oM=L TEMNPL, TIMP?2

10 CONIINUE
2C CONTINUE
30 CONTINUE

40 CONTINUE ) - o e

50 CONTINUE

60 CONTINUE
70 CONTINUVE

RETURN

W00 FORMAT (1HO o 10X ¢2Hu =y 122X o3HLL =129 2Xs SHL2x91292X43HNIZT 242Xy

1 JHN2=,12)

550 FORMAT(L5Xy5XoqHly3I2¢3H)/ (312,141 432X 03X 41 HE312,3H)/14312,1H))
10 FORMAT (30X 3HMLn, 12, 2K JHM23 129 2K 2HM= 412, 30 4E15.803XsE15.8)

END

IR




c
c

<y

10

30

0
50
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OR QUA

LIy

__ . SUBROUTINE INKINDINS,LSoMSNSP,.SP,MSP)
CeesLOOP OVER THE TERNS IV THE ECP INTEGRALS OF THE SECONI XiIND T

00 50 Lzi,&

LiMAXEL#NS-1

.00 &0 Li=1,LiHAK

L2MAXZL*NSP~1
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