General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

COLLEGE OF ENGINEERING

MARqUETTE UNIVERSITY

MILWAUKEE, WISCONSIN 53233

FEASIBILITY OF OBSERVER SYSTEM FOR DETERMINING ORIENTATION OF BALLOON BORNE OBSERVATIONAL PLATFORMS

N. J. NIGRO, PROFESSOR MECHANICAL ENGINEERING DEPT.

J. C. GAGLIARDI, GRADUATE STUDENT

 MECHANICAL ENGINEERING DEPT.May 1982

TABLE OF CONTENTS

Page
Chapter I Introduction 1
1.1 Motivation and Relevance of Thesis 1
1.2 Present Status of Problem 3

1. 3 Object of Thesis 4
Chapter II Developrent of Balloon System Mathematical Model 5
2.1 Idenlizations of System 5
2.2 Generalized Coordinates 8
2.3 Lagrange's Equation 10
2.4 Kinematics 12
2.5 System Lagrangian 15
2.6 System Math Model 16
2.7 State Variable Form of Math Model 19
Chapter III Development of Observer System Mathematical 22 Models
3.1 Concept of Observability 22
3.2 Observability of Balloon Systems 24
3.3 Observabillity of Balloon System With 25Output Bias
3.4 Development of Full Order Identity Observer 27 System for Balloon System Without Bias
3.5 Development of Identity Observer System For 32
Balloon System With Bias
ORIGINAL PGGETS IS OF POOR QUALITY
Page
Chapter IV Results and Conclusions. 34
4.1 Data for LACATE Mission 34
4.2 Results From Simulation Study 34
4.3 Discussion of Simulation Study Results 67
4.4 Observer Results For Determinins 69
Orientation of Balloon Platform
4.5 Discussion of Balloon Observer Results 96
4.6 Conclusions 98
Appendices 100
A. Ralloon Translational Acceleration 100
Components
B. Fortran Coding 104
2. Body Axis Accelerations 104
3. Balloon Fourth Order Observer 105
4. Balloon Fifth Order Observer 106
5. Hamming-Predictor Corrector 107
Bibliography 112

LIST OF FIGURAS

Figure Page
1.1-1 LACAIF Balloon System 2
2.1-1 Idealized IACATE System 6
2.1-? Idealized Balloon Subsystem 7
2.2-1 Eulerian Angles 9
2.2-2 Platform Angular Velocities 11
3.4-1 Block Diagram For Asymptotic State Estimator 29
4.1-1 Plot of Balloon's Translational Accel. ($0 \leqslant t \leqslant 500$) 38
4.1-2 Plot of Balloon's Trans. Accel. (a_{1}) ($0 \leqslant t$ 4500) 39
4.1-3 Plot of Palloon's Trans, Accel. (a_{2}) ($0<t \leqslant 500$) 40
4.1-4 Plot of Ralloon's Trans. Accel. (5889 4 t 6389) 41
4.1-5 Plot of Ealloon's Trans. Accel. (a_{1}) ($5889 \leqslant t \leqslant 6389$) 42
4.1-6 Plot of Balloon's Trans. Accel. (a_{z}) (5889sts6389) 43
4.2-1 Simulation Results For Angular Displacement 46 (4th Order Observer, $u=0, \lambda=-0.6$)
4.2-2 Simulation Results For fingular Velocity 47 (4t'n Order Observer, $u=0, \lambda=-0.6$)
4.2-3 Simulation Results For Anfular Displacement 48 (4th Order Observex, $u=0.002 t, \lambda=-0.6$)
4.2-4 Simulation Results For Angular Velocity 49 (4th Order Onserver, $u=0.002 t, \lambda=-0.6$)
4.2-5 Sinulation Results For Angular Displacement 50(4th Order Observer, $v=0, \lambda=-0.6$, $\mathrm{Bi} a s=1.0 \times 10^{-4}$)
4.2-6 Simulation Results For Angular Velocity 51(4th Order Observer, $u=0, \lambda=-0.6, B 1 a s=1.0 \times 10^{-4}$,
4.2-7 Simulation Results For Angular Displacement 52(4 th Order Observer, $u=0, \lambda=-0.6$, Bias $=4.0 \times 10^{-6} t$)
4.2-8 Simulation Resul.ts For Angular Velocity 53 (4th Order Observer, $u=0, \lambda=-0.6$, Bias $=4.0 \times 10^{-6} t$)
4.2-9 Simulation Results For Angular Displacement 54(4th Order Observer, $u=0, \lambda=-0.6$, B1as $=0.005 \cos 13 t$)
4.2-10 Same as Fig. (4.2-9) 55
4.2-11 Simulation Results For Angular Velocity 56(4th Order Observer, $u=0, \lambda=-0.6$, Bias $=0.005 \cos 13 t$)

omichath phese ms
 or poor qumulmy

FHeure Page
4.2-12 Same as FIg. (4.2-11) $5 ?$
4.2-13 Simulation Results For Output (Bias $=0.005 \cos 13 t$) 58
4.2-14 Simulation Results For Angular Displacement 59
(5th Order Observer, $u=0, \lambda=-0.6$, Elas $=0.002$)
4.2-15 Simulation Results For Angular Veloçity 60 (5th Order Observer, $u=0, \lambda=-0.6$, R1as $=0.002$)
4.2-16 Simulation Results For Angular Displacement 61 (5th Order Observer, $u=0, \lambda=-0.6$, Bias $=-1 \times 10^{-4} t+.002$)
4.2-17 Simulation Results For Angular Velocity 62 (5th Orcer Observer, $u=0, \lambda=-0.6, B 1$ as $=-1 \times 10^{-4} t+0.002$)
4.2-18 Simulation Results For Ansular Esplacement 63 (5th Order Observer, $u=0, \lambda=-0.6$, Bias $=0.005 \cos 13 t$)
4.2-19 Same as Fig. (4.2-18) 64
4.2-20 Simulation Results For Angular Velocity 65(5th Order Observer, $u=0, \lambda=-0.6$, Bias $=0.005 \cos 13 t$)
4.2-21 Same as Fig. (4.2-20) 66
4.4-1 Actual Output For Gyroscope Mounted Along X_{1} 71° Body Axis
4.4-2 Actual Results For Angular Velocity (4th Order 72 Observer, $u=0, \lambda=-0.5$)
4.4-3 Actual Results For Angular Displacement (4th 73Order Observex, $u=0, \lambda=-0.5$)
4.4-4 Actual Results For Angular Velocity (4th Order 74 Observer, $u=a_{1}, \lambda=-0.5$)
4.4-5 Actual Results For Angular Displacement (4th 75Order Observer, $u=a_{1}, \lambda=-0.5$)
4.4-6 Actual Results For Angular Velocity (5th Order 76Observer, $u=0, \lambda=-0.2$)
4.4-7 Actual Results For Angular Displacement (5th 77Order Observer, $u=0, \lambda=-0.2$)
4.4-8 Same as Fig. (4.4-7) 78
4.4-9 Actual Results For Bias (5th Order Observer, 79$u=0, \lambda=-0.2$)
4.4-10 Actual Results For Angular Velocity (5th Order. 80 Observer, $u=0, \lambda=-0,5$)

ORIGINAL PAGE IS
 OF FOOR QUALITY

F3.gure Paçe
4.4-11 Actual Results For Angular Displacement (5th 81 Order Obsorver, $u=0, \lambda=-0.5$)
4.4-12 Same as Fig. (4.4-11) 82
4.4-13 Actual Results For Bias (5th Orden Observen, 83 $u=0, \lambda=-0.5$)
4.4-14 Actual Results For Angular Velocity (5th Order 84 Observer, $u=a_{1}, \lambda=-0.2$)
4.4-15 Actual Results For Angular Displacement (5th 85Order Observar, $u=a_{1}, \lambda=-0.2$)
4.4-16 same as R1g.(4.4-15) 86
4.4-17 Actual Results For Blas (5th Onder Observer, 87 $u=a_{1}, \lambda=-0.5$)
4.4-18 Actual Results For Angular Velocity (5th Order 88 Observer, $u=a_{1}, \lambda=-0.5$)
4.4-19 Actual Results For Angular Displacement (5th 89Order Observer, $u=a_{1}, \lambda=-0.5$)
4.4-20 Same as Flg. (4.4-19) 90
4.4-21 Actual Results For Bias (5th Onder Observer, 91
$\left.u=a_{1}, \lambda a-0.5\right)$
4.4-22 Actual Results For Angular Velocity (5th Order 92 Observer, $u=a_{1}, \lambda=-0.7$)
4.4-23 Actual Results For Angular Displacement (5th 93 Onder Observer, $u=a_{1}, \lambda=-0.7$)
4.4-24 Same as Fig. (4.4-23) 94
4.4-25 Actual Results For Blas (5th Order Observer, 95$u=a_{1}, \lambda=-0 . p$)
A-1 Earth Fixed Axis 102
A-2 Body and Earth Rixed Coordinate Axes 103

ORIGINAL PAGE IS
 OF POOR QUALTTY.

LIST OF TABLES

Table Page
4.1-1 Idealized LAGATE System Properties 35
4.1-2 Coefficients of M and K Matrices 35
4.1-3 Coofficients of A Matrix 36
4.1-4 Coefficients of I Matrix 36
4.1-5 Balloon System Eigenvalues and Corresponding 37Elgenvectors
4.1-6 Ralloon Modal Shape Functions and Periods 37

CHAPTER I

INIRODUCTION

1.1 Motivation and Relevance of Thesis

The LACAIE (Lower Atmosphere Compnsition and Temperature Experiment) mission was a high altitude balloon platform test which employed an infrared radianeter to sinse vertical profiles of the concentrations of selected atmospheric trace constituents and temperatures. The constituents were measured by inverting infrared radiance profiles of the earth's horizon. The radiameter line-of-sight was scanned vertically across the horizon at approximately 0.25° /second. The relative vertical positions of the data points making up the profile had to be determined to approximately 20 arc seconds.

The balloon system for accomplishing the mission is shown in Fig. 1.1-1. It consisted of: (a) a 39 million cubic feet (zero pressure) balloon, (b) 2 load bar containing the balloon control equipment, (c) a package containing additional balloon control electronics with gondola recoivery parachute, and (d) a gondola containing the research equipment. The balloon was designed to lift the payload to a float altitude of approximately 150,000 feet.

Instrumentation to detemine the attitude of the balloon platform consisted of a magnetometer and 3 orthogonally oriented precision rate gyros. The three rate gyros were employed to obtain an accurate time history of the angular velocity camponents of the research platform for subsequent data reduction and attitude determination.

The main problem in the IACATE experiment is to detemine the instantaneous orientation (i.e., the attitude) of the instrumentation platform with respect to a local vertical. Moreover, this orientation

$$
\text { FIg. }(1.1-1) \text {, LACATE BALLOON SYSTEM }
$$

must be determined to an accuracy of 1°. Once this is known, the orientation of the line-of-sight of the rxdiomatar can be determined since its relative motion with respect to the platform le prescribed.

1.2 Present Status of the Problem

Stablizing the balloon research platform or predicting its orientation is a major problem which must be solyed in all balloon bome experiments requitring line-of-sight instrumentation. Feedback control systerns have been used to stabilize the balloon platform with respect to an inertial reference frame ${ }^{(1)}$. Stability is obtained by suspending the platform at its center of gravity and employing some control system. Control system instrumentation includes sensors (rate gyros, digital star trackers, etc.) and reaction wheels for torquing the platform. Systems of this type, however, are usually extremely complex and costly.

An alternate approach to this problem is to allow the balloon platform to swing freely from its suspension point and then employ some method to determine its attitude (orientation). The orientation parameters for the platform are determined by fitting the result; obtained from a mathematical model (which simulates che balloon system) to those results obtained from the platform's sensors (i.e., gyroscopes).

Several numerical parameter estimation methods have been developed to determine the attitude (orientation) parameters. The problem is nomally solved by employing an optimization process which minimizes the error between predicted and known output results. In the case of balloon research platforms the optimization problem involves the minimization of the sum of the squares of the differences between the angular velocity components obtained fram the rate gyroscopes and those
predicted from the mathematical model ${ }^{(2)}$. However, with this approach, the problem of determining the optimal decision variables, (i.e., initial condition parameters) can require considerable computer running time.

A promising, new approach for deteminirg attitude of balloon research platforms involves observer state space reconstruction. For totally observable systems, state estimators can be constructed. The state estimator, which is driven by all plant inputs and outputs, can be used to determine the system state ${ }^{(3)}$.

Observer systems are state estimators constructed such that the error in the estimated state decays to zero over a finite time interval. By subtracting the plant model from the observer model, the error model for the reconstructed state can be determined. This model consists of a system of hamogeneous, first order differential equations. The eigenvalues of the resulting eigenvalue problem can be chosen such that the error decays to zero in a small interval of time. In this case, then, the estimates response approaches the actual states exponentially.

1.3 Object of Thesis

The two main objectives of this thesis are given as follows:

1. Develop an observer model for predicting the orientation of balloon borne research platforms.
2. Employ this observer model in conjunction with actual data obtained fram NASA'S LACAIE mission in order to determine the platform orientation as a function of time.

In order to achieve the above objectives it will be necessary to first develop a general three dimensional mathematical model for simulating the motion of the balloon platform. This will be discussed next.

CHAPTER II

DEVETOPMENI OF BALIOCN SXSIEM MATHEMATICAL MODEL

2.1 Idealizations of System

The general balloon system to be studied in this report is shom in Fig. 1.1-1. The actual motion of this system is very conplex and involves various types of oscillations including bounce (vertical oscillation), pendulations (inplane motion) and spin (rotation). In general, it is necessary to first idealize this system before developing the mathematical model. For purposes of this study, the following idealizations will be made:
.. 1. The mass of the balloon, subsystems and interconnesting subsystens; will be "lumped" at the locations shown in Fig. 2.1-1.
2. The ballcon will be treated as an "equivalent" rigid body.
3. The altitude of the balloon static equilibrium position (float atlitude) will be assumed to be a constant during the entire period of observation; i.e., changes in this altitude due to losses or changes in the properties of helium will be neglected.
4. The interconnecting cables will be considered to be intlexible. The above idealizations were applied to the general, ballioon system shown in Fig. 1.1-1. The resulting idealized systam is shown in Fig. 2.1-1.

There are two alternate approaches which can be followed for purposes of modeling the balloon system; these are surmarized below.

1. The mathematical model for the entire balloon system (Fig. 2.1-1) can be developed. The majci disadvantage of this approach is that it requires knowledge of the aerodynamic foroes acting wn the balloon itself. Moreover:, with this model, a

ORIGINAL PAGE IS OF POOR QUALITY

Fig. (2.1-2) Idealized Balloon Subsystem
large number of generalized coordinates are needed to specify the configuration of the system.
2. An alternate approach is to develop the mathematical model for predicting the motion of subsystems one and two (Fig. 2.1-2). This model does not include the aerodynamic forces acting on the balloon; however, it does require information on the motion of the radar reflector support point 0 (Fig. 2.1-2). The advantage of this model is that the number of degrees of freedom is decreased, and the aerodynamic force effects are automatically included if the motion of the support point is known. This is the model which will be used for carrying out the research discussed in this thesis.

2.2 Generalized Coordinates

The generalized coordinates for a given system are those coordinates which are enployed to specify the configuration of the system at any instant of time. In any mechanical system there will be as many generalized coordinates as there are degrees of freedam. In the case of the idealized lumped system shown in Fig. 2.1-2, six generalized coordinates are required to specify the balloon configuration. These are comprised of six Euler angles which specify the orientation of the two subsystems. The three translational coordinates located at the radar reflector support point 0 are not oonsidered to be generalized coordinates, since these are known (prescribed) from data obtained from the radar tracking installation.

In general, the Euler angles give the orientation of the body ∞ ordinate axes ($X_{i}{ }^{\prime \prime \prime}$) relative to a fixed coordinate system (X_{i}) , A

ORIGINAL PAGE IS OF POOR QUALITY

Fig. (2.2-1) Euler Angles for Balloon Orientation (Set III)
series of three rotations about the body axis is sufficient to allow the body axes to attain any desired orientation.

Several sets of Euler angles are possible for fixing the orientation of the subsystems. One set of Euler angles (Set III) was employed in this work and is shown in Fig. 2.2-1. The sequence of the three rotations which define this set is described below.
a. a positive rotation \varnothing about the X_{3} axis resulting in the X_{i} " body system,
b. a positive rotation θ ibout the X_{1}^{\prime} axis resulting in the $X_{i}^{\prime \prime}$ body system, and
c. a positive rotation ψ about the $\mathrm{X}_{2}^{\prime \prime}$ axis resulting in the $\mathrm{X}_{i}^{\prime \prime \prime}$ boāy system.

The transformation equation for the above sequence of rotations is given as follows; i.e.,

$$
\bar{X}^{\prime \prime \prime}=A \bar{X}
$$

where

$$
A=\left[\begin{array}{lc}
(C(\psi) C(\phi)-S(\phi) S(\psi))(C(\psi) S(\phi)+S(\theta) C(\phi) S(\psi))(-S(\psi) C(\theta)) \\
(-C(\theta) S(\phi)) & (C(\theta) C(\phi)) \\
(S(\psi) C(\phi)+S(\theta) S(\phi) C(\psi))(S(\phi) S(\psi)-S(\theta) C(\phi) C(\psi))(C(\theta) C(\psi))
\end{array}\right]
$$

$\overline{\mathrm{X}}$ denotes the fixed system axes, and $\overline{\mathrm{X}}$ ' ' ' dinotes the fixed body system axes.

2.3 Lagrange's Equation

The mathematical model for simulating the motion of the research platform will be developed by employing Lagrange's equation. The general

ORIGINAL PAGE IS OF POOR QUALITY

FHE. (2.2-2) platform Angular Velocities
form of this equation is given as follows; i.e.,

$$
\begin{equation*}
\frac{d}{\partial t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=Q_{i} \quad(i-1, \ldots, n) \tag{2.3-1}
\end{equation*}
$$

where
$\mathrm{L}=\mathrm{T}-\mathrm{V}=$ Lagrangian,
$T=$ kinetic energy of the system,
$V=$ potential energy of the system,
$q_{i}=$ generalized coordinates,
$\dot{q}_{i}=$ generalized velocities,
$\mathrm{n}=$ the number of generalized coordinates, and
$Q_{i}=$ the nonconservative generalized forces.

For purposes of this work the friction at the support points 0 and 1 will be neglected. In addition, the aerodynamic drag forces acting on subsystems 1 and 2 will also be neglected. Hence, the generalized forces Q_{i} are equal to zero and Eq. 2.3-1 reduces to

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}-\frac{\partial L}{\partial q_{i}}=0 \tag{2.3-2}
\end{equation*}
$$

2.4 Kinematics

In order to obtain the kinetic energy of the system, it is first necessary to develop the kinematic expressions for the velocity (angular and linear) of the subsystems. By employing the Euler angles, the angular velocities for subsystem (1) are given is follows; i.e.,

$$
\begin{aligned}
& \mathrm{w}_{1}^{(1)}=\left(-\dot{\phi}_{1} s\left(\psi_{1}\right) c\left(\theta_{1}\right)+\dot{\theta}_{1} c\left(\psi_{1}\right),\right. \\
& W_{2}^{(1)}=\left(\dot{\phi}_{1} s\left(\theta_{1}\right)+\dot{\Psi}_{1}\right), \text { and } \\
& w_{3}^{(1)}=\left(\dot{\phi}_{1} c\left(\theta_{1}\right) c\left(\psi_{1}\right)+\dot{\theta}_{1} s\left(\psi_{1}\right),\right.
\end{aligned}
$$

where
$W_{i}{ }^{(1)}=$ component of the angular velocity of subsystem (1) along the i th body axis ($i=1,2,3$), and $\theta_{1}, \Psi_{1}, \phi_{1}=$ Euler angles of rotation for subsystem (1).

Similarly, the angular velocities for subsystem (2) are:

$$
\begin{align*}
& \mathrm{w}_{1}^{(2)}=\left(-\dot{\phi}_{2} S\left(\psi_{2}\right) C\left(\theta_{2}\right)+\dot{\theta}_{2} C\left(\Psi_{2}\right)\right), \\
& W_{2}^{(2)}=\left(\dot{\phi}_{2} S\left(\theta_{2}\right)+\dot{\Psi}_{2},\right. \text { and } \tag{2.4-2}\\
& W_{3}^{(2)}=\left(\dot{\phi}_{2} C\left(\theta_{2}\right) C\left(\psi_{2}\right)+\dot{\theta}_{2} S\left(\Psi_{2}\right),\right.
\end{align*}
$$

where

$W_{i}^{(2)}=$ component of the angular velocity of subsystem (2)

- along the i th body axis ($i=1,2,3$), and
$\theta_{2}, \psi_{2}, \phi_{2}=$ Euler angles of rotation for subsystem (2).
By employing small angle approximations (i.e., $S(\theta)=0, C(\theta)=1$), and by neglecting second order terms in θ and ψ, Fg.(2.4-1) and (2.4-2) can be written as follows:

$$
\begin{align*}
& w_{1}^{(1)}=\dot{\theta}_{1^{\prime}} \\
& w_{2}^{(1)}=\dot{\psi}_{1^{\prime}} \tag{2.4-3}\\
& w_{3}^{(1)}=\dot{\phi}_{1^{\prime}}
\end{align*}
$$

and

$$
\begin{align*}
& w_{1}^{(2)}=\dot{\theta}_{2} \\
& w_{2}^{(2)}=\dot{\psi}_{2}^{\prime} \tag{2.4-4}\\
& w_{3}^{(2)}=\dot{\phi}_{2}
\end{align*}
$$

ORIGINAL PAGE IS

The translational motion of the support point 0 (Fig. 2.1-2) is referred to an axis which is Itixed in space. The translational velocity expression for this point is given as follows; i.e.,

$$
\begin{align*}
& v_{1}^{(0)}=\dot{x}_{1} \\
& v_{2}^{(0)}=\dot{x}_{2} \tag{2.4-5}\\
& v_{3}^{(0)}=\dot{x}_{3^{\prime}}
\end{align*}
$$

where

$$
\begin{aligned}
v_{i}^{(0)}= & \text { absolute velocity components of support point } 0 \\
& (i=1,2,3) \text { along the } x_{i} \prime \prime \prime \text { body axis of subsystem (2). }
\end{aligned}
$$

The velocity expressions for support point (1) (Fig. 2.1-2) are given as follows; i.e.,

$$
\begin{align*}
& v_{1}^{(1)}=\left(\dot{x}_{1}-r_{1} \dot{\psi}_{1}\right), \\
& v_{2}^{(1)}=\left(\dot{x}_{2}+r_{1} \dot{\theta}_{1}\right), \text { and } \tag{2.4-6}\\
& v_{3}^{(1)}=\left(\dot{x}_{3}\right)
\end{align*}
$$

where

$$
\begin{aligned}
V_{i}^{(1)}= & \text { absolute velocity camponents of point }(1) \text { along the } \\
& \text { body axis of subsystem (2), and }
\end{aligned}
$$

$$
r_{1}=\text { distance between point }(0) \text { and point }(1)
$$

The velocity expressions for point (2) are given as follows; i.e.,

$$
\begin{align*}
& v_{1}^{(2)}=\left(\dot{x}_{1}-r_{1} \dot{\psi}_{1}-x_{2} \dot{\psi}_{2}\right), \\
& v_{2}^{(2)}=\left(\dot{x}_{2}+r_{1} \dot{\theta}_{1}+r_{2} \dot{\theta}_{2}\right), \text { and } \tag{2.4-7}\\
& v_{3}^{(2)}=\dot{x}_{3}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{V}_{i}{ }^{(2)}= & \text { absolute velocity components of point (2) along the } \\
& \text { body axis of subsystem (2), and }
\end{aligned}
$$

$r_{i}=$ distance between point (i-1) and point (i).
The above equations were developed by employing small angle approximations (i.e., $s(\theta)=\theta, c(\theta)=1$), and neglecting second order terms in θ and ψ. Moreover, it also assumes that the nature of the ring and clevis support at point (1) is such that the difference between the spin angles ϕ_{1} and ϕ_{2} is small.

2.5 System Lagrangian

The general kinetic expression for subsystems (1) and (2) is given as follows:

$$
\begin{align*}
T^{(i)} & =\frac{1}{2} m_{i} \bar{V}^{(i) \cdot} \bar{V}^{(i)}+\frac{I_{i l}}{2}\left(W_{1}(i)\right)^{2}+\frac{I_{i 2}}{2}\left(W_{2}(i)\right)^{2} \\
& +\frac{I_{i 3}}{2}\left(w_{3}(i)\right)^{2} \quad(i=1,2)
\end{align*}
$$

where

$$
\begin{aligned}
& T^{(i)}=\text { kinetic energy of subsystem (i), } \\
& m_{i}=\text { mass of subsystem (i), } \\
& I_{i 1}, I_{i 2}, I_{i 3}=\text { manents of inertia of subsystems (i) along } \\
& \text { the (2) body axis, and }
\end{aligned}
$$

$w_{j}{ }^{(i)}=$ components of the angular velocity of subsystem (i) along the (2) body axis.

The total kinetic energy T of the balloon system is obtained by summing Eq. (2.5-1) and substituting from Eqs. (2.4-3), (2.4-4), (2.4-6) and (2.4-7); this gives:

$$
\begin{align*}
T & =T^{(1)}+T^{(2)} \\
& \left.=\frac{m_{1}}{2}\left(\dot{X}_{1}-x_{1} \dot{\psi}_{1}\right)^{2}+\left(\dot{x}_{2}+r_{1} \dot{\theta}_{1}\right)^{2}+\left(\dot{x}_{3}\right)^{2}\right) \\
& +\frac{I_{13}}{2}\left(\dot{\phi}_{1}\right)^{2}+\frac{m_{2}}{2}\left(\left(\dot{x}_{1}-r_{1} \dot{\psi}_{1}-r_{2} \psi_{2}\right)^{2}\right. \\
& \left.+\left(\dot{x}_{2}+r_{1} \dot{\theta}_{1}+r_{2} \dot{\theta}_{2}\right)^{2}+\left(\dot{x}_{3}\right)^{2}\right)+\frac{I_{23}}{2}\left(\dot{\phi}_{2}\right)^{2} . \tag{2.5-2}
\end{align*}
$$

For purposes of developing Eq. (2.5-2) the moments of inertia $I_{12^{\prime}} \mathrm{I}_{11^{\prime}}$ and I_{22} were neglected"and m_{1} and m_{2} were treated as point masses.

The systen potential energy is due to the presence of the conservative gravitational forces and is given as follows:

$$
\begin{equation*}
v=v^{(1)}+v^{(2)} \tag{2.5-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& v^{(1)}=-m_{1} g r_{1} c\left(\theta_{1}\right) c\left(\psi_{1}\right), \text { and } \\
& v^{(2)}=-m_{2} g\left(r_{1} c\left(\theta_{1}\right) c\left(\psi_{1}\right)+r_{2} c\left(\theta_{2}\right) c\left(\psi_{2}\right)\right) .
\end{aligned}
$$

The system Lagrangian (L), which is defined in Eq. (2.3-1), is obtained by subtracting the total potential energy (Eq. (2.5-3)) from the total kinetic energy (Eq. (2.5-2)) and is given as follows:

$$
\begin{align*}
L & =T-V \\
& =\frac{1}{2} m_{1}\left(\left(\dot{x}_{1}-r_{1} \dot{\psi}_{1}\right)^{2}+\left(\dot{x}_{2}+\dot{r}_{1} \dot{\theta}_{1}\right)^{2}+\left(\dot{x}_{3}\right)^{2}\right) \\
& +\frac{I_{13}}{2}\left(\dot{\phi}_{1}\right)^{2}+\frac{1}{2} m_{2}\left(\dot{X}_{1}-r_{1} \dot{\psi}_{1}-r_{2} \dot{\psi}_{2}\right)^{2} \\
& \left.+\left(\dot{x}_{2}+r_{1} \dot{\theta}_{1}+r_{2} \dot{\theta}_{2}\right)^{2}+\left(\dot{x}_{3}\right)^{2}\right)+\frac{I_{23}}{2}\left(\dot{\phi}_{2}\right)^{2} \\
& +m_{1} g r_{1} c\left(\theta_{1}\right) c\left(\psi_{1}\right) \\
& +m_{2} g\left(r_{1} c\left(\theta_{1}\right) c\left(\psi_{1}\right)+r_{2} c\left(\theta_{2}\right) c\left(\psi_{2}\right)\right) . \tag{2.5-4}
\end{align*}
$$

2.6 System Math Model

The equations for the motion of the balloon platform are obtained by substituting the Lagrangian fram Eq. (2.5-4) into Eq. (2.3-2). The resulting equations are given below.

$$
\begin{align*}
& m_{11} \ddot{\theta}_{1}+m_{12} \ddot{\theta}_{2}+k_{11} \theta_{1}=-f_{1} a_{1}, \tag{2.6-1}\\
& m_{21} \ddot{\theta}_{1}+m_{22} \ddot{\theta}_{2}+k_{22} \theta_{2}=-f_{2} a_{1^{\prime}} \\
& m_{11} \ddot{\psi}_{1}+m_{12} \ddot{\psi}_{2}+k_{11} \psi_{1}=f_{1} a_{2}, \\
& m_{21} \ddot{\psi}_{1}+m_{22} \ddot{\psi}_{2}+k_{22} \psi_{2}=f_{2} a_{2}, \\
& \ddot{\phi}_{1}=0, \text { and } \\
& \ddot{\phi}_{2}=0, \tag{2.6-3}
\end{align*}
$$

where

$$
\begin{aligned}
& m_{11}=\left(m_{1}+m_{2}\right) r_{1}{ }^{2}, \\
& m_{12}= m_{2} r_{1} r_{2} \prime \\
& m_{21}= m_{2} r_{1} r_{2} \prime \\
& m_{22}= m_{2} r_{2}^{2}, \\
& k_{11}=\left(m_{1}+m_{2}\right) g r_{1}, \\
& k_{22}= m_{2} g r_{2}^{\prime} \\
& f_{1}=\left(m_{1}+m_{2}\right) r_{1}, \\
& f_{2}= m_{2} r_{2}^{\prime} \\
& a_{1}= \text { acceleration component of point (0) along the } e_{2}^{(2)} \text { body } \\
& \text { axis, and } \\
& a_{2}= \text { acceleration component of point (0) along the } e_{1}^{(2)} \text { body } \\
& \quad \text { axis. }
\end{aligned}
$$

Eqs. (2.6-1) and (2.6-2) were developed by assuming small displacements;
i.e., $\mathrm{C}\left(\theta_{i}\right)=\mathrm{C}\left(\psi_{i}\right)=1, s\left(\theta_{i}\right)=\theta_{i}, \mathrm{~S}\left(\psi_{i}\right)=\psi_{i}$.

Eq. (2.6-3) yields that $\dot{\phi}_{i}$ is a constant. In this study the pre-
cision of this model was improved by employing the sransformation equation for the angular velocity $W_{3}{ }^{(i)}$. As stated earlier, it will be assumed that $\phi_{1}=\varnothing_{2}$. Thus, Eq. (2.6-3) will be replaced with the following:

$$
\begin{equation*}
\dot{\phi}_{1}=\dot{\phi}_{2}=w_{3}^{(2)} \tag{2.6-4}
\end{equation*}
$$

where
$\mathrm{W}_{3}{ }^{(2)}$ is the angular velocity obtained from the rate gyro mounted along the $\mathrm{e}_{3}{ }^{(2)}$ body axis.

Eqs. (2.6-2) and (2.6-2) can be written in matrix form as follows:

$$
\begin{array}{ll}
M_{i}^{\prime}+K n_{i}=R_{j} a_{i} & (i=1,2) \\
E_{i}=\dot{r}_{i} & (i=1,2) \tag{2.6-6}
\end{array}
$$

where

$$
\begin{aligned}
& n_{1}=\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right], \\
& n_{2}=\left[\begin{array}{l}
\psi_{1} \\
\psi_{2}
\end{array}\right], \\
& M=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right] \\
& K=\left[\begin{array}{ll}
k_{11} & 0 \\
0 & k_{22}
\end{array}\right] \\
& F_{1}=\left[\begin{array}{l}
-f_{1} \\
-f_{2}
\end{array}\right],
\end{aligned}
$$

ORIGINAL PAGE IS

 OF POOR QUALITY$$
\begin{aligned}
& F_{2}=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
2
\end{array}\right] \\
& E_{1}=W_{1}^{(2)}
\end{aligned}
$$

$$
W_{1}^{(2)}=\dot{\theta}_{2}=\text { the component of the angular yelocity of subsystem }
$$

$$
\text { (2) along the } e_{1}^{(2)} \text { body axis, }
$$

$$
E_{2}=W_{2}^{(2)}
$$

$$
W_{2}^{(2)}=\dot{\Psi}_{2}=\text { the component of the angular velocity of subsystem }
$$

$$
\text { (2) along the } e_{2}^{(2)} \text { body axis, }
$$

$$
c=(01)
$$

$$
\begin{aligned}
& \dot{n}_{1}=\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
2
\end{array}\right], \text { and } \\
& \dot{n}_{2}=\left[\begin{array}{l}
\dot{\psi}_{1} \\
\dot{\psi}_{2}
\end{array}\right],
\end{aligned}
$$

The numerical values fo the $m_{i j}$ and $k_{i j}$ coefficients were camputed by employing the properties of the balloon system which are given in Table 4.1-1. These resulting values are given in Table 4.1-2.

2.7 State Variable Form of Math Model

Eqs. (2.6-5) and (2.6-6) can be expressed in general state variable form as follows:

$$
\begin{align*}
& L \dot{q}=N q+R u, \text { and } \tag{2.7-1}\\
& Y=C q \tag{2.7-2}
\end{align*}
$$

where

$\mathrm{W}^{(2)}=$ the component of platform angular velocity along the system (2) body axis, and

$$
C=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) .
$$

Eqs. (2.7-1) and (2.7-2) can be further expressed as follows:

$$
\begin{equation*}
\dot{q}=A q+B u, \text { and } \tag{2.7-3}
\end{equation*}
$$

$$
\begin{equation*}
y=c q \tag{2.7-4}
\end{equation*}
$$

where

$$
\begin{gathered}
A=L^{-1} N=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
a_{31} & a_{32} & 0 & 0 \\
a_{41} & a_{42} & 0 & 0
\end{array}\right], \\
B=L^{-1} R=\left[\begin{array}{l}
0 \\
0 \\
b_{3} \\
b_{4}
\end{array}\right] .
\end{gathered}
$$

The elements of the A and B matrices are given below; i.e.,

$$
\begin{aligned}
& a_{31}=\frac{-m_{22} k_{11}}{j}, \\
& a_{32}=\frac{m_{12} k_{22}}{j}, \\
& a_{41}=\frac{m_{21} k_{11}}{j}, \\
& a_{42}=\frac{-m_{11} k_{22}}{j}, \\
& b_{3}=\frac{m_{22} f_{1}-m_{12} f_{2}}{j}, \\
& b_{4}=\frac{-m_{21} f_{1}+m_{11} f_{2}}{j},
\end{aligned}
$$

where

$$
j=m_{11} m_{22}-m_{21} m_{12}
$$

The numerical values for the $a_{i j}$ and b_{i} coefficients were computed by employing the values of $k_{i j}$ and $m_{i j}$ which are given in Table 4.1-2. These resulting values are given in Tables 4.1-3 and 4.1-4.

CHAPTER III

DEVELOPMENT OF OBSERVER SYSIEM MAIHEMATICAL MOLETS

3.1 Concept of Observability

The observability of a system implies the determinability of the system state from an observation of the output over a finite time interval starting from the instant at which the state is desired ${ }^{(4)}$. It is assumed that the system inputs, outputs and mathematical model are known.

For purposes of referencing the work in this chapter, the state variable form of the balloon's model (Eqs. (2.7-3) and 2.7-4)) will be rewritten below; i.e.,

$$
\begin{align*}
& \dot{q}=A q+B u, \tag{3.1-1}\\
& q\left(t_{0}\right)=q_{0}, \text { and } \\
& y=C q . \tag{3.1-2}
\end{align*}
$$

where
q is the nth order state vector,
q_{0}° is the unknown initial state vector,
u is the single (scalar) input,
y is the single (scalar) output,
n is the order of the system,
A is a $\mathrm{n} \times \mathrm{n}$ matrix,
B is a $n \times 1$ matrix, and
C is a $1 \times \mathrm{n}$ matrix.

Eq. (3.1-1) determines the plant dynamics and indicates how the input (or control) u affects the state vector q. The matrix A characterizes the plant dynamics when u is not present; this is the socalled free-response case. The matrix B determines how the plant response is affected by the input (or control) vector u. Eq. (3.1-2) defines the relationship between state vector q and the system output y.

For system observability, the basic question is as follows: "Is it possible to identify the initial state q_{0} by observing the output (y) over a finite time interval?" Precise definitions of system observability are given as follows:

1. Definition 3.1a. A state q_{1}, i.e. $q\left(t_{1}\right)$ of a system is said to be observable at time t_{0}, if knowledge of the input $u(t)$ and output $y(t)$ over a finite time $t_{0} \leqslant t<t_{1}$, completely detemines the state q_{0}. Otherwise, the state is said to be unobservable at t_{0}.
2. Definition 3.1b. If all system states $q(t)$ are observable, then the system is said to be completely observable or just observahle.
3. Definition 3.1c. If the state G_{1} is observable and if the knowledge of the input and the output over an arbitrarily small interval of time suffices to determine g_{o} (independent of t_{o}), then the state is said to be totally observable.
4. Definition 3.1d. If all the states $q(t)$ are totally observable, then the system is said to be totally observable ${ }^{(5)}$.

The necessary condition for observability of the balloon system is given in the following section.

QF POOR QUALTTY
 -

3.2 Observability of Balloon Systems

The following theorem (Ref. 3) can be employed to determine the observability for general time - invariant systems.

Theorem 3.2a. The time-invariant system described by Eqs. (3.1-1) and (3.1-2) is totally observable if and only if the corposite matrix M has rank n, where

$$
M=\left[\begin{array}{c}
C \\
C A \\
C\left(A^{2}\right) \\
- \\
C\left(A^{n-1}\right)
\end{array}\right] \text {, and }
$$

n, C and A are defined in Eqs. (3.1-1) and 3.1-2).
The observability of the balloon system described by Eqs. (2.7-3) and (2.7-4) can now be determined by showing that the composite matrix M has rank 4. For this purpose, the matrices $C, C A, C\left(A^{2}\right)$ and $C\left(A^{3}\right)$ are given as follows:

$$
\begin{aligned}
& C=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right), \\
& C A=\left(\begin{array}{llll}
a_{41} & a_{42} & 0 & 0
\end{array}\right), \\
& C\left(A^{2}\right)=0 \begin{array}{llll}
0 & 0 & a_{41} & a_{42}
\end{array} \text {, and } \\
& C\left(A^{3}\right)=\left(\left(a_{41} a_{31} \cdots+a_{42} a_{41}\right) \cdot\left(a_{32} a_{41}+a_{42}^{2}\right) 00\right) .
\end{aligned}
$$

The specific form of the composite matrix M for the balloon system model is given as follows, i.e.

$$
\begin{aligned}
& M=\left[\begin{array}{c}
C \\
C A \\
C\left(A^{2}\right) \\
C\left(A^{3}\right)
\end{array}\right] ; \text { ORIGINAL PAGE IS } \\
& M=\left[\begin{array}{cccc}
C \text { OF POO: QUALITY } \\
0 & 0 & 0 & 1 \\
a_{41} & a_{42} & 0 & 0 \\
0 & 0 & a_{41} & a_{42} \\
\left(a_{41} a_{31}+a_{41} a_{42}\right) & \left(a_{32} a_{41}+a_{42}^{2}\right) & 0 & 0
\end{array}\right] .
\end{aligned}
$$

In order to show that the rank of $M=$ four, it is necessary to prove that the determinant is non zero. It can be shown that the determinant for M is non zero if the following expression is non zero, i.e., if

$$
m_{1} m_{2} r_{1}{ }^{2} r_{2}^{2} \neq 0
$$

Thus, the balloon system is campletely observable since the composite matrix M has rank $=4$.

3.3 Observability of Baljoon System With Output Bias

Previous studies have been conducted for the LACATE system in order to determine the nature of the balloon's platform motion ${ }^{(6)}$. The time history of the platform pendulation angles $(\theta(t)$ and $\psi(t))$ was determined by integrating the output fram the rate gyros. The study indicated that the platform motion consisted of small oscillations superimposed on a line with (nearly) constant slope. These results suggested that the gyroscopes contain a constant bias error.

In order to take into account the error in the output (y) due to bias in the gyrosoopes, the matrices in Eqs. (3.1-1) and (3.1-2) are defined as follows; i.e.,

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
a_{31} & a_{32} & 0 & 0 & 0 \\
a_{41} & a_{42} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& B=\left[\begin{array}{l}
0 \\
0 \\
b_{3} \\
b_{4} \\
0
\end{array}\right] \\
& u=a_{1} \\
& y=w^{(2)}+q_{5},
\end{aligned}
$$

$w^{(2)}=$ the ocmponent of the angular velocity of the platform along the specified body axis,
$\mathrm{q}_{5}=$ corresponding gyroscope bias, and

$$
c=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 1
\end{array}\right) .
$$

The observability of the system model described by Eqs. . (3.1-1) and (3.1-2) can be ascertained by showing that the corresponding camposite matrix M has rank 5. It can be shown that the composite matrix M for this system is given as follows; i.e.,

$$
\begin{aligned}
& M=\left[\begin{array}{c}
C \\
C A \\
C\left(A^{2}\right) \\
C\left(A^{3}\right) \\
C\left(A^{4}\right)
\end{array}\right] \quad \begin{array}{l}
\text { ORIGINAL PAGE IS } \\
\text { OF POOR QUALITY }
\end{array} \\
& M=\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 1 \\
a_{41} & a_{42} & 0 & 0 & 0 \\
0 & 0 & a_{41} & a_{42} & 0 \\
\left(a_{41} a_{31}+a_{42} a_{41}\right) & \left(a_{41} a_{32}+a_{42}^{2}\right) & 0 & 0 & 0 \\
0 & 0 & \left(a_{41} a_{31}+a_{42}^{\prime} a_{41}\right)\left(a_{41} a_{32}+a_{42}^{2}\right) & 0
\end{array}\right] .
\end{aligned}
$$

It can be shown that the determinant of the above matrix is non-zero if the resulting expression is non zero; i.e., if

$$
m_{1} m_{2}\left(r_{2}+r_{1}\right) \neq 0
$$

Thus, the system described by Eqs. (3.1-1) and (3.1-2) is completely observable since the composite matrix M has rank $=5$.

3.4 Development of Full Order Identity Observer for Balloon System

Without Bias

An nth order identity observer (or asympotic-state estimator) can be constructed for the campletely observable nth order plant described by Eqs. (3.1-1) and (3.1-2). The observer is described by the following equations; i.e.,

$$
\begin{align*}
& \dot{z}=F Z+B u+G Y, \text { and } \tag{3.4-1}\\
& z\left(t_{0}\right)=z_{0} .
\end{align*}
$$

where
Z is an nth order estimate of the state vector q,
Z_{0} is an estimate of the unknown initial state vector q_{0},
Gis an $\mathrm{n} \times 1$ matrix,
$F=(A-G C)$, and
Y, u, B and C are as described in Eqs. (3.1-1) and (3.1-2).

An inspection of Eq. (3.4-1) reveals that the state estimatnrs response (Z) will be determined from a consideration of the observer dymamics, estermal inputs and plant outputs, The observer dymamics are controlled by the F matrix. The external input u contributes to the state estimator's response via the control matrix B. From Eq. (3.1-1), it can be seen that this control matrix B and the external inputs u are identical for both the plant and observer.

For accurate state space reconstruction the plant output y must be fed into the observer model. By coupling the plant output y to the ob server via the G matrix, the observer becames a closed loop estimator. This is illustrated in Fig. (3.4-1).

The F matrix in Eq. (3.4-1) is constructed such that the difference between the output of the observer model and the plant model is zero over some finite time interval. This error (E) is given as follows; i.e.,

$$
\begin{equation*}
E=Z-q . \tag{3.4-2}
\end{equation*}
$$

Subtracting Eq. (3.1-1) from (3.4-1) yields the following:

$$
\begin{equation*}
\dot{\mathrm{E}}=\mathrm{FE} . \tag{3.4-3}
\end{equation*}
$$

The solution of Eq. (3.4-3) yields:

Fig. (3.4-1) Rlock Diagram For Asymptotic State Estimator

$$
E=E_{0} e^{F\left(t-t_{0}\right)}, \quad \begin{align*}
& \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALITY }
\end{align*}
$$

where

$$
E_{0}=z_{0}-I_{0}
$$

It is clear from Eq. (3.4-4) that the error, E, decays exponentially to zero if G is chosen such that all of the eigenvalues of F are negative or have negative real parts. Also, these eigenvalues must ke more negative than the eigenvalues of A to insure accurate response.

The detailed form of the F matrix in Eq. (3.4-3) cal: be obtained by substituting the form of the A and C matrices which are defined in Eq. (2.7-3) and (2.7-4). This yields the following; i.e.,

$$
F=(A-G C), \text { i.e., }
$$

$$
F=\left[\begin{array}{cccc}
0 & 0 & 1 & -g_{1} \\
0 & 0 & 0 & \left(1-g_{2}\right) \\
a_{31} & a_{32} & 0 & -g_{3} \\
a_{41} & a_{42} & 0 & -g_{4}
\end{array}\right],
$$

where

$$
G=\left[\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right]
$$

The form of the solution for E in Eq. (3.4-3) is given as follows

$$
E=x e^{\lambda t}
$$

ORIGINAL PAGE IS

 YTINe 5

Substitution of this into Eq. (3.4-3) yields the following eigenvalue problem:

$$
(F-\lambda I) X=0
$$

where

$$
\begin{aligned}
& I=\text { the identity matrix, and } \\
& F=\text { matrix defined in Eq. }(3.4-1) .
\end{aligned}
$$

The necessary and sufficient condition for determining the eigenvalues of the matrix F is that

$$
\begin{align*}
& |F-\lambda I| ; ~ i . e ., \\
& \left|\begin{array}{cccc}
-\lambda & 0 & 1 & -g_{1} \\
0 & -\lambda & 0 & \left(1-g_{2}\right) \\
a_{31} & a_{32} & -\lambda & -g_{3} \\
a_{41} & a_{42} & 0 & \left(-g_{4}-\lambda\right)
\end{array}\right|=0 . \tag{3.4-5}
\end{align*}
$$

The characteristic polynomial obtained by expanding Eq. (3.4-5) is given below; i.e.,

$$
\begin{align*}
& \left(\lambda^{4}\right)+\left(g_{4} \lambda^{3}\right)+\left(\left(g_{1} a_{41}-a_{31}-a_{42}+g_{2} a_{42}\right) \lambda^{2}\right) \\
& +\left(\left(-g_{4} a_{31}+g_{3} a_{41}\right) \lambda\right)+\left(-a_{32} a_{41}+a_{42} a_{31}\right. \\
& \left.+g_{2} a_{32} a_{41}-g_{2} a_{42} a_{31}\right)=0 . \tag{3.4-6}
\end{align*}
$$

Critical damping of the error E is obtained by determining the G matrix such that all of the eigenvalues are negative and equal. This yields the following values for the G matrix: i.e.,

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { ORIGINAL PAGE IS } \\
\text { OF POOR QUALIV }
\end{array} \\
& g_{1}=\left(\left(-6 \lambda^{2}-a_{31}-a_{42}+g_{2} a_{42}\right) /\left(-a_{41}\right)\right), \\
& g_{2}=\left(\left(-\lambda^{4}-a_{32} a_{41}+a_{42} a_{31}\right) /\left(-a_{32} a_{41}+a_{42} a_{31}\right)\right), \\
& g_{3}=\left(\left(-4 \lambda^{3}+g_{4} a_{31}\right) / a_{41}\right), \text { and } \\
& g_{4}=(-4 \lambda) .
\end{aligned}
$$

3.5 Development of Identity Observer Systems for Balloon System With

Bias

In the case of the firm order identity observer system the matrices in Eq. (3.4-1) have the following form; i.e.,

$$
\begin{aligned}
& F=\left[\begin{array}{ccccc}
0 & 0 & 1 & -g_{1} & -g_{1} \\
0 & 0 & 0 & \left(1-g_{2}\right) & -g_{2} \\
a_{31} & a_{32} & 0 & -g_{3} & -g_{3} \\
a_{41} & a_{42} & 0 & -g_{4} & -g_{4} \\
0 & 0 & 0 & -g_{5} & -g_{5}
\end{array}\right] \\
& G=\left[\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4} \\
g_{5}
\end{array}\right]
\end{aligned}
$$

and y, u, B and C are as described in Eqs. (3.1-1) and (3.1-2).
The eigenvalues for the F matrix corresponding to the bias mode'l are obtained from the following condition; i.e.,

$$
\left\lvert\, \begin{array}{ccccc}
-\lambda & 0 & 1 & -g_{1} & -g_{1} \tag{3.5-1}\\
0 & -\lambda & 0 & \left(1-g_{2}\right) & -g_{2} \\
a_{31} & a_{32} & -\lambda & -g_{3} & -g_{3} \\
a_{41} & a_{41} & 0 & \left(-\lambda-g_{4}\right) & -g_{4} \\
0 & 0 & 0 & -g_{5} & \left(-\lambda-g_{5}\right)
\end{array}\right.
$$ OF POOR QUANT.

$$
=0
$$

The characteristic polynomial of Eq. (3.5-1) is given as follows; i.e.,

$$
\begin{align*}
& \left.\left(\lambda^{5}\right)+\left(g_{4}+g_{5}\right) \lambda^{4}\right)+\left(\left(g_{1} a_{41}+g_{2} a_{42}-a_{31}-a_{42}\right) \lambda^{3}\right) \\
& +\left(\left(g_{3} a_{41}-g_{4} a_{31}-g_{5} a_{31}-g_{5} a_{42}\right) \lambda^{2}\right) \\
& +\left(\left(-g_{2} a_{41} a_{31}+g_{2} a_{41} a_{32}+a_{42} a_{31}-a_{41} a_{32}\right) \lambda\right) \\
& +\left(g_{5} a_{42} a_{31}-g_{5} a_{41} a_{32}\right)=0 \tag{3.5-2}
\end{align*}
$$

The final form of the G matrix elements (obtained from the condition for critical damping) are given as follows;

$$
\begin{aligned}
& g_{1}=\left(\left(10 \lambda^{2}-g_{2} a_{42}+a_{31}+a_{42}\right) / a_{41}\right), \\
& g_{2}=\left(\left(5 \lambda^{4}-a_{42} a_{31}+a_{41} a_{32}\right) /\left(-a_{42} a_{31}+a_{41} a_{32}\right)\right), \\
& g_{3}=\left(\left(-10 \lambda^{3} \operatorname{tg}_{4} a_{31}+g_{5}\left(a_{31}+a_{42}\right)\right) / a_{41}\right), \\
& g_{4}=\left(-5 \lambda-g_{5}\right), \text { and } \\
& \left.g_{5}=\left(\left(-\lambda^{5}\right) / a_{42} a_{31}-a_{31}-a_{41} a_{32}\right)\right) .
\end{aligned}
$$

CTAPTER JV

RESUIIS AND CONCIUSIONS

4.1 Data for LACATE Mission

Figure (1.1-1) illustrates the actual LACATE balloon system and Figure (2.1-2) illustrates the corresponding idealized system used in this study. The values for the various lengths and masses of the idealized system are given in Table (4.1-1).

The numerical values for the elements of the M and K matrices of Fq. (2.6-5) were computed based on the data given above. The resulting values are presented in rable (4.1-2). The numerical values for the A and B matrices of Eq. (3.1-1) are given in Tables (4.1-3) and (4.1-4).

The eigenvalue problem for the ballcon system was solved analytically. The solution for the eigenvalues (Ω^{2}) j and corresponding eigenvectors are presented in Table (4.1-5). The values of Ωj represent the natural frequencies of the system. The modal shape functions and periods corresponding to each natural frequency are shown in Table (4.1-6).

Results for the ballcon observer system were obtained by employing two separate time intervals. The equations for predicting the body axis acceleration components from sensor outputs are presented in Appendix A. Plots of the body axis acceleration components over the two time intervals are given in Figures (4.1-1) through (4.1-6).

4.2 Results From Similation Study

Eq. (3.1-1) was employed to simulate the balloon platform angular velocity and angular displacement. The inputs and outputs employed with the simulated system were of the same order of magnitude as predicted

tabie 4.1-1

Idealized LACATE System Properties
r_{1} (distance from point 0 to mass m_{1}) $=75 \mathrm{ft}$.
r_{2} (distance from mass m_{1} to m_{2}) $=15 \mathrm{f}, \mathrm{t}$.
m_{1} (lumped mass) $=135 \mathrm{lb}_{\mathrm{m}}$
m_{2} (lumped mass) $=375 \mathrm{lb}_{\mathrm{m}}$

TABLE 4.1-2

Coefficients of m and k Matrices

$$
\begin{aligned}
& m_{11}=89156\left(\text { lbf } \cdot \mathrm{s}^{2} \cdot \mathrm{ft}\right) \\
& \mathrm{m}_{12}=13111\left(\text { lbf } \cdot \mathrm{s}^{2} \cdot \mathrm{ft}\right) \\
& \mathrm{m}_{21}=13111\left(1 \mathrm{bf} \cdot \mathrm{~s}^{2} \cdot \mathrm{ft}\right) \\
& \left.m_{22}=2622 \text { (1bf } \cdot \mathrm{s}^{2} \cdot \mathrm{ft}\right) \\
& \mathrm{k}_{11}=38278(1 \mathrm{bf} \cdot \mathrm{ft}) \\
& k_{22}=5629.4(\text { lbf } \cdot \mathrm{ft})
\end{aligned}
$$

TABLE 4.1-3

Coefficients of A Matrix

$$
\begin{aligned}
& a_{31}=-1.621\left(\mathrm{~s}^{-2}\right) \\
& a_{32}=1.1923\left(\mathrm{~s}^{-2}\right) \\
& a_{41}=8.107\left(\mathrm{~s}^{-2}\right) \\
& a_{42}=8.107\left(\mathrm{~s}^{-2}\right)
\end{aligned}
$$

$b_{3}^{(1)}=-0.01334\left(f t^{-1}\right)$
$b_{4}^{(1)}=0.0$
$\mathrm{b}_{3}^{(2)}=0.01334\left(\mathrm{ft}^{-1}\right)$
$b_{4}^{(2)}=0.0$

Balloon Systems Eigenvalues \AA^{2}; and Corresponding Eigenvectors

j	Ω_{j}^{2}	x_{j}
1	.3711	1.000
1.048		
2	9.3611	1.000
		-6.488

TABIE 4.1-6

Balloon Systems Modal Shape Functions and Periods

j	Ω_{j}	Period $\left(\tau_{j}\right)$	Modal Shape
1	.6092	10.314	
2	3.0596	2.053	0

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR OUĂLITY

ORIGINAL , PAGE IS OF POPR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

OKiGuath PAGi: ${ }^{\text {O }}$ OF PCOR QUALITY

by the actual LACAIE filight data. For comparison purposes, all of the simulation runs employed identical initial conditions and eigenvalues; the magnitude of the latter was equal to -0.6 .

The angular velocity (θ) and angular displacement (θ) predicted by the fourth order observer system are shown in Figs. (4.2-1) - (4.2-4) for the case when bias is not present in the output. The free respanse case is itlinstrated in Figs. (4.2-1) and (4.2-2), while in Figures $(4,2-3)$ and $(4.2-4)$, results are given for the case when a ramp input was employed.

Figures (4.2-5) - (4.2-13) illustrate the free response of the fourth order observer system for the case when bias is present in the output. The plant output for the case shown in Figs. (4.2-5) and (4.2-6) contains a constant bias, while a linear bias was used to obtain the results shown in Figs. (4.2-7) and (4.2-8).

Figures (4.2-9) - (4.2-13) give the free response results for the fourth order observer system when a high frequency bias ($\beta=0.005$ $\cos (13 t))$ is present in the plant output. The results for the angular displacement from the fourth order observer system are presented in Figs. (4.2-9) and (4.2-10) . Figs. (4.2-11) and' (4.2-12) present the results for the angular velocity predicted by the fourth order observer model. Fig. (4.2-13) presents the results for the plant output (i.e., $\left.y=q_{4}+\beta\right)$.

Figures (4.2-14) - (4.2-21.) display the free response results from the fifth order observer system for the case when bias in the output is present. In the case of Figs. (4.2-14) and (4.2-15), the output contained a constant bias, while a linear bias was used to obtain the results shown in Figs. (4.2-16) and (4.2-17).

Figures (4.2-18) - (4.2-21) show the results from the fifth order observer system when the plant output contains a high frequency bias $\left(q_{5}=0.005 \cos (13 t)\right)$. Figs. (4.2-18) and (4.2-19) present zesults for the angular displacement predicted by the fifth order observer system. The angular velocity predicted by this system is shown in Figs, $(4.2-20)$ and (4.2-21). The results for the plant output (i.e., $Y=$ $q_{4}+q_{5}$) are presented in Fig. (4.2-13).

ORIGINAL PAGE IS OF POOR QUALITY

(pex) θ

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS
 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS
 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

, ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS

- OF POOR QUALITY

ORIGINAL RAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF' POOR QUALITY

- ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QVIALITY

(pex) θ

ORIGINAL PAGE IS OF PCOR QUALITY

QRIGINAL PAGE IS
QFPOOR QUALITY:

4.3 Discussion of Simulation Study Results

The results in Figs. (4.2-1)-(4.2-4) verify that, after a finite time interval, the fourth order observer system will reconstruct the plant state exactly if all plant inputs and outputs are known. The use of repeated eigenvalues (i.e., $\lambda_{i}=-0.6$) resulted in an error free response after a period of 20 seconds.

The fourth order observer results in Figs. (4.2-5)-(4.2-13) were obtained for the case when the plant output contained a bias $(\beta(t))$. From Figs. (4.2-5)-(4.2-13), it is seen that the reconstructed states contained an error resulting from the bias present in the plant output.

Two methods can be used to determine the steady state error in this reconstructed state due to output bias:

1. Revise Eq. (3.4-3) to include the error due to bias and then solve this equation.
2. Compare the results for the reconstructed state to the actual state directly by employing the curves in Figs. (4.2-5)-(4.2-13). For purposes of this work the latter method will be employed.

For comparing the reconstructed stat to the actual state, a relative error, $E R_{i}\left(t_{j}\right)$ will be used. This is defined as follows; i.e.,

$$
\begin{equation*}
E R_{i}\left(t_{j}\right)=\left|\frac{E A_{i}\left(t_{j}\right)}{q_{i}\left(t_{j}\right)}\right|, \tag{4.3-1}
\end{equation*}
$$

where

$$
E A_{i}\left(t_{j}\right)=\text { magnitude of the error in the state } q_{i} \text { at } t=t_{j} \text {, and }
$$

$q_{i}\left(t_{j}\right)=$ maximm value of the actual state variable at $t=t_{j}$.
The curves in Figs. (4.2-5) and (4.2-6) indicate that the error in the reconstructed state is a constant when the plant output contains a constant bias (i.e., $\beta=0.001$). In particular, for this case, a 5\%
relative error ($E R_{y}$) in the output resulted in errors $\left(E R R_{2}\right.$ and $\left.E R_{4}\right)$ of 17% and 100% in θ_{2} and $\dot{\theta}_{2}$ respectively.

When a linear bias (i.e., $\beta=4.0 \times 10^{-6} t$) is present in the plant output, a linear error resulted in the reconstructed state (see Figs. (4.2-7) and (4.2-8)). At $t=43 \mathrm{~s}, E R_{y}=6 \%, E R_{2}=238$ and $E R_{4}=133 \%$.

The results shown in Figs. (4.2-9)-(4.2-13) indicate that when the plant output contained a high frequency bias (i.e., $\beta=0.005 \mathrm{cos}$ $(13 t)$), the angular displacement (θ) and the angular velocity (θ) predicted by the fourth order observer contaired a sinusoidal error. The error in the reconstructed state at peak amplitudes are $E R_{y}=1678$, $\mathrm{ER}_{2}=9 \%$ and $\mathrm{ER}_{4}=33 \%$.

The results obtained from the fifth order observer are shown in Figs. (4.2-14)-(4.4-21). Figs. (4.2-14)-(4.2-16) indicate that, for the case when the plant output contains a constant bias, the actual state will be reconstructed exactly after a finite interval of time.

Figs. (4.2-16) and (4.2-17) show that when the plant output contained a linear bias (i.e., $\beta=-1 \times 10^{-4} \mathrm{t}$), a constant error resulted in the reconstructed state. At $t=43 \mathrm{~s}$., the resulting errors are given as follows; i.e., $E R_{Y}=153 \%, \mathrm{ER}_{2}=648$, and $E R_{4}=1008$.

Figs. (4.2-18)-(4.2-21) show that when the plant output contains a high frequency bias (i.e., $\beta=0.005 \cos$ (13t)) the state predicted by the fifth order observer contains a sinusoidal error. The errors in the reconstructed state at peak amplitudes are $E R_{\mathrm{y}}=167 \%, \mathrm{ER}_{2}=6 \%$ and $E R_{4}=35 \%$.

In general, the results of the simulation study show that the form of the error in the reconstructed state will depend both on the order of the observer model and the type of bias (i.e., constant, linear, etc.)
present in the plant output. When an nth order bias is present in the plant output, the fifth order observer will yield a more accurate response than the fourth order observer. For this case, the error in the fifth order observer will be of order $n-1$, while the error in the fourth order observer will be of order n.

For a specific form of bias, the magnitude of the errors in the reconstructed state will depend on the elements of the F and G matrices. For the particular case when $\lambda_{i}=-0.6$, the magnitude of error in the reconstructed state Z_{2} was much smaller than that in z_{4} : Moreover, for. the case when the bias was of a sinusoidal nature ($\beta=0.005 \cos (13 t)$), the error in the reconstructed state z_{2} was less for the fifth order observer model; however, a more accurate response was obtained in state z_{4} for the fourth order observer.

4.4 Observer Results for Determining Orientation of Balloon Platform

The fourth and fifth order observer system models were employad to determine the orientation $\left(\theta_{2}\right)$ of the balloon platform in the $X_{2} X_{3}$ plane for the time interval $t=0 \mathrm{~s}$ (initial IACATE data recording time) to $t=500 \mathrm{~s}$. The observer transient error was assumed to decay to zero after an elapsed time period of 250s. At this time the initial condition for integrating the gyroscope was set equal to the angular displacement $\left(z_{2}\right)$ predicted by the observer. Fig. (4.4-1) illustrates the output (y) obtained from the gyroscope with sensing axis along the $e_{1}{ }^{\prime \prime}$ body axis. Figs. (4.4-2)-(4.4-5) give the angular velocity (z_{4}) and angular displacement $\left(z_{2}\right)$ predicted by the fourth order observer model for the case when $\lambda_{i}=-0.5$. The free response case is illustrated in Figs. (4.4-2) and (4.4-3), while Figs. (4.4-4) and (4.4-5) give the response when the wind acceleration is included.

Figs. (4.4-6)-(4.4-13) illustrate the free response of the fifth order observer system with $\lambda_{i}=-0.2$ and -0.5 respectively. Figs. (4.4-6) and (4.4-10) present the results for the angular velocity while Figs. $(4.4-7),(4.4-8),(4.4-11)$, and (4.4-12) present the results for the anqular displacement. Figs. (4.4-9) and (4.4-13) contain the results for predicted bias (Z_{5}).

Figs. (4.4-14)-(4.4-25) present the fifth order observers response with wind acceleration for the case when $\lambda_{i}=-0.2,-0.5$, and -0.7 respectively. Figs. (4.4-14), (4.4-18), and (4.4-22) present the results for the angular velocity while Figs. (4.4-15), (4.4-16), (4.4-19), (4.4-20), (4.4-23) and (4.4-24) present the angular displacement. The bias predicted fram the fifth order observer for the respective cases is presented in Figs. (4.4-17), (4.4-21), and (4.4-25).

ORIGINAL PAGE IS OF"POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

1: +1 *

ORIGINAL PAGE IS OF POOR QUALITY

- ORIGINAL PAGE IS

OF: POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

(00s/pex) θ
ORIGINAL RAGE IS

ORIGINAL PAGE IS
OF POOR OUALITY OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

OOIGINAL PAGE IS
YTI OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALTV

(pex) θ

ORICINAL PAGE IS OF POOR QUALTV

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE is OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALTTY

ORIGINAL PAGE IS OF POOR QUALITY

4.5.Discussion of Ralloon Observer Results

Figs. (14.4-2) and (4.4-4) indicate that the angular felocity
results predicted by the fourth order observer differ significantly from those obtained from the eyroscope. The actual angular velocity of the balloon platform is different than that obtained from elther the observer or gyroscope. Deficiencies in the ability of the gyroscope to reproduce the actual angular velocity are caused by mechanical Insensitivity to sudden changes in angular velocity and blas. Errors In the angular velocity values predicted by the fourth order observer result from the form of the elements of the F and G matrices (see Sec. 4,3) and the magnitude of blas present in the output of the gyroscope. FIg. (4.4-3) shows that the angular displacement predicted by the fourth order observer model without wind input differs significantly from that obtained by integrating the output from the gyroscope ($y 1$). The general trend of the angular displacement predicted by this model is simular to that obtained by integrating the output of the gyroscopes. However, the output of this model contains errors; e.g., the maximum, difference between the two curves is 0.172°. This is significant in view of the fact that the maximum displacement predicted by the obsexver is 0.058° while that obtained by integrating the output from the gyroscope is 0.23°. These errors can be attributed to the fact that:

1. The effect of the wind acceleration is neglected.
2. Bias is present in the plant output.

Fig. (4.4-5) shows that the angular displacements obtained from the fourth order observer including wind acceleration compare less favorably (with the integrated gyroscope output) than those obtained from the previous model. The magnitude of the maximum angular displacement

ORIGINAL PAGE IS
 OF POOR QUALITY

predicted by this model $1 . \mathrm{s}$ approximately 0.5°, while the maximum Soviation is of the order 0.6°.

Figs. (4.4-6), (4.4-10), (4.4-14), (4.4-18), and (4.4-22) show that the anfular velooity results obtained from the fifth order okberver model differ significantly from the results (biased) obtained from the gyroscope. This is true regancless of whether the effect of wind acceleration is included. However, as the mapnitude of the repeated eigenvalue $\left(\lambda_{1}\right)$ increases, the differences between the t wo curves decrease.

Figs. (4.4-7), (4.4-8), (4.4-11), and (4.4-12) show that the angular displacements predicted by the fifth order observer model which was developed byexcluding the affect of wind accleration, are in good agreement with those obtained by integrating the modified output from the gyroscope (y 1 m). The latter wias obtained by subtracting the bias predicted by this model from the actual gyroscope output. These figures indicate that the difference between the two curves increases with increasing time. Moreover, this difference decreases with increasing magnitude of λ_{1}. The maximum displacement with $\lambda_{1}=-0.2$ and -0.5 is of the order 0.05°; while the maximum error is 0.08° and 0.02° respectively.

Figs. (4.4-15), (4.4-16), (4.4-19), (4.4-20), (4.4-23), and (4.4-24)
Indi.cate that the angular displacements predicted by the fifth order observer which includes the affect of wind acceleration are in good agreement with the values obtained by integrating the modified output from the gyroscope. The dufference between these two curves remains constant over the entire observed time period. Moreover, this difference decreases with increasing magnitudes of λ_{1}. The magnitude of the maximum error and displacement for all three cases is approximately

ORIGINAL PAGE IS
 OF POOR QUALITY

0.25° and 0.5° respectively.
Figs. (4, 4-5) , (4, 4-15) , (4, 4-16), (4/4-19), (4.4-20), (4,4-23), and (4.4-24) show that the angular displacements predicted by the fourth and fifth order observor models pompare favorably regardless of the value of λ_{1}. This indicates that whe predicted angular displacement is unchanged regardiess which observer model is used. Thus, the fourth order observer model can be used to predict the angular displacement of the balloon platiorm.

Fles. $(4.4-3),(4.4-7),(4.4-8),(4.4-11)$, and ($4.4-12$) show that the angular displacements predicted by the observor models without wind input dsffer significantly from those results predicted by the models which include wind input. -This indicates that lnowledge of wind accleration is neeessary in order to obtain accurate results for the attitude of the platform. .

4.6 Conclusions

This study has shown that, for a completely observable balloon system, observer models can be constructed to accurately determine the angular displacement of the observational platform. Any errors in the predicted platform state are due mainly to errors in the balioon flight data (i.e.,acceleration and angular velocity data) as opposed to deficiency in the observer model. Although the results for the angular velocity are in poor agreement with those obtained from the gyroscopes, those devtations can be decreased considerably by proper choice of the eigenvalues.

This study has also shown that the anfular displacements predicted
by the observer modele do not vary alenificantly with olthor the order of the model or the magnitude of the repated aigenvalue. However, the results do vaxy significantly (depending on whether the affect, of wind aoceleration is included.

APPENDIX A

Balloon Translational Aocelaration Components

In the case of the LACAIE experiment, the balloon's position was tracked by radar; the tanslational components were obtained with respect to the earth fixed axis shown in Fig. ($\mathrm{A}-1$). the corresponding body axis for the balloon platform system is shown in Fig. (A-2). the angle α measured betyeen these two coordinate systems (Fig. A-2) is given as follows; i.e.,

$$
\alpha=\int_{0}^{t} W_{3} d t-t \Omega \dot{s}(\lambda)+a_{0^{\prime}} \quad(A-1)
$$

where

$$
W_{3}=\text { spin component of angular velocity obtained from gyroscope, }
$$ $\Omega=$ magnitude of earth spin,

$$
\left(7.2722 \times 10^{-5}\left(\mathrm{rad} \cdot \mathrm{~s}^{-1}\right),\right.
$$

$\lambda=$ latitude angle ($0.5724(\mathrm{rad})$), and
$\alpha_{0}=$ initial value of α as measured by magnetometer.
The velocity components of the balloon were obtained by numerically differentiating the (radar tracked) translational components. The velocity components of the balloon ($\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}$) measured along the balloon's body axis are given as follows; i.e.,

$$
v_{1}=-v_{x} \dot{s}(\alpha)+v_{y} c(\alpha), v_{2}=v_{x} c(\alpha\rangle+v_{y} s(\alpha), \quad(A-2)
$$

where

$$
\begin{aligned}
\mathrm{v}_{1}= & \text { balloon velocity component } \\
& \text { along the } e_{2}^{\prime " '} \text { body axis, } \\
\mathrm{v}_{2}= & \text { balloon velocity component along the } e_{1}^{\prime " '} \text { body axis, } \\
\mathrm{v}_{\mathrm{x}}= & \text { balloon velocity component along the } \varepsilon_{1} \text { earth fixed axis, } \\
\mathrm{v}_{\mathrm{y}}= & \text { balloon velocity component along the } e_{2} \text { earth fixed axis, }
\end{aligned}
$$

and is is as defined in 5q. (A-1).
The balloon's translational acceleration camponents along the body axis can be obtained by differentiating Eq. (A-2) with reapect to time. The resulting equations are given as following; i.e.,
$a_{1}=-\dot{v}_{x} s(\alpha)+\dot{v}_{y} c(\alpha)+\dot{\alpha}\left(-v_{x} c(\alpha)-v_{y} s(\alpha)\right)$,
$a_{2}=V_{x}{ }^{C(\alpha)+V_{y} S(\alpha)+\alpha\left(-v_{x} S(\alpha)+v_{y} c(\alpha)\right), ~}$
where
$a_{1}=$ translational acceleration component along the $e_{2}{ }^{\prime \prime \prime}$ body axis, $a_{2}=$ translational acceleration component along the e_{2} '' body axis, $\dot{v}_{x}=$ translational acceleration cumponent along the e_{1} earth fixed axis, $\dot{v}_{y}=$ translational asceleration component along the e_{2} earth fixed axis, $\dot{\alpha}=W_{3}-\Omega S(\lambda)$, and
$\mathrm{V}_{\mathrm{x}}, \mathrm{V}_{\mathrm{y}}$ and α are as defined previously. It should be noted that, in the abors development, the earth's rotational effects are neglected.

F1g. (A-1) Earth Fixed Axis

original page is OF POOR QUALITY

FIg. (A-2) Body and Earth Fixed Coordinate Axes

ORIGNAL PAGE IS

 OF POOR QUALITYAPPENDIX B

Fortran Codine

1. Body Axis Accelerations

1.0000	PROGRAM TO OBTAIN BODY ACCELL. FROM
2.000 0	SENSITIVITY ANALYSIS
3.000	OUTPUT 'INPUT N'
4.000	INPUT N
5.000	DO $1 . I=1, N$
6.000	$\operatorname{READ}(103,2) \mathrm{T}, \mathrm{P}$
7.0002	FORMAT (2G)
8.000	READ (109, 2) T, PD
9.000	READ (104,3) TO, XX, VX, AX
10.0003	FORMAT (4G)
11.000	READ (107,5) T1, YY, VY, AY
12.0005	FORMAT(4G)
13.000	$A 1=A X * \operatorname{COS}(P)+A Y * \operatorname{SIN}(P)+(-V X * \operatorname{SIN}(P)+V Y * \operatorname{COS}(P)) * P D$
14.000	
15.000	WRITE (106,4) T, A1, A2
16.0004	FORMAT (3E14.6)
17.0001	CONTINUE
18.000	STOP
19.000	End

1.0000
2.000
3.000
4.000
5.0009
6.000
7.000
8.000
9.000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
31.000
32.000
33.000
34.000
35.0004
36.0005
37.000
38.000
39.0002
40.000
41.000
42.000
43.000
44.000
45.000
46.000
47.000
48.000
49.00010
50.000
51.000

BATIOON 4TH ORDER OBSERVER SYSTIEM
COMMON/HCIT/A31, A32, A41, A42,G1,G2,G3,G4,B32
EXXIERNNAL FCT, OUTP
DIMMNSION Y(5) , DERY (5) , PRMT (5) , AUX $(16,8)$
OUTPUT 'INPUT Y10, Y20'
$\operatorname{DATA}(Y(I), I=1, A) / 0 ., 0 ., 0 ., 0.1$
OUTPUT INPUT PRMT(I), $I=1,4^{\prime}$
INPUT, ($\operatorname{PRMT}(I), \quad,=1,4)$
OUTPUT 'INPUT EIG'
INPUP EIG
$A 31=-1.622$
$A 32=1.1926$
$A 41=8.1096$
$A 42=-8.1096$
B32 $=.0437$
G4 $=-4 *$ EIG
$G 3=(G 4 * A 31-4 * E I G * * 3) / A 41$
$G 2=\left(-E I G^{* *} 4-A^{\prime} 32 * A 41+A 42^{*} A 31\right) /(-A 32 * A 41+A 42 * A 31)$
$G 1=(-6 * E I G * * 2-A 31-A 42+A 42 * G 2)>(-A 41)$
OUTPIT G1,G2,G3,G4
NDIM $=4$
OUTPUT 'INPUT 1 TO RUN'
INPUT J
IF (J.NE. 1) GO TO 9
DO $1 \mathrm{I}=1,4$
$\operatorname{DERY}(I)=0.25$
CALL HPCG(PRMI, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX)
STOP
END
SUBROUTINE FCT (X, Y, DERY, INO)
DIMENSION Y(1), DERY(1)
COMAON/FCTY/A31, A32, A41, A42, G1, G2, G3, G4, B32
CDMMON/DAB/T1, THTD
IF (INO . EQ. O) GO TO 2
FORMAT (2G)
FORMAT ($3 G$)
READ (104.4)T1, THTD
$\operatorname{READ}(103,5) \mathrm{T} 2, \mathrm{~A} 1, \mathrm{~A} 2$
DERY $(1)=G 1 *(-Y(4)+T H T D)+Y(3)$
$\operatorname{DERY}(2)=G 2 *(-Y(4)+T H M D)+Y(4)$
$\operatorname{DERY}(3)=G 3 *(-Y(4)+$ THID $)+A 31 * Y(1)+A 32 * Y(2)-B 32 * A 2$
$\operatorname{DERY}(4)=G 4 *(-Y(4)+I H T D)+A 41 * Y(1)+A 42 * Y(2)$
RETURN
END
SUBROUTINE OUTP (X, Y, DERY, IHLF, NDIM; PREMT)
COMKON/DAB/T1, THTD
DIMENSION Y (1), DERY (1), PRMT (1)
WRITE $(106,10) X, Y(2), Y(4)$ THMD
FORMAT (4E13.5)
RETURN
END

$\begin{aligned} & 1.0000 \\ & 2.000 \end{aligned}$	PROGRAM TO TEST 5TH ORDER OBSERVER SYSTEM WITH INPUT BIAS COMWON/FCITM/A31, A32, A41, A42, G1, G2, G3, G4, G5, B32
3.000	EXXTERNAL FCT, OUTP
4.000	DIMENSION $Y(5), \operatorname{DERY}(5), \operatorname{PRMT}(5), \operatorname{AUX}(16,8)$,
5.0009	OUTPUT ' INPUT Y10, Y20, Y30'
6.000	DATA ($Y(I), I=1,5) / 0.00 .0 .00 .0 .1$
7.000	OUTPUT 'INPUT PRMT (I , $, \mathrm{I}=1,4^{\prime}$
8.000	INPUT, ($\operatorname{PRMT}(\mathrm{I}), \mathrm{I}=1,4$)
9.000	OUTPUT 'INPUT EIG'
10.000	INPUY EIG
11.000	$A 31=-1.622$
12.000	A32 $=1.1926$
13.000	A41-8.1096
14.000	A42 $=-8.1096$
15.000	$\mathrm{B} 22=.0437$
16.000	G2 $=(5 * E I G * * 4-\mathrm{A} 42 * \mathrm{~A} 31+\mathrm{A} 41 * \mathrm{~A} 32) /(-\mathrm{A} 42 * \mathrm{~A} 31+\mathrm{A} 41 * \mathrm{~A} 32)$
17.000	$G 1=(10 * E I G * * 2-A 42 * G 2+A 31+A 42) / A 41$
18.000	
19.000	$G 4=-5 * E S G G-G 5$
$\underline{20.000}$	G3 $=(-10 *$ EIG**3+A31*G4+(A31 +A42)*G5)/A41
21.000	OUTPUI G1, G2, G3, G4, G5
22.000	NDIM $=5$
23.000	OUTPUT 'INPUT 1 TO RUN'
24.000	INPUT J
25.000	IF (J.NE. 1) GO TO 9
26.000	D0 $1 \mathrm{I}=1,5$
27.0001	$\operatorname{DERY}(\mathrm{I})=0.2$
28.000	CAIL HPCG (PRMT, Y, DERY, NDIM, IHLTT, FCT, OUTP, AUX)
29.000	STOP
30.000	END
31.000	SUBROUTINE FCTI (X, Y, DERY, TNO)
32.000	DIMENSION Y (1), DERY(1)
33.000	COMMON/FCTT/A31, A32, A41,A42, G1, G2, G3, G4, G5, B32
34.000	COMMON/DAB/T1, THTD
35.000	IF (INO, IR. O) GO TO 2
36.0004	FORMAT (2G)
37.0005	FORMAT (3G)
38.000	READ (104, 4) T1, THTD
39.000	READ (103;5)T2, A1, A2
40.0002	$\operatorname{DERY}(1)=Y(3) \pm \mathcal{T}{ }^{*}(-Y(4)-Y(5)+T H T D)$
41.000	$\operatorname{DERY}(2)=Y(4)+G 2^{*}(-Y(4)-Y(5)+$ THMD $)$
42.000	$\operatorname{DERY}(3)=A 31 * Y(1)+A 32 * Y(2)+G 3 *(-Y(4)-Y(5)+T H T D)-B 32 * A 2$
43.000	$\operatorname{DERY} 4\langle=A 41 * Y(1)+A 42 * Y(2)+G 4 *(-Y(4)-Y(5)+\mathbb{T H D})$
44.000	$\operatorname{DERY}(5)=G 5^{*}(-\mathrm{Y}(4)-\mathrm{Y}(5)+\mathrm{THMD})$
45.000	RETURN
46.000	End
47.000	SUBROUTINE OUTP (X, Y, DERY, IHLF, NDIM, PRMT)
48.000	COMMON/DAB/T1, THTD
49.000	DIMENSION $Y(1)$, DERY (1), PRMT (1)
50.000	WRITE $(106,10) \mathrm{X}, \mathrm{Y}(2), Y(4), Y(5)$, THITD
51.00010	FORMAT (5E13.5)
52.000	RETURN
53.000	END

ORIGINAL PAGE IS OF POOR QUALITY

1.000
$2.0 C O$
3.000
4. C00
E.000 C
6.000
7. CCO
8.000
9.000
10.000
11.000
12.000
13.000
14.000
15.000
16.000
17.000
18.000
19.000
20.000
21.000
22.000
23.000
24.000
25.000
26.000
27.000
28.000
29.000
30.000
1.000
2.000
3.000
4.000
5. on
6.000
7.000
38.000
$\pi 9.000$
40.000
41.000
42.000
43.000
44.000
45.000
46.000
47.000
48.000
49.000
50.000
51.000 52.000 C

C

C

SLPROURINE HPCG (PRMT, Y, IFRY, NIIM, JHLF, FCT, OUTP, AUX)
$\operatorname{IJMENSJON} \operatorname{ERMT}(1), Y(1), \operatorname{DERY}(1), \operatorname{AUX}(16,1)$
$\mathrm{N}=1$
IHIF=?
$X=\operatorname{PRMT}(1)$
$\mathrm{H}=\operatorname{PRMT}(3)$ •
FRMT (5) $=0$
IO $1 \mathrm{I}=1$ NDIM
$A \operatorname{IX}(16 . I)=0$.
$\operatorname{AUX}(15 . J)=\operatorname{DFRY}(I)$
$1 \operatorname{AUX}(1 . I)=Y(I)$
IF (H* (PRMT (2)-X) $3,2,4$
FRFOR RETURNS
2 IHIF=12
GOTO 4
3 IHIF $=13$
COMPUTATION OF DERY FOR STAFTING VALUES
4 INO = 1
CALL FCT (X, Y, IERY, INO)
RECORDING OF STARTING VAIUES
CALL OUTP (X,Y, DERY, IHLF,NDIM, PRMT)
IF (PRMT (5))6,5,6
5 IF (IHLF) 7,7,6
6 RFTURN
7 PO $8 I=1$,NIIM
8 A UX ($8, \mathrm{~T})=\Gamma E R Y(I)$
COMPUTATION SF AUX (2,I)
ISW=1
GOTC 100
$9 \mathrm{X}=\mathrm{X}+\mathrm{H}$
IO $10 \mathrm{I}=1$, NIJM
$10 \mathrm{AUX}(2 \cdot I)=\mathrm{Y}(\mathrm{I})$
$11 \mathrm{IHLF}=\mathrm{IHLF}+1$
$\mathrm{X}=\mathrm{X}-\mathrm{H}$
DO $12 I=1$, NDIM
$12 A U X(4, I)=A U X(2, I)$
$\mathrm{H}=\mathrm{H}$
$\mathrm{N}=1$
$I S W=2$
GOTO 100
53. 000

54000
55.000
56.000
57.000

58000
59.000
60.000
61.000
62.000
63.000
64.000
65.000
66.000
67.000
68.000
69.000
70.000
71.000
72.000
73.000
74.000
75.000 C
76. COC C
77.000
78.000
79.000
80.000
81.000
82.000
83.000
84.000
85.000
86.000
87.000
88.000
89.000
00.000
91.000
92.000
93.000
94.000
95.000
96.000
97.000
98.000
99.000
100.000
101.000
102.000
103.000
104.000
105.000
106.000
13. $\mathrm{X}=\mathrm{X}+\mathrm{H}$
$J \mathrm{NO}=0$
CALL FCT (X, Y, IFRY, INO)
$\mathrm{N}=2$
DO $14 \mathrm{I}=1$. NLIM
$A \subset X(2 . I)=Y(I)$
$14 \mathrm{AUX}(9.1)=\mathrm{DEFY}(I)$
ISW=3
GOTO 100

15 IELT=0.
DO $16 \mathrm{I}=1$, NDIM
16 DFIM = DEIT+AUX $(15, I) * A B S(Y(I)-A U X(4, I))$
DELT $=.06666667$ *DELT
GO TO 19
17 IF (IHLF-10)11,18,18
NO SATISFACTORY ACCURACY AFTER 10 BISECTIONS. ERROR MESSAGE.
18 IHLF=11
$\mathrm{X}=\mathrm{X}+\mathrm{H}$
GOTC 4
THFRF TE EATIEFACTORY ACCURACY AFTER IEES THAN 11 BJEFCTIONE
$19 \mathrm{X}=\mathrm{X}+\mathrm{H}$
INO $=0$
CALL FCT (X,Y, IFRY. INO)
IO $20 I=1$, NDJM
$A \operatorname{IIX}(3, I)=Y(I)$
$20 \operatorname{AUX}(10 . J)=\operatorname{IERY}(I)$
$\mathrm{N}=$?
$I S W=4$
GOTO 100
$21 \mathrm{~N}=1$
$\mathrm{X}=\mathrm{X}+\mathrm{H}$
INO $=0$
CAIL FCI (X,Y, IERY, INO)
$\mathrm{X}=\mathrm{PRMT}$ (1)
DO $22 I=1$, NDIM
$\operatorname{AUX}(11, I)=\operatorname{DERY}(I)$
$220 \mathrm{Y}(\mathrm{I})=\mathrm{AUX}(1, \mathrm{I})+\mathrm{H}^{*}(.375 * \mathrm{AUX}(8, \mathrm{I})+.7916667 * A U X(9, I)$
1-. $2083333 * A$ UX $(10, I)+.04166667 * \operatorname{DERY}(I))$
$23 \mathrm{X}=\mathrm{X}+\mathrm{H}$
$\mathrm{N}=\mathrm{N}+1$
INO $=1$
CALL FCT (X, Y, TERY, INO)
CAIL OUMP (X,Y, NERY, IHIF, NDIM, PRMT)
IF (PRMT (5)) 6, 24, 6
24 IF (N-4) 25, 200, 200
25 IO $26 \mathrm{I}=1$. NIJM
$A \mathbb{A}(N, I)=Y(I)$
$26 \mathrm{~A} I \mathrm{X}(\mathrm{N}+7, \mathrm{I})=\operatorname{IFRY}(\mathrm{I})$ IF(N-3)27.29, 200
107.000 C 108.000 109.000 110.000 111.000 112.000 113.000 114.000 115.000 116.000 117.000 118.000 119.000 120.000 121.000 122.000 123.000 124.000 125.000 126.000 127.000 128.000 129.000 130.000 131.000 132.000 133.000 134.000 135.000 136.000 137.000 138.000 139.000 140.000 141.000 142.000
143.000
144.000 145.000 $14 E .000$ 147.000 148.000
149.000
150.000
151.000 152.000 153.000 154.00 C 155.000 156.000 C 157.000 158.000 159.000 160.000 C
$27 \operatorname{DO} 28 \mathrm{I}=1, \operatorname{NDIM} \mathrm{DELT=AUX}(9, I)+\operatorname{AUX}(9, I)$
DELT $=$ DELT + DELT
$28 \mathrm{Y}(\mathrm{I})=\mathrm{AUX}(1, I)+.3333333 * \mathrm{H}^{*}\left(\mathrm{AUX}(8, I)+\operatorname{DEL} \mathrm{I}^{2}+\mathrm{AUX}(10, I)\right)$
GOTO 23
29 DO $30 I=1, \mathrm{NDIM}$
$I E I T=A U X(9, I)+A U X(10, I)$
DFLT $=$ DFLT + DEIT + DFLT
$30 \mathrm{Y}(\mathrm{I})=\mathrm{AUX}(1, I)+.375 * \mathrm{H}^{*}(\mathrm{AUX}(8, I)+\operatorname{DFLT}+\mathrm{AUX}(11, I))$
GOTC ?
THE FOLIOWJNG FART OF SUPPOUTINE HPCG COMFUTFS BY MEANS OF RUNGF-KUTTA MFTHOR STAFTJNG VALUES FOF THE NOT EELF-STAFTJNG PPFIICTOR. CORRFCTOR METHOL.
100 DO $101 \mathrm{I}=1$, NIJM
$\mathrm{Z}=\mathrm{H}$ * A UX $(\mathrm{N}+7, \mathrm{I})$
$\mathrm{A} \operatorname{UX}(5 . I)=Z$
$101 \mathrm{Y}(\mathrm{I})=\mathrm{AUX}(\mathrm{N} . I)+.4 * \mathrm{Z}$
Z IS AN AUXIIIARY STORAGE LOCATION
$\mathrm{Z}=\mathrm{X}+.4 * \mathrm{H}$
INO $=\mathrm{C}$
CAII FCI (壬, Y, DERY, INO)
DO $102 I=1$, NDJM
$Z=H * D E R Y(I)$
$\operatorname{AUX}\left(6, Y^{\prime}\right)=Z$
$102 \mathrm{Y}(\mathrm{I})=A U X(\mathrm{~N}, \mathrm{I})+.2969776 * A U X(5, I)+.15 \varepsilon 7596 * Z$
$\mathrm{Z}=\mathrm{X}+.4557372 * \mathrm{H}$ INO $=0$
CALL FCT(Z,Y, IERY, INO)
IO $103 \mathrm{I}=1$, NDIM
$Z=H *$ RERY (I)
$A \cup X(7, I)=Z$
10* $Y(I)=A U X(N, I)+.2181004 * A U X(5, I)-3.050965 * A X(6, I)+3.832865 * 2$
$\mathrm{Z}=\mathrm{X}+\mathrm{H}$
INO $=0$
CAIL FCT(Z,Y, IERY, INO)
IO $104 \mathrm{I}=1$, NDIM
$1040 Y(I)=A U X(N, I)+.1747603^{*} A U X(5 . I)-.55148\left(D 7^{*} A U X(6, I)\right.$
$1+1.2 .05536 * A \mathrm{AX}(7 . \mathrm{I})+.1711848 * H * \operatorname{IEPY}(\mathrm{I})$
$\operatorname{GCTO}(9,13.15,21)$. ISW
PCSSIBIE BREAK-POINT FOR IINKAGE
STAFTING VALUES ARF COMFUTEL.
NOW STAFT HAMMINGS MORIFIED FREDICTOR-CORRECTOR NETHOD.
200 ISTFF=3
201 IF $(N-8) 204,202,204$
N $=8$ CAUSES THF ROWS OF AUX TO CHANGE THEIR STORAGE LOCATIONE
161.000
162.000
163.000
164.000
165.000
166.000 167.000 168.000 169.000 170.000 171.000 172.000 173.000 174.000 175.000 176.000 177.000 178.000 179.000 180.000 181.000 182.000 183.000 184.000 185.000 186.000 187.000 188.000 189.000 190.000 191.000 192.000 193.000 194.000 195.000 196.000 197.000 198.000 199.000 200.000 201.000 202.000 203.000 204.000 205.000 206.000 207.000 208.000 209.000 210.000 211.000 212.000 213.000 214.000

202 IC $203 \mathrm{~N}=2,7$ ORIGINAL PAGE IS
OF POOR QUALITY
IO $203 \quad I=1$, NIIM
$A \operatorname{CX}(\mathrm{~N}-1, I)=A \cup X(N, I)$
20\% $A C X(N+6, I)=A U X(N+7 . I)$
$\mathrm{N}=7$
C
C
$205 A U X(N+6, I)=\operatorname{DERY}(I)$
$\mathrm{X}=\mathrm{X}+\mathrm{H}$
206 ISTEP=ISTEF+1
DO $207 \mathrm{I}=1$, NDIN
ODELT $=A U X(N-4, I)+1.333333 * H *(A U X(N+6, I)+A U X(N+6, I)-A U X(N+5, I)$
$1 \mathrm{~A} X \mathrm{X}(\mathrm{N}+4, \mathrm{I})+\mathrm{AUX}(\mathrm{N}+4, \mathrm{I}))$
$\mathrm{Y}(\mathrm{I})=$ DEIT -.92561 g. $^{*} \operatorname{AUX}(16, I)$
$207 \mathrm{AUX}(16, \mathrm{I})=\mathrm{DFLT}$
PREDICTOR JS NOW GENERATED IN ROW 16 OF AUX, MODIFIEN PREDIC IS GFNERATED IN Y. DELT MEANS AN AUXILIARY STORAGE.

INO $=0$
CAIL $\operatorname{FCI}(X, Y, ~ D E R Y, ~ T N O) ~$
IFRJVATIVI CF MOITFIEI PRFICTCR IS GENERATER IN IERY
DO $208 \mathrm{I}=1$, NDIM
ODFIT $=125 *(9 . * A U X(N-1, J)-A U X(N-3, I)+3 . * H *(\operatorname{DFRY}(I)+A U X(N+6 . I)$
$1 A \operatorname{UX}(N+6, I)-A \mathbb{U}(N+5 . I)))$
$\operatorname{AUX}(16, I)=A U X(16, I)-\operatorname{DFIT}$
$208 \mathrm{Y}(\mathrm{I})=\mathrm{DFLT}+.07438017^{*} A \mathrm{AX}(16 . \mathrm{I})$
TEST WhFTHER H MUST BF halver Of FOUbLET
DELT $=0$.
DC $209 \mathrm{I}=1$, NDIM
$209 \operatorname{DELT}=\operatorname{DEIT}+\operatorname{AUX}(15, I) * \operatorname{AES}(A U X(16 . I))$
GO TO 210
h must not be haived. that means y (i) afe good.
210 INO $=1$
CALI FCT (X, Y, TERY, INO)
CALI OUTF (X,Y, IERY, IHIF, NDIM, FRMT)
IF(PRNT (5)) $212,211,212$
211 IF (IHLF-11)213, 212, 212
212 RETURN
$213 \operatorname{IF}\left(H^{*}(X-\operatorname{PRNT}(2))\right) 214,212,212$
$214 \operatorname{IF}\left(\operatorname{ABS}(X-\operatorname{PRMT}(2))-.1^{*} \operatorname{ABS}(H)\right) 212,215,215$

H COULI RF FOURLEI IF AIL NECESSAFY FRFCEFING VALUES ARF A ${ }^{4} A I L A B I F$
216 IF (THIF)201, 201, 217
215.000 216,000 217.00C 218.000 219.0nC 220.000 221.000 222.000 223.000 224.00 C 225.000 226.000 227.000 228.000 229.000 230.000 231.000 232.000 233.000 234.000 235.000 276.000 237.000 2z8.000 230.000 240.000 241.000 242.00 C 243.000 244.000 245.000 246. 000 247.000 248. 000 249.000 250.000 251.000 252.000 253.000 254.000 255.000 256.000 257.000 258.000 259.000 260.000 261.000 262.000 263.000 264.000 265.000 266.000 267.000
$217 \mathrm{IF}(\mathrm{N}-7) 2 \mathrm{C1} .218 .218$
ORIGINAL PACE IS
218 IF(ISTFF-4)201, 210.219
219 JMCR=TSTEP/2
TF(TSTFP. IMCN. IMCF)204,220.201
$220 \mathrm{H}=\mathrm{H}$
IHLF $=$ THLF- 1
JSTFF=0
DC $221 \mathrm{~J}=1$, NDJM
$A \cup X(N, 1, I)=A \cup X(N \quad 2, I)$
AUX $(N+2, I)=A U X(N, I)$
$A \cup X(N-3, I)=A U X(N-6, I)$
$\operatorname{AUX}(\mathrm{N}+6, \mathrm{I})=\mathrm{AlX}(\mathrm{N}+5 \cdot \mathrm{I})$
$A U X(N+5 \cdot I)=A U X(N+3 . I$
$A^{\prime} \mathrm{CX}(\mathrm{N}+4, I)=A U X(N+1, I)$
DELT $=A U X(N+6, I)+A U X(N+5, I)$
DELT $=$ DELT + DELT + DELT
$2210 \mathrm{AUX}(16 . I)=8,962963 *(\mathrm{Y}(\mathrm{I})-\mathrm{AUX}(\mathrm{N} . .3, \mathrm{I}))-3.361111$ HH*(DERY(I)+DELT $1+A \operatorname{LX}(N+4 . I))$
GOTO 201
C
C H MUST RE EAIVED
222 JHIF = IHIF +1
IF (IHIF-10) $222,223,210$
22? $\mathrm{H}=\mathrm{F}$
TSTFP=0
DC $224 \mathrm{~J}=1$. NDJM
$0 \mathrm{Y}(\mathrm{I})=.0039 \mathrm{C} 625 *(80 . * A U X(\mathrm{~N}-1, \mathrm{I})+135$. *AUX $(\mathrm{N}-2, I)+40 . * A U X(N-3, I)+$
1月UX $(N-4, T)=1171875 *(A U X+6 . I)-6 . * A X(N+5 . I)-A U X(N+4, I)) * H$
OAUX $(N-4, I)=.00300625 *(12$. *AUX $(N-1, I)+135$. *AUX $(N-2, I)+$
$1108 . * A \operatorname{UX}(N-3, I)+A \operatorname{IX}(N-4, I)) .0234375 *(A U X(N+6 . I)+18 . * A U X(N+5 . I)$
20. *AUX $(N+4 \cdot I)) * H$
$A \cup X(N-I)=A U X(N-2, I)$
$224 \mathrm{AUX}(\mathrm{N}+4 . \mathrm{I})=\mathrm{AUX}(\mathrm{N}+5 . \mathrm{I})$
$\mathrm{X}=\mathrm{X}-\mathrm{H}$
DFIT $=\mathrm{X}-(\mathrm{B}+\mathrm{H})$
INO $=0$
CALI FCT (DELT, Y, DERY INO)
DO $225 \mathrm{I}=1$. NDIM
$A \cup X(N-2, I)=Y(I)$
$A \cup X(N+5 . I)=\operatorname{DERY}(I)$
$225 \mathrm{Y}(\mathrm{I})=\mathrm{AUX}(\mathrm{N}-4, \mathrm{I})$
DELT $=$ DFLT $-(\mathrm{H}+\mathrm{H})$
$\mathrm{INO}=0$
CAIL FCT (IELT, Y, DERY, INO)
DO $226 \mathrm{I}=1$, NDIM
IEIT $=A U X(N+5, I)+A U X(N+4, I)$
DFLT = DELT + DELT + NFIT
$\operatorname{OAUX}(16, I)=8.962963 *(A U X(N-1, I)-Y(I))-3.361111 * H *(A U X(N+6, I)+D E L E$
$1+$ IFRY (I)
226 AUX $(N+3, I)=\operatorname{IFFY}(I)$
GCTC 2C6
FNI

ORIGINAL PAGE IS	
	OF POOR QJALITY

BIBLIOCRAPHY

1. Haser, L.N., "Dynamics and Attitude Control of the IM IR-Melescope Balloon Gondola," Proc., Ninth AFGL Scientific Balloon Symposium, 20:263-274.
2. Niaso, N.J., and Elkouh, A.F., "Attitude Determination of the LACAIE Balloon System," Proc., Ninth AFGL Scientific Balloon Symposium, 20:239-262.
3. Luenberger, David G., "An Introduction to Observers," IEFE Transactions on Automatic Control, AC-16 (December 1971): 596-602.
4. Perkins, W.R., and Cruz, Jr., J.B., Engineering of Dynamic Systems, New York: John Wiley and Sons, 1969.
5. Swisher, G.M., Introduction to Linear Systems Analysis, Champaign: Matrix Publishers, 1976.
6. Miaou, Shao-Lun, "Motion of a Balloon Observational Platform," M.S. Essay, Marquette University, 1981.
