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SUMMARY

Integrating matrices allow the efficient and accurate integretiom ot
functions whose values are given aumerically on a discrete set of grid
points. They also form the basis of an efficient numerical procedure for
solving differential equations sssociated with the dynsmics of rotating
beams. By expressing the partial differential equations of wotion in matrix
notstion, utilizing the integrating matrix as a spatial operator, and
applying the boundary conditions, the resulting ordinary differeatial equa-
tions can be cast into standard eigenvalue form upon assumption of the usual
time dependence. As uriginally developed, the technique has been limited to
beams having coatinuous wmass and stiffness properties alony their lengths.
This report extends integrating matrix wethods to treat the differential
equations goveruning the flap, lag, or axial vibrations of rotating beams
also having councentrated masses, Inclusion of concentrated masses is shown
to lead to the same kind of standard eigenvalue problem as before, but with

slightly modified matrices.

INTRODUCTION

The equations of motion governing the vibrations and stability of
rotating beaws such as helicopter rotor blades have no closed-form solu-
tions, and approximate methods of solution such as asymptotic techniques,
Galerkin's method, or direct numerical integration must be employed, A
nuoerical procedure based on the use of integrating matrices (refs. 1 and 2)
has been 2mployed to solve for the vibrations and stability of a wide
variety of rotating beam configurations with continuous mass distributions
(refs. 3 and 4). The integrating matrix provides a means for numerically
integrating a iunction that is expressed in terms of the values uf the
function at a set of discrete grid points in the interval ¢t interest.
Recent work (ref, 5) has removed the previous restriction thet the grid de
uniform, and arbitrary increments in the independent variablz cre now
permitted, By expressing the equacions of motion of the rotatirny beem in
matrix notat:.on, utilizing the integrating matrix as an operator, and
applying the bourdaiy conditicns, the resulting ordinary ditferential
equations can bu ¢- st into standard eigenvalue form. Solutions can then be

determined by standard methods.
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As originally formulated (ref. 1) the integrating matrix method
requires that the mass and stiffness distributions of the beam be at least
piecewise continuous along the length of the beam. Subsequent upplications
of the method (refs. 2, 3 and 4) were to continuous beams, The important
case in which one or wmore concentrated masses are located along the beam is
excluded. Reference 5 allows treatment of discontinuous coefficients in the
governing equations, but not the case of concentrated masses. As a number
of situations of interest involve rotating beams with concentrated massesg, a
need exists to extend the preseat formulstion of the integrating matrix

technique,

This report describes generalizations of the integrating matrix method
required to treat rotating beams with concentrated masses at arbitrary posi-
tions along their lengths. Inclusion of concentrated masses is shown to
lead to a standard eigeunvalue problem of the same form as before, but with
slightly modified matrices. To provide a framework for the generalization
and to set notation, the following section will briefly review the
integrating matrix method for vibrations of rotating beams with continuous

mass and stiffness distributions.

REVIEW OF THEORY FOR BEAMS WITHOUT
CONCENTRATED MASSES

Let m(x) (0 € x € £) describe the continuous mass distribution ot the
rototing bean. <{onsider first the case of vertical (flap) bendiag. Let
w(x,t) be the displacement at position x and time t of the beam normal
to the plane of rotation. Then, w(x,t} 1s a solution for U < x < £ of the

partial difterential equation (ref. 4):

"

[EI(x) w"]" - [T(x) w']' + m(x) w =0 (n
3 t

where ' = —, o = — EI 1is the bending stiffness, § is the rotation
Ix at

speed, and the tension T is given by:

L
T(x) =92 [ n m(n) dn (2)
X
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Associatei boundary conditions for the clamped-free beam are:

w(o,t) = 4'(o,t) =0 (3)
and

w'(,t) = W' (2,t) =0 %)
To otiain the so-called "fundamental derivative" w", equation (1) wmay be

formally integrated twice trom x to & wusing the boundary corditions in

equation (4). This gives
| A
EL(x) w'(x,t) = = [ {m(n) @2n Jw(n,c) - wix,t))
X
+ m(n) wn,o) (n - x)} dn 5)

Equation (5) can now be converted into an integral equation for the

fundamental derivative through use ot the relatiounships

X
wiix,t) = w'(o,t) + [ w'(s,t) ds (6)
o
and
x
wix,t) = wo,t) + [ w'(s,t) ds N
o

As a tirst step toward expressing equation (5) in matrix eigenvalue
form, let X Xy ooy xN be N + 1 grid points alony the beam such that

0= x <x; ..o <x, =12 (8)
0 N

Spacing between grid points must be non-zero, but need not be uniform,
Also, let the N + l-by-N + ] integrating matrix on this grid be denoted by

[L) (ref. 5). Then, if {f} is a vector giving the values 5f a function
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f(x) at the N + 1 grid points, the action of [L] on {f} can be written in

the general form

[ f(x)dx ) = [L] {£} )

where i=0, 1, 2, ..., N. Tis relation, equations (6) and (7), and the
boundary conditions of equation (3) now allow w and w' to be re-
expressed in terms of the fundamental derivative w" through the matrix

equations

{w'} = [L] {1},
and

{w} = [L]2 {w™} (10)

where {w}, {w'}, and {w"} are column vectors giving the values of the

respective functions at the N + 1 grid points x,, %, ..., Xy.

To deal with the integral in equation (5), which goes frem x to 2
rather than o to x, a slightly modified integrating matrix is required.
Let [I] be the N + 1-by-N + ! identity matrix and let [B;] be the N + l-by-

N + 1 matrix

L]
J

Qreveeeses0 1
By) =|: 07 & (11)
0% v ererendd 1
i i
Thea, as
l L x
[ f(x)dx = [ £()dx - [ £(x)dx 12)
x o o
the matrix
(31 = ([(By] - (1D (L] (13)
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is the required integrating matrix on the grid from x to &, 1i.e.,

tl
[ t(x)ax V= (3] (£} (16)

X.
1

where i = 0, ..., N + !,

Assume the usuai tine depeadence

- A
w(x,t) = wix) e ¢ (15)
so that w' = ' ext and w = A2 ;'eXt. Equation (5) becoumes
l — —
EL W' + [ a(n) @%n [W(n) - w(x)j dn
X
2 o—
=22 [ m(n) (x - n) wn) dn (16)
X

Evaluating equation (16) at the N + 1 grid points, using the inteyrating
watrices |L] and |J] as operators, and expressing the resulting equations in

state variable form leads to the eigenvalue problem

(¢} {&)}) = A(H]) {01} (17)
where
(v}
(x ¥

The 2N + 2-by-2N + 2 matrices [G] and [H] in equation (17) have the

functional torms

Gr11 lo]
G] = (1Y)

(o] (1]
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a~d

{o] (H12]
(H] = (20)

(1] lo]

where the N + 1-by-N + 1 macrices |G;] and [H,,] are functions of the beam
properties and the integrating matrix, and [o] is the N + l-by-N + 1 zero

matrix

Eigenvalue problems for the in-plane (lag) vibrations and extensional
(axial) vibrations of a rotating beam are derived in an analogous manner

(ref. 4).
INCLUSION OF CONCENTRATED MASSES

This section desc~ibes generalizations of the iutegrating matrix method
required to treat .otating beams with concentrated masses. The case of
interior conzentrated masses is treated first. The boundary mass situation
(a tip-mass for the clamped-free beam) is treated by applying a coasistent
limiting procedure to the iaterior mass case., Flap, lag, and axial vibra-

tions are treated separdtely for convenieace of dis<zussion.

Interior Masses

Consider the eftect of a single concentrated mass ot magnitude M
located at position x = &, o <« § <« & on the flap, layg, and axial vibrations
ot a rotating beam. This entails no loss ot generality since the effects of
multiple concentrated masses may be comnuted separa’ ~'y and then summed to
obtain an aggr2gate ettect. In what tollows, the total wmass distribution of
the beam (distributed plus concentrated) will be denoted by u(x). Thus, if
6§(x) 1s the usual Uirdac delta function and m(x) again denotes the dis-

tributed mass

p(x) = m(x) + M 8(x - £). (21)
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Vertical (Flap) Vibrations. The motion of the rotating beam with con-

centratec inboard mass is still governed by equation (1) if m is replaced
by the total mass distribution u. Further, as 0 < £ < &, the boundary
condicions of equations (3) and (4) still hold. Thus, the derivation of
equation (5) remains valid if m is replaced by u. The Dirac ‘elta

function has the property that

L £(E) if x<E <2
[ 8(n =€) £(n) dn = (22)
X oifo <& < x

Equation (5) now becomes

£
EI w"(x,t) = -f {m(n) Q2n [w(n,t) - wix,t)]
x

+ m(n) wn,e) (n - x} dn 23)

- D0 {M RELWE,O) - wix, O] « ¥ WE,OE - 0}

where

VU ifo<E <x
' (x) = (24)
5, L if x< € < &

. . 3 _ At .
Assuming & solution of the form w(x,t) = w(x) e gives as the analogue of

equation (lo) the equation

2
ELW + [ w(r) @2n [Wwn) - w(x)] dn + M2 D (x) (w(g) - w(x)]
X
) | )
= A{f m(n)(x - n) W(n) dn + MD_(x)(x - £) W(E)} (25)

g

X

The effect of the coacentrated mass M at x = £ enters equation (25) only

through the additive terms

G (x,g) = M2 DC (x) [WE) - wix)) (26)

© o nman
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and

A2 H, (x,g) = 22 MDE (x)(x - ) W) 27

with the remainder of equation (25) being exactly the same as in the

previous case of distributed mass only.
To express equation (25) in matrix form, again consider the discrete
grid of N + 1 points

= =1
0=x_ <x < <xy

where & need not coincide with a grid point, and let [L] be the
integrating matrix on this grid. Consequently, when equation (25) is
evaluated at the grid points and expressed in matrix form, the resulting
eigenvalue problem in state variables will have the forw of equation (17)

with modified matrices

[e1] + ©1] [o]
[G] = (28)
{o] (1]
and
[o] (Hy2] + [ﬁlzl
[H] = (29)

(1] [o]

where [G})] and [H}2] are the same matrices as in relations (19) and (20),
A A
and l“lll ard [dlzj are N + l-by-\N + 1 matrices which give the values of

G, (x,§) and H (x,f) at the N + 1 grid points,

L - . . A .
The principal difficulty in deriving lé:lj and [H,;,] is that both
G (x,£) and H (x,£) involve w(f) but ¢ need not be a grid point,

However, this problem may be overcome by using an interpolation formula
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(such as Lagrange interpolation) on the grid with coefficients that depand

only on £ and the grid points, x,, ..., x§. In particular, the
coefficients should not depend on values of the function to be interpolated

at the grid points. The interpolating expression will thus be of the form

wE) = & (B) wix ) + &y (g) Wixy) + ... + a () Wix) (30)

For example, if an Mth order Lagrange interpolating polynowmial on the subset
of grid points ‘Y' &Y .1’ KY ‘M

< S < x» then in equation (30)

¢ sy

is chosen, where x, < xY <§

a )z 0fork<York>Y +M

while for Y € k € Y+M

E-x) ... (E-xk_l) (E-xk*

Y ) ... (E-xY+ )

1 M

aé&" (31)

(xk-xY) cen Ogmxy ) (xmx ) e (xk-xY*M)

By choosing M sufficiently large, e.g., M = 7, the resulting interpolating
polynomial gives a high degree of accuracy without the need to cluster grid
points around §. To use equation (30) in the present context, let lAgl

be the N + l-by-N + 1 matrix with ik-th element

@), =a (§) k=1, ..., N+1 (32)

i.e., [AEJ has identical rows aad each row has as elements the successive
coefficients in the interpolating forwula (30). Pre-multiplying {w} by

(g ], equation (30) now immediately shows

(8] {w = {w(&) (33)

Some care must be taken in defining a matrix that gives the effect at

the grid points of multiplying by the discontinuous function Dg(x) which
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changes from unity to zero across x = . Suppose that & lies in the
subinterval

xj_l<€<xj j= 1, ...y, N 4)

Then, if M is the N + l~by-N + 1 diagonal matrix with diagonal
entries

0 i2)
(Dc)i' - (35)
Yy i<
that is,
| b]
1.,
) 2 0
[DE\] » 0. (36)
v 0 ‘

N . .
then [DE\ { f} gives the vector of values of the function_ Dg(x) f(x)
X . . N\
at the grid points. However, it should be noted that | D¢ {f} does not

explicitly reflect the non-zero values of DE(X) f(x) on the interval x, _ 1

< x <§. Consequently, in specific applications, the grid should be chosen
if possible so that { - Xj - | is small relative to xj - &,

N
Let the N + l-by-N + | diagonal watrices [TgJ and F&‘] be defined
by

N - M2
[rﬁ\] Mg (1] arn

and

- N\, C - )
ESE\] = M l'x- E\] (1 1, vo., N+ 1) (38)

10
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Equations (26) and (27) now immediately show that the matrices {G;;] “nd
[ﬁu] have the forms

~ \ 2

G) = | v | T (181 - m] ) (39)
~. \

2] = [ DE;I [ sg\] 181 L1 o)

In~plane (lag) vibrations. Lec v(x,t) denote the deflection of the

and

beam in the plane of rotation, where the total mass distribution is again

given by u(x) in equation (21). Seeking solutions of the form

vix,t) = v(x) e“’ now gives the governing differential equation

]
EI V'(x) + [ a(m) @{n[v(n) - ¥(x)] - ¥(n) [n - x]} dn
X

+ DE (x) M2 {E[V(E) - V(x)] - V(E) (€ - %)}

L @l
- A2 {)f‘ m(n) [x =n] v(n) dn
+ DE (x) M(x - §) V(E)}
With the exception of the additive contributions
Gy (x,€) = Gy (x,8) = b (x) M2 v(g) (g - x| (42)

3

and A2 H) (x,£), where G (x,E) and H)(x,f) are defined by equations (26)
and (27) with w replaced by v, equation (41) is identical to the
corresponding equation without concentrated masses. An argument similar to

the flap case now gives that the eigenvalue problem associated with (41)
oy [}

for A and {¢;} = {:} is of the same form as (17), (28), and (29), with
{(xv"}

(Gy;] and [H;,) as in the lag problem without concentrated mass, (ﬁle again

Il
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given by (40), and [611] given by the expression in (39) plus the additional

erm
2 |‘ l 2
«? | 'p, [\SEJ (81 fL) “3)

Extensional (Axial) Vibrations. Let u(x,t) be the axial extension of the

beam and seern solutions of the form u(x,t) = u(~" e“. Then, the governing

t

differential equation for the rotating oeam with concentrated interior mass

is

| 3
AE u' = [ an)a? un) dn - D (x) ME u(E)
X

L
= <22 {[ m(n) un) dan + D, (x)M E(E)} (44)
X

This equation differs from the case without concentrated mass only through

the additive terms

Gy (x,) = --DE (x) M2 ule) (45)

and

A2H3 (x,g) = =22 b, (oM ule) (40)

{u'}
Consequently, the corvesponding eigenvalue problem for A and {03} -

My’
will be of the same form as (17), (28), and (29) where [G))] and ([H])] are

as in the axial problem without concentrated mass, and, as {u} = [L) {u'},

PRI PDE\] 81 L1, @)

and

[alzl = 2 (ﬁlzl- (48)

12
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Boundary Masses

If the concentrated mass M is placed directly at the free end of a
rotating cantilever beam, i.e. £ = £, one of the free-end boundary
conditions is replaced by th- equation of motion of the concentrated mass.

For example, in the flap case the boundary conditions at x = £ become

Ww'= 0 (498)

and
(E1 w")' - M{Q%2 w' + w} =0 “9b)

An appropriate limiting procedure may now be used to show that equation (23)
for the interior case yields the conditions of equations (49) as £ :ends
tof. 1In this connection, let Lim denote the limit as x + £ with § » x,
This limiting procedure thus automatically ensures that £ + £ as x + £,

Further, as £ > x, Dg(x) = 1.

Applying the limiting procedure to eyuation (23) immediately gives
Lim (EI w"(x,t)) = EI w™(%,t) = 0

consistent with (49a), Diiferentiating (23) with respect to x with £ » x

gives

2 .
( KL w"(x,t»' = - f {mQ% n wi(x,t) - m win,t)} dn

X -
+ M {Q2E w'(x,t) + w(E,t)} (50)

Applying Lim to (50) now gives (49b). This shows that equation (23) remains
valid as § + £. This, in turn, implies that the integrating matrix formula-
tion for flap vihrations with interior concentrated mass remains valid in

the case of a boundary mass. Similar arguments, which will be omitted,

13



involving equation (41), (44), and the limiting procedure show that inboard

concentrated mass formulations for the lag and axial vibrations also bold in
the dboundary mass case.

VERIFICATION OF THE FORMULATION WLITH
CONCENTRATED MASSES

To verify the present formulation of the integrating matrix method
including the effects of concentrated masses, a nunber of beam problems were
analyzed. These included the flap, lag, and axial vibratious of beams with
8 single inboard concentrated mass, a tip mass only, and up to ten concen-
trated masses pliced along the length of the beam. Both rotating and non-
rotating situations were considered., Results for these test cases were
compaved to known exact solutions and solutions obtained using a finite
element program. In all cases, results obtained from the integrating matrix
tormulation were found to be in excellent agreement with these other
results. For the flap and lag vibrations, test cases also included beams
with ten concentrated masses of appropriate size and no distributed masses,
i.e., m(x) = 0, Excellent agreement with other results was also obtained
tor these cases. It is worth noting that the integrating matrix formulation
is act appropriate tor the axial vibratior of a beam with only concentrated
masses if u' 1is taken as the dependent variable as is done here. Indeed,
if m(x) = 0, equation (44) has the functional form AE u' = constant, and the

eigenvalue character of the problem s lost.

14
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