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ABSTRACT

The flow field in which aircraft propellers must operate is spatially
nununiform due to propeller plane inclination and the presence of the
airframe. Such a flow field alters the aerodynamic loading on the propel-
ler blades and may cause excessive bladeée vibration, stresses, and acoustic
noise. In order to design or analyze the performance of a propeller to
be used on a given aircraft, the nonuniform flow field at the propeller
plane must first be known.

In this study, a computer program was developed to calculate the
three-&imensional, steady, incompressible, inviscid, irrotational flow
field at the propeller plane (propeller removed) located upstream of an
arbitrary airframe geometry. The program uses a horseshoe vortex of
known strength to model the wing. All other airframe surfaces are modeled
by a network of source panels of unknown strength which 1s exposed to a
uniform free stream and the wing-induced velocity field. By satsifying
boundary conditions on each panel (the Neumann problem), relaxed boundary
conditions bteing used on certain panels to simulate inlet inflow, the
source strengths are determined. From the known source and wing vortex
strengths, the resulting velocity fields on the airframe surfac&‘and at
the propeller plane are cbtained. All program equations are derived in
detail, and a brief description of the program structure is pre¢sented.

A user's manual which fully documents the program is cited in the refer-~
ences.

Computer predictions of the flow on the surface of a sphere and at
a propeller plane upstream of the sphere are compared with the exact

mathematical solutions. Agreement is good, and correct program operation

is verified.
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Published experimental data are scarce, However, measured flow field
data at a propeller plane of a twin-engine aircraft are present in the
literature. Computer predictions for this aircraft are compared with ghe
published test data. Reasonable agreement is observed, further validating
the program.

Results of a parametric study are presented which demonstrate wing-
induced, aft fuselage-induced, and cowl inlet inflow-induced effects on
the flow field at the propeller plane of the single-~engine Piper Cherokee
PA-28-180 aircraft. Finally, a complete mapping of the computed flow
field at the propeller plane of this aircraft is presénted. However, no

experimental data are available for comparison.
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LIST OF SYMBOLS

sphere radius

fuselage dimension as shown in Figure 17a

geometris influence coefficient, on the left side of
boundary condition equations, for the effect of panel
j on panel] i

square matrix of geometric influence coefficients

‘identical to [A]

shorthand notation for (32 - xl) used in Equation (C.14)
wing span
fuselage dimension as shown in Figure l1l7a

diagonal vector on a body panel for obtaining the normal
unit vector as shown in Figure A.2

diagonal vector on a body panel for obtaiming the normal
unit vector as shown in Figure A.2

velocity influence coefficient, on the right side cf
boundary condition equations, for velocities at panel 1
associated wich the kth body orientation

column matrix of velocity influence coefficients for a
single body orientation

identical to [B]

augmented matrix of velocity influence coefficients
with the kth column corresponding to the kth body
orientation

shorthand notation for (92 - 91) used in Equation (C.14)
wing roct chord or flat plate airfoil chord

fuselage dimension as shown in Figure 17a

point on a line containing a vortex filament with
coordinates as shown in Figure C.1

wing lift coefficient corresponding to a

wing 1ift coefficient for the kth body orientation
corresponding to oy
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pressure coefficient

surface pressure coefficient at the ith panel control
point

x, y, and z coordinates, respectively, of point C as
shown in Figure C.1

shorthand notation for (22 - 21) used in Equation (C.14)

distance from each of four noncoplanar input panel
corner points to a plane containing a point which is
the average of the four input points given by Equation (A.9)

- differential radius used in Equation (1.3)

differential body surface area used in Equation (1)

differential vector lying on a vortex filament as shown
in Figure 5 !

an edge point on a triangular panel with coordinates as
shown in Figures A.6a and A.6Db

X, ¥, and z coordinates, respectively, of edge point D
as shown in Figures A.6a and A.6b

distance from endpoint 1 of a vortex filament to the
point where induced velocity is computed as shown in
Figure C.1

distance from endpoint 2 of a vortex filament to the
point where induced velocity is computed as shown in
Figure C.1

distance between edge points D and E on a triangular
body panel as shown in Figures A.6a and A,6b

edge point ont a triangular panel with coordinates as
shown in Figures A.6a and A.6b

x, ¥, and z coordinates, respectively, of edge point E
as shown in Figures A.6a and A.6b

cowl reference length as shown in Figure 14

half the periphery length of a quadrilateral panel
defined by Equation (A.13b)

cowl or nacelle inlet inflow velocity

normal velocity component allowed to penetrate body
panel i

distribution of normal velocity component penetrating
the body surface (inflow or outflow) as a function of
the generalized surface coordinate q
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vector drawn from the point of vortex-induced velocity
computation to the vortex filament as shown in Figure 5

midpoint on edge RS of a quadrilateral panel with
coordinates 2s shown in Figure A.5

X, ¥, and z coordinates, respectively, of midpoint G
on edge RS as shown in Figure A.5

perpendicular distance between a vortex filament line
and the point at which velocity is induced as shown in
Figure 5

vector of length h directed perpendicular to a vortex
filament line from the point at which velocity is
induced as shown in Figure C.1

midpoint on edge TU of a quadrilateral panel with
coordinates as shown in Figure A.5

X, ¥, and z coordinates, respectively, of midpoint H
on edge TU as shown in Figure A.5

body panel index number and used as a subscript to
identify a quantity associated with the ith body panel

unit vectors along the x, y, and z axes, respectively

subscript referring to the right side image of body
pancl 1 in a symmetric panel network

body panel index number and used as a subscript tec
identify a quantity associated with the jth body panel

subscript referring to the right side image of body
panel j in a symmetric panel network

sequence number of a body cross section used in
Appendix A

subscript index identifying the body orientation case
number in boundary condition equations and also used
as a summation index in Equation set (A.10)

arbitrary true scale length of all Cartesian axes used
in Appendices B and D

number of segments in the Weissinger approximation
model of a flat plate airfoil as shown in Figure 6 and
used as a subscript on quantities pertaining to an m
element Weissinger model

total number of body oylentations, each of which. has
a separate flow solution and all of which are solved
simultaneously
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outward drawn unit normal vector

cutward drawn unic normal vector at the control point
of body panel i

->
X, ¥, and z components, respectively, of vector n
-
el

unit vector in the direction of vortex filament-induced
velocity at a point as shown in Figure C.1

X, ¥, and z components, respectively, of vector

+
X, y, and z components, respectively, of vector n,

outward drawn unit normal vector at point P on an
arbitrary body surface used in Equation (4)

total number of body panels

utward normal vector at a body panel used to calculate
n in Appendix A

X, ¥, and z components, respectively, of vector N used
in Appendix A

total number of periphery points defining an entire
body cross section as shown in Figure A.1lb

generalized point on the body surface or a point on the
propeller plane

generalized body surface position coordinate used in
Equation (1)

point source strength at the contrgel point of body
panel j

radial position coordinate of a point on the propeller
plane relative to the propeller plane-fixed cylindrical
coordinate system as shown in EiguresD.l and D.3

cowling radial dimension used in Figure 17b

radius of an arbitrary sphere concentric about a point
source at which the source potential 1is calculated in
Equation (13)

radius coordinate of a polar coordinate system whose
origin is at the center of a sphere in a uniform stream
as shown in Figure 10

distance from the control ponint of panel j to the
control point of panel i as shown in Figure 3
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distance from the control point of the right side image
of panel i to the control point of panr’ 1 on a symme-
tric body as shown in Figure 3

distance from the control point of the right side image ;
of panel j to the control point of panel i on a symme- 5
tric body as shown in Figure 3

distance from the control point of panel j to a point P
on the propeller plane

functional expression of the distance from generalized
body surface coordinate q to a surface point P used in

- Equation (1) ;

reference radius of the propeller plane

length of one side of a body panel as shown in Figures
A.4, A.5, A,6a, and A.6b

length of a diagonal on a quadriiateral body panel as
shown in Figure A.4

shorthand notation for a quantity defined by Equation
(C.174)

vector colinear with a straight vortex filament as
shown in Figure C.1l

surface area of a body panel

total surface area of an arbitrary body
surface area of the ith body panel
surface area of the jth body panel

length of one side of a body panel as shown in Figures
A.4, A.5, and A.6b.

length of a diagonal on a quadrilateral body panel or
length of one side of a triangular body panel as shown
in Figures A.4 and A.6a

time

vector coincident with a straight vortex filament whose
length equals the filament length and is the vector
representation of the filament as shown in Figures 5
and C.1

length of vector T and thus the vortex filament length
used in Appendix C
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length of one side of a triangular body panel as shown
in Figure A,6b

length of one side of a quadrilateral body panel as
shown in Figure A.4

X, ¥, and z components, respectively, of free stream
velocity V as shown in Figures 1, 7, and B.3

x, ¥, and z components, respectively, of the surface
flow velocity Vbi at the control point of body panel 1

X, ¥, and z components, respectively, of velocity ﬁ

_induced by a straight vortex filament as shown in

Figure C.1

x, ¥, and z components, respectively, of free stream
velocity V associated with the kth body orientation

and defined, using Equations (7) and (8), as functions
of ak, Sk, and nk

X, ¥, and z components, respectively, of the resultant
flow velocity V, at a point P on the propeller plane
as shown in Figure 7

';, ;} and z co ponents, respectively, of the resultant
flow velocity Vp at a point P on the propeller plane
used in Appendix D

X, ¥, and z components, respectively, of the flow
velocity about a sphere in the x - z plane of symmetry

X, Y, and z components, respectively, of the velocity
Vy; induced at the contrel point of body panel i by the
wing horseshoe vortex

X, ¥, and z components, respectively, of velocity
induced at the control point of body panel 1 by the
wing horseshoe vortex operating at CLk associated with
the kth body orientation

% Y and z components, respectively, of the velocity
Vi induced at a point P on the propeller plane by the
wing horseshoe vortex

length of one side of a body panel as shown in Figures
A.4, A5, and A.6a

axial, radial, and tangential components, respectively,
of the resultant flow velocity at a point P on the
propeller plane relative to the propeller plane-fixed
cylindrical axis system as shown in Figures 7 and D.3

tangential velocity component on the surface of a sphere
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velocity vector at the control point of body panel i

i
i

magnitude of free stream velocity
free stream velocity vector

resultant surface velocity vector at the control point
of body panel 1

magnitude of the distributed source self-induced veloc- 4
ity at the control point of body panel i which is i
always normal to the panel and numerically equal to
v“ii as shown in Figure 2

vector representation of Vii

(normal to the panel) in a symmetric panel network
composed of the panel i source self-induced velocity plus
the velocity induced by the point source at the image
of panel 1

velocity vector induced at the control point of body
panel i by the point source at the control point of H
body panel 3 (includes the velocity induced by the i
point source located at the image of body panel j in i
a symmetric panel network)

identical to V11 as shown in Figure 2

resultant flow velocity vector at a point P on the
propeller plane

velocity vector induced at a point P on the propeller
plane by the point source at the control point of body
panel j

magnitude of velocity induced radially by a point source
at a distance £ from the source

wing-induced velocity vector

velocity vector induced at the control point of body
panel i by the wing horseshoe vortex

velocity vector induced at a point P on the propeller
plane by the wing horseshoe vortex

wing-induced velocity vector at point P on an arbi=-
trary body surface used in Equation (4)

wing-induced velocity vector at a generalized surface
coordinate q on an arbitrary body
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downwash velocities at the local three-~quarter chord
position of each of four elements of the Weissinger
approximation of a flat plate airfoil shown in Figure
6

total velocity vector induced at a point by a straight
vortex filament as shown in Figure C.1

magnitude of velocity induced by a straight vortex
filament

velocity vector induced at a point i by one filament
of the wing horseshoe vortex as shown in Figure 5

axes of the body-fixed right-hand Gartesian coordinate
system as shown in Figures 1, 7, D.1, and D.2

axes of a right-hand (artesian coordinate system with
origin at the propeller plane hub each lying parallel
to the body~fixed x, y, and z axes, respectively, as
shown in Figure D.1l

axes of a propeller plane=fixed right-hand Cartesian
coordinate system with origin at the propeller plane
hub and oriented at angles a, and B, with respect to
the x'-y’'-z' axis system as shown in Figure D.2

axes of a right-hand Cartesian wind axis system used

in Appendix B in which axis X remains directed upstream
parallel to the free stream as shown in Figures B.l and
B.3

axes of an intermediate right-hand Cartesian coordinate
system used in coordinate transformations in Appendices
B and D as shown in Figures B.2 and D.2

X, ¥, and z coordinates, respectively, of the point at
which vortex filament-induced velocity is calculated as
shown in Figure C.1

X, ¥, and z coordinates, respectively, of a point which
is the arithmetic average of four input noncoplanar
panel corner points with the point lying on the associ-
ated flat quadrilateral developed in Appendix A

X, ¥, and z coordinates, respectively, of the first
input body panel corner point as shown in Figures A.2,
A.6a, and A.6b

X, ¥, and z coordinates, respectively, of the secend
input body panel corner point as shown in Figures A.2,
A.6a, and A,6b ‘
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X, ¥, and z coordinates, respectively, of the third
input body panel corner point as shown in Figures A.2,
A.6a, and A,6b

X, ¥, and z coordinates, respectively, of the fourth
input body panel corner point as shown in Figures A.2,
A.6a, and A,6b

X, ¥y, and z coordinates, respectively, of the vortex
filament starting point as shown in Figure C.1

X, ¥, and z coordinates, respectively, of the vortex

filament endpoint as shown in Figure C.l

X, ¥, and z coordinates, respectively, of a corner
point on a flat quadrilateral body panel

X, ¥, and z coordinates, respectively, of the first
corner point on a flat quadrilateral body panel defined
by Equation set (A,10) and shown in Figure A.3

X, ¥, and z coordinates, respectively, of the second
corner point on & flat gquadrilateral body panel defimed
by Equation set (A.10) and shown in Figure A.3

X, ¥, and z coordinates, respectively, of the third
corner point on a flat quadrilateral body panel defined
by Equation set (A.10) and shown in Figure A.3

X, ¥, and z coordinates, respectively, of the fourth
corner pcint on a flat quadrilateral body panel.defined
by Equation set (A.10) and shown in Figure A.3

coordinates of a point used in axis system transforma-
tions in Appendices B and D as shown in Figures B.2 and
D‘z

X, y, and z coordiuztes, respectively, of the propeller
plane hub as shown in Figures 7, D.1l, and D.3

X, ¥, and z coordinates, respectively, of a point P on
the propeller plane

X, ¥, and 2z coordinates, respectively, of the wing root
quarter chord point as shown in Figures 4a and 4b

X, ¥, and z coordinates, respectively, of a body panel
control point

X, ¥, and z coordinates, respectively, of the ith body
panel control point

%, y, and z coordinates, respectively, of the jth bhody
panel control point




Greek Symbols

aan

B8

T
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propeller blade section angles of attack defined in

xxiy

X, ¥, and z coordinates, respectively, of the control
point on the right side image «f body panel 1 in a
symmetric panel network as shown in Figure 3

X, ¥, and z coordinates, respectively, of the control

point on the right side image of body panel j in a
symmetric panel network as shown in Figure 3

body angle of attack

flat plate airfnil angle of attack as shown in Figure 6

Figure 8

geometric angle of attack of the propeller plane measured
from the free stream as shown in Figure 23a

body angle of attack for the kth body orientation

installed angle of attack of the propeller plane rela-
tive to the body-fixed x axis as shown in Figure 7 and
used in Appendix D (positive for thrust axis inclined
upward)

angle at a corner of a quadrilateral or triangular body
panel as shown in Figures A.4 and A.6a

body angle of sideslip (positive nose right)

body angle of sideslip for the kth body orientatfon
(positive nose right)

installed angle of sideslip of the propeller plane rela-
tive to the body-fixed x axis as shown in Figure 7 and
used in Appendix D (positive for thrust axis inclined

to the right of the body)

angle at a corner of a quadrilateral or triangular body
panel as shown in Figures A.4 and A.6b

angular coordinate of a polar coordinate system to de-
fine position on a sphere in a uniform stream as shown
in Figure 10

strength of a wing horseshoe vortex and a vortex f£ilament
vortex strengths at the quarter chord nosition of each. :
of four elemeats of a Weissinger approximation model ‘

of a flat plate airfoil shown in Figure 6

dihedral angle of wing quarter chord line as shown in i
Figure 4b
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upwash angle at a point P on the propeller plane mea-
sured in the x - z plane as shown in Figure 7 (positive
for flow directed upward)

Puler angle defined by Equation (8) and Equation (B.5)
Puler angle defined by Equation (40) and Equation (D.5)

angle of rotational flow (apparent not actual rotation)
at point P on the propeller plane measured in the blade
section plane as shown in Figures 7 and 8 and defined
by Equation (48)

subtended angle at endpoint 1 of a vortex filament as
shown in Figures 5 and C.l

subtended angle at endpoint 2 of a vortex filament as
showm in Figures 5 and C.1l

angle of outflow at point P on the propeller plane mea~-
sured in a plane containing the thrust axis and local
radius line as shown in Figure 7 and defined by Equa-
tion (47) (positive for flow directed radially outward)

sweep angle of wing quarter chord line as showm in
Figure 4a

upwash velocity induced upstream of a flat plate airfofl

upwash velocity induced upstream of an m element Weis~
singer approximation model of a flat plate airfoil as
shown in Figure 6

upwash velocity induced upstream of a single element
Veissinger approximation model #f a flat plate air-
foil used in Figure 6

= 3.1415926...

body panel source strength "density" (strength. per unit
area) constant over a panel surface

source strength "density" (strength per unit area) con-
stant over the surface of body panel 1

source strength "density" (strength per unit area) con-
stant over the gurface of body panel j

matrix of unknown body panel source strength "densities"
(strengths per unit area) to be solved using boundary
condition equations

column matrix of unknown body panel source strength
"densities" (strengths per unit area) corresponding to
the flow for a single body orientation
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[o k] augmented matrix of unknown body panel source strength
3 "densities" (strengths per unit area) with the kth column
containing a set of unknowns corresponding to the flow

for the kth body orientation

o(P) value of source strength "density" (strength per unit
area) at point P on an arbitrary body surface

a(q) distribution of source strength "density" (strength per
unit area) over the surface of an arbitrary body as a
function of the generalized surface coordinate q

T sidewash angle at a point P on the propeller plane mea-
" sured in the x - y plane as shown in Figure 7 (positive
for flow toward the right (+y) side of the body)

¢ scalar velocity potential function

¢j velocity potential at the control point of body panel j
and also used in Equation (13) for the potential at
radius £ from a point source

¢1j velocity potential at the control point of body panel i
due to a point source located at the control point of
body panel 3§

¢ velocity potential function describing the flow about
a sphere in a uniform stream defined by Equation (49)

$(P) total velocity potential at point P on an arbitrary body
surface due to the source strength distribution over the
entire surface

X distance forward ot the leading edge of a flat plate
airfoil as shown in Figure 6

Xa horizontal distance between transit A and the coordinate
origin as shown in Figures E.la and E.1lb

Xp horizontal distance between transit B and the coordinate
origin as shown in Figure E.la

Ay vertical distance between transit B and the coordinate
origin as shown in Figure E.1lb

P azimuth position angle on the propeller plane measured
clockwise from the top when viewed in the thrust direc-
tion as shown in Figures 7, D.1l, and D.3

N horizontal angle measured vsing transit A as shown in
Figure E.la

wB horizontal angle measured using transit B as shown in

Figure E.la
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xxvii

angular velocity of a right-hand rotating propeller as
indicated in Figures 7, 23b, and D.3

vertical angle measured using transit A as shown in
Figure E.lb

vertical angle measured using transit B as shown in
Figure E.1b

integral

-double or area integral

algebraic summation
partial derivative in the y direction

normal derivative in the direct’on outward from and
normal to a body surface or panel

time derivative

partial derjvatives with respect to the body-fixed axes
x, v, and z, respectively

- (8/8x)I + (a{ay)i + (S/Bz)ﬁ:, the gradient operator
in Cartesian coordiantes

= (leaxz) + (aZ/ayz) + (82/622), the Laplacian opera-
tor in Cartesian coordinates

absolute value or vector magnitude
scalar dot product operator
vector cross product operator

"not equal to"
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Chapter 1 /

INTRODUCTION

1.1 Statement of the Problem and Scope of the Investigation

Improving the aerodynamic and vibrational characteristics of general
aviation aircraft propellers has been an ongoing concern receiving re- i

newed emphasis in recent years. Nearby aircraft structures alter the

airflow at the planu of the propeller. This nonuniform flow field in g
which the propeller operates produces fluctuating aerodynamic blade i
loadings which increase vibration and fatigue in the propeller structure.
Also, the overall aerodynamic performance of the propeller may be reduced.
Knowledge of the flow field at the plane of the propeller, as induced by i
the aircraft sitructure, enables the propeller designer to match the pro-
peller with the airframe to reduce the severity of these difficulties.
Thus, it is desirable to develop an analytic method for predicting the
flow field in which the propeller will operate, for any arbitrary air-
craft configuration.
In reality, for a tractor propeller, there is a mutual interference
between the propeller and airframe. The propeller slipstream produces
a disturbed flow of higher velocity which impacts on the structures,
nacelles or cowling, immediately behind the propeller. This situation
produces extra pressure drag on the airframe which, considered alome,
has a detrimental effect on the performance of the propeller-aircraft
propulsion system., Simultaneously, however, the airframe components
obstruct the flow entering the propeller disk to produce a nonuniform
flow field at the propeller plane. The nonuniformity of this flow
gives rise to increased propeller vibration. Flow blockage by the

airframe can reduce the apparent advance ratio of the propeller and



improve the efficiency of the propeller. However, generally, the mutual
interference tends to reduce the propulsive efficifency of the propeller~
alrcraft combination to an extent not immediately oévious. This mutual
interference effect is very difficult to predict analytically and has
usually. been investipgated experimentally.

However, as a starting point in exploring the propeller-aircraft
interaction problem, this study confines itself only to examination of
the influence of the airframe upon the flow field at the propeller with
the propeller removed. It is this airframe interference which is dom-
inant in creating the fluctuating aerodyanmic loads and vibratiion on the
propeller blades. Propeller interference on the airframe and the mutual
interferences are not considered.

Only tractor propeller-airframe configurations are assumed in this
study, as tractor propellers operating in front of the aircraft are more
common than pusher propeller configurations. However, the methods pre-
sented in this study are applicable to some pusher propeller configura-
tions.

A second assumption is that the flow is incompressible; thus, Mach
number effects are not introduced.

Third, steady, inviscid, potential (irrotational) flow is assumed.
This assumption is valid for propellers operating upstreamof the airframe
and not in the wake of any airframe components. Viscosity effects are
insignificant in the flow at the forward regions of the airframe with
the propeller removed.

The flow field at the plane of the propeller is influenced by
several factors. Two factors are aircraft angle of attack and the tilt

of the propeller plane relative to the airframe. Many propellers are



mounted with some angle of attack and sideslip relative to the»fuselage
in order to improve stability. Angle of attack combined with propeller
tilt causes the blades to see an azimuthal variation in velocity, and i
hence, fluctuating loads exist. This situation can exist even in the :
absence of any airframe interference. A third factor is the forward é
spacing of the propeller hub from the airframe as well as the vertical !

and lateral position of the hub relative to the airframe. The influence ;

of the airframe on the propeller flow is lessened if the propeiler is ;
spaced farther from it. A last factor influencing the flow at the pro-

peller plane is the shape of the individual airframe compcnents and their

positions relative to one ancther,

Each airframe component has its own type of influence on the pro-
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peller plane flow field. The lifting wing upwash creates radial and
azimuthal variations in the axial and tangential velocities at the pro-
peller plane. Axial velocity tends to be increased over portions of the
propeller plane located above the wing, while axial velocity is decreased é
over portions below the wing. Nonlifting components, the cowl-fuselage
on single-engine configurations and nacelles on multi-engine configura-
tions, tend to block the flow at the propeller. The axial velocity will
be less than free stream velocity at the propeller plane, especially at
the radial positions near the hub. Also, because these bodies are not
usually bodies of revolution and because the propeller hub may not be
centered in front of the cowling or nacelle, these bodies can alsc induce
an uneven distribution of radial and tangential velocity components over
the propeller plane.

Combining the effects of all the above factors leads to a piropeller

plane flow field which is fully three-dimensional. The propeller plane
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flow field cannot be simplified by assuming axisymmetry or assuming that
ailrcraft components are bodies of revolution.

The purpose of this study is to predict the three-dimensional,
steady, incorpressible potential flow at the plane of a propeller having
any orientation and position in front of an arbitrary nacelle-fuselage-
1ifting wing combination. Development of a finite element numerical
method is presented which calculates the flow on the surfaces of the
fuselage and nacélles as well as at the plane of the propeller. This
numerical approach is incorporated in a computer program which is des-
cribed.in this thesis.

Numerical predictions of surface pressure and velocity at the pro-
peller plane are compared with exact analytical solutions r.i a single
body in order to check the method.

Little usable experimental data is available in the literature for

comparison. However, flow predictions at the propeller plane of a twin-

engine aircraft are compared with the published wind tunnel test results
for that aircraft.
Computer predictions of the flow field at the propeller plane of a

Piper Cherokee PA-28-180 aircraft are presented. However, no experi-

mental flow field data for this aircraft are available for comparison with

the predictions.

A parametric study of the flow predictions for the Cherokee aircraft

is made to determine the importance of the various airframe components
on the flow field at the propeller plane. In particular, the acceptabi-
1ity of neglecting aft portions of the airframe distant from the pro-

peller in making computer predictions is investigated. Also, the effect

A



of wing dihedral and inlet inflow at the cowl or nacelle upon the flow

at the propeller is examined.

1.2 Previous Investigations

Examinatiori of the effects of afterbodies upon propellers has been
done since the early 1920's. Most of the early work,prior to 1948, was
both theoretical and experimental but was limited to body %nfluences on
the steady propeller thrust, torque, and propulsive efficiency rather
than unsteady or vibratory loading. In much of this experimental work
the actual flow field induced by the body at the propeller was not quan-
titatively surveyed; rather, the propeller was operated in the flow field
and its steady performance measured.

Lesley and Woods (1) performed early wind tunnel tests of propeller-
body interaction effects. Steady propeller thrust, torque, and propul-
sive efficiencyweremeasured with the propeller operating in front of
disks and other flat-faced cylindrical afterbodies. Results indicated
propulsive efficiency was less for the propeller operating with a slip-
stream obstruction than for the free operating propeller.

Durand (2) extended the work of Lesley and Woods (1) by use of
actual airframe shapes in the propeller slipstream. A cowl-fuselage-
high.;ing combination was tested at various spacings aft of the propel-
ler. Increased propeller-airframe clearance reduced loss of propulsive
efficiency, and the influence of the body fell rapidly as clearance
increased. Durand concluded p.opeller-airframe interaction should be
a design consideration. Aliso, use of fuselage shapes producing minimum
interaction with the propeller is desirable, or if not possible, maximum

propeller-airframe clearance should be used to reduce interaction.
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Lock (3) first developed a two~dimensional analytic method for
predicting propeller performance under the influence of a slipstream
obstruction. The method was limited to a body shape consisting of a
spheroidal nose attached to a semi-infinite cylinder aligned parallel
to the free-stream velocity. Lock used the exact potential flow solu-
tion for the body to get the radial distribution of axial velocity
upstream in the propeller plane (propeller removed). The axial velocity
defect was incorporated in propeller blade strip theory to calculate
the steady propeller performance with body influence.

Lock (4) extended his own previous work. He analyzed the various
power wastages by the propeller. To do this, a momentum analysis was
used ;hich incorporated the body-induced potential flow axial velocity
at the propeller plane. Also, pressure drag on the body nose was used
in the power wastage expression. This power loss expression could then
be used with either propeller blade strip theory or vortex theory to
predict steady performance with body influences.

Lock (5) summarized his previous works. He applied his method to
numerical examples involving spheroidal body shapes of various fineness
ratios. He compared his predicted performance results with measured
test results,

Weick (6) made a limited survey of the axial velocity at the pro-
peller plane of a Sperry Messenger aircraft (propeller removed) in a
wind tunnel. At any particular test location in the propeller plane,
the ratio of measured axial to free-stream velocity remained constant
regardless of the wind tunnel test free-stream velocity. Weick concluded
the variation of‘;xial velocity radially £ om hub to tip on tQF propeller

plane to be significant and worth much consideration in propeller design.



Lesley and Reid (7) used a VE-7 aircraft fuselage and surveyed the !
distribution of axial velocity at the propeller plane (propeller removed).

At each of three azimuth positions checked, the axial velocity varied

from zero at the hub to near free stream at the propeller tip radius.
An averaged radial distribution of axial velocity was presented. Next,
several propellers of various pitch distribution were tested freely and
then in front of :he fuselage. Generally, ea:h propeller operated less i
efficiently when in the presence of the fuselage. Significantly, one
propeller having a blade pitch distribution shape similar to the shape L
of the measured radial distribution of axial velocity in the propeller
plane suffered the smallest reduction of efficiency. Lesley and Reid i
concluded a propeller designed such that each blade section locally
attains its optimum angle of attack, at conditions of maximum efficiency,
is superior to the conventional constant speed propeller for operation
in the presence of a slipstream obstruction.

McHugh and Derring (8) tested several full-scale propellers opera-
ting in front of a family of radial engine cowlings having various
diameters. Effect of cowling to propeller diameter ratio on the steady
propeller performance was investigated. Results were two-fold. First,
for cowlings less than one-third the propeller diameter, propulsive
efficiency did not vary significantly with variation in cowling diameter.
However, as cowling size increased above one-third propeller diameter,
propulsive efficiency rapidly decreased. Second, presence of a spinner
on the cowling increased propulsive efficiency several percent above
that obtained without the spinner.

Stickle, Crigler, and Naiman (9) extensively tested three full-size

propellers, each with Clark-Y blade sections, operating in front of
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various cowlings., The five body shapes varied from a radial engine
cowling without spimner to & very streamlined body having a large spin-
ner. All bodies had circular cross sections and were at zero angle of
attack. Flow surveys at the propeller plane of each body (propeller
removed) yielded the radial distribution of axial velocity in which the
propellers would operate. Powered tests of all propellers operating in
these flow fields were made.

For the bodies tested, 1t was concluded that the change in body
drag due to the propeller slipstream negligibly influence propeller
performance and could be disregarded. The remaining direct influence
of the body-induced flow field on the propeller blade load distribution
was dominant.

Their results led to three conclusions. First, the velocity field
induced by the body at the propeller plane must be considered when design-
ing the propeller blade pitch distribution. Second, body-induced £low-
has the strongest influence on the inner blade sections. For round shank
blades, reduced axial velocity due to the body alters the drag on the
shank and affects efficiency. For blades with shanks having airfoil shaped
sections, the reduced velocity increases section angle of attack at the
shank sections, sc the body causes a change in blade load distribution.
Third, efficiency gains obtained with_.a spinner depend on -the welocity
at the hub due to the body. The spinner is beneficial if hub velocity
is high but not as helpful if hub velocity is low.

Wing-induced effects on propeller loads were examined by Kuhn and
Draper (10). A tapered wing semispan was tested with two propellers
attached to negligibly small nacelles. When the outboard propeller op-

erated at 90 to 100 percent chord ahedd of the leading edge, the propeller



pitching moment was double that produced by the free propeller, However,
no lateral propeller force was created. Thus, Kuhn and Draper concluded
the wing upwish was not producing significant azimuthal variation in
blade forces. Rather, the increased axial velocity induced by the wing
over the upper half of the propeller plane and the reduced axial velocity
over the lower half were found to cause the pitching moment increase.

With the 1940's came studies examining the vibration of propellers
due to oscillatory loads produced when operating in a nonunifarm £flow -
field induced by the wing, Such a study was conducted in Great Britain.
In part I of the study, Pos,t:lethwaite.; Carter,' Perring, and Diprose (11)
made theoretical predictions of vibrating modes in two~-, three-, four-,
and six-bladed propellers. These propeliers were operating upstream in
the calculated flow field induced by a wing having Joukowsky airfoil
sections. Inpart ITof the study, Forshaw; Squire, and Bigg (12] tested
a ‘hree-bladed propeller operating in the nonuniform flow field created
by blowing a narrow axial jet of air along one propeller plane azimuth
location. Measured torsion-bending and whirling-bending vibration modes
compared favorably with predictions.

Later, Corson and Miller (13) examined the vibration of a pusher
propeller whose blades periodically passed through the wake of a forward
body. The reduced axial velocity in the wake was introduced as an instan-
taneous change of local blade section angle of attack in propeller blade
element thecry to predict unsteady loading., Actual blade forces were
measured also. Blade vibratory stress was increased if the drag of the
body (intensity of the wake) increased. Secondly, all else being equal,
large diameter propellers experienced less wake-induced stress than

smaller diameter propellers.




10

Most recently (1948 to 1953), the National Advisory Committee for
Aeronautics published a series of studies dealing with detailed flow
surveys at the plane of the propeller and these flow effects on the
oscillatory loads and vibration in the propeller,

Vogelr (14) performed flight tests on a propeller inclined to the
longitudinal axis of the fuselage. He measured radial and azimuthal
blade load distribution and efficiency as affected by propeller thrust
axis inclination. He compared theoretical predictions which did not
account for any wing-airframe influences on the flow field,

Vogely observed that the pure inclination of thg propeller could
produce oscillatory loads, and blade stress could be reduced, at a
specific aircraft angle of attack, by attaching the propeller to the
fuselage with the proper thrust axis inclination. Vogely pointed out
that the airframe induces a significant spatially varying flow field
in which the propeller operates which can incur further blade load alter-
ations. Vogely concluded that detailed flow angle surveys at the plame
of the propeller should be made to obtain accurate results in predicting
propeller vibratory loads.

Shortly thereafter, Roberts and Yaggy (15) performed the first very
detailed survey of the flow field in the propeller plane (propeller
removed) of a twin-engine aircraft. The full-size, unswept wing aircraft
was tested in the Ames 40- by 80-foot wind tunnel.

The test conditions run consisted of flaps extended, no flaps, and two
different nacelle inlet velocity ratios. For each condition, a series
of runs was made over a range of nacelle angles of attack from two to

12 degrees.
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Survey points at the left propeller plane were densely distributed :

over the full radius and at fifteen degree azimuth increments. Several

flow quantities were measured at each point. Total local velocity was i
measured. The local velocity components were measured in terms of two
angular quantities; angle of rotational flow was the ratio of local i
tangential to axial velocity, and angle of outflow was the ratio of

local radial to axial velocity. Also, at sach point the upwash and side-
wash angles, relative to the fuselage, were measured. Measured radial
and azimuthal distributions of the flow quantities were presented. The
distribution of upwash angle along the horizontal centerline of .the. pro-
peller plane was plotted.

Measured upwash along the horizontal centerlineé compared poorly
with predicted upwash induced by the isolated wing modeled by lifting
line theory. This comparison indicated the fuselage and nacelles con-
tributed greatly to the upwash.

Aerodynamic blade load predictions were made using steady blade
element theory and included ‘thée 'nonuniform flow field measurements in
terms of instantaneous spacially varying changes in local section angle
of attack., Predicted loading varied approximately sinusoidally with
azimuth, and when the measured flow field was used in the blade load
predictions, those predicted load magnitudes were larger than loads
predicted for an inclined propeller operating in free air.

Nacelle inlet velocity ratio was found to influence the flow only
at the central region of the propeller plane immediately upstream of
the inlet.

Roberts and Yaggy (15) concluded that the angle of rotational flow

and, specifically, the upwash angle along the propeller plane horizontal
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centerline were the most important quantities in producing the oscilla-
tory blade loading. Also, they concluded it was desirable to develop a

theoretical method for predicting the nacelle, fuselage, and wing con-

O TR

tributions to the upwash at the propeller plane for any wing-fuselage-
nacelle combination.

Testing by Roberts and Yaggy (15) led to two further studies. Using
the measured flow field data of Roberts and Yaggy (15) with steady pro-
peller blade element theory, Rogallo, Roberts, and Oldaker (16) computed
the airload variation for a propeller operating in the flow field. Based
on airload predictions, the first order vibratory blade stresses were
calculated. Blade stresses measured on the propeller operating on the
twin-engine test aircraft compared favorably with predictions. This
study gave two conclusions, First, steady state blade element theory
was found adequate for predicting the magnitude and distribution of
propeller oscillatory air loads provided the flow field induced by the
body at the propeller plane was completely known before hand. Second,.
these predicted loadings allowed accurate prediction of first order
vibratory blade stresses.

Since Roberts and Yaggy (15) had verified that the upwash along
the propeller plane horizontal centerline was the most dominant factor
in inducing oscillatory blade loads, Yaggy (17) presented a theoretical
method for predicting the upwash distribution. Yaggy's method was
developed to predict the upwash contributions at the propeller plane
due to the fuselage, nacelles, and wing of the test aircraft used in
References 15 and 16. Lifting line theory was used for predicting
wing-induced upwash. The nacelle was modeled as a simple closed body

of revolution for which the exact potential flow could be calculated.
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The portion of the fuselage in the vicinity of the propeller plane was
modeled as an infinite elliptical cylinder for which an exact upwash
expression could be derived from potential flow theory. Net predicted
upwash at a point dti the propeller plane was taken as the sum of the
component contributions. Predicted upwash agreed fairly well with mea-
sured results.

| Yaggy (17) indicated his method, derived for this specific aircraft,
could be extended to other twin-engine aircraft of similar characteris-
tics. The required char::teristics were high wing aspect ratio, nacelles
of circular cross section, fuselage cross sections resembling an ellipse
at the propeller plane region, and that no two body components should
be spaced closer than the larger body diameter.

In three remaining publicaticns, work was continued along the lines
of the previous work (References 15, 16, and 17). This time the effort
was to find the effects of wing sweep on the flow field induced at the
propeller plane. Rogallo (18) and Rogallo and McCloud (19) extended the
upwash prediction method of Yaggy (17) to the case of a highly swept
wing-fuselage-nacelle combination. Rogallo and McCloud (19) also ob-
tained limited experimental results for a swept wing aircraft which were
compared with. predictions. Also, the swept wing results were compared
with upwash measurements made witﬁ'a similar aircraft having unswept
wings.

Hoping to learn more about the effects of wing sweep on propeller
vibratory loads, Rogallo and McCloud (20) performed detailed propeller
plane flow surveys (propeller removed) with a swept wing-nacelle~fuselage

combination. The test was as extensive as that done by Roberts and
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Yaggy (15). Wing sweep was found to induce first order vibratory propel-
ler blade loads similar to those attained with an unswept wing.
Since this work of the 1950's, there appears to be no published

work presenting detailed propeller plane flow field surveys, or predic-

tion methods. With the exception of Yaggy (17), Rogallo (18), and Rogallo

and McCloud (19), whose prediction methods apply only to a small class
of similar aircraft, there is no published method for predicting the

nonuniform flow- field at the propeller plane of an arbitrary wing-

fuselage-nacelle combination.

re
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Chapter 2

THEORY OF THE POTENTIAL FLOW SOLUTION METHOD

2.1 ,Historical Development

With the development of high-speed digital computers in the 1950's
and 1960's, it became possible to solve the potential flow about arbi-

trarily shaped bodies using finite element techniques involving large

R R R T

systems of algebraic equations.

Many such flow solution methods have been advanced since 1958 when

Smith and Pierce (21) used source distributions on panels to model bodies
of revolution. Hess (22) extended the method to bodies of revolution

oriented perpendicular to the free stream flow.

Hess and Smith (23) first solved the flow about nonlifting arbitrary
three~-dimensional bodies using distributions of sources over the body
surface subdivided into discrete panel elements. Smith (24) explained
the theory of Hess and Smith (23) and presented sample calculations.

A thorough discussion of the panel element computer methods was done
by Hess ard Smith {25). They discussed the theoretical details for pre-
dicting both two~dimensional and fully three-dimensional potential f£low.

Throughout the 1960's and 1970's, many sophisticated computer pro-
grams were written to predict the flow about three-dimensional lifting
wing-body combinations. Several examples of such work are Hess (26),
Woodward, Dvorak, and Geller (27), and Woodward (28). The theory be-
hind these methods is the same, but each uses different singularities
over the body panels. Sources, vortices, doublets, or combinations of
these singularities have been used in attempts to improve the accuracy

of the methad.
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All of such published computer program packages are limited to
body surface velocity, pressure, force, and moment predictions. None ;
of them have been written to calculate the flow at locations, such as

at a propeller plane, away from the body surface.

2.2 Theoretical Overview

The method used here involves the solution of the Neumann problem i
for the potential flow around an arbitrary body-wing combination in a
uniform free stream velocity field. Hess (25), Rubbert and Saaris (29),
and Hess and Faulkner (30) explain the theory which is also summarized
here.

Steady, incompressible, inviscid flow 1s assumed. Alsy, ilrrota=
tionality is assumed. Thus, the velocity field is the negative gradient
of a scalar potential function. Three components comprise the veloclty
field. First is the onset free stream velocity, 3, agsumed teo be con-
stant everywhere. Second is the velocity induced by the lifting wiug,
Vw, if present. Third is the perturbation veloecity induced by the body
or bodies.

A distribution of source strength density, o, over the body surface,
§, corresponds to a scalar potential function, ¢, which satisfies the
Laplace equation and whose negative gradient is the velocity at any
point. However, the wing surface is not included as part of the body
surface. Rather, the wing is modeled by a specified vortex system re-
sponsible for the wing-induced velocity. This velocity is thus a known
quantity.

At a point P on the body surface, the potential due to a unit

strength point source at point q is

1/[4rc(®,q)] ,

B e e TUUELS
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where r(P,q) is the distance from q to P. Then if surface S has a
distribution of source strength density, o(q), the total potential at

P, ¢(P), due to the body or bodies is

a( a
6@ = i B s (1)

where d§ is an elemental body surface area. This potential also satis-

fies the Laplace equation as a consequence of incompressibility:

Vo) =0 . 2)
Also, due to the irrotationality condition, the perturbation velocity
at P is given by -V¢(P). Thus, the continuity equation may be expressed
as
Ve[-Vo(P)] =0 . 3)
Equation (1), which satisfies Equations (2) and (3), is used with speci-
fied boundary conditions on surface § to solve for the unknown o(q).

The boundary conditions are that the normal velocity cn the body
surface must be some prescribed value, F(q), wiile the potential, ¢, at
infinity must vanish. Generally, F(q) is zero at locations where S is
a solid bounlsvy but may be nonzera over areas of the body wall which
are considered to be permeable. F(q) is the normal component at point
q of the sum of the free stream velocity, V, the wing-induced velocity,
Vw(q), and the perturbation velocity given by the negative gradient of
Equation (1). Taking the normal derivative of Equation (1), using care
in the integration at the singularity of P = g as explained by Hess (25),

-

and combining it with the normal component of Vw and V gives the follow-

ing boundary condition equation at point P on S:

g(P) 3 1 a -+ TL43
5= = éf SE{Z??TijTJO(q)dS = -n(P) « [V + VW(P)] - F(P) , (4)

= T
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where K(P) is the outward unit normal vector to surface § at P, and 3/3n
denotes the derivative in the direction of :(P).

Solving the integral Equation (4) for the unknown o on the body
surface concludes the solution of the complete flow field.

Instead of analytically soiving Equation (4), which may be impossi-
ble for complex surfaces §, it is solved numerically by dividing surface
S into N discrete elements. Applying the surface boundary condition to
each of the N elements approximates Equation (4) by a set of N simultan-
eous linear algebraic equations for the N unknown values of ¢. Solving

for o on each surface element completes the flow solution, and the

velocity anywhere on or away from the body surface may then be calculated.

The details of this numerical method are explained in the remainder of

this chapter.

2.3 Body Surface Model and Free Stream Velocity Components

All fuselage and nacelle surfaces are partitioned into a network of
N plane triangular and quadrilateral panels. Figure 1 illustrates the
panel network on a single body.

Si denotes the area of the ith panel.v The panel control point is

denoted by (XCi, YCi, ZCi) and outward unit normal vector by ; Also,

g
on the ith panel there is a constant distribution of source strength
density, oi (a source strength-per-unit area), see Figure 1. Appendix A
provides the details of generating the panel network and obtaining panel
areas, control points, and unit normal vectors.

In terms of the body-fixed Cartesian coordinate system, the outward
normal unit vector is written as

-
n

>
Lt 1+ ng 3 +n, k . (5)

i i i
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As 1s also explained in Appendix A, the body surface may be more
simply modeled if all body cross sections are symmetric about a common
plane of symmetry. In this situation the left (-y) sidé of the geometry
is provided and the right side paneling is a mirror image of the left,
Fewer panels need be considered, and this simplifies the problem, as
will be explained in later sections of this chapter.

On certain panels, say the ith one, inlet or outlet flow 1is modeled

by specifying a value F F, equals the amount of velocity allowed to

i’ i

pass normal to and through panel 1i. Fi’ as a positive quantity, repre-
sents velocity inward through the panel. Fi’ as a negative quantity,
represents outflow velocity. A solid boundary panel i has a zero value
of Fi which is assumed and need not be specified.

Referring to Figure 1, the body is immersed in a uniform onset
velocity, V, and is oriented in this velocity field with a specified
angle of attack, o, and sideslip, B.

Relative to the body~fixed axis system, the body, with orientation
a and B, senses three components of the onset free stream velocity ex-
pressed vectorially as
V - uI + v? + WK , (6)

where the components are expressed as

u=-Vcosacosn , (7.a)
v =4V cosa sin n , (7.5)

and
w=-Vsin & , (7.c)

where V is the free stream velocity magnitude, and Euler angle, n, is

expressed as follows:

n = tan-l(tan 8 cos a) . 8)
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Appendix B derives the Equations (7) and (8) for the free stream

velocity components.

2.4 Body Panel Source-Induced Velocity Components

2.4.1 General case of a nonsymmetric body panel network

Expressions for velocity induced by the source distribution of the
ith panel on itself and by all other panels j on the ith panel are devel-
oped as follows. Refer to Figure 1 and also Figure 2. On panel i, under
consideration, the source strength density oy remains distributed over
the panel in determining that panel's self-induced velocity. However,
in obtaining the velocity induced at panel i by all other panels, j, the
source distribution is considered to be lumped into a point source at
each of the remote panels j.

As shown in Figure 2, the source strength distribution o, produces

i
only a velocity flux normal to panel i. This total velocity flux is

numerically equal to the source strength density per unit area:

o, /S, =2v. /s, , (9)
1/°4 n,' o1

where Vnii

the quantity of interest and is found to be from Equation (9),

is the normal velocity induced by panel i on itself. This is

v = ==V . (10)
Ry 2 il

To compute velocity induced at panel i by panel j, lump the source
strength distribution on j into a point source of strength Qj given by

Qj = oij . (11)

Qj’ the strength of the point source in three-dimensional space,

equals the volume flow rate of the source. On a sphere of radius r
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with the source at the center of the sphere, the source-induced velocity

is directed radially and is given using Equation (11) by,

V_ = (0,S,)/4nE% . (12)

S

r b
Vr equals the negative gradient of the potential, ¢j’ at radius

due to the point source. Conversely, ¢j at radius © equals the negative

of the line integral of Vr from the source to radius t
r .
Using Equation (12) in Equation (13) and integrating gives the
expression for the potential at the control point of panel i due to the

source at the control point of panel j as follows:

0,8
by = z;%i% . (14)

where r,, 1s the distance from control point j to control point i given

ij
by
- 2 2 2,1/2
rij [(XCi XCj) +(YCi YCj) +(ZCi ZCj)] . (15)
Then the velocity vij induced at panel i by panel j is the negative
gradient of the potential as follows:

3 3 3, .
ek R ok R (16)

.\7 = =V =
ij - ¢ij T Tx z

Substitution of Equations (14) and (15) into Equation (16) gives

c.S
-—dd - T - - P
Vij - sty - xe )i+ (vey ch)'j’ + (26, - 2¢)k] , (A7)

i3

where r,, is given by Equation (15).

i]
Equations (10) and (17) apply to the situation in which all N
panels of the body must be considered individually which occurs when

the panel network is nonsymmetric.
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2.4.2 Special case of a symmetric body panel network

In the special case of body symmetry, each panel on the left (-y)
side of the body has a corresponding mirror image panel whose control
point differs only by the sign of the y coordinate, see Figure 3. 1In
this situation, Equations (10) and (17) are modified and applied only to
the N/2 panels on the left side of the body. The modifications account
for the induced effects of the right side "image' panels, and these
modified expressions are now derived.

First, Equation (10), for panel self-induced velocity, is modified.
In the symmetric body case, the velocity induced on left side panel i by
itself, Equation (10), mast additionally include the normal component
of velocity induced at panel i by a point source at the image of panel
L 4y age
Referring to Figure 3, the distance riiimage between panel i and

its image is

= 2YC, . (18)

r i

ii1mage

Substitute Equation (18) into (17) and replace point (XCj, YCj,
ZCj) by the control point on panel iimag
viiimage, induced by the point source at i

e to get the total velocity,

image on panel 1. Then get

the component of velocity normal to panel i by taking the vector product
of $iiimage and ;iusing Equation (5). The result is

. K ) ciSiYCinYi

&
\'f
image 1 16n|YCi|3

i1 (19)

Finally, to modify Equation (10) for the effects of the image

panel, simply add Equation (19) to the original Equation (10) to give
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e o e i

o S.YC.n
v, =i+ T4 20) |
gn|yc, | !

in which panel i is on the left (~y) side of a symmetric panel network.
Note, here vii is the velocity induced normal to panel i by itself and
its image panel.

Now a modified form of Equation (17) for velocity induced by remote
panels is derived for the case of body panel symmetry. Again refer to
Figure 3. At real panel i there is a potential, ¢, due to the point source
at real panel j, and there is also a potential at panel i due to the
point source at image panel j. Due to symmetry, the source strength
at panel j equals that at jimage' Also, note that YCj = -chimage' Then
denoting by rijimage the distance from image panel j to real panel 1,
write:
1ML

[(xe; - X7 + (¥e, +¥C,)° + (20, - 2¢

3 3

r
ijimage
Applying Equation (14) to both panels j and jimage’ the total potential
at panel 1 is.
ajsj qjsj

¢ = + ’ (22)
i3 Awrij awrijimage

where rij is given by Equation (15), and riiimage is given by Equation
(.21) .
->
The velocity at panel i due to panels j and jimage’ Vij’ is found
by substituting Equations (15), (21), and (22) into Equation (16). This

gives
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. 9,5, (Xc, - x¢,) (XC, - XC,) (¥c, - YC,)  (¥C, + ¥C,)
Uy s Sy e Ay 2y §
Ty 43 nage’ F13 13 nage
(zc, - 2¢,) (2c, - 2C,)
+ 1 1334-(1 1)3]'12}. (23)
T T
13 ijimage

This equation is the modified version of Equation (17) and is applied
only to real panels 1 and j on the left side of a symmetric panel net-

work,

2.5 Wing Model Description and Wing-Induced Velocity

2.5.1 Horseshoe vortex model and its induced wvelocity

Should a 1lifting wing be present on the configuration, the surface
of the wing is not modeled with source panels. Rather, it is represented
simply by a single horseshoe vortex.

Referring to Figure 4, the wing operates in the free stream velo-
city, V. Wing span, b, root chord, ¢, and location of the quarter chord

of the wing root, (Xr, Y

’ Zr)’ relative to the body-fixed coordinates

are specified. Also, the quarter chord line may have some small angles
of sweep, A, and dihedral, &. The horseshoe vortex representation has
the bound vortex filaments attached to the quarter chord line. The two
trailing vortices are spaced to give the horseshoe a span equal to mb/4.
This spacing represents the mean span between the rolled up vortices
trailing from an elliptic wing. These trailing vortices, which actually
extend infinitely downstream, are truncated to a length of 100 c for
purposes of numerical modeling.

Corresponding tc the given Bo;y angle of attack, a, the wing lift

coefficient, CL’ is specified. C. is assumed equal to the wing root

L
section 1lift coefficient. Then the strength of the horseshoe vortex
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filaments, I', is a constant which equals the total bound circulation at
the wing root. Thus, using the Kutta-Joukowski theorem relating lift to

bound vortex strength, the horseshoe vortex strength is given by

cC. V

= 2“ . (24)

Note, I' 1s a specified constant and not an unknown. This follows
from the assumption used that the wing can influence the flow at the !
body panels, but the body will not influence the flow over the wing. %

At a point i of interest, the velocity induced by the wing horseshoe

vortex is given in the body-fixed coordinate system as

V =u 14+ v j +vw k. (25) i
vy LA vy vy !

The wing-induced velocity is calculated using the Biot-Savart law
by applying the law to each of the individual straight vortex filaments,
in turn, and summing the individual filament-induced velocities, ﬁ. Re~
ferring to Figure 5, the Biot-Savart law for the velocity at point i loca-

ted distance h:from a filament of langth [?] is given vectorially as

2 - -

> r = x dT
W, o= - BXG (26)

i 4 1 “El3

As shown in McCormick (31), the magnitude of this velocity is given
by

Iﬁil = Z%E(°°s 81 + cos 82) . (27)

Should a vortex filament pass through or near the point of inter-
est, distance h will be zero or very small causing numerical problems
with the Biot-Savart law. Two measures are taken to prevent these prob-
lems. First, if distance h is zero, the velocity components induced by

the vortex filament are set equal to zero, and the Biot-Savart law, .

ot

Equation (27), is not used, thus preventing attempted division by zero.



Second, an upper limit is imposed on the magnitude of velocity which

a single vortex filament may induce. The upper velocity limit is 20
percent of the free stream velocity. Thus, when distance h is such that
Equation (27) ylelds a velocity magnitude greater than 0.2 V, the in=-
duced velocity magnitude Iah‘ is set equal to 0.2 V, and velocity com-
ponents are adjusted accordingly,

Choice of 0.2 V for the velocity limit was made because this approx-
imates the value of downwash velocity at the root three-quarter chord
location of a wing with flat plate airfoil sections having an aspect
ratio of 3 and operating at CL = 2,0, as calculated by thin airfoil
theory. Thus, at body panels near the wing root region, where calcula-
tions with Equation (27) will likely require the use of the velocity
limit, 0.2 V is an appropriate velocity limit.

Appendix C presents expressions employing the Biot-Savart law and
the 0.2 V velocity limit rule used by a computer subroutine to calcu-

late the induced velocity at any point due to a straight vortex filament

having any specified orientation,

2.5.2 Justification for the use of the horseshoe vortex model

To show the validity of using a simple horseshoe vortex model in-
stead of more complicated vortex lattfce or lifting line models, a thin
airfoil will be investigated.

A flat plate airfoil with the vortex attached at the quarter chord
represents the two-dimensional case of a horseshoe vortex. Using Weis-
singer's approximation, the upwash wvelocity, u, may be calculated.
Analagous to a more exact finite wing model using a vortex lattice, the

flat plate airfoil may be modeled using m segments, each with a vortex

L

e . aack
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at the segment quarter chord. Weissinger's approximation applied to each
element can be used to solve more accurate%y the upwash, B ahead of the
airfoil.

Figure 6 compares the upwash at various upstream positiomns, x/c, of
the single element airfoil to that for a multi-element airfoil having
m = 100 segments. Comparing the approximate to the nearly exact model,
there is a 13 percent difference in upwash at points at x/c = 0.4. Ty-
pical twin engine'aircraft propellers are positioned approximately at
x/c = 1.0, where the upwash difference has dropped to 3.6 percent. Typi-
cal single engine aircraft have propellers positioned approximately 1.5
chords or more ahead of the wing. As Figure 6 shows, the upwash differ-
ence 1s 2.0 percent or lesa at those positions.

As the main purpose of this study 1s to predict the flow at an up-
;tream propeller piane, Figure 6 indicates thit the use of the single

bound vortex (horseshoe vortex) representation of the wing is justified.

2.6 Boundary Condition Equations

2.6.1 General case of a nonsymmetric body panel network

Each. point source potential, Equation (14), on the body vanishes
at Infinity which satisfies one of two boundary conditionms.

The other boundary condition is applied to each panel on the body.
This condition is that the normal component of velocity at the control
point of each ith panel must vanish or equal a specified value of inflow

velocity, F,, through the panel. The velocity at the panel is composed

i
of free stream, wing-induced, and all N panel-induced velocity contri-
butions. For the ith panel, the surface boundary condition is given as
> N
n

- L ¥ . 2> .0, solid boundary
Vw i + [j§1 Vij ni] + vii v My -Fy» relaxed boundary’ (28)

t )

pi
it
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where Fi is a positive value if it is inflow velocity and negative if

outflow velocity. By substitution of Equations (5), (6), (10), (17),

and (25) into Equation (28), the boundary condition on panel i becomes

1 N 0,8
Gi + 2"‘121 ;1—%{(xci - XCj)nxi + (YCi - YCJ)nyi + (ZCi - ZCj)nzi}
(Jf1) 14
= <2[(u + uwi)nxi + (v + vwi)nyi + (w + w"i)nzil
+ {0, solid boundary (29)

-ZFf relaxed boundary

By writing Equation (29) for each of the N bedy panels, a set of
N simultaneous linear algebraic equations is formed in which the source
strengths, o, are unknowns. In matrix notation; this set is expressed as

[A13][°3] - [Bi] 1, =1,2,3, ... N . (30)

Note, the [B] matrix containing the wing-induced velocity components
and free-stream velocity components is the only quantity directly depen-
dent upon the input values of a and 8 (Equations (7) and (8)) and CL'

The matrix [A] consists of geometric parameters and is unaltered by a,
8, and CL variations,

A given input combination of «, B, and CL will result in a particu-~
lar flow solution, [o] matrix. Assuming there are M total input combina-
tions of a, B, and CL’ the system of boundary condition equations can be
augmented to contain M sets of [B] coefficients and M sets of unknowns

[0,]. Denoting by subscript k the kth input combination s Bk’ and

3

CLk’ Equation set (30) can be expressed in matrix notation ‘as

[Aij][cjk] - [Bik] . (31.a)

where in accordance with Equation (29) the coefficients are
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Aij =1, for { = 3j); 4, =1, 2, 3 ... N ,
5
A - — [(XC, - XC,)n + (YC, - YC )n, + (Zc, - ZC In 1] ’
13 2m-ij3 i 37%%, 1 3% 1 3%y
for (1 ¥ §); 1, =1, 2,3 ... N , (31.b)

and

B,, = =2[(u, + In. ok (v, + vy, In. o+ (w o+ wy, In_ ]
ik “k' T TR T s 7 1 2y

+ {0, solid boundary
-2Fi, relaxed boundary °*

fori=1,2,3...Njand k=1,2,3 ... M , (31.c)
where Fi is a positive value 1if it is inflow velocity and negative if
outflow velocity with rij given by Equation (15); Us Vs and w, are
direct functions of oy and Bk by Equations (7) and (8). Also,uwik, Vg o
and wwik are the wing-induced components at panel i1 for the wing operating
at CLk as per Section 2.5 of this chapter.

Equation set (31) represents the augmented set of N simultaneous
equations to be solved for M different sets of N source strengths, 0.
With all o values known, the flow around the body will have been solved

for each of the M input body orientations.

2.6.2 Special case of a symmetric body panel network

In the case of a symmetrically paneled body, only the N/2 panels on
the left (-y) side of the configuration need be considered. In this case
only a half-size system of N/2 simultaneous equations must be solved.
Analagous to Equation set (31), this half-size system of boundary condi-
tion equations is written by substituting Equations (5), (6), (20), (23),
and (25) into Equation (28). However, summations are only made to N/2

rather than to N, The half-size system in matrix form is

s L
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(Ag 4oy 0 = [Byyd (32.a)
where |
SiYCinyi
Ay = [L+——3] , for (A =§); 1=1,2,3... N2, (32.b)
3 BWIYCil

S
1,3
Ay = g;t[;zj—] [(XC, - XCpm, + (X0, - Yepn, + (26 - 2¢)n, )

1 3
+ [rijimage]» [(xci - xcj)nxi + (YCi + ch)nyi + (zci - zcj)nzi]} R
for (1 ¥ §); 1, =1, 2, 3 ... N/2 , (32.c)

and
Bip ™ —2[(uk + uwik)nx

+ {0, solid boundary

-ZFi, relaxed boundary (32.4)

where index i represents body panels on the left side of the configura-
tion and where Fi is a positive value if it is inflow velocity and nega-

tive if outflow velocity. Also, r,, is given by Equation (15) and

13
is given by Equation (21). Components W Vi and W, are func-

Tijimage
tions of ay and Bk by Equations (7) and (8). Also,uwik, vwik, and w“ik
are wing-induced components at left side panel i due to a wing opera-
ting at CLk as per Section 2.5 of this chapter.

Equation set (32) is solved for M sets of unknown source strengths,
o, on each of the N/2 left side body panels. The solutions on the right
side image panels match those on the left side. The flow around the

body will then have been solved for each of the M input body orienta-

tions.
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2.7 Body Surface Flow Field Velocity and Pressure

Having solved the system of Equations (31) or (32) for the M sets
of unknown pahel source strengths, o, the resulting flow velocity and
pressure at each of the N panel control points is calculated using ex-
pressions developed below.

In the following, assume only one set of N solutions, o, has been
solved. That is, set M equal to one in the equation sets (31) and (32).

At the ith panel control point (XCi, YCi, ZCi),the resultant flow
velocity vector, Vbi, is denoted by its body-fixed Cartesian axis com-
ponents as

§b =u 1+ vy j + W k. (33)
i i i 1

This resultant velocity is the sum of the free stream, wing-induced,

panel self-induced, and remote panel-induced velocities;

ﬂ =V +V +7
i vy

N o
aqt j_zgl vij . (34)

(3#1)

The self-induced velocity, vii’ is always directed normal to panel
i. Thus, its Cartesian components are the scalar multiples of the unit
normal vector at panel i. Using Equations (5) and (10), vii is given
in vector notation by

g o g
eta T4ty T43EL 0% (35)
2 xy 2 Y4 2 zg

v
14

Substitute Equations (6), (25), (35), and (17) for ?, ﬁwi, v , and

i1
Vij’ respectively, in Equation (34) for the resultant velocity Vﬁi at

panel i. Then according to Equation (33) the Cartesian components of

Vbi on the ith panel are
o N S,o0, XC, - XC
- 3 434
ubi (u + uwi) + 5 nxi + jEl e [ - 3 1, (36.a)
(3#1) 13



32

o N S,0, YC, - ¥C
v, =(w+v )+—=n + 1 43 1, (36.b)
by w' ' 2 My, T ogm Tam 3
(3¥1) i)
and
o N S,0, ZC, - ZC
w = (W+w )+—i"n + p LA 1, (36.c)
by vy 2 2y 4=l bn r 3
(3#4) i]
where u, v, and w are given by Equations (7) and (8) and where rij is

given by Equation (15).
The magnitude of the total surface velocity at panel 1 is

> 2 2 2,1/2
lVbil - [ubi + vbi + wbi ] . (37)

Lastly, the pressure coefficient at the control point of panel i is

given, using Equation (37) and free stream velocity, V, by

. (38)

Use of Equations (36), (37), and (38) on each of the N body panels
completely defines the surface potential flow for a particular combina-

tion of body angle of attack, a, sideslip, B, and wing CL'

2.8 Flow Velocities and Flow Angles at the Propeller Plane

2.8.1 Cartesian velocity components at a point on the propeller plane

The propeller plane of radius R is centered at a point (xhub’ Yhub’
Zhub) relative to the body-fixed coordinate system. In general, the
propeller plane is skewed with an angle of attack, ap, and sideslip, Bp’
relative to the body-fixed axes, see Figure 7. Although the propeller

itself is not present, a right-hand sense of rotation in the propeller

Plane is assumed for velocity sign convention.
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As indicated in Figure 7, a point P on the propeller plane has the
specified radial and azimuthal position (r, ¥) in a propeller plane
cylindrical axis system. The cylindrical coordinates (r, V) of point P
are transformed to corresponding body-fixed Cartesian axis coordinates

(Xp, Yp, Zp) using the following expressions which are fully derived in

Appendix D:

Xp = -r[sin { cos o sin "o + cos Y sin ap] + xhub . (39.a)

Yp = [r sin Y cos np] + Yhub R (39.b)
and
Zp = r[sin ¥ sin ap sin np = cos Y cos ap] + zhub . (39.c)
where Euler angle, np, is given by
n_ = tan-l[tan B_cos a_.]l . (40)
P P P

The total flow velocity vector, Vp, at point (Xp, Yp, Zp) is denoted
by its body-fixed Cartesian components as

-

Vp-upI+vp3’+wpk . (41)

vp is the vector sum of the free stream, wing-induced, and panel

source-induced velocities, ij, at the point P on the propeller plane;

- -> > N
V =V+V + & V
P W, 3= PJ

. (42)

Equations (6), (25), and (17) may be substituted for V, GW , aad

)%
v , respectively, in Equation (42) if all i subscripts are replaced by

PJ
p and if point (XCi, YCi’ ZCi) is replaced by (Xp, Yp’ Zp). After making
the aforementioned substitutions into Equation (42), the Cartesian com-

ponents of the net flow velocity at point P on the propeller plane shown

in Figure 7 are given as follows:
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X S,0, X =~ XC

u, = u +u + jEl o [ 3 1 , (43.a)
P r
PJ
N S:0 Y - YC
v =v+v + I —J—J{-IL-——JQ ’ (43.b)
P w j'l 4n 3
p r
PJ
and
N S,0,2 =-2C
w =w+w + I -J-—i[—P-—-i] , (43.¢)
P v, ym=1 4T 3
P T
Pj
where u, v, and w are given by Equations (7) and (8), and
. 2 2 2.1/2
= - XC + - Y - . .
rpj [(Xp j) (Yp Cj) + (Zp ZCj) ] (43.4)

2.8.2 Axial, radial, and tangential velocities at a point on the
propeller plane

At point P on the propeller plane, the Cartesian velocity compon-
ents up, vp, and wp of Equations (43) may, by the following transforma-
tions, be converted into axial, radial, and tangential components, vap,

Vy.» and th’ respectively:

v’:p = ~[sin o, cos ¥ + cos o sin "o sinwlup + [cos "o sin#ﬂvp
+ [sin o, sin ", sin ¢ - cos a, cos w]wp , | (44.b)

where np is given by Equation (40), and ¥ is the azimuth position angle

of point P.

As indicated in Figure 7, Va, is directed positive in the thrust

direction perpendicular to the propeller plane. Vrp is directed positive

e

[ RSN
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radially outward in the propeller plane. th is directed in-plane per-
pendicular to vrp and positive when directed clockwise around the pro-
peller plane hub. Appendix D gives the complete derivation of trans-

formation Equations (44).

2.8.3 Local flow angles at a point on the propeller plane

The velocity components at point P on the propeller plane may be
expressed in terms of four flow angles. These are angles of upwash,
sidewash, outflow, and rotational flow denoted by €, T, A, and 6,
respectively, and are functions of up, vp, and wp given by

w

e = tan * =R 45)
P
and
-1,V
T = tan [-;Ih (46)

P

such that ¢ is positive when the flow is directed locally upward toward
the negative z axis, and Tt is positive when the flow is directly locally
to the right toward the positive y axis.

The angles of outflow and rotational flow at point P are measured
with respect to the propeller plane and were first defined by Roberts
and Yaggy (15). These angles are functions of Vap' Vrpv and th given,

respectively, by
A = tan T[—E] @7)

and

. (48)
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As shown in Figure 7, angle of outflow, A, lies in a plane contain-
ing the thrust axis and radius line to the point P. A 1is positive when
the locdl flow has a component directed radially outward. Angle of ro-
tational flow, 6, indicates the apparent tangential or rotational sense
of the local flow at the propeller plane. 6 1s measured from a line
parallel to the thrust axis and lies in the plane perpendicular to the
radius line to the point. That is, 6 is an angle which would appear in
the propeller blade section diagram at that point. For sign convention,
a right-hand propeller rotation is assumed, so a positive value of 8
corresponds to an effective decrease in local blade section angle of
attack from that encountered by the propeller operating freely in a
uniform flow. A negative value of 6 corresponds to an increase in the
local section angle of attack. Figure 8 illustrates the effect of 6 on
the angle of attack of a blade section at radius, r, on a propeller rota-

ting at an angular velocity of w.

2.9 Three-Dimensional Flow Computer Program Description

A computer program has been written which solves the subsonic po~
tential flow about any arbitrary three-dimensional body-wing combination
using the theory presented in this chapter. The surface geometry of the
body, or group of bodies, must he provided in an organized set of dis-
crete points. Geometry of the wing, if present, as well as the location
and orientation of a propeller must be specified. Then for each. speci-
fied combination of body angle of attack, sideslip, and wing CL’ the
program calculates the velocity and pressure coefficient at points on
the body surface. Lastly, the program calculates the flow velocities
and flow angles at each point in a mesh of points on the plane of the

propeller.

Wy L
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Figure 9 presents the organizational structure of the program. It

consists of fourteen subroutines each handling a major portion of the
problem and linked by a main calling program. The program is coded in
Fortran for use on the IBM 370/0S 360 computer system at The Pennsylvania
State University.

The program has been dimensioned to various sizes, the largest of
which is capable of handling N = 2596 body panels and M = 6 combinations
of a, B, and CL..

Several features have been incorporated. First is the symmetric
input option feature (NSYMET = () which requires the input of only the
left side of a symmetric body geometry. Image geometry is computed
automatically and the program must solve a problem only half as large as
would occur with a nonsymmetric configuration.

Saocond, due to the massive amounts of input surface geometry
required, a geometry check run feature (NCALC = 1) has been included.
This feature is used when a new body geometry is being tried. The pro-
gram generates and prints the panel geometry network which allows the
user to check for errors in paneling data and allows the user to identify
the sequence numbers of panels to be characterized as inflow and outflow
panels. Flow calculations, which consume most of the computer time, are
not made during a geometry check run thus reducing the amount of com- .
puting time which would have been wasted if flow calculations had been
attempted with geometry data containing errors.

Third,a feature (NPUNCH = 1) allows punched output to he produced.
This feature, if selected, produces a punched card deck containing
identifying information and propeller plame flow field data including

axial and tangential velocity components at each point on the propeller
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plane. These output cards are formatted for direct application as input
data cards in the propeller performance analysis program of Aljabri (32).

Because of the vast amounts of storage required by the program, it
is necessary to store the system of boundary condition equations, Equa-
tions (31) or (32), on an auxiliary sequential scratch disk file. A
second auxiliary file is also needed for printing certain output data,
As a result, the system of equations cannot be solved by matrix inver-
sion or other direct methods, but instead requires the use of iterative
methods. The method of Gauss-Siedel iteration is used in this program.

Additionally, because of the use of auxiliary files, slower program
execution occurs. Thus,.dt'has béen found useful to compile the program
into 2 highly efficient machine language deck using the Fortran H, optimi-
zation level = 2, compiler available at The Pennsylvania State University.
Actual jobs are performed by running this compiled machine language pro-
gram. Execution time conserved by this technique can often mean the
difference between success and fafilure in completion of the flow solution,

The purpose of each subroutine is given very briefly below.

INPUT reads and stores all input data. It also checks for certain
input errors.

VCOMP calculates the set of free stream velocity components using
Equations (7) and (8) for each input set of o and 8.

EULER calculates angles n and np using Equations (8) and (40),
respectively,

WGEOM generates the wing horseshoe vortex geometry based on input
wing geometry if a wing is present in the configuration,

PANEL generates the body panel network. It calculates all panel

areas, control points, and unit normal vectors using the methads and

S
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formulas given in Appendix A. It assigns a sequence number to each
panel and counts the total number of panels. PANEL also generates image
panels and establishes a system for matching '"real"” and "image" panels
on symmetric configurations.

COFSYM generates the matrices of coefficients, [A] and [B], for the
half-size system of boundary condition equations, Equation set (32),
used in the case of body symmetry.

SOLSYM solves Equation set (32) for M sets of N/2 unknown panel
source strengths using Gauss-Siedel iteration.

COEFIC generates the matrices of coefficients, [A] and [B], for the
full-size system of boundary condition equations, Equation set (31),
used when the configuration is not symmetrically paneled.

SOLVE solves Equation set (31) for M sets of N unknown panel source
strengths using Gauss-Siedel iteration.

WINGV calculates the velocity components induced at a point by the
wing horseshoe vortex. It uses subroutine VORTEX, below.

VORTEX calculates the magnitude and components of velocity induced
at a point by a straight vortex filament. Formulas given in Appendix C
are used.

VELOCI calculates and prints the surface flow velocity and pressure
coefficient at each. panel control point using Equations (36), (37), and
(38).

VPROPS calculates the propeller plane flow field. It first calcu=-
lates and prints up, vp, and wp using Equation set (43) at each. point on
the propeller plane. Second, it calculates and prints Vap»'Vrp» and
th using EBquation set (44) at each point., Also, it calculates,using

subroutine ANGLES, and prints flow angles ¢, T, A, and 6 using Equations

e s R
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(45) through (48) at each point, Third, if desired, it punches values

Va.» th: and other data on output cards for each point,

P
ANGLES calculates flow angles €, T, A, and 6 for each point on the
propeller plane using Equations (45) through (48).

A user's manual, Jumper (33), has been written which gives a com-
plete description of program input and output. Also, the manual presents
all necessary operating instructions and contains a complete program
listing.

However, the user's manual containis an older version of subroutine
VORTEX which incorporates a quantity called hmin and which does not use
the computational formulas given in Appendix C.

Subroutine VORTEX listed in Jumper (33) should be modified by
deleting the expressions and logic pertaining to hmin and then reorgan-
izing the expressions to conform with the equations given in Appendix C.

An errata sheet to the user's manual has been written which. describes
all changes necessary to make expressions in subroutine VORTEX, originally

printed in the manual, conform with the formulas found in Appendix C of

this thesis.
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Chapter 3

TEST CASES OF THE FLOW ABOUT A SPHERE AND THE FLOW
ABOUT A SIMPLE FUSELAGE SHAPE

3.1 Exact Solution for the Potential Flow About a Sphere

To ensure the three-dimensional potential flow computer program
functions properly, the test case of the flow about a sphere has been
used for comparison, because the exact solution for this flow exists.

Figure 10 shows the cross sectional view of a sphere of radius, a,
in a uniform velocity field, V. 1In terms of the polar coordinates, the
velocity potential for this flow may be derived by mathematical solution
of the Laplace equation. Also, the potential is found in Milne-Thomson
(34) and is given by

3
og = vir + :—_r_f]cos Y . (49)

On the sphere surface, only the tangential velocity component exists and

is found, using Equation (49), to be

2
1l "s 3
Yy T e ae T T2V SR Y G

r

r

Then, using Equation (50) in the definition of pressure coefficient,

Equation (38), the sphere surface pressure coefficient distribution is

9 2
Cp 1 - Z{sin 7 . (51)

The velocity potential may be rewritten in terms of the body-fixed
Cartesian axes shown in Figure 10. The potential becomes
3

= V[1 + 2 1x +a) . (52)
ts 2[ x + a)2 + 22]3/2
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To get the Cartesian velocity components anywhere on the x-z plane in
Figure 10, the negative gradient of Equation (52) is taken. These x, Yy,

and z components of velocity are given, respectively, by

3 2 32
2a°(x +a)” - a"z
u = [ -1]v , (53.a) ;
v, =0 , (53.b)
and %
3
3 a (x + a)z ‘
w_= 3 v . (53.c)
s 2 [(x + a)2 + z2]5/2

3.2 Sphere Surface Pressure Prediction Compared With Exact Solution

A sphere was modeled using ten equally spaced cross sections to
generate 120 panels, and the flow was solved using the three-dimensional
flow program. Figure 11 compares the predicted and exact, Equation (51),
pressure distributions. Agreement is excellent over the entire surface
with only a minute deviation near y = 90 degrees. This result verifies

that the computer program functions properly.

3.3 Flow Predictions at a Propeller Plane Upstream of a Sphere

In addition to surface flow predictions, the flow velocities and
angles were predicted at untilted propeller planes centered in front of
the sphere. Results were predicted for two propeller plane-sphere
spacings. Figure 12 gives the axial velocity distribution along the
upper centerline of the propeller plane for both spacings tested and
compares the results with the exact solutions, Equation (53.a). Figure
13 presents the distribution of vertical velocity compared with the

exact solution of Equation (53.c). Additionally, this figure combines

P
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the axial and vertical velocity distributions by siu»s.ag the corresponding

upwash angle distributions.

The results in both Figures 12 and 13 show excellent agreement between

predictions and exact theory for both spacings at radial positions beyond
0.6 sphere radii. At positions inside this radius, the predictions de-
viate from the exact results. The deviation in upwash angle is the most
pronounced. It is seen that as the propeller plane-sphere spacing in-
creases, the computer predictions improve along the entire radius.

At the inner regions of the propeller plane, the sphere surface is
comparatively close to the plane, and the flow is dominated by the influ-
ence of the nearby front ring of body panels. To points at the inner
radii of the propeller plane, which are near the body surface, the body
panel network appears rather coarse and does not present as accurate a
representation of the true body surface shape as is presented to points
more distant from the body. This results in deviations of the predicted
flow from the exact solution, at: the inner radii of the propeller plane.
However, at points at larger radii on the propeller plame, local panel
domination diminishes, and the overall panel network more closely resem-
bles a sphere. Thus, the computer predictions improve at points farther
from the body surface.

Thus, it appears that in using the computer program for propeller
plane flow predictions, the flow is most sensitive to the body surfaces
nearest to the propeller plane, and care must be takem to panel these

surface regions densely and accurately.
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3.4 Flow Predictions Upstream of a Simple Fuselage Shape and Effects of
Ignoring Remote Body Surfaces '

Because the three~dimensional flow computer program requires large

amounts of tedious body panel geometry input, it is desirable to reduce

as much as possible the amount of this input without sacrificing accuracy

in the propeller plane flow predictioms.

To examine the effect of neglecting remote regions of the body in
predicting the flow at the propeller plane, a simplistic fuselage shape
was used. This fuselage profile is shown in exact scale proportions in
Figure 14. The cowl and tailcone have circular cross sections, while
the cabin region has ''pear-shaped" cross sections. A propeller plane
is untilted and centered in front of the cowl with a spacing of 7.8 per=
cent of the cowl length, f.

Figure 14 compares axial velocity distributions at the propeller
plane predicted by the computer program with the complete fuselage mod-
eled and with cabin and tail removed. As might be expected, with the
cabin and tail removed there is less flow obstruction, and a slight
increase in the magnitude of axfal velocity occurs. Thevelocity:distri-
bution with the isolated cowling varies as much as 1.6 percent from the
distribution predicted with the complete fuselage. This change in axial
velocity considered alone might seem unacceptable. However, as the
axial velocity changes so does the radial velocity component. Thus, as
Figure 15 shows, the flow angularity, presented in terms of upwash angle,
at the propeller plane changes only slightly by removal of the aft por-
tions of the fuselage. Flow angularity shows the combined effect of all
velocity components and can be considered a more useful parameter for

describing the flow field as it would influence a propeller,

"
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Results in Figure 15 thus indicate that in modeling a fuselage for
propeller plane flow predictions, the body regions remote from the pro-
‘peller, such as the tail and cabin, can be ignored vithout seriously
affecting flow predictions.

Paneling only the cowling of a typical single-engine aircraft fuse-
lage should be sufficiently accurate for making flow predictions at the
propeller plane. This will greatly simplify computer program input and
decrease run time and cost.

The effect of neglecting aft portions of a fuselage of an actual

aircraft will be shown later in Chapter 5. ,
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Chapter 4

MEASURED AND PREDICTED FLOW FIELD RESULTS AT THE LEFT PROPELLER
PLANE OF A TWIN-ENGINE AIRCRAFT

4.1 Aircraft Geometry, Body Paneling, and Operating Conditions

Roberts and Yaggy (15) conducted extensive wind tunnel tests in which
the flow velocities and flow angles were measured at the left propeller
plane (propeller removed) of the twin-engine aircraft shown in Figure 16.
Because the experimental data was presented in detail, flow predictions
for this aircraft were made using the three~dimensional potential flow
computer program., Comparisons of computer predictions with the published
éxperimental results were conducted to further check the accuracy of the
computer program.

Figure 16 shows a three-view drawing of the aircraft including over-
all dimensions and the orientation of the left propeller plane. TFigures
17a and 17b present in detail the cross section geometry of the fuselage
and nacelle surfaces located foreward of the wing leading edge.

To generate the body paneling input data required by the computer
program, the data in Figures 17a and 17b was used to obtain the paneling
accuracy needed at the foreward body surfaces, which are in proximity to
the propeller plane. At regions aft of the wing leading edge, which are
more distant from the propeller plane, the surface geometry at a given
longitudinal position was estimated by taking the cross section shapes
shown in Figures 17a and 17b and scaling them to the dimensions indicated
by the views in Figure 16. This produced a body paneling network of
sufficient detail in the aft regiomns.

Initially, the computer program was run using the wing vortex model
and body paneling over the entire surface of the fuselage and nacelles.

Unfortunately, with the body surfaces completely paneled, the program
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failed to converge. Apparently, the matrix of boundary condition equa-
tions generated by the complete body panel network was not diagonally
dominant or for some other reason was not solvable by the Gauss-Siedel
iterative method employed by the program. Thus, it was necessary to
reduce the complexity of the paneling network by excluding certain .por- :
tions of the aircraft geometry.

Finally, after several trails, a simplified body panel network was
devised which gavé successful computer solution convergence. The wing
vortex geometry was modeled as before. However, the right nacelle and

aft portion of the fuselage were eliminated from the paneling network.

Only the left nacelle and the fuselage nose, the crosshatched region in
Figure 16, remained paneled. As previocus results in Chapter 3 indicate,
ignoring the right nacelle and aft fuselage, which are remote from the
left propeller, should not significantly diminish the accuracy of the
flow field predictions at the left propeller plane. The simplified left
nacelle-fuselage nose paneling network consisted of 424 panels and re-
quired the use of the nonsymmetric input option of the program.

To match the aircraft flight conditions of Roberts and Yaggy (15),
the computer model required a simulation of the engine cooling air flow
through the left nacelle. All panels covering the nacelle inlet face were
assigned a known constant infiow velocity, ¥, normal to and passing
through the panels thus simulating inflow of engine cooling air. However,
no cooling air outflow panels were specified. To obey the law of con-
tinuity, it was assumed that the cooling air was exhausted infinitely far
downstream or at the extreme aft location on the nacelle such that the
exhaust air influence on the flow field at the propeller plane would be
negligible. Based on this assumption, the presence of exhaust air could

be ignored; thus, it was not simulated.

5 St
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Table 1 summarizes the various flight conditions modeled using the
computer program. Flight conditions 1, 2, and 3 on the table were also
tested by Robe;ts and Yaggy (15). Flight conditions 4, 5, and 6 used a
value of nacelle inlet inflow velocity which was not wind tunnel tested,
and these conditions were run on the computer to investigate the effects
of the inflow velocity parameter on the flow at the propeller plane.

Table 1 also lists the geometric characteristics which remained con-
stant for all f1ight conditions, including sideslip angle B, propeller plane
reference radius R, and propeller plane orientation angles, ap and Bp.

The installed propeller sideslip angle, Bp, is zero for this air-
craft. However, there existed a confusion about the value of the in-
stalled angle of attack, ap, of the propeller plane. Roberts and Yaggy
(15) conducted their experiments in the belief the propeller plane was
not tilted downward with respect to the fuselage; that is,ap was believed
to be zero. All of the experimental data was presented as a function of
oy the geometric angle of attack of the propeller plane from the free
stream, which under the assumption of zero ap would also equal the air-
craft angle of attack. However, Yaggy (17) later reported that following
test publications by Roberts and himself (15) it was found the propeller plane
had actually been oriented with a downward tilt of two degrees (ap = -2
degrees) during the testing. Discovery of this fact did not alter the
measured results but produced an error in the presentation of the data
in Roberts and Yaggy (15). In the published test results, data presenteé
for a specified propeller plane angle of attack of aes believed to equal
the aircraft angle of attack a, areactually data corresponding to a pro-
peller plane angle of attack of ag but at an aircraft angle of attack

equal to oq + 2 degrees. Similarly the published CL values tested cor-

srwar o



49

respond to the aircraft angle of attack of 4y + 2 degrees, Therefore,

as Table 1 indicates, to model a wind tunnel test performed at a published
propeller plane angle of attack of ass it was necessary to perform the
corresponding computer run using an input aircraft angle of attack of
a=a. 4+ 2.0 degrees.-

4.2 Comparisons of Computer-Predicted and Experimentally Measured Flow
Quantities at the Left Propeller Plane

Figure 18 presents azimuthal distributions of axial velocity at the
75 percent radius position for two extremes of body angle of attack. For
the angle of attack of two degrees, there is fair agreement between
computations and experiment. Agreement is much better for the 12 degree
angle of attack case particularly at azimuths near the vertical centerline
of the propeller plane. For both angles of attack, the computed distri-
bution shapes agree well with the measured shapes.

Figure 19 presents azimuthal distributions of flow angularity at the
75 percent radius position corresponding to the velocities in Figure 18.
Additionally, Figure 19 contains a set of curves for a midrange angle of
attack of six degrees. Again the agreement between calculated and mea-
sured distributions is good and improves with increasing angle of attack.
The ability of the program to accurately predict the flow for higher
angles of attack is good in that propeller vibration, which is more severe
at higher angles of attack, may be more accurately calculated using the
predicted flow field. Generally, in Figure 19, the flow angularity pre-
dictions differ by approximately only one degree from the measured values,
and at most only a three degree difference is seen for an angle of attack

of two degrees.
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As explained by Roberts and Yaggy (15), the extremes in flow angu-
larity occur near the horizontal centerline‘(neat the 90 and 270 degree
azimuths) of the propeller plane, The flow field near these azimuths
produces the peak vibratory loading on the propeller blades. Additionally,
along the inboard horizontal centerline of the left propeiler plane, in-
creased flow angularity is encountered due to the increased wing upwash
in that region as well as due to the influence of the fuselage 'nose near
the inboard tip of the propeller plane. Thus, the ability to predict the
flow along the horizontal centerline is of value for anticipating vibra-
tion problems of propellers operating in the flow fiald.

Radial distributions of angle of rotational flow along the inboard
horizontal centerline (90 degree azimuth) of the left propeller plane
are shown in Figure 20. Over the outer radii.beyond 0.25R, where a
prcpeller blade would be more heavily loaded, computed flow angularity
distributions agree well with the measured distributions particularly at
the lower angles of attack. Increased flow angularity induced near the
tip radius by the fuselagemose may be seen on this figure and has been
accurately predicted for the angle of attack of 12 degrees. However,
computed and measured distributions diverge at radii iess than the nacelle
inlet radius in Figure 20, Fortunately, any weakness in prediction
ability at these inner radii is not extremely bothersome, because a
propeller blade is lightly or negligibly loaded at these radii. Propeller
performance or loading calculations for blades operating in the predicted
flow field of Figure 20 should not be seriously affected by some inac-
curacy in flow field predictions at the inner radii. Disagreement between
measured and computed flow angularity in the propeller plane hub region

may be due to some shortcomings in the inlet inflow velocity modeling
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technique used by the computer program., Inlet inflow velocity effects
are examined later in this chapter. ;
Figure 21 shows the axial velocity distributions along the inboard 3
horizontal centerline for angles: of attack of two and 12 degrees corres- §
ponding to the flow angles of Figure 20. The predicted and measured i
velocities agree well to approximately the 30 percent radius position. i
Beyond the 30 percent radius position, the computer program overpredicts
the axial velocity. The computer program modeled the wing vortex system,
but the actual wing surface geometry was not paneled. Thus, wing thick-
ness effects were not introduced into the calculations. Any retardation
of the axial velocity along the horizontal centerline which may exist
due to wiﬁg thickness blockage effects would not be reflected in the
computer predictions. This may account for the overpredictions of axial
velocity in Figure 21.
It is apparent from Figures 18 through 21 that the potential flow
computer program satisfactorily calculated the flow field at the propeller
plane of the twin-engine aircraft despite the necessary deletion of a
large portion of the airframe geometry from the computer model.

4,3 Nacelle Inlet Inflow Velocity Effects on the Flow Field at the Left
Propeller Plane

Additiomal computer predictions at the twin-engine aircraft propeller
plane were made in which the nacelle inlet velocity ratio, F/V, was
changed from a value of 0.29, used in the wind tunnel tests, to a value
of 0.10. Figure 22 demonstrates the effects of varying the inflow velo-
city ratio. Plotted are computed radial distributions of angle of rota-
tional flow along the inboard horizontal centerline (90 degree azimuth)

of the left propeller plane. As the figure shows, chinging F/V produces

large changes in the flow field only at the hub region directly upstream
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of the nacelle inlet, However, the flow field is nearly unaltered at
radii greater than the inlet radius, These results match the experimental
findings of Roberts and Yaggy (15).

That changing of the value of F/V produces large flow field changes
only in the hub region, where propeller blade loadings are minimal, is
fortunate. This result indicates that the actual choice of F/V value
used in the computer simulation of inlet inflow should not be critical
in regard to its ultimate effect on calculated blade loadings, because
changing F/V will provide major flow prediction changzes only near the
hub such that changes in loading and vibration ¢f a blade operating in
the flow field will be slight.

4.4 Geometry-Induced Contributions Versus Propeller Plane Inclination-
Induced Contributions to the Flew Field at the Left Propeller Plane

The flow field at the propeller plane is composed of two contribu-
tions, These are the contribution due to pure propeller plane inclination
and that due to the influenc2 of the airframe. It is of interest to
examine these two contributions to gain insights into the relative sig-
nifigance of each.,

At the plane of an isolated propeller inclined to an angle of attack,
Gg» from the free stream, the free stream velocity contiributes azimuthally
varying radial and tangential velocity components as shown in Figures 23a
and 23b, An expression for the azimuthal variation of flow angularity,
in terms of angle of rotational flow 6, at the isolated inclined propeller
plane may be obtained by iuserting the velocity components of Figures 23a

and 23b.into Equation (48). The resulting expression applicable to an

isolated inclined propeller plane is

.

sin ¢) . ' (54)

g = tan-l(-tan a,
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Flow field predictions produced by the computer program contain both
the airframe-induced and propeller plane inclination-induced contributions.
By comparing the flow angularity distribution at an isolated inclined
propeller plane, Equation (54), with the corresponding distribution ob-
tained from the computer program predictions incorporating both the in-
clination and airframe effects, the airframe-induced flow contribution
contained in the computer results is highlighted.

Figure 24 presents such a comparison applied to the left propeller
plane of the twin-engine airplane. In this figure the azimuthal varia-
tions in angle of rotational flow at the 75 percent radial station are
presented for both high and low aircP«ft angles of attack. As the figure
indicates, for an ajrcraft angle of attack of two degrees, the propeller
plane inclination, g is zero. Thus, the isolated propeller plane, in
the absence of airframe effect's, experiences no flow angularity, The
corresponding curve produced by the computer program shows that the intro-
duction of the wing-fuselage nose-left nacelle geometry at two degrees of
angle of attack produces a nonsymmetric distribution of flow angularity
with a peak magnitude of nearly two degrees occurring at the 90 degree
azimuth position.

For an aircraft angle of attack of 12 degrees, the isolated propeller
plane inclination is ten degrees. With a ten degree inclination, flow
angularity for the isolated propeller plane, as shown in Figure 24, is
symmetrically distributed in a periodic fashion about the azimutﬁ.with a
maximum flow angularity magnitude of ten degrees at the horizontal center-
line azimuths of 90 and 270 degrees. The corresponding curve calculated
by the computer program indicates that the addition of the airframe geo-

metry at an angle of attack of 12 degrees produces greater and more dis-
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torted flow angularity. Geometry influences have shifted the flow dis-
tribution curve to the left, Increased upwash introduced by the airframe
geometry is reflected by the greater amplitudes of 6 in the computer pro-
gram prediction., Also, the airframe induces more upwash over the inboard
half of the left propeller plane than over the outboard half, This is
indicated by greater 6 amplitudes in the vicinity of the 90 degree azimuth
than in the vicinity of the 270 degree azimuth.

Figure 25, like Figure 24, also compares the effects of geometry
influences and propeller plane inclination influences. Im this figure,
radial distributions of angle of rotational flow along the inboard hori-
zontal centerline, 90 degree azimuth, on the left propeller plane are
plotted. Because the isolated inclined propeller plane experiences no
radial variation in the flow field, as indicated by Equation (54), the
flow angularity due to inclination is a constant for each angle of attack
in Figure 25, Forx an aircraft angle of attack of two degrees, the pro-
peller plane inclination with respect to the free stream is zero, and the
isolated propeller plane experiences no flow angularity, as indicated by
the uppermost plot in Figure 25. As the corresponding computer-predicted
plot shows, the aircraft geometry at a two degree angle of attack induces
upwash, particularly strong near the hub due to the nacelle, which pro-
duces peak flow angularity magnitudes of nearly 5.5 degrees,

As shown in Figure 25, for an aircraft angle of attack of 12 degrees,
the isolated propeller plane inclination is ten degrees. Thus, a blade
in this isolated propeller plane would experience a ten degree flow angu-
larity at the horizontal centerline equivalent to a uniform blade pitch
increase of ten degrees. The corresponding computer program predictions

for a 12 degree angle of attack indicate a large increase in upwash due
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to the presence of the airframe geometry., Increased upwash rorresponds
to negative values of 6 in Figure 25. The nacelle is seen to induce the
greatest upwash in the hub region, while a less but nearly constant flow
angularity due mostly to wing-induced upwash is seen at the midrange
radii. Finally, increased flow angularity is induced by the fuselage
nose near the tip radius in the lowermost plot in.Figure 25.

As Figures ZQ and 25 demonstrate, the influence of the airframe
geometry on the flow at the propeller plane is very evident. The inclu~
sion of geometry effects yields more flow angularity and flow field dis-
tortion than exists when only the propeller plane inclination-induced

fiow is present.
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Chapter 5

COMPUTER-PREDICTED FLOW FIELD RESULTS AT THE PROPELLER PLANE
OF THE PIPER CHEROKEE PA-28-180 AIRPLANE

5.1 Cherokee 180 Airplane Geometry, Body Paneling, and Run Conditions

A Piper Cherokee PA-28-180 is owned by the Aerospace Engineering
Department of The Pennsylvania State University. Because this airplane
was readilyavailable for research use, computer predictions of the flow
at the propeller plane (propeller removed) were made for it.

In this chapter, results of parametric studies are presented which
show the effects of cowl inlet inflow, wing 1ift, wing dihedral, and aft
fuselage geometry deletion on the computed potential flow field at the
propeller plane. Additionally, a series of figures is included which
provides a mapping of the computed flow field over the entire propeller
plane of the baseline Cherokee 180 zonfiguration for a range of fuselage
angles of attack.

Figure 26 presents the geometric characteristics of the single-
engine, fixed-gear Cherokee 180 airplane. Though uot indicated in Figure
26, the propeller is mounted on the airplane such that the propeller
plane is inclined, with respect to the fuselage, downward and to the
right by the angular amounts given in Table 2. As noted in Figure 26,
due to the sideward inclination of the propeller plane, the propeller
hub position is shifted a distance of 0.0228 propeller radii to the right
of the fuselage plane of symmetry.

Computer panel input for all portions of the fuselage aft of the
firewall was obtained from detailed cross section geometry descriptions
found on aircraft drawings suppiied by the aircraft manufacturer.. How—

ever, all of the cowling surfaces are constructed of fiberglass. Asa result,

AR
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the manufacturer has na detailed cross sectiomal drawings for any of the
cowling geometry foreward of the firewall, Therefore, in order to gen-
erate the computer paneling model of the cowling and spinner, it was
necessary to physically measure the cowling and spinner surface geometry
of the Univeristy-owned Cherokee airplane.

Measurement of the cowling and spinner surface coordinates was per-
formed by triangu}ation using surveying transits, Three-view drawings
of the cowling and spinner were made from the measurements. From these
drawings, the computer paneling model of the cowling and spinner was
generated. The process of measuring and mapping this geometry is des-
cribed further in Appendix E.

None of the tail or wing surfaces were paneled. However, the wing
was simulated by the horseshoe vortex model used in the computer program.
Also, none of the landing gear were included in the computer input model.

Figure 27 presents flight test-measured aircraft 1ift coefficients
as a function of fuselage angle of attack. CL values from this figure
were assumed to be equivalent to wing lift coefficients and were used as
prograr input for wing-on computations.

Two different aircraft body paneling networks have been created.
The first network includes the cowl-fuselage combination. The second
network is the same as the first one, except the fuselage geometry aft
of the firewall has been replaced by a short, streamlined afterbody.
This short afterbody is illustrated in Figure 26. Thea second panel
network was used for computer predictions at the propeller piane from
which the effects of ignoring aft fuselage geometry-induced flow could

be determined.
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During preliminary testingof a Cherokee 180 wind tunnel model, a
cowl inlet inflow velocity ratio, F/V, of 0.2 was measured. This value
of F/V was accepted as the baseline input value for computer runms.

Initially, the cowl inlet geometry was precisely paneled producing
a closed concave panel surface covering the inlet. Unfortunately, the
iterative solution process of the computer program failed to converge
because of this concave panel surface. To correct this problem, while
maintaining a simulation of inlet inflow, the concave inlet paneling was
replaced by a planar membrane of panels placed over the inlet opening.
Each of the panels in this membrane was identified as an inlet panel and
assigned a value inlet inflow velocity ratio, F/V, to model the inlet
inflow.

The spinner paneling also created a problem on early computer runs.
Initially, the spinner geometry was included and paneled as a discrete
closed body positioned upstream of the cowl inlet panels. 1In each
attempt, the presence of the spinner paneling caused program failure
manifested by divergence of the iterative solution process. As a result,
the spinner paneling was deleted from the paneling networks, and all
computer predictions for the Cherokee 180 were made with the spinner off.

Table 2 describes the various configurations which were used as
program input. Additionally, Table 3 lists the values of wing lift
coefficient, takén from Figure 27, which were used as program input.
Results from computer runs involving all of these configurations are

presented in the remainder of this chapter.

5.2 Aft Fuselage-Induced Effects on the Flow Field at the Propeller
Plane of the Cherokee 180 Airplane

A study was made to determine how much the accuracy of flow predic-

tions at the propeller plane of the Cherokee 180 airplane was reduced by
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deletion of the aft fuselage geometry, that geometry aft of the firewall,
from the computer panel modeling: Acceptability of neglecting the aft
fuselage geometry would permit the creation of a computer model containing
fewer panels, thereby decreasing computing time and cost.. This study
also was. performed to verify the results of aft fuselage paneling deletion
previously presented for the arbitrary fuselage in Chapter 3.

Fuselage-~off computer flow predictions were made using the Cherokee
cowl-short afterbody paneling network and the input parameters of Config-
uration 6 in Table 2. Effectively, the use of the short afterbody elim-
inates the windshield geometry and thus reduces the frontal area of the
paneled configuration. The cowl-short afterbody geometry contains fewer
panels than the cowl-fuselage geometry and is less expensive to rum on the
computer. Additional fuselage-on flow predictions were made using the
cowl-fuselage paneling network and the input parameters of Configuration
1 in.Table 2.

Comparisons of the fuselage-on predictions with fuselage-off pre-
dictions were made to determine the significance of the aft fuselage
contribution to the flow at the propeller plane. Figure 28a compares
fuselage-on and fuselage-off azimuthal distributions of predicted axial
velocity. Regardless of the body angle of attack, a, the axial velocity
magnitude is increased at all azimuths due to the reduced flow blockage
realized by deletion of the aft fuselage. As the figure shows, the
fuselage-off overprediction of axial velocity is no more than 1.0 to 2.5
percent of the free stream velocity.

Removal of the aft fuselage geometry produces slightly Increased
upwash predictions at the propeller plane. This increase is reflected

in the fuselage-off tangential velocity distributions in Figure 28b. At
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the lower body angle of attack, o, deletion of the aft fuselage changes
the tangential velocity field everywhere except near the vertical center-
line azimuths of zero and 180 degrees. However, the tangential velocity
distribution for a body angle of attack of ten degrees is less affected
by aft fuselage removal, since roticeable changes occur only near the
horizontal centerline azimuth positions.

Figures 28c and 28d present the flow angularity distributions cor-
responding to the previously examined axial and tangential velocity
predictions for body angles of attack, a, of two and ten degrees, re-
spectively. At the lower angle of attack, Figure 28c, deletion of the
aft fuselage geometry results in no more than a 0.3 degree change in
predicted flow angularity at any azimuth. At the higher angle of attack,
Figure 28d, fuselage~off computations produce no discernable change in
the flow angularity distribution.

The upper vertical centerline of the propeller plane is located
directly upstream of the windshield surface on the aft fuselage. There-
fore, presumably, the largest fuselage-induced axial velocity contribu-
tions at the propeller plane would occur along the upper vertical center-
line. Figure 29 presents fuselage-on-predicted and fuselage-off-predicted
radial distributions of axial velocity along the upper vertical centerline
position (the zero degree azimuth) for high and low fuselage angles of
attack. Even at this azimuth position, where fuselagz influences should
be strongest, nomore than a three percent overprediction of the axial welo~
city magnitude results from deleting the aft fuselage computer paneling,

For a typical single-engine aircraft geometry such as the Cherokee
180, greater accuracy in the flow predictions at the propeller plane is

achieved by inciluding the aft fuselage geometry in the computer model.
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However, as the results of this subsection indicate, deletion of the

aft fuselage geometry from the computer model results in a decrease of
only a few percent in the accuraéy of flow field predictions at the
propeller plane for a typical single-engine airplane. Specifically, flow
angularity predictions are negligibly affected, particularly at high
angles of attack, by aft fuselage geometry deletion. Also, axial velocity
overpredictions of no more than three percent can be expected should the
computer paneling exclude the aft fuselage geometry.

The advantage of computer time and cost savings realized by using a
fuselage-off panel model may offset the d%sadvantage of slightly reduced
flow prediction accuracy. However, if increased accuracy in flow pre-
dictions is desired, the aft fuselage should be included in the computer
panel model.

5.3 Wing Lift-Induced and Dihedral-Induced Effects on the Flow Field at
the Propeller Plane of the Cherokee 180 Airplane

To determine if it is important to include the wing geometry in the
computer model of a single-engine airplane for predicting flow at the
propeller plane, two computer runs were made with the Cherokee 18Q. The
first computer run was made at both high and low fuselage angles.of attack
using the complete cowl-fuselage-wing input geometry (spinner removed).
The second run was the. same as the. first, except that the wing geometry was
deleted from the model. The models for these two runs correspond to
Génfigurations 1l and 5, respectively, in Table 2.

Wing lift-induced upwash in the vicinity of the horizontal center-
line is the most significant wing contribution to the flow at the propel-
ler plane which affects cyclic propeller bldade loads and vibration. Thus,

comparisons of wing-off-predicted and wing-on-predicted radial distribu-
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tions of tangential velocity and angle of rotational flow near the hori-
zontal centerline would indicate how much the wing=-induced upwash contri-
butes to the flow field.

Such comparisons are presented in Figures 30a, 30b, and 30¢ for
radial distributions of flow quantities along the 90 degree azimuth posi-
tion (near the horizontal centerline) of the Cherokee propeller plane
using results from the two computer runs. It should be noted that because
the Cherokee propeller iy oriented with vertical and sideward inclinatioms,
ap and Bp’ the 90 degrez zzimuth position is a few degrees below the
actual horizontal centerline rather than coincident with it.

At the 90 degree azimuth, negative tangential velocitiés, as in
Figure 30a, are indicative of upwash. In Figure 30a, the wing-induced
upwash. increases the magnitude of the tangential velocity by nearly the
same amount at all radii for a given fuselage angle of attack, a¢. This
magnitude increase is on the order of two percent of the free stream
velocity for a fuselage angle of attack of two degrees, corresponding
to a cruise flight condition. However, for a fuselage angle of attack
of ten degrees (a high 1lift, takeoff flight condition), wing-induced
increase in the magnitude of the tangential velocity i1s as much as 6.5
percent of the free stream velocity.

Figure 30b presents the wing-on and wing-off predictions of angle of
rotational flowassociated with the velocities in Figure 30a for a fuselage
angle of attack of two degrees. The wing 1is seen to increase the flow
angularity at all radii. A one to two degree increase is observed at
radii greater than the cowl inlet radius, the important radii where the
propeller blade is heavily loaded. For a fuselage angle of attack of

ten degrees, Figure 30c indicates wing~induced flow angularity increases

of two to four degrees at radii greater than the inlet radius.
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It is evident from Figures 30a, 30b, and 30c that the wing of a
typical single-engine airplane such as the Cherokee 180 makes a sizeable
contribution to the flow field at the propeller plane éven for low fuse~-
lage angles of attack. Clearly, to ensure more accuracy in the flow
predictions at the propeller plane, particularly for high fuselage angles
of attack, the wing geometry must be included in thé computer input model.

Having determined the necessity of including the wing geometry in
the computer model, the effect of wing dihedral on the computer-predicted
flow at the propeller plane is of interest. Concern about dihedral-
induced effects on the flow field was ralsed during construction of a
wind tunnel model of the Cherokee 180 to be used in experimental phases
of this research. To simplify model construction, it was desirous to
build the wing without dihedral, but it was first necessary to determine
if dihedral removal would have a negligible effect upon the flow field at
the propeller plane, to be experimentally measured.

In an effort to determine the size of the wing dihedral-induced
contribution to the flow at the propeller plane, two computer runs were
made. The first run employed the Cherokee cowl-fuselage-wing model with
wing dihedral included (Configuration 1 in Table 2). The second run was
made using no dihedral (Configﬁration 4 in Table 2).

Results of the two computer runs are compared in Figures 3la and
31b. These figures preserit radial distributions of flow angularity along
the 90 degree azimuth position for two different fuselage angles of
attack. For a fuselage angle of attack of two degrees, Figure 3la indi-
cates that there 1is no discernable dihedral-induced contribution to flow
angularity except at the innermost radii, which are embedded within the

spinner on the actual aircraft and are not importan’., However, for a
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fuselage angle of attack of ten degrees (Figure 31b), flow angularity is

increased at all radii 1f wing dihedral is not modeled. Dihedral-induced

decreases in flow angularity of as much as two degrees are observed near
the 75 percent radial position.

Obviously, wing dihedral can be deleted from the computer model for

low fuselage angles of attack, and little loss in flow prediction accuracy

will result. However, for high fuselage angles of attack, the high wing
lift magnifies the dihedral-induced contribution to the flow at the pro-
peller plane. Hence, the actual wing dihedral should be included in the
computer model to provide increased accuracy in the flow predictions for
higher fuselage angles of attack. Therefore, in general, modeling the

wing dihedral is advisable.

5.4 Cowl Inlet Inflow Velocity Effects on the Flow Field at the Propeller

Plane of the Cherokee 180 Airplane

Investigation of inlet inflow effects on the flow at the propeller
plane first performed in Chapter 4 for the twin-engine airplane was con-

tinued for the single-engine Cherokee 180 airplane. The study was done

te determine the sensitivity of flow at the propeller plane to changes in

cowl inlet inflow velocity.

Using the Cherokce cowl-fuselage-wing computer model, three computer

runs were made, each using a different value of cowl inlet inflow velo-
city ratio, F/V, for input. The first run used the baseline F/V wvalue of
0.2 (Configuration 1 in Table 2) which was previously measured in wind
tunnel tests of the Cherokee 180. In the second run, F/V was decreases
to 0.1 (Configuration 2 in Table 2).. F/V was increased to 0.4 in the
third run (Configuation 3 in Table 2).

In Figures 32a, 32b, and 32c, results obtained using the various

inlet inflow velocity ratios are compared for both low and high fuselage
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angles of attack. Radial distributions of axial vilocity obtained using
the three inlet inflow velccity ratios are presented in Figure 32a. For
both fuselage angles of attack, changing F/V is seen to produce signifi-
cant changes in axial velocity only at radii less than the local cowl i

inlet radius, positions which are directly upstream of the inlet. By

reducing F/V from the baseline value to a value of 0.1, the cowling be~ !
comes more like a bluff body at the inlet face, and axial flow blockage
at the inner radii on the propeller plane is increased. Conversely, by
increasing F/V from the baseline walue of 0.2 to a value of 0.4, axial
flow blockage at the propeller plane is greatly reduced. In fact, axial
flow blockage appears to decrease almost linearly with increasing F/V
at the inner radii. At radii beyond the cowl inlet radius, locaticns in
which the propeller blades are heavily loaded, changing F/V has little
effect on the axial velocity. In fact, changing F/V produces no discernible
change in axial velocity at locations bteyond the 43 percent radial position.
Radial distributions of flow angularity obtained using the various
inlet inflow velocity ratios are presented in Figures 32h and 32¢ for
fuselage angles of attack of two and ten degrees, respectively. Reasons
for the strange oscillatory behavior of the flow angularity distributions
at the inner radii seen in these two figures are given later in sub-
section 5.5.3. In both figures, it is seen that changes in F/V greatly
alter the flow angularity only at the inner radii directly upstream of
the cowl inlet. Flow angularity increases as F/V decreases. At radii
beyond the cowl inlet radius, where the propeller blades are most heavily
loaded, flow angularity is little affected by changes in F/V. Beyond the
50 percent radial position, changing F/V does not noticeahly change the

flow angularity in either of the Figures 32b or 32c.



wrveerneld

66

The major result observed in this study of inflow effects is that
changing the input value of inflow velocity ratio, F/V, greatly affects
the predicted flow field only at the region of the propeller plane dir-
ectly upstream of the inlet. This finding agrees with the computer-
predicted results presented in Chapter 4 for the twin-engine airplane
and agrees with the experimental results of Roberts and Yaggy (15).

The flow field at the hub region directly upstream of the cowl inlet
has much less affect on Lhe overall propeller vibration and performance
than does the flow field outside of the hub region. Therefore, any
inaccuracies in the flow field predictions at the hub region are not
extremely distressing. Thus, insofar as overall propeller ﬁerformance
and vibration are affected by the flow at the propeller plane, the choice
of inlet inflow velocity ratio, F/V, used to make the flow predictions
is not extremely critical.

To maximize flow prediction accuracy, the actual value of inlet
inflow welocity should be specified in the computer program input. But,
if the actual value of F/V is not known, an approximation of the value
should suffice,

5.5 Baseline Flow Predictions Over the Entire Propeller Plane of the
Cherokee 180 Airplane

5.5.1 Model used, purpose of presenting the predictions, and organization
of the data

In this final section, this chapter presents a series of figures
providing a complete description of the flow field over the entire pro-
peller plane of the Piper Cherokee 180 based on computer predictions,

The predictions were made using the baseline cowl-wing-fuselage (spinner-

off) computer model (Configuration 1 in Table 2).
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Effects of aft fuselage modeling, wing modeling, and cowl inlet
inflow velocity on the flow predictions at the‘propeller plane of the
Cherokee 180, a typical single-engine airplane, were examined in pre~
vious sections of this chapter, To obtain the most accurate flow pre-
dictions, it was shown that the computer model must: include the
aft fuselage paneling; include the wing (and dihedral); and employ
a value of inlet inflow velocity closely matching the expected in-flight
value,

Because the baseline Cherokee computer model incorporates the afore-
mentioned characteristics, it is the most realistic of the six model
configurations listed in Table 2, Thus, of all flow predictions from
the six models, those made using the baseline model are the most accurate.
Hence, the flow field predictions obtained using the baseline model were
selected for presentation in this sectien,

There is a two-fold purpose in presenting these computer predictioms.
First, the information is presented as a general example, of the flow field
at the propeller piane of an actual single-engine light aircraft. Second,
although there are no experimental data currently available for comparison
with. these predictions to guage the computer prediction accuracy, these
predictions are also presented to serve as a data base for use during
subsequent experimental phases of the research project of which the work
described in this thesis is but a part.

The series of flow predictions has been divided into two groups
presented in the following two subsections, the first including only the
azimuthal distributions of flow parameters, and the second including only

the radial distyibutions,
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5.5,2 Computed azimuthal distributions

Figures 33, 34, 35, and 36 present azimuthal distributions of flow
field parameters at respective radial positioms, r/R, of 0.35, 0.5, 0.75,
and 1.0 on the propeller plane of the Clierokee 180. Parts a, b, and ¢
of each of the four figures consist of distributions of axial velocity,
tangential velocity, and angle of rotational flow, respectively.

It is instructive to examine these predicted distributions by dis-
cussing a single flow parameter at a time, plotted on the same part of
each of the four figures, In this manner, all axial wvelocity distribu-
tions will be examined, then all the tangential velocity distributionms,
and last, all the distributions of angle of rotational flow.

First, consider the axial velocity distributions, Figures 33a, 34a,
35a, and 36a. At any fixed radius, the azimuthal variation of axial
velocity magnitude is seen to increase with increasing fuselage angle
of attack. However, the shapes of the velocity distributions at any par-
ticular radius are similar for all fuselage angles of attack. With in-
creasing radius, the axial velocity distributions flatten and deviate
less from the freestream velocity; thus, a reduction in body-induced flow
blockage occurs as radius increases,

For any fixed radius, Figures 33a, 34a, 35a, or 36a, minimum axial
flow blockage occurs in the region along the upper vertical centerline
(zero degree azimuth position) of the propeller plane for anyizuselage
angle of attack. This region extends up and away from the cowling. In
fact, at higher fuselage angles of attack, some axial flow acceleration

occurs at the upper vertical centerline region. This accelerated flow

region encompasses a larger azimuth range as radius increases,
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Regardless of radial position, axial flow blockage increases at :
azimuths away from the upper vertical centerline region. 1In Figures 34a,
35a, and 36a, greatest flow blockage occurs in a region centered about
the lower vertical centerline (180 degree azimuth position). At the 0.35
radial station, Figure 33a, two flow blockage pealts occur, one near the
120 degree azimuth position and the other nexr the 240 degree azimuth
position. At this inner radius, these two azimuth positions are directly
upstream of and nearest to the cowl surface, hence the peak flow blockage
at these locations. Note, however, that due to the installed angle of
sidetilt, Bp’ of the propeller plane to the right, the left half-plane
is positioned slightly farther from the cowl than is the right half-plane.
Thus, in Figure 33a, the flow blockage near the 120 degree azimuth (on
the right half-plane) is greater than that near the 240 degree azimuth.
Similarly, for all the distributions in Figures 34a, 35a, and 36a, maxi-
mum axial flow blockage occurs at azimuths on the right half-plane due
to the installed angle of sidetilt, Bp. ;

Second, consider the tangential velocity distributions, Figures 33b,
34b, 35b, and 36b. Ideally, as previously seen in Figure 23b, for an
isolated propeller plane with an inclination, Ao from “he free stream,
the tangential velocity varies sinusoidally with azimuth and does not vary
with radius, However, the tangential velocity distributions for the
Cherokee propeiler plane are distort@d sinusoids which also vary with
radius.

At the 35 percent radial position, Figure 33b, small oscillatory
irregularities exist on each of the tangential velocity plots. These
irregularities are primarily a result of cowl-induced effects, which

quickly diminish with increasing distance from the cowl. That these

-
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small irregulavities are cowl-induced is evident, since these irregu-
larities are not observed in the tangential velocity plots for the outer
radii, Figures 34b, 35b, and 36D,

At the upper and lower vertical centerline positions (zero and 180
degree azimuths, respectively), the tangential velocities would be zero
if the hub of the propeller plane was located on the fuselage plane of
symmetry and 1if there was no installed sidetilt, Bp’ of the propeller
plane. However, the hub of the Cherokee propeller plane is offset to the
right of the plane of symmetry due to the installed sidetilt, Bp’ of the
propeller plane. As a result of the offset, the upper and lower vertical
centerline positions are immersed in a cowl-induced right-directed side-
wash. Additionally, a right-directed sidewash only due to the right
sideward inclination, Sp’ of the propeller plane exists at the vertical
centerline positions. The net sidewash corresponds to positive and nega-
tive tangential velocity components at the zern degree and 180 degree
azimuths, respectively, noted in Figures 33b, 34b, 35b, and 36h.

Peaks in the tangential velocity profiles at the 35 percent radial
position, Figure 33b, are much steeper and sharper than the peaks in the
profiles at the other radii. At the 35 percent radial station, narrow
regions centered about the 75 and 285 degree azimuths, where the velocity
peaks occur, lie directly upstream of and are very close to the inlet
face of the cowl. Thus, cowl-induced effects are intense in the two
narrow regions. Hence, the peaks in the velocity profiles in Figure 33b
tend to be very sharp. However, at the 50, 75, and 100 percent radial
positions, there are no regions on the propeller plane which lie directly
upstream of or ag close to the inlet face of the cowl, Cowl-induced ef-

fects are small or negligible at these radfi. Hence, the peaks in the
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velocity profiles in Figures 34b, 35b, and 36b assume rounder, more
sinusoidal shapes.

For a fixed fuselage angle of attack, small shifts in the azimuthal
location of the tangential velocity peaks in Figures 33b, 34b, 35b, and
36b occur as radial position changes. Partly because of wing dihedral,
the azimuthal position of the maximum wing-induced flow changes as radius
changes. This dihedral effect, combined with the effect of decreasing
cowl-induced flow at larger radii, produces the azimuthal shifts in the
locations of the tangential velocity peaks as radius changes.

Also, for any fixed radius, shifts in the azimuthal location of the
tangential velocit peaks in Figures 33b, 34b, 35b, and 36b occur as
fuselage angle of attack varies. Apparently, changes in wing lift as
well as changes in cowl-induced flow with changing fuselage angle of
attack also contribute to azimuthal shifts in the locations of tangential
velocity peaks.

Upwash at an isolated inclined propeller plane is greatest along
the right and left horizontal centerlines (90 and 270 degreé azimuths,
respectively). Thus, as Figure 23b indicates, tangential velocity is
minimum at the 90 degree azimuth and maximum at the 270 degree azimuth.
for an isolated propeller plane. However, at the propeller plane of the
Cherokee 180, Figures 33b, 34b, 35b, and 36b, the peak minimum and peak
maximum tangential velocities are not azimuthally positioned 18Q degrees
apart and occur near but not on the horizontal centerline, This ié pri-
marily due to the position of the hub of the propeller plane relative to
the cowling.

Additionally, the peak magnitudes at the left half-plane and right

half-plane azimuth positions in each of the plots in Figures 33b, 34b,
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35b, and 36b are not equal. This inequality is due to the installed
propeller plane sidetilt angle, Bp' Due to Bp’ the region near the right
horizontal centerline is slightly closer to the airframe than is the region
near the left horizontal centerline. Upwash tends to be greater on the
right half-plane than on the left. Consequently, in each of the plotted
distributions, the peak positive tangential velocity is slightly larger

in magnitude than is the peak negative velocity.

Comparing Figures 33b, 34b, 35b, and 36b, it is seen that the cowl-
induced and wing-induced effects on the tangential velocity distributions
for a fixed fuselage angle of attack diminish with increasing radius. At
the 35 percent radial station, Figure 33b, wing-induced and cowl=-induced
upwash are greatest and create the larg-st peak magnitudes of tangential
velocity. As radius increases (Figures 34b, 35b, and 36b, respectively),
peak tangential velocity magnitudes decrease. The decrease is mainly due
to decreased cowl-induced upwash, though it also 1s due to the slight
decrease in wing-induced upwash at the outer radii. However, wing-induced
upwash remains a significant contributor to the tangential velocity varia-
tion even at the tip radius (Figure 36b). In Figure 36b, the wing-induced
effects are clearly evident in the tangential velocity distribution for
the fuselage angle of attack of four degrees. At this fuselage angle of
attack, the propeller plane itself has no vertical inclination from the
free stream, so the tangential velocity profile in Figure 36b for this
fuselage angle of attack contains no vertical inclination-indiaced contri-
butions. Hence, the sinusoidal variation ¢f this tangential velocity
profile is due almost entirely to wing-induced upwash at the 100 percent

radial position.



DA DR e Sante.

73

N

With the presence of the airframe-induced upwash, the peak magni-
tudes of tangential velocity at the propeller plane of the Cherokee 180
are significantly greater than the peak magnitudes which would exist at
the same propeller plane operating in isolation, out of the influences
of the airframe. The airframe-induced increases in tangential velocity
can be demonstrated by examples in which a comparison is made between the
tangential velocities at the propeller plane of the Cherokee 180, Figures
33b, 34b, 35b, and 36b and the tangential velocities at an isolated
propeller plane having the same inclination from the free stream,

Take for one example an isolated propeller plane having a geometric i
angle of attack, LY of six degrees from the free stream, Because ap is
-4 degrees and Bp is three degrees for the Cherokee propeller plane, Gg
for the Cherokee propeller plane is approximately six degrees when the
fuselage angle of attack, a, is ten degrees. Using the expression for
vtp in Figure 23b, the minimum and maximum tangential velocity ratios for
the isolated propeller plane with aq equal to six degrees are -0,1455 and
+0.1455, respectively. However, as seen in Figure 33b, 34b, 35b, and 36b
for a fuselage angle of attack of ten degrees, the corresponding Cherokee
propeller plane experiences peak magnitudes of tangential velocity ratio
far in excess of 0.1455 at all radii. The excesses are due enturely to
airframe-induced effects.

For a second example, consider an isolated inclined propeller plane
which is perpendicular to the free stream, That is, o is zero degrees.
For this isolated propeller plane, the tangential velocity is everywhere
equal to zero. The corresponding Cherokee propeller plane is the one for
which the fuselage angle of attack, a, is four degrees. In contrast to

the nonexistent tangential velocities on the isolated propeller plane,
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the plots in Figures 33b, 34b, 35b, and 36b for o equal to four degrees
indicate nonzero tangential velocities on the propeller plane of the
Cherokee, Though sidetilt, Bp’ contributes somewhat to these nonzero
tangential velocities, most of the nonzero contributions are due to the
airframe-induced flow.

Third and finally in this subsection, consider the azimuthal distri-
butions of angle'of rotational flow, 8, in Figures 33c, 34c, 35c¢c, and
36c. These figures present azimuthal variations of flow angularity cor-
responding to the previously examined axial and tangential velocity
variations.

As a reminder, 6 is a function of the ratio of local tangential to
local axial velocity as given in Equation (48) in Chapter 2 and is an
angle lying in the plane of the local section of a propeller blade rota-
ting in the propeller plane. For a given propeller rotational speed,
the local blade section angle of attack decreases as © increases as
Figure 8 indicates. 'Thus, Figures 33c, 34c, 35c, and 36c each qualita-
tively indicate the azimuthal variation in angle of attack of blade sec-
tions at the given radius on the Cherokee propeller operating in the
flowfield for a given fuselage angle of attack.

As indicated in Figures 33c, 34c, 35¢, and 36c for any fixed radius,
azimuthal variation of flow angulérity increases with increasing fuselage
angle of attack. These increases in azimuthal variation of flow angu-
larity are due to the combined effects of increased airframe-induced
upwash and increased propeller plane inclination resulting from increased
fuselage angle of attack.

Comparing Figures 33c, 34c, 35c, and 36c¢c, the azimuthal variation

of flow angularity increases as radial position decreases. Increasing
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cowl-induced upwash with decreasing radius is the primary cause of this
trend in the flow angularity distributions. Thus, in the plotted distri-
butions, a peak 6 magnitude as large as 35 degrees is observed in the
distribution at the 35 percent radial position for a fuselage angle of
attack of ten degrees. Conversely, a peak 6 magnitude as small us three
degrees is observed at the 100 percent radial position for a fuselage
angle of attack of two degrees.

As seen in Figures 33c, 34c, 35¢, and 36c, the combined effects of
cowl-induced flow, wing-induced upwash and propeller plane inclination
shift the azimuthal positions of the maximum and minimum 6 values on the
plotted distributions as changes in radial position and fuselage angle
of attack occur. For an isolated inclined propeller plane, experiencing
no airframe-induced effects, maximum and minimum 6 values would occur
exactly at the left and right horizontal centerlines, respectively (the
270 and 90 degree azimuths, respectively). On all the plotted 6 distri-
butions at the Cherokee propeller plane with the exception of the plots
in Figures 35c and 36¢c for angles of attack of two and four degrees, the
maximum and minimum 8 values, though shifting slightly in azimuthal posi-
tion, remain in the vicinity of the left and right horizontal centerline,
respectively.

However, in the distributions of 6 for fuselage angles of attack of
two and four degrees at the two outer radii, Figures 35¢ and 36c, the
maximum and minimum values of 6 do not occur near the horizontal center-
line. Instead, they occur near the upper and lower vertical centerlines,
respectively (near the zero and 180 degree azimuths, respectively). These
shifts of maximum and minimum 6 values to the vertical centerline posi-

tions are due to the effect of the installed sideward inclinationm, Bp,
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of the propeller plane. At the outer radii at fuselage angles of attack
of two and four degrees, the effect of sideward inclinationm, Bp, of the
propeller plane outweighs the effects of wing-induced upwash, cowl-induced
flow, and vertical inclination, ap, of the propeller plane.

The following example, involving an isolated inclined propeller plane,
shows the significance of the airframe-induced contribution to the flow
angularity at the propeller plane of the Cherokee. On an isolated propel-
ler plane having an inclination, 8g» of six degrees from the free stream,
a peak magnitude of 6 equal to six degrees occurs at the 90 and 270 degree
azimuths for any radius, as computed using Equation (54) in Chapter 4,

For a fuselage angle of attack, a, of ten degrees, the propeller plane
of the Cherokee has an inclinationm, Aqs from the free stream of approxi-
mately six degrees. Therefore, 6 values on the isolated propeller plane
having an inclination, Ac» of six degrees when compared with the & values
observed on the propeller plane of the Cherokee for a fuselage angle of
attack, a, of ten degrees will reveal the airframe-induced contribution
to the observed & values on the propeller plane of the Cherokee, For a
fuselage angle of attack, a, of ten degrees, distributions in Figures 33c,
34c, 35c, and 36¢c exhibit peak magnitudes of 6 equal to 34.7, 18.6, 12.7,
and 10.8 degrees, respectively. Each of these peak magnitudes is greater
than the six degree value existing on the isolated inclined propeller
plane colely because the airframe-induced flow at the propeller plane of
the Cherokee is present.

A striking illustration of airframe-induced effects on the flow at
the propeller plane of the Cherokee is obtained if the flow angularity
increase at the 75 percent radial position, evident in the foregoing exam-—

ple, is reexpressed in terms of an increase in the angle of attack of a
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propeller blade section operating at that radial position, Operating in
the propeller plane of the Cherokee, the propeller blade would experience
a maximum angle of attack when at the 112 degree azimuth. position, since
the minimum angle of rotational flow, -12,7 degrees, occurs at that
azimuth (refer to the distribution in Figure 35c for a fuselage angle
of attack of ten degrees). However, operating in the isolated inclined
propeller plane of the foregoing example, the blade section would eiperi-
ence a maximum angle of attack when at the 90 degree azimuth position
where the minimum angle of rotational flow, -6 degrees, occurs., Assuming
that in both prope}ler planes the propeller is operating at an advance
ratio of 1.2, the decrease in minimum 6 from -6 degrees to -12,7 degrees
indicates the following concerning change in blade section angle of at-
tack: when operating in the flow field at the Cherokee propeller planme,
Figure 35c, the blade section at the 75 percent radial station attains
a maximum angle of attack which is 16.96 degrees greater than the maxi-
mum angle of attack attained when the propeller operates in the isolated
inclined propeller plane. This increase of 16.96 degrees is entirely
due to the airframe-induced contribution to the flow angularity at the
propeller plane of the Cherokee.

This concludes discussion of the azimuthal distributions of the
predicted flow parameters at the propeller plane of the Cherokee, 1In the
following subsection, the radial distributions of the flow parameters are

discussed.

5.5.3 Computed radial distributions

Figures 37 through 44 present radial distributions of flow field
parameters at fixed azimuth positiomns, §, of zero through 315 degrees

in increments of 45 degrees, respectively, on the propeller plane of the
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Cherokee 180. Parts a, b, and ¢ of each figure consist of distributio=-
of axial velocity, tangential velocity, and angle of rotational flow,
respectively. Predictions for fivi values of fuselage angle of attack
are included in each figure.

Indicated in cach figure is the local radial position of the peri-
phery of the cowl inlet. The radius of the inlet varfes with azimuth,
because the inlet opening is elongated, and the hub of the propeller
plane is positioned to the right of the plane of symmetry. At any azi-
muth, the local cowl inlet radius is approximately equal to the maximum
local radial extent of the cowl inlet face, the region on the cowl sur-
face which is nearest to the propeller plane, Thus, the local radial
position of the inlet on the figures acts as a reference point, indica-
ting the radial extent of those cowl surfaces proximal to the propeller
plane.

Before discussing in detail each of the distributions of the various
flow parameters, the erratic behavior observed at the inner radii on
almost every plotted distribﬁtion in Figure 37a through 44c should be
discussed. In the hub region at radii less than the local cowl inlet
radius, the predicted distributions in all figures, with the exception
of Figure 37a, exhibit unexpectid characteristics. The axial velocity
profiles have strange peaks or oscillations in this region. The distri-
butions of tangential velocity and angle of rotational flow are extremely
oscillatory in the hub region.

This unexpected erratic nature of the predicted radial distributions
probably occurs for two reasons. First, for reasons previously given in
the first section of this chapter, the spinner geometry was omitted from

the final computer model used to make the flow predictions presented

e eh e
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throughout this chapter., Absence of the spinner probably acceunts for most
of the erratic nature of the distributions inside the ten percent radial posi-~
tion. However, on the actual Cher.okee 180, the regionon the propeller plane
at positions less than the ten percent radial position is buried within the
spinner. Thus, the predirted flow inside the ten percent radial position in
each of Figures 37a through 44c 18 nonexistant, and in reality should be ignored.

Second, possible shortcomings in the paneling mesh at the region of
the cowl inlet may have caused prolleéms in the predictions at the hub
region on the propeller plane. The maximum length of some of the panels
on the inlet face of the cowl in the computer model is greater than or
nearly equal to the length of rhe spacing between the propeller plane
and the cowl inlet face. Thus,the paneling mesh at the cowl inlet region
may be too coarse to produce accurate flow prediction in the hub region
of the propeller plane. The phenomenon of oscillatory flow distributions
at the hub region of the propeller plane due to excessive coarseness of
the paneling mesh was previously observed in the results pertaining to
flow upstream of a sphere in Chapter 3. The same phenomenon is probably
occurring in Figure 37a through 44c or the Cherokee 18Q,

Regardless of the causes, any inaccuracies in the flow predictions
out to a radial position of 20 to 30 percent on the propeller plane of
the Cherokee are not of extreme concern, because a propeller hlade is -
not heavily loaded at these inner radii, Inaccuracies in the flew pre-
dictions at these inner radii would have a minimal impact upon loading
and vibration of propeller blades operating in the flow field presented
in Figures 37a through 44c. Note, the foregoing discussion on the erratic
distributions at the inner radii is also applicable to the distributions

in Figures 30a through 32c.
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In the remainder of this subsection, as was done in the previous
subsection for the azimuthal distributions, the predicted radial distri-
butions in Figures 37 through 44 will be ¢xamined in detail. In turn,
the group of axial velocity profiles, the group of tangential velocity
profiles, and the group of profiles of angle of rotational flow will be
discussed.

First, consider the radial distributions of axial velocity plotted
in part a of each of Figures 37 through 44. In each of these figures,
airframe~induced blockage of axial flow is plainly evident, This block-
age 1s greatest at radial positions directly upstream of the cowling,
radii less than the local cowl inliet radius, with axial velocities as low
as 20 to 35 percent of the free stream velocity existing there. At all
azimuths, the airframe~induced blockage of axial flow diminishes rapidly
as radius increases, since the blockage is nearly entirely due to the
fuselage (particularly the cowi). Little wing-induced blockage occurs.

At azimuths of zero, 45, and 315 degrees (Figures 37a, 38a, and 44a,
respectively) on the upper half-plane, the cowl-induced axial flow block-
age diminishes more radily than at any other azimuth. Because the hub of
the Cherokee propeller plane is situated upstream of the upper portion of
the cowl inlet face, little of the propeller plane at these three azimuths
lies directly upstream of any cowl surfaces. Hence, cowl-induced blockage
is only severe at positions less than the 20 to 25 percent radial posi-
tions in Figures 37a, 38a, and 44a. Beyond the 25 percent radial posi-
tion, axial velocities in these three figures quickly return, asymptoti-
cally, to the free stream value. In fact, at highey fuselage angles of
attack, axial velocity in Figures 37a, 38a, and 44a is accelerated to a

value greater than the free stream velocity at regions just beyond the
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cowl inlet radius. However, the axial velocity returns to the free i

stream value as radius continues to increase.

Because the propeller plane has an installed inclination, Bp, to
the righi, the 45 degree azimuth position is rotated toward the cowl and
wing, while the 315 degree azimuth position is rotated away from the
cowl and wing. Consequently, the cowl-induced flow blockage at the inner
radii in Figure 38a is greater than the blockage at the inner radii in
Figure 44a. Conversely, at the outer radii, flow blockage is less in
Figure 38a than in Figure 44a. This is due to the existence of slightly
higher wing-induced axial flow at the 45 degree azimuth than at the 315
degree azimuth as a consequence of the sideward inclination, Bp’

At azimuths of 135, 180, and 225 degrees (Figures 40a, 4la, and 42a,
respectively), on the lower half-plane, cowl~induced axial flow blockage
diminishes much less rapidly with increasing radius than it diminishes
at azimuths on the upper half-plane, previously examined. Because a
large area of the lower half-plane lies directly upstream of the cowl,
significant cowl-induced flow blockage occurs over the entire radius at
these three azimuths with a three to seven percent reduction of axial
velocity below the free stream value remaining at the tip radius in each
of Figures 40a, 4la, and 42a. Though some wing-induced axial flow block=-
age occurs at the outer radii in these three figures, most of the blockage
at the outer radii is cowl-induced. Also, in contrast to the behavior
previously noted at azimuths on the upper-half plane, axial flow blockage
at azimuths of 135, 180, and 225 degrees, on the iower half-plane, in-
creases with increasing fuselage angle of attack, o,

Due to the instai.ed propeller plane inclination, Bp, to the right,

the 135 degree azimuth position is rotated toward the cowl and wing,
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while the 225 degree azimuth position is rotated away from the cowl and
wing. Consequently, axial flow blockage at the 135 degree azimuth posi-
tion, Figure 40a, is slightly greater than the blockage at the 225 degree
azimuth position, Figure 42a, at any particular radius for any fuselage
angle of attack, a.

At the 90 and 270 degree azimuth positjions (near the right and left
horizontal centérlines, respectivels, of the propeller plane) in Figures
39a and 43a, respectively, cowl-induced axial flow blockage is smaller
in magnitude and lesr extensive (radially) than the blockage at the three
azimuths on the lower half-plane, previously examined. In Figures 39a
and 43a, cowl-induced axial.flow reduction is significant (more than
five percent of the free stream velocity) out to approximately the 70
percent radial position. At the tip radius in Figures 3%a and 43a, the
cowl-induced reduction in axial velocity is not more than two percent of
the free stream velocity.

At any particular radius, axial flow blockage at the 90 degree
azimuth position, Figure 39a, is slightly greater than the blockage at
the 270 degree azimuth position, Figure 43a. The greater blockage near
the right horizontal centerline is a consequence of the installed pro-
peller plane inclination, Bp’ which causes the 90 degree azimuth posi-
tion to lie closer to the cowl than does the 270 degree azimuth position.

As Figures 39a and 43a also show, the axial velocity profiles near
the right and left horizontal centerlines of the propeller plane are
little affected by changes in fuselage angle of attack, a.

Second, consider the radial distributions of tangential velocity
plotted in part b of each of Figures 37 through 44. As previously ob-

served in the radial distributions of axial velocity, airframe-induced
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tangential velocity contributions also decrease most rapidly with in-

s e 0

creasing radius at the zero, 45, and 315 degree azimuths (Figures 37b, '
38b, and 44b, respectively), on the upper half-plane., At azimuths of
90, 135, 180, 225, and 270 degrees (Figures 39b, 40b, 41b, 42b, and 43b,

respectively), 1ying near the horizontal centerline or in the lower half

plane, sirfreme-induced tangential velocity contributions decrease less

rapidly with increasing radius than at the three azimuths on the upper

half-plane. At azimuths near the horizontal centerline and on the lower
half-plane, fairly large alrframe-induced tangential velocity contribu-

tions are observed as far outboard as the 60 percent radial position and ;
beyond. Conversely, at azimuths of zero, 45, and 315 degrees, ailrframe-

induced contributions (predominantly cowl=induced contributions) are

fairly large only at positions inboard of the 60 percent radial positiom.

Large airframe-induced tangential velocity contributions are more
extensive on the lower half-plane than on the upper half-plane for two
reasons. One reason is that most of the frontal area of the cowl lies
directly downstream of the lower half-plane, so large cowl-induced ef-
fects persist at outer radii. The other reason is that wing-induced
upwash, which is strong at all radial positions, heavily contributes to
the tangential velocties at the 90, 135, 225, and 270 degree azimuth
locations.

Ideally, tangential velocity would be nonexistant along the upper
and lower vertical centerlines (zero and 180 degree azimuths, respective-
ly) if the hub of the propeller plane was located on the fuselage plane
of symmetry and if there was no installed sideward inclination, Bp’ of
the propeller plane. However, the hub of the propeller plane of the

Cherokee is located slightly to the right of the fuselage plane of
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symmetry, and an inclination, gp, to the right does exist. Hence, the
vertical centerline of the propeller plane lies in a region at which a
small right-directed sidewash exists, This sidewash fleld yields small
positive tangential velocities at the zero degree azimuth position (Fig-

. ure 37b) and yields small nugative tangential velocities at the 180 degree
arimuth pesition (Figure 41b). In Figure 37b, the tangential velocity
distribution at the region inboard of the 25 percent radial position is due to
the cowl-induced sidewash, a consequence of the location of the hub of the
propeller plane. The nearly constant distribution outboard of the 25 per-
cent radial position is largely due to the sidewash component created by
the installed sidetilt, Bpa In Figure 41b, tangential velocity resulting
from cowl-induced sidewash persists over nearly the entire radius. The
nearly constant distribution of velocity noted at the tip radius is a
result of the installed sidetilt, Bp, of the propeller plane.

At azimuth positions of 45, 90, and 135 degrees (Figures 38b, 39b,
and 40b, respectively), on the right half-plane, negative tangential
velocities are produced by a positive upwash field. Hence, with increas-
ing fuselage angles of attack, o, larger negative tangential velocities
occur at each radius at these three azimuths, because wing-induced and
propeller plane inclination-induced upwash contributions increase with
increasing o. Conversely, at azimuth positions of 225, 270, and 315
degrees (Figures 42b, 43b, and 44b, respectively), on the left half-plane,
positive tangential velocities are produced by a positive upwash field.
Hence, tangential velocities increase with increasing fuselage angle of
attack, a, at each radius at these three azimuths.

Upwash makes a maximum contribution to tangential velocity along

the horizontal centerline of the propeller plane, and it makes no con-
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tribution to tangential velocity along the vertical centerline. Hence,

as comparison of part b of each of Figures 37 through 44 illustrates,

the greatest change in tangential velocity per unit change in fuselage

angle of attack, a, at any particular radius occurs at the 90 and 270

degree azimuths, which are nearest to the horizontal centerline of the
propeller plane of the Cherokee.
Third and finally, consider the radial distributions of angle of

rotational flow, 6, plotted in part c of each of Figures 37 through

44, In each of these figures, the flow angularity is greatest in the
hub region at radii less than the local cowl inlet radius at any azimuth,
Reasons for the oscillatory, erratic nature of each of the & distribu-
tions in the hub region were previously stated at the beginning of this
subsection, That negative values of 8 exist on the right half-plane
(azimuths less than 180 degrees) and positive values of 8 exist on the
left half-plane indicates the presence of upwash over the entire propel-
ler plane of the Cherokee at all fuselage angles of attack for which
flow predictions are presented.

Comparing all the plots of 8 in part c of each of Figures 37 through
44, it is seen that flow angularity is generally slightly greater on the
right half-plane than on the left half-plane. On the right half-plane,
a magnitude of 8 as lirge as 58.5 degrees is predicted (at the 135 degree
azimuth position for a fuselage angle of attack, a, of ten degrees). On
the left half-plane, however, a magnitude of 6 only as large as 53.5
degrees is predicted (at the 270 degree azimuth position for a fuselage
angle of attack, a, of ten degrees). That flow angularity is slightly
greater on the right half-plane than on the left half-plane is attribu-

table to the existence of the installed right-directed sidetilt, Bp' of
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the propeller plane of the Cherokee. Due to Bp, the right half-plane

T L T P Y T e 152

lies slightly closer to the airframe than the left half-plane does.
Hence, airframe-~induced contributions to flow angularity are larger on
the right half-plane of the propeller fhan on the left half-plane.
Figures 37c and 4lc clearly show the effect of the installed side-
tilt angle, Bp’ of the propeller plane on the flow angularity at the
upper and lower vertical centerline azimuths (zero and 180 degrees),
respectively., At the zero degree azimuth position, cowl-induced flow b
angularity is evident out to the 40 percent radial position and slightly
varies with changes in fuselage angle of attack, a. This slight varia-
tion occurs because the hub of the propeller plane is positioned slightly
to the right of the fuselage plane of symmetry in a region of cowl-induced
sidewash which slightly changes as fuselage angle of attack, a, changes.
However, wing-induced flow angularity is negligible at this azimuth,
Hence, beyond the 40 percent radial position, airframe-induced flow
angularity is insignificant, and © remains fixed at three degrees for
all fuselage angles of attack due to the installed propeller plane side-
tilt angle, Bp’ of three degrees to the right. Similarly, airframe-
induced contributions to 8 at the 180 degree azimuth position (Figure
41c) are negligible beyond the 85 percent radial position. Hence, at
this radial position, 6 remains fixed at -3 degrees, commensurate with
the three degree value of propeller plane sidetilt angle, Bp’ to the
right.
At the six azimuth positions not on the vertical centerline of the
propeller plane (Figures 38c, 39c, 40c, 42c, 43c, and 44c), flow angu-
larity increases with increasing fuselage angle of attack, a«, at any

radius. At the inner radii at these azimuths, an increase in fuselage
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angle of attack, a, of two degrees produces flow angularity increases
greatly in excess of two degrees, because extra flow contributions in-
duced by the cowl exist at these radii. At the outer radii, however, a
two degree increase in fuselage angle of attack, a, produces flow angu-
larity increases of only 1.5 to 3.5 degrees, because only the wing-
induced upwash and vertical propeller plane inclination;induced upwash
are important contributors to flow angularity at these radii. Of course,
the wing-induced upwash and vertical propeller plane inclination-induced
upwash make the greatest contribution to angle of rotational flow, 6, at
the horizontal centerline azimuths., Of all the azimuth positions for
which results are plotted, consequently, it is at the 90 and 270 degree
azimuth positions. (Figures 39c and 43c), nearest to the horizontal cen-
terline of the propeller plane of the Cherokee, that the increase in flow
angularity per unit increase in fuselage angle of attack, a, at the tip
radius is greatest.

The significance of the wing-induced contribution to flow angular- j
ity (0) may be discerned at the tip radius at the 90 and 270 degree
azimuths (Figures 39c and 43c, respectively) by comparing the flow field
at the propeller plane of the Cherokee for a given vertical propeller
plane inclination from the free stream with the flow field at an isolated
propeller plane having nearly the same vertical inclination from the free
stream. Due to the combined effects of the installed inclination angles,
ap and Bp’ the propeller plane of the Cherokee has a vertical inclination,
Qas from the free stream which is approximately four degrees less than
the corresponding fuselage angle of attack, a. Therefore, the plotted
flow results at the propellzr plane of the Cherokee for a specified value

of fuselage angle of attack, @, should be compared with flow results at ;
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an isolated propeller plane having a vertical inclination, s from the
free stream equal to a - 4 degrees. Then the flow results .t the outer !
radii of the propeller plane of the Cherokee will differ from the results
at the isolated propeller plane by an amount only due to the wing-induced
contribution. At the 90 degree azimuth position on the isolated propel-

ler plane for vertical inclinations, ag» from the free stream of -2, zero,

two, four, and six degrees, the angles of rotational flow, 6, are con-

stant at all radii and are equal to 2.0, 0.0, -2.0, -4.0, and -6.0 degrees,
respectively (computed using Equation (54) in Chapter 4). However, at %
the tip radius at the 90 degree azimuth position on the propeller plane

of the Cherokee (Figure 39c) for the corresponding fuselage angles of

attack, a, of two, four six, eight, and ten degrees, the angles of rota-

tional flow, 6, are equal to 0.7, -2.0, =4.5, -7.2, and -9.8 degrees,

respectively. Comparing the results at the two propeller planes, the

discrepancy between the set of values of 6 for the isolated propeller

plane and the set of values for the propeller plane of the Cherokee is

solely due to the wing-induced contribution to the flow angularity at the

propeller plane of the Cherokee for each fuselage angle of attack, a. A

similar comparison can be made for the 270 degree azimuth position. At

the 270 degree azimuth position on the isolated propeller plane for

vertical inclinationms, ass from the free stream of -2, zero, two, four,

and six degrees, the angles of rotational flow, 6, are constant at all

radii and are equal to -2.0, 0.0, 2.0, 4.0 and 6.0 degrees, respectively.

However, at the tip radius at the 270 degree azimuth on the propeller

plane of the Cherokee (Figure 43c) for the corresponding fuselage angles

of attack, a, of two, four, six, eight, and ten degrees, the angles of

rotational flow, 6, are equal to -0.7, 1.8, 4.6, 7.1, and 9.6 degrees,
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respectively. Comparing the results at the two propeller planes at the
270 degree azimuth, the discrepancy between the two sets of values of
is solely due to the wing-induced contribution to the flow angularity at
the propeller plane of the Cherokee. The foregoing examples for the two
azimuth positions indicate that the wing-induced contribution to the flow
angularity is substantial.

It is apparent from the series of figures presented in this sub-
section and the preceding subsection that the flow field at the propeller
plane of the Cherokee 180 airplane is, indeed, very nonuniform. Obviously
when a propeller is operating in this flow field, the spanwise (radial)
loading on the blades,is'greatly altered, and substantial azimuthal vari-
ations in blade loading occur., Vibratory stresses in the blades certainly
are increased because of this nonuniform flow field. .This concludes the
discussion of the.baseline flow field predictions at the propeller plane

of the Cherokee 180 airplane.



90

Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

A computer program has been developed which computes the three-
dimensional, steady, incompressible, inviscid, potential flow field at
a propeller plane (propeller removed) positioned with any installed in-
clination upstream of an arbitrary airframe geometry.

Based upon the results of the flow field predictions made for the
sphere, twin-engine airframe, and single-engine Piper Cherokee airframe
geometries, four conclusions can be drawn regarding the overall capabili-
ties of the computer program. Seven more conclusions regarding the
nature of the flow at the propeller plane and regarding computer program
input modeling for increased accuracy of the flow predictions at the
propeller plane can also be made. The latter seven conclusions are based
upon all the flow prediction results, in general, and upon the results
of the parametric studies, in particular.

1. For a simple wingless geometry such as a sphere, the computer
program yields excellent predictions of the surface flow. Also, accurate
predictions of the flow field at a propeller plane upstream of such a
geometry are obtained using the program.

2. For a typical twin-engine aircraft configuration, the program
provides very good predictions of velocity profile shapes at the propeller
plane despite the deletion of aft and remote fuselage and nacelle surfaces
from the computer model used for the computations. Reasonable predictions
of velocity magnitude at the propeller plane are obtained using the pro-
gram for such a configuration based on comparisons with experimental data.

3. For a typical single-engine aircraft configuration, the program

provides reasonable predictions of the flow field at the propeller plane.
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This conclusion. is based upon judgements of the quality of the single-
engine Cherokee aircraft predictions which are extrapolations from the
observed quality of the twin-engine afrcraft predictions, However, the
absence of experimental data for comparison precludes making more speci-
fic conclusions regarding the computer program capabilitiles for single-
engine aircraft,

4. 1In general, for the typical airframe geometries considered, the
flow field predictions at any propeller plane obtained from the computer
program are more accurate at the outer radii than at the inner radii.
There is room for improvement in the computer predictions at the inner-
most (hub region) radii.

5. Flow fields at propeller planes upstream of typical airframe
geometries do, indeed, exhibit a high degree of flow angularity and
spatial nonuniformity as the plotted flow predictions for the twin-engine
and single-engine configurations clearly illustrate,

6. Though pure inclination of the propeller plane alone is an
important contributor to the angularity and azimuthal nonuniformity of
the flow at the propeller plane, the airframe~induced effects are equally
important or even more important contributors to the flow angularity
and are much more important contributors to the spatial nonuniformity
of the flow field. This conclusion is based upon the comparisons between
the propeller plane flow field results obtained airframe-absent and the
corresponding results obtained airframe-present for both the single~
engine and twin-engine aircraft configurations.

7. The wing must be included in the computer model if greatest
prediction accuracy from the program is to be achieved. This conclusion

is based on the computer predictions for the typical aircraft configura-
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tions which indicate the wing significantly contributes to the flow field
at the propeller plane, particularly in the region near the horizontal
centerline.

8. The actual wing dihedral should always be incorporated in compu-
ter models tc help maximize the accuracy of the flow predictions. This
conclusion can be inferred from the observation at the propeller plane
for higher fuselage angles of attack that flow predictions made using the
actual wing dihedral appreciably differ from the flow predictions made
using no dihedral,

9, For maximum accuracy of the flow field predictions at the pro-
peller plane, all of the remote component and aft fuselage geometries must
be included in the paneling input model to the computer program. How=
ever, fairly good results, which are but a few percent less accurate, can
be obtained should such remote and aft geometries be excluded from the
panel model. This is revealed by the studies of aft fuselage effects
conducted for the simple arbitrary fuselage configuration and for the
single-engine Cherokee aircraft configuration. The benefits of computing
cost savings realized by deleting such geometry components from the
computer model may offset the disadvantages of the slight decrease in
flow prediction accuracy which results. The user may need to strike a
compromise between computing costs and prediction accuracy when deciding
on the size and complexity of paneling models to use.

10. Given the airframe components to be paneled in the computer
model, the accuracy of the flow predictions depends on the distribution
and sizing of surface panels in the model. The paneling mesh must be
extremely fine and dense over the airframe surfaces immediately aft of

the propeller plane in order to improve the accuracy of the flow pre-

dictions at the propeller plane, particularly in the hub region.

']

S
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11, 1If the true inlet inflow velocity for program input is not
known, an approximate value is satisfactory and its use will have only
a minimal impact on the overall accuracy of the flow predictions at the
propeller plane, This conclusion is inferred from the observation that
changes in the specified inlet inflow velocity ratio induce noticeable
changes in the propeller plane flow field only at the small hub region
directly upstream of the inlet. Thus, any inaccuracies in the predicted
flow field due :okthe input of an approximate value of inlet inflow
velocity ratio would have only a very small or negligible impact on the
overall performance of a propeller operating in the flow field.

Recommendations for future work include the following eight items.

1. Experimental measurements of the flow field at the propeller
plane of the Piper Cherokee PA-28-180 aircraft should be obtained and
compared with baseline flow field predictions from the computer program
which have been presented in this thesis. Such comparisons would pro-
vide a definitive check of the program capabilities for typical single-
engine aircraft configurations. Wind tunnel testing would be the best
approach, as flow field data at the propeller plane (propeller removed)
could be gathered and directly compared with the existing baseline pre-
dictions. Flight testing, however, could not be done propeller-off but
could be done power~off and would require making measurements at a plane
just downstream of the actual propeller plane, If flight test data were
the only kind obtainable, computer predictions for comparison could be
made at the plane, just downstream of the actual propeller plane, where
the flight test data were taken.

2. The iterative solution method currently employed by the flow

prediction program, Jumper (33), should be replaced by a direct matrix
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solution method, Such a program modification would completely eliminate
solution divergence problems such as those which were encountered during
this study when attempts were made to model concave inlet surfaces, aizr--
frames including spinners, and remote components of the twin-engine air-
frame geometry. This program modification could be easily implemented
by replacing the current subroutines SOLVE and SOLSYM, both of which use
Gauss-Siedel iteration to solve a system of equations, by new subroutines
of the same names which perform a direct matrix solution process such as
matrix inversion or Gaussian elimination. However, as a result of this
change, a larger computer having more memory would be required to run
the program.

3. As the generation of the paneling input and checking for paneling
errors is the most tedious task faced by a user of the flow predicrion
program, a graphics package capable of generating three-dimensional per-
spective drawings of the input paneling geometry should be added to the
current version of the program. Such a graphics package would greatly
facilitate the process of finding #nd correcting paneling errors, a pro=-
cess which must be performed before the comparatively costly flow pre-
diction steps of the computer program can be allowed to proceed.

4, TFlow field predictions for the Piper Cherokee PA-28-180 model
with the input spinner paneling included should be obtained. Comparisons
of these predictions with the currently existing baseline predictions
would indicate if inclusion of the spinner geometry is necessary for
improved accuracy of flow field predictions in the hub region of the
propeller plane. With the spinner included as a discrete body in the in-
put paneling network for the Cherokee 180 airplane, all predictfon attempts

using the current version of the program have, to date, failed due to
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iterative solution divergence. However, solutions for this airframe-
spinner combination could be successfully obtained by direct solution
through the use of the program modified as described in Recommendation'
2, Alternatively, if the airframé-spinner model were modified by
fairing the spinner and cowl geometries to form a single body, the cur-
rent version of the program could be used and iterative solution diver-
gence probably would not occur,

5. Further parametric studies should be done to determine the ef-
fects on the propeller plane flow field due to changes in the propeller
plane inclination angles, ap and Bp; changes in the spacing between the
cowl and propeller plane or between the nacelle and propeller plane; and
changes in the lateral and vertical positions of the propeller plane with
respect to the airframe. Such studies could e done with either the
twin-engine airplane configuration or the single-engine Cherokee airplane
configuration. Also, these studies could be done by using either the
current version of the flow prediction program or a version modified as
discussed in Recommendation 2,

6. The current version of the flow prediction program, Jumper (33),
which solves for the flow field at the propeller plane (propeller re-
moved), should be modified to allow the inclusion of propeller interactior
effects in solving for the airframe-induced flow field at the propeller
plane. The theory underlying the current flow prediction program permits
the existence of an onset velocity field, impinging the body, which is
spatially varying provided the velocity field is steady. By introducing
a known quasi-steady propeller wake (propeller-induced flow field) as
part of such a spatially varying onset velocity field impingirig the panel

model of the airframe in the computer program, the resulting flow field



96

predictions at the propeller plane would incorporate propeller inter-
action effects. Though the current computer code does not accomodate

a spatially varying onset velocity field, the program could be changed
fairly easily to do so by modifying the boundary condition equations
(generated by subroutines COEFIC and COFSYM) and by modifying the program
input (subroutine INPUT)., This would be the next step toward addressing
the mutual airframe-propeller interaction problem.

7. In conjuﬁction with Recommendation 6 for incorporating propeller
interaction effects in the solution of the alrframe-induced flow field
at the propeller plane, a computer program should be obtained or written
which will generate a quasi-steady wake downstream of a propeller having
an arbitrary nonuniform aerodynamic loading. This program would generate
the spatially nonuniform onset velocity field for use as input to the
propeller plane flow field prediction program mecdified as discussed in
Recommendation 6. Perhaps a vortex lattice méthod could be employed by
such a program.

8. After modifying the flow predictior program to accomodate pro-
peller interaction effects (Recommendation 6) and after developing a
propeller wake prediction program (Recommendation 7), the problem of
computing the propeller plane flow field, prupeller loads, and propeller
performance for a complete airframe-propeller combination including mut-
ual propeller-airframe interference effects should be addressed. One
possibility for addressing this problem is an iterativescheme utilizing
the propeller performance prediction program, Aljabri (32); the flow
prediction program, Jumper (33), modified to include propeller interac~
tion effects as described in Recommendation 6: and a propeller wake
predizstion program, Recommendation 7. Such an iterative scheme might

include the following steps (a through e).




a. PFor the airframe immersed in a uniform onset velocity
field (no propeller interaction effects), compute the airframe-
induced flow field at the propeller plane (propeller removed)
as has been done in this thesis, but use the modified flow
prediction program.

b. Using the resulting nonuniform propeller plane flow
field from Step a for input, compute the propeller perform-
ance and loading using the program of Aljabri (32) and compute
the quasi-steady propeller-induced flow field using a propeller
wake prediction program,

c. Create a quasi-steady, spatially nonuniform onset
velocity field by incorporating the propeller wake results
from Step b. Then using this nonuniform onset velocity field
for input to the modified flow prediction program, recompute
the flow field at the propeller plane, This time, however,
propeller interaction effects will have been incorporated in
the flow field solution.

d. Repeat Stzp b, but use for input the resulting pro-
peller plane flow field from Step c. The results would con-
sist of the computed propeller performance, loading, and wake
with mutual propeller-airframe interaction effects entering
into the solutions. Repeat Step ¢, but use for input the
results obtained from the repeat of Step b. The result would
be the computed propeller plane flow field with mutual pro-
peller-airframe interaction effects entering into the solution.

e. Repeat, in an iterative fashion, the cycle described

in Step d until some desired convergence criteria are met.
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Completion of the iterations would yield the final propeller

plane flow field; the airframe surface flow field; and the

propeller performance, loading, and wake results for the air-

frame-propeller combination with mutual propeller-airframe
interaction effects accounted for.

Developing such an iterative procedure would go a long way toward
achieving the ultimate goal of this ongoing NASA-spomscred projest of
which the work deécribed in this thesis is but a part. That goal is to
develop the capability of designing aircraft propellers attuned to pos-
sess optimum performance, vibration, and ncise characteristics when

operating in combination with a specific airframe configuration.
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Appendix A

BODY SURFACE PANEL CALCULATIONS

Presented here is the method of partitioning the body surface into
a network of N panels. Also, formulas for normal unit vector components
and panel surface areas are presented. These methods and formulas follow
the techniques used by Woodward, Dvorak, and Geller (27). Additionally,
formulas for panel control point coordinates are given. All point coor-

dinates are relative to a single body-fixed Cartesian axis system.

A.l Partitioning of the Body Surface

A body~fixed Cartesian coordinate system is defined with positive x
toward the front of the body, positive y to the right, and‘positive z
downward. In general, the origin of the coordinate system may be leccated
anywhere within or outside the body. However, for a body with left-right
symmetry, the origin must lie somewhere on the plane of symmetry if the
advantages of body symmetry are to be obtained.

The body is divided into a series of cross sections of a3 comstant or
nearly constant x coordinate.. Cross. sections are specified and numbered
in sequence from front to aft on the body.

The Jth cross section is defined by NP discrete periphery points.

As Figure A.lb shows, for the general nonsymmetric body cross section,
all NP points are specified in sequence beginning near the top of the
section and moving clockwise zvound the section, as viewed toward the
rear of the body, ending with a repeat of the first point.

For the special symmetric case, Figure A.la, in which all cross
sections are symmetric about plane y = 0, only (NP + 1)/2 points need be

specified in sequence starting at the top centerline and moving around
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the left (-y) side of the section to the bottom centerline. The computer
program automatically generates the image points on the other side of the
plane of -symmetry. However, if body sideslip 1is nonzero, a symmetric
body must be input in the same manner as a nonsymmetric body.

Between adjacent cross sections, a ring of panels is generated by
pairing corresponding points on each section. For example, the first
and second points on section J are paired with the first and second points
on section J + 1 to produce the first panel on the ring. Generally,
panels are four-sided, but triangular panels are created by repeated
descriptions of a single periphery point. The sequence of specifying
points is such as to ensure that normal unit vectors, calculated below,
will be outwardly directed from the body.

This systematic partitioning produces a network of N panels over

the entire body (N/2 panels on each side of a symmetric body).

A.2 Panel Normal Unit Vector Components

Figure A.2 shows a typical panel created between cross sections J
and J + 1. Identify the input corner points by 1, 2, 3, and 4 as shown

>

on the figure. Define the two diagonal vectors, Bl and §2, given by

-> -> - >
Bl = (x4 = xl)i + (y4 - yl)j + (z4 - zl)k (A.1)
and
- <> ->
32 = (x3 - xz)I + (y3 - y2)j + (23 - zz)k . (A.2)
> > - .
The vector cross product, (B1 x BZ)’ produces a vector, N, which is

directed outward from and normal to the panel and is given by

F=nT+nNF+nk , (&.3)
x y z

i v
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where the components are
N, = [(y, = ¥) (25 = 2,) = (y53 = ¥,)(z, - 2], (A.4a)
’ Ny = [(x3 - x2)(24 - zl) - (x4 - xl)(z3 - zz)] , (A.4b)
and
N, =[x, = %) (yy = y,) = (%3 =%,)(y, =¥, (A.4e)

and where the magnitude is given by

1/2

%] = (Nx2 + Nyz + sz) (A.5)

Finally, the outward drawn normal unit vector, ;, is vector ﬁ divi-
ded by its own length, Iﬁl . Thus, in terms of the corner points, D is

given by

-+ >
n = an + ny? + nzk (A.6)

with components given by

n =—, (A.7a)

n =—L , (A.7b)
and

n = —%, (A.7¢)
where N_, Ny, N,, and lﬁ] are given in Equations (A.4) and (A.5).

A.3 Generation of a Flat Quadrilateral Panel

In general, the four input corner points will not be coplanar. It
is necessary to have a flat panel for which the surface area is calcula-
ble. Define the plane of this flat panel as one which is orthogonal to
unit vector n and contains a point (§, §, ) whose coordinates are the

average of the four input points. Thus,

gl g s e b
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fmiix, +x, +x,+x,) (A.8a)
471 2 3 4 ’ '
2 1
9 = Z(yl +y, + vyt yé) ' (A.8b)
and
2 = %{zl + z, + zq + ZA) . (A.8¢c)

All input corner points 1, 2, 3, and 4 are of equal distance, d,
from this plane. Distance d is given by
d = [n (% - %) + ny(y - y,) + 10, - z2>l , (A.9)
where &, $#, and 2 are given in Equation set (A.8).

Input points 1, 2, 3, and 4 are projected distance d onto the new

plane. Denote the new coplanar point coordinates as xx, yy, and zz.

Then
((xk - nxd) , k=1or 4
= o (Anloa)
“k \(xk + nxd) , k=2o0r 3 3
'(Yk - nyd) , k=1lori4
¥y, d (A.10Db)
L(Yk + nyd) > k=2 or 3 ’
and

(zk - nzd) , k=1orié
zz, = (A.10¢c)
(zk + nzd) , k=2o0r3

are the new coplanar points lying on the corners of the flat quadrilateral

element. TFigure A.3 shows this quadrilateral.

A.4 Surface Area of a Quadrilateral Panel

Figure A.4 shows the flat quadrilateral element with the new corner

points given by Equation set (A.10). The sides of the quadrilateral have
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lengths RS, ST, 'TU, and UR, and the diagonals have lengths RT and SU.
Angles at corners 1 and 3 are denoted by aa and BB, respectively.

In terms of the corner point coordinates, these six lengths are

given by
1
RS = [(xxl - xx3)2 + (yyl - yy3)2 + (zz1 - zz3)2]‘/2 , (A.1lla)
ST = [Goxy - 3,02 + (39, - yy )2 + (ezg - 22P12 , (a110)
U = [(xx4 - xx2)2 + (yy4 - yy2)2 + (zz4 - 222)211/2 , (A.1lle)
R =[Gy - )2 4 Gy, - vy + (ezg - 22212, A1)
RT =[x, - xx)? + (53, - yy)2 + (22, - 22212, (A120)
and
- 2 2 2,1/2
Su [(xx4 - xxl) + (yy4 - yyl) + (zz4 - zzl) ] . (A.11f)
Using the cosine law of triangles, the angles are given by
2 2 2
-1,RS" + ST™ -~ RT
ac = cos | 7 (RS) (5T) ] (A.12a)
and
2 2 2
-1,UR” + RS™ - SU
BB = cos | 3 (OR) (RS) ] (A.120b)

Finally, the panel area, S, is given by the fcrmula for the area of a

general plane quadrilateral as follows:

S = [(ff - RS)(ff - ST) (ff - TU)(ff - UR)

- (RS) (ST) (TU) (UR) cos> (5‘3‘—%“—5'-%]1/ 2 (A.13a)
where
ff = %(RS + ST + TU + UR) R (A.13b)

and the other quantities are given by Equation sets (A.1ll) and (A.12).
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For the flat quadrilateral panel, the control point (XC, YC, ZC) is

located at the intersection of two lines bisecting opposite sides of the

panel, see Figure A.5. Define points (Gx’ Gy, Gz) and (Hx, H

, Hz) as

the midpoints of panel edges RS and TU, respectively. In terms of the

corner points, coordinates of points G and H are given by

1
Gy = 70y +xxq)

1
G, = 3lry; +yyy)
G -'l(zz + zz,)

2771 37
H = l(ii + xx,)

2 72 47

1
B = -Z'(YYZ + W4> »
and

1
Hz = E(zzz + 224) .

Coordinates of control poiat (XC, YC, ZC) are then given by

1
XC = E{Gx + Hx) ,

1
YC 2(Gy + Hy) ’

and

1
Z2C = E(Gz + Hz) ,

G, H

where Gx’ Gy’ 2 <

A.6 Triangular Panels

(A.14a)

(A.14D)

(A.l4c)

(A.144d)

(A.l4e)

(A.14£)

(A.15a)

(A.15b)

(A.15¢c)

Hy, and Hz are given by Equation set (A.14).

As Figures A.6a and A.6b show, a triangular panel is generated if

input points 1 and 2 are equal ‘(this is Case a) or if points 3 and 4

are equal (this is Case b).

PIEIEIRE
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For triangular panels, the outward normal unit vector, K, is calcu-
lated as described in Section A.2.

The input points themselves are coplanar for criaAgular panels, so
the procedure for finding average coplanar corner points, Section A.3,
is unnecessary.

The formulas for calculating surrace area and control peint coordin-
ates of triangular panels differ from those used for quadrilateral panels

and are described in the remaining two subsections.

A.6.1 Triangular panel surface area

For each case of a triangular panel, Case a (with the vertex at
points 1 and 2) and Case b (with the vertex at points 3 and 4), a dif-
ferent set of expressions for panel area, S, is used,

First, consider the triangle, Case a, see Figure A,6a, Define the base
length as UR and the side lengths as RS and SU. The angle at the vertex

is aa, In terms of corner point coordinates, the three edge lengths are

given by
2
RS = [(xy = x)2 + (73 = y? + (5 - 212, (a16w)
- 2 2 2,1/2
SU =[x, - x)? + (7, -y + @, - 21° 46w
and
W =[x, - %)% + (7 - ¥)2 + Gz - 20812 L (a260)
Using the law of cosines, the angle aa is given by
2 2 2
au = cos H({RE_+ (V- (WR); (A.17)

2(RS) (sU)
Finally, using the area formula for a general triangle, the surface area,
S, 1is

S = -%(RS) (SU)sin(ac) (A.18)
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where RS, SU, and ¢o are given by Equations (A,16) and (A.17), respec-
tively.

Secoﬁd,considerthetriangle,Caseth see Figure A,6b, Define the base
length as ST and the side lengths as RS and TR. The angle at the vertex
is B8. In terms of corner point coordinates, the three edge lengths
are given by

2]l/2

RS = [(xy = 3% + vy - y% + (25 - 2212, (a199)

211/2

ST = [(xy = )% + (7, - PP + 2y = 7)) , (A.19b)

and
T = [(xy - )2 + (3, = 907 + (25 - 2212 . (a.190)

Angle 88 1is given, using the law of cosines, as

-l[(RS)2 + (TR)? - (ST)Z]

BB = cos 2(RS) (TR)

. (A.20)

Then the surface axea, S, is given by the area formula for a general

triangle as follows:

5 = 3(S) (TR)sin(88) (4.21)

where RS, TR, and BB are given, respectively, by Equations (A.19) and
(A.20).

A.6.2 Triangular panel control point

As with area formulas, the formulas for control point coordinates
for the triangular panel, Case a, differ slightly from those for the
other triangular panel, Case b.

First, consider the triangular panel, Case a, see Figure A.6a. The
control point (XC, YC, ZC) is at the area centroid which is located

midway along line segment DE. Line DE intersects each panel edge one-
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third the way from the base of the triangle. Thus, points (Dx’ Dy, Dz)

and (Ex, Ey’ Ez) are functions of the cormer points as follows:

1
Dx = Xy + -_,;-(xl - x3) s (A.22a)
D, =y, +3(y, = ¥a) (A.22b)
y }'3 3\ Y3 ’ .
D =2z +~l-(z -2z,) (A.22c)
z 3 3 "1 3 ’ *
E = x, +=(x, -x,) (A.22d)
b 4 " 31 47 *
Fomy 4y, -y,) (A.22e) f
Py, -y .22e)
and
1 i
E, = 2, + ‘-3-(21 - 24) . (A.22€)

Then in terms of Equation set (A.22), the coordinates of the control

point for the triangular panel, Case a, are given by

1
XC -2-(11x + Ex) . (A.23a)
YC = -1-(1) + E) (A.23b)
2y y' ’
and
1
2C -,‘_,—(nz + Ez) . (A.23c)

Second, consider the triangular panel, Casé b, shown in Figure'A.6b.
Following the notation of Case a, the control point (XC, YC, ZC) is
situated at the area centroid, which lies midway along line segment DE.
Line DE intersects each panel edge one-third the way from tle base of
the triangle. In terms of corner point coordinates, the courdinates of

points (Dx’ D, 'DZ) and (Ex, Ey’ Ez) are given as follows:

y

) 1
Dx *x + -§(x3 - xl) , (}.243)

1 Lo
Dy =y, + .3..(y3 - yl) s (A.24b) T
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<f D =2 +-l-(z - z,) (A.24c)
' z 1 33 ‘1 ? *
E = x +=(x, ~ x,) (A.24d)
X 2 3'"3 2 ’ *
E =y, +2(y, - v.) (A.24e)
y " Y2 T3W3 T Yy ‘
and
1
Ez =z, +§(23 - 22) . (A.24€)

Finally, in terms of Equation set (A.24), the control point coordinates

for the triangular panel, Case b, are given by

1
XC = E—(Dx + Ex) ’ (A.25a)

1
YC = 2(Dy + Ey) s (A.25b)
and

1
ZC = E(Dz + Ez) . (A.25¢)
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Appendix B

DERIVATION OF FREE STREAM CARTESTAN VELOCITY COMPONENTS

Denote by V the magnitude of the free stream velocity. Define a
wind Cartesian axis system, ;:’ L;, ?, in which V is always directed along
the negative X axis as in Figure B.1. Next, define by x, y, and z the
body-fixed Cartesian axes whose origin coincides with the wind axes
origin. Then for a body having no angle of attack, a, or sideslip, §, ﬁ
the body axes are coincident with the wind axes. This is shown in Figure
B.1.

For the general case of the body having an angle of attack, a, and

sideslip, B, it is necessary to derive expressions for free stream com-

ponents, u, v, and w, along the x, y, and 2z éxes, respectively. With the
body and wind axes initially coincident, a pair of rotations is made.
See Figure B.2, First, a rotation of a about the ;xaxis is made. Denote
the resulting intermediate set of axes by x*, y*, and z*. Second, a
rotation of n about the z* axis is made resulting in the body axes, .x,
y, and z, in their final position with angle of attack, o, and sideslip
8. Angle n is chosen so as to produce the desired sideslip angle, B, as
viewed in the x - ;:plane. These rotations yield relations between the
;, ;, z system and the x, y, z system. Then derivation with respect to
time of the axis transformations yields velocities u, v, and w as func-
tions of V, o, and B.

Figures B.2a, B.2b, and B.2c¢c show the angular rotations and show the
resulting projected lengths of all three sets of axes in three different
views. For scale, the axes have a true arbitrary length, L.

It is first necessary to derive the expression for angle n as a ]

function of o and 8. Refer to Figure B.2a, showing the x - ;:plane and i
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portraying 8 in its true arc. In this view, axes x*, y*, x, and y pro-

ject onto an ellipse given by the equation

X 42, Y2 .
== + i 1. (B.1)

In Figure B.Za, the projection of axis x ends at point (X,Y) on the

ellipse. Coordinates of point (X,Y) thus satisfy the following three

relationships:
X 2 Y,2
T+ =1, (8.2)
X =L cos a cos n, (B.3)
and
tan 8 = = . (B.4)

Combining Equations (B.2) and (B.3) with Equation (B.4) gives the
following desired result:
n = tan-l(tan B cos a) . (B.5)
As seen in Figure B.2b, the rotation of n about z* yields the fol-

lowing relations between axisz sets x*, y*, z* and x, vy, 2:

x* = x cosn-ysinn, (B.6a)
y* = xsinn+ ycosn, (B.6b)

and
zk = z (B.5c)

Then as shown in Figure B.2c, rotation of a about ?:yields the
following relations between axis sets ;, ;:, z and xk, yk, zk:
X = x* cos a + z* sin a , (B.7a)
Y=y, (B.7b)
and

Z = z% cos a - x* sin a . (B.7¢)
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Equation set (B.6) is substituted for x*, y*, and z* in Equation
set (B.7), and the resulting system is inverted using Cramer's rule.
This gives the final relations between the wind axes, ;:., ;, and -z:and
the rotated body axes, x, y, and z, as follows:

x = (cos o cos n); + (sin n)r; - (sin a cos n); . (B.8a)
y = -=(cos a sin n); + (cos n); + (sin a sin n)':-v.= , (B.8b)

and
z = (sin a); + (cos ot)“z= . (B.8¢c)

The time derivative along each axis gives the velocity component
parallel to each axis. By definition of the orientation of the wind

axes with the free stream, the following holds:

dx o
TS -V . (B.9)
and
dy _ dz
it ac 0o . (B.10)
Also, define the following:
dx
u= o (B.lla)
- 3y
VeI o (B.11b)
and
dz
It (B.1llc)

Derivation with respect to time of Equation set (B.8) and substitu-
tion of Equations (B.9), (B.10), and (B.1ll) give
u=-Vcosacosn, (B.12a)
v =V cos asinn, (B.12b)
and

w= -V gin a , (B.12c)
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where n is given by Equation (B.5).
Equation set (B.12) gives the body Cartesian components of the free
stream velocity for the body at angle of attack, a, and sideslip, 8.

These components are illustrated in Figure B.3.
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Appendix C

COMPUTATION OF VELOCITY COMPONENTS INDUCED BY A STRAIGHT VORTEX
FILAMENT OF ARBITRARY ORIENTATION

This appendix derives the formulas used by a computer subroutine to

calculate the Cartesian velocity components at some specified point, %,

¢, 2), which are induced by a straight vortex filament of finite length.
The Biot~Savart law is used to obtain the velocity magnitude, and special

precautions are used to circumvent numerical difficulties inherent in

the Biot-Savart law.

C.1 Geometry of the Arbitrary Vortex Filament

Refer to Figure C.l. The vortex filament of strength, I, starts at
point 1, having coordinates (ﬁl, 91, 21), and ends at point 2, having
coordinates (iz, ?2, 22); both endpoints and T are specified. The vor-
tex filament coincides with a vector, T, given by

Ta iy -2pl+ G, - 97+ G - 2k (€.1)
of length, T, given by

211/2

TG, - 27 G, - 97 G,y - 2 . ©.2)

Specify the point, (%, ¥, 2), at which induced velocities are to be

found, There exists a point C, having coordinates (Cx’ c Cz)’ coor-

y’

dinates to be determined, positioned on the line containing the vortex
+ ~ ~ ~

filament such that a vector, h, from (%X, y, z) to (Cx’ Cy, Cz) is per-

->
pendicular to the filament. h is given by

ng ~ ~ ~
h = (c, - 01+ c, - »i+ . - DE (C.3)
and has a length, h, given by

1/2

b= [0y - 07+ €, - P+, - DY €.4)
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Denote by ; a vector between point 1 and point C expressed as

-> ~ -> ~ ~ ->

F= - 2T+ - yl)I +(c, - z)k . (C.5)
Lines D1 and D2 comnect point %, ¥, 2) with the vortex starting point

and endpoint, respectively. Their lengths are given by the following:

A 2,172

L= [R-%)2+ G-5p2+ G- 3ph (c.6)

and

D2 = [(x - iz)z + (y - §2)2 + (z - 52)2]1/2 . .7
D1l and D2 intersect the vortex at angles 61 and 62, respectively. Using
the law of cosines for triangles, these angles are given in terms of

previously defined quantities as

2 2 2
a T + D1 - D2
cos 61 2(T) L) (C.8)
and
N 2 2 2
cos 6 T +Dz - DI (C.9)

2 " T 2(m®2)

It remains to find the coordinates Cx’ Cy’ and Cz of point C in
terms of the given geometry. As Figure C.l1 shows, vectors ; and T are
colinear. Thus, the vector cross product, (3 x T), is zero as is each
component of the vector (; x ?). This vector cross product is performed
using Equations (C.1l) and (C.5), and each component of the resulting
vector is equated with zerc. The result is a set of three equations for
the unknown values of Cx’ Cy, and Cz as follows:

0+ (3 - 2))C - (5, - §)C, = [5G, - &) - £,G, - )], (C.10)

-(2, = £))C_+ 0+ (%) - ®))C, = [2, (%, - %)) - #, (8, - 2))] , (C.11)

and

(Fy = 928, = Gy = x)C + 0 =[x, G, =¥ - &, - %1.(C.12)
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However, the above three equations form an indeterminant system., A

fourth independent equation is required to solve for Cx’ C._, and Cz.

y
Because vectors h and T are orthogonal, their scaler product, (ﬁ . T),

is zero. Using Equations (C.1l) and (C.3) in the scaler product and

equating with zero gives a fourth equation containing unknowns Cx’ Cy’

and Cz as follows:
(k) = %))C, + (G, - §)IC, + @, - 3))C, = [RGBy - &) + 5, - §y)
+2(zy - 201 . (C.13)
Simultaneous solution of Equations (C,11), (C.12), and (C.13) for

unknowns Cx’ Cy’ and Cz, using Cramer!srule, gives the following results:

(2an)? + 2, [(8B)2 + (CO)?] + AALBB(F = §) + CCGE = 2,)]}
c, = > > - , (C.14a)
aa)? + @B)? + (CC)

{§(BB)2 + §1[(AA)2 + (c0)2] + BB[AA(x il) + cc(z - 21)]}
¢ = , (C.14b)

Y a2 + (88)2 + (cc)?

{zcc)? + 21[(AA)2 + (33)23 + CC{AA(x - ﬁl) + BB(y - 91)]}
cz = 2 2 2 ,(C.lloc)
(AA)“ + (BB)“ + (CC)

where AA = (x2 - xl), BB = (y2 - yl), and CC = (z2 - zl).

C.2 Magnitude of the Total Induced.Velocity

Denote by W the magnitude of the total velocity induced at point
x, v, z) by the vortex filament. When this point lies on the line con-
taining the filament, length h is zero. In this case, W is fixed at
zero and the Biot-Savart law is not used.

When length h is nonzero, the Biot-Savart law is used to calculate

W. To ensure that W is not unrealistically large, it is checked to see i
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if it 4s larger than a maximum velocity limit. This velocity limit
equals 20 percent of the free stream velocity, V. Should W be found
larger than the limit velocity, W is set’'equal to the limit value, and
that is the v~lue used to obtain the velocity components.

In summary, velocity W is calculated using one of the following
equations:

We0, ifh=0 ; (C.15a)

r A o
W z;g(cos 8, + cos 92) , If h# 0 ; (C.15b)

1
or

W=20,2V, 1if W [by Equation (C.1%b)] > 0.2V , (C.15b)
where V is the magnitude of the free stream velocity and all other quan-

tities have Yeen defined previously.

C.3 Induced Velocity Components

At point (i, §, E) the induced velocity vector, %, is directed
normal to the plane containing % and K, Define a unit vector, ;w’ which
is also normal to the plane containing T and ﬁ and has the same direction
as ﬁ, see Figure C.1. The vector cross product (K X %) is also a vector
normal to the plane containing T and h. Therefore, ;; can be given by

> >
* . (h x T)

(C.16)
v x 7

Substitution of Equations (C.1l) and (C.3) into (C.16) yields the follow-

ing expressions for the components of ;w:

Ty = RRELOC(C, - §) - BB(C, - D] (C.17a)

iy, = ==laacc, - 2) - co(c, - D1, (C.17b)

and
o = EBB(C_ - ) - e, - 91, (C.17¢)
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where

RXR = {[CC(cy -y - BB(C, - 2)]2 + [AA(C, - z) - ce(e,, - :"c)]2

+ [BBCC, - ) - aace, - PR (c.17d)

and where AA = (xz - xl), BB = (y2 - yl), cC = (z, - zl), and Cx’ Cy, and
Cz are given by Equation set (C.14). Express the induced velocity vector
in terms of its Cartesian components as follows:

ﬁ-ug+v5+wi . (c.18)

£
These components are shown in Figure C.1. Because ﬁ coincides with unit

vector Kw’ the following holds:
. (C.19)

Equations (C.15), (C.18), and (C.17) are substituted for W, %, and com=
ponents of Kw’ respectively, in Equation (C.19). By comparing like terms
on each side of the resulting equality, it follows that the desired com=-

ponents of the vortex filament~induced velocity are given by

u = “wxw , (C.20a)
Ve = nwyw , (C.20b)

and

we = anw . (C.20¢)

e B il
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Appendix D

TRANSFORMATIONS RELATING THE PROPELLER PLANE AXIS SYSTEM
TO THE BODY-FIXED AXIS SYSTEM

D.1 Coordinate Transformations

Denote by §}'§, and z the Cartesian coordinate axes which remain
attached to the propeller plane, Positive x 1is directed along the pro-
peller axis of rotation in the thrust direction as in Figure D.1. A
point, P, on the propeller plane is positioned relative to a cylindrical
coordinate system, r - §, where azimuth angle, Yy, is measured clockwise
from the negative z axis. Also denote by x', y', and z' three Cartesian
axes which remain parallel to the body-fixed axes, x, y, and z, but which
are displaced to a point (xhub’ Yhub’ Zhub) relative to the body-fixed
axes, Figure D,l shows all the axis systems and shows the propeller
plane initially without angle of attack, ap, or sideslip, Bp. In this
situation the‘E,'§, and z axes are coincident with the x', y', and 2z'
axes, respectively.

For the general case of the propeller plane oriented at some combin-
ation of angle of attack, ap, and sideslip, Bp’ relative to the body, it
i$ necessary to express the r - | coordinate system, attached to the pro-
peller plane, in terms of the body-fixed axes, x, y, and z.

With the X, y, and z axes initially coincident with the x', y', and
z' axes, a pair of rotations is made, see Figure D,2, First, a rotation
of ap about the y' axis is made. Denote the resulting intermediate set
of axes by x*, y*, and z*., Second, a rotation of np about the z* axis
is made resulting in the propeller plane-fixed axes, §;<;, and E; in
their final skewed orientation with angle of attack, ap, and sideslip,

Bp, with respect to the x', y', and z' axes. Angle np is chosen so as
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to produce the desired sideslip angle, @p, as yviewed in the x' - y' plane.
Once transformations between the skewed ;; ;, and z axes and the x', y',
and z' axes have been obtained, the final transformations between the

r -y and x - y - z axis systems are then cbtained.

Figures D.2a, D.2b, and D.2c show the two angular rotations and show
the resulting projected lengths of all Eour sets of Cartesian axes in three
different views, For scale, the axes have a true arbitrary length, L.

It is first ﬁecessary to derive the expression for angle np as a
function of ap and Bp. Refer to Figure D.2a, showing the x' - y' plane
and portraying Bp in its true arc. In this view, axes x%, y¥, x, and ¥

project onto an ellipse given by the equatign
x' 2 L yha2
[L cos ap] + [I,] 1. (0.1)

In Figure D.2a, the projection of axis x ends at point (X, Y) on the

ellipse. Coordinates of point (X, Y) thus satisfy the following three

relationships:
X 2 Y,2
[L cos ap] + [id =1, (0.2)
X =L cos ap cos np , .3)
and
Y .
tan Bp X (D.4)

Combining Equations (D.2) and (D.3) with Equation (D.4) gives
n = tan-l(tan B cosa) , (D.5)
P p P

which is the desired function relating np to ap and Bp.
As seen in Figure D.2b, the rotation of np about z* yields the fol-
lowing relationships between axis sets x*, y*, z* and %, y, z:

x* = X cos np - y sin np . (D.6a)
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y* = % sin np +y cos np , (D.6b)

and
zk =z, (D.6¢c)
As shown in Figure D.2c, rotation of ap about y' yields the follow-

ing relationships between axis sets x', y", z' and x*, y%, z¥:

x' = x* cos o+ z* gin a_ , (D.7a)
P P
y' =y, (D.7b)
and
z! = 2k cos 0 - x* sina_ . (D.7¢)
P P

Axes x', y', and z' are displaced to point (xhub’ Yhub’ zhub) rela~

tive to the body-fixed axes x, y, and z, so the following applies:

= 1)
y=y' + Y (D.8b)
and
= |
z=2z' + zhub . (D.8c)

Equation set (D.6) is substituted into Equation set (D.7) to elimin-
ate x*, y*, and z*. Then, substitution into Equation set (D.8) produces
the following relationships between the body-fixed axes, x, y, and 2,
and the propeller plane-fixed axes, ;, ;, and z:

x = (cos ap cos np); - (cos ap sin np); + (sin ap)? + xhub , (D.9a)

(D.9b)

y = (sin np)x + (cos np)y + Yhub .

and

= -(sin ¢ cos X + (sin a sin Y+ (cos a )z + 7 . D.9¢
z ( 5 np) ( . np)y (co p) hub ( )

As shown in Figure D.3, the cylindrical coordinate system, r - ¥,

on the propeller plane is related to the propeller plane-fixed X, ?, and
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z axes as follows:

x =0 (on the propeller plane) , (D.10a)
y=rsiny , (D.10b)

and
Z = -r cos ¥ . (D.10c)

Equation set (D.10) is- substituted into Equation set (D.9). Then
point P, at coordirates (r, y) on the propeller plane, has corresponding
Cartesian coordin#tes (Xp, Yp, Zp) in the body-fixed axis system given
by

xp = ~r(sin Y cos ap sin np + cos ¥ sin ap) + xhub , (D.11a)

hub ? (p.11b)

p ) ’ p

2 =l 4 - . .
g 7T sin ¢y £'n apsinnp cos .Y cos ap) + Zhub , ((D.1llc)

where np is given by Equatioun (D.5).

Equation set (D.1ll) is the resulting transformation from the propel-~
ler plane~fixed cylindrical coordinates to the body-fixed Cartesian co-
ordinates for a point on a propeller plane centered at (Xhub’ Yhub’ Zhub)
and tilted with an angle of attack, ap, and sideslip, Bp’ relative to the

body-fixed axes.

D.2 Velocity Component Transformations

It is necessary to derive transformations which convert Cartesian
velocity components, up, vp, and wp, at point P on the propeller plane,
relative to the body~-fixed axes, into corresponding cylindrical system
velocity components, vap, vrp, and th' As shown in Figure D.3, vap,
Vrp’ and th are axial, radial, and tangential velocity components, re=-

spectively, with the axial component directed normal to the propeller
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plane and positive in the thrust direction (into the figure). Tangential
velucity,~vtp, at P is in-plane and positive if it follows the right-hand

rotation of a propeller. Vrp is in-plane and positive radially outward.

Equation set (D.9) is inverted using Cramer's rule giving expressions

relating the propeller plane-fixed axes, X, ¥, and z to the body-fixed

axes, x, y, and z, as fcollows:

x = (cos a, cos np)(x - xhub) + (sin np)(y - Yhub)
- (sin ap cos np)(z - Zhub) , (D.12a)
y = -{(cos ay sin np)(x - xhub) + (cos np)(y - Yhub)
+ (sin ap sin np)(z - zhub) , (D.12b)
and
z = (sin ap)(x - xhub) + {cos ap)(z - zhub) . (D.12c)

At a point on the propeller rlane, the velocity components, up, vp,
and wp, relative to the body-fixed Cartesian axis system are given by

the following time derivatives:

u B mm— > (Dol3a)

v =3 (D.13b)

and

_dz
wp =3t (D.13c)
Similarly, the velocity components, ;ﬁ, ;s, and ;;, relative to the pro~
peller plane-fixed Cartesian axis system are given by time derivatives

as follows:

u, = -g-’tﬁ ) (D.14a)
7 -4y
v = , (D.14b)
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and

dz

pe

> T ' (D.1l4c)

The time derivative of Equation set (D.12) i taken and Equations (D.13) i

and (D.14) are substituted. Observe that the derivatives of xhub’ Yhub’

and Z vanish. The result is a set of relations transforming the velo-

hub
city components, up, vp, and wb, into components, 35, 3;, and 5;, as
follows: i

up = (cos ap cos np)up + (sin np)vP - (sin ap cos np)wp , (D.15a)
55 = ~(cos ap sin np)up + (cos np)vp + (sin ap sin np)wb , (D.15b)

and

;% = (sin qp)up + (cos up)wp . (D.15¢c)

As indicated in Figure D.3, propeller plane-fixed Cartesian velocity
components, ;é, ;;, and 3;, are related to the corresponding axial, radi-

al, and tangential velocities, vap, Vrp’ and th’ at point P as follows:

Vap = U, (D.16a)
vr, = (sin np)'v'p - (cos w)?p , (D.16b)

and
th = (cos w)?? + (sin W);g . (D.16¢c)

Finally, Equation set (D.15) is substituted into Equation set (D.16).
This produces the following relationships:

v = 0os & cos u + (sin v. = (sin a cos W D.l7a
ap (c p np) » ( np) p ( 5 np) b ( )
v = ~(sin a cos + cos o sinn sin u + (cos sin v
rp ( . v p D ¥) p ( " ¥) o

+ (sin a sin sin § - cos o cos Y)w (D.17b)
( P np Y P ‘pp ’
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and

v, = (sin a_ si - cos a_ sin cos u_ + (cos cos A4
tp ( p Sin ' p "o b) b (¢ np ¥) P
+ (cos o, sin ¢ + sin oy sin n, cos w)wp , (D.17¢)

where np is given by Equation (D.5). For a point P at position (r, V)
on the propeller plane, Equations (D.17) are the desired relations which
transform the body-~-fixed Cartesian velocity components at P, up, vp, and
w_, into the corresponding axial, radial, and tangentia; velocity com-
ponents, vap, Vrp’ and vtp, relative to the propeller plane-fixed cylin-

drical coordinate system.

AL i
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Appendix E
MEASUREMENT AND MAPPING OF THE PIPER CHEROKEE PA-28-180 COWL
AND SPINNER SURFACE GEOMETRY

No manufacturer-supplied detail drawings of the cowl and spinner
exist for the Piper Cherokee PA-28-180. As these airframe components
are proximate to the propeller plane; a detailed description of these
surface shapes was important for creating a good computer paneling model.
Therefore, to obtain this description the only recourse was to physically
measure the cowl and spinner geometry on an actual aircraft, Direct
measurement of this geometry on The Pennsylvania State University-owned
Cherokee 180 research airplane, tail number N907PS, was conducted., This
measurement process is described in this appendix.

Measurement by triangulation was performed using two precision sur-
veying transits, both capable of angular measurement to within a toler-
ance of +20 seconds of arc, Figures E.la and E.lb schematically illus-
trate the deployment of the two transtts; identified as transit A and
transit B.

Parked on a flat surface, the afrcraft fuselage was jacked to the
horizontal position. The horizontal position was determined by placing
a level on the reference leveling screws located on the exterior of the
fuselage beneath the pilot's window as shown in Figure E.1lb,

Transit A was positioned on the fuselage plane of symmetry at a
distance of approximately 30 percent wing span forward of the spinner.
As shown in Figure E.lb, transit A was wvertically positioned such that
the horizontal line of sight intersected the spinner near its tip. This
intersection point, on the plane of symmetry, was marked and designated
as the coordinate origin for all measurements. The horizontal distance i

Xa between transit A and the origin was precisely measured.

A s LT
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Next, using sightings from transit A, transit B was positioned
directly to the left of the coordinate origin at a precisely measured
herizontal distance Xp a8 shown in Figure E.la. Thus, the lines of %
sight of both tranmsits, viewed from above, intersected at a right angle
at the origin. The height above ground of transit B was slightly less
than the height of the origin. The vertical distance Ay between the e
origin and transit B was measured. Knowledge of Xps Xpo and Ax completely
determined the transit positions with respect to the origin, and the
transits were then ready for use, :

The cowl and spinner surfaces were prepared for measurement by cov-
ering the left half of both with a mesh of tiny adhesive paper target
points. These paper targets were visually placed in a series of rows of
nearly constant x coordinate such that a row of points approximately de-
fined a body cross section. The target points were closely spaced at
the forward end of the cowling and at other regions of extreme surface
curvature. Target points were more thinly spaced at regions on the cowl
where the surface was less convoluted.

After placement of the surface targets, actual measurement was begun.

As shown in Figures E.la and E.lb, a measurement consisted of simultaneous
sightings on a surface target point by transits A and B. While sighted
on a target, the horizontal angles wA and wB were recorded, Also, the
vertical angles Wy and wy were recorded. This process was repeated for
all target points on the left side of the cowl and spinner.

Transit B was then moved directly across to the right side of the
spinner origin point. Additional target points were placed on ducts and
surface features found only on the right half of the cowl. Further sight-
ings were made to measure these target points. This concluded the gath-

ering of data.



130

Using the measured lengths Xar Xp? and Ay, as well as the four angles
wA, wB’ Wys and Wgs associated with a target point, trigonometry was ap-
plied to calculate the Cartesian coordinates of the target point relative
to the spinner origin. By using a computer program, this trigonometric
analysis was rapidly completed for the hundreds of target points. The
result was a discrete point description of the cowl and spinner geometry
in Cartesian coordinates.

Preliminary fhree—view cowl and spinner drawings were made using the
measured surface points. As previously stated, the target points had
been positioned visually in a series of rows, each row lying approximately
at a constant x coordinate. Of course, analysis of the data revealed
that points on a given row were not precisely aligned at a single x co-
ordinate. Therefore, the measured surface points on each row were shifted
slightly until all rows fell on contours of constant x coordinate and thus
defined true cross sections. Guided by the preliminary three-view drawings,
the data point shifting was done carefully using cubic spline interpola-
tion,

Final three-view cowl and spinner drawings were made using the shift-
ed surface points. The front view of these drawings afforded detafled
descriptions of geometry cross sections.

Surface coordinates from the final three-view drawings were used to
generate cowl and spinner input computer paneling. To produée a symmetric
cowl paneling network, small irregular cowl surface features, such as
engine exhaust pipes and small intake ducts, were ignored.

The manufacturer-defined Cherokee 180 aircraft coordinate origin,
used in all existing drawings of fuselage geometry, aft of the firewall,

did not coincide with the arbitrarily chosen cowl-spinner coordinate
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origin. Therefore, to properly mate the measured cowl-spinner geometry
with the remaining aircraft geometry, coordinates of all geometry on
manufacturer-supplied drawings were converted to the measured cowl-spinner
coordinate system. Thus, all aircraft input geometry, including the cowl,
fuselage, and spinner paneling, for the flow prediction program was ref-
erenced to the chosen coordinate origin indicated in Figures E.la and

E.lbl
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Table 3

Piper Cherokee PA-28-180 Aircraft Lift Coefficients Corresponding
to the Angles of Attack Modeled by the Computer Program

Fuselage angle of attack,

a_(degrees) C, (from Figure 27)

2.0 0.385
4.0 o 0.568
6.0 0.751
8.0 0.934

10.0 1.116
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Figure 3. Front View of a Symmetric Body Panel Network
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Figure 4a. Wing Horseshoe Vortex Geometry (Top View)
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Figure 4b. Wing Horseshoe Vortex Geometry (Front View)
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Figure 14. Axial Velocity Distribution on the Upper Vertical Centerline
of a Propeller Plane Predicted With a Couplete Simple Fuse-
lage Shape and With the Isolated Cowling
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All dimensions are in meters Root section NACA 23015
unless otherwise noted. Tip section NACA 23012

Only the left nacelle and
forward fuselage (crosshatched
in plan view) were paneled.

N\ propeller
' \\ plane
fuselage l
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plane datum line
thrust line w o = =2° ;
P .3683 ,-
\ 3° !
\ S \ |
- —_— ‘f - e
l_ .22860 fuselage datum line
o a 13.8303

Geometric Characteristics of the Twin-Engine'Airplane

Figure 16.
(Source: Reference 15)
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wing leading edge

STATION FUSELAGE COORDINATES (METERS)
NUMBER DISTANCE AFT a' b' c'

1 0.00000 0,00000 0.00000 0.00000
2 0.02540 0,07620 0.05842 0.,06350
3 0.05080 0.11430 0.08890 0,08890
4 0.0762C 0.13462 0.12192 0.11430
5 0.10160 0.16002 0.14732 0.12700

6 0.15240 0.19050 0.18796 0.15748
7 0.22860 0.22352 0.23876 0.19304
8 0.30480 0.25400 0.28702 0.21590
9 0.60960 0.,34290 0.43180 0.29210
10 0.91440 0.41656 0.54610 0,34544
11 1.21920 0.46228 0.64770 0.39370
12 1.52400 0.49530 0.73152 0.42164
13 1,82880 0.52832 0.81280 0.44704
14 2.13360 0.55372 0.87376 0.47244
15 2.43840 0.57404 0.93472 0.48768
16 2.74320 0.59182 0.99060 0.50292
17 2.99720 0.59944 1.03278 0.51054
18 3.04800 0.59944 1.06680 0.51054
19 3.20040 0.60706 1.19380 0.51308
20 3.35280 0.60960 1.31064 0.51562
21 3.50520 0.61214 1.40208 0.51816
22 3.65760 0.61468 1.44780 0.52070
23 3.96240 0.61722 1.47320 0.52578
24 4,25450 0.61722 1.46050 0.53086

Figure 17a.

Twin~Engine Airplane Fuselage Coordinates for the Portions
Forward of the Wing Leading Edge (Source:

Reference 15)
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STATION NACELLE COORDINATES (METERS)
NOMBER DISTANCE AFT r'
1 0.0000 0.54610
2 0.0254 0.58420
3 0,0508 0.6096C
4 0.1016 0.63500
5 0.1524 0.66040
6 0.2286 0.68580
7 0.3048 0.70612
8 0.4572 0.72390
9 0.6096 0.73660
1.0 0.7620 0.74930
11 0.9144 0.75184
12 1.0668 0.75438
13 1.2192 0.75692
14 1.3716 0.75692
15 1.5748 0.75692

Figure 17D,
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Twin-Engine Airplane Nacelle Coordinates for the Portioms
Forward of the Wing Leading Edge (Source:

Reference 15)
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TWIN-ENGINE AIRPLANE
LEFT PROPELLER PLANE
PROPELLER REMOVED
- LEFT NACELLE AND FUSELAGE NOSE PANELED -
WING MODELED
NACELLE INLET VELOCITY: F/V = 0,29
PROPELLER PLANE RADIUS: R = 2,337 METERS
r/R = 0.75 _
- —~
= 2°
= lzo}Computed
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| ! 1 ] |
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AZIMUTH POSITION, ¢ (DEGREES)

Comparison of Computed and Measured Azimuthal Distributions

of Axial Velocity at the Left Propeller Plane of the Twin-
Engine Airplane
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20.0 T [ I l I
TWIN-ENGINE AIRPLANE LEFT PROPELLER PLANE
PROPELLER REMOVED
LEFT NACELLE AND FUSELAGE NOSE PANELED
16, 0= WING MODELED -
NACELLE INLET VELOCITY: 27N
F/V = 0,29 / \
PROPELLER PLANE RADIUS: ,’ \\
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. / o=
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Figure 19. Comparison of “Computed and Measurs#d Azimuthal Distributions

of Angle of Rotational Flow at the Left Propeller Plane of

the Twin-Engine Airplane
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Figure 20.
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-16.0

7 TWIN-ENGINE AIRPLANE
#° LEFT PROPELLER PLANE

-20.01— LEFT NACELLE AND
FUSELAGE NOSE PANELED
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NACELLE INLET VELOCITY:
24, 0= F/V = 0,29 -—
PRCPELLER PLANE RADIUS:
R = 2,337 METERS
,’ AZIMUTH, ¢ = 90°
7
~28.0p~ 7 —
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===« Measured (Reference 15)
-32.0~ -
L/,——-nacelle inlet radius
i
_36.0 ] | | |
0.0 0.2 0.4 0.6 0.8 1.0

NONDIMENSIONAL RADIAL POSITION, r/R

Comparison of Computed and Measured Radial Distributions of
Angle of Rotational Flow at the Left Propeller Plane of the
Twin-Engine Airplane
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TWIN-ENGINE AIRPLANE

LEFT PROPELLER PLANE

PROPELLER REMOVED

=0.3 1~ LEFT NACELLE AND FUSELAGE NOSE PANELED =
WING MODELED

NACELLE INLET VELOCITY: F/V = 0,29
PROPELLER PLANE RADIUS: R = 2,337 METERS
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L/,-nacelle inlet radius

-1.2 | | | |
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Comparison of Computed and Measured Radial Distributions of
Axial Velocity at the Left Propeller Plane of the Twin-
Engine Airplane
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Figure 22,
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TWIN~-ENGINE ATRPLANE
LEFT PROPELLER PLANE
PROPELLER REMOVED
LEFT NACELLE AND
FUSELAGE NOSE PANELED
WING MODELED

PROPELLER PLANE RADIUS:
R = 2,337 METERS
AZIMUTH, ¢ = 90°

!
/
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] = Computed, F/V = 0,10 —
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N e |
]
[ i 1 N
.0 0.2 0.4 0.6 0.8. 1.0

NONDIMENSIONAL RADIAL POSITION, r/R

Effect of Change in Nacelle Inlet Inflow Velocity on the
Radial Distribution of Flow Angularity at the Left Propeller
Plane of the Twin-Engine Airplare
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20.0 l I T T ]
TWIN-ENGINE AIRPLANE
LEFT PROPELLER PLANE (PROPELLER REMOVED)
16.0 LEFT NACELLE~WING-FUSELAGE NOSE GEOMETRY
*¥ = NACELLE INLET VELOCITY: F/V = 0.29 7
PROPELLER PLANE RADIUS:
R = 2,337 METERS
r/R = 0.75
12.0
—~ 8.0
[77]
£
=
£
T
=
~ 4,0
[+=]
=
S
& \
2 0.0 ————— - —— T Y
g
E.:‘l
é
o 4.0
(S
2]
=
2
< -8.0
. Computed, Aircraft Geometry
-12.0 Influences Included -
Computed, Aircraft Geometry
~16.0 — Deleted (Isolated Propeller_|
. Plane: Equation 54)
20.0 ! 1 | 1 N
0 60 120 180 240 300 360

AZIMUTH POSITION, ¢ (DEGREES)

Figure 24, Comparison of Azimuthal Distributions of Flow Angularity at
the Left Propeller Plane of the Twin-Engine Airplane Obtained
With and Without Airframe Geometry Influences Present
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4.0 I l | |

o = 29 nama—
= (-3
e P \
0'0-——_-——__—_——--——-_--_—-’.—--—

=4,0 = Computed, Aircraft Geometry.
Influences Included
— = — Computed, Aircraft Gecmetry
: Deleted (Isolated Propeller

-8.0 Plane: Equation 54) -
”~~
I i
g
B =12.0 == -
e o = 12°
c
= -16.0 r —_—
=
g
E «20,0 p== TWIN-ENGINE AIRPLANE
S LEFT PROPELLER PLANE
- PROPELLER REMOVED
© LEFT NACELLE-WING-
= FUSELAGE NOSE GEOMETRY
© =24.0 NACELLE INLET VELOCITY: -ﬁ
2 F/V = 0.29

PROPELLER PLANE RADIUS:
R = 2,337 METERS

= 90°
-28.0 AZIMUTH, ¢ = 9

~32.0p=— —
p/" nacelle inlet radius
)

-36.0 | | : ] 1
0.0 0.2 0.4 0.6 0.8 1.0

NONDIMENSIONAL RADIAL POSITION, r/R

Figure 25. Comparison of Radial Distributions of Flow Aungularity at the
Left Propeller Plane of the Twin-Engine Airplane Obtained
With and Without Airframe Geometry Influences Present
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Note: Propeller hub position is 0,0228 propeller radii to the right of
the fuselage plane of symmetry due to propeller plane inclinationm.

I———-——: 3,048 ——t
..

&

e
>
N

All dimensions are in meters
unless otherwise noted.

: Short afterbody
- 1.6192 ~ /—

]

JLI S |
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._1'_______
/(‘:]
~ A ‘w— Propeller disk
- (—J = : “AL'
LS 7°

©

f

A Y

E !/‘
\
®

Short afterbody—ﬁ\ 3,048 ————-—J
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l———“ (\J .————-""’/
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— 1.89

s

Static ground line ::5
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Figure 26. Geometric Characteristics of the Piper Cherokee PA-28-180
Airplane (With Short Afterbody Profile Shown)
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—— STEADY LEVEL FLIGHT -~

PIPER CHEROKEE PA-28-180 LIFT CURVE
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SOURCE: FLIGHT TEST MEASUREMENTS

| | I |

.0 2.0 4.0 6.0 8.0 . 10.0

FUSELAGE ANGLE OF ATTACK, a (DEGREES)
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~0.60 l [ | | l

PIPER CHEROKEE PA-28-18Q PROPELLER PLANE
PROPELLER REMOVED
’ | NO SPINNER MODELED

=0.65— cowL INLET INFLOW VELOCITY: F/V = 0.2 -
PROPELLER PLANE RADIUS: R = 0,9652 METERS
r/R = 0,75
-Q: 70 e a——
"0. 75 — —
a = 2°

-0.80 , a = loo}Cowl-Wing—Fuselage Modeled

o [Cowl-Wing~-Short Afterbody Modeled
srm———— o= 10 (Fuselage~off)
-0085 e —

—— o)

-0.9¢

AXTAL VELOCITY RATIO, vap/V

-0.95

-1.00

-1.05p

110 | | | | |
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AZIMUTH POSITION, Yy (DEGREES)

Figure 28a. Effect of Neglecting the Piper Cherokee 180 Fuselapge Geometry
(Replaced by a Short Afterbody) on the Computed Azimuthal
Distribution of Axial Velocity at the Propeller Plane
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AZIMUTH POSITION, ¢ (DEGREES)

Figure 28b. Effect of Neglecting the Piper Cherokee 180 Fuselage Geometry
(Replaced by a Short Afterbody) on the Computed Azimuthal
Distribution of Tangential Velocity at the Propeller Flane
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PIPER CHEROKEE PA-28-180 PROPELLER PLANE
PROPELLER REMOVED
NO SPINNER MODELED

[ COWL INLET INFLOW VELOCITY: F/V = 0,2 -
PROPELLER PLANE RADIUS: R = 0,9652 METERS
r/R = 0.75

— o = 2°, Cowl-Wing Fuselage Modeled

o = 2°, Cowl-Wing-Short Afterbody
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l l | 1 i

60 120 180 240 300, 360
AZIMUTH POSITION, ¢y (DEGREES)

Effect of Neglecting the Piper Cherokee 180 Fuselage Gecmetry
(Replaced by a Short Afterbody) on the Computed Azimuthal Distribu-
tion of Flow Angularity at the Propeller Plane (o = 2° Case)
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28d, Effect of Neglecting the Piper Cherokee 180 Fuselage Geometry
(Repilaced by a Short Afterbody) on the Computed Azimuthal Distri-
bution of Flow Angularity at the Propeller Plane (a =10° Case)
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Figure 29. Effect of Neglecting the Piper Cherokee 180 Fuselage Geometry
(Replaced by a Short Afterbody) on the Computed Radial Distri~
bution of Axial Velocity at the Propeller Plane
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Figure 30b. Effect of Neglecting the Piper Cherokee 180 Wing on the-
Computed Radial Distribution of Flow Angularity at the
Propeller Plane (a = 2° Case)
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Effect of Wing Dihedral on the Computed Radial Distribution
of Flow Angularity at the Propeller Plane of the Piper

Cherokee 180 (a = 10° Case)
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Figure 37b. Computed Radial Distributions of Tangential Velocity at the
Propeller Plane of the Piper Cherokee 180 (at y = 0°)
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