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ABSTRACT

The flow field in which . aircraft propellers must operate is spatially

nununiforr, due to propeller plane inclination and the presence of the

airframe. Such a flow field alters the aerodynamic loading on the Propel-

ler blades and may cause excessive blade vibration, stresses, and acoustic

noise. In order to design or analyze the performance of a propeller to

be used on a given aircraft, the nonuniform flow field at the propeller

plane must first be known.

In this study, a computer program was developed to calculate the

three-dimensional, steady, incompressible, inviscid, irrotational flow

field at the propeller plane (propeller removed) located upstream of an

arbitrary airframe geometry. The program uses a horseshoe vortex of

known strength to model the wing. All other airframe surfaces are modeled

by a network of source panels of unknown strength which. is exposed to a

uniform free stream and the wing-induced velocity field. By satsifying

boundary conditions on each panel (the Neumann problem), relaxed boundary

conditions being used on certain panels to simulate inlet inflow, the

source strengths are determined. From the known source and wing vortex

strengths, the resulting velocity fields on the airframe surfacd and at

the propeller plane are obtained. All program equations are derived in

detail, and a brief description of the program structure is pr(sented.

A user's manual which fully documents the program is cited in the refer-

ences.

Computer predictions of the flow on the surface of a sphere and at

a propeller plane upstream of the sphere. are compared with the exactt

mathematical solutions. Agreement is good, and correct program operation

is verified.
F



Published experimental data are scars,

data at a propeller plane of a twin-engine aircraft are present in the

literature. Computer predictions for this aircraft are compared with the

published test data. Reasonable agreement is observed, further validating

the program.

Results of a parametric study are presented which demonstrate wing-

induced, aft fuselage-induced, and cowl inlet inflow-induced effects on

the flow field at the propeller plane of the single-engine Piper Cherokee

PA-28-180 aircraft. Finally, a complete mapping of the computed flow

field at the propeller plane of this aircraft is presented. However, no

experimental data are available for comparison.
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LIST OF SYMBOLS

a sphere radius

at fuselage dimension as shown in Figure 17a

A geometr': influence coefficient, on the left side of
ij boundary condition equations, for the effect of panel

j on panel. i

[A] square matrix of geometric influence coefficients

[Ai] ] identical to [A]

AA shorthand notation for (R2 - R1) used in Equation (C.14)

b wing span

b' fuselage dimension as shown in Figure 17a

diagonal vector on a body panel for obtaining the normal1
unit vector as shown in Figure A.2

B diagonal vector on a body panel for obtaining the normal 	 ''r
unit vector as shown, in Figure A.2

Bik velocity influence coefficient,on the right side of
boundary condition equations,for velocities at panel i
associated with the kth body orientation 	

a

[B] column matrix of velocity influence coefficients for a
single body orientation

[Bi] identical to [B]

[BA
augmented matrix of velocity influence coefficients
with the kth column corresponding to the kth body 	

r

orientation

BB
1

shorthand notation for(9 2 - ^1 ) used in Equation (C.14)

c wing root chord or flat plate airfoil chord
f

c' fuselage dimension as shown in Figure 17a

C point on a line containing a vortex filament with
coordinates as shown in Figure C.1

CL wing lift coefficient corresponding to a

CLk wing lift coefficient for the kth body orientation
corresponding to a 
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xvi

Cp pressure coefficient

Cpi surface pressure coefficient at the ith panel control
point

Cx , Cy, 
C 

x, y, aad z coordinates, respectively, of point C as
shown in Figure C.1 ;F

CC shorthand notation for C2 - zl) used in Equation (C.14)

d distance from each of four noncoplanar input panel
corner points to a plane containing a point which is
the average of the four input points given by Equation (A.9)

dr differential radius used in Equation (,13)

ds differential body surface area used in Equation (1)

dT differential vector lying on a vortex filament as shown
in Figure 5

D an edge point on a triangular panel with coordinates as
shown in Figures A. 6a. and A.6b

i
Dx , Dy , Dz x, y, and z coordinates, respectively, of edge point D

as shown in Figures A.6a and A.6b

Dl distance from endpoint 1 of a vortex filament to the
point where induced velocity is computed as shown in
Figure C.1

D2 distance from endpoint 2 of a vortex filament to the
point where induced velocity is computed as shown in 	 j
Figure C.1

DE distance between edge points D and E on a triangular
body panel as shown in Figures A.6a and A.6b	 j

a

E edge point oa a triangular panel with coordinates as
shown in Figures A.6a and A.6b

Ex , Ey, Ez x, y, and z coordinates, respectively, of edge point E
as shown in Figures A.6a and A.6b

f cowl reference length as shown in Figure 14

ff half the periphery length of a quadrilateral panel
defined by Equation (A.13b)

F cowl or nacelle inlet inflow velocity

F 
normal velocity component allowed to penetrate body
panel i	 a

F(q) distribution of normal velocity component penetrating
the body surface (inflow or outflow) as a function of
the generalized surface coordinate q

i
i

s.
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g	 vector drawn from the point of vortex-induced velocity
computation to the vortex filament as shown in Figure 5

G	 midpoint on edge RS of a quadrilateral panel with
coordinates as shown in Figure A.5

Gx, Gy , G 	 x, y, and z coordinates, respectively, of midpoint G
on edge RS as shown in Figure A.5

h	 perpendicular distance between a vortex filament line
and the point at which velocity is induced as shown in
Figure 5

h	 vector of length h directed perpendicular to a vortex
filament line from the point at which velocity is
induced as shown in Figure C.1

;i	 midpoint on edge TU of a quadrilateral panel with
coordinates as shown in Figure A.5

Hx , Hy , Hz x, y, and z coordinates, respectively, of midpoint H
on edge TU as shown in Figure A.5	 ±`

i body panel index number and used as a subscript to
identify a quantity associated with the ith.body panel

,, k unit vectors along the x, y, and z axes, respectively

image subscript referring to the right side image of body
panel I. in a symmetric panel network

body panel index number and used as a subscript to
identify a quantity associated with the jth body panel

j ge subscript referring to the right side image of body
panel j in a symmetric panel network

J sequence number of a body cross section used in
Appendix A

k subscript index identifying the body orientation case
number in boundary condition equations and also used
as a 7ummation index in Equation set (A.10)

L	 arbitrary true scale length of all Cartesian axes used
in Appendices B and D

m	 number of segments in the Weissinger approximation
model of a flat plate airfoil as shown in Figure 6 and
used as a subscript on quantities pertaining to an m
element Weissinger model

total .number of body or,icntations, each of which has
a separate flow solution and all of which are solved
simultaneously
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n	 outward drawn unit normal, vector

ni	outward drawn unit normal vector at the control point
of body panel i

nx, ny, n 	 x, y, and z components, respectively, of vector n

nxi, nyi , nz i	x, y, and z components, respectively, of vector ni

wunit vector in the direction of vortex filament -induced
velocity at a point as shown in Figure C.1

nwx, nwy , nwz	x, y, and z components, respectively, of vector nw

n(P)	 outward drawn unit normal vector at point P on an
arbitrary body surface used in Equation (4)

N	 total number of body panels

N	 outward normal vector at a body panel used to calculate
n in Appendix A

Nx, N ,
y j

N	 x, y, and z components, respectively, of vector N used
in Appendix A

NP

	

	 total number of periphery points defining an entire
body cross section as shown in Figure A.lb

P	 generalized point on the body surface or a point on the
propeller plane

q	 generalized body surface position coordinate used in
Equation (1)

Q^

	

	 point source strength at the control point of body
panel j

r

	

	 radial position coordinate of a point on the propeller
plane relative to the propeller plane-fined cylindrical
coordinate system as shown in E;i.gures D.l and D.3

r'	 cowling radial dimension used in Figure 17b.

Q

	

	 radius of an arbitrary sphere concentric about a point
source at which the source potential is calculated in
Equation (13)

r

	

	 radius coordinate of a polar coordinate system whose
origin is at the center of a sphere in a uniform stream
as shown in Figure 10

rij

	

	 distance from the control point of panel j to the
control point of panel i as shown in Figure_3

j

L
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riiima distance from the control point of the right side image
g 
a

of panel i to the control point of pann', i on a symme-
tric body as shown in Figure 3

rij 
image distance from the control point of the right side image

of panel j to the control point of panel i on a symme-
tric body as shown in Figure 3

rpj distance from the control point of panel j to a point P
on the propeller plane

r(P,q) functional expression of the distance from generalized
body surface coordinate q to a surface point P used in
Equation (1)

R reference radius of the propeller plane

RS length of one side of a body panel as shown in Figures
A.4, A.5, A,6a, and A.6b

RT length of a diagonal on a quadrilateral body panel as
shown in Figure A.4

RXR
	

shorthand notation for a quantity defined by Equation
(C.17d)

s	 vector colinear with a straight vortex filament as
shown in Figure C.1

S
	

surface area of a body panel

S
	

total surface area of an arbitrary body

Si	 surface area of the ith body panel

S 
	 surface area of the jth body panel

ST
	

length of one side of a body panel as shown in Figures
A.4, A.5, and A.6b.

SU
	

length of a diagonal on a quadrilateral body panel or
length of one side of a triangular body panel as shown
in Figures A.4 and A.ba

t
	

time

I	 vector coincident with a straight vortex filament whose
length equals the filament length and is the vector
representation of the filament as shown in Figures 5
and C.1

T
	

length of vector T and thus the vortex filament length
used in Appendix C
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TR length of one side of a triangular body panel as shown
in Figure A.6b

TU length of one side of a quadrilateral body panel as
shown in Figure A.4

^I

U, v, w
11

x, y, andz components, respectively, of free stream
velocity V as shown in Figures 1, 7, and B.3

ubi' vbi' wbi
x, y, and z components, respectively, of the surface
flow velocity Vbi at the control point of body panel i

uf , vf, 
W 

x, y, and z components, respectively, of velocity W
induced by a straight vortex filament as shown in
Figure C,1

uk, vk , wk x, y, and ,.z components, respectively, of free stream
velocity V associated with the kth body orientation
and defined , using Equations (7) and (8), as functions
of ak, 6k , and nk

up , vp , wp x, y, and z co.Tponents, respectively, of the resultant
flow velocity V. at a point P on the propeller plane
as shown in Figure 7

up , vP, w x, y, and z co ponents, respectively, of the resultant
flow velocity Vp at a point P on the propeller plane
used in Appendix D

us, vs , w x, y, and z components, respectively, of the flow
velocity about a sphere in the x - z plane of symmetry

Uwj , vwi , wwi	 4, y, and z components, respectively, of the velocity
Vwi induced at the control point of body panel i by the
wing horseshoe vortex

uwik, vwik , wwi x, y, and z components, respectively, of velocity
1c induced at the control point of body panel i by the

wing horseshoe vortex operating at CLk associated with
the kth body orientation

uwp , vwp, 
wwp	

j, y, and z components, respectively, of the velocity
Vw induced at a point P on the propeller plane by the
wIRg horseshoe vortex

UR	 length of one side of a body panel as shown in Figures
A.4, A.5, and A.6a

vap , vrp , vtp	 axial, radial, and tangential components, respectively, 	 {
of the resultant flow velocity at a point P on the
propeller plane relative to the propeller plane-fixed
cylindrical axis system as shown in Figures 7 and D.3

vY	tangential velocity component on the surface of a sphere



xxi

V	 magnitude of free stream velocity
4.
V	 free stream velocity vector

4.
Vbi 	resultant surface velocity vector at the control point

of body panel i

V 	 of the distributed source self-induced veloc-
ity at the control. point of body panel i which is
always normal to the panel and numerically equal to
Vnii as shown in Figure 2

V 	 representation of Vii
4.
Vii image	 velocity vector at the control point of body panel i

(normal to the panel) in a symmetric panel network
composed of the panel i source self-induced velocity plus
the velocity induced by the point source at the image
of panel i

Vij	
velocity vector induced at the control point of body
panel i by the point source at the control point of
body panel j (includes the velocity induced by the
point source located at the image of body panel j in
a symmetric panel network)

Vnii	 identical to Vii as shown in Figure 2

Vp	 resultant flow velocity vector at a point P on the
propeller plane

Vpj velocity vector induced at a point P on the propeller
plane by the point source at the control point of body
panel j

Vr 	magnitude of velocity induced radially by a point source
at a distance P from the source

V 	 wing-induced velocity vector

Vwi	 velocity vector induced at the control point of body
panel i by the wing horseshoe vortex

VWp 	velocity vector induced at a point P on the propeller
plane by the wing horseshoe vortex

Vw (P)	 wing-induced velocity vector at point P on an arbi-
trary body surface used in Equation (4)

Vw(q)	 wing-induced velocity vector at a generalized surface
coordinate q on an arbitrary body

r
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wl , w2, w3 , w4	downwash velocities at the local three-quarter chord
position of each of four elements of the Weissinger
approximation of a flat plate airfoil shown in Figure
6

W	 total velocity vector induced at a point by a straight
vortex filament as shown in Figure C.1

W	 magnitude of velocity induced by a straight vortex
filament

W 	 velocity vector induced at a point i by one filament
of the wing horseshoe vortex as shown in Figure 5

x, y, z	 axes of the body-fixed right-hand dartesian coordinate
system as shown in Figures 1, 7, D.1, and D.2

x', y', z'	 axes of a right-hand Qartesian coordinate system with
origin at the propeller plane hub each lying parallel
to the body-fixed x, y, and z axes, respectively, as
shown in Figure D.1

axes of a propeller plane=fixed right-hand Cartesian
coordinate system with origin at the propeller plane
hub and oriented at angles a p and Bp with respect to
the x'-y' -z' axis system as shown in Figure D.2

axes of a right-hand Cartesian wind axis system used
in Appendix B in which axis R remains directed upstream
parallel to the free stream as shown in Figures B.1 and
B.3

x*, y*, z* axes of an intermediate right-hand Cartesian coordinate
system used in coordinate transformations in Appendices
B and D as shown in Figures B.2 and D.2

2 x, y, and z coordinates, respectively, of the point at
which vortex filament-induced velocity is calculated as
shown in Figure C.1

8, g, g	 x, y, and z coordinates, respectively, of a point which
is the arithmetic average of four input noncoplanar
panel corner points with the point Lying on the associ-
ated flat quadrilateral developed in Appendix A

x1. Yll Z 	 x, Y.
input
A. 6a,

x2. Y2 . z2 x. Y.
input
A.6a,

and z coordinates, respectively, of the first
body panel corner point as shown in Figures A.2,
and A.6b

and z coordinates, respectively, of the second
body panel corner point as shown in Figures A.2,
and A.6b
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i

x3, y3 , z 3 x, y, and z coordinates, respectively, of the third
input body panel corner point as shown in Figures A.2,
A.6a, and A.6b

t

x4 , y4 ,	 z4 x, y, and z coordinates, respectively, of the fourth	 t
input body panel corner point as shown in Figures A.2,
A.6a, and A.6b

I1' 91' 21 x, y, and z coordinates, respectively, of the vortex
filament starting point as shown in Figure C.1

21' 92'	 22 x,	 y, and z coordinates, respectively, of the vortex
filament endpoint as shown in Figure C.1

xx, yy, zz x, y, and z coordinates, respectively, of a corner
point on a flat quadrilateral body panel

fl

xxl , yyl, zzl x, y, and z coordinates,respectively, of the first
corner point on a flat quadrilateral body panel defined
by Equation set (A.10) and shown in Figure A.3

xx2 , yy2 , zz 2 x, y, and z coordinates, respectively, of the second
corner point on a flat quadrilateral body panel defined
by Equation set (A.10) and shown in Figure A.3

xx3, yy3 , zz3	x, y, and z coordinates, respectively, of the third
corner point on a flat quadrilateral body panel defined
by Equation set (A.10) and shown in Figure A.3

xx40 yy41'	 zz4 x, y, and z coordinates,respectively, of the fourth
corner point on a flat quadrilateral body panel,defined
by Equation set (A.10) and shown in Figure A.3

X, Y coordinates of a point uaed in axis system transforma-
tions in Appendices B and D as shown in Figures B.2 and
D.2

xhub' Yhub' Zhub x' y, and z coordf.li.ites, respectively, of the propeller
plane hub as shown in Figures 7, D.1, and D.3

Xp , Yp , z x, y, and z coordinates, respectively, of a point P on
the propeller plane

Xr , Yr , z x, y, and z coordinates, respectively, of the wing root
quarter chord point as shown in Figures 4a and 4b

XC, YC, ZC x, y, and z coordinates, respectively, of a body panel
control point

XCi , YCi, zCi x, y, and z coordinates, respectively, of the ith body
panel control point

XC^, YCJ , 2C^	 x, y, and z coordinates, respectively, of the jth body
panel control point

i
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XCi	 ,
YCi^ge

ZCiimmaage'

x, y, and
point on
symmetric

z coordinates,
the right side
panel network

respectively, of the
image of body panel i
as shown in Figure 3

control
in a

XCjima e ,

YCjimage'
ZCjimage

x, y, and
point on
symmetric

z coordinates,
the right side
panel, network

respectively, of the
image of body panel j
as shown in Figure 3

control
in a

Greek Symbols

a	 body angle of attack

as	flat plate airfnil angle of attack as shown in Figure 6

ao , abl , ab2	 propeller blade section angles of attack defined in
Figure

a 	 geometric angle of attack of the propeller plane measured
from the free stream as shown in Figure 23a

•k	body angle of attack for the kth body orientation

ap installed angle of attack of the propeller plane rela-
tive to the body-fixed x axis as shown in Figure 7 and
used in Appendix D (positive for thrust axis inclined
upward)

as	 angle at a corner of a quadrilateral or triangular body
panel as shown in Figures A.4 and A.6a

B	 body angle of sideslip (positive nose right)

Sk	 body angle of sideslip for the kth body orientation
(positive nose right)

6p	installed angle of sideslip of the propeller plane rela-
tive to the body-fixed x axis as shown in Figure 7 and
used in Appendix D (positive for thrust axis inclined
to the right of the body)

d6	 angle at a corner of a quadrilateral or triangular body
panel as shown in Figures A.4 and A.6b

Y angular coordinate of a polar coordinate system to de-
fine position on a sphere in a uniform stream as shown
in Figure 10

r	 strength of a wing horseshoe vortex and a vortex filament

rl , r2 , r3 , r4	vortex strengths at the quarter chord position of each
of four elements of a Weissinger approximation model
of a flat plate airfoil shown in Figure 6

Q	 dihedral angle of wing quarter chord line as shown in
Figure 4b

i



xxv

E upwash angle at a point P on the propeller plane mea-
sured in the x - z plane as shown in Figure 7 (positive	 ,t
for flow directed upward)

ti Euler angle defined by Equation (8) and Equation (B.5)

tip Euler angle defined by Equation (40) and Equation (D.5)

8 angle of rotational flow (apparent not actual rotation)
at point P on the propeller plane measured in the blade
section plane as shown in Figures 7 and 8 and defined
by Equation (48)	 i

8 1 subtended angle at endpoint 1 of a vortex filament as
shown in Figures 5 and C.l

82 subtended angle at endpoint 2 of a vortex filament as
shown in Figures 5 and G.1

X angle of outflow at point P on the propeller plane mea-
sured in a plane containing the thrust axis and local
radius line as shown in Figure 7 and defined by Equa-
tion (47) (positive for flow directed radially outward)

A sweep angle of wing quarter chord line as shown in
Figure 4a

U	 upwash velocity induced upstream of a flat plate.airfoil

PM
	upwash velocity induced upstream of an m element Weis-
m	 singer approximation model of a flat plate airfoil as

shown in Figure 6

ul	 upwash velocity induced upstream of a single. element
Weissinger approximation modelvf a flat plate air-
foil used in Figure 6

n	 3.1415926...

a	 body panel source strength "density" {strength per unit
area) constant over a panel surface

of	source strength "density" (strength per unit area) con-
stant over the surface of body panel i

aj 	 source strength 'density" (strength per unit area) con-
stant over the surface of body panel j

[a]	 matrix of unknown body panel source strength "densities"
(strengths per unit area) to be solved using boundary
condition equations

[aj ]	 column matrix of unknown body panel source strength
"densities" (strengths per unit area) corresponding to
the flow for a single body orientation



xxvi

[a J	 augmented matrix of unknown body panel source strength
jk "densities" (strengths per unit area) with the kth column

containing a set of unknowns corresponding to the flow
for the kth body orientation

a(P)

	

	 value of source strength "density" (strength per unit
area) at point P on an arbitrary body surface

a(q)

	

	 distribution of .source strength "density" (strength per
unit area) over the surface of an arbitrary body as a
function of the generalized surface coordinate q

T

	

	 sidewash angle at a point P on the propeller plane mea-
sured in the x - y plane as shown in Figure 7 (positive
for flow toward the right (+y) side of the body)

scalar velocity potential function

velocity potential at the control point of body panel j
and also used in Equation (13) for the potential at
radius f from a point source

Irij

	

	 velocity potential at the control point of body panel i
due to a point source located at the control point of
body panel j

¢ s

	

	velocity potential function describing the flow about
a sphere in a uniform stream defined by Equation (49)

¢(P) total velocity potential at point P on an arbitrary body
surface due to the source strength distribution over the
entire surface

X

	

	 distance forward of the leading edge of a flat plate
airfoil as shown in Figure 6

XA

	

	horizontal distance between. transit A and the coordinate
origin as shown in Figures E.la and E.lb.

XB

	

	horizontal distance between transit B and the coordinate
origin as shown in Figure E.la

AX

	

	 vertical distance between transit B and the coordinate
origin as shown in Figure E.lb

azimuth position angle on the propeller plane measured
clockwise from the top when viewed in the thrust direc-
tion as shown in Figures 7, D.1, and D.3

'A

	

	 horizontal angle measured using transit A as shown in
Figure E.la

*B

	

	
horizontal angle measured using transit B as-shown in
Figure E.la



xxvii

W	 angular velocity of a right-hand rotating propeller as
indicated in Figures 7, 23b, and D.3

WA

	

	 vertical angle measured using transit A as shown in
Figure E.lb

wB

	

	vertical angle measured using transit B as shown in
Figure E.lb

Saecial Svmbols

!	 integral

!t	 double or area integral

T.	 algebraic summation

a/By	 partial derivative in the y direction

a/an	 normal derivative in the direction outward from and
normal to a body surface or panel

d/dt	 time derivative

9/ax, 9/ay, a/az partial derivatives with.respect to the body-fixed axes
x, y, and z, respectively

V

	

	 - (a/ax)t + (Vay)l + (a/az)k , the gradient operator
in Cartesian coordiantes

02	 (a2 /ax 2 ) + (a 2 /By 2 ) + (a 2 /az2 ), the Laplacian opera-
tor in Cartesian coordinates

'

	

	 absolute value or vector magnitude

scalar dot product operator

x	 vector cross product operator

0	 "not equal to"
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Chapter 1	 1

INTRODUCTION

1.1 Statement of the Problem and Scope of the Investigation

Improving the aerodynamic and vibrational characteristics of general

aviation aircraft propellers has been an ongoing concern receiving re-

newed emphasis in recent years. Nearby aircraft structures a].*,er the

airflow at the plant, of the propeller. This nonuniform flow field in

which the propeller operates produces fluctuating aerodynamic blade

loadings which increase vibration and fatigue in the propeller structure.

Also, the overall aerodynamic performance of the propeller may be reduced.

Knowledge of the flow field at the plane of the propeller, as induced by

the aircraft structure, enables the propeller designer to match the pro-

peller with the airframe to reduce the severity of these difficulties.

Thus, it is desirable to develop an analytic method for predicting the

flow field in which the propeller will operate, for any arbitrary air-

craft configuration.

In reality, for a tractor propeller, there is a mutual interference

between the propeller and airframe. The propeller slipstream produces

a disturbed flow of higher velocity which impacts on the structures,

nacelles or cowling, immediately behind the propeller. This situation

produces extra pressure drag on the airframe which, considered alone,

has a detrimental effect on the performance of the propeller-aircraft

propulsion system. Simultaneously, however, the airframe components

obstruct the flow entering the propeller disk to produce a nonuniform

flow field at the propeller plane. The nonuniformity of this flow

gives rise to increased propeller vibration. Flow blockage by the
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improve the efficiency of the propeller. However, generally, the mutual

interference tends to reduce the propulsive efficiency of the propeller-

aircraft combination to an extent not immediately obvious. This mutual

interference effect is very difficult to predict analytically and has

usually-been investigated experimentally.

However, as a starting point in exploring the propeller-aircraft

interaction problem, this study confines itself only to examination of

the influence of the airframe upon the flow field at the propeller with

the propeller removed. It is this airframe interference which is dom-

inant in creating the fluctuating aerodyanmic loads and vibration on the

propeller blades. Propeller interference on the airframe and the mutual

interference are not considered.

Only tractor propeller-airframe conf igurations are assumed in this

study,as tractor propellers operating in front of the aircraft are more

common than pusher propeller configurations. However, the methods pre-

sented in this study are applicable to some pusher propeller configura-

tions.

A second assumption is that the flow is incompressible; thus, Mach

number effects are not introduced.

Third, steady, inviscid, potential (irrotational) flow is assumed.

This assumption is valid for propellers operating upstream of the airframe

and not in the wake of any airframe components. Viscosity effects are

insignificant in the flow at the forward regions of the airframe with

the propeller removed.

The flow field at the plane of the propeller is influenced by

several factors. Two factors are aircraft angle of attack and the tilt

of the propeller plane relative to the airframe. Many propellers are
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itr
mounted with some angle of attack and sideslip relative to the fuselage

in order to improve stability. 	 Angle of attack combined with propeller

tilt causes the blades to see an azimuthal variation in velocity, and
5t

hence, fluctuating loads exist.	 This situation can exist even in the

absence of any airframe interference.	 A third factor is the forward r

spacing of the propeller hub from the airframe as well as the vertical x`

and lateral position of the hub relative to the airframe. 	 The influence
i.

of the airframe on the propeller flow is lessened if the propeller is

spaced farther from it.	 A last factor influencing the flow at the pro-

peller plane is the shape of the individual airframe components and their

positions relative to one another.

Each airframe component has its own type of influence on the pro-

peller plane flow field. 	 The lifting wing upwash creates radial and

azimuthal variations in the axial and tangential velocities at the pro-

peller plane.	 Axial velocity tends to be increased over portions of the

propeller plane located above the wing,while axial velocity is decreased

over portions below the wing.	 Nonlifting components, the cowl-fuselage

on single-engine configurations and nacelles on multi-engine configura-

tions, tend to block the flow at the propeller. The axial velocity will

be less than free stream velocity at the propeller plane, especially at

the radial positions near the hub. Also, because these bodies are not

usually bodies of revolution and because the propeller hub may not be

centered in front of the cowling or nacelle, these bodies can also: induce

an uneven distribution of radial and tangential velocity components over

the propeller plane.

Combining the effects of all the above factors leads to a propeller

plane flow field which is fully three-dimensional. The propeller plane

t ;G
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flow field cannot be simplified by assuming axisymmetry or assuming that

aircraft components are bodies of revolution.

The purpose of this study is to predict the three-dimensional,

steady, incorpressible potential flow at the plane of a propeller having

any orientation and position in front of an arbitrary nacelle-fuselage-

lifting wing combination. Development of a finite element numerical

method is presented which calculates the flow on the surfaces of the

fuselage and nacelles as well as at the plane of the propeller. This

numerical approach is incorporated in a computer program which is des

cribed.in this thesis.

Numerical predictions of surface pressure and velocity at the pro-

peller plane are compared with exact analytical solutions 7.., a single

body in order to check the method.

Little usable, experimental data is available in the literature for

comparison. However, flow predictions at the propeller plane of a twin-

engine aircraft are compared with the published wind tunnel test results

for that aircraft.

Computer predictions of the flow field at the propeller plane of a

Piper Cherokee PA-28-180 aircraft are presented. However, no experi-

mental flow field data for this aircraft are available for comparison with

the predictions.

A parametric study of the flow predictions for the Cherokee aircraft

is made to determine the importance of the various airframe components

on the flow field at the propeller plane. In particular, the acceptabi-

lity of neglecting aft portions of the airframe distant frrnn •the pro-

peller in making computer predictions is investigated. Also, the effect
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of w`ng dihedral and inlet inflow at the cowl or nacelle upon the flow

at the propeller is examined.

1.2 Previous Investigations

Examination of the effects of afterbodies upon propellers has been

done since the early 1920's. Most of the early work,prior to 1948,was

both theoretical and experimental but was limited to body influences on

the steady propeller thrust, torque, and propulsive efficiency rather

than unsteady or vibratory loading. In much of this experimental work

the actual flow field induced by the body at the propeller was not quan-

titatively surveyed; rather, the propeller was operated la the flow field

and its steady performance measured.

Lesley and Woods (1) performed early wind tunnel tests of propeller-

body interaction effects. Steady propeller thrust, torque, and propul-

sive efficiency were measured with the propeller operating in front of

disks and other flat-faced cylindrical afterbodies. Results indicated

propulsive efficiency was less for the propeller operating with a slip-

stream obstruction than for the free operating propeller.

Durand (2) extended the work of Lesley and Woods (1) by use of

actual airframe shapes in the propeller slipstream. A cowl-fuselage-

high wing combination was tested at various spacings aft of the propel-

ler. Increased propeller-airframe clearance reduced loss of propulsive

efficiency, and the influence of the body fell rapidly as clearance

increased. Durand concluded propeller-airframe interaction should bf-

a design consideration. Also, use of fuselage shapes producing minimum

interaction with the propeller is desirable, or if not possible, maximum

propeller-airframe clearance should be used to reduce interaction.
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Lock (3) first developed a two-dimensional analytic method for

predicting propeller performance under the influence of a slipstream

obstruction. The method was limited to a body shape consisting of a

spheroidal nose attached to a semi-infinite cylinder aligned parallel

to the free-stream velocity. Lock used the exact potential flow solu-

tion for the body to get the radial distribution of axial velocity

upstream in the propeller plane (propeller removed). The axial velocity

defect was incorporated in propeller blade strip theory to calculate

the steady propeller performance with body influence.

Lock (4) extended his own previous work. He analyzed the various

power wastages by the propeller. To do this,a momentum analysis was

used which incorporated the body-induced potential flow axial velocity

at the propeller plane. Also, pressure drag on the body nose was used

in the power wastage expression. This power loss expression could then

be used with either propeller blade strip theory or vortex theory to

predict steady performance with body influences.

Lock (5) summarized his previous works. He applied his method to

numerical examples involving spheroidal body shapes of various fineness

ratios. He compared his predicted performance results with measured

test results.

Weick (6) made a limited survey of the axial velocity at the pro-

peller plane of a Sperry Messenger aircraft (propeller removed) in a

wind tunnel. At any particular test location in the propeller plane,

the ratio of measured axial to free-stream velocity remained constant

regardless of the wind tunnel test free-stream velocity. Weick concluded

the variation of-axial velocity radially f om hub to tip on the propeller

plane to be significant and worth much consideration in propeller design.
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Lesley and Reid (7) used a VE-7 aircraft fuselage and surveyed the

distribution of axial velocity at the propeller plane (propeller removed).

At each of three azimuth positions checked, the axial velocity varied

from zero at the hub to near free stream at the propeller tip radius.

An averaged radial distribution of axial velocity was presented. Next,

several propellers of various pitch distribution were tested freely and

then in front of the fuselage. Generally, eazh propeller operated less

efficiently when in the presence of the fuselage. Significantly, one

propeller having a blade pitch distribution shape similar to the shape

of the measured radial distribution of axial velocity in the propeller

plane suffered the smallest reduction of efficiency. Lesley and Reid

concluded a propeller designed such that each blade section locally

attains its optimum angle of attack, at conditions of maximum efficiency,

is superior to the conventional constant speed propeller for operation

in the presence of a slipstream obstruction.

McHugh and Derring (8) tested several full-scale propellers opera-

ting in front of a family of radial engine cowlings having various

diameters. Effect of cowling to propeller diameter ratio on the steady

propeller performance was investigated. Results were two-fold. First,

for cowlings less than one-third the propeller diameter, propulsive

efficiency did not vary significantly with variation in cowling diameter.

However, as cowling size increased above one-third propeller diameter,

propulsive efficiency rapidly decreased. Second, presence of a spinner

on the cowling increased propulsive efficiency several percent above

that obtained without the spinner.

Stickle, Crigler, and Naiman (9) extensively tested three full-size

propellers, each with Clark-Y blade sections, operating in front of
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various cowlings. The five body shapes varied from a radial engine

cowling without spinner to a very streamlined body having a large spin-

ner. All bodies had circular cross sections and were at zero angle of

attack. Flow surveys at the propeller plane of each body (propeller

removed) yielded the radial distribution of axial velocity in which the

propellers would operate. Powered tests of all propellers operating in

these flow fields were made.

For the bodies tested, it was concluded that the change in body

drag due to the propeller slipstream negligibly influence propeller

performance and could be disregarded. The remaining direct influence

of the body-induced flow field on the propeller blade load'distribution

was dominant.

Their results led to three conclusions. First, the velocity field

induced by the body at the propeller plane must be considered when design-

ing the propeller blade pitch distribution. Second, body-'induced flow-

has the strongest influence on the inner blade sections. For round shank

blades, reduced axial velocity due to the body alters the drag on the

shank and affects efficiency. For blades with shanks having airfoil shaped

sections, the reduced velocity increases section angle of attack at the

shank sections, so the body causes a change in blade load distribution.

Third, ef£iciency gains obtained with-a spinner .depend on -t&e* ,veloci'ty-

at the hub due to the body. The spinner is beneficial if hub velocity

is high but not as helpful if hub velocity is low.

Wing-induced effects on propeller loads were examined by Kuhn and

Draper C10). A tapered wing semispan was tested with two propellers

attached to negligibly small nacelles. When the outboard propeller op-

erated at 90 to 100 percent chord ahead of the leading edge, the propeller
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pitching moment was double that produced by the free propeller. However,

no lateral propeller force was created. Thus, Kuhn and Draper concluded

the wing upwash was not producing significant azimuthal variation in

blade forces. Rather, the increased axial velocity induced by the wing

over the upper half of the propeller plane and the reduced axial velocity

over the lower half were found to cause the pitching moment increase.

With the 1940's came studies examining the vibration of propellers

due to oscillatory loads produced when operating in a nonunifdrm :flow

field induced by the wing. Such a study was conducted in Great Britain.

In part I of the study, Postlethwaite., Carter, Perring h and Diprose , (111

made theoretical predictions of vibrating modes in two-, three-, four-,

and six-bladed propellers. These propellers were operating upstream in

the calculated flow field induced by a wing having Joukowsky airfoil

sections-. In part TT of the study, Forshaw-, S4uiz e, and_ R1gg X121. tented

a '.hree-bladed propeller operating in the .nonuniform flow field created

by blowing a narrow axial jet of air along one propeller plane azimuth

location. Measured torsion-bending and whirling-bending vibration modes

compared favorably with predictions.

Later, Corson and Miller (13) examined the vibration of a pusher
t;

propeller whose blades periodically passed through the wake of a forward

body. The reduced axial velocity in the wake was introduced as an instan-

taneous change of local blade section angle of attack in propeller blade

element thecry to predict unsteady loading. Actual blade forces were

measured also. Blade vibratory stress was increased if the drag of the

body (intensity of the wake) increased. Secondly, all else being equal,

large diameter propellers experienced less wake-induced stress than

smaller diameter propellers.
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Most recently (1948 to 1953), the National Advisory Committee for

Aeronautics published a series of studies dealing with detailed flow

surveys at the plane of the propeller and these flow effects on the

oscillatory loads and vibration in the propeller,

Vogely (14) performed flight tests on a propeller inclined to the

longitudinal axis of the fuselage. He measured radial and azimuthal

blade load distribution and efficiency as affected by propeller thrust

axis inclination. He compared theoretical predictions which did not

account for any wing-airframe influences on the flow field,

Vogely observed that the pare inclination of the propeller could

produce oscillatory loads, and bade stress could be reduced, at a

specific aircraft angle of attack, by attaching the propeller to the

fuselage with the proper thrust axis inclination. Vogely pointed out

that the airframe induces a significant spatially varying flow field

in which the propeller operates which can incur further blade load alter-

ations. Vogely concluded that detailed flow angle surveys at the plane

of the propeller should be made to obtain accurate results in predicting

propeller vibratory loads.

Shortly thereafter, Roberts and Yaggy (,15) performed the first very

detailed survey of the flow field in the propeller plane (propeller

removed) of a twin-engine aircraft. The full-size, unswept wing aircraft

was tested in the Ames 40- by 80-foot wind tunnel.

The test conditions run consisted of flaps extended, no flaps, and two

different nacelle inlet velocity ratios. For each condition, a series

of runs was made over a range of nacelle angles oF. attack from two to

12 degrees.
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Survey points at the left propeller plane were densely distributed

over the full radius and at fifteen de&ree azimuth increments. Several

flow quantities were measured at each point. Total local velocity was

measured. The local velocity components were measured in terms of two

angular quantities; angle of rotational flow was the ratio of local

tangential to axial velocity, and angle of outflow was the ratio of

local radial to axial velocity. Also, at each point the upwash and side-

wash angles, relative to the fuselage, were measured. Measured radial

and azimuthal distributions of the flow quantities were presented. The

distribution of upwash angle along the horizontal centerline of.the.pro-

peller plane was plotted.

Measured upwash along the horizontal centerltne compared poorly

with predicted upwash induced by the isolated wing modeled by lifting

line theory. This comparison indicated the fuselage and nacelles con-

tributed greatly to the upwash.

Aerodynamic blade load predictions were made using steady blade

element theory and included 'the.-nonuniform flow field measurements in

terms of instantaneous spacially varying changes in.local section angle

of attack. Predicted loading varied approximately sinusoidally with

azimuth, and when the measured flow field was used in the blade load

predictions, those predicted load magnitudes were larger than loads

predicted for an inclined propeller operating in free air.

Nacelle inlet velocity ratio was found to influence the flow only

at the central region of the propeller plane immediately upstream of

the inlet.

Roberts and Yaggy (15) concluded that the angle of rotational flow

and, specifically, the upwash angle along the propeller plane horizontal
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centerline were the most important quantities in producing the oscilla-

tory blade loading. Also, they concluded it was desirable to develop a

theoretical method for predicting the nacelle, fuselage, and wing con-

tributions to the upwash at the propeller plane for any wing-fuselage-

nacelle combination.

Testing by Roberts and Yaggy (15) led to two further studies. Using

the measured flow field data of Roberts and Yaggy (15) with steady pro-

peller blade element theory, Rogallo, Roberts, and 4ldaker (16) computed

the airload variation for a propeller operating in the flow field. Based

on airload predictions, the first order vibratory blade stresses were

calculated. Blade stresses measured on the propeller operating on the

twin-engine test aircraft compared favorably with predictions. This

study gave two conclusions. First, steady state blade element theory

was found adequate for predicting the magnitude and distribution of

propeller oscillatory air loads provided the flow field induced by the

body at the propeller plane was completely known before hand. Second:..

these predicted loadings allowed accurate prediction of first order

vibratory blade stresses.

Since Roberts and Yaggy (l5) had verified that the upwash along

the propeller plane horizontal centerline was the most dominant factor

in inducing oscillatory blade loads, Yaggy (17) presented a theoretical

method for predicting the upwash distribution. Yaggy's method was

developed to predict the upwash contributions at the propeller plane

due to the fuselage, nacelles, and wing of the test aircraft used in

References 15 and 16. Lifting line theory was used for predicting

wing-induced upwash.. The nacelle was modeled as a simple closed body

of revolution for which the exact potential flow could be calculated.
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The portion of the fuselage in the vicinity of the propeller plane was

modeled as an infinite elliptical cylinder for which an exact upwash

expression could be derived from potential flow theory. Net predicted

upwash at a point At the propeller plane was taken as the sum of the

component contributions Predicted upwash agreed fairly well with mea-

sured results.

Yaggy (17) indicated his method, derived for this specific aircraft,

could be extended to other twin-engine aircraft of similar characteris-

tics. The required chars;:• teristics were high wing aspect ratio, nacelles

of circular cross section, fuselage cross sections resembling an ellipse

at the propeller plane region, and that no two body components should

be spaced closer than the larger body diameter.

In three remaining publications, work was continued along the lines

of the previous work (References 15, 16, and 17). This time the effort

was to find the effects of wing sweep on the flow field induced at the

propeller plane. Rogallo (18) and Rogallo and McCloud (19) extended the

upwash prediction method of Yaggy (17) to the case of a highly swept

wing-fuselage-nacelle combination. Rogallo and McCloud (19) also ob-

tained limited experimental results for a swept wing aircraft which were

compared with.predictions. Also, the sweptwing results were compared

with upwash measurements made with-a similar aircraft having unswept

wings.

Hoping to learn more about the effects of wing sweep on propeller

vibratory loads, Rogallo and McCloud (20) performed detailed propeller

plane flow surveys (propeller removed) with a swept wing-nacelle-fuselage

combination. The test was as extensive as that done by Roberts and

u
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Yaggy (15). Wing sweep was found to induce first order vibratory propel-

ler blade loads similar to those attained with an u pswept wing.

Since this work of the 1950's, there appears to be no published

work presenting detailed propeller plane flow field surveys, or predic-

tion methods. With the exception of Yaggy (17), Rogallo (18), and Rogallo

and McCloud (19), whose prediction methods apply only to a small class

of similar aircraft, there is no published method for predicting the

nonuniform, flow-field at the propeller plane of an arbitrary wing-

fuselage-nacelle combination.
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Chapter 2

THEORY OF THE POTENTIAL FLOW SOLUTION METHOD

2.1 Historical Development

With the development of high-speed digital computers in the 1950's

and 1960's, it became possible to solve the potential flow about arbi-

trarily shaped bodies using finite element techniques involving large

systems of algebraic equations.

Many such flow solution methods have been advanced since 1958 when

Smith and Pierce (21) used source distributions on panels to model bodies

of revolution. Hess (22) extended the method to bodies of revolution

oriented_ perpendicular to the free stream flow.

Hess and Smith (23) first solved the flow about nonlifting arbitrary

threa-dimensional bodies using distributions of sources over the body

surface subdivided into discrete panel elements. Smith (24) explained

the theory of Hess and Smith (23) and presented sample calculations.

A thorough discussion of the panel element computer methods was done

by Hess avd Smith (25). They discussed the theoretical details for pre-

dicting both two-dimensional and fully three-dimensional potential flow.

Throughout the 1960's and 1970's, many sophisticated computer pro-

grams were written to predict the flow about three-dimensional lifting

wring-body combinations. Several examples of such work are Hess (26),

Woodward, Dvorak, and Geller (27), and Woodward (28). The theory be-

hind these methods is the same, but each uses different singularities

over the body panels. Sources, vortices, doublets, or combinations of

these singularities have been used in attgmpts to improve the accuracy

k



All of such published computer program pack%aoes are limited to

body surface velocity, pressure, Force, and moment predictions. None

of them have been written to calculate the flow at locations, such a:

at a propeller plane, away from the body surface.

2.2 Theoretical Overview

The method used here involves the solution of the Neumann problE

for the potential flow around an arbitrary body-wing combination in a

uniform free stream velocity field. Hess (25), Rubbert and Saaris (29),

and Hess and Faulkner (30) explain the theory which is also summarized

here.

Steady, incompressible, inviscid flow is assumed. Also, irrota-

tionality is assumed. Thus, the velocity field is the negative gradient

of a scalar potential function. Three components comprise the velocity

field. First is the onset free stream velocity, V, assumed to ba can-

start everywhere. Second is the velocity induced by the lifting wing;

Vw, if present. Third is the perturbation velocity induced by the body

or bodies.

A distribution of source strength density, o, over the body surface,

S, corresponds to a scalar potential function, 0, which satisfies the

Laplace equation and whose negative gradient is the velocity at any

point. However, the wing surface is not included as part of the body

surface. Rather, the wing is modeled by a specified vortex system re-

sponsible for the wing-induced velocity. This velocity is thus a known

quantity.

At a point P on the body surface, the potential due to a unit

strength point source at point q is

1/ [4nr (P, q ) ]	
_
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where r(P,q) is the distance from q to P. Then if surface S has a

distribution of source strength density, a(q), the total potential at

P, O(P), due to the body or bodies is

¢(P) - ICI 4t a-- r—p Q ds >	 (1)

where d§ is an elemental body surface area. This potential also satis-

fies the Laplace equation as a consequence of incompressibility:

	

V 2 ^ (P) - 0 .	 (2)

Also, due to the irrotationality condition, the perturbation velocity

at P is given by -VO(P). Thus,the continuity equation may be expressed

as

V • [-V¢ (P) 7 - 0 .	 (3)

Equation (1), which satisfies Equations (2) and (3), is used with specs-
.

fied boundary conditions on surface S to solve for the unknown a(q).

The boundary conditions are that the normal velocity on the body

surface must be some prescribed value, F(q), r^iUle the potential, ¢, at

infinity must vanish. Generally, F(q) is zero at locations where S is

a solid boun^:..,ry but may be nonzero over areas of the body wall which

are considered to be permeable. F(q) is the normal component at point

a
q of the sum of the free stream velocity, V, the wing-induced velocityy

Vw(q), and the perturbation velocity given by the negative gradient of

Equation (1). Taking the normal derivative of Equation (1), using care

in the integration at the singularity of P - q as explained by Hess (25),

and combining it with the normal component of V  and V gives the follow-

ing boundary condition equation at point P on S:

Q 2P)	 Sf 8n[4^tr(P,q))a(q)dS - n(P)
	 [V + Vw(P)]F(P) , (4)

r-



where n(P) is the outward unit normal

denotes the derivative in the direction UA. n%rj.

Solving the integral Equation (4) for the unknown a on the body

surface concludes the solution of the complete flow field.

Instead of analytically solving Equation (4), which may be impossi-

ble for complex surfaces S, it is solved numerically by dividing surface

9 into N discrete elements. Applying the surface boundary condition to

each of the N elements approximates Equation (4) by a set of N simultan-

eous linear algebraic equations for the N unknown values of a. Solving

for a on each surface element completes the flow solution, and the

velocity anywhere on or away from the body surface may then be calculated.

The details of this numerical method are explained in the remainder of

this chapter.

2.3 Body Surface Model and Free Stream Velocity Components
r

All fuselage and nacelle surfaces are partitioned into a network of
t

N plane triangular and quadrilateral panels. Figure 1 illustrates the

panel network on a single body.

Si denotes the area of the ith panel. The panel control point is

denoted by (XC i , YC i, ZCi) and outward unit normal vector by ni . Also,

on the ith panel there is a constant distribution of source strength

density, ai (a source strength-per-unit area), see Figure 1. Appendix A

provides the details of generating the panel network and obtaining panel

areas, control points, and unit normal vectors.

In terms of the body-fixed Cartesian coordinate system, the outward

normal unit vector is written as

ni i n 	 + n
yi + n  

k	 (5)
i 	 i

f

l

k
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As is also explained in Appendix A, the body surface may be more

simply modeled if all body cross sections are symmetric about a common

plane of symmetry. In this situation the left (-y) side of the geometry

is provided and the right side paneling is a mirror image of the left.

Fewer panels need be considered, and this simplifies the problem, as

will be explained in later sections of Chis chapter.

On certain panels, say the ith one, inlet or outlet flow is modeled

by specifying a value F i . F  equals the amount of velocity allowed to

pass normal to and through panel i. F i , as a positive quantity, repre-

sents velocity inward through the panel. F i , as a negative quantity,

represents outflow velocity. A solid boundary panel i has a zero value

of F  which is assumed and need not be specified.

Referring to Figure 1, the body is immersed in a uniform onset

velocity, V, and is oriented in this velocity field with a specified

angle of attack, a, and sideslip, S.

Relative to the body-fixed axis system, the body, with orientation

a and B, senses three components of the onset free stream velocity ex-

pressed vectorially as

V - ui + vj + wk ,	 (6)

where the components are expressed as

U . -V cos a cos n	 (7.a)

v - +V cos a sin n , 	 (7.'b)

and

w - -V sin & ,	 (7.c)

where V is the free stream velocity magnitude, and Euler angle, n, is

expressed as follows:

q - tan-1an 1 (tan $ cos a) . (8)
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Appendix B derives the Equations (7) and (8) for the free stream

velocity components.

2.4 Body Panel Source-Induced Velocity Components

2.4.1 General case of a nonsymmetric body panel network

Expressions for velocity induced by the source distribution of the

ith panel on itself and by all other panels j on the ith panel are devel-

oped as follows. Refer to Figure l and also Figure 2. On panel i, under

consideration, the source strength density a  remains distributed over

the panel in determining that panel ' s self-induced velocity. However,

in obtaitiing the velocity induced at panel i by all other panels, j, the

source distribution is considered to be lumped into a point source at

each of the remote panels J.

As shown in Figure 2, the source strength distribution v i produces

only a velocity flux normal to panel i. This total velocity flux is

numerically equal to the source strength density per unit area:

of/Si . 2V 

ii 
/S i ,	 (9)

where 
Vnii 

is the normal velocity induced by panel i on itself. This is

the quantity of interest and is found to be from Equation (9),

Cr
yn
ii= 2 : Vii	

(10)

To compute velocity induced at panel i by panel J, lump the source

strength distribution on j into a point source of strength Q  given by

Qj s CF i S1	 (11)

Q,
J
, the strength of the point source in three-dimensional space,

equals the volume flow rate of the source. On a sphere of radius r
j

t
'i

^	

. 4

r
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with the source at the center of the sphere, the source -induced velocity

is directed radially and is given using EquA tion (11) by?

V  = (ai S1 )/4ni 2 .	 (12)

V  equals the negative gradient of the potential, 0 3 , at radius r

due to the point source. Conversely, 0 1 at radius i equals the negative

of the line integral of V  from the source to radius r

$j _ -rr Vr d=	 (13)

Using Equation (12) in Equation (13) and integrating gives the

expression for the potential at the control point of panel i due to the

source at the control point of panel j as follows:

ct S

^i3 = 
4-j- ,	 (14)

where rii is the distance from control point j to control point i given

by

rij	 [(XC
i - XCi ) 2 + (YCi - YCi ) 2 + (ZCi - ZCi ) 2 j

1/2	
(15)

Then the velocity Vij induced at panel i by panel j is the negative

gradient of the potential as follows:

Vii -9¢
ij
 - - a8xi t "i j I - â - k .	 (16)

Substitution of Equations (14) and (15) into Equation (16) gives

Cr S

^ii _ 
CrI 3 [ (XC i - XC3 ) i + (YCi - YC) + (ZC i - ZC^ )kj , (17)

47rrij

where rij, is given by Equation (15).

Equations (10) and (17) apply to the situation in which all N

panels of the body must be considered individually which occurs when

the panel network is nonsymmetric.
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2.4.2 Special case of a symmetric body 2anel network

In the special case of body symmetry, each panel on the left (-y)

side of the body has a corresponding mirror image panel whose control

point differs only by the sign, of the y coordinate, see Figure 3. In

this situation, Equations (10) and (17) are modified and applied only to

the N/2 panels on the left side of the body. The modifications account

for the induced effects of the right side "image" panels, and these

modified expressions are now derived.

First,Equation (10), for panel self-induced velocity, is modified.

In the symmetric body case, the velocity induced on left side panel i by

itself, Equation (10), must additionally include the normal component

of velocity induced at panel i by a point source at the image of panel

image.

Referring to Figure 3, the distance 
riiimage 

between panel i and

its image is

rii 2YCi .
image

Substitute Equation (18) into (17) and replace point (XC j , YCJ,

ZC^) by the control point on panel i image to get the total velocity,

Vii image , induced by the point source at rage on panel i. Then get

the component of velocity normal to panel i by taking the vector product

Of Viiimage and fusing Equation (5). The result is

Q SYC in^	 n	 ii	 yi	 (19)
iiimage	 i	 16n1YCi13

Finally, to modify Equation (10) for the effects of the image

panel, simply add Equation (19) to the original Equation (10) to give

(18)



a	 S
Vii - 2 [1 +=

87r I YC i I Ij
(20)

in which panel i is on the left (-y) side of a symmetric panel network.

Note, here Vii is the velocity induced normal to panel i by itself and

its image panel.

Now a modified form of Equation (17) for velocity induced by remote

panels is derived for the case of body panel symmetry. Again refer to

Figure 3. At real panel i there is a potential,¢,due to the point source

at real panel j, and there is also a potential at panel i due to the

point source at image panel J. Due to symmetry , the source strength

at panel j equals that at jimage. Also, note that YCj 	 YCjimage. Then

denoting by rij image the distance from image panel j to real panel i,

write:

rij	 s [(XCi - RCj ) 2 + (YCi + YC i ) 2 + (ZCi - ZCj ) 2 1 1/2	(21)
image

Applying Equation (14) to both panels j and j image , the total potential.

at panel i is.

rij a 47rr	 +	
9Sj

4^rr	 (22)
ij	 ijimage

where rij is given by Equation (15), and 
rij^age 

is given by Equation

(21) .

The velocity at panel i due to panels j and j age , Vij , is found

by substituting Equations (15), (21), and (22) into Equation (16). This

gives
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.^. (XC
i - XC^) + (XCi - XC^) 	 + (YCi -YC^) + (YGi # XCj)

Vii	 4,r {^	
r ij	 (rid	

^]	 rid	 (rij	
)3]

image	 image
w

(ZC - ZC )	 (ZC - ZC )+	 i 
3	

+	 i	 ^3^ }
	 (23)

i j	 (r '
J image,

This equation is the modified version of Equation (17) and is applied

only to real panels i and j on the left side of a symmetric panel net--

work.

2.5 Wing Model Description and Wing-Induced Velocity

2.5.1 Horseshoe vortex model and its induced velocity

Should a lifting wing be present on the configuration, the surface

of the wing is not modeled with source panels. Rather, it is represented

simply by a single horseshoe vortex.

Referring to Figure 4, the wing operates in the free stream velo-

city, V. Wing span, b, root chord, c, and location of thA quarter chord

of the wing root, (Yr , Yr , Zr ), relative to the body-fixed coordinates

are specified. Also, the quarter chord line may have some small angles

of sweep, A, and dihedral, A. The horseshoe vortex representation has

the bound vortex filaments attached to the quarter chord line. The two

trailing vortices are spaced to give the horseshoe a span equal to 7b/4.

This spacing represents the mean span between the rolled up vortices

trailing from an elliptic wing. These trailing vortices, which actually

extend infinitely downstream, are truncated to a length of 100 c for

purposes of numerical modeling.
7

Corresponding to the given body angle of attack, a, the wing lift

coefficient, CL , is specified. CL is assumed equal to the wing root

section lift coefficient. Then the strength of the horseshoe vortex
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filaments, P, is a constant which equals the total bound circulation at

the wing root. Thus, using the Kutta-Joukowski theorem relating lift to

bound vortex strength, the horseshoe vortex strength is given by

cCLV
r • 2	 (24)

Note, r is a specified constant and not an unknown. This follows

from the assumption used that the wing can influence the flow at the

body panels, but the body will not influence the flow over the wing.

At a point 'i of interest, the velocity induced by the wing horseshoe

vortex is given in the body-fixed coordinate system as

V-
► 	

u	 +v #+w vi
	 (25)

wi 	wi 	wi 

The wing-induced velocity is calculated using the Biot-Savart law

by applying the law to each of the individual straight vortex filaments,

in turn, and summing the individual filament-induced velocities, W. Re-

ferring to Figure 5, the Biot-Savart law for the velocity at point i loca-

ted distanceh-from a filament of length ill is given vectorially as

r f -	 (26)i	 igl

As shown in McCormick (31), the magnitude of this velocity is given

by

4nh(cos e l + cos e2 )
	

(27)

Should a vortex filament pass through or near the point of inter-

est, distance h will be zero or very small causing numerical problems

with the Biot-Savart law: Two measures are taken to prevent these prob-

lems. First, if distance h is zero, the velocity components induced by

the vortex filament are set equal to zero, and the Biot-Savart law,
a

F

Equation (27), is not used, thus preventing attempted division by zero.
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Second. an upper limit is imposed on the magnitude of velocity Which

a stngle vortex filament may induce. The upper velocity limit is 20

percent of the free stream velocity. Thus, when distance h is such that

Equation (27) yields a velocity magnitude greater than 0.2 V, the in-

duced velocity magnitude ,Wi ) is set equal to 0.2 V,,and velocity com-

ponents are adjusted accordingly.

Choice of 0.2 V for the velocity limit was made because this approx-

imates the value of downwash velocity at the root three-quarter chord

location of a wing with flat plate airfoil sections having an aspect

ratio of 3 and operating at C L . 2.0, as calculated by thin airfoil

theory. Thus, at body panels near the wing root region, where calcula-

tions with Equation (27) will likely require the use of the velocity

limit, 0.2 V is an appropriate velocity limit.

Appendix C presents ,expxassians, employing the Biot-Savart law and

the 0.2 V velocity limit :rule used by a computer subroutine to calcu-

late the induced velocity at any, point due to a straight vortex filament

having any specified orientation.

2.5.2 Justification for the use of the horseshoe vortex model

To show the validity of using a simple horseshoe vortex model in-

stead of more complicated vortex lattice or lifting line models, a thin

airfoil will be investigated.

A flat plate airfoil with-the vortex attached at the quarter chord

represents the two-dimensional case of a horseshoe vortex. Using Weis-

singer's approximation, the upwash velocity, u, may be calculated.

Analagous to a more exact finite wing model using a vortex lattice, the

flat platne airfoil may be modeled using m segments, each with a vortex

t<
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at the segment quarter chord. Weissinger's approximation applied to each

element can be used to solve: more accurately the upwash, }gym , ahead of the

airfoil.

Figure 6 compares the upwash at various upstream positions, X/c, of

the single element airfoil to that for a multi-element airfoil having

m - 100 segments. Comparing the approximate to the nearly exact model,

there is a 13 percent difference in upwash at points at X/c - 0.4. Ty-

pical twin engine aircraft propellers are positioned approximately at

X/c - 1.0, where the upwash difference has dropped to 3.6 percent. Typi-

cal single engine aircraft have propellers positioned approximately 1.5

chords oir more ahead of the wing. As Figure 6 shows, the upwash differ-

ence is 2.0 percent or less at those positions.

As the main purpose of this study is to predict the flow at an up-

stream propeller plane, Figure 6 indicates that the use of the single

bound vortex (horseshoe vortex) representation of the wing is justified.

2.6 Boundary Condition Equations

2.6.1 General case of a nonsymmetric body panel network

Each point source potential, Equation (14), on the body vanishes

at infinity which satisfies one of two boundary conditions.

The other boundary condition is applied to each-panel on the body.

This condition is that the normal component of velocity at the control

point of each ith panel must vanish or equal a specified value of inflow

velocity, Fi , through the panel. The velocity at the panel is composed

of free stream, wing-induced, and all N panel-induced velocity contri-

butions. For the ith panel the surface boundary condition is given as

-*	 4.	 N -► 	 4.-} -*	 0, solid boundary
V	 n+ j E V •	 l +V +V n	 {	 (28)
wi	 i	 j=1 ij n
	

ii	 i	 -Fi, relaxed boundary'
Q #i)

r
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wl±ere F  is a positive value if it is inflow velocity and negative if

outflow velocity. By substitution of Equations (5), (6), (10), (17),

and (25) into Equation (28), the boundary condition on panel i becomes

1 N	 a S^,
ai + 2n ^E

1 -^ 3-t(XC
1
 - XC^)nx + (YCi - YC^)ny + (2Ci - ZC^)nZ }

(101) r11	 i	 i	 i
- -2[(u + u

wi xi	 wi yi	 w  z 
)n + (v + v )n + (w + w )n ]

+ 
{ 0, solid boundary
-2Fi, relaxed boundary

By writing Equation (29) for each of the N bo4y panels, a set of

N simultaneous linear algebraic equations is formed in which the source

strengths, a, are unknowns. In matrix notation;this set is expressed as

[Aij ][ ai ] _ [B 1.^,j - 1, 2, 3, ... N .	 (30)

Note, the [B] matrix containing the wing-induced velocity components

and free-stream velocity components is the only quantity directly depen-

dent upon the input values of a and a (Equations (7) and (8)) and CL.

The matrix [A] consists of geometric parameters and is unaltered by a,

S, and CL variations.

A given input combination of a, B, and CL will result in a particu-

lar flow solution, [a] matrix. Assuming there are M total input combina-

tions of a, S, and CL , the system of boundary condition equations can be

augmented to contain M sets of [B] coefficients and M sets of unknowns

[a1 ]. Denoting by subscript k the kth input combination ak, 0k, and

CLk , Equation set (3Q) can be expressed in matrix notation-as

[Aij [ajkI - [Bik] .	 (31.a)

where in accordance with Equation (29) the coefficients are

r

(29)
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Aij s 
-^ 3 [ (XC i - XC j )n + (YC - YC j )ny + (ZC - ZC j )nz

2Trr	
il

ij	

xi	 i	 i	 i

for (i # j); i, j . 1, 2,3 ... N ,	 (31.b)

and

Bik ' -2[(uk + uwi )nx + (vk + vwi )r, + (wk + wwi )nz
k i	 k yi	 k i

+ { 0, solid boundary
-2Fi , relaxed boundary

for i - 1, 2, 3 ... N; and k - 1, 2, 3 ... M	 (31.0

where F  is a positive value if it is inflow velocity and negative if

outflow velocity with r ij given by Equation (15) uk , vk , and wk are

direct functions of a  and 0  
by Equations (7) and (8). Also,uwik' vwik'

and wwik are the wing-induced components at panel i for the wing operating

at CLk as per Section 2.5 of this chapter.

Equation set (31) represents the augmented set of N simultaneous

equations to be solved for M different sets of N source strengths, a.

With all a values known, the flow around the body will have been solved

for each of the M input body orientations.

2.6.2 Special case of a symmetric body panel network
s

In the case of a symmetrically paneled body, only the N/2 panels on .

the left (-y) side of the configuration need be considered. In this case

only a half-size system of N/2 simultaneous equations must be solved.

Analagous to Equation set (31), this half-size system of boundary condi-

tion equations is written by substituting Equations (5), (6), (20), (23),

and (25) into Equation (28). However, summations are only made to N/2

rather than to N. The half-size system in matrix form is
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SiYC my

Aid _ [l +	 -3]
Sit IYCiI

S
Aid - ^[rl ] 3 [(XCi XC^ x)n + (YCi - YC^)nY

ij	 i	 i

, for (i . J); i

1	 3 z 

+ [xis 	 3.3 [(XCi - XCi ) nXi + (YCi + YCi )nyi + (ZCi - ZCi ) nzi]}

image.

for (i f J); i, j	 1, 2, 3 ... N/ 2 ,	 (32.0

and

Bik = -2[(uk ± 
uwi )n

x + (vk + vwi )n + (wk + wwi )nz ]
k i	 k yi 	 k i

+ ( 0, solid boundary 	 ^ for i - 
1, 2, 3 ... N /2 and	 (32.d)

-2F,, relaxed boundary	 k . 1, 2, 3 ... M ,

where index i represents body panels on the left side of the configura-

tion and where F  is a positive value if it is inflow velocity and nega-

tive if outflow velocity. Also, r 

riJimage is given by Equation (21).

tions of a  and a  
by Equations (7)

are wing-induced components at left

is given by Equation (15) and

Components uk , vk , and wk are func-

and (8). Also,uwik , vwik , and wwik

side panel i due to a wing opera-

ting at CLk as per Section 2.5 of this chapter.

Equation set (32) is solved for M sets of unknown source strengths,

a, on each of the N /2 left side body panels. The solutions on the right

side image panels match those on the left side. The flow around the

body will then have been solved for each of the M input body orienta-

tions.
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2.7 Body Surface Flow Field Velocity and Pressure

Having solved the system of Equations (31) or (32) for the M sets

of unknown panel source strengths, a, the resulting flow velocity and

pressure at each of the N panel control points is calculated using ex-

pressions developed below.

In the following, assume only one set of N solutions, a, has been

solved. That is, set M equal to one in the equation sets (31) and (32).

At the ith panel control point (XC i , YCi , Zyj the resultant flow

velocity vector, Vbi , is denoted by its body-fixed Cartesian axis com-

ponents as

V = u+ v 1+ w k
bi	 bi	 bi	 bi

This resultant velocity is the sum of the free stream, wing-induced,

panel self-induced, and remote panel-induced velocities;

Vb 	V + Vw + Vii + ^E1 Vii	 (34)i	 i 
The self-induced velocity, Vii , is always directed normal to panel

i. Thus, its Cartesian components are the scalar multiples of the unit

normal vector at panel i. Using Equations (5) and (10), Vi i is given

in vector notation by

Vii 
2 

nx + 2 n+ 
Z 

nz k	 (35)
i	 yi	 i

Substitute Equations (6), (25), (35), and (17) for V, Vw
i , Vii, and

respectively, in Equation (34) for the resultant velocity Vbi at

panel i. Then according to Equation (33) the Cartesian components of

Vbi on the ith panel are

(33)

ai	 N S a XCi - XC

ubw	 3 1	 41r	 3
k	 i	

i	 2 xi
 rQi)	 ij
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ai 	N S a YCi - YCj
vb	 (v + vw ) + 2 n + E !-[	

3 ]

	

(36. b)

i	 i	 yi (J 0i)	 rij

and

wb	 w	 Z(w + w ) + 2 n + 
N

^El
	!a1[ZCi -- ^^ ,

	 (36.c)i	 i	 i (jfi)	 ri j
where u, v, and w are given by Equations (7) and (8) and where r ij is

given by Equation (15).

The magnitude of the total surface velocity at panel i is

(Vb +	 [ub 2 + v  2 + wb 211/2

i	 i	 i	 i

Lastly, the pressure coefficient at the control point of panel i is

given, using Equation (37) and free stream velocity, V, by

^Vb

	

Cp 
i - 

1.0 - [ Vi 1 2	 (38)

Use of Equations (36), (37), and (38) on each of the N body panels

completely defines the surface potential flow for a particular combina-

tion of body angle of attacL, a, sideslip, $, and wing CL.

2.8 Flow Velocities and Flow Angles at the Propeller Plane

2.8.1 Cartesian velocity components at a point on the propeller plane

The propeller plane of radius R is centered at a point ( 	 , Y(Y-hub' hub,

Z 
hub ) relative to the body-fixed coordinate system. In general, the

propeller plane is skewed with an angle of attack, a p , and sideslip, Sp,

relative to the body-fixed axes, see Figure 7. Although the propeller

itself is not present, a right-hand sense of rotation in the propeller

plane is assumed for velocity sign convention.

(37)
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As indicated in Figure 7, a point P on the propeller plane has the

specified radial and azimuthal position (r, *) in a propeller plane

cylindrical axis system. The cylindrical coordinates (r, i) of point P

are transformed to corresponding body-fixed Cartesian axis coordinates

(Xp , Yp , Zp) using the following expressions which are fully derived in

Appendix D:

X
P
 -r[sin * cos ap sin np + cos * sin ap] + hub 	 (39.a)

Y  - [r sin * cos n p ] + Y
hub '	

(39.b)

and

Z  = r[sin ^ sin a  sin n  - Cos * cos a p ] + Zhub '	 (39.c)

where Euler angle, 1p , is given by

np = tan-1 [ tan Sp cos ap ]	 (40)

The total flow velocity vector, Vp , at point (Xp , Yp, Zp) is denoted

by its body-fixed Cartesian components as

Vp = up }i + v  I + w  k	 (41)

-r
V  is the vector sum of the free stream, wing-induced, and panel

source-induced velocities, 
Vppi" 

at the point P on the propeller plane;

V 
	 V	 wp ^ _+ V + El V

PJ
	 (42)

Equations (6) , (25) , and (17) maybe substituted for V, V  , aid
p

Vpi , respectively, in Equation (42) if all i subscripts are replaced by

p and if point (XC i , YCi , ZC i) is replaced by (Xp, Y p , Zp). After making

the aforementioned substitutions into Equation (42), the Cartesian com-

ponents of the net flow velocity at point P on the propeller plane shown

in Figure 7 are given as follows:
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N s ^ x xc
up = u + uW + E1 -^[^ j 	(43.a)

p	 rpj

V . v +V + E -
j
- j C yp— CJI ,	 (43.b)

P	 wp	 3=1 4-r	 r 
3

Pj

and

N S Q Z	 ZC
_...[]	 (43.c)wp w + ww +	
4np	

E 
1	 r

Pj 3

where u, v, and w are given by Equations (7) and (8), and

rpj 	 M  - XCi ) 2 + (Yp - YCj ) 2 + (Zp - ZCi ) 2 ]
1/2 

. (43.d)

2.8.2 Axial. r	 a voint on the
propeller plane	 ri i

At point P on the propeller plane, the Cartesian velocity compon-

ents up , vp , and wp of Equations (43) may, by the following transforma-

tions, be converted into axial, radial, and tangential components, vap,

vrp , and vtp , respectively:

	

va	 [cos ap cos np]up + [sin np]vp	 [sin ap cos np ]wp 	 (44.a)

	

P	 fe
V	 -[sin a cos + cos a sin r1 sin^]u + [cos n sin.*]vr	 p	 p	 p	 p	 p	 p

P

+ [sin ap sin np sin - cos ap cos Owp 	(44.b)

and
^i

v
t
	[sin a  sin - cos a  sin n  cos *]u p + (cos n  cos *IVp
p

'a

+ [cos ap sin + sin ap sin np cos *]wp	(44.0

	

where n
P 

is given by Equation (40), and * is the azimuth position angle 	 #

of point P.	 j
1

As indicated in Figure 7, va p is directed positive in the thrust

direction perpendicular to the propeller plane. vr p is directed positive

a

u	
,
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radially outward in the propeller plane. v tp is directed in-plane per -

pendicular to vrp and positive when directed clockwise around the pro-

peller plane hub. Appendix D gives the complete derivation of trans-

formation Equations (44).

2.8.3 Local flow angles at a point on the propeller plane

The velocity components at point P on the propeller plane may be

expressed in terms of four flow angles. These are angles of upwash,

sidewash, outflow, and rotational flow denoted by E, T, X, and e,

respectively, and are functions of up , vp , and w  given by

	

e tan-1 [^]	 (45 )
p

and

-v
T M tan-1 [ p]u

p

such that a is positive when the flow is directed locally upward toward

the negative z axis, and T is positive when the flow is directly locally

to the right toward the positive y axis.

The angles of outflow and rotational flow at point P are measured

with respect to the propeller plane and were first defined by Roberts

and Yaggy (15). These angles are functions of vap , vrp , and vtp given,

respectively, by

v
r

a

	

tan- _v
 P ]	 (47)

a
p

and

vt

	

e - tan-1l -v P J	 C48)
a

p

(46)

i
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As shown in Figure 7, angle of outflow, X, lies in a plane contain-

ing the thrust axis and radius line to the point P. a is positive when

the local flow has a component directed radially outward. Angle of ro-

tational flow, 9, indicates the apparent tangential or rotational sense

of the local flow at the propeller plane. 8 is measured from a line

parallel to the thrust axis and lies in the plane perpendicular to the

radius line to the point. That is, 6 is an angle which would appear in

the propeller blade section diagram at that point. For sign convention,

a right-hand propeller rotation is assumed, so a positive value of 8

corresponds to an effective decrease in local blade section angle of

attack frnm that encountered by the propeller operating freely in a

uniform flow. A negative value of A corresponds to an increase to the

local section angle of attack. Figure 8 illustrates the effect of A on

the angle of attack of a blade section at radius, r, on a propeller rota-

ting at an angular velocity of w.

2.9 Three-Dimensional Flow Computer Program Description

Y

A computer program has been written which solves the subsonic po-

tential flow about any arbitrary three-dimensional body-wing combination

using the theory presented in this chapter. The surface geometry of the

body, or group of bodies, must be provided in an organized set of dis-

crete points. Geometry of the wing, if present, as well as the location

and orientation of a propeller must be specified. Then for each . speci-

fied combination of body angle of attack, sideslip, and wing CL , the

program calculates the velocity and pressure coefficient at points on

the body surface. Lastly, the program calculates the flow velocities
F.

and flow angles at each point in a mesh-of points on the plane. of the
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Figure 9 presents the organizational structure of the program. It

consists of fourteen subroutines each handling a major portion of the

problem and linked by a main calling program. The program is coded in

Fortran for use on the IBM 370/OS 360 computer system at The Pennsylvania

State University.

The program has been dimensioned to various sizes, the largest of

which is capable of handling N - 2596 body panels and M - 6 combinations

of a, S, and CL.

Several features have been incorporated. First is the symmetric

input option feature ()NSYMET - 0) which requires the input of only the

left side of a symmetric body geometry. Image geometry is computed

automatically and the program must solve a problem only half as large as

would occur with a nonsymmetric configuration.

Second, due to the massive amounts of input surface geometry

required, a geometry check run feature (NCALC - 1) has been included.

This feature is used when a new body geometry is being tried. The pro-

gram generates and prints the panel geometry network which allows the

user to check for errors in paneling data and allows the user to identify

the sequence numbers of panels to be characterized as inflow and outflow

panels. Flow calculations, which consume most of the computer time, are

not made during a geometry check run thus reducing the amount of com-.

puting time which would have been wasted if flow calculations had been

attempted with geometry data containing errors.

T.hird,.a feature LNPUNCH - 1) allows punched output to he produced.

This feature, if selected, produces a punched card deck containing

identifying information and propeller plane flow field data including

axial and tangential velocity components at each point on the propeller
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plane. These output cards are formatted for direct application as input

data cards in the propeller performance analysis program of Aljabri (32).

Because of the vast amounts of storage required by the program, it

is necessary to store the system of boundary condition equations, Equa-

tions (31) or (32), on an auxiliary sequential scratch disk file. A

second auxiliary file is also needed for printing certain output data;

As a result, the system of equations cannot be solved by matrix inver-

sion or other direct methods, but instead requires the use of iterative

methods. The method of Gauss-Siedel iteration is used in this program.

Additionally, because of the use of auxiliary files, slower program

execution occurs. Thus,lvhas been found useful to compile the program

into a.highly ,efllcient machine language deck using the Fortran R, optimi-

zation level - 2, compiler available at The Pennsylvania State University.

Actual jobs are performed by running this compiled machine language pro-

gram. Execution time conserved by this technique can often mean the

difference between success and failure in completion of the flow solution.

The purpose of each subroutine is given very briefly, he-low.

INPUT reads and stores all input data. It also checks for certain

input errors.

VCOMP calculates the set of free stream velocity components using

Equations (7) and (8) for each input set of a and s.

EULER calculates angles-n,and n  using Equations (81 and GOI,

respectively.

WGEOM generates the wing horseshoe vortex geometry based on input

wing geometry if a wing is present in the configuration.

PANEL generates the body panel network. It calculates all panel

areas., control points, and unit normal vectors using the methods: and
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formulas given in Appendix A. It assigns a segvence number to each

panel and counts the total number of panels. PANEL also generates image

panels and establishes a system for matching "real" and "image" panels

on symmetric configurations.

COFSYM generates the matrices of coefficients, [A] and [B], for the

half-size system of boundary condition equations, Equation set (32),

used in the case of body symmetry.

SOLSYM solves Equation set (32) for M sets of N/2 unknown panel

source strengths using Gauss-Siedel iteration.

COEFIC generates the matrices of coefficients, IA] and [B], for the

full-size system of boundary condition equations, Equation set (31),

used when the configuration is not symmetrically paneled.

SOLVE solves Equation set (3I) for M sets of N unknown panel source

strengths using Gauss-Siedel iteration.

WINGV calculates the velocity components induced at a point by the

wing horseshoe vortex. It uses subroutine VORTEX, below.

VORTEX calculates the magnitude and components of velocity induced

at a point by a straight vortex filament. Formulas given in Appendix C

are used.

VELOCI calculates and prints the surface flow velocity and pressure

coefficient at each. panel control,. point using Equations 0361, (37Z, and

(38 ) .

VPROPS calculates the propeller plane, flow field. It first calcu-

lates and prints up , vp , and w  using Equation set 0431 at each point on

the propeller plane. Second, it calculates and prints va p , vrp , and

vtp using Equation set (44) at each point. Also, it calculates,us-ing

subroutine ANGLES,and prints flow angles e, t, a, and a using Equations
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(45) through (48) at each point, Third, if desired, it punches values
vap , vtp , and other data on output cards for each point.

ANGLES calculates flow angles e, T, X, and 6 for each point on the

propeller plane using Equations (45) through (48).

A user's manual., Jumper (33), has been written which gives a com-

plete description of program input and output. Also, the manual presents

all necessary operating instructions and contains a complete program

listing.

However, the user's manual contains3 an older version of subroutine

VORTEX which incorporates a quantity called hmin and which does not use

the computational formulas given in Appendix C.

Subroutine VORTEX listed in Jumper (33) shnuld be modified by

deleting the expressions and logic pertaining to hmin and then reorgan-

izing the expressions to conform with the equations given in Appendix C.

An errata sheet to the user's manual had been written which.describes

all changes necessary to make expressions in subroutine VORTEX, originally

printed in the manual, conform with the formulas found in Appendix C of

this thesis.

r
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Chapter 3

TEST CASES OF THE FLOW ABOUT A SPHERE AND THE FLOW
ABOUT A SIMPLE FUSELAGE SHAPE

3.1 Exact Solution for the Potential Flow About a Sphere

To ensure the three -dimensional potential flow computer program

functions properly, the test case of the flow about a sphere has been

used for comparison, because the exact solution for this flow exists.

Figure 10 shows the cross sectional view of a sphere of radius, a,

in a uniform velocity field, V. In terms of the polar coordinates, the

velocity potential for this flow may be derived by mathematical solution

of the Laplace equation. Also, the potential is found in Milne-Thomson

(34) and is given by

3
0s = V[r + a 2]cos y	 (49)

2r

On the sphere surface, only the tangential velocity component exists and

is found, using Equation (49), to be.

a^
vy 	jl a^] at r=a = 2 V sin y
	 (5Q)

r

/Then, using Equation (50) in the definition of pressure coefficient,

Equation (38), the sphere surface pressure coefficient distribution is

Cp = 1 - 9Isin y] 2
	

(51)

The velocity potential may be rewritten in terms of the body-fixed

Cartesian axes shown in Figure 10. The potential becomes

3
0s = V[1 +	 2a 2 3/2] Ca + a)	 0521

2[ (x+ a) + z 1
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To get the Cartesian velocity components anywhere on the x-z plane in

Figure 10, the negative gradient of Equation (52) is taken. These x, y,

and z components of velocity are given, respectively, by

	

2a 3 (x + a) 2 - a 
3 

z 
2
	

1	 (53.a)us	
2[(x + a) 2 + z2]5/2 

vs - 0 ,	 (53.b)

and

3
ws 2[	 a (2 + a2z5/2]V	 (53.0

Ux +a) +z ]

3.2 Sphere Surface Pressure Prediction Compared With Exact Solution

A sphere was modeled using ten equally spaced cross sections to

generate 120 panels, and the flow was solved using the three-dimensional

flow program. Figure 11 compares the predicted and exact, Equation (51),

pressure distributions. Agreement is excellent over the entire surface

with only a minute deviation near y - 90 degrees. This result verifies

that the computer program functions properly.

3.3 Flow Predictions at a Propeller Plane Upstream of a Sphere

In addition to surface flow predictions, the flow velocities and

angles were predicted at untilted propeller planes centered in front of

the sphere. Results were predicted for two propeller plane-sphere

spacings. Figure 12 gives the axial velocity distribution along the

upper centerline of the propeller plane for both spacings tested and

compares the results with the exact solutions, Equation (53.a). Figure

13 presents the distribution of vertical velocity compared with the

exact solution of Equation (53.c). Additionally, this figure combines

o..
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the axial and vertical velocity distributions by	 the corresponding

upwash angle distributions.

The results in. both Figures 12 and 13 show excellent agreement between

predictions and exact theory for both spacings at radial positions beyond

0.6 sphere radii. At positions inside this radius, the predictions de-

viate from the exact results. The deviation in upwash angle is the most

pronounced. It is seen that as the propeller plane-sphere spacing in-

creases, the computer predictions improve along the entire radius.

At the inner regions of the propeller plane, the sphere surface is

comparatively close to the plane, and the flow is dominated by the influ-

ence of the nearby front ring of body panels. To. points at the inner

radii of the propeller plane, which are near the body surface, the body

panel network appears rather coarse and does not present as accurate a

representation of the true body surface shape as is presented to points

more distant from the body. This results in deviations of the predicted

flow from the exact solution, at, the. inner radii of the propeller plane.

However, at points at larger radii on the propeller plane, local panel

domination diminishes, and the overall panel network more closely resem-

bles^a sphere. Thus, the computer predictions improve at points , farther

from the body surface.

Thus, it appears that in using the computer program for propeller

plane flow predictions, the flow is most sensitive to the body surfaces

nearest to the propeller plane, and care must be taken to panel these

surface regions densely and accurately.
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3.4 Flow Predictions Upstream of a Simple Fuselage Shape and Effec
Remote Bodv Surfaces

Because the three-dimensional flow computer program requires large

amounts of tedious body panel geometry input, it is desirable to reduce

as much as possible the amount of this input without sacrificing accuracy

in the propeller plane flow predictions.

To examine the effect of neglecting remote regions of the body in

predicting the flow at the propeller plane, a simplistic fuselage shape

was used. This fuselage profile is shown in exact scale proportions in

Figure 14. The cowl and tailcone have circular cross sections, while

the cabin region has "pear-shaped" cross sections. A propeller plane

is untilted and centered in front of the cowl with a spacing of 7,8 per-

cent of the cowl length, f.

Figure 14 compares axial velocity distributions at the propeller

plane predicted by the computer program with the complete fuselage mod-

Bled and with cabin and tail removed. As might be expected, with the

cabin and tail removed there is less flow obstruction, and a slight

Increase in the magnitude of axial velocity occurs. The velocity.distri-

bution with. the isolated cowling varies as much as 1.6 percent from the

distribution predicted with the complete fuselage. This change in axial

velocity considered alone might seem unacceptable. However, as the

axial velocity changes so does the radial velocity component. Thus, as

Figure 15 shows, the flow angularity, presented in terms of upwash angle,

fat the propeller plane changes only slightly by removal of the aft por-

tions of the fuselage. Flow angularity shows the comUned effect of all

velocity components and can be considered a more useful parameter for

descrihing the flow field as it would influence a propeller,
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Results in Figure 15 thus indicate that in modeling a fuselage for

propeller plane flow predictions, the body regions remote from the pro-

peller, such as the tail and cabin, can be ignored without seriously

i
	 affecting flow predictions.

j	 Paneling only the cowling of a typical single-engine aircraft fuse-
r lage should be sufficiently accurata for making flo g predictions at the

propeller plane. This will greatly simplify computer program input and

decrease run time and cost.

The effect of neglecting aft portions of a fuselage of an actual

aircraft will be shown later in Chapter 5.	 ,
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Chapter 4

MEASURED AND PREDICTED FLOW FIELD RESULTS AT THE LEFT PROPELLER
PLANE OF A TWIN-ENGINE AIRCRAFT

4.1 Aircraft Geometry, Body Paneling, and Operating Conditions

Roberts and Yaggy (15) conducted extensive wind tunnel tests in which

the flow velocities and flow angles were measured at the left propeller

plane (propeller removed) of the twin-engine aircraft shown in Figure 16.

Because the experimental data was presented in detail, flow predictions

for this aircraft were made using the three-dimensional potential flow

computer program. Comparisons of computer predictions with the published

experimental results were conducted to further check the accuracy of the

computer program.

Figure 16 shows a three-view drawing of the aircraft including over-

all dimensions and the orientation of the left propeller plane. Figures

17a and 17b present in detail the cross section geometry of the fuselage

and nacelle surfaces located foreward of the wing leading edge.

To generate the body paneling input data required by the computer

program, the data in Figures 17a and 17b was used to obtain the paneling

accuracy needed at the foreward body surfaces, which are in proximity to

the propeller plane. At regions aft of the wing leading edge, which are

more distant from the propeller plane, the surface geometry at a given

longitudinal position was estimated by taking the cross section shapes

shown in Figures 17a and 17b and scaling them to the dimensions indicated

by the views in Figure 16. This produced a body paneling network of

sufficient detail in the aft regions.

Initially, the computer program was run using the wing vortex model

and body paneling over the entire surface of the fuselage and nacelles.

Unfortunately, with the body surfaces completely paneled, the program.

i_
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failed to converge. Apparently, the matrix of boundary condition equa-

tions generated by the complete body panel network was not diagonally

dominant or for some other reason was not solvable by the Gauss4iedel

iterative method employed by the program. Thus, it was necessary to

reduce the complexity of the paneling network by excluding certain.por-

tions of the aircraft geometry.

Finally, after several trails, a simplified body panel network was

devised which gave successful computer solution convergence. The wing

vortex geometry was modeled as before. However, the right nacelle and

aft portion of the fuselage were eliminated from the paneling network.

Only the left nacelle and the fuselage nose, the crosshatched region in

Figure 16, remained paneled. As previous results in Chapter 3 indicate,

ignoring the right nacelle and aft fuselage, which are remote from the

left propeller, should not significantly diminish the accuracy of the

flow field predictions at the left propeller plane. The simplified left

nacelle-fuselage nose paneling network consisted of 424 panels and re-

quired the use of the nonsymmetric input option of the program.

To match the aircraft flight conditions of Roberts and Yaggy (15),

the computer model required a simulation of the engine cooling air flow

through the left nacelle. All panels covering the nacelle inlet face were

assigned a known constant infiow velocity, F, normal to and passing

through the panels thus simulating inflow of engine cooling air. However,

no cooling air outflow panels were specified. To obey the law of con-

tinuity, it was assumed that the cooling air was exhausted infinitely far

downstream or at the extreme aft location on the nacelle such that the

exhaust air influence, on the flow field at the propeller plane would be

negligible. Based on this assumption, the presence of exhaust air could

be ignored; thus, it was not simulated.

l
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a Table 1 summarizes the various flight conditions modeled using the

computer program. Flight conditions 1, 2, and 3 on the table were also

tested by Roberts and Yaggy (15). Flight conditions 4, 5, and 6 used a

value of nacelle inlet inflow velocity which was not wind tunnel tested,

and these conditions were run on the computer to investigate the effects

of the inflow velocity parameter on the flow at the propeller plane.

Table 1 also,lists the geometric characteristics which remained con-

stant for all flight conditions, including sideslip angle ^, propeller plane

reference radius R, and propeller plane orientation angles, a  and Sp.

The installed propeller sideslip angle, Sp , is zero for this air-

craft. However, there existed a confusion about the value of the in-

stalled angle of attack, a p , of the propeller plane. Roberts and Yaggy

(15) conducted their experiments in the belief the propeller plane was

not tilted downward with respect to the fuselage; that is,a. p was believed

to be zero. All of the experimental data was presented as a function of

aG , the geometric angle of attack of the propeller plane from the free

stream, which under the assumption of zero a  would also equal the air-

craft angle of attack. However, Yaggy (17) later reported that following

test publications' by Roberts and himself (15) it was found the propeller plane

had actually been oriented with a downward tilt of two degrees (a p = -2

degrees) during the testing. Discovery of this fact did not alter the

measured results but produced an error in the presentation of the data

in Roberts and Yaggy (15). In the published test results, data presented

for a specified propeller plane angle of attack of a G , believed to equal

the aircraft angle of attack a, are actually data corresponding to a pro-

peller plane angle of attack of aG but at an aircraft angle of attack

equal to aG + 2 degrees. Similarly the published CL values tested cor-

s
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respond to the aircraft angle of attack of a G + 2 degrees. Therefore,

as Table 1 indicates, to model a wind tunnel test performed at a published

propeller plane angle of attack of aG , it was necessary to perform the

corresponding computer run using an input aircraft angle of attack of

a = a  + 2.0 degrees.

4.2 Comparisons of Computer-Predicted and Experimentally Measured Flow
t Proneller P

Figure 18 presents azimuthal distributions of axial velocity at the

75 percent radius position for two extremes of body angle of attack. For

the angle of attack of two degrees, there is fair agreement between

computations and experiment. Agreement is much better for the 12 degree

angle of attack case particularly at azimuths near the vertical centerline

of the propeller plane. For both angles of attack, the computed distri-

bution shapes agree well with the measured shapes.

h

	

	 Figure 19 presents azimuthal distributions of flow angularity at the

75 percent radius position corresponding to the velocities in Figure 18.

Additionally, Figure 19 contains a set of curves for a midrange angle of

attack of six degrees. Again the agreement between calculated and mea-

sured distributions is good and improves with increasing angle of attack.

The ability of the program to accurately predict the flow for higher

anglesof attack is good in that propeller vibration, which is more severe

at higher angles of attack, may be more accurately calculated using the

predicted flow field. Generally, in Figure 19, the flow angularity pre-

dictions differ by approximately only one degree from the measured values,

and at most only a three degree difference is seen for an angle of attack

of two degrees.

s
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As explained by Roberts and Yaggy (15,

larity occur near the horizontal centerline (near the 90 and 270 degree

azimuths) of the propeller plane. The flow field near these azimuths

produces the peak vibratory loading on the propeller blades. Additionally,

along the inboard horizontal centerline of the left propeller plane, in-

creased flow angularity is encountered due to the increased wing upwash

in that region as well as due to the influence of the fuselage'nose near

the inboard tip of the propeller plane. Thus, the ability to predict the

flow along the horizontal centerline is of value for anticipating vibra-

tion problems of propellers operating in the flow field.

Radial distributions of angle of rotational flow along the inboard

horizontal centerline (90 degree azimuth) of the left propeller plane

are shown in Figure 20. Over the outer radii-beyond 0.25R, where a

propeller blade would be more heavily loaded, computed flow angularity

distributions agree well with the measured distributions particularly at

the lower angles of attack. Increased flow angularity induced near the

tip radius by the fuselage-wose may be seen on this figure and has been

accurately predicted for the angle of attack of 12 degrees. However,

computed and measured distributions diverge at radii less than the nacelle

inlet radius in Figure 20. Fortunately, any weakness in prediction

ability at these inner radii is not extremely bothersome, because a

propeller blade is lightly or negligibly loaded at these radii. Propeller

performance or loading calculations for blades operating in the predicted

flow field of Figure 20 should not be seriously affected by some inac-

curacy in flow field predictions at the inner radii. Disagreement between

measured and computed flow angularity in the propeller plane hub region

may be due to some shortcomings in the inlet inflow velocity modeling
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technique used by the computer program. Inlet inflow velocity effects

are examined later in this chapter. 	
3

1

Figure 21 shows the axial velocity distributions along the inboard	 ?''

horizontal centerline for angles of attack of two and 12 degrees corres-

ponding to the flow angles of Figure 20. The predicted and measured

velocities agree well to approximately the 30 percent radius position.

Beyond the 30 percent radius position, the computer program overpredicts

the axial velocity. The computer program modeled the wing vortex system,

but the actual wing surface geometry was not paneled. Thus, wing thick-

ness effects were not introduced into the calculations. Any retardation

of the axial velocity along the horizontal centerline which may exist

due to wing thickness blockage effects would not be reflected in the

computer predictions. This may account for the overpredictions of axial

velocity in Figure 21.

It is apparent from Figures 18 through 21 that the potential flow

computer program satisfactorily calculated the flow field at the propeller

plane of the twin-engine aircraft despite the necessary deletion of a

large portion of the airframe geometry from the computer model.

4.3 Nacelle Inlet Inflow Velocity Effects on the Flow Field at the Left
Propeller Plane

Additional computer predictions at the twin-engine aircraft propeller

plane were made in which the nacelle inlet velocity ratio, F/V, was

changed from a value of 0.29, used in the wind tunnel tests, to a value

of 0.10. Figure 22 demonstrates the effects of varying the inflow velo-

city ratio. Plotted are computed radial distributions of angle of rota-

tional flow along the inboard horizontal centerline (90 degree azimuth)

of the left propeller plane. As the figure shows, ch"nging F/V produces

large changes in the flow field only at the hub region directly upstream
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of the nacelle inlet. However, the flow field is nearly unaltered at

radii greater than the inlet radius. These results match the experimental

findings of Roberts and Yaggy (15).

That changing of the value of F/V produces large flow field changes

only in the hub region, where propeller blade loadings are minimal, is

fortunate. This result indicates that the actual choice of F/V value

used in the computer simulation of inlet inflow should not be critical

in regard to its ultimate effect on calculated blade loadings, because

changing F/V will provide major flow prediction changes only near the

hub such that changes in loading and vibration of a blade operating in

the flow field will be slight.

4.4 Geometry-Induced Contributions Versus Propeller Plane Inclination-

{ Induced Contributions to the Flow Field at the Left Propeller Plane

The flow field at the propeller plane is composed of two contribu-

tions, These are the contribution due to pure propeller plane inclination

and that due to the influence of the airframe. It is of interest to

examine these two contributions to gain ,tnsights into the relative sig-

nifigance of each.

At the plane of an isolated propeller inclined to an angle of attack,

aG , from the free stream, the free stream velocity contributes azimuthally

varying radial and tangential velocity components as shown in Figures 23a

and 23b. An expression for the azimuthal variation of flow angularity,

in terms of angle of rotational flow 9, at the isolated inclined propeller

plane may be obtained by inserting the velocity components of Figures 23a

and 23b,into Equation (48): The resulting expression applicable to an

isolated inclined propeller plane is

i
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Flow field predictions produced by the computer program contain 'both

the airframe-induced and propeller plane inclination-induced contributions.

By comparing the flow angularity distribution at an isolated inclined

propeller plane, Equation (54), with the corresponding distribution ob-

tained from the computer program predictions incorporating both the in-

clination and airframe effects, the airframe-induced flow contribution

contained in the computer results is highlighted.

Figure 24 presents such a comparison applied to the left propeller

plane of the twin-engine airplane. In this figure the azimuthal varia-

tions in angle at' rotational flow at the 75 percent radial station are

presented for both high and low aircl." ,Aft angles of attack. As the figure

indicates, for an aircraft angle of attack of two degrees, the propeller

plane inclination, aG, is zero. Thus, the isolated propeller plane, in

the absence of airframe effects, experiences no flow angularity. The

corresponding curve produced by the computer program shows that the intro-

duction of the wing-fuselage nose-left nacelle geometry at two degrees of

angle of attack produces a nonsymmetric distribution of flow angularity

with a peak magnitude of nearly two degrees occurring at the 90 degree

azimuth position.

For an aircraft angle of attack of 12 degrees, the isolated propeller

plane inclination is ten degrees. With a ten degree inclination, flow

angularity for the isolated propeller plane, as shown in Figure 24, is

symmetrically distributed in a periodic fashion about the azimuth with a

maximum flow angularity magnitude of ten degrees at the horizontal center-

line azimuths of 90 and 2i0 degrees. The corresponding curve calculated

by the computer program indicates that the addition of the airframe geo-

metry at an angle of attack of 12 degrees produces greater and more dis-
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torted flow angularity. Geometry influences have shifted the flow dis-

tribution curve to the left, Increased upwash introduced by the airframe

geometry is reflected by the greater amplitudes of 9 in the computer pro-

gram prediction. Also, the airframe induces more upwash over the inboard

half of the left propeller plane than over the outboard half. This is

indicated by greater 6 amplitudes in the vicinity of the 90 degree azimuth

than in the vicinity of the 270 degree azimuth.

Figure 25, like Figure 24, also compares the effects of geometry

influences and propeller plane inclination influences. Im this figure,

radial distributions of angle of rotational flow along the inboard hori-

zontal centerline, 90 degree azimuth, on the left propeller plane are

plotted. Because the isolated inclined propeller plane experiences no

radial variation in the flow field, as indicated by Equation (54), the

flow angularity due to inclination is a constant for each angle of attack

in Figure 25. Fox, an aircraft angle of ,attack of two degrees, the pro-

peller plane inclination with respect to the free stream is zero, and the

isolated propeller plane experiences no flow angularity, as indicated by

the uppermost plot in Figure 25. As the corresponding computer-predicted

plot shows, the aircraft geometry at a two degree angle of attack induces

upwash, particularly strong near the hub due to the nacelle, which pro-

duces peak flow angularity magnitudes of nearly 5,5 degrees.

As shown in Figure 25, for an aircraft angle of attack of 12 degrees,

the isolated propeller plane inclination is ten degrees. Thus, a blade.

in this isolated propeller plane would experience a ten degree flow angu-

larity at the horizontal centerline equivalent to a uniform blade pitch-

increase of ten degrees. The corresponding computer program predictions

for a 12 degree angle of attack indicate a large increase in upwash due	 i

i{

A

.1



55

to the presence of the airframe geometry. Increased upwash corresponds

to negative values of A in Figure 25. The nacelle is seen to induce the

greatest upwash in the hub region, while a less but nearly conrrant flow

angularity due mostly to wing-induced upwash is seen at the midrange

radii. Finally, increased flow angularity is induced by the fuselage

nose near the tip radius in the lowermost plot in.Figure 25.

As Figures 24 and 25 demonstrate, the influence of the airframe

geometry on the flow at the propeller plane is very evident. The inclu-

sion of geometry effects yields more flow angularity and flow field dis-

tortion than exists when only the propeller plane inclination-induced

flow is present

3
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Chapter 5

COMPUTER-PREDICTED FLO14 FIELD RESULTS AT THE PROPELLER PLA_._
OF THE PIPER CHEROKEE PA-28-180 AIRPLANE

5.1 Cherokee 180 Airplane Geometry, Body Paneling, and Run Conditions

A Piper Cherokee PA-28-180 is owned by the Aerospace Engineering

Department of The Pennsylvania State University. Because this airplane

was readily available for research use, computer predictions of the flow

at the propeller plane (propeller removed) were made for it.

In this chapter, results of parametric studies are presented which

show the effects of cowl inlet inflow, wing lift, wing dihedral, and aft

fuselage geometry deletion on the computed potential flow field at the

propeller plane. Additionally, a series of figures is included which

provides a mapping of the computed, flow field over the entire propeller

plane of the baseline Cherokees 180 ,onfiguration for a range of fuselage

angles of attack.

Figure 26 presents the geometric characteristics of the single-

engine, fixed-gear Cherokee 180 airplane. Though not indicated in Figure

26, the propeller is mounted on the airplane such that the propeller

plane is inclined, with respect to the fuselage, downward and to the

right 	 t}ea angular 	 given i T	 og	 y t^ ng	 t g v n n able 2. As noted in Figure 26,

due to the sideward inclination of the propeller plane, the propeller

hub position is shifted a distance of 0.0228 propeller radii to the right

of the fuselage plane of symmetry.

Computer panel input for all portions of the fuselage aft of the

firewall was obtained from detailed cross section geometry descriptions

round on aircraft drawings supplied by the aircraft manufacturer... Haw—	 e

ever, all of the cowling surfaces are constructed of fiberglass. As a result, 	 ra

f
k
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the manufacturer has na detailed cross sectional drawings for any of the

cowling geometry foreward of the firewall. Therefore, in order to gen-

erate the computer paneling model of the cowling and spinner, it was

necessary to physically measure the cowling and spinner surface geometry

of the Univeristy-owned Cherokee airplane.

Measurement of the cowling and spinner surface coordinates was per-

formed by triangulation using surveying transits. Three-view drawings

of the cowling and spinner were made from the measurements. From these

drawings, the computer paneling model of the cowling and spinner was

generated. The process of measuring and mapping this geometry is des-

cribed further in Appendix E.

None of the tail or wing surfaces were paneled. However, the wing

was simulated by the horseshoe vortex model used in the computer program.

Also, none of the landing gear were included in the computer input model.

Figure 27 presents flight test-measured aircraft lift coefficients
	 3

as a funr:tion of fuselage angle of attack. Ch values from this figure

were assumed to be equivalent to wing lift coefficients and were used as

prograr; input for wing-on computations.

Two different aircraft body paneling networks have been created.

The first network includes the cowl-fuselage combination. The second

network is the same as the first one, except the fuselage geometry aft

of the firewall has been replaced by a short, streamlined afterbody.

This short afterbody is illustrated in Figure 26. The_ second panel

network was used for computer predictions at the propeller plane from

which the effects of ignoring aft fuselage geometry-induced flow could

be determined.
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During preliminary testing of a Cherokee 180 wind tunnel model, a

cowl inlet inflow velocity ratio, F/V, of 0.2 was measured. This value

of F/V was accepted as the baseline input value for computer runs.

Initially, the cowl inlet geoinatry was precisely paneled producing

a closed concave panel surface covering the inlet. Unfortunately, the

iterative solution process of the computer program failed to converge

because of this concave panel surface. To correct this problem, while

maintaining a simulation of inlet inflow, the concave inlet paneling was

replaced by a planar membrane of panels placed over the inlet opening.

Each of the panels in this membrane was identified as an inlet panel and

assigned a value inlet inflow velocity ratio, F/V, to model the inlet

inflow.

The spinner paneling also created a problem on early computer runs.

Initially, the spinner geometry was included and paneled as a discrete

closed body positioned upstream of the cowl inlet panels. In each

attempt, the presence of the spinner paneling caused program failure

manifested by divergence of the iterative solution process. As a result,

the spinner paneling was deleted from the paneling networks, and all

computer predictions for the Cherokee 180 were made with the spinner off.

Table 2 describes the various configurations which were used as

program input. Additionally, Table 3 lists the values of wing lift

coefficient, taken from Figure 27, which were used as program input.

Results from computer runs involving all of these configurations are

presented in the remainder of this chapter.

5.2 Aft Fuselage-Induced Effects on the Flow Field at the Propeller
Plane of the Cherokee 180 Airplane

A study was made to determine how much the accuracy of flow predic-

tions at the propeller plane of the Cherokee 180 airplane was reduced by

,, 
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r,	 deletion of the aft fuselage geometry, that geometry aft of the firewall,

from the computer panel modeling. Acceptability of neglecting the aft

fuselage geometry would permit the creation of a computer model containing

fewer panels, thereby decreasing computing time and cnst.. This study

also was.performed to verify the results of aft fuselage paneling deletion

previously presented for the arbitrary fuselage in Chapter 3.

Fuselage-off computer flow predictions were :Wade using the Cherokee

cowl-short afterbody paneling network and the input parameters of Config-

uration b in Table 2. Effectively, the use of the short afterbody elim-

inates the windshield geometry and thus reduces the frontal area of the

paneled configuration. The cowl-short afterbody geometry contains fewer

_

	

	
panels than the cowl-fuselage geometry and is less expensive to run on the

computer. Additional fuselage-on flow predictions were made using the

cowl-fuselage paneling network and the input parameters of Configuration
I

1 in.Table 2.

Comparisons of the fuselage-on predictions with fuselage-off pre-

dictions were made to determine-the significance of the aft fuselage

contribution to the flow at the propeller plane. Figure 28a compares

fuselage-on and fuselage-off azimuthal distributions of predicted axial

velocity. Regardless of the body angle of attack, a, the axial velocity

magnitude is increased at all azimuths due to the reduced flow blockage

realized by deletion of the aft fuselage. As the figure shows, the

fuselage-off overprediction of axial velocity is no more than 1.0 to 2.5

percent of the free stream velocity.

Removal of the aft fuselage geometry produces-slightly increased

upwash predictions at the propeller plane.. This increase is reflected

in the fuselage-off tangential velocity distributions in Figure 28b. At
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the lower body angle of attack, a, deletion of the aft fuselage changes

the tangential velocity field everywhere except near the vertical center-

line azimuths of zero and 180 degrees. However, the tangential velocity

distribution for a body angle of attack of ten degrees is less affected

by aft fuselage removal, since noticeable changes occur only near the
'f

i^

horizontal centerline azimuth positions.

Figures 28c and 28d present the flow angularity distributions cor-

responding to the previously examined axial and tangential velocity!

predictions for body angles of attack, a, of two and ten degrees, re
3

spectively. At the lower angle of attack, Figure 28c, deletion of the
It

aft fuselage geometry results in no more than a 0.3 degree change in

predicted flow angularity at any azimuth.. At the higher angle of attack,

Figure 28d, fuselage-off computations produce no discernable change in

the flow angularity distribution.
9

The upper vertical centerline of the propeller plane is located

directly upstream of the windshield surface on the aft fuselage. There-

fore, presumably, the largest fuselage-induced axial velocity contribu-

tions at the propeller plane would occur along the upper vertical center-

line. Figure 29 presents fuselage-on-predicted and fuselage-off-predicted

radial distributions of axial velocity along the upper vertical centerline

position (the zero degree azimuth) for high and low fuselage angles of

attack. Even at this azimuth position, where fusalagz influences should

be strongest, no more than a three percent overprediction of the axial v-alo

city magnitude results from deleting the aft fuselage computer paneling.

t For a typical single-engine aircraft geometry such as the Cherokee

180, greater accuracy in the flow predictions at the propeller plane is

achieved by including the aft fuselage geometry in the zomputer model.
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However, as the results of this subsection indicate, deletion of the

aft fuselage geometry from the computer model results in a decrease of

only a few percent in the accuracy of flow field predictions at the

propeller plane for a typical single-engine airplane. Specifically, flow

angularity predictions are negligibly affected, particularly at high

angles of attack, by aft fuselage geometry deletion. Also, axial velocity

overpredictions of no more than three percent can be expected should the

computer paneling exclude the aft fuselage geometry.

The advantage of computer time and cost savings realized by using a

fuselage-off panel model may offset the disadvantage of slightly reduced

flow prediction accuracy. However, if increased accuracy in flow pre-

dictions is desired, the aft fuselage should be included in the computer

panel model.

5.3 Wing Lift-Induced and Dihedral-Induced Effects on	 at
er Plane o
	

0

To determine if it is important to include the wing geometry in the

computer model of a single-engine airplane for predicting flog at the

propeller plane, two computer runs were made with the Cherokee 180. The

first computer run was made at both. high and low fuselage angles-of attack

using the complete cowl-fuselage-wing input geometry (spinner removed).

The second run was the. same as the first, except that the wing geometry , was-

deleted from the model. The models for these two runs correspond to

Configurations 1 and 5, respectively, in Table 2.

Wing lift-induced upwash in the vicinity of the horizontal center-

line is the most significant wing contribution to the flow-at the.propel-

ler plane which affects cyclic propeller blade loads and vibration. Thus,

comparisons of wing-off-predicted and wing-on-predicted radial dts+tribu-
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tions of tangential velocity and angle of rotational flour near the hori-

zontal centerline would indicate flow much the wing-induced upwash contri-

butes to the flow field.

Such comparisons are presented in Figures 30a, 30b, and 30c for

radial distributions of flow quantities along the 90 degree azimuth posi-

tion (near the horizontal centerline) of the Cherokee propeller plane

using results from the two computer runs. It should be noted that because

the Cherokee propeller io oriented with vertical and sideward inclinations,

ap and Sp , the 90 degree azimuth position is a few degrees below the

actual horizontal centerline rather than coincident with it.	 a

At the 90 degree azimuth, negative tangential velocities, as in

Figure 30a, are indicative of upwash. In Figure 30a, the wing-induced

upwash increases the magnitude of the tangential velocity by nearly the

same amount at all radii for a given fuselage angle of attack, a. This

magnitude increase is on the order of two percent of the free stream

velocity for a fuselage angle of attack of two degrees, corresponding

to a cruise flight condition. However, for a fuselage angle of attack

of ten degrees (a high lift, takeoff flight condition), wing-induced

increase in the magnitude of the tangential velocity is as much as 6.5

percent of the free stream velocity.

Figure 30b presents the wing-on and wing-off predictions of angle of

rotational flow associated with the velocities in Figure 30a for a fuselage

angle of attack of two degrees. The wing is seen to increase the flow

angularity at all radii. A one to two degree increase is observed at

radii greater than the cowl inlet radius, the important radii where the

propeller blade is heavily loaded. For a fuselage angle of attack of

ten degrees, Figure 30c indicates wing-induced flow angularity increases

of two to four degrees at radii greater than the inlet radius.
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%	 It is evident from Figures 30a, 30b, and 30c that the wing of a

typical single-engine airplane such as the Cherokee 180 makes a sizeable

contribution to the flow field at the propeller plane even for low fuse-

lage angles of attack. Clearly, to ensure more accuracy in the flow

predictions at the propeller plane, particularly for high fuselage angles

of attack, the wing geometry must be included in the computer input model.

Having determined the necessity of including the wing geometry in

the computer model, the effect of wing dihedral on the computer-predicted

flow at the propeller plane is of interest. Concern about dihedral-

induced effects on the flow field was raised during construction of a

wind tunnel model of the Cherokee 180 to be used in experimental phases

of this research To simplify model construction, it was desirous to

build the wing without dihedral, but it was first necessary to determine

if dihedral removal would have a negligible effect upon the flow field at

the propeller plane, to be experimentally measured.

In an effort to determine the size of the wing dihedral-induced

contribution to the flow at the propeller plane, two computer runs were

made. The first run employed the Cherokee cowl-fuselage-wing model with

wing dihedral included (Configuration 1 in Table 2). The second run was

made using no dihedral (Configuration 4 in Table 2).

Results of the two computer runs are compared in Figures 31a and

31b. These figures preset%t radial distributions of flow-angularity along

the 90 degree azimuth position for two different fuselage angles of

attack. For a fuselage angle of attack of two degrees, Figure 31a indi-

cates that there is no discernable dihedral-induced contribution to flow

angularity except at the innermost radii, which are embedded within the

pinner on the actual aircraft and are not important.. However, for a

^rt
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fuselage angle of attack of ten degrees (Figure 31b), flow angularity is

increased at all radii if wing dihedral is not modeled. Dihedral.-induced

decreases in flow angularity of as much as two degrees are observed near

the 75 percent radial position.

Obviously, wing dihedral can be deleted from the computer model for

low fuselage angles of attack, and little loss in flow prediction accuracy

will result. However, for high fuselage angles of attack, the high wing

i
lift magnifies the dihedral-induced contribution to the flow at the pro- 	 i

peller plane. Hence, the actual wing dihedral should be included in the

computer model to provide increased accuracy in the flow predictions for

higher fuselage angles of attack. Therefore, in general, modeling the

wing dihedral is advisable.

5.4	 Cowl Inlet Inflow Velocity Effects on the Flow Field at the Propeller
Plane of the Cherokee 180 Airplane

Investigation of inlet inflow effects on the flow at the propeller

plane first performed in Chapter 4 for the twin-engine airplane was con-

tinued for the single-engine Cherokee 1,80 airplane. 	 The study was done

to determine the sensitivity of flow at the propeller plane to changes in

cowl inlet inflow velocity.

Using the Cherokee cowl-fuselage-wing computer model, three computer

runs were made, each using a different value of cowl inlet inflow velo-

city ratio, F/V,f._or input.	 The first run used the baseline F/V value of

0.2 (Configuration 1 in Table 2) which was previously measured in wind

tunnel tests of the Cherokee 180.	 In the second run, F/V was decreased.

to 0.1 (_Configuration 2 in Table 2). 	 F/V was increased to 0.4 in the

third run (Conf iguation 3 in Table 2).

In Figures 32a, 32b, and 32c, results obtained using the various

inlet inflow velocity ratios are compared for both low and high fuselage

a
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angles of attack. Radial distributions of axial velocity obtained using

the three inlet inflow velocity ratios are presented in Figure 32a. For

both fuselage angles of attack ; changing F/V is seen to produce signifi-

cant changes in axial velocity only at radii less than the local cowl

inlet radius, positions which are directly upstream of the Inlet. By

reducing F/V from the baseline value to a value of 0.1, the cowling be-

comes more like a bluff body at the inlet face, and axial flow blockage
ti

at the inner radii on the propeller plane is increased. Conversely, by

increasing F/V from the baseline value of 0.2 to a value of 0.4, axial

flow blockage at the propeller plane is greatly reduced. In fact, axial

flow blockage appears to decrease almost linearly with increasing F/V

at the Liner radii: At radii beyond the cowl inlet radius, locations in

which the propeller blades are heavily loaded, changing F/V has little

effect on the axial velocity. In fact, changing F/V produces no discernible

change in axial velocity at locations beyond the 43 percent radial position.

Radial distributions of flow angularity obtained using the various

inlet inflow velocity ratios are presented in Figures 32b and 32c for

fuselage angles of attack of two and ten degrees, respectively. Reasons

for the strange oscillatory behavior of the flow angularity distributions

at the inner radii seen in these two figures are given later in sub-

section 5.5.3. In both figures, it is seen that changes. in F/V greatly

alter the flow angularity only at the inner radii directly upstre= of

the cowl inlet. Flow angularity increases as F/V decreases. At radii

beyond the cowl inlet radius, where the propeller blades are most heavily

loaded, flow angularity is little affected by changes in F/V. Beyond the

50 percent radial position, changing F/V does not noticeably change the

flow angularity in either of the Figures 32b or 32c.
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,:
The major result observed in this study of inflow effects is that

changing the input value of inflow velocity ratio, F,/V, greatly affects

the predicted flow field only at the region of the propeller plane dir-

ectly upstream of the inlet. This finding agrees with the computer-

predicted results presented in Chapter 4 for the twin-engine airplane

and agrees with.the experimental results of Roberts and Yaggy (15).

The flow field at the hub region directly upstream of the cowl inlet

has much less affect on the overall propeller vibration and performance

than does the flow field outside of the hub region. Therefore, any

inaccuracies in the flow field predictions at the hub region are not

extremely distressing. Thus, insofar as overall propeller performance

and vibration are affected by the flow at the propeller plane, the choice

of inlet inflow velocity ratio, F/V, used to make the flow predictions

is not extremely critical.

To maximize flow prediction accuracy, the actual value of inlet

inflow velocity should be specified in the computer program input. But,

if the actual value of F/V is not known, an approximation of the value

should suffice.

5.5 Baseline Flow
	

ictions
	

the Entire Propeller Plane of the
80

5.5.1 Model used, purpose of presenting the predictions, and organization
of the data

In this final section, this chapter presents a series of figures

providing a complete description of the flow field over the entire pro-

peller plane of the Piper Cherokee 180 based on computer predictions.

The predictions were made using the, baseline cowl-wing-fuselage (spinner-

off) computer model (Configuration 1 in Table 2).

f
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Effects of aft fuselage modeling, wing modeling, and cowl inlet

inflow velocity on the flow predictions at the propeller plane of the

Cherokee 180, a typical single-engine airplane, were examined in pre-

vious sections of thus chapter. To obtain the most accurate flow pre-

dictions, it was shown that the computer model must; include the

aft fuselage paneling; include the wing (and dihedral); and employ

a value of inlet inflow velocity closely matching the expected in-flight

value.

Because the baseline Cherokee computer model incorporates the afore- ,`{

mentioned characteristics, it is the most realistic of the six model

configurations listed in Table 2. Thv.s, of all flow predictions from

the six models, those made using the baseline model are the most accurate.

Hence, the flow field predictions obtained using the baseline model were

selected for presentation ire this section.

There is a two-fold purpose in presenting these computer predictions.

First, the information is presented as a general example,of the flow field

at the propeller plane of an actual single-engine light aircraft. Second,

although there are no experimental data currently available for comparison

with.these predictions to guage the computes prediction accuracy, these

predictions are also presented to serve as a data base for use during

subsequent experimental phases of the research project of which the work

described in this thesis is but a part.

The series of flow predictions has been divided into two groups

presented in the following two subsections, the first including only the

azimuthal distributions of flow parameters, and the second including only

the radial distributions.

W
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5.5.2 Computed azimuthal distribut

Figures 33, 34, 35, and 36 present azimuthal distributions of tiow

field parameters at respective radial positions, r/R, of 0.35, 0.5, 0.75,

and 1.0, on the propeller plane of the Cherokee 180. Parts a, b, and c

of each of the four figures consist of distributions of axial velocity,

tangential velocity, and angle of rotational flow, respectively.

It is instructive to examine these predicted distributions by dis-

cussing a single flow parameter at a time, plotted on the same part of

each of the four figures. In this manner, all axial velocity distribu-

tions will be examined, then all the tangential velocity distributions,

and last, all the distributions of angle of rotational flow.

First, consider the axial velocity distributions, Figures 33a, 34a,

35a, and 36a. At any fixed radius, the azimuthal variation of axial

velocity magnitude is seen to increase with increasing fuselage angle

of attack. However, the shapes of the velocity distributions at any par-

ticular radius are similar for all fuselage angles of attack. With in-

creasing radius, the axial velocity distributions flatten and deviate

less from the freestream velocity; thus, a reduction in body-induced flow

blockage occurs as radius increases.

For any fixed radius, Figures 33a, 34a, 35a, or 36a, minimum axial

flow blockage occurs in the region along the upper vertical centerline

(zero degree azimuth position) of the propeller plane for any fuselage

angle of attack. This region extends up and away from the cowling. In

fact, at higher fuselage angles of attack, some axial flow acceleration

occurs at the upper vertical centerline region. This accelerated flow

region encompasses a larger azimuth range as radius increases.



Regardless of radial position, axial flow blockage increas

azimuths away from the upper vertical centerline region. In Figures 34a,

35a, and 36a, greatest flow blockage occurs in a region centered about

the lower vertical centerline (180 degree azimuth position). At the 0.35

radial station, Figure 33a, two flow blockage peaks occur, one iLear the

120 degree azimuth position and the other ne4r the 240 degree azimuth

position. At this inner radius, these two azimuth positions are directly

upstream of and nearest to the cowl surface, hence the peak flow blockage

at these locations. Note, however, that due to the installed angle of

sidetilt, Sp , of the propeller plane to the right, the left half-plane

is positioned slightly farther from the cowl than is the right half-plane.

Thus, in Figure 33a, the flow blockage near the 120 degree azimuth (on

the right half-plane) is greater than that near the 240 degree azimuth.

Similarly, for all the distributions in Figures 34a, 35a, and 36a, maxi-

mum axial flow blockage occurs at azimuths on the right half-plane due

to the installed angle of sidetilt, 0p.

Second, consider the tangential velocity distributions, Figures 33b,

34b, 35b, and 36b. Ideally, as previously seen in Figure 23b, for an

isolated propeller plane with an inclination, a G , from the free stream,

the tangential velocity varies sinusoidally with azimuth and does not vary

with radius. However., the tangential velocity distributions for the

Cherokee propeller plane are distorted sinusoids which also vary with

radius.

At the 35 percent radial position, Figure 33b, small oscillatory

irregularities exist on each of the tangential velocity plots. These

irregularities are primarily a result of cowl-induced effects, which

quickly diminish with increasing distance from the cowl. That these

u



small irregularities are cowl-induced is evider

larities are not observed in the tangential velocity plots for the outer

radii, Figures 34b, 35b, and 36b.,

At the upper and lower vertical centerline positions (zero and 180

degree azimuths, respectively), the tangential velocities would be zero

if the hub of the propeller plane was located on the fuselage plane of

symmetry and if there was no installed sidetilt, Sp , of the propeller

plane. However, the hub of the Cherokee propeller plane is offset to the

right of the plane of symmetry due to the installed sidetilt, S p , of the

propeller plane. As a result of the offset, the upper and lower vertical

centerline positions are immersed in a cowl-induced right-directed side-

wash. Additionally, a right-directed sidewash only due to the right

sideward inclination, 8p , of the propeller plane exists at the vertical

centerline positions. The net sidewash.corresponds to positive and nega-

tive tangential velocity components at the zero degree. and 180 degree

azimuths, respectively, noted in Figures 33b, 34b; 35b, and 36b.,

Peaks in the tangential velocity profiles at the 35 percent radial

position, Figure 33b, are much steeper and sharper than the peaks in the

profiles at the other radii. At the 35 percent radial station, narrow

regions centered about the 75 and 285 degree azimuths, where the velocity,

peaks occur, lie directly upstream of and are very close to the inlet

face of the cowl. Thus, cowl-induced effects are intense in the two

narrow regions. Hence, the peaks in the velocity profiles in Figure 33b

tend to be very sharp. However, at the 50, 75, and 100 percent radial

positions, there are no regions on the propeller plane which lie. directly

upstream of or as close to the inlet face of the cowl. Cowl-induced ef-

fects are small or negligible at these radii. Hence, the peaks in the
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velocity profiles in Figures 34h, 35b, and 36b assume rounder, more

sinusoidal shapes.

For a fixed fuselage angle of attack, small shifts in the azimuthal

location of the tangential velocity peaks in Figures 33b, 34b, 35b, and

36b occur as radial position changes. Partly because of wing dihedral,

the azimuthal position of the maximum wing-induced flow changes as radius

changes. This dihedral effect, combined with the effect of decreasing

cowl-induced flow at larger radii, produces the azimuthal shifts in the

locations of the tangential velocity peaks as radius changes.

Also, for any fixed radius, shifts in the azimuthal location of the

tangential velocit', peaks in Figures 33b, 34b, 35b, and 36b occur as

fuselage angle of attack varies. Apparently, changes in wing lift as

well as changes in cowl-induced flow with changing fuselage angle of

attack also contribute to azimuthal shifts in the locations of tangential

velocity peaks.

Upwash at an isolated inclined propeller plane is greatest along

the right and left horizontal centerlines (9.0 and 270 degree azimuths,

respectively). Thus, as Figure 23b indicates, tangential velocity, is

minimum at the 90 degree azimuth and maximum at the 270 degree azimuth.

for an isolated propeller plane. However, at the propeller plane of the

Cherokee 180, Figures 33b, 34b, 35b, and 36b, the peak minimum and peak

maximum tangential velocities are not azimuthally positioned 180 degrees

apart and occur near but not on the horizontal centerline. This is pri-

marily due to the position of the hub of the propeller plane relative to

the cowling.

Additionally, the peak magnitudes at the left half-plane-and right

half-plane azimuth positions in each of the plots in Figures 33b, 34b,
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	 35b, and 36b are not equal. This inequality is due to the installed

propeller plane sidetilt angle, S p , Due to 0p , the region near the right

horizontal centerline is slightly closer to the airframe than is the region

near the left horizontal centerline. Upwash tends to be greater on the

t	 right half-plane than on the left. Consequently, in each of the plotted

distributions, the. peak positive tangential velocity is slightly larger

in magnitude than is the peak negative velocity.

Comparing Figures 33b, 34b, 35b, and 36b, it is seen that the cowl-

induced and wing-induced effects on the tangential velocity distributions

for a fixed fuselage angle of attack diminish with increasing radius. At

the 35 percent radial station, Figure 33b, wing-induced and cowl-induced

upwash are greatest and create the larg ,,st peak magnitudes of tangential

velocity. As radius increases (Figures 34b, 35b, and 36b, respectively),

f	 peak tangential velocity magnitudes decrease. The decrease is mainly due

to decreased cowl-induced upwash, though it also is due to the slight

f decrease in wing-induced upwash at the outer radii. However, wing-induced

upwash remains a significant contributor to the tangential velocity varia-

tion even at the tip radius (Figure 36b). In Figure 36b, the wing-induced

effects are clearly evident in the tangential velocity distribution for

the fuselage angle of attack of four degrees. At this fuselage angle of

attack, the propeller plane itself has no vertical inclination from the

free stream, so the tangential velocity profile in Figure 36b for this

fuselage angle of attack contains no vertical inclination-in%aaced contri-

butions. Hence, the sinusoidal variation of this tangential velocity

profile is due almost entirely to wing-induced upwash at the 100 percent

radial position.

bt
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With the presence of the airframe-induced upwash, the peak magni-

tudes of tangential velocity at the propeller plane of the Cherokee 180

are significantly greater than the peak magnitudes which would exist at

the same propeller plane operating in isolation, out of the influences

of the airframe. The airframe-induced increases in tangential velocity

can be demonstrated by examples in which a comparison is made between the

tangential velocities at the propeller plane of the Cherokee 180, Figures

33b, 34b, 35b, and 36b and the tangential velocities at an isolated

propeller plane having the same inclination from the free stream.

Take for one example an isolated propeller plane having a geometric

angle of attack, aG , of six degrees from the free stream. Because a  is

-4 degrees and ^p is three degrees for the Cherokee propeller plane, a 

for the Cherokee propeller plane is approximately six degrees when the

fuselage angle of attack, a, is ten degrees. Using the expression for

vtp in Figure 23b, the minimum and maximum tangential velocity ratios for

the isolated propeller plane with a  equal to six degrees are -0.1455 and

+0.1455, respectively. However, as seen in Figure 33b, 34b, 35b, and 36b

fora fuselage angle of attack of ten degrees, the corresponding Cherokee

propeller plane experiences peak magnitudes of tangential velocity ratio

far in excess of 0.1455 at all radii. The excesses are due entirely to

airframe-induced effects.

For a second example, consider an isolated inclined propeller plane

which is perpendicular to the free stream. That is, a  is zero degrees.

For this isolated propeller plane, the tangential velocity is everywhere

equal to zero. The corresponding Cherokee propeller plane is the one for

which the fuselage angle of attack, a, is four degrees. In contrast to

the nonexistent tangential velocities on the isolated propeller plane,

i

3
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the plots in Figures 33b., 34b, 35b, and 36b for a equal to four degrees

indicate nonzero tangential velocities on the propeller plane of the

Cherokee. Though sidetilt, Sp , contributes somewhat to these nonzero

tangential velocities, most of the nonzero contributions are due to the

airframe-induced flow.

Third and finally in this subsection, consider the azimuthal distri-

butions of angle of rotational flow, 9, in Figures 33c, 34c, 35c, and

36c. These figures present azimuthal variations of flow angularity cor-

responding to the previously examined axial and tangential velocity

variations.

As a reminder, A is a function of the ratio of local tangential to

local axial velocity as given in Equation (48) in Chapter 2 and is an

angle lying in the plane of the local section of a propeller blade rota-

ting in the propeller plane. For a given propeller rotational speed,

the local blade section angle of attack decrease.s as A increases as

Figure 8 indicates. 'Thus, Figures 33c, 34c, 35c, and 36c each qualita-

tively indicate the azimuthal variation in angle of attack of blade sec-

tions at the given radius on the Cherokee propeller operating in the

flowfield for a given fuselage angle of attack.

As indicated in Figures 33c, 34c, 35c, and 36c for any fixed radius,

azimuthal variation of flow angularity increases with.increasing fuselage

angle of attack. These increases in azimuthal variation of flow angu-

larity are due to the combined effects of increased airframe-induced

upwash and increased propeller plane inclination resulting from increased

fuselage angle of attack.

Comparing Figures 33c, 34c, 35c, and 36c, the azimuthal variation

of flow angularity increases as radial position decreases. Increasing
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cowl-induced upwash with decreasing radius is the primary cause of this

trend in the flow angularity distributions. Thus, in the plotted distri-

butio;is, a peak A magnitude as large as 35 degrees is observed in the

distribution at the 35 percent radial position for a fuselage angle of

attack of ten degrees. Conversely, a peak a magnitude as small as three

degrees is observed at the 100 percent radial position for a fuselage

angle of attack of two degrees.

As seen in Figures 33c, 34c, 35c, and 36c, the combined effects of

cowl-induced flow, wing-induced upwash and propeller plane inclination

shift the azimuthal positions of the maximum and minimum A values on the

plotted distributions as changes in radial position and fuselage angle

of attack occur. For an isolated inclined propeller plane, experiencing

no airframe-induced effects, maximum and minimum 6 values would occur

exactly at the left and right horizontal centerlines, respectively (the

270 and 90 degree azimuths, respectively). On all the plotted A distri-

butions at the Cherokee propeller plane with the exception of the plots

in Figures 35c and 36c for angles of attack of two and four degrees, the

maximum and minimum A values, though shifting slightly in azimuthal posi-

tion, remain in the vicinity of the left and right horizontal centerline,

respectively.

However, in the distributions of 8 for fuselage angles of attack of

two and four degrees at the two outer radii, Figures 35c and 36c, the

maximum and minimum values of 6 do not occur near the horizontal center-

line. Instead, they occur near the upper and lower vertical centerlines,

respectively (near the zero and 180 degree azimuths, respectively). These

shifts of maximum andminimum a values to the vertical_ centerline posi-

tions are due to the effect of the installed sideward inclination, 6p,
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of the propeller plane. At the outer radii at fuselage angles of attack

of two and four degrees, the effect of sideward inclination, 6p_, of the

pzo'peller plane outweighs the effects of wing-induced upwash., cowl- induced

flow, and vertical inclination, ap , of the propeller plane..

The following example, involving an isolated inclined propeller plane,

shows the significance of the airframe-induced contribution to the flow

angularity at the propeller plane of the Cherokee. On an isolated propel-

ler plane having an inclination, aG , of six degrees from the free stream,

a peak magnitude of A equal to Fix degrees occurs at the 9„0 and 270 degree

azimuths for any radius, as computed using Equation (541 in Chapter 4,

For a fuselage angle of attack, a, of ten degrees, the propeller plane

of the Cherokee has an inclination. aG, from the free stream of approxi-

mately six degrees. Therefore, 9 values on the isolated propeller plane

having an inclination, aG , of six degrees when compared with the a values

observed on the propeller plane of the Cherokee for a fuselage angle of

attack, a, of ten degrees will reveal the airframe-induced contribution

to the observed a values on the propeller plane of the Cherokee.. For a

fuselage angle of attack, a, of ten degrees, distributions in Figures 33c,

34c, 35c, and 36c exhibit peak magnitudes of A equal to 34.7, 18.6, 12.7,

and 10.8 degrees, respectively. Each of these peak magnitudes is greater

than the six degree value existing on the isolated inclined propeller

plane solely because the airframe-induced flow at the propeller plane of

the Cherokee is present.

A striking illustration of airframe-induced effects on the glow at

the propeller plane of the Cherokee is obtained if the flcw angularity

increase at the 75 percent radial position,evident in the foregoing exam..-

ple,is reexpressed in terms of an increase in the angle of attack of a
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propeller blade section operating at that radial position, operating in

the propeller plane of the Cherokee, the propeller blade would experience

a maximum angle of attack when at the 112 degree azimuth.position, Since

the minimum angle of rotational flow, -12.7 degrees, occurs at that

azimuth; (refer to the distribution in Figure 35c for a fuselage angle

of attack of ten degrees). However, operating in the isolated inclined

propeller plane of the foregoing example, the blade section would experi-

ence a maximum angle of attack when at the 90 degree azimuth position

where the minimum angle of rotational flowp -6 degrees, occurs. Assuming

that in both propeller planes the propeller is operating at an advance

ratio of 1.2, the decrease in minimum 6 from -6 degrees to -12.7 degree

indicates the following concerning change in blade section angle of at-

tack: when operating in the flow field at the Cherokee propeller plane,

Figure 35c, the blade section at the 75 percent radial station attains

a maximum angle of attack which is 16.96 degrees greater than the maxi-

mum angle of attack attained when the propeller operates-in the isolated

inclined propeller plane. This increase of 16.96 degrees is entirely

due to the airframe-induced contribution to the flow-angularity at the.

propeller plane of the Cherokee.

This concludes discussion of the azimuthal distributions of the

predicted flow parameters at the propeller plane of the Cherokee. In the

following subsection, the radial distributions of the flow parameters are

discussed.

5.5.3 Computed radial distributions

Figures 37 through 44 present radial distributions of flow-field

parameters at fixed azimuth.positions, ^, of zero through 315 degrees

in increments of 45 degrees, respectively, on the propeller plane of the

_m
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Cherokee 180. Parts a, b, and c of each figure consist of di.stributi^T^

of axial velocity, tangential velocity, and angle of rotational flow,

respectively. Predictions for fiv values of fuselage angle of attack

Are included in each figure.

Indicated in each figure is the Local radial position of the peri-

phery of the cowl inlet. The radius of the inlet varies with azimuth,

because the inlet opening is elongated, and the hub of the propeller

plane is positioned to the right of the plane of symmetry. At any azi-

muth, the local cowl inlet radius is approximately equal to the maximum

local radial extent of the cowl inlet face, the region on the cowl sur-

face which is nearest to the propeller plane. Thus, the local radial

position of the inlet on the figures acts as a reference point, indica-

ting the radial extent of those coal surfaces proximal to the propeller

plane.

Before discussing in detail each.of the distributions of the various

flow parameters, the erratic behavior observed at the inner radii, on

almost every plotted distribution in Figure 37a through 44c should be

discussed. In the hub region at radii less than the local cowl inlet

radius, the predictee,, distributions in all figures, with the exception

of Figure 37a, exhibit unexpected characteristics. The axial velocity

profiles have strange peaks or oscillations in this region. The distri-

butions of tangential velocity and angle of rotational flow are extremely

oscillatory in the hub region.

This unexpected erratic nature of the predicted radial distributions

probably occurs for two reasons. First, for reasons previously given in

the first section of this chapter, the spinner geometry was omitted from

the final computer model used to make the flow predicti=,c presented.



r

79 .

throughout this chapter. Absence of the spinner probably accounts for most

of the erratic nature of the distributions inside the ten percent radial posi-

tion. However, on the actual Cherokee 180, the region on the propeller plane

at positions less than the ten percent radial position is buried within the

spinner. Thus, the predinted flow inside the ten percent radial position in

each of Figures 37a through 44c is nonexistant, and in reality should be ignored.

Second, possible shortcomings in the paneling mesh at the region of

the cowl inlet may have caused problems in the predictions at the hub

region on the propeller plane. The maximum length of some of the panels

on the inlet face of the cowl in the computer model is greater than or

nearly equal to the length of the spacing between the propeller plane,

and the cowl inlet face. Thus;the panelling mesh at the cowl inlet region

may be too coarse to produce accurate flow prediction in the hub region

of the propeller plane. The phenomenon of oscillatory flow distributions

at the hub region of the propeller plane due to excessive coarseness of

the paneling mesh was previously observed in the results pertaining to

flow upstream of a sphere in Chapter 3. The same phenomenon is probably

occurring in Figure 37a through 44c ;'or the Cherokee 180,

Regardless of the causes, any inaccuracies in the flow predictions

out to a radial position of 20 to 30 percent on the propeller plane of

the Cherokee are not of extreme concern, because a propeller blade is

not heavily loaded at these inner radii. Inaccuracies in the flow pre-

dictions at these inner radii would have a minimal impact upon loading

and vibration of propeller blades operating in thet flow field presented

in Figures 37a through 44c. Note, the foregoing discussion on the erratic

distributions at the inner radii is also applicable to the distributions

in Figures 30a through.32c.
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In the remainder of this subsection., as was done in the previous

subsection for the azimuthal distributions, the predicted radial distri-

butions in Figures 37 through 44 will be 4-mamined in detail. In turn,

the group of axial velocity profiles, the group of tangential velocity

profiles, and the group of profiles of angle of rotational flow will be

d{scussed.

First, consider the radial distributions of axial velocity plotted

in part a of each of Figures 37 through 44. In each of these figures,

airframe-induced blockage of axial flora is plainly evident. This block-

age is greatest at radial positions directly upstream of the. cowling,

radii less than the local cowl ina pt radius, with axial velocities as low

as 20 to 35 percent of the free stream velocity existing there. At all

azimuths, the airframe-induced blockage of axial flow diminishes rapidly

as radius increases, since the blockage is nearly entirely due to the

fuselage (particularly the cowl). Little wing-induced blockage occurs.

At azimuths of zero, 45, and 315 degrees (Figures 37a, 38a, and 44a,

respectively), on the upper half-plane, the cowl-induced axial flow block-

age diminishes more radily than at any other azimuth. Because the hub of

the Cherokee propeller plane is situated upstream of the upper portion of

the cowl inlet face, little of the propeller plane at these three azimuths

lies directly upstream of any cowl surfaces. Hence, cowl-induced blockage

is only severe at positions less than the 20 to 25 percent radial posi-

tions in Figures 37a, 38a, and 44a. Beyond the 25 percent radial posi-

tion, axial velocities in these three figures quickly return, asymptoti-

cally, to the free stream value. In fact, at highev fuselage angles of

attack, axial velocity in Figures 37a, 38a, and 44a is accelerated to a

value greater than the free stream velocity at regions just beyond the

a	
E
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cowl inlet radius. However, the axial velocity returns to the free

stream value as radius continues to increase.

Because the propeller plane has an installed inclination, 8 p , to

the righ ►:, the 45 degree azimuth position is rotated toward the cowl and

wing, while the 315 degree azimuth position is rotated away from the

cowl and wing. Consequently, the cowl-induced flow blockage at the inner

radii in Figure 38a is greater than the blockage at the inner radii in

Figure 44a. Conversely, at the outer radii, flow blockage is less in

Figure 38athan in Figure 44a. This is due to the existence of slightly

higher wing-induced axial flow at the 45 degree azimuth than at the 315

degree azimuth as a consequence of the sideward inclination, Bp.

At azimuths of 135, 180, and 225 degrees (Figures 40a, 41a, and 42a,

respectively), on the lower half-plane, cowl-induced axial flow blockage

diminishes much less rapidly with increasing radius than it diminishes

at azimuths on the upper half-plane, previously examined. Because a

large area of the lower half-plane lies directly upstream of the cowl,

significant cowl-induced flow blockage occurs over the entire radius at

these three azimuths with a three to seven percent reduction of axial

velocity below tha free stream value remaining at the tip radius in each

of Figures 40a, 41a, and 42a. Though some wing-induced axial flow block-

age occurs at the outer radii in these three figures, most of the blockage

at the outer radii is cowl-induced. Also, in contrast to the behavior

previously noted at azimuths on the upper-half plane, axial flow blockage

at azimuths of 135, 180, and 225 degrees, on the lower half-plane, in-

creases with increasing fuselage angle of attack, a.

Due to the installed propeller plane inclination, S p , to the right,

the 135 degree azimuth position is rotated toward the cowl and wing,

r
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while the 225 degree azimuth position is rotated away from the cowl and

wing. Consequently, axial flow blockage at the 155 degree azimuth posi-

tion, Figure 40a, is slightly greater than the blockage at the 225 degree

azimuth position, Figure 42a, at any particular radius for any fuselage

angle of attack,a.

At the 90 and 270 degree azimuth posit$.ons (near the right and left

horizontal centerlines, respectivel;.', of the propeller plane) in Figures

39a and 43a, respectively, cowl-induced axial flow blockage is smaller

in magnitude and lest extensive (radially) than the blockage at the three

azimuths on the lower half-plane, previously examined. In Figures 39a

and 43a, cowl-induced Q,xial flow reduction is significant '(more than

five percent of the free stream velocity) out to approximately the 70

percent radial position. At the tip radius in Figures 39a and 43a, the

cowl-induced reduction in axial velocity is not more than two percent of

the free stream velocity.

At any particular radius, axial flow blockage at the 90 degree

azimuth position, Figure 39a, is slightly greater than the blockage at

the 270 degree azimuth position, Figure 43a. The greater blockage near

the right horizontal centerline is a consequence of the installed pro-

peller plane inclination, S p , which causes the 90 degree azimuth posi-

tion to lie closer to the cowl than does the 270 degree azimuth position.

As Figures 39a and 43a also show, the axial velocity profiles near

the right and left horizontal centerlines of the propeller plane are

little affected by changes in fuselage angle of attack, a.

Second, consider the radial distributions of tangential velocity

plotted in part b of each of Figures 37 through 44. As previously ob-

served in the radial distributions of axial velocity, airframe-induced

p
1



tangential velocity contributions also decrease most rapidly with in-

creasing radius at the zero, 45, and 315 degree azimuths (Figures 37b,

38b, and 44b, respectively), on the upper half-plane. At azimuths of

90 0 135, 180, 225, and 270 degrees (Figures 39b, 40b, 41b, 42b, and 43b,

respectively), lying near the horizontal centerline or in the lower half-

plane, airframe-induced tangential velocity contributions decrease less

rapidly with increasing radius than at the three azimuths on the upper

half-plane. At azimuths near the horizontal centerline and on the lower

half-plane, fairly large airframe-induced tangential velocity contribu-

tions are observed as far outboard as the 60 percent radial position and

beyond. Conversely, at azimuths of zero, 45, and 315 degrees, airframe-

induced contributions (predominantly cowl-induced contributions) are

fairly large only at positions inboard of the 60 percent radial position.

Large airframe-induced tangential velocity contributions are more

extensive on the lower half-plane than on the upper half-plane for two

reasons. One reason is that most of the frontal area of the cowl lies

directly downstream of the lower half-plane, so large cowl-induced ef-

fects persist at outer radii. The other reason is that wing-induced

upwash, which is strong at all radial positions, heavily contributes to

the tangential velocties at the 90, 135, 225, and 270 degree azimuth

locations.

Ideally,tangential velocity would be nonexistant along the upper

and lower vertical centerlines (zero and 180 degree azimuths, respective-

ly) if the hub of the propeller plane was located on the fuselage plane

of symmetry and if there was no installed sideward inclination, S p , of

the propeller plane. However, the hub of the propeller plane of the

Cherokee is located slightly to the right of the fuselage plane of
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symmetry, and an inclination, 8 p , to the right does exist. Hence, the

vertical centerline of the propeller plane lies in a region at which a

small right-directed sidewash exists. This sidewash field yields small

positive tangential velocities at the zero degree azimuth position (Fig-

ure 37b) and yields small negative tangential velocities at the 180 degree

azimuth position (Figure 41b). In Figure 37b, the tangential velocity

distribution at the region inboard of the 25 percent radial position is due to

the cowl-induced sidewash, a consequence of the location of the hub of the

propeller plane. The nearly constant distribution outboard of the 25 per-

cent radial position is largely due to the sidewash component created by

the installed sidetilt, Sp . In Figure 41b, tangential velocity resulting

from cowl-induced sidewash persists over nearly the entire radius. The

nearly constant distribution of 'velocity noted at the tip radius is a

result of the installed sidetilt, 8 p , of the propeller plane.

At azimuth positions of 45, 90, and 135 degrees (,Figures 38b, 39b,

and 40b, respectively), on the right half-plane, negative tangential.

velocities are produced by a positive upwash field. Hence, with increas-

ing fuselage angles of attack, a, larger negative tangential velocities

occur at each radius at these three azimuths, because wing-induced and

propeller plane inclination-induced upwash contributions increase with

increasing a. Conversely, at azimuth positions of 225, 270, and 315

degrees (Figures 42b, 43b, and 44b, respectively), on the left half-plane,

positive tangential velocities are produced by a positive upwash field.

Hence, tangential velocities increase with increasing fuselage angle of

attack, a, at each radius at these three azimuths.

Upwash makes a maximum contribution to tangential velocity along

the horizontal centerline of the propeller plane, and it makes no con-

f
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tribution to tangential velocity along the vertical centerline. Hence,

as comparison of part b of each of Figures 37 through 44 illustrates,

the greatest change in tangential velocity per unit change in fuselage

angle of attack, a, at any particular radius occurs at the 90 and 270

degree azimuths, which are nearest to the horizontal centerline of the

propeller plane of the Cherokee.

Third and finally, consider the radial distributions of angle of

rotational flow, A, plotted in part c of each of Figures 37 through

44. In each of these figures, the flow angularity is greatest in the

hub region at radii less than the local cowl inlet radius at any azimuth.

Reasons for the oscillatory, erratic nature of each of the a distribu-

tions in the hub region were previously stated at the beginning of this

subsection. That negative values of 6 exist on the right half-plane

(azimuths less than 180 degrees) and positive values of 8 exist on the

left half-plane indicates the presence of upwash over the entire propel-

ler plane of the Cherokee at all fuselage angles of attack for which

flow predictions are presented.

Comparing all the plots of 6 in part c of each of Figures 37 through

44, it is seen that flow angularity is generally slightly greater on the

right half-plane than on the left half-plane. On the right half-plane,

a magnitude of A as lo.rge as 58.5 degrees is predicted (at the 135 degree

azimuth position for a fuselage angle of attack, a, of ten degrees). On

the left half--plane, however, a magnitude of 9 only as large as 53.5

degrees is predicted (at the 270 degree azimuth position for a fuselage

angle of attack, a, of ten degrees). That flow angularity is slightly

greater on the right half-plane than on the left half-plane is attribu-

table to the existence of the installed right-directed sidetilt, S p , of
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the propeller plane of the Cherokee. Due to $p , the right half-plane

lies slightly closer to the airframe than the left half-plane does.

Hence, airframe-induced contributions to flow angularity are larger on

the right half-plane of the propeller than on the left half-plane.

Figures 37c and 41c clearly show the effect of the installed side-

tilt angle, Sp , of the propeller plane on the flow angularity at the

upper and lower vertical centerline azimuths (zero and 180 degrees),

respectively. At the zero degree azimuth position, cowl-induced flow

angularity is evident out to the 40 percent radial position and slightly

varies with changes in fuselage angle of attack, a. This slight varia-

tion occurs because the hub of the propeller plane is positioned slightly

to the right of the fuselage plane of symmetry in a region of cowl-induced

sidewash which slightly changes as fuselage angle of attack, a, changes.

However, wing-induced flow angularity is negligible at this azimuth.

Hence, beyond the 40 percent radial position, airframe-induced flow

angularity is insignificant, and 0 remains fixed at three degrees for

all fuselage angles of attack due to the installed propeller plane side-

tilt angle, S p, of three degrees to the right. Similarly, airframe

induced contributions to 0 at the 180 degree azimuth position (Figure

41c) are negligible beyond the 85 percent radial position. Hence, at

this radial position, A remains fixed at -3 degrees, commensurate with

the three degree value of propeller plane sidetilt angle, S p , to the

right.

At the six azimuth positions not on the vertical centerline of the

propeller plane (Figures 38c, 39c, 40c, 42c, 43c, and 44c), flow angu-

larity increases with increasing fuselage angle of attack, a, at any

radius. At the inner radii at these azimuths, an increase in fuselage

9
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angle of attack, a, of two degrees prod

greatly in excess of two degrees, because extra flow contributions in-

duced by the cowl exist at these radii. At the outer radii, however, a

two degree increase in fuselage angle of attack, a, produces flow angu-

larity increases of only 1.5 to 3.5 degrees, because only the wing-

induced upwash and vertical propeller plane inclination-induced upwash

are important contributors to flow angularity at these radii. Of course,

the wing-induced upwash and vertical propeller plane inclination-induced

upwash make the greatest contribution to angle of rotational flow, 8, at

the horizontal centerline azimuths. Of all the azimuth positions for

which results are plotted, consequently, it is at the 90 and 270 degree

az.tmuth positions.(Figures 39c and 43c), nearest to the horizontal cen-

terline of the propeller plane of the Cherokee, that the increase in flow

angularity per unit increase in fuselage angle of attack, a, at the tip

radius is greatest.

The significance of the wing-induced contribution to flow angular- 	 j

ity (6) may be discerned at the tip radius at the 90 and 270 degree

azimuths (Figures 39c and 43c, respectively) by comparing the flow field

at the propeller plane of the Cherokee for a given vertical propeller

plane inclination from the free stream with the flow field at an isolated

propeller plane having nearly the same vertical inclination from the free

stream. Due to the combined effects of the installed inclination angles,

ap and Sp , the propeller plane of the Cherokee has a vertical inclination,

•G , from the free stream which is approximately four degrees less than

the corresponding fuselage angle of attack, a. Therefore, the plotted

{

	

	
flow results at the propellor plane of the Cherokee for a specified value

of fuselage angle of attack, a, should be compared with flow results at

f
i
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an isolated propeller plane having a vertical inclination, aG , from the

free stream equal to a 4 degrees. Then the flow results .it the outer

radii of the propeller plane of the Cherokee will differ from the results

at the isolated propeller plane by an amount only due to the wing-induced

contribution. At the 90 degree azimuth position on the isolated propel-

ler plane for vertical inclinations, aG , from the free stream of -2, zero,

two, four, and six degrees, the angles of rotational flow, 8, are con-

stant at all radii and are equal to 2.0, 0.0, -2.0, -4.0, and -6.0 degrees,

respectively (computed using Equation (54) in Chapter 4). However, at

the tip radius at the 90 degree azimuth position on the propeller plane

of the Cherokee (Figure 39c) for the corresponding fuselage angles of

attack, a, of two, four six, eight, and ten degrees, the angles ofrota-

tional flow, 6, are equal to 0.7, -2.0, -4.5, -7.2, and -9.8 degrees,

respectively. Comparing the results at the two propeller planes, the

discrepancy between the set of values of a for the isolated propeller

plane and the set of values for the propeller plane of the Cherokee is

solely due to the wing-induced contribution to the flow angularity at the

propeller plane of the Cherokee for each fuselage angle of attack, a. A

similar comparison can be made for the 270 degree azimuth position. At

the 270 degree azimuth position on the isolated propeller plane for

vertical inclinations, aGI from the free stream of -2, zero, two, four,

and six degrees, the angles of rotational flow, 6, are constant at all

radii and are equal to -2.0, 0.0, 2.0, 4.0 and 6.0 degrees, respectively.

However, at the tip radius at the 270 degree azimuth on the propeller

plane of the Cherokee (Figure 43c) for the corresponding fuselage angles

of attack, a, of two, four, six, eight, and ten degrees, the angles of

rotational flow, A, are equal to -0.7, 1.8, 4.6, 7.1, and 9.6 degrees,
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respectively. Comparing the results at the two propeller planes at the

270 degree azimuth, the discrepancy between the two sets of values of 9

is solely due to the wing-induced contribution to the flow angularity at

the propeller plane of the Cherokee. The foregoing examples for the two

azimuth positions indicate that the wing-induced contribution to the flow

angularity is substantial.

It is apparent from the series of figures presented in this sub-

section and the preceding subsection that the flow field at the propeller

plane of the Cherokee 180 airplane is, indeed, very nonuniform. Obviously

when a propeller is operating in this flow field, the spanwise (radial)

loading on the blades, is greatly altered, and substantial azimuthal vari-

ations in blade loading occur. Vibratory stresses to the blades certainly

are increased because of this nonuniform flow field. ..This concludes the

discussion of the-baseline flow field predictions at the propeller plane

of the Cherokee 180 airplane.
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Chapter 6

CgNCLUSI0N5 AND RECOrQiENDA4A..,,,,i

A computer program has been developed which computes the three-

dimensional, steady, incompressible, inviscid, potential flow field at

a propeller plane (propeller removed) positioned with any installed in-

clination upstream of an arbitrary airframe geometry.

Based upon the results of the flow field predictions made for the

sphere, twin-engine airframe, and single-engine Piper Cherokee airframe

geometries, four conclusions can be drawn regarding the overall capabili-

ties of the computer program. Seven more conclusions regarding the

nature of the flow at the propeller plane and regarding computer program

input modeling for increased accuracy of the flow predictions at the

propeller plane can also be made. The latter seven conclusions are based

upon all the flow prediction results, in general, and upon the results

of the parametric studies, in particular.

. For a simple wingless geometry such as a sphere, the computer

program yields excellent predictions of the surface flow. Also, accurate

predictions of the flow field at a propeller plane upstream of such a

geometry are obtained using the program.

2. For a typical twin-engine aircraft configuration, the program

provides very good predictions of velocity profile shapes at the propeller

plane despite the deletion of aft and remote fuselage and nacelle surfaces

from the computer model used for the computations. Reasonable predictions

of velocity magnitude at the propeller plane are obtained using the pro-

gram for such a configuration based on comparisons with experimental data.

3. For a typical single-engine aircraft configuration, the program

provides reasonable predictions of the flow field at the propeller plane.
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This conclusion. is based upon judgements of the quality of the single-

engine Cherokee aircraft predictions which are extrapolations from the

observed quality of the twin-engine aircraft predictions. However, the

absence of experimental data for comparison precludes making more speci

fie conclusions regarding the computer program capabilities for single

engine aircraft.

4. In general, for the typical airframe geometries considered, the

flow field predictions at any propeller plane obtained from the computer

program are more accurate at the outer radii than at the inner radii.

There is room for improvement in the computer predictions at the inner-

most (hub region) radii.

5. Flow fields at propeller planes upstream of typical airframe

geometries do, indeed, exhibit a high degree of flow angularity and

spatial nonuniformity as the plotted flow predictions for the twin-engine

and single-engine configurations clearly illustrate.

6. Though pure inclination of the propeller plane alone is an

important contributor to the angularity and azimuthal nonuniformity of

the flow at the propeller plane, the airframe-induced effects are equally

important or even more important contributors to the flow angularity

and are much more important contributors to the spatial nonuniformity

of the flow field. This conclusion is based upon the comparisons between

the propeller plane flow field results obtained airframe-absent and the

corresponding results obtained airframe-present for both the single-

engine and twin-engine aircraft configurations.

7. The wing must be included in the computer model if greatest

prediction accuracy from the program is to be achieved. This conclusion

is based on the computer predictions for the typical aircraft configura-
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tions which indicate the wing significantly contributes to the flow field

at the propeller plane, particularly in the region near the horizontal

centerline.

8. The actual wing dihedral should always be incorporated in compu-

ter models to help maximize the accuracy of the flow predictions. This

conclusion can be inferred from the observation at the propeller plane

for higher fuselage angles of attack that flow predictions made using the

actual wing dihedral appreciably differ from the flow predictions made

using no dihedral.

9. For maximum accuracy of the flow field predictions at the pro-

peller plane, all of the remote component and aft fuselage geometries must

be included in the paneling input model to the computer program. How-

ever, fairly good results,which are but a few percent less accurate,can

be obtained should such remote and aft geometries be excluded from the

panel model. This is revealed by the studies of aft fuselage effects

conducted for the simple arbitrary fuselage configuration and for the

single-engine Cherokee aircraft configuration. The benefits of computing

cost savings realized by deleting such geometry components from the

computer model may offset the disadvantages of the slight decrease in

flow prediction accuracy which resulta. The user may need to strike a

compromise between computing costs and prediction accuracy when deciding

on the size and complexity of paneling models to use.

10. Given the airframe components to be paneled in the computer

model, the accuracy of the flow predictions depends on the distribution

and sizing of surface panels in the model. The paneling mesh must be

extremely fine and dense over the airframe surfaces immediately aft of
Y

the propeller plane in order to improve the accuracy of the flow pre-

dictions at the propeller plane, particularly in the hub region.
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11. If the true inlet inflow velocity for program input is not

known, an approximate value is satisfactory and its use will have only

a minimal impact on the overall accuracy of the flow predictions at the

propeller plane. This conclusion is inferred from the observation that

changes in the specified inlet inflow velocity ratio induce noticeable

changes in the propeller plane flow field only at the small hub region

directly upstream of they Inlet. Thus, arty inaccuracies in the predicted

flow field due to the input of an approximate value of inlet inflow

velocity ratio would have only a very small or negligible impact on the

overall performance of a propeller operating in the flow field.

Recommendations for future work include the following eight items.

1. Experimental measurements of the flow field at the propeller

plane of the Piper Cherokee PA-28-180 aircraft should be obtained and

compared with baseline flow field predictions from the computer program

which have been presented in this thesis. Such comparisons would pro-

vide a definitive check of the program capabilities for typical single-

engine aircraft configurations. Wind tunnel testing would be the best

approach, as flow field data at the propeller plane (propeller removed)

could be gathered and directly compared with the existing baseline pre-

dictions. Flight testing, however, could not be done propeller-off but

could be done power-off and would require making measurements at a plane

just downstream of the actual propeller plane. If flight test data were

the only kind obtainable, computer predictions for comparison could be

made at the plane, just downstream of the actual propeller plane, where

the flight test data were taken.

2. The iterative solution method currently employed by the flow

prediction program, Jumper (33), should be replaced by a direct matrix
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solution method. Such a program modification would completely eliminate

solution divergence problems such as those which were encountered during

this study when attempts were made to model concave inlet surfaces, air-

frames including spinners, and remote components of the twin-engine air-

frame geometry. This program modification could be easily implemented

by replacing the current subroutines SOLVE and SOLSYM, both of which use

Gauss-Siedel iteration to solve a system of equations, by new subroutines

of the same names which perform a direct matrix solution process such as

matrix inversion or Gaussian elimination. However, as a result of this

change, a larger computer having more memory would be required to run

the program.

3. As the generation of the paneling input and checkin g for paneling

errors is the most tedious task faced by a user of the flow prediction

program, a graphics package capable of generating three-dimensional per-

spective drawings of the input paneling geometry should be added to the

current version of the program. Such a graphics package would greatly

facilitate the process of finding rind correcting paneling errors, a pro-

cess which must be performed before the comparatively costly flow pre-

diction steps of the computer program can be allowed to proceed.

4. Flow field predictions for the Piper Cherokee PA-28-180 model

with the input spinner paneling included should be obtained. Comparisons

of these predictions with the currently existing baseline predictions

would indicate if inclusion of the spinner geometry is necessary for

improved accuracy of flow field predictions in the hub region of the

propeller plane. With the spinner included as a discrete body in the in-

put paneling network for the Cherokee 180 airplane, all prediction attempts

I	
using the current version of the program have, to date, failed due, to
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iterative solution divergence. however, solutions for this airframe-

spinner combination could be successfully obtained by direct solution

through thn use of the program modified as described in Recommendation

2. Alternatively, if the airframe-spinner model were modified by

fairing the spinner and cowl geometries to form a single body, the cur-

rent version of the program could be used and iterative solution diver-

gence probable would not occur.

5. Further parametric studies should be done to determine the ef-

fects on the propeller plane flow field due to changes in the propeller

plane inclination angles, a  and s p ; changes in the spacing between the

cowl and propeller plane or between the nacelle and propeller plane; and

changes in the lateral and vertical positions of the propeller plane with

respect to the airframe. Such studies could ':e done with either the

twin-engine airplane configuration or the single-engine Cherokee airplane

configuration. Also, these studies could be done by using either the

current version of the flow prediction program or a version modified as

discussed in Recommendation 2,

6. The current version of the flow prediction program, Jumper (33),

which solves for the flow field at the propeller plane (propeller re-

moved), should be modified to allow the inclusion of propeller interaction

effects in solving for the airframe-induced flow field at the propeller

plane. The theory underlying the current flow prediction program permits

the existence of an onset velocity field, impinging the body, which is

spatially varying provided the velocity field is steady. By introducing

a known quasi-steady propeller wake (propeller-induced flow field) as

part of such a spatially varying onset velocity field impinging the panel

model of the airframe in the computer program, the resulting flow field
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predictions at the propeller plane would incorporate propeller inter-

action effects. Though the current computer code does not accomodate

a spatially varying onset velocity field, the program could be changed

fairly easily to do so by modifying the boundary condition equations

(generated by subroutines COEFIC and COFSYM) and by modifying the program

input (subroutine INPUT). This would be the next step toward addressing

the mutual airframe-propeller interaction problem.

7. In conjunction with Recommendation 6 for incorporating propeller

interaction effects in the solution of the airframe-induced flow field

at the propeller plane, a computer program should be obtained or written

which will generate a quasi-steady wake downstream of a propeller having

an arbitrary nonuniform aerodynamic loading. This program would generate

the spatially nonuniform onset velocity field for use as input to the

propeller plane flow field prediction program modified as discussed in

Recommendation 6. Perhaps a vortex lattice method could be employed by

such a program.

8. After modifying the flow prediction program to accomodate pro-

peller interaction effects (Recommendation 6) and after developing a

propeller wake prediction program (Recommendation 7), the problem of

computing the propeller plane flow field, propeller loads, and propeller

performance for a complete airframe-propeller combination including mut-

ual propeller-airframe interference effects should be addressed. One

possibility for addressing this problem is an iterative scheme utilizing

the propeller performance prediction program, Aljabri (32); the flow

prediction program, Jumper (33), modified to include propeller interac-

tion effects as described in Recommendation 6: and a propeller wake
r

prediction program, Recommendation 7. Such an iterative scheme might

include the following steps (a through e).



a. For the airframe immersed in a uniform onset velocity

field (no propeller interaction effects), compute the airframe-

induced flow field at the propeller plane (propeller removed)

as has been done in this thesis, but use the modified flow

prediction program.

b. Using the resulting nonuniform propeller plane flow

field from Step a for input, compute the propeller perform-

ance and loading using the program of Aljabri (32) and compute

the quasi-stea,ty propeller-induced flow field using a propeller

wake prediction program.

c. Create a quasi-steady, spatially nonuniform onset

velocity field by incorporating the propeller wake results

from Step b. Then using this nonuniform onset velocity field.

for input to the modified flow prediction program, recompute

the flow field at the propeller plane. This time, however,

propeller interaction effects will have been incorporated in

the flow field solution.

d. Repeat Step b, but use for input the resulting pro-

peller plane flow field from Step c. The results would con-

sist of the computed propeller performance, loading, and wake

with mutual propeller-airframe interaction effects entering

into the solutions. Repeat Step c, but use for input the

results obtat ed from the repeat of Step b. The result would

be the computed propeller plane flow field with mutual pro-

peller-airframe interaction effects entering into the solution.

e. Repeat, in an iterative fashion, the cycle described

in Step d until some desired convergence criteria are met
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Completion of the iterations would yield the final propeller

plane flow field; the airframe surface flow field; and the

propeller performance, loading, and wake results for the air-

frame-propeller combination with mutual propeller-airframe

interaction effects accounted for.

Developing such an iterative procedure would go a long way toward

achieving the ultimate goal of this ongoing NASA-sporscred project of

which the work described in this thesis is but a part. That goal is to

develop the capability of designing aircraft propellers attuned to pos-

sess optimum performance, vibration, and ncise characteristics when

operating in combination with a specific airframe configuration.

r
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Appendix A

BODY SURFACE PANEL CALCULATIONS

Presented here is the method of partitioning the body surface into

a network of N panels. Also, formulas for normal unit vector components

and panel surface areas are presented. These methods and formulas follow

the techniques used by Woodward, Dvorak, and Geller (27). Additionally,

formulas for panel control point coordinates are given. All point coor-

dinates are relative to a single body-fixed Cartesian axis system.

A.1 Partitioning of the Body Surface

A body-fixed Cartesian coordinate system is defined with positive x

toward the front of the body, positive y to the right, and positive z

downward. In general, the origin of the coordinate system may be located

anywhere within or outside the body. However, for a body with left-right

symmetry, the origin must lie somewhere on the plane of symmetry if the

advantages of body symmetry are to be obtained.

The body is divided into a series of cross sections of a constant or

nearly constant x coordinate.. Cross. sections are specified and numbered

in sequence from front to aft on the body.

The Jth cross section is defined by NP discrete periphery points.

As Figure A.lb shows, for the general nonsymmetric body cross section,

all NP points are specified in sequence beginning near the top of the

section and moving clockwise around the section, as viewed toward the

rear of the body, ending with a repeat of the first point.

For the special symmetric case, Figure A._la, in which all cross

sections are symmetric about plane y 0, only (NP + 1)/2, points need be

specified in sequence starting at the top centerline and moving around
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	 the left (-y) side of the section to the bottom centerline. The computer

program automatically generates the image points on the other side of the

plane of-symmetry. However, if body sideslip is nonzero, a symmetric

body must be input in the same manner as a nonsymmetric body.

Between adjacent cross sections, a ring of panels is generated by

pairing corresponding points on each section. For example, the first

and second points on section J are paired with the first and second points

on section J + 1 to produce the first panel on the ring. Generally,

panels are four-sided, but triangular panels are created by repeated

descriptions of a single periphery point. The sequence of specifying

points is such as to ensure that normal unit vectors, calculated below,

will be outwardly directed from the body.

This systematic partitioning produces a network of N panels over

the entire body (N/2 panels on each side of a symmetric body).

A.2 Panel Normal Unit Vector Components

Figure A.2 shows a typical panel created between cross sections J

and J + 1. Identify the input corner points by 1, 2, 3, and 4 as shown

on the figure. Define the two diagonal vectors, B1 and B2, given by

B1 M (x4 - X1 )1 + (Y4 - Yl ) j + (z4 - z l )k 	(A.1)

and

B2 = (x3 - x2 )1 + (y3 - Y2)j + (z3 - z 2)k	 (A.2)

The vector cross product, (B1 x B2), produces a vector, N, which is

directed outward from and normal to the panel and is given by

4.
N N + N  + N 	 (A.3)

y
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where the components are

N  - [(Y4 - Yl)(z3 - z2) - (Y3 - Y2)(z4 - zl )] '	 (A.4a)

' NY . HX3 - X2 )(z4 - z1) - (X4 - X1)(z3 - z 2 )l ,	 (A. 4b)

and

NZ - ((x4 - Xl)(Y3 - Y2) - (X3 - X2 )(Y4 - yl )] ,
	

(A. 40

and where the magnitude is given by

INI - (NX2 + Ny2 + Nz2)1/2
	

(A.5)

Finally, the outward drawn normal unit vector, n, is vector N divi-

ded by its own length, INI . Thus, in terms of the corner points, n is

given by

n - n t + n 
Y 
I + nzk	 (A.6)

with components given by

N

	

X	 (A.7a)nx - 
INI ,

N
	- -Y	 (A. 7b)ny	 INI ,

and

N

	

Z	 (A. 70nz A,

where NX , Ny , PJz , and INI are given in Equations (A.4) and (A.5).

A.3 Generation of a Flat Quadrilateral Panel

In general, the four input corner points will not be coplanar. It
s

is necessary to have a flat panel for which the surface area is calcula-

ble. Define the plane of this flat panel as one which is orthogonal to

-^
unit vector n and contains a point (R, 9, g ) whose coordinates are the

average of the four input points. Thus,
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R = ( l + x2 + x3 + x4 ) ,	 (A.8a)

Y = Cy + Y + Y + y ) ,	 (A. 8b)
4 1	 2	 3	 4

and

g = 4(z 1 + z2 + z3 + z4 )	 (A.8c)

All input corner points 1, 2, 3, and 4 are of equal, distance, d,

from this plane. Distance d is given by

d - Inx (A - x2 ) + ny (Y - Y2 ) '+' n z (z 	 z 2 )!	 (A.9)

where A, 9, and 2 are given in Equation set (A.8).

Input points 1, 2, 3, and 4 are projected distance d onto the new

plane. Denote the new coplanar point coordinates as xx, yy, and zz.

Then

(xk - nxd) , k - 1 or 4

xxk
(A.10a)

(xk + nxd)	 k - 7 or 3 ;

(y
k 

- n
y
d) , k=lor4

yyk .

	

	 (A.lOb)
(yk + nyd) , k - 2 or 3

and

(zk - nzd) , k = 1 or 4

zzk

	

	(A.lOc)
(zk +nzd) , k 2 or 3

are the new coplanar points lying on the corners of the flat quadrilateral

element. Figure A.3 shows this quadrilateral.

A.4 Surface Area of a Quadrilateral Panel

Figure A.4 shows the flat quadrilateral element with the new corner

points given by Equation set (A.10). The sides of the quadrilateral have
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lengths RS, ST,-TU, and UR, and the diagonals have lengths RT and SU.

Angles at corners 1 and 3 are denoted by as and BS, respectively.

In terms of the corner point coordinates, these six lengths are

given by

RS - [(mil - xx
3 ) 2

 + (Yyl YY3 ) 2 + (zz1 - zz3 ) 2 1 1/2 , (A.11a)

ST - [(xxl - xx2 ) 2 + (Yyl YY2) 2 + (zz1 - zz2)211/2 , (A.11b)

TU ' [(xx4 - xx2 ) 2 + (YY4 - YY2) 2 + (zz 4 - zz2 ) 2 ] 1/2 , (A.11c)

UR - [(xx3 - xx4)2 + (YY3 - yy4 ) 2 + (zz3 - zz4 ) 21 1/2 , (A.11d)

RT - [(xx2 - xx3 ) 2 + (yy2 - YY3) 2 + (zz 2 - zz3)2]1/2 , (A.11e)

and

	

SU - [(xx4 - xx1 ) 2 + (YY4 - yyl) 2 + (zz4	zz1) 2 1 1/2 . (A.11f)

Using the cosine law of triangles, the angles are given by

2	 2	 2
ace - cos-1[RS 2 (RS 2 - 

RT	 (A.12a)

and

SS - Cos -11UR22(UR (RS)SU2^	
(A.12b)

Finally, the panel area, S, is given by the formula for the area of a

general plane quadrilateral as follows:

S - j (ff - RS) (ff - ST) (ff TU) (ff - UR)

(RS)(ST)(TU)(UR)cos2(aa 2 0S)71/2	 (A.13a)

where

ff2(RS + ST + TU + UR) ,	 (A.13b)

and the other quantities are given by Equation sets (A.11) and (A.12).



C
F

Ed

A.5 Control Point on a Quadrilateral Panel

For the flat quadrilateral panel, the control point (XC, X.., &.,, LD

located at the intersection of two lines bisecting opposite sides of the

panel, see Figure A.5. Define points (Gx, Gy , G z ) and (lix, Hy , Hz) as

the midpoints of panel edges RS and TU, respectively. In terms of the

corner points, coordinates of points G and H are given by

Gx 2(xxl + xx3) ,	 (A.14a)

G  = 2 (yyl + yy3) ,	 (A.14b)

Gz 0 1(zzl + zz3) ,	 (A.14c)

HX = 2 (= + xx4 ) ,	 (A.14d)

Hy = z(YY2 + YY4 )	 (A.14e)

and

H7	 Z (zz2 + zz4 ) (A. 14f

Coordinates of control point (XC, YC, ZC) are then given by
l

XC 2(Gx + Hx) ,	 (A.15a)

YC 2(Gy + Hy) 	 (A.15b)

and	 a

ZC = Z(Gz + Hz) ,	 (A.15c)

where Gx, Gy, GZ , Hx , Hy, and Hz are given-by Equation set (A.14).

A.6 Triangular Panels

As Figures A.6a and A.6b show, a triangular panel is generated if

input points 1 and 2 are equal-(this is Case a) or if-points 3 and 4'

are equal (this is Case b).

w^
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For triangular panels, the outward normal unit vector, n, is calcu-

lated as described in Section A.Z.

The input points themselves are coplanar for triangular panels, so

the procedure for finding average coplanar corner points, Section A.3,

is unnecessary.

The formulas for calculating surface area and control point coordin-

ates of triangular panels differ from those used for quadrilateral panels

and are described in the remaining two subsections.

i

A.6.1 Triangular panel surface area

For each case of a triangular panel, Case a (with the vertex at

points 1 and 2) and Case b (with the vertex at points 3 and 4), a dif-

ferent set of expressions for panel area, S, is used.

First, consider the triangle, Case a, see Figure A. 6a. Define the base 	 ll

length as UR and the side lengths as RS and SU. The angle at the vertex.

is am. In terms of corner point coordinates, the three edge lengths are

given by

RS - (x3 xl ) 2 + (Y3 - yl ) 2 + 
(Z3 - Zl)2^1/2	

(A.16d)

SU - 
(x4 

xl) 2 + (Y4 - Yl) 2 + (Z4 - Z1 ) 2 l 1/2 	 (A.16b)

and

UR - [ (x4 
x3 ) 2 + (Y4 - y3 ) 2 + (Z4 - z 3 ) 2 ^1/2	 (A.16c)

Using the law of cosines, the angle as is given by

as = cos-1r
(RS)2 + (SU) 2 - (UR)2 ^ 	

(A.17)9.	 2(RS) (SU)

Finally, using the area formula for a general triangle, the surface area,

S, is

S2( RS) (SU) sin (aa) , 	 (A.18 )

3

3

R
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where RS, SU, and as are given by Equations (A.16) and (A.17), respec-

tively.	 jf

Second, consider the triangle, Case b, see Figure A. 6b. Define the base
f

length as ST and the side lengths as RS and TR. The angle at the vertex

is $S. In terms of corner point coordinates, the three edge lengths

are given by

RS	 [(x3 - x1 ) 2 + (Y3 - yl ) 2 + (z 3 - zl ) 2 ^ 1/2	 (A.19a)

ST - [(x2 - 
x1)2 + (Y2 - yl) 2 + (z2 _ zl)2)1/2	

(A.19b)	
I

and

TR - [(x3 - x2 ) 2 + (y3 - y2 ) 2 + (z 3 - z 2 ) 2 y 1/2	 (A.19c)

Angle as is given, using the law of cosines, as

SS - Cos -1 [ (RS) 2 + (TR) 2 - (ST)
2 (RS) (TR)

Then the surface area, S, is given by the area formula for a general

triangle as follows:

S - 2(RS) (TR)sin($$) ,	 (A.21)

where RS, TR, and 66 are given, respectively, by Equations (A.19) and

(A.20).

A.6.2 Triangular panel control point

As with area formulas, the formulas for control point coordinates

for the triangular panel,. Case a, differ slightly from those for the

other triangular panel, Case b.

First_, consider the triangular panel, Case a, see Figure A. 6a. The

control point (XC, YC, ZC) is at the area centroid which is located

midway along line segment DE. Line DE intersects each panel edge one-



ORIGINAL PAGt IS 	 110
OF POOR QUALITY

third the way from the base of the triangle. Thus, points (Dx , Dy , DZ)

and (Ex, Ey , EZ) are functions of the corner points as follows;

Dx x3 + 3(xl - x3) ► 	 (A.22a)

DY y3 + 3(Yl - Y3) ► 	 (A.22b)

Dz 	z3 + 3(z l - z3 ) r	 (A.22c)

Ex x4 + 3(xl 	- x4) ,	 (A.22d)

l	 (A.22e)

and

EZ - z4 + 3(zl - z4 )	 (A. 22f

Then in terms of Equation set ( .A.22), the coordinates of the control

point for the triangular panel, Case a, are given by

XC - 2(Dx + Ex) ,	 (A.23a)

YC - Z(Dy + Ey) ,	 (A.23b)

and

ZC - -,12-(DZ + EZ )	 (A.23c)

Second, consider the triangular panel, Case b, shown in Figure'A.6b.

Following the notation of Case a, the control point (XC, YC, ZC) is

situated at the area centroid, -which lies midway along line segment DE.

Line DE intersects each panel edge one-third the way from the base of

the triangle. In terms of corner point coordinates, the coordinates of

points (DX , Dy , D .) and (Ex , E , E z ) are given as follows:

Dx ! xl + ?(x3 - xl)	 (A.24a)

Dy Yl + 3(Y3 - Yl)	 (A.24b)

y



ORIGINAL PAGE I3
OF POOR QUALITY

111

^`.	 Dz = z 1 + 3(z3-	 ?1) ,
	

(A. 24c)

Ex . x2 + 3(x 3 - x2 ) ,	 (A.24d)

Ey a y2 + 3 (Y3 - Y2) ,	 (A.24e)

and

Ez	 z2 + 3(z3 - z 2 )	 (A.24f)

Finally, in terms of Equation set (A.24), the control point coordinates

for the triangular panel, Case b, are given by

XC = 2(Dx + Ex) ,	 (A.25a)

ifYC- Z(Dy + Ey) 	 (A.25b)

and a

ZC 3(Dz + Ez )	 (A.25c)

i

a
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Appendix B

DERIVATION OF FREE STREAM CARTESIAN VELOCITY COMPONENTS

Denote by V the magnitude of the free stream velocity. Define a

wind Cartesian axis system, x, y, z, in which V is always directed along

the negative x axis as in Figure B.1. Next, define by x, y, and z the

body-fixed Cartesian axes whose origin coincides with the wind axes

origin. Then fora body having no angle of attack, a, or sideslip, 0,

the body axes are coincident with the wind axes. This is shown in Figure

B.1.

For the general case of the body having an angle of attack, a, and

sideslip, 6, it is necessary to derive expressions for free stream com-

ponents, U. v, and w, along the x, y, and z axes, respectively. With the

body and wind axes initially coincident, a pair of rotations is made.

See Figure B.2. First, a rotation of a about the y axis is made. Denote

the resulting intermediate set of axes by x*, y*, and z*. Second, a

rotation of n about the z* axis is made resulting in the body axes,.x,

y, and z, in their final position with angle of attack, a, and sideslip

S. Angle n is chosen so as to produce the desired sideslip angle, $, as

viewed in the x - y plane. These rotations yield relations between the

x, y, z system and the x, y, z system. Then derivation with respect to

time of the axis transformations yields velocities u, v, and w as func-

tions of V, a, and $.

Figures B.2a, B.2b, and B.2c show the angular rotations and show the

resulting projected lengths of all three sets of axes in three different

views. For scale, the axes have a true arbitrary length, L.

It is first necessary to derive the expression for angle Tl as a

function of a and S. Refer to Figure B.2a, showing the x - y plane and

r-

is

f
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portraying $ in its true arc. In this view, axes x *, y*, x, and y pro-

ject onto an ellipse given by the equation

[ L cos a 12 
+ [L72	

1	 (B.1)

In Figure B.2a, the projection of axis x ends at point (X,Y) on the

ellipse. Coordinates of point (X,Y) thus satisfy the following three

relationships:

[	
X	

] 2 + [Y] 2 - 1	 (B.2)
Lcosa	 L

X - L cos a cos n	 (B.3)

and

	

tan S - X	 (B.4)

Combining Equations (B.2) and (B.3) with Equation (B.4) gives the

following desired result:

n - tan-1 (tan S cos a)	 (B.5)

As seen in Figure B.2b, the rotation of n about z* yields the fol-

lowing relations between axis sets x*, y*, z* and x, y, z:

x* - x cos n - y sin n 	 (B.6a)

y* • x sin n + y cos n ,	 (B.6b)

and

z* - z	 (B, 6c)

Then as shown in Figure B.2c, rotation of a about y yields the

following relations between axis sets x, y, z and x*, y*, z*:

a
x x* cos a + z* sin a	 (B.7a)

a
y - y* ,	 ($.7b)

and

z - z* cos a x* sin a	 (B.7c)

x^
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Equation set (B . 6) is substituted

set (B.7), and the resulting system is

This gives the final relations between

the rotated body axes, x, y, and z, as

x - (cos a cos Ox + (sin

y - -(cos a sin n)x + (co

for x*, y*, and z* in Equation

inverted using Cramer's rule.
a

the wind axes, x, y, and z,and

follows:

n) y - (sin a cos n)z ,	 (B.8a)

S n)y + (sin a sin n)z ,	 (B.8b)

and

z - (sin Ox + (cos a)z	 (B.8c)

The time derivative along each axis gives the velocit y component

parallel to each axis. By definition of the orientation of the 'wind

axes with the free stream, the following holds:

dt	
-V	 (B.9)

and

. dz . 0	 (B.10)
dt dt

Also, define the following:

dx
u ^ dt ,	 (B.11a)

V d	 (B.11b)
dt

and

w
dz
 
dt	

(B. 11c)

Derivation with respect to time of Equation set (B.8) and substitu-

tion of Equations (B.9), (B.10), and (B.11) give

u - -V cos a cos n	 (B.12a)

v - V cos a sin n ,	 (B.12b)

and

w = -V sin a ,
	 (B. 12c)



where n is given by Equation (B,S)

Equation set (B.12) gives the

stream velocity for the body at an

These components are illustrated i
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Appendix C

COMPUTATION OF VELOCITY COMPONENTS INDUCED BY A STRAIGHT VORTEX
FILAMENT OF ARBITRARY ORIENTATION

This appendix derives the formulas used by a computer subroutine to

calculate the Cartesian velocity components at some specified point, (R,
k

2), which are induced by a straight vortex filament of finite length.

The Biot-Savartlaw is used to obtain the velocity magnitude, and special

precautions are used to circumvent numerical difficulties inherent in

the Biot-Savart law.

C.1	 Geometry of the Arbitrary Vortex Filament

Refer to Figure C.l.	 The vortex filament of strength, P, starts at

point 1,	 having coordinates 	 (Rl , 91 , 2 1), and ends at point 2, having

coordinates (x2 , q2 , z 2 ); both endpoints and t are specified. The vor-
E

tex filament coincides with a vector, T, given by

T = (x2 - xl )^ + (y2 - yl) j + (z2 - z1 (C.1)
of length, T, given by

2 1/2
T	 ^(X2 - x1) 2 + (Y2 - Yl ) 2 + (Z2 - zl) J (C•2)

s

Specify the point, (R, y, z), at which induced velocities are to be

found.	 There exists a point C, having coordinates (Cx, Cy, Cz ), coor- i

dinates to be determined, positioned on the line containing the vortex

filament such that a vector, h, 	 from (x, y, z) to (Cx , Cy , Cz ) is per-

ipendicular to the filament. 	 his given by

h - (Cx - x)i + (Cy - y) j + (Cz - z )k (C.3)

and has a length, h, given by

h	 [(Cx	 x)2 + (Cy - y) 2 + (Cz - 
z)2]1/2

(C.4)
#'

i^
f
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Denote by s a vector between point 1 and point C expressed as

s (Cx - xl )i + (Cy - Yl) + (Cz - Zl)k	 (C.5)

Lines Dl and D2 connect point (x, y, z) with the vortex starting point

and endpoint, respectively. Their lengths are given by the following:

D1 = [(x- Xl ) 2 + (y - y1)2 + (z - z1) 2 1 	(c.6)

and

D2 _ [(x - x2)2 + (y - y2)2 +( Z 	 Z2)211/2	 (C.7)

D1 and D2 intersect the vortex at angles 6 1 and 8 2 , respectively. Using

the law of cosines for triangles, these angles are given in terms of

previously defined quantities as

cos 9	 T2 + D12 - D22
1	 2 (T) (Dl)

and

(C.8)

T

	

2	 2 _ 2
cos 62	 2(T)(D2)D1	

(C.9)

It remains to find the coordinates C x , Cy , and C  of point C in

terms of the given geometry. As Figure C.1 shows, vectors s and T are

+ +
colinear. Thus, the vector cross product, (s x T), is zero as is each

+
component of the vector (s

+
 x T). This vector cross product is performed

using Equations (C.1) and (C.5), and each component of the resulting

vector is equated with zero. The result is a set of three equations for

the unknown values of C x, Cy , and C  as follows:

	

0 + (z" 2 - zl)C
y - (y2 - yl)Cz	 Cyl (i2 - zl) - zl (y2 - Yl)7,(c.lo)

- (Z2 - z l)Cx + 0 + (x2 - xl ) Cz	 [ z l (x2 - xl) - X^ (Z^- z l) l , (C.1?)

and

(y2 - yl)Cx - (x2 - x )C + 0ly	 a [x (Ŷ	y2 - 1) - yl (.x2 - x	 (C.12)l)}. 
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However, the above three equations form an indeterminant system. A

fourth independent equation is required to solve for Cx , Cy, and Cz.

Because vectors h and T are orthogonal, their scaler product, (h T),

is zero. Using Equations (C.1) and (C.3) in the scaler product and

equating with zero gives a fourth equation containing unknowns Cx , Cy,

and C as follows:
Z

	

(x	 x)c +(y	 y)c +(z	 Z)C =[X (x	 x>+y(y	 y>
2 - l x	 2- l y	 2- 1 z	 2- 1	 2- 1

	

+ z(z 2 - zl)]
	

(C.13)

Simultaneous solution of Equations (C.11), (C.12), and (C.13) for

unknowns Cx , Cy , and C z , using Cramer's rule, gives the following results:

{X(AA) 2 + x1{(BB) 2 + (CC) 2 ] + AA[BB(y - yl ) + CC(^	 zl)])

	

Cx	

(AA)
2 + (BB) .2 + (CC)2

,(C.14a)

{y(BB) 2 + y [(AA)2 + (CC) 2 ] + BB[AA(x - x) + CC(z - z MC =	 1	 1	 1	 ,(C.14b)

	

y	 (AA)2 + (BB) 2 + (CC)2

and

{z(CC) 2 + z l [(AA) 2 + (BB) 2 I + CC[AA(x - xl) + BB(y - yl)]}

	

Z	 (AA) 2 + (BB) 2 + (CC) 2

where AA = (x2 - xl ), BB	 (y2 - yl), and CC = (z 2 - zl).

C.2 Magnitude of the.Total Induced.Vfelocity

Denote by W the magnitude of the total velocity induced at point

(x, y, ) by the vortex filament. When this point lies on the line con-

taining the filament, length h is zero. In this case, W is fixed at

zero and the Biot-Savart law is not used.

When length h is nonzero, the Biot-Savart law is used to calculate

W. To ensure that W is not unrealistically large, it is checked to see

a

A
zi
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if it is larger than a maximum velocity limit. This velocity limit

equals 20 percent of the free stream velocity, V. Should W be found

larger than the limit velocity, W is set ' equal to the limit value, and

that is the venue used to obtain the velocity components.

In summary, velocity W is calculated using one of the following

equations:

W - 0 , if h - 0 ;	 (C,15a)

W M 4 7rh (cos 8 1 + cos 9 2 ) , if h # 0	 (C. 15b)

or

W 0.2V , if W [by Equation (C.1 b)] > 0.2V , (C.15b)

where V is the magnitude of the free stream velocity and all other quan-

tities have been defined previously.

C.3 Induced Velocity Components

At point (x, y, i) the induced velocity vector, "W, is directed

normal to the plane containing T and h. Define a unit vector, nw, which

is also normal to the plane containing T and h and has the same direction

+	 -► 	 -.
as W, see Figure C.1. The vector cross product (h x T) is also a vector

normal to the plane containing T and h. Therefore, n  can be g :4.ven by

(hxT)
n  ` -. +	 (C.16)

It x "I

Substitution of Equations (C.1) and (C.3) into (C.16) yields the follow-

ing expressions for the components of nw:

nwx _ R[CC (Cy - y) - BB (CZ - z)] ,	 (C.17a)

nwy = 1 [AA(CZ - i) - CC(CX - x)] ,	 (C.17b)RXR

/'

and

nwz 
= ^[BB(Cx - x) - AA (Cy y)]	 (C. 17c)
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where

RXR - CC (C- ) - BB(Cz - Z)] 2 + 
[AAA(Cz - Z) - CC(Cx - x)] 2

+ [BB(Cx - x) - AA(Cy -Y)]
2) 1/z 	

(C.17d)

and where AA - (z2 - xl), BB (y2 yl), CC -z2 - zl ), and Cx, Cy , and

CZ are given by Equation set (C.14). Express the induced velocity vector

in terms of its Cartesian components as follows:

W = of + vf^ + wfk	 (C.18)

These components are shown in Figure C.l. Because W coincides with unit

vector nw, the following holds:
4.

nw	(C.19)

--
Equations (C.15), (C.18), and (C.17) are substituted or 1V, W, and com=

ponents of nw, respectively, in Equation (C.19). By comparing like terms

on each side of the resulting equality, it follows that the desired com-

ponents of the vortex filament-induced velocity are given by

of - nwxW ,	 (C.20a)

of - nwyW ,	 (C.20b)

and

w  - nwZW .	 (C. 20c)
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Appendix D

TRANSFORMATIONS RELATING THE PROPELLER PLANE AXIS SYSTEM
TO THE BODY-FIXED ,AXIS SYSTEM

D.1 Coordinate Transformations

Denote by x, y, and z the Cartesian coordinate axes which remain

attached to the propeller plane. Positive x is directed along the pro-

peller axis of rotation in the thrust direction as in Figure D.1. A

point, P, on the propeller plane is positioned relative to a cylindrical

coordinate system, r - ^, where azimuth angle, *, is measured clockwise

from the negative z axis. Also denote by x', y', and z' three Cartesian

axes which remain parallel to the body-fixed axes, x, y, and z, but which

are displaced to a point (Xhub' Y
hub' Zhub) relative to the body-fixed

axes. Figure D.1 shows all the axis systems and shows the propeller

plane initially without angle of attack, ap , or sideslip, Sp . In this

situation the x, y, and z axes are coincident with the y', y', and z'

axes, respectively.

For the general case of the propeller plane oriented at some combin-

ation of angle of attack, a p , and sideslip, Sp , relative to the body, it

is necessary to express the r - * coordinate system, attached to the pro-

peller plane, in terms of the body-fixed axes, x, y, and z.

With the x, y, and z axes initially coincident with the x l , y', and

z' axes, a pair of rotations is made, see Figure D.2. First, a rotation

of a  about the y' axis is made. Denote the resulting intermediate set

of axes by x*, y*, and z*. Second, a rotation of n  about the z* axis

is made resulting in the propeller plane-fixed axes, x, y, and z, in

their final skewed orientation with angle of attack, ap , and sideslip,

0p , with respect to the x', y', and z' axes. Angle n  is chosen so as
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to produce the desired sideslip angle,gip, as viewed in the x' 	 y' plane.

Once transformations between the skewed x, y, and z axes and the x', y',

and z' axes have been obtained, the final transformations between the

r - and x - y - z axis systems are then obtained.

Figures D.2a, D.2b, and D.2e show the two angular rotations and show

the resulting projected lengths of all four sets of Cartesian axes in three

different views. For scale, the axes have a true arbitrary length, L.

It is first necessary to derive the expression for angle n  as a

function of a  and Sp . Refer to Figure D.2a, showing the x" - y' plane

and portraying Sp in its true arc. In this view, axes x*, y*, x, and y

project onto an ellipse given by the equat$on

^L cos a l2 + L )2	 1	 (D.1)
p

In Figure D.2a, the projection of axis x ends at point (X, Y) on the

ellipse. Coordinates of point (X, Y) thus satisfy the following three

relationships:

^L cos a J2 + IL1 2 	 1	 (D'2)
p

X - L cos a  cos n 	 ,	 (D.3)

and

tan Sp W X .	 (D.4)

Combining Equations (D.2) and (D.3) with Equation (D.4) gives

Tip M tan-1 (tan Sp cos a p ) ,	 (D.5)

which is the desired function relating n  to a  and Sp.

As seen in Figure D.2b, the rotation of n  about z* yields the fol-

lowing relationships between axis sets x*, y*, z* and x, y, z:

x* x cos np y sin nP ,	 (D.6a)

F,
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Y* x sin n  + y cos 
n 
	 ,
	

(D. 6b)

and

z* - z	 (D. 60

As shown in Figure D.2c, rotation of eap about y' yields the follow-

ing relationships between axis sets x', y', z' and x*, y*, z*:

x' M x* cos a  + z* sin a 	 (D.7a)

yo ' Y* }	 (D.7b)

and

z' W z* cos ap - x* sin a 	 .	 (D.7c)

Axes x', y', and z' are displaced to point (Xhub' Yhub'' Zhub) rela-

tive to the body-fixed axes x, y, and z, so the following applies:

X . x' + Xhub '	
(D.8a)

y - y' + Yhub '	
(D.8b)

and

Z s z' + 
zhub '	

(I),8c)

Equation set (D.6) is substituted into Equation set (D.7) to elimin-

ate x*, y*, and z*. Then, substitution into Equation set (D.8) produces

the following relationships between the body-fixed axes, x, y, and z,

and the propeller plane-fixed axes, x, y, and z:

x a (Cos a  Cos np)x - (cos a  sin np)y + (sin ap)z + X
hub ,	

(D.9a)

y - (sin np )x + (cos np )y + Yhub '	
(D.9b)

and

z = -(sin a  cos np )x + (sin a  sin np ) y + (Cos ap)z + 'hub	
(D.9c)

As shown in Figure D.-3, the cylindrical coordinate system, r - *,

on the propeller plane is related to the propeller plane-fixed x, y, and



axes as follows;

x - 0 (on the propeller plane)

y - rsin^

and

z = -r cos ^	 (U. J.Ucl

Equation set (D.10) is- substituted into Equation set (D.9.). Then

point P, at coordinates (r, *) on the propeller plane, has corresponding

Cartesian coordinates (Xp , Yp , Zp) in the body-fixed axis system given

by

Xp M -r(sin * cos a  sin n  + cos * sin ap) + %ub , (D.11a)

Y. p = r (sin * cos np) + Yhub ,	 (D.11b)

and

Pz r(sin * r4n a  sin n  - cos.* cos ap ) + zhub	 (D.11c)

where n  is given by Equation; (D.5)..

Equation set ()D.11) is the resulting transformation from the propel-

ler plane-fixed cylindrical coordinates to the body-fixed Cartesian co-

ordinates for a point on a propeller plane centered at (Xhub' Yhub' zhub)

and tilted with an angle of attack, ap , and sideslip, 0p , relative to the

body-fixed axes.

D.2 Velocity Component Transformations

It is necessary to derive transformations which convert Cartesian

velocity components, up , vp , and wp , at point P on the propeller plane,

relative to the body-fixed axes-, into corresponding cylindrical system

velocity components, vap , vrp , and vtp . As shown in Figure D.3, vap,

vrp , and vtp are axial, radial, and tangential velocity components, re-

spectively, with the axial component directed normal to the propeller
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plane and positive in the thrust direction (into the figure). Tangential
u

veI,:city, vtp , at P is in-plane and positive if it follows the right-hand

	

rotation of a propeller, vr p is in-plane and positive radially outward. 	 !s
i^

1

Equation set (D . 9) is inverted using Cramer ' s rule giving expressions

relating the propeller plane-fixed axes, x, y, and z to the body-fixed

axes, x, y, and z, as follows: 	 ,	 a

x	 (cos a  cos np)(x - Xhub)	 (sin np)(y - Yhub)

(sin ap cos 
71 

)(z - Zhub) '	
(1). 12a)

1	 i

y	 -(cos ap sin np),(x - ub) '} (cos np ) (y - Yhub)
';	 1

+ (sin ap sin np)(z - Zhub}	
(D.12b)

and

z = (sin ap)(x - hub) + (cos a p)(z - Zhub ) -	
(D.12c)

At a point on the propeller r.tane, the velocity components, up , vp,

j	 and w , relative to the body-fixed Cartesian axis system are given by
p

the following time derivatives:

u = dx	 (D.13a)
p dt

v =	 ,	 (D.13b)
p dt

and	 p

wp 
dt	

(D.13c)

Similarly, the velocity components, up , vp , and wp , relative to the pro-

peller plane-fixed Cartesian axis system are given by time derivatives

as follows:	 j

u _	 (P.14a)a'	 p	 dt

v s
	 (D.14b)

p dt

1
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and

	

wp dt	
(D. 14c)

The time derivative of Equation set (D.12) it taken and Equations (D.13)

and (D.14) are substituted. Observe that the derivatives of Xhub' Yhub'

and Zhub 
vanish. The result is a set of relations transforming the velo-

city components, up , vp, and wp , into components, up , vp , and p, as

follows:

up = (cos a  cos np )up + (sin np )vp - (sin a  cos n p )wp 	 (D.15a)

vp	(cos a  sin np)up + (cos np)vp + (sin a  sin np)wp 	 (D.15b)

and

w  = (sin ap)up + (cos ap)wp	(D.15c)

As indicated in Figure D.3, propeller plane-fixed Cartesian velocity

components, up , vp , and wp , are related to the corresponding axial, radi-

al, and tangential velocities, vap , vrp , and vtp , at point P as follows:

	

vap = up 	(D.16a)

vrp = (sin *)vp - (cos *)wp	 (D.16b)

and

vtp a (cos O vp + (sin Ow 
p 
	 (D.16c)

Finally, Equation set (D.15) is substituted into Equation set (D.16).

This produces the following relationships:

vap = (cos a  cos np)up + (sin np)vp - (sin a  cos n p)wp	(D.17a)

vrp = -(sin a  cos ^ + cos a  sin n.p sin O)up + (cos n  sin *)vp

+ (sin a
P	 P	 P
sin n sin ^ - cos a cos ^)w , 	 (D.17b)

P
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and

vtp	 (sin a p	 p	 p	 p	 psin - cos a sin ^ cos ^)u + (,cos n cos *)vp

+ (cos ap sin ^ + sin ap sin	 cos *)wp , (1).17c) 

where np is given by Equation (D.5). For a point P at position (r, ^)

on the propeller plane, Equations (D.17) are the desired relations which

transform the body-fixed Cartesian velocity components at P, u p , vp , and

wp , into the corresponding axial, radial, and tangential velocity com-

ponents, vap , vrp , and vtp , relative to the propeller plane-fixed cylin-

drical coordinate system.
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Appendix E

MEASUREMENT AND MAPPING OF THE PIPER CHEROKEE PA-28-180 COWL
AND SPINNER SURFACE GEOMETRY

No manufacturer-supplied detail drawings of the cowl and spinner

exist for the Piper Cherokee PA-28-180. As, these airframe components

are proximate to the propeller plane, a detailed description of these

surface shapes was important for creating a good computer paneling model.

Therefore, to obtain this description the only recourse was to physically

measure the cowl and spinner geometry on an actual aircraft. Direct

measurement of this geometry on The Pennsylvania State University-owned

Cherokee 180 research airplane, tail number N907PS, was conducted, This

measurement process is described in this appendix:

Measurement by triangulation was performed using two precision sur-

veying transits, both capable of angular measurement to within a toler-

ance of +20 seconds of arc, Figures-E.la and E,lb schematically illus-

trate the deployment of the two transits, identified as transit A and

transit B.

Parked on a flat surface, the aircraft fuselage was jacked to the

horizontal position. The horizontal position was determined bey, placing

a level on the reference leveling screws located on the exterior of the

fuselage beneath the pilot's window as shown in Figure E.lb.

Transit A was positioned on the fuselage plane of symmetry at a

distance of approximately 30 percent wing span forward of the spinner.

As shown in Figure E.lb, transit A was vertically positioned such that

the horizontal line of sight intersected the spinner near its tip. This

intersection point, on the plane of symmetry, was marked and designated

as the coordinate origin for all measurements. The. horizontal distance

XA between transit A and the origin was precisely measured.

t

r
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^f

Next, using sightings from transit A, transit B was positioned

directly to the left of the coordinate origin at a precisely measured

horizontal distance XB as shown in Figure E.la. Thus, the lines of

sight of both transits, viewed from above, intersected at a right angle

at the origin. The height above ground of transit B was slightly less

than the height of the origin. The vertical distance AX between the

origin and transit B was measured. Knowledge of XA, XB, and AX completely

determined the transit positions with respect to the origin, and the

transits were then ready for use.

The cowl and spinner surfaces were prepared for measurement by cov-

ering the left half of both with a mesh of tiny adhesive paper target

points. These paper targets were visually placed in a series of rows of

nearly constant x coordinate such that a row of points approximately de-

fined a body cross section. The target points were closely spaced at

C,
the forward end of the cowling and at other regions of extreme surface

curvature. Target points were more thinly spaced at regions on the cowl

where the surface was less convoluted.

After placement of the surface targets, actual measurement was begun.

As shown in Figures E.la and E.lb, a measurement consisted of simultaneous

sightings on a surface target point by transits A and B. While sighted

on a target, the horizontal angles *A and *B 
were recorded. Also, the

vertical angles w  and w  were recorded. This process was repeated for

all target points on the left side of the cowl and spinner..

Transit B was then moved directly across to the right side of the

spinner origin point. Additional target points were placed on ducts and

surface features found only on the right half of the cowl. Further sight-

ings were made to measure these target points. This concluded the gath

ering of data.

A
	 J
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Using the measured lengths XA , XB, and AX, as well as the four angles

^A' ^B' wA, and wB , associated with a target point, trigonometry was ap-

plied to calculate the Cartesian coordinates of the target point relative

to the spinner origin. By using a computer program,this trigonometric

analysis was rapidly completed for the hundreds of target points. The

result was a discrete point description of the cowl and spinner geometry

in Cartesian coordinates.

Preliminary three-view cowl and spinner drawings were made using the

measured surface points. As previously stated, the target points had

been positioned visually in a series of rows, each row lying approximately

at a constant x coordinate. Of course, analysis of the data revealed

that points on a given row were not precisely aligned at a single x co-

ordinate. Therefore, the measured surface points on each row-were shifted

slightly until all rows fell on contours of constant x coordinate and thus

defined true cross sections. Guided by the preliminary three-view drawings,

the data point shifting was done carefully using cubic spline interpola-

tion.

Final three-view cowl and spinner drawings were made using the shift -r-

ed surface points. The front view of these drawings afforded detailed

descriptions of geometry cross sections.

Surface coordinates from the final three-view drawings were used to

generate cowl and spinner input computer paneling. To produce a symmetric

cowl paneling network, small irregular cowl surface features, such. as

engine exhaust pipes and small intake ducts, were ignored.

The manufacturer-defined Cherokee 180 aircraft coordinate origin,

used in all existing drawings of fuselage geometry, aft of the firewall,

did not coincide with the arbitrarily chosen cowl-spinner coordinate
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origin. Therefore, to properly mate the measured cowl-spinner geometry

with the remaining aircraft geometry, coordinates of all geometry on

manufacturer-supplied drawings were converted to the measured cowl-spinner

coordinate system. Thus, all aircraft input geometry, including the cowl,

fuselage, and spinner paneling, for the flow prediction program was ref-

erenced to the chosen coordinate origin indicated in Figures E.1a and

E.lb.

i
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Table 3

Piker Cherokee PA-28-180 Aircraft Lift Cc
to the Angles of Attack Modeled by ti
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Figure 2. Edge of a Panel Showing Panel Self-Induced Velocity
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Figure 4b. ding Horseshoe Vortex Geometry (Front View)
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wing leading edge

STATION
NUMBER

FUSELAGE COORDTNATES tiRTE1?

DISTANCE AFT a' b' c'

1 0.00000 0.00000 0.00000 0.00000

2 0.02540 0.07620 0.05842 0.06350

3 0.05080 0.11430 6.08890 0.08890
4 0.0762G 0.13462 0.12192 0.11430

5 0.10160 0.16002 0.14732 0.12700

6 0.15240 0.19050 0.18796 0.15748
7 0.22860 0.22'3 ,2 0.23876 0.19304

8 0,30480 0.25400 0.28702 0.21590

9 0.60960 0„34290 0.43180 0.29210
10 0.91440 0.41656 0.54610 0.34544

11 1.21920 0.46228 0.64770 0.39370

12 1.52400 0.49530 0.73152 0.42164

13 1..82880 0.52832 0.81280 0.44704

14 2.13360 0.55372 0.87376 0.47244
15 2.43840 0.57404 0.93472 0.48768
16 2.74320 0.59182 0.99060 0.50292
17 2.99720 0.59944 1.03378 0.51G54

18 3.04800 0.59944 1.06680 0.51054

19 3.20040 0.60706 1.19380 0.51308

20 3.35280 0.60960 1.31064 0.51562
21 3.50520 0.61214 1.40208 0.51816

22 3.65760 0.61468 1.44780 0.52070
23 3.96240 0.61722 1.47320 0.52578

24 1	 4.25450 1	 0.61722 1.46050 0.53086

Figure 17a. Twin-Engine Airplane Fuselage Coordinates for the Portions
Forward of the Wing Leading Edge (Source: Reference 15)
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NACELLE COORDINATES METERS
DISTANCE AFT r'

1 0.0000 0.54610

2 0.0254 0.58420

0,0508 0.60960
4

_
0.1016 0.63500'

5 0.1524 0.66040
6 0.2286 0.68580

7' 0.3048 0.70612

8 0.4572 0.72390

g 0.6096 0.73660
10 0.7620 0.74930

11 0.9144 0.75184

12 1.0668 0.75438
13 1.2192 0.75692

14 1.3716 0;75692
15 1	 1,5748 1	 0.75692

Figure 17b. Twin-Engine Airplane Nacelle Coordinates for the Portions
Forward of the Wing Leading Edge (Source: Reference 15)
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of Angle of Rotational Flow at the Left Propeller Plane of
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