NASA Technical Paper 2054

September 1982

NASA TP 2054 c.1

9068

LOAR COPY: RFIURA TO AFWL TLOARKAL LIBRAAY NITLAND ATO, N M

NASA Technical Paper 2054

EXPERIMENTAL INVESTIGATION OF TWO NONAXISYMMETRIC WEDGE NOZZLES AT FREE-STREAM MACH NUMBERS UP TO 1.20

> Mary L. Mason and William K. Abeyounis September 1982

Replace page 53 of this report with the attached corrected page 53. A term in one of the equations was found to be in error.

ISSUE DATE: APRIL 1983

{ /

*

· •

4/26/83 Jp

۰. .

4.

NASA Technical Paper 2054

1982

Contractor Contractor

Experimental Investigation of Two Nonaxisymmetric Wedge Nozzles at Free-Stream Mach Numbers up to 1.20

Mary L. Mason and William K. Abeyounis Langley Research Center Hampton, Virginia

Scientific and Technical Information Branch

SUMMARY

An experiment has been conducted in the Langley 16-Foot Transonic Tunnel to determine the static and wind-on performance of two nonaxisymmetric wedge nozzles. This experiment continued efforts to compile a detailed and comprehensive data base on nonaxisymmetric nozzles. The nozzle geometries represented two different nozzle throat areas and expansion ratios. Tests were conducted at wind-off conditions and at free-stream Mach numbers of 0.60, 0.80, 0.90, 0.94, and 1.20. The range of nozzle pressure ratios varied with nozzle geometry and Mach number. Data are presented as discharge coefficients, internal thrust ratios, thrust-minus-nozzle drag ratios, ideal thrust coefficients, and internal and external static-pressure distributions. The static-pressure data were analyzed to determine characteristics of the nozzle internal and external flow fields.

INTRODUCTION

Current jet fighter aircraft are designed for high maneuverability over a wide range of Mach numbers and power settings. A propulsion exhaust-nozzle system with variable geometry enhances the aircraft performance at different engine throttle settings. Recent investigations of the effects of nozzle design on advanced jet aircraft performance have shown that nonaxisymmetric nozzles can not only meet performance requirements but also allow several valuable propulsion-system design options (refs. 1 to 4). The nonaxisymmetric nozzle geometry integrates well into multiengine airframe designs and results in low installed drag. The utilization of nonaxisymmetric nozzles also facilitates thrust vectoring and thrust reversing capabilities which improve the overall aircraft maneuverability and handling characteristics and reduce take-off and landing distances (ref. 5).

An extensive data base is needed to fully assess the isolated and integrated performance of nonaxisymmetric nozzle designs. A detailed, comprehensive data base gives insight into the appropriate use of different nonaxisymmetric nozzle geometries. A data base also provides data for test cases which are essential in the development and evaluation of computational methods for predicting isolated and installed nozzle flow fields. Internal static-pressure data from several nonaxisymmetric nozzle configurations (refs. 6 and 7) have been used to evaluate the accuracy of two-dimensional and three-dimensional computational models in predicting nozzle internal flow (refs. 8 to 10).

To expand the current nonaxisymmetric nozzle data base, an investigation has been conducted to measure pressures and forces on a wedge nozzle, one of several different generic types of nonaxisymmetric nozzles. Two wedge nozzle configurations representing two different throat areas and expansion ratios were chosen for the investigation. These two configurations were based on nozzle geometries which were tested at static conditions in an earlier experimental investigation (ref. 11). The nozzles were redesigned for wind-on testing and were also modified to include extensive pressure-orifice instrumentation. The two wedge nozzles were tested in the Langley 16-Foot Transonic Tunnel over a range of free-stream Mach numbers and nozzle pressure ratios. Static and wind-on data are presented as discharge coefficients, internal thrust ratios, thrust-minus-nozzle drag ratios, ideal thrust coefficients, and internal and external pressure distributions.

SYMBOLS

All forces and angles are referred to the model center line (body axis). Wind axes are equivalent to body axes since the angle of attack was 0° for this investigation.

- nozzle exit area, cm^2 Ae nozzle expansion ratio A_A/A_+ maximum cross-sectional area of model, cm^2 A_m cross-sectional area enclosed by seal strip at station 67.31, cm^2 Aseal nozzle throat area, cm^2 A+ a(x') function used in defining horizontal component of superellipse geometry in figures 2 and 3 constants used in evaluating a(x') in figure 2 a_n function used in defining vertical component of superellipse geometry in b(x') figures 2 and 3 b_n constants used in evaluating b(x') in figure 2 ideal isentropic gross thrust coefficient, $F_i/p_{\omega}A_m$ for static conditions C_{F,i} and $F_i/q_{m}A_m$ for wind-on conditions pressure coefficient, $(p - p_{m})/q_{m}$ C_p Df external skin-friction drag measured from metric break (station 67.31) to start of nozzle (station 139.83), positive downstream, N nozzle drag, Pressure drag + Friction drag, N Dn d maximum height of model, cm F measured thrust along body axis, N momentum tare axial force due to bellows, N ^FA, mom axial force measured by main balance, N Fbal $w_{p} \sqrt{RT_{t,j}^{2\gamma/(\gamma-1)} \left[1 - \left(\frac{p_{\infty}}{p_{t,j}}\right)^{(\gamma-1)/\gamma}\right]}, N$ ideal isentropic gross thrust, F; half-height of nozzle at start of nozzle boattail (station 141.73), cm h
- he internal height of nozzle exit, cm
- h_t height of nozzle throat, cm
- 2

- nozzle length from start of boattail (station 141.73) to end of wedge, cm
- length from start of boattail (station 141.73) to nozzle exit, cm
- ι_w length of wedge, cm
- M free-stream Mach number
- N_{Re} Reynolds number per meter
- p local static pressure, Pa
- p average static pressure at external seal at the metric break
 (station 67.31), Pa
- p, average internal static pressure, Pa
- Pt tunnel total pressure, Pa
- pt, j jet total pressure, Pa
- p_ free-stream static pressure, Pa
- q_____ free-stream dynamic pressure, Pa
- R gas constant (for $\gamma = 1.3997$), 287.3 J/kg-K
- r'(x') radius used in defining superellipse geometry in figures 2 and 3, cm

r_s radius used to define sidewall geometry in figure 5, cm

rw,1,rw,2 radii used to define wedge geometry in figure 5, cm

- r₁,r₂,r₃ radii used to define internal and external flap geometry in figure 5, cm
- Tt tunnel total temperature, K

T_{t,j} jet total temperature, K

w_i ideal mass-flow rate,
$$\left[\left(\frac{2}{\gamma+1}\right)^{\gamma/(2\gamma-2)}\sqrt{\frac{9.80665\gamma}{R}}\right]\frac{p_{t,j}A_t}{\sqrt{T}t,j}$$
, kg/sec

wp measured mass-flow rate, kg/sec

 w_p/w_i discharge coefficient

L

- x axial distance measured from start of boattail (station 141.73), positive downstream, cm
- x' axial distance measured from start of model nose, positive downstream, cm
- xe axial coordinate of nozzle exit, cm

^x f,t	axial flap coordinate at nozzle throat (see fig. 5), cm
×n	axial coordinates used to define flap geometry in figure 5, cm
×r,2'×r,	,3 axial coordinates used to define flap radius locations in figure 5, cm
×s,1	axial coordinate used to define sidewall geometry in figure 5, cm
× _{w,r}	axial coordinate used to define wedge radius in figure 5, cm
×w,t	axial wedge coordinate at nozzle throat (see fig. 5), cm
×w,0'×w,	1' ^x w,2' ^x w,3 axial coordinates used to define wedge geometry in figure 5, cm
У	vertical distance from model center line, positive up, used in coordinate system of figures 5 and 6, cm
y'(x')	vertical distance from model center line, positive up, used in coordinate system of figures 2 and 3, cm
Уb	vertical coordinate of external flap edge at nozzle exit (see fig. 5), cm
Уe	vertical coordinate of internal flap edge at nozzle exit (see fig. 5), cm
^y f,t	vertical flap coordinate at nozzle throat (see fig. 5), cm
y _n	vertical coordinates used to define flap geometry in figure 5, cm
^y r,1' ^y r,	2' ^y r,3 vertical coordinates used to define flap radius locations in figure 5, cm
Уs	vertical coordinate of sidewall external edge at end of nozzle (see fig. 5), cm
y _{w,e}	vertical wedge coordinate at nozzle exit (see fig. 5), cm
Y _{w,r}	vertical coordinate used to define wedge radius in figure 5, cm
^y w,t	vertical wedge coordinate at nozzle throat (see fig. 5), cm
Y _{w,1} ,Y _{w,}	2 vertical coordinates used to define wedge geometry in figure 5, cm
Z	lateral distance from model center line, positive to right looking upstream, used in coordinate system of figures 5 and 6, cm
z'(x')	lateral distance from model center line, positive to right looking upstream, used in coordinate system of figures 2 and 3, cm
^z s,b	lateral coordinate of external sidewall edge at nozzle exit (see fig. 5), cm
^z s,r	lateral coordinate used to define a radius to the sidewall in figure 5, cm

I

4

- z_{s,0},z_{s,1},z_{s,2} lateral coordinates used to define sidewall geometry in figure 5, cm
- α nozzle internal flap angle, deg

F

- β nozzle boattail angle measured in x-y plane in figure 5, deg
- β_s nozzle boattail angle measured in x-z plane in figure 5, deg
- $\Delta \alpha$ rotation angle to increase nozzle expansion ratio (see fig. 5), deg
- γ ratio of specific heats, 1.3997 for air
- $\eta(x')$ exponent of superellipse equation used in figures 2 and 3
- θ angle used to compute values of y'(x') and z'(x') from superellipse geometry given in figures 2 and 3, deg

APPARATUS AND METHODS

Wind Tunnel

The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel (ref. 12). This facility is a single-return, continuous-flow, atmospheric wind tunnel. The tunnel test section is octagonal with eight longitudinal slots. The wall divergence in the test section is adjusted as a function of the airstream dew point and Mach number; thus, any longitudinal static-pressure gradients in the test section are negligible. The test-section Mach number is continuously variable to a maximum of 1.30. The average Reynolds number per meter ranges from about 4.5×10^6 at a free-stream Mach number of 0.20 to about 13.0 $\times 10^6$ at a free-stream Mach number of 1.30.

Model and Support System

<u>General arrangement</u>.- The single-engine air-powered nacelle model of reference 13 was used during this experiment. A detailed sketch of the single-engine nacelle propulsion simulation system, with a nonaxisymmetric wedge nozzle installed, is presented in figure 1. As illustrated in the figure, the model was composed of five major sections: a nose-forebody, a low-pressure plenum, an instrumentation section, a transition section, and a wedge nozzle. The length and model station location of each model segment is given in the following table:

Model segment	Length, cm	Model station, cm
Nose-forebody	67.31	0.00 to 67.31
Low-pressure plenum	36.70	67.31 to 104.01
Instrumentation	18.93	104.01 to 122.94
Transition	16.89	122.94 to 139.83
Nozzle	27.32	139.83 to 167.15

The nose-forebody section was nonmetric, that is, was not attached to the strain-gage balance which was used to measure forces and moments on the model. All sections of the model downstream of the nose-forebody were attached to the balance and were therefore metric. A low-friction Du Pont Teflon seal was inserted in a slot at the metric break between the nose-forebody and the low-pressure plenum. The Teflon seal eliminates cross flow through the nonmetric-metric interface and stabilizes the variation in cavity pressure without transmitting axial force across the interface.

<u>Model support system</u>.- The single-engine nacelle model was supported in the tunnel by a sting-strut support system. Part of the support system is shown in figure 1. The nose-forebody of the model was attached to the top of the strut. The center line of the model was aligned with the test-section center line, and the center line of the sting was 55.88 cm below the test-section center line. The cross section of the sting was 5.08 by 10.16 cm; the top and bottom of the sting were capped by half-cylinders of 2.54-cm radius. The strut blade was 5 percent thick with a 50.8-cm chord in the streamwise direction and with the leading and trailing edges swept 45°. The model blockage was 0.14 percent of the test-section cross section; the maximum-blockage cross section of the model and support system was 0.19 percent.

Internal air supply.- The exhaust jet flow was simulated by airflow from a highpressure air system external to the model. A continuous flow of clean, dry, highpressure air at a stagnation temperature of about 300 K entered the high-pressure plenum in the nose-forebody through six supply lines in the support strut. The supply lines and flow directions are shown in figure 1. From the high-pressure plenum, the pressurized air was discharged perpendicular to the model axis into the lowpressure plenum through eight sonic nozzles. The sonic nozzles were equally spaced around the high-pressure plenum supply pipe. The decelerated airflow in the lowpressure plenum was diffused over the balance housing and straightened by a 79-percent open-area baffle plate. The airflow passed into the instrumentation section of the model, where stagnation temperature and pressure were measured, and then entered the transition section of the model. In the transition section, the internal cross-sectional geometry changed from circular to rectangular to provide compatible internal geometry at the nonaxisymmetric nozzle connect station. A sketch of the cross-sectional geometry at the beginning and end of the transition section is shown in figure 1. Details of the internal transition geometry are discussed later. From the transition section, the airflow was exhausted through the nonaxisymmetric nozzle.

<u>Force-balance air system.</u> As the airflow passed from the high-pressure plenum to the low-pressure plenum through the eight sonic nozzles, it was discharged radially to the model axis. Since the sonic nozzles were equally spaced in a radial direction, an opposing nozzle force was positioned to cancel each force due to jet impingement. This arrangement minimizes any forces resulting from the transfer of axial momentum as the air passes from the nonmetric to the metric part of the model. Two flexible metal bellows were used to seal the low-pressure plenum and compensate for any axial forces resulting from model pressurization.

<u>Nose-forebody external geometry</u>.- The nose-forebody section of the model allowed a smooth external transition from a circular cross section at the conical nose to a rectangular cross section with large rounded corners at the beginning of the lowpressure plenum. The maximum external cross-sectional area of 265.61 cm² occurred at the metric break. The cross-sectional area and the external geometry remained constant from the metric break to the nozzle connect station.

The external geometry of the nose-forebody section is presented in figure 2. In figure 2(a), a computer-generated sketch illustrates the basic nose-forebody geometry. The external geometry is given as a superellipse equation defined at particular horizontal stations along the model. Appropriate definitions of the components of the superellipse equation are given as functions of the horizontal variable x'. A table of the function values at particular values of x' is also included. Figure 2(b) defines the general cross-sectional geometry of the nose-forebody section and gives the relationships for calculating the cross-sectional horizontal component z'(x') and the vertical component y'(x').

<u>Transition geometry</u>.- The model low-pressure plenum internal geometry and the end of the constant-geometry instrumentation section had a circular cross section. The nonaxisymmetric wedge nozzles used in this investigation had a rectangular internal cross-sectional geometry at the nozzle connect station. A transition section was required to provide the changes in internal geometry which were necessary for matching the wedge nozzles with the propulsion simulation system. The transition section of the model provided modifications to the internal geometry which were similar to the modifications in external geometry provided by the nose-forebody section. The internal geometry of the transition section changed smoothly from a circular cross section at the beginning of transition to a rectangular cross section at the end of transition. The internal cross-sectional area remained constant throughout the transition section.

The internal geometry of the transition section is presented in figure 3. A superellipse equation is used to define the cross-sectional geometry up to model station 134.29. From station 134.29 to the end of the transition section, the internal cross section is rectangular, and the equations for calculating y'(x') and z'(x') are given. In addition to these equations, the functions which define the internal geometry for the full length of the transition section are tabulated in figure 3.

Nozzle geometry.- Two nonaxisymmetric wedge nozzle configurations representing two different power settings were tested during this investigation. The nozzle designs were based on earlier wedge nozzles described in references 11 and 13. The baseline configuration had an expansion ratio of 1.06 and is referred to as the lowexpansion-ratio nozzle. The other configuration had an expansion ratio of 1.20 and is referred to as the high-expansion-ratio nozzle. A photograph of each nozzle is shown in figure 4.

Each nozzle was made up of five components: two sidewalls, an upper and a lower flap, and a wedge centerbody. Both nozzles used the same wedge and the same sidewalls. The flaps were different, resulting in the different expansion ratios for each nozzle. Sketches and geometry details of each nozzle component are given in figure 5. In this report, the downstream end of the nozzle upper and lower flaps is referred to as the nozzle exit. (See fig. 1.) The exit for the low-expansion-ratio nozzle occurs at $x_e = 15.7820$ cm; the exit for the high-expansion-ratio nozzle occurs at $x_e = 16.0247$ cm.

The geometry for the high-expansion-ratio nozzle was constructed from the geometry for the low-expansion-ratio nozzle by rotating the flaps away from the nozzle internal center line in the x-y plane. (See fig. 5(b).) The center of rotation was at point $(x_{r,2}, y_{r,2})$. Rotating the flaps in this way increased the throat area, the exit area, and the expansion ratio. Since the nozzle sidewall geometry was held constant during this test, a triangular-shaped gap was opened between the outside edge of the trailing edge of the flap to the point (x_3, y_3) , which is upstream of the

nozzle throat. The resulting nozzle geometry is similar to the cutaway or vented sidewall concept discussed in reference 14. The effects of venting the nozzle upstream of the throat are discussed later in this report.

Instrumentation

Basic model instrumentation is shown in the sketch of figure 1. A fivecomponent strain-gage balance was used to measure the forces and moments on the model downstream of the metric break (station 67.31). A rake of 12 total-pressure probes was used to measure the jet total pressure at a fixed location in the instrumentation section of the model. An iron-constantan thermocouple was used to measure the jet total temperature in the instrumentation section.

Each nozzle configuration was instrumented with 14 rows of static-pressure orifices which are shown in figure 6. Rows 1 to 3 were located on the internal side of the top flap; rows 4 and 5 were located on the outside of the top flap; rows 6 to 8 were located on the outside of the right sidewall; row 9 was on the inside of the left sidewall; rows 10 to 14 were along the top of the wedge. Tables which define the exact coordinates of each orifice are also given in figure 6.

Tests

The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel at wind-off conditions and at free-stream Mach numbers from 0.60 to 1.20. The model angle of attack was held constant at 0° throughout the investigation. The nozzle pressure ratio was varied from jet-off to a maximum which depended on Mach number, configuration, and model-facility airflow limits. The basic data were taken by holding the Mach number fixed and varying the nozzle pressure ratio. The Reynolds number per meter, the average tunnel total temperature, the average tunnel total pressure, and the average jet total temperature at each Mach number are given in the following table:

M _w	T _t , K	p _t , kPa	^T t,j, ^K	N _{Re}
0.60	316.97	101.28	297.44	10.60×10^{6}
.80	325.44	101.22	296.96	12.19
.90	328.80	101.22	299.34	12.67
.94	328.51	101.22	300.34	12.89
1.20	339.03	101.04	300.20	12.92

Boundary-layer transition on the model was fixed by using a grit transition-strip procedure (ref. 15). A 0.254-cm-wide strip of No. 100 grit was attached around the nose of the model at 2.54 cm from the nose tip. The same grit size and location were used for both nozzle configurations.

Data Reduction

All wind-tunnel parameters and model data were recorded simultaneously on magnetic tape. Averaged values of the data measurements were used to compute basic nozzle performance parameters and nondimensionalized pressure coefficients or ratios. The basic measurement used in evaluating isolated nozzle performance is thrust minus nozzle drag measured along the body axis of the model. This parameter was derived from the balance axial-force measurements using the following relationship:

$$F - D_n = F_{bal} + (\bar{p}_e - p_{\omega})(A_m - A_{seal}) + (\bar{p}_i - p_{\omega})A_{seal} + D_f - F_{A,mom}$$

The term F_{bal} includes all internal and external forces on the balance. The second term $(\bar{p}_{es} - p_{\omega})(A_m - A_{seal})$ represents pressure force due to the forward seal at the metric break (station 67.31). The third term $(\bar{p}_i - p_{\omega})A_{seal}$ represents interior pressure forces. The term D_f is the calculated external skin friction on the constant cross-section part of the model from the metric break to the start of the nozzle (station 139.83). The term $F_{A,mom}$ is a momentum tare correction and is a function of the average bellows internal pressure with the model jet operating. Although the bellows were designed to minimize momentum and pressurization tares, small bellows tares still exist when the jet is operating. These tares result from small differences in the upstream and downstream bellows spring constants when the bellows are pressurized and also from small pressure differences between the ends of the bellows when internal flow velocities are high.

Procedures for calibrating and correcting these bellows tares are discussed in detail in references 11 and 16. To simulate realistic test conditions, a series of axisymmetric calibration nozzles with known performance were tested over the expected test range of normal-force and pitching-moment loadings. The calibration tests were performed wind-off, with and without external loadings on the model, and with and without jet exhaust flow. The resulting corrections were then applied to the balance data by a procedure similar to the main balance data-reduction algorithm of reference 16.

RESULTS AND DISCUSSION

Basic Data

Basic data for evaluating the isolated performance of the two wedge nozzles are presented in figures 7 to 10. The ideal thrust coefficient $C_{F,i}$ presented in figure 10 can be combined with the normalized thrust data in figures 7 and 9 to obtain the measured thrust and thrust-minus-drag levels.

The static-force data in figure 7 show trends similar to those of static-force data presented in reference 11 for two wedge nozzles with expansion ratios identical to those of the current test. The wind-on thrust-minus-nozzle drag ratios in figure 9 show trends and levels similar to earlier thrust-minus-nozzle drag data presented in reference 11 for wedge nozzle configurations. In general, thrust-minus-nozzle drag ratio decreases as the free-stream Mach number increases. The decrease in $(F - D_n)/F_i$ with increasing Mach number results from an increase in nozzle drag on the external surface with increasing Mach number. In addition, at a constant nozzle pressure ratio, the nozzle drag term D_n of $(F - D_n)/F_i$ becomes a higher percentage of ideal thrust as Mach number increases, resulting in a decrease in the thrust-minus-nozzle drag ratio.

The data in figure 7 indicate that the thrust-ratio data of the high-expansionratio nozzle fall below the thrust-ratio data of the low-expansion-ratio nozzle over the range of nozzle pressure ratios tested at static conditions ($M_m = 0$). Similar results are shown by data in references 11, 13, and 14 for several nonaxisymmetric nozzle configurations at static conditions. This decrease in thrust ratio with increased expansion ratio indicates that a performance loss may result from the changes in nozzle geometry. In this investigation, additional performance losses for the high-expansion-ratio configuration may be due to the vent or gap between the nozzle flap and sidewall which extends upstream of the nozzle throat.

The static-discharge-coefficient (w_n/w_i) data presented in figure 7 show levels which are similar to discharge-coefficient levels for several wedge-type nozzles in reference 14. In general, the value of discharge coefficient is greater than one at unchoked flow conditions $(p_{t,j}/p_{\infty} < 1.89)$ and less than one at choked flow conditions $(p_{t,j}/p_{\infty} > 1.89)$. However, in figure 8 the wind-on discharge-coefficient levels for the low-expansion-ratio nozzle are higher than discharge-coefficient levels presented in reference 13 for a similar wedge nozzle. At wind-on conditions, both configurations in this investigation had values of discharge coefficient which were greater than one at choked flow conditions. Reference 14 discusses the phenomenon of highdischarge-coefficient data ($w_n/w_i > 1.0$) at choked flow conditions for wedge nozzle configurations. It is extremely difficult to determine the actual throat area of nonaxisymmetric wedge-type nozzles. The numerator of discharge coefficient, the wn-term, is computed strictly from data measurements; its value reflects the actual flow-field conditions and nozzle throat area. The denominator of discharge coefficient, the w_i-term, is computed using a fixed value of throat area, the nozzle throat area as designed and, therefore, may include some error that varies with flow conditions. This error in throat area can result in values of discharge coefficient greater than 1, as reference 14 shows for several wedge nozzle configurations. Thus, the high magnitude of the wedge nozzle discharge coefficients presented in figures 7 and 8 apparently results from unrecorded variations in nozzle throat area corresponding to changes in the internal flow field with varying nozzle pressure ratio and free-stream Mach number.

Static-Pressure Data

Extensive static-pressure measurements were made on both nozzle configurations. Selected cases of pressure distributions are presented in figures 11 to 28. Complete listings of all static-pressure data are given in tables 1 to 14 for the low-expansion-ratio nozzle and in tables 15 to 28 for the high-expansion-ratio nozzle. All data are presented as functions of x/d, where x is the distance from the start of the nozzle boattail (station 141.73) and d is the maximum nozzle height. (See fig. 5(a).) Internal static-pressure data are presented as values of $p/p_{t,j}$, the measured local static pressure nondimensionalized by the measured jet total pressure. Static pressures measured along the wedge surface are also presented as the ratios $p/p_{t,j}$. External static-pressure data are presented as values of pressure coefficient $C_{\rm p}$.

Comparisons of static-pressure distributions are made at different spanwise locations to determine two-dimensional or three-dimensional characteristics in the nozzle flow field. In figure 11, pressures from the five rows of static-pressure orifices on the surface of the wedge are plotted against x/d for the low-expansionratio nozzle. Three values of nozzle pressure ratio $p_{t,j}/p_{\infty}$ are presented for a Mach number of 0.60 and for a Mach number of 1.20. In each case of figure 11(a), at $M_{\infty} = 0.60$, the static pressures upstream of the nozzle exit, defined as the end of the nozzle flap in figure 1, show little variation with spanwise location. This lack of variation indicates that the internal flow field near the wedge surface is twodimensional. At $p_{t,j}/p_{\infty} = 2.0$ and $M_{\infty} = 0.60$, there is a sharp increase in static

pressure at the nozzle exit. Downstream of the exit, the static pressure becomes nearly constant. The sharp increase in wedge static pressure near the exit is probably due to a strong shock wave occurring on the surface of the wedge in the nozzle exhaust flow. The near-constant static pressures downstream of the pressure increase indicate that the exhaust flow on the wedge is separated downstream of the shock wave. Similar flow-field characteristics were also observed for wind-off wedge static-pressure distributions presented in reference 6 for a wedge-type nozzle with a low expansion ratio ($A_e/A_t = 1.05$). At the higher values of nozzle pressure ratio presented in figure 11(a), the shock wave moves downstream and becomes weaker in strength. The static-pressure distributions in the separated flow region downstream of the shock show more spanwise variation for these two nozzle pressure ratios.

Į,

The three cases of static-pressure distributions at $M_{\infty} = 1.20$ in figure 11(b) show basically the same flow-field characteristics as observed at $M_{\infty} = 0.60$. Upstream of the nozzle exit, the static pressures show no variation with spanwise location and, in fact, show no effect of increasing the free-stream Mach number. (Compare fig. 11(a) with fig. 11(b).) An increase in the wedge static pressures occurs downstream of the nozzle exit (x/d = 1.00), which may indicate that a shock occurs on the wedge surface. The point of increase in static pressure, that is, the shock location, moves downstream as the nozzle pressure ratio increases. Jet exhaust flow separation from the wedge surface occurs downstream of the shock. The wedge static-pressure distributions show some spanwise variation in the separated flow region. The change in free-stream Mach number from 0.60 to 1.20 mainly affects the location of the shock wave and subsequent flow separation.

In summary, the static-pressure distributions of figure 11 show that the flow along the surface of the wedge of the low-expansion-ratio nozzle is two-dimensional upstream of the nozzle exit. A shock occurs on the wedge surface downstream of the nozzle exit, followed by flow separation from the surface of the wedge. The location of the shock and subsequent flow separation depends primarily on the nozzle pressure ratio and, to a lesser extent, on the free-stream Mach number. Similar characteristics of static-pressure distributions along a wedge surface are presented in reference 6 at wind-off conditions, with values of nozzle pressure ratio up to 6.00. The data of reference 6 also include oil-flow photographs of the wedge surface downstream of the nozzle exit. These photographs clearly show the downstream movement of the jet exhaust shock on the wedge and subsequent flow separation with increasing nozzle pressure ratio.

Figure 12 presents wedge static-pressure distributions for the high-expansionratio nozzle. Three cases of nozzle pressure ratio are presented for $M_{\infty} = 0.60$ in figure 12(a) and for $M_{\infty} = 1.20$ in figure 12(b). The same trends observed for the low-expansion-ratio nozzle also occur in these pressure distributions. A shock occurs downstream of the nozzle exit (x/d = 1.02) followed by flow separation from the wedge surface. The static pressures downstream of the shock show variation with spanwise location. However, for this nozzle, spanwise variation in the staticpressure data occurs as far upstream of the nozzle exit as x/d = 0.90. These threedimensional effects upstream of the nozzle exit may result from the higher expansion ratio ($A_e/A_t = 1.20$) of this configuration. The vent in the sidewall, which extends upstream of the nozzle throat, may also contribute three-dimensional effects to the nozzle internal flow.

Static-pressure distributions along the internal surface of the top flap are presented in figure 13 for the low-expansion-ratio nozzle and in figure 14 for the high-expansion-ratio nozzle. Two values of nozzle pressure ratio are shown at $M_{\infty} = 0.60$ and at $M_{\infty} = 1.20$. The lack of spanwise variation in the pressure dis-

tributions shown in figure 13 indicates that the internal flow is two-dimensional for the low-expansion-ratio nozzle. However, the internal pressures for the highexpansion-ratio nozzle (fig. 14) show spanwise variation, particularly at the flap edge near the sidewall. The variation is more pronounced for $p_{t,j}/p_{\infty} = 5.06$ at $M_{\infty} = 0.60$ and for $p_{t,j}/p_{\infty} = 7.99$ at $M_{\infty} = 1.20$. Free-stream Mach number has only a small effect on the spanwise variation. The throat of the high-expansion-ratio nozzle is, by design, located at x/d = 0.82, whereas the three-dimensional effect can be seen as far forward as x/d = 0.76. This spanwise variation in static pressure near the edge of the flap is probably caused by the gap or vent between the flap and sidewall for the high-expansion-ratio nozzle. This vent probably caused the similar three-dimensional characteristics upstream of the nozzle exit (x/d = 1.02), which were observed in the static-pressure distributions along the surface of the wedge for this configuration. Internal static-pressure distributions on the nozzle flap presented in reference 14 for similar nozzle configurations without vented sidewalls showed no three-dimensional effects. Thus, the three-dimensional characteristics of the internal flow of the high-expansion-ratio nozzle of this investigation may be attributed to the vent between the flap and sidewall. The three-dimensional effects upstream of the throat of the high-expansion-ratio nozzle probably correspond to the extension of the gap or vent to a point upstream of the nozzle throat.

External static pressures along the top of the flap and along the outside of the right sidewall are presented for the low-expansion-ratio nozzle in figure 15. The same results for the high-expansion-ratio nozzle are given in figure 16. Row 8, the outside corner row, is included with both the top flap data (rows 4 and 5) and with the sidewall data (rows 6 and 7).

The static pressures along rows 4 and 5 on the top flap for both nozzle configurations show only small spanwise variation in static pressure at $M_{\infty} = 0.60$. At supersonic conditions, $M_{\infty} = 1.20$, the high-expansion-ratio nozzle continues this trend, whereas the low-expansion-ratio nozzle shows spanwise variation in static pressures on the aft portion of the nozzle (x/d ≥ 0.80). When compared with the top flap data, the static-pressure data of row 8 show close spanwise agreement upstream of x/d = 0.10 for both nozzle configurations at all test conditions. However, as the value of x/d increases, there is considerable variation between the corner-row static pressures and the top-flap static pressures.

In figure 15, the sidewall external static-pressure distributions along rows 6 and 7 for the low-expansion-ratio nozzle show spanwise variation downstream of x/d = 0.50 at all test conditions. The sidewall static pressures for the highexpansion-ratio nozzle show only small spanwise variation at $M_{c} = 0.60$ but show the same type of variation observed for the low-expansion-ratio nozzle at $M_{c} = 1.20$. Comparisons of the corner-row static-pressure distributions with those of rows 6 and 7 show the same trends observed in the comparisons of the corner row with the flap rows. The static pressures of rows 6, 7, and 8 generally agree upstream of x/d = 0.10 but show considerable spanwise variation downstream of this point.

In general, the top-flap and sidewall static-pressure data indicate that the external flow starts out nearly two-dimensional near the nozzle boattail since the static-pressure data show good spanwise agreement upstream of x/d = 0.10. As the value of x/d increases, however, regions of three-dimensional flow occur in the external flow field. The three-dimensional effects probably initiate from the outside corner region.

Since the spanwise variation in the static-pressure data has been discussed for figures 11 to 16, the subsequent data plots will deal only with center-line pressure profiles. The effect of nozzle pressure ratio on the wedge center-line static-pressure distribution is presented in figure 17 for the low-expansion-ratio nozzle and in figure 18 for the high-expansion-ratio nozzle. In general, for all five values of free-stream Mach number, the nozzle pressure ratio affects the location of the exhaust-flow shock and attendant flow separation on the wedge surface. As nozzle pressure ratio increases, the exhaust-flow shock location and separation region move downstream from the nozzle exit (x/d = 1.0 for the low-expansion-ratio nozzle and x/d = 1.02 for the high-expansion-ratio nozzle). A similar effect of nozzle pressure ratio on a wedge center-line static-pressure distribution can be observed in the static-pressure data plots and oil-flow photographs of reference 6.

国家も

The effect of free-stream Mach number on the wedge center-line static pressures is presented in figures 19 and 20 for two values of nozzle pressure ratio, 2.00 and 6.00. Figure 19 shows the Mach number effects on the low-expansion-ratio nozzle, and figure 20 shows the effects on the high-expansion-ratio nozzle. Free-stream Mach number variation affects the static-pressure distributions only in the separated flow regions on the wedge which occur downstream of the exhaust-flow shock wave. The effect of Mach number is more evident at the lower nozzle pressure ratio $(p_{t,j}/p_{\infty} = 2.00)$ shown in figures 19 and 20 since flow separation is more extensive at this nozzle pressure ratio. At a nozzle pressure ratio equal to 2.00, the nozzle is operating overexpanded. The jet exhaust flow shocks down and separates from the surface of the wedge at or near the nozzle exit. At the higher pressure ratio shown in figures 19 and 20, the flow remains attached along most of the wedge surface and there is little variation with Mach number.

Figure 21 presents the effects of free-stream Mach number on the internal flap center-line static pressures for the low-expansion-ratio nozzle. The corresponding data for the high-expansion-ratio nozzle are presented in figure 22. Two nozzle pressure ratios, 2.00 and 6.00, are presented in each figure. The internal flow along the flap center line is two-dimensional, and the pressure distributions indicate that there is no effect of Mach number on the nozzle center-line internal flow.

Figures 23 to 28 examine the effects of nozzle pressure ratio and free-stream Mach number on the external flow along the flap center line and along the sidewall center line. Figures 23 and 24 show the effects of nozzle pressure ratio on external static-pressure distributions at five free-stream Mach numbers for the low-expansionratio nozzle. Figures 25 and 26 show similar comparisons for the high-expansionratio nozzle. For both nozzle configurations, the flap static pressures generally decrease with initial increases in nozzle pressure ratio; further increases in nozzle pressure ratio generally increase the flap static pressures. Although the pressure distributions along the sidewall and upstream of the nozzle exit were not as sensitive to varying nozzle pressure ratio, they generally show the same trends as the flap data. Downstream of the nozzle exit, the sidewall static pressures generally tend to decrease as the nozzle pressure ratio increases, particularly at subsonic Mach numbers. The high-expansion-ratio nozzle exhibits more variation in sidewall static-pressure distributions with nozzle pressure ratio than does the low-expansion-This larger variation in the static pressures with nozzle pressure ratio nozzle. ratio is probably due to the vented sidewall geometry and to the higher expansion ratio and resulting larger flap angle α . (See fig. 5(b).)

The effect of varying the free-stream Mach number on the center-line flap and sidewall static-pressure distributions at a nozzle pressure ratio of 4.00 is presented in figure 27 for the low-expansion-ratio nozzle. Similar data are presented in figure 28 for the high-expansion-ratio nozzle. Both configurations show the same general results. Along the nozzle flap and - to a lesser extent - along the nozzle sidewall, the location of maximum flow expansion, indicated by the minimum pressure coefficient, tends to move downstream with increasing free-stream Mach number. The extent of pressure recovery on the downstream part of each surface also tends to decrease with increasing free-stream Mach number. 1

CONCLUDING REMARKS

An experiment has been conducted in the Langley 16-Foot Transonic Tunnel to determine the static and wind-on performance of two nonaxisymmetric wedge nozzles. This experiment continued efforts to compile a detailed and comprehensive data base on nonaxisymmetric nozzles. The nozzle geometries represented two different nozzle throat areas and expansion ratios. Tests were conducted at wind-off conditions and at free-stream Mach numbers of 0.60, 0.80, 0.90, 0.94, and 1.20. The range of nozzle pressure ratios varied with nozzle geometry and Mach number. Data are presented as discharge coefficients, internal thrust ratios, thrust-minus-nozzle drag ratios, ideal thrust coefficients, and internal and external static-pressure distributions.

The static-pressure data were analyzed to determine characteristics of the nozzle internal and external flow fields. The internal flow upstream of the nozzle exit is predominantly two-dimensional for the low-expansion-ratio nozzle. The internal flow field of the high-expansion-ratio nozzle exhibits three-dimensional effects due to the sidewall geometry, which had a gap or vent that extended upstream of the nozzle throat. The external flow field is predominantly two-dimensional for both wedge nozzles, except near the outside corners where the flow shows three-dimensional characteristics. In the jet region on the wedge, the flow for both nozzles is characterized by a shock wave occurring at or downstream of the nozzle exit and generally followed by flow separation from the surface of the wedge.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 August 2, 1982

REFERENCES

- Capone, Francis J.: Summary of Propulsive-Lift Research in the Langley 16-Ft. Transonic Tunnel. J. Aircr., vol. 13, no. 10, Oct. 1976, pp. 803-808.
- 2. Hiley, P. E.; Wallace, H. W.; and Booz, D. E.: Nonaxisymmetric Nozzles Installed in Advanced Fighter Aircraft. J. Aircr., vol. 13, no. 12, Dec. 1976, pp. 1000-1006.
- 3. Berrier, Bobby L.; Palcza, J. Lawrence; and Richey, G. Keith: Nonaxisymmetric Nozzle Technology Program - An Overview. AIAA Paper 77-1225, Aug. 1977.
- 4. Capone, Francis J.: The Nonaxisymmetric Nozzle It Is for Real. AIAA Paper 79-1810, Aug. 1979.
- 5. Capone, Francis J.; and Maiden, Donald L.: Performance of Twin Two-Dimensional Wedge Nozzles Including Thrust Vectoring and Reversing Effects at Speeds up to Mach 2.20. NASA TN D-8449, 1977.
- Carson, George T., Jr.; and Mason, Mary L.: Experimental and Analytical Investigation of a Nonaxisymmetric Wedge Nozzle at Static Conditions. NASA TP-1188, 1978.
- 7. Mason, Mary L.; Putnam, Lawrence E.; and Re, Richard J.: The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions. NASA TP-1704, 1980.
- 8. Swanson, R. C.: Navier-Stokes Solutions for Nonaxisymmetric Nozzle Flows. AIAA-81-1217, June 1981.
- 9. Cline, Michael C.; and Wilmoth, Richard G.: Computation of High Reynolds Number Internal/External Flows. AIAA-81-1194, June 1981.
- 10. Thomas, P. D.: Numerical Method for Predicting Flow Characteristics and Performance of Nonaxisymmetric Nozzles. Part 2 - Applications. NASA CR-3264, 1980.
- 11. Capone, Francis J.: Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles With Vectoring and Reversing Capability. NASA TP-1224, 1978.
- 12. Corson, Blake W., Jr.; Runckel, Jack F.; and Igoe, William B.: Calibration of the Langley 16-Foot Transonic Tunnel With Test Section Air Removal. NASA TR R-423, 1974.
- 13. Maiden, Donald L.: Performance of an Isolated Two-Dimensional Variable-Geometry Wedge Nozzle With Translating Shroud and Collapsing Wedge at Speeds up to Mach 2.01. NASA TN D-7906, 1975.
- 14. Berrier, Bobby L.; and Re, Richard J.: Effect of Several Geometric Parameters on the Static Internal Performance of Three Nonaxisymmetric Nozzle Concepts. NASA TP-1468, 1979.

15. Braslow, Albert L.; Hicks, Raymond M.; and Harris, Roy V., Jr.: Use of Grit-Type Boundary-Layer-Transition Trips on Wind-Tunnel Models. NASA TN D-3579, 1966. i

16. Capone, Francis J.: Aeropropulsive Characteristics of Twin Nonaxisymmetric Vectoring Nozzles Installed With Forward-Swept and Aft-Swept Wings. NASA TP-1778, 1981.

м	^p t,j	p/p _{t,j} for x/d of -								
"œ	P _∞	0.300	0.450	0.550	0.650	0.750	0.800	0.875	0.927	0.975
0.000	1,51	,972	.970	.965	.943	.856	.799	.673	. 563	.606
000	1 99	972	.971	965	943	856	800	.673	553	465
000	3,00	,972	.971	964	942	855	798	.672	.552	468
000	4.01	.973	.971	964	943	854	798	.671	551	470
000	4,99	,975	.973	966	945	855	799	.671	550	471
000	6.00	. 978	.975	968	948	856	800	.671	550	473
000	6,63	985	.979	.972	951	858	802	672	.551	475
.60S	1.49	,970	.967	.963	944	862	808	702	641	664
600	1,99	.969	.967	.963	941	856	798	674	.554	464
601	3,00	97 0	.969	963	941	855	798	.673	553	466
601	3,99	,971	.970	.963	941	854	798	.672	552	468
602	5,99	975	.972	965	944	854	798	.671	550	471
601	8,00	,979	.976	969	948	856	800	.671	550	474
802	1,52	•96B	.968	965	947	867	813	713	655	675
800	1,98	.972	.969	.964	943	857	799	675	555	465
800	2,99	,972	.970	.964	942	850	799	.675	555	465
801	3,99	.971	.970	963	942	855	798	673	553	467
800	5,99	.972	.971	964	943	854	798	671	551	470
,800	8.02	,976	.973	.966	946	855	799	671	550	472
.800	9 84	•980	.977	.970	95 0	.857	801	672	551	474
,901	1,50	•970	.960	,962	947	.804	,808	700	630	653
901	1,97	, 968	,966	.962	.943	,856	,797	.673	552	466
,901	5,99	97 0	.969	.963	.942	.856	,799	674	553	465
,901	4.02	•971	.970	.963	.942	.856	,799	673	553	.467
901	5,99	.973	.971	.964	.943	.855	,798	.672	551	.469
.899	8.01	,975	.973	.966	.945	.855	,798	. 671	.550	.471
.899	9,99	.978	.975	, 968	. 94A	<u>856</u>	8 00	,671	.550	,473
,940	1.49	.964	.965	.958	.947	.861	.803	.690	605	.623
940	5,00	,970	•967	.961	.944	.857	,796	.673	.553	.465
.940	5,98	.971	97 0	.903	.943	.857	. 798 .	.674	554	.466
.938	4.01	• 971	.971	.963	.942	. 856	,798	.673	\$53	.466
.941	6,00	.972	•971	•963	.943	854	798	• 672	.551	.469
941	8.02	.975	.972	. 965	.945	. 855	,798	.671	.550	,471
.940	9,95	,978	.975	. 968	947	• ⁸⁵⁶	,799	.671	.550	.473
1,202	1,50	.972	•967	,958	.951	.863	.800	.688	.587	578
1,200	5.00	,968	•966	.959	.947	.859	,795	.674	.553	.463
1,201	5,99	.971	.969	.961	.945	.858	,797	.674	.553	465
1,200	4.01	,970	•970	.962	.943	.857	,797	.673	.553	,465
1,201	5,99	,972	.971	.963	.943	,856	,798	.673	.552	.467
1,202	7,99	.972	.972	.953	.943	.855	,798	.675	.551	.469
1,200	9,99	.975	,973	.965	.945	.855	,798	.672	.550	471

and the second second

RATIO NOZZLE, ROW 2

м	Pt,j	p/p _t ,j for x/d of -				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathbf{P}_{\mathbf{\infty}}$	0.750	0.927			
0,000	1,51	.851	.572			
.000	1,99	,850	.559			
.000	3,00	,848	,558			
<b>,</b> 000	4.01	•848	.557			
000	4,99	.849	,556			
.000	6,00	.852	,556			
.000	6,63	.855	•557			
200.	1.49	.859	•644			
.600	1,99	.850	•560			
_601	3,00	.648	•558			
.601	3,99	•848	•557			
-005	5,99	.849	.550			
.601	8,00	.853	,556			
.802	1.52	.862	.657			
. 800	1,98	.851	,559			
.800	2,99	+849	•559			
.801	3.99	-848	•558			
.800	5,99	.848	.550			
<b>.</b> 800	8.02	•050 650	•550			
.800	4.84	*054	* 55/			
.901	1.50	.024	+634			
.901	1,97	ູຍາຍ ອາຊ	• 7 7 0			
901	/ 03	+04F	• <u>5</u> 5 7 7			
	5 00	,047 8/17	+ 2 2 0			
809	3.77 A 01	+047 - 8/10	1007			
899	0 00	852	656			
940	1.49	.857	• 5 5 G			
940	2.00	-850	559			
940	2.98	. 848	559			
938	4.01	.847	558			
941	6.00	847	557			
941	8.02	849	556			
940	9.95	851	.556			
1.202	1.50	.856	591			
1.200	2.00	.850	558			
1,201	2,99	849	.559			
1,200	4.01	.847	,559			
1.201	5,99	.847	•558			
1.202	7.99	.847	.556			
1,200	9.99	. 848	.556			

ः भ्रित्त

NOZZLE, ROW 3

M	^p t,j	p/pt,j	for x/	d of -	
8	P _∞	0.750	0.927	1.002	
0.000	1.51	.857	.575	.659	
000	1,99	857	552	497	
.000	3,00	329	.550	329	
000	4.01	.246	549	246	
000	4.99	,198	548	198	
000	6,00	,105	548	165	
000	6.63	149	549	149	
605	1.49	864	643	678	
.600	1,99	857	554	498	
601	3.00	. 334	.551	334	
601	3,99	.255	.550	255	
602	5,99	<b>,</b> 172	.548	172	
601	8,00	128	.548	128	
805	1,52	.868	.656	677	
800	1,98	859	,555	507	
.800	2,99	.342	.553	.342	
.801	3,99	.202	.551	.262	
800	5,99	.176	.549	176	
.800	8.02	<b>13</b> 0	.548	.130	
800	9.84	,106	•548	.106	
901	1,50	.864	.637	669	
901	1,97	. 857	•555	<b>49</b> 8	
,901	2,99	.335	,553	.335	
901	4.02	.255	.551	255	
901	5,99	,174	.549	174	
899	8.01	,131	.548	131	
899	9,99	,105	.548	,105	
940	1,49	,862	<b>51</b> 0,	.650	
940	2.00	<b>.</b> 858	.556	.475	
,940	5,98	.321	.554	.321	
,938	4.01	,243	<b>1</b> 552	,243	
941	6,00	.165	.549	,165	
.941	8,02	.127	.549	.127	
.940	9,95	.103	.548	.103	
1,202	1,50	.861	,591	.469	
1,200	5.00	,270	.559	.270	
1.201	2,99	•593	.555	.263	
1,200	4.01	\$258	.554	\$55	
1,201	5,99	<b>.</b> 151	•551	.151	
1,202	7,99	.115	.550	<b>1</b> 15	
1.200	4,99	.093	.549	.093	

Sand States

м	Pt,j					C _p for	x/d of -	<u> </u>			
1100	P _∞	-0.100	0.000	0.100	0.150	0.200	0.250	0.300	0.400	0.450	0.500
0,000	1,51	.003	.002	.002	.002	.001	.005	.002	.002	.002	.002
<u>,</u> 000	1,99	.001	•000	.000	.000	.000	<b>₽</b> ,000	.000	,000	.001	*001
.000	3.00	.001	.000	000	<b>-</b> ,000	•000	000	000	,000	.000	-,000
•000	4.01	001	000	<b>−</b> •001	-,000	+,001	<b>⇒</b> •001	-,000	- 000	-,001	-,000
<u>000</u>	4,99	+001	<b>⊸</b> •000	-,000	-,001	<b>m</b> ,001	- 000	-,000	001	001	000
.000	6,00	.000	-,000		=,001	••001	-,001	-,001	=_001	-,000	-,000
000	6.65	.000	<b>•</b> •000	001	001	= 001	-,001	<b>#</b> ,001	001	=.001	=,001
.605	1.49	•,188	•.288	- 434	= 451	=_447	=,437	-,406	= 347	<b>*</b> ,248	-,186
.600	1,99	= <u>+</u> 196	278	-430	<b>*</b> ,454	- 453	-,440	- 407	- 355	- 264	=,209
.601	3.00	• 187	· 279	= 427	= 439	- 457	= 443	=,422	- 354	= 257	=,199
.601	3,99	= 187	*,285	= 457	• 452	<b>=</b> ,451	-,435	<b>-</b> ,400	- 342	-,241	=,189
,602	5.99	=,182	* 272	418	= 436	<b>≠</b> ,452	413	*,385	- 319	=,21.5	=,156
.601	8.00	= 185	= . 265	- 411	- 425	=,451	415	- 370	+,296	<b>=</b> _180	=,121
-802	1,52	<b>#1</b> 98	****	⇒.518	= 570	-,586	· <b>-</b> ,579	- 487	- 398	- 506	=,227
.800	1.48	<b>#19</b> 8	-,297	- 525	=,578	=,59/	•,5/7	<b>-</b> ,497	- 416	=.515	=,237
.800	2.99	*,202	=.299	-,552	· •••591	<b>*</b> •011	-,206		= 408	-,507	=,250
	5.00	• 197	##20/	· · · · · · · · · ·	-,556		<b>#1</b> 205	· •••480	- 395	- 2/0	• 198
.000		- 196	- 37/	` <b>≈</b> ∎40↓ ///⊐		₩ ₀ ,340	······································	# • 4 3 4	• 546		= 100
• 800 • 800	0,02	- 103	· • • £ / 4	i = • 442	- 49A	<b>₩</b> ₩3V6	••••	<b>₩</b> 8402	- 309	• 103	
• <b>6</b> 00	7,04	- 157			••••404	- 676	••••	<b>*</b> •304	-,260	•••13¢	· 107
• 7 U L	1,70	- 164	* 1 1 9 0 - 1 0 F	=+,50/ Z//1	• 404	- 505	- 50/A	# • 301	- 273		• 142
• 701	2 00	- 166	- 208	• • <u>•</u> 341	= 427 = 414	- 500	- 500	* <u>305</u>	- 300	- 345	- 220
• 701 961	1 02	- 156	- 198	- 138	- //12	- 496	- 624	# • 4 1 / - 401	=,320	- 260	- 228
• 7 V I 0 A 1	5 00	- 167	- 220	= 320 _ 301	- 416	- 5/12	- 610	- Z//1	= 320 35%	- 204	- 173
800	9,77	- 151	- 20U	- 340	- 475	- 510	- 536	= 341	- 202	- 150	- 126
8077 800	0.00	- 1/19	- 200	- 770	- //21	- 526	- 522	- 230	- 158	- 126	- 108
•077 0/10	1 /10	- 130	- 157	- 246	- 320	= <u>4</u> 12	- 506	- 372			- 520
940	2.00	. 121	- 151	- 240	- 321	- 405	- 486	- 411	- 314	- 252	
940	2.98	= 129		- 259	- 440	= 418	- 530	- 543	- 030		- 283
918	4.01	= 125	- 161	- 251	- 337	- 418	- 512	- 540	- 424	- 342	
9/41	6.00	<b>a</b> ,126	= 157	- 258	- 348	- 412	- 504	- 521	- 197	- 308	
941	8.02	= 119		- 254	- 335	- 417	- 516	- 400	- 303	- 240	=.207
940	9.95	- 123	+ 155	- 261	- 343	- 420	- 496		- 221	- 190	= 165
1 202	1.50	- 045	<b>.</b>	- 182	• 220	- 249	- 563	- 418	- 469	509	- 525
1.200	2.00	- 147	- 050	- 182	- 222	.256	- 560	. 421	- 463	- 488	- 502
1.201	2.99	- 044	- 059	- 182	- 217	245	- 360	- 419	- 443	- 482	- 505
1,200	4_01	039	- 056	- 174	= 216	- 240	- 358	- 417	- 4/2	- 484	- 506
1.201	5 99	•.037	.053	- 149	= 198	- 239	- 350	- 415	. /125	- 460	- 400
1.202	7 99	- 036	048	- 129	- 177	- 219	- 337	- 418	- 436	- 365	- 310
1.200	9 99	- 0 57	- 047	- 119	- 165	- 210	- 318	- 416	- 405	- 327	- 276
	•		. <del>-</del> '	•	• • • • •				• • • • •		

TABLE 4.- PRESSURE COEFFICIENTS FOR LOW-EXPANSION-RATIO NOZZLE, ROW 4

F

TABLE 4.- Concluded

······································	P _{t,j}		C _p	for x/d	of -	
Μœ	₽∞	0.550	0.600	0.800	0.900	1.002
0.000	1,51	.002	.002	.002	.001	- 006
0.000	1.99	.000	.000	.000	000	010
0,000	3,00	÷,000	<b>⇒</b> .000	000	- 001	- 011
0,000	4.01	001	•.001	001	- 001	010
0.000	4,99	-,000	<b>-</b> .000	= 001	• 001	-010
0.000	6,00	<b>⇒,</b> 001	001	-,001	- 003	-010
0.000	6.63	-,001	001	001	001	-010
.602	1,49	-,122	067	072	.104	.101
.600	1,99	-,150	-105	.033	053	.057
.601	3,00	-,145	<b>=</b> .105	.028	055	.063
.601	3,99	-,131	-,188	.052	.082	107
.605	5,99	-,096	042	103	133	158
.601	8.00	••967	••014	.129	154	.176
802	1,52	-,160	107	018	060	114
<b>_8</b> 00	1.98	=.164	106	.035	057	.094
800	2,99	-,158	103	017	054	090
801	3,99	130	080	.053	076	115
800	5,99	091	= 041	687	109	141
800	8,02	045	-,003	.081	105	150
800	9,84	-,016	.014	092	.107	159
901	1,50	-,175	-,157	- 113	084	025
901	1,97	-,190	=,179	- 127	-,101	015
901	2,99	-,207	-,192	- 127	- 084	011
,901	4.02	-,203	182	151	- 088	.012
,901	5,99	-,149	135	076	- 047	.028
899	8,01	-,108	-,096	<b>•</b> .049	- 022	.043
899	9,99	-,083	067	-,033	- 005	.062
,940	1,49	-,202	=.197	-,167	•,155	- 046
,940	5.00	-,205	- 195	-,190	+,181	-,001
.940	2,98	<b>-</b> ,247	-,223	-,187	-,167	061
.938	4.01	=,247	+,229	-,187	-,168	-,051
.941	6,00	•,232	- 206	-,167	=,139	-,064
.941	8.02	-,191	<b>~</b> •184	<b>-</b> ,153	-,120	<b>.</b> 054
940	9,95	-,153	-144	=,129	-,100	032
1,202	1.50	-,530	-,463	-,238	= 171	+,121
1,200	2.00	-,515	521	297	=,242	= 144
1,201	5,99	- 514	-,520	=,222	•,182	-,110
1.200	4.01	- 514	=,448	=.216	-,190	-,112
1,201	5,99	<b>-</b> ,346	306	-,217	-,187	-,103
1,202	7,99	•,270	-,242	-,192	= 166	-,086
1.200	9,99	-,238	214	-,174	154	=,069

21

and the second second second

# RATIO NOZZLE, ROW 5

м_	Pt,j	с _р	for x/d	of -
۵۵ ۵	$P_{\infty}$	0.000	0.150	0.800
0.000	1,51	.001	.002	.000
,000	1,99	.000	•000	002
•000	3.00	-,000	000	001
.000	4.01	.000	-,001	002
.000	4,99	••000	-,000	-,002
.000	6,00	000	001	002
.000	6.65	=,000	001	001
,602	1.49	= 293	- 468	.012
.600	1.99	= = = 49	=_415	-,008
,001	5,00	=,249	- 420	.005
.601	5,99	••249 745	= 41/	028
,002	<b>7,77</b>	-,245	= 404	.057
.001	6,00	= 34 t	- 503	.0//
.002	1,72	- 270	· ••••••••••••••••••••••••••••••••••••	= <u></u> 10/
.000	2 00	- 277	=,372 553	<b>=</b> 100
801	2 00	- 344	= + 37K	<b>=</b> 130
,801	5 00	- 2/12	- 531	- 675
800	202	- 245	- 500	•• V/5
800	0 84	- 238	= 468	= (10
901	1.50	- 212		- 285
901	1.97	- 212	- 517	- 255
901	2 99	- 207	- 504	- 253
901	4.02	= 177	-519	- 233
901	5.99	- 192	- 498	- 202
899	8.01	- 183	- 486	- 180
899	9.99	= 190	- 454	- 162
940	1.49	- 186	361	- 359
940	2,00	-,215	-410	- 325
940	2,98	-,181	437	- 345
938	4.01	=,189	- 438	- 339
941	6,00	180	-416	-,328
.941	8,02	-,168	<b>-</b> 407	-,305
940	9,95	-,179	-,416	-,303
1.205	1,50	047	-,230	-*550
1,200	5.00	-,045	- 251	215
1.201	2.99	-,047	- • 558	<b>≈</b> ,190
1.200	4.01	<b>-</b> .951	558	066
1.201	5,99	-,050	-,224	••068
1.202	7,99	= • 051	<b>•</b> • <b>?</b> 19	083
1,200	4.44	-,058	176	-,088

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	м	Pt,j		C _p for x/d of -							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	∞	₽∞	-0.100	0.000	0.100	0.300	0.500	1.002	1.224	1.400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000	1.51	.002	.001	500	.001	.003	000	.003	-005	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000	1.99	001	.000	.000	.000	000	= 001	.001	.000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	3.00	.000	.001	000	000	001	- 001	001	000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	4,01	.001	000	000	• 000	000	= 002	.000	- 001	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	4,99	.000	.001	.000	-,000	000	= 005	+,001	- 002	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	000	6.00	.000	.000	-,000	-,001	.000	- 002	= 002	- 002	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	6,63	.000	••000	<b>→</b> ,000	- 000	-,000	=,002	- 005	- 003	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>6</b> 02	1,49	• 139	160	-,227	• 156	-,095	.026	.098	118	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.600	1,99	<b>-</b> 134	-,158	- 553	<b>-</b> ,153	-,099	-,001	. 090	,125	
601 $3.99$ $-135$ $-187$ $-242$ $-155$ $-095$ $-007$ $037$ $108$ $602$ $5.99$ $-129$ $-179$ $-231$ $-158$ $100$ $-035$ $-056$ $007$ $601$ $600$ $-122$ $-176$ $-234$ $-144$ $-093$ $073$ $-101$ $190$ $802$ $1.52$ $-148$ $-224$ $-301$ $-194$ $-123$ $0071$ $114$ $168$ $800$ $1.98$ $-156$ $-231$ $-308$ $-203$ $-123$ $039$ $116$ $159$ $800$ $2.99$ $-144$ $-225$ $-303$ $-200$ $-122$ $018$ $063$ $145$ $800$ $5.99$ $-137$ $-215$ $-294$ $-186$ $-109$ $032$ $018$ $029$ $800$ $5.99$ $-137$ $-225$ $-303$ $-200$ $-122$ $018$ $063$ $145$ $800$ $5.99$ $-137$ $-215$ $-294$ $-186$ $-109$ $032$ $018$ $029$ $800$ $5.99$ $-137$ $-225$ $-303$ $-200$ $-122$ $018$ $027$ $047$ $-136$ $800$ $9.84$ $-134$ $-208$ $-160$ $0.82$ $034$ $-081$ $-215$ $901$ $1.97$ $-128$ $-185$ $-349$ $-533$ $-151$ $004$ $100$ $156$ $901$ $1.97$ $-124$ $-214$ $-57$ $-52$ $-171$ $066$ $097$ $166$ $901$ <	.601	5.00	-115	185	238	-,156	<b>*</b> .099	007	.069	.120	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>,</b> 601	3,99	<b>-</b> ,135	-187	-,242	155	- 095	007	.037	_108 ¹	
	<b>602</b>	5,99	<del>=</del> ,129	=,179	=,231	<b>-</b> ,158	=,100	•,035	• 056	077	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>,</b> 601	8,00	<b>*</b> *155	=.176	=,234	- 144	<b>~</b> _093	-,073	<b>-</b> .101	- 190	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>805</b>	1,52	-,148	224	-,301	194	-,123	<b>.</b> . U71	.114	,168	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<b>.</b> 800	1,98	-,156	-,231	308	-,203	-,123	• 039	.116	.159	
R01 $3,99$ $-154$ $-225$ $-303$ $-200$ $-122$ $-018$ $063$ $145$ $800$ $5,99$ $-137$ $-215$ $-294$ $-186$ $-109$ $032$ $018$ $029$ $800$ $802$ $-153$ $-200$ $-260$ $-177$ $096$ $023$ $047$ $-136$ $800$ $9,84$ $-134$ $-208$ $-282$ $160$ $082$ $034$ $-081$ $-215$ $901$ $1.50$ $-130$ $-186$ $-348$ $-330$ $-151$ $046$ $100$ $156$ $901$ $1.97$ $-128$ $-185$ $-349$ $-353$ $-154$ $-095$ $096$ $166$ $901$ $2.99$ $-124$ $-214$ $-357$ $-352$ $-171$ $-088$ $097$ $166$ $901$ $4.02$ $-130$ $-223$ $-362$ $-355$ $-177$ $-085$ $069$ $175$ $901$ $5.99$ $-119$ $-218$ $-359$ $309$ $-139$ $038$ $016$ $044$ $899$ $8.01$ $-124$ $-223$ $-362$ $-309$ $-168$ $073$ $138$ $940$ $1.49$ $095$ $-186$ $-317$ $-362$ $-309$ $-168$ $073$ $138$ $940$ $2.98$ $-124$ $-193$ $-322$ $-367$ $-369$ $-168$ $084$ $168$ $938$ $4.01$ $-116$ $-159$ $-313$ $-364$ $-353$ $-145$ $070$ $178$ $941$ $6.00$ <th>.800</th> <th>2,99</th> <th><b>= 1</b>44</th> <th>223</th> <th>-,301</th> <th>-,201</th> <th>=,133</th> <th>-,051</th> <th>.103</th> <th>154</th>	.800	2,99	<b>= 1</b> 44	223	-,301	-,201	=,133	-,051	.103	154	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.801	3,99	<b>≈</b> ∎154	=,225	-,303	- 500	-,122	<b>-</b> ,018	.063	145	
800 $8,02$ $153$ $-200$ $-280$ $1177$ $-096$ $023$ $-047$ $136$ $800$ $9,84$ $134$ $-208$ $282$ $160$ $0.82$ $034$ $-081$ $215$ $901$ $150$ $130$ $-186$ $348$ $-330$ $-151$ $046$ $100$ $156$ $901$ $1.97$ $128$ $-185$ $-349$ $-333$ $-154$ $095$ $096$ $166$ $901$ $2.99$ $-124$ $-214$ $-557$ $-352$ $-171$ $0.88$ $097$ $166$ $901$ $4.02$ $-130$ $-223$ $-362$ $-355$ $-177$ $0.86$ $097$ $166$ $901$ $5.99$ $-119$ $-218$ $-359$ $-309$ $-139$ $0.38$ $016$ $044$ $899$ $8.01$ $-124$ $-223$ $-369$ $-272$ $-119$ $0.76$ $035$ $081$ $899$ $9.99$ $-128$ $-220$ $-368$ $-242$ $-101$ $-058$ $-054$ $-181$ $940$ $1.49$ $0.955$ $-186$ $-317$ $-362$ $-309$ $-168$ $073$ $138$ $940$ $2.96$ $-124$ $-193$ $-322$ $-367$ $-359$ $-168$ $084$ $168$ $938$ $4.01$ $-110$ $-176$ $-305$ $-362$ $-345$ $-179$ $050$ $142$ $940$ $2.96$ $-124$ $-193$ $-322$ $-367$ $-359$ $-168$ $084$ $168$ $938$ <th>.800</th> <th>5,99</th> <th>• 137</th> <th>-,215</th> <th>-,294</th> <th>-,186</th> <th>=,109</th> <th>-,032</th> <th>-,018</th> <th>- 059</th>	.800	5,99	• 137	-,215	-,294	-,186	=,109	-,032	-,018	- 059	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800	8,02	-,153		- 580	• 177	=,096	+ 023	• 047	•,136	
901 $1.50$ $130$ $186$ $348$ $330$ $151$ $046$ $100$ $156$ 901 $1.97$ $128$ $185$ $349$ $533$ $154$ $095$ $096$ $166$ 901 $2.99$ $124$ $214$ $557$ $552$ $171$ $086$ $097$ $166$ 901 $4.02$ $130$ $223$ $362$ $355$ $177$ $085$ $0.69$ $1.75$ 901 $5.99$ $119$ $218$ $359$ $309$ $139$ $038$ $016$ $044$ 899 $8.01$ $124$ $223$ $369$ $272$ $119$ $076$ $035$ $081$ 899 $9.99$ $128$ $220$ $368$ $242$ $101$ $058$ $054$ $181$ 940 $1.49$ $095$ $186$ $317$ $362$ $309$ $168$ $0.84$ $1.68$ 940 $2.00$ $101$ $176$ $305$ $362$ $345$ $179$ $0.50$ $1.42$ 940 $2.98$ $124$ $193$ $322$ $367$ $369$ $168$ $0.84$ $1.68$ 938 $4.01$ $110$ $159$ $313$ $364$ $353$ $145$ $0.70$ $1.78$ 941 $6.00$ $115$ $181$ $319$ $358$ $340$ $176$ $0.010$ $0.65$ 941 $8.02$ $120$ $155$ $328$ $355$ <	.800	9.84	= 134	= • 508	+ 585	• 160	• 082	• 034	-,081	-,215	
901 $1.97$ $128$ $185$ $349$ $353$ $154$ $095$ $.096$ $166$ 901 $2.99$ $124$ $214$ $557$ $352$ $171$ $088$ $.097$ $166$ 901 $4.02$ $130$ $223$ $362$ $355$ $177$ $085$ $.069$ $175$ 901 $5.99$ $119$ $218$ $359$ $309$ $139$ $038$ $016$ $.044$ 899 $8.01$ $124$ $223$ $368$ $242$ $101$ $058$ $054$ $181$ 940 $1.49$ $.095$ $186$ $242$ $101$ $058$ $054$ $181$ 940 $2.00$ $101$ $176$ $305$ $362$ $309$ $168$ $073$ $138$ 940 $2.00$ $101$ $176$ $305$ $362$ $345$ $179$ $050$ $142$ 940 $2.98$ $124$ $193$ $322$ $367$ $369$ $168$ $084$ $168$ 938 $4.01$ $110$ $159$ $313$ $364$ $353$ $145$ $070$ $178$ 941 $6.00$ $115$ $181$ $319$ $359$ $168$ $0011$ $002$ 940 $9.95$ $097$ $155$ $328$ $355$ $244$ $104$ $044$ $178$ 941 $6.00$ $1150$ $320$ $358$ $308$ $120$ $002$	.901	1,50	<b>-</b> ,130	-,186	=,348	-,330	= 151	-,046	.100	,156	
901 $2.99$ $124$ $-214$ $-357$ $352$ $-171$ $-088$ $097$ $166$ 901 $4.02$ $-130$ $-223$ $-362$ $-355$ $-177$ $-085$ $069$ $175$ 901 $5.99$ $-119$ $-218$ $-359$ $-309$ $-139$ $038$ $016$ $044$ $899$ $8.01$ $-124$ $-223$ $-369$ $-272$ $-119$ $-076$ $-035$ $-081$ $899$ $9.99$ $-128$ $-220$ $-368$ $-242$ $-101$ $-058$ $-054$ $-181$ $940$ $2.90$ $-101$ $-176$ $-305$ $-362$ $-309$ $-168$ $073$ $138$ $940$ $2.96$ $-124$ $-193$ $-322$ $-367$ $-359$ $-168$ $084$ $168$ $940$ $2.96$ $-124$ $-193$ $-322$ $-367$ $-359$ $-168$ $084$ $168$ $940$ $2.96$ $-124$ $-193$ $-322$ $-367$ $-359$ $-166$ $084$ $168$ $940$ $2.96$ $-120$ $-159$ $-313$ $-364$ $-353$ $-145$ $070$ $178$ $941$ $6.00$ $-115$ $-181$ $-319$ $-359$ $-340$ $-176$ $010$ $065$ $941$ $8.02$ $-120$ $-155$ $-328$ $-355$ $-244$ $-104$ $-044$ $138$ $1.202$ $1.50$ $-039$ $-047$ $-138$ $-180$ $-109$ $-201$ $-220$ $002$ $1$	901	1,97	-128	=,185	= \$49	<b>*</b> •333	=,154	-,095	,096	<u>, 166</u>	
901 $4,02$ $-130$ $-223$ $-362$ $-355$ $-177$ $-085$ $069$ $175$ 901 $5,99$ $-119$ $-218$ $-359$ $-309$ $-139$ $-038$ $016$ $044$ $899$ $8,01$ $-124$ $-223$ $-369$ $272$ $-119$ $076$ $035$ $081$ $899$ $9,99$ $-128$ $-220$ $-368$ $242$ $101$ $-058$ $-054$ $181$ $940$ $2,00$ $-101$ $-176$ $-305$ $-362$ $-309$ $-168$ $073$ $138$ $940$ $2,98$ $-124$ $-193$ $-322$ $-367$ $-369$ $-168$ $084$ $168$ $938$ $4,01$ $-110$ $-159$ $-313$ $-364$ $-353$ $-145$ $070$ $178$ $941$ $6,00$ $-115$ $-181$ $-319$ $-359$ $-340$ $-176$ $010$ $065$ $941$ $8,02$ $-120$ $-150$ $-320$ $-358$ $-308$ $-154$ $-011$ $002$ $940$ $9,95$ $-097$ $-155$ $-328$ $-355$ $-244$ $-104$ $-044$ $-138$ $1,202$ $1,50$ $-039$ $-047$ $-138$ $-169$ $-201$ $-220$ $002$ $1200$ $2,00$ $-044$ $-054$ $-142$ $-185$ $-170$ $-207$ $-336$ $-033$ $1,201$ $2,99$ $-042$ $-052$ $-136$ $-183$ $-173$ $-201$ $-275$ $-120$ $1200$ <th>901</th> <th>5.99</th> <th>- 124</th> <th>- 214</th> <th>-,357</th> <th><b>*.</b>352</th> <th>- 171</th> <th>- 088</th> <th>.097</th> <th><b>1</b>66</th>	901	5.99	- 124	- 214	-,357	<b>*.</b> 352	- 171	- 088	.097	<b>1</b> 66	
901 $5.99$ $.119$ $.218$ $.359$ $.309$ $.139$ $.038$ $.016$ $.044$ 899 $8.01$ $.124$ $.223$ $.369$ $.272$ $.119$ $.076$ $.035$ $.081$ 899 $9.99$ $.128$ $.220$ $.368$ $.242$ $.101$ $.058$ $.054$ $.181$ 940 $1.49$ $.095$ $.186$ $.317$ $.362$ $.309$ $.168$ $.073$ $.138$ 940 $2.00$ $.101$ $.176$ $.305$ $.362$ $.345$ $.179$ $.050$ $.142$ 940 $2.98$ $.124$ $.193$ $.322$ $.367$ $.369$ $.168$ $.084$ $.168$ 938 $4.01$ $.110$ $.159$ $.313$ $.364$ $.353$ $.145$ $.070$ $.178$ 941 $6.00$ $.115$ $.181$ $.319$ $.359$ $.340$ $.176$ $.010$ $.065$ 941 $8.02$ $.120$ $.150$ $.320$ $.358$ $.308$ $.154$ $.011$ $.002$ 940 $9.95$ $.097$ $.155$ $.328$ $.355$ $.244$ $.104$ $.044$ $.138$ $1.202$ $1.50$ $.039$ $.047$ $.138$ $.180$ $.109$ $.201$ $.220$ $.002$ $940$ $9.95$ $.097$ $.155$ $.328$ $.355$ $.244$ $.104$ $.044$ $.138$ $1.202$ $1.50$ $.039$ $.047$ $.138$ $.160$ $.109$ $.201$ $.220$ $.002$ <th>.901</th> <th>4.02</th> <th>=,130</th> <th>-,223</th> <th>=,362</th> <th>•.355</th> <th><b>•</b>,177</th> <th>- 085</th> <th>.069</th> <th>.175</th>	.901	4.02	=,130	-,223	=,362	•.355	<b>•</b> ,177	- 085	.069	.175	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.901	5,99	• 119	-,218	- 559	- 309	-,159	•,038	.016	044	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.899	8,01	-,124	•,225	• 569	- 272	-,119	-,076	- 0.55	-,081	
9401.49 $.095$ $.186$ $.317$ $.362$ $.309$ $.168$ $073$ $138$ 9402.98 $.101$ $.176$ $.305$ $.362$ $.345$ $.179$ $050$ $142$ 9402.98 $.124$ $.193$ $.322$ $.367$ $.369$ $.168$ $084$ $168$ 9384.01 $.110$ $.159$ $.313$ $.364$ $.353$ $.145$ $070$ $178$ 941 $6.00$ $.115$ $.181$ $.319$ $.359$ $.340$ $.176$ $010$ $065$ 941 $8.02$ $.120$ $.150$ $.320$ $.358$ $.308$ $.154$ $.011$ $002$ 940 $9.95$ $.097$ $.155$ $.328$ $.355$ $.244$ $.104$ $.044$ $.138$ $1.202$ $1.50$ $.039$ $.047$ $.138$ $.180$ $.109$ $.201$ $.220$ $002$ $1.200$ $2.00$ $.044$ $.054$ $.142$ $.185$ $.170$ $.207$ $.336$ $.035$ $1.201$ $2.99$ $.042$ $.052$ $.136$ $.183$ $.173$ $.201$ $.275$ $.120$ $1.201$ $5.99$ $.049$ $.050$ $.138$ $.181$ $.174$ $.175$ $.127$ $.172$ $1.202$ $7.99$ $.040$ $.052$ $.141$ $.183$ $.171$ $.141$ $.167$	.899	9,99	+,128	550	- 568	- 242	-,101	-,058	-,054	-,181	
940 $2.00$ $101$ $776$ $305$ $362$ $345$ $179$ $050$ $142$ $940$ $2.98$ $124$ $193$ $322$ $367$ $369$ $168$ $084$ $168$ $938$ $4.01$ $110$ $159$ $313$ $364$ $353$ $145$ $070$ $178$ $941$ $6.00$ $115$ $181$ $319$ $359$ $340$ $176$ $010$ $065$ $941$ $8.02$ $120$ $150$ $320$ $358$ $308$ $154$ $011$ $002$ $940$ $9.95$ $097$ $155$ $328$ $355$ $244$ $104$ $044$ $138$ $1.202$ $1.50$ $039$ $047$ $138$ $169$ $201$ $220$ $002$ $1.200$ $2.00$ $044$ $054$ $142$ $185$ $170$ $207$ $336$ $033$ $1.201$ $2.99$ $042$ $052$ $136$ $183$ $174$ $195$ $178$ $183$ $1.201$ $5.99$ $049$ $050$ $138$ $181$ $174$ $173$ $127$ $172$ $1.202$ $7.99$ $040$ $052$ $141$ $183$ $171$ $141$ $167$	.940	1,49	• 095	• 186	•• 517 7 0 F	• 502	· =,309 .	<b>•</b> ,168	075	-13M	
938 $4.01$ $.124$ $.193$ $322$ $367$ $309$ $188$ $.084$ $.168$ $938$ $4.01$ $.110$ $.159$ $.313$ $364$ $353$ $.145$ $.070$ $.178$ $941$ $6.00$ $115$ $181$ $319$ $359$ $340$ $176$ $.010$ $.065$ $941$ $8.02$ $120$ $150$ $320$ $358$ $308$ $154$ $.0011$ $.002$ $940$ $9.95$ $097$ $155$ $328$ $355$ $244$ $104$ $044$ $138$ $1.202$ $1.50$ $039$ $047$ $138$ $180$ $109$ $201$ $220$ $.002$ $1.200$ $2.00$ $044$ $054$ $142$ $185$ $170$ $207$ $336$ $035$ $1.201$ $2.99$ $042$ $052$ $136$ $183$ $173$ $201$ $275$ $120$ $1.201$ $5.99$ $049$ $050$ $138$ $181$ $174$ $173$ $127$ $172$ $1.202$ $7.99$ $040$ $052$ $141$ $183$ $171$ $141$ $167$	.940	2,00	<b>*</b> •101	=,176	= <u>,</u> 305	- 202	* <u>*</u> 345	<b>*1</b> /9	,050	.142	
736 $4,01$ $-,110$ $-,159$ $-,313$ $-,364$ $-,353$ $-,145$ $070$ $178$ $941$ $6,00$ $-,115$ $-,181$ $-,319$ $-,359$ $-,340$ $-,176$ $010$ $065$ $941$ $8,02$ $-,120$ $-,150$ $-,320$ $-,358$ $-,308$ $-,176$ $011$ $002$ $940$ $9,95$ $-,097$ $-,155$ $-,328$ $-,355$ $-,244$ $-,104$ $-,044$ $-,138$ $1,202$ $1,50$ $-,039$ $-,047$ $-,138$ $-,180$ $-,109$ $-,201$ $-,220$ $002$ $1,200$ $2,00$ $-,044$ $-,054$ $-,142$ $-,185$ $-,170$ $-,207$ $-,336$ $-,035$ $1,201$ $2,99$ $-,042$ $-,052$ $-,136$ $-,183$ $-,174$ $-,195$ $-,178$ $-,183$ $1,201$ $5,99$ $-,049$ $-,050$ $-,138$ $-,181$ $-,174$ $-,173$ $-,127$ $-,172$ $1,202$ $7,99$ $-,040$ $-,052$ $-,141$ $-,183$ $-,171$ $-,141$ $-,110$ $-,167$	.940	2,90	-124	• 193	366	-, 307	=,307 767	-,108	.084	-168	
741 $8,00$ $-120$ $-150$ $-320$ $-358$ $-308$ $-154$ $-011$ $002$ $940$ $9,95$ $-097$ $-155$ $-328$ $-358$ $-308$ $-154$ $-011$ $002$ $940$ $9,95$ $-097$ $-155$ $-328$ $-355$ $-244$ $-104$ $-044$ $-138$ $1,202$ $1,50$ $-039$ $-047$ $-138$ $-180$ $-109$ $-201$ $-220$ $002$ $1,200$ $2,00$ $-044$ $-054$ $-142$ $-185$ $-170$ $-207$ $-336$ $-035$ $1,201$ $2,99$ $-042$ $-052$ $-136$ $-183$ $-173$ $-201$ $-275$ $-120$ $1,200$ $4,01$ $-0441$ $-048$ $-141$ $-182$ $-174$ $-195$ $-178$ $-133$ $1,201$ $5,99$ $-049$ $-050$ $-138$ $-181$ $-174$ $-173$ $-127$ $-172$ $1,202$ $7,99$ $-040$ $-052$ $-141$ $-183$ $-171$ $-141$ $-110$ $-167$	0/1	4 U U U	- 115	- +	= 313 = 310	<b>=</b> , 304	- 303		• 470	• 170 • 170	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*741 9/11	8 02	- 130	• 150	- 330	- 359	- 340	₩±10 = 15/	.010	,065	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9/10	0 05	- 097	- 155	- 124	- 165	- 244	= 104		,002	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 202	1 50	- 019	- 047	- 128	- 180	= 1.09		- 220	-130	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 200	2.00	• 044	054	= 142	- 185	- 170	- 207	- 336	0.7.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 201	2.99	= 042		- 136	- 182	174	- 201	- 275	- 120	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 200	4.01	.041	-0J2	- 141	= 182	174	195	-, 17R	- 197	
1.202 7.99040052141183171141110167	1.201	5,99	- 049	-,050	= 138	- 181	.174	.172	- 127	172	
	1.202	7.99	.040	.052	• 141	- 183	. 171	- 141	<b>. . . . . . . . . .</b>	- 147	
1_200   9.99  =.045   =.054   =.144   =.179   =.171   =.089   =.097   = 163	1.200	9 99	- 045	- 054	- 144	179	- 171	- 089	- 097	- 163	

La Cartana and C

### RATIO NOZZLE, ROW 7

	м	Pt,j	с _р	for x/d	of -
	- <b>-</b> œ	$P_{\infty}$	0.150	0.500	0.800
	0.000	1,51	-00S	.002	.002
	000	1,99	.001	.001	.000
	000	3,00	•000	.000	- 000
	000	4.01	.000	.000	000
	000	4.99	.000	-,000	- 000
	000	6.00	- 000	.000	-,000
	000	6.63	000	.000	- 001
1	602	1,49	-,226	-,120	035
1	600	1,99	-,224	121	- 038
	601	3.00	- 550	=,130	052
1	601	3,99	•,225	+,123	-,048
1	605	5,99	-,215	116	040
·	.601	8,00	-,214	090	-,015
	.805	1,52	=,279	-,147	-,026
÷	.800	1,98	-,297	-150	050
	.800	2,99	-,287	-,150	036
	.801	3,99	-,275	157	-,027
	.800	5,99	-,280	129	019
ł	.800	8,02	+,275	-,106	• 004
	.800	9,84	=,251	-,092	.005
	<b>9</b> 01	1.50	-,403	<b>-</b> ,157	-,049
i.	<b>9</b> 01	1,97	<b>-</b> •404	-,184	-,065
	901	5.99	<b>-</b> ,402	<b>-</b> 193	064
1	.901	4.05	-,396	<b>≈</b> ∎174	053
1	.901	5,99	402	-,153	<b>-</b> .039
Ì	899	8.01	- 386	-126	029
	,899	9,99	<b>=</b> ,384	<b>=</b> ,104	-,025
	,940	1,49	- 365	- 355	<b>●</b> ∎081
	940	2,00	= \$ 509	347	-,093
	940	5.98	-,500	<b>-</b> ,380	-,126
	.938	4,01	-,371	- 564	099
ĩ	•9 <i>4</i> 1	6,00	<b>*</b> •365	- 355	<b>-</b> .107
	,941	8.02	<b>-</b> ,565	-,330	-,130
P	• 940	9,95	<b>*</b> •361	=,213	-,077
	1.202	1,50	• 179	= 195	
		2.00	= 176	-,194	=.275
	1.201	2.99	• 175	-195	475
	1,200	4,01	= 175	<b>=</b> ,197	274
	1,201	2.44	<b>*</b> •178	-,192	272
	1.202	7,99	••185	= 195	• <u>258</u>
	1 <b>.</b> 200	1 4.44	<b>-</b> ,179	<b>*</b> • 194	-,219

	^p t,j	C _p for x/d of -									
1 ^m ∞	P _∞	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.800	1.200	
0.000	1,51	000	•.000	000	500.	.001	.001	.001	001	.000	
000	1,99	-,000	• 000		001	000	000	.000	- 000	001	
000	3,00	-,001	<b>●</b> ●001	· • 001	000	- 000	000	000	= 001	= 002	
000	4.01	<b>-</b> •001	001	<b>⊷</b> ,001	• 000	-,001	- 001	.001	- 001	.005	
000	4,99	<b>-</b> .001	001	-,001	= 000	-,000	- 001	- 001	- 001	- 003	
000	6,00	-,001	001	<b>-</b> .001	000	- 001	- 001	- 001	- 001	= 002	
.000	6.63	<b>-</b> .001	••001	- • 001	- 001	<b>→</b> 001	-,001	-,001	- 001	- 003	
602	1.49	=,174	-,227	- 268	- 514	- 431	-,512	= 337	-106	021	
.600	1,99	<b>-</b> .176	230	- 275	-,317	-,438	-,526	- 344	• 126	- 006	
<b>6</b> 01	3.00	-,177	231	-,273	- 325	-,452	-,532	-,333	= 121	-,005	
<b>.601</b>	3,99	-,176	- 556	- 271	•.313	-,449	- 519	=,320	-101	026	
.605	5,99	•,171	- • 553	- • 5 • 5	-,300	-,412	-,481	- 595	<b>⇒</b> _048	.058	
.601	8.00	•,167	=,218	- 255	- 295	-,397	- 437	-,255	- 013	. 066	
.802	1,52	-12.	=,293	=,354	-,385	-,532	= 539	<b>#.</b> 311	<b>−</b> ,084	.040	
800	1,98	-,213	294	-,356	=,383	-,522	- 537	- 355	- 106	.024	
.800	2,99	=, <14	294	-,356	-,381	<b>*</b> .516	-,538	-,321	•,095	•024	
.801	5,99	· . < 11	- 291	- 351	- 382	- 509	- 523	-,313	= 081	. 046	
.800	5.99	<b>= _ 2</b> 04	281	• . 335	•,351	- 486	474	-,252	-,029	.079	
_ H 0 0	8,02	<b>-</b> ,198	=,271	- 355	-,339	- 435	-,426	- 202	.011	.067	
.800	9.84	• 192	- 261	-,307	- 317	- 412	-, 364	•,151	.050	.055	
901	1,50	• 192	- 302	-,428	- 514	- 481	-,258	-,185	•,097	-005	
.901	1,97	=,195	= \$0.5	- 429	- 516	•••554	=,278	-,207	-,118	-,028	
.901	2.94	193	= <u>50.5</u>	- 429	- 519	- 588	-, 287	= • 508	-,113	- 025	
.901	4,02	• 193	-,505	- 429	- 520	-,505	-, 287	= 208	- 104	=,000	
.401	<b>7,77</b>	- 192	= <u>501</u>	420	<b>*</b> _498	₩,455	-,251	-171	- 079	.020	
•044	0,01	••190	=,501	• • 4 2 4	= 483	= . 504	-, 218	• 135	• 045	. 031	
.044	4 40	- 150	■•540 ■•540	• 419	472	= 307	<b>*</b> 180 ·	045	- 006	037	
. 440	2 00	#+134 - 150	= 1 C C C	<b>* • 504</b>	<b>=</b> _461	<b>*</b> •221	-, <10	• 167	- 125	••055	
· · · · · ·	2.00	- 150	= 261	- 26/	- 40/	••03V		• • 221	<b>-</b> 165		
028	1 01	- 160	- 262	- 286	= 445	₩ <b>.</b> 370	- 371	- 774	• 145	<b>-</b> ,001	
9/1	6 00	= 156	- 202	- 381		- 642	- 30%	- 202		- 005	
9/11	8 02	= 156	- 259	- 381	- 466	- 500	- 244	- 167	<b>-</b> 142	- 02/	
940	9.95	= 156	- 260	- 382	- 460	- 548	- 182	= 1///	= 10V	- 007	
1 202	1.50	038	.090	= 165	= 233	- 387	= 610	- 604	- 578	- 292	
1.200	2.00	.038	.091	- 167	- 231	- 387		- 608	- 538	4,475	
1,201	2 99	039	091	. 166	= 232	- 383	+ 604	. 60A	540	- 386	
1.200	4 01	039	091	- 167	- 230	- 386	- 605	- 606	- 529	- 244	
1 201	5 99	038	- 090	- 166	- 233	- 384	- 596	- 604	- 351	+ 153	
1.202	7.99	- 038	.090	- 165	- 231	- 385	- 593	- 564	- 239	• 131	
1 200	9 99	-,039	091	- 167	235	- 385	- 591	- 471	- 170	- 121	
-		-		-		- 1				-	

ang tang tang tan

м	^p t,j		p/p _{t,j}	for x/d	of -	-
- œ	$\mathbf{p}_{\mathbf{x}}$	0.750	0.920	1.002	1.200	1.400
0.000	1,51	853	.544	.637	.665	.665
000	1,99	.856	,529	405	505	504
000	3,00	,310	.340	.400	.310	.340
000	4.01	, 398	.235	249	235	249
.000	4,99	. 596	,179	191	179	,191
000	6.00	,395	.134	.152	134	,152
000	6,63	,395	<b>1</b> 08	.134	.108	.134
-20 <b>0</b> -	1.49	.858	.624	.671	.688	,697
600	1,99	.852	•531	.408	.517	.524
,601	3.00	,315	•343	.401	.315	.343
601	3,99	.400	.219	.251	.219	,251
.605	5,99	.397	.133	<b>.</b> 161	.133	.161
.601	8,00	, 395	.102	.097	.102	.097
,802	1,52	.860	.638	.679	.700	,712
.800	1,98	.852	.535	.456	.534	,546
.800	2,99	,335	. 544	.402	,335	.344
.801	3,99	-555°	.264	401	.555	.264
.800	5,99	• 598	<b>135</b>	,163	,135	.103
.800	8.05	,396	.100	<b>-</b> 092	.100	,092
.800	9,84	,395	•101	.083	.101	.083
.901	1,50	• ⁸⁵⁵	.617	.068	,719	.731
901	1,97	.850	•530	.459	.549	,561
.901	2,99	.347	•347	.402	.347	•347
,901	4.02	,225	.271	.402	.223	<b>.</b> 271
,901	5,99	,399	.134	,150	,134	.150
.899	8.01	.397	.099	.093	.099	.093
.899	9,99	,395	.098	.081	.098	.081
940	1.49	,852	•588	.643	.712	•25
940	5.00	.851	.531	.413	.5.39	•225
.940	5.98	.398	.321	.340	.321	.340
,938	4.01	,398	,231	.271	.231	,271
.941	6,00	.395	•132	.154	<b>132</b>	,154
941	8.05	. 395	.099	•U93	.099	.093
940	9,95	,395	.098	-085	.098	.082
1,202	1,50	,852	.561	,528	<b>₀</b> 648	.686
1,200	2,00	. 594	.528	.394	.486	.510
1,201	5.99	. 598	.246	.298	.246	,298
1,200	4.01	, 599	.170	.182	.176	,182
1.201	5,99	,399	.103	.100	<b>1</b> 03	.100
1,202	7,99	.397	.094	•083	.094	.083
1,200	9,99	,396	.093	.080	.093	.080

_____

TABLE 9.- STATIC PRESSURES FOR LOW-EXPANSION-RATIO NOZZLE, ROW 9

<u>м</u>	Pt,j				p	/p _{t,j} for	x/d of	-			
	P _∞	0.573	0.591	0.650	0.700	0.750	0.800	0.850	0.912	0.950	1.002
0.000	1,51	,999	.968	,935	.890	.830	.746	.628	.461	.570	.641
.000	1,99	.391	968	934	.891	831	747	627	460	426	.391
000	3,00	.390	.341	245	.268	281	313	367	459	427	.390
000	4.01	.389	.339	.247	.158	129	144	153	301	426	389
.000	4.99	,388	.339	.247	.160	<b>111</b>	V80	089	175	425	388
.000	6.00	,388	.339	.249	.163	,113	081	.067	130	424	388
.000	6,63	,388	.340	.250	.164	.114	082	,062	125	425	.388
<b>,6</b> 02	1.49	.997	.971	.934	.895	.838	.757	,653	570	.635	.680
<b>.</b> 600	1.99	,396	,968	.933	.891	.830	.745	•958	460	430	.396
.601	3,00	, 392	.342	<b>2</b> 51	.287	.307	<b>.</b> 555	.342	460	,430	. 392
.601	3,99	.391	. 340	.245	<u>157</u>	149	,162	.172	,303	.429	, 391
<b>-</b> 605	5,99	, 589	,339	.247	.161	,112	.081	•0 <b>95</b>	.142	.420	, 389
.601	8,00	.388	.339	.249	,164	,115	.082	.065	.111	,425	,388
805	1.52		.973	.935	.899	.842	• 762	.663	,590	.641	,688
.800	1.98	1,000	<b>971</b>	.933	.893	.832	,746	.629	,462	.431	.471
.800	5,99	, 393	.342	.264	.307	.336	, 532	<b>8</b> 29	.461	.432	.393
.801	3,99	.392	.340	,246	.157	.158	,173	188	,314	.430	.392
800	5,99	+ 589	.338	.245	.160	.111	.080	.124	148	.427	.389
.800	8.02	.388	.338	.247	.162	.114	.082	.061	,112	.425	,388
.800	9.84	,368	.559	.250	.166	,115	083	.063	.070	.425	, 588
• 901	1,50	• 449	.972	.935	.890	• * 5 4	./56	+653	.562	<b>608</b>	+671
.901	1.97	, 498	.969	.951	.887	.051	• 744	.026	<u>,</u> 461	450	450
.901	C . 99	+ 392	. 342	.249	.212	, 360	.357	.027	.461	.451	. 592
.901	4,V2	100	• 34V 770	• <b>2</b> 4 4 2 // 6	.170	112	• <u>5</u> 5 5	+231	. 51 5	₽431 #28	, 392
,901	3.77	• 340 Zuo	+ <b>3 3 7</b>	.240	.100	• 1 1 C	.081	•17/	150	.428	, 340
8097	0,01	387	278	• <b>2</b> 4 7 2/19	167	115	.002	062		₽420 435 -	• 200 4 8 7
940	1 40	905	9330	021	105 887	• I I D	.003	6/1Z	-071	14C7 540	+ JO/
940	2.00	.908	949	07.2	-00J	831	• 7 J U	627	p 7 3 4	120	40 <i>1</i>
940	2.98	- 493	- 343	248	2/10	288	344	627	+ HOC //4/2	430	101
938	4.01	.393	.341	244	156	118	215	250	277	431	. 101
941	6.00	.390	.339	.245	160	.111	.083	-162	159	428	390
941	8.02	388	.338	246	.162	.113	.082	.062	108	426	388
940	9.95	388	339	248	163	.114	083	.063	075	425	.388
1,202	1.50	996	.976	937	878	840	.751	.641	512	518	599
1.200	2.00	396	971	933	880	832	.744	627	464	429	396
1.201	2.99	392	.340	247	204	259	293	.308	326	430	. 392
1.200	4.01	391	.340	243	158	111	099	.140	207	.430	391
1.201	5 99	. 391	339	243	.160	112	080	105	138	430	391
1.202	7,99	389	338	243	160	112	081	.061	089	428	389
1.200	9 99	388	.339	245	161	.113	082	.062	069	427	388

TABLE 10.- STATIC PRESSURES FOR LOW-EXPANSION-RATIO NOZZLE, ROW 10

- TOPACE

Party and the second second

TABLE 10.- Concluded

м	^p t,j			p/:	Pt,j for	x/d of -	•		
ω ^{r1} α	₽∞	1.050	1.100	1.155	1.200	1.250	1.300	1.400	1.500
0.000	1,51	,657	.665	,667	.667	,005	.666	667	.679
000	1,99	545	511	509	505	503	504	503	513
000	3,00	541	245	268	281	313	435	367	267
000	4.01	, 339	.247	158	129	.144	153	301	362
.000	4,99	.339	.247	,160	111	.080	,089	.175	201
.000	6.00	,339	.249	.163	,113	,081	.067	,130	131
.000	6.03	•340	.250	.164	.114	.082	•0e5	,125	.124
<b>,</b> 602	1,49	,693	•098	.701	.702	.701	,703	.693	.721
.600	1.99	•556	.532	.531	.527	.526	<b>,</b> 528	.519	546
,601	3,00	,342	.251	.287	.307	,355	.437	.342	291
,601	3,99	• 540	.245	,157	.149	.162	,172	.303	. 584
500	5,99	* 539	.247	.161	.112	.081	.495	.142	,139
,001	8.00	, 559	.249	104	.115	.082	062	.111	.105
508	1,54	• / 01	.708	•710 ##	.712	•714	./16	.694	,730
.800	1.40	. 202	• <b>555</b>	•220 707	554	<b>55</b> 2	• > 5 3	,536	.575
.000	2.99	.542	.264	.507	+ 5.56	• 442	•444	.352	.328
*****	5.99	• 340	• 240	•15/	.158	•1/3	.108	.514	,380
.000	<b>7,77</b>	.330	• 243	.100	•111	.000	,124 04	.148	148
,000	0,0 <i>2</i>	220	150	102	.114	,002	.061	,112	.107
.000	4 50	1337 685	*20	<u>100</u>	•115	- 003	.003	.070	0H1
901	1 07	•000 562	070 E70	#/13 5//7	./24	,730 553	130 540	.707	./62
+ 701	2 99	4/10	• <u>-</u>	547	174	, 505	, JO9 4/17	* 247	
901	4 02	340	2/14	156	132	143	227	+ 337	710
901	5.99	320	246	160	112	081	157	156	.310
899	A.01		.247	162	113	082	062	111	100
899	9.99	.338	. 248	.163	115	083	.063	071	0.07
940	1.49	.001	686	.700	.715	724	.736	704	770
940	5.00	525	502	514	525	534	546	539	587
940	2.98	. 343	248	249	288	444	457	344	424
938	4.01	341	244	.150	118	215	250	277	323
941	6.00	.339	245	100	.111	083	162	.159	164
941	8,02	.338	. 240	102	113	.082	062	108	107
940	9,95	,339	.248	163	114	083	063	.075	089
1,205	1.50	,640	.651	.675	.083	699	704	682	728
1 200	5.00	.421	.514	.518	495	,513	.527	524	595
1,201	2.99	<b>3</b> 40	.247	.204	.259	,293	.308	,326	475
1,200	4.01	.340	.243	.158	.111	.099	.140	,207	,315
1,201	5,99	. 539	.243	.160	.112	.080	,105	<b>1</b> 38	132
1 . 205	7,99	,33R	.243	.160	.112	.081	,001	.089	091
1,200	9,99	.339	.245	.161	.113	•985	, V62	.069	.033

i

in the second second

	Pt,j		p/	^{/p} t,j ^{for}	x/d of	-	
^m œ	P _∞	0.912	1.002	1.050	1.100	1.155	1.200
0.000	1,51	.408	.042	. 658	. 564	.666	.006
000	1,99	\$97	397	549	511	507	504
000	3,00	397	.342	242	273	284	284
000	4.01	395	.343	248	155	,129	129
000	4,99	394	, 343	247	.157	112	112
000	6.00	,394	.344	248	160	114	114
000	6.63	,395	.344	249	.161	.115	,115
602	1.49	.573	<b>-</b> 682	695	698	.699	701
600	1,99	.462	.407	563	532	.528	,527
601	3.00	<b>.</b> 598	. 343	.246	285	.308	308
601	3,99	.397	.344	.247	153	.150	,150
602	5,99	, 395	.344	,245	158	.112	,112
.601	8.00	, 394	.344	.248	,161	,115	,115
802	1.52	<b>5</b> 91	.692	.704	708	.711	,712
800	1,98	.463	.465	.574	.554	,550	, 551
800	5,99	. 544	.263	.306	.341	.506	341
801	3,99	<b>,</b> \$98	.344	.248	.154	.164	,164
800	5.99	.395	,344	.244	<b>1</b> 58	.112	,112
.800	8.02	,395	.344	.246	.159	<b>114</b>	,114
,800	9,84	. 395	.345	.249	.161	,116	,116
901	1,50	.564	.676	.689	.703	.714	.724
,901	1,97	.462	.453	<b>.</b> 561	.541	.549	,558
901	2,99	.399	.343	.249	.283	.334	,334
,901	4.02	.398	.343	.246	<b>1</b> 55	,133	,133
,901	5,99	.396	.344	.243	.157	.111	.111
899	8.01	.395	.344	.246	.159	.114	.114
,899	9,99	,395	.344	.248	,161	.115	,115
940	1.49	<b>,</b> 538	•654	<u>.</u> 663	.685	<b>•</b> 695	,710
940	5.00	.465	.412	•231	.505	,511	,524
.940	5.98	,399	.343	.249	.244	.279	,279
<b>,</b> 938 ·	4.01	,398	*344	245	<b>.</b> 154	,116	,116
941	6.00	, 396	, 344	.244	.158	.111	,111
.941	8,02	, 395	.344	.244	.159	.113	,113
.940	9,95	.594	.344	,246	.160	.115	,115
1 202	1,50	,512	.600	.642	.660	,663	.076
1,200	2.00	,463	.402	•417	.517	.505	.500
1,201	5,99	, 598	.340	.254	.255	.273	273
1,200	4,01	. 399	.342	.246	.156	.110	.110
1,201	5,99	• 597	.345	.239	.157	•111	•111
202	7,99	.395	+ 543	.239	.157	112	112
1 200	9,99	. 395	•345	.243	,160	114	.114

-----

ſ	P+ -	r				p/	p _{+ +} for	x/d of ·	-				
M _{co}	$\frac{r_{ij}}{P_{\infty}}$	0.591	0.650	0.750	0.850	0.950	1.002	1.050	1.100	1.155	1.200	1.300	1.500
0.000	1.51	.976	.937	.830	. 625	.570	.644	.659	665	- 660	.667	.006	.677
000	1.99	977	938	833	.626	431	400	.548	513	.509	.505	.506	510
000	3,00	400	346	246	271	.278	400	.346	246	271	278	447	278
000	4,01	398	.345	247	154	129	151	345	247	154	129	151	371
000	4,99	. 597	.345	248	,155	,109	082	345	248	155	109	.082	005
000	6,00	396	.345	250	.157	,111	061	.345	250	157	.111	.061	122
000	6.03	.397	.345	251	158	,112	.062	.345	.251	158	112	.065	109
602	1,49	,974	.938	838	.650	632	683	694	698	699	.700	,701	,718
600	1,99	,975	.937	.832	.026	.432	408	560	533	\$28	527	,526	.542
601	3.00	,346	.252	-285	. 300	,431	.402	.346	252	282	.300	.442	.289
601	3,99	.400	.346	.244	.153	.151	169	.346	244	153	,151	.169	.379
,602	5,99	. 398	,345	.246	,155	.109	,150	345	246	155	,109	,150	.154
,601	8.00	,396	.345	.250	.158	.115	.062	345	250	158	.113	.062	.094
,802	1.52	,974	.939	_R42	.661	.640	<b>\$92</b>	,703	707	710	.711	.713	.734
800	1,98	,975	.938	.833	.628	,433	.486	572	554	\$553	.549	.549	.570
,800	2,99	.548	.278	.303	.335	.433	.403	.348	278	.303	,335	.448	,329
801	3,99	.347	.245	<b>1</b> 55	.165	,185	.401	.347	245	155	,165	.185	.369
.800	5,99	,399	.346	.245	.156	,109	,155	.346	245	,156	.109	.155	.162
.800	8,02	. 597	.345	.248	.157	.111	.065	,345	248	157	•111	.095	.094
<b>8</b> 00	9,84	, 397	• 345	.251	158	,113	.963	.345	251	,158	.113	.063	.073
.901	1.50	.975	.936	,838	651	<b>.61</b> 0	• <b>7</b> 8	,693	706	.714	.721	.735	.760
,901	1.97	•974	.930	.832	•50	,430	.462	,562	543	•548	.559	.569	,592
.901	5,99	, 547	.248	.287	,332	.431	.401	.347	248	,287	.332	.442	•456
,901	4.02	. 547	.242	,155	, 137	.201	.401	.347	.242	155	.137	.201	.318
901	5,99	\$99	.346	.244	155	109	,126	,346	244	,155	.109	126	.150
899	8.01	. 398	•345	.247	,156	.111	*0e5	.345	247	,156	.111	.065	,096
.899	9,99	. 596	•345	.250	<b>158</b>	.112	.065	.345	,250	<b>,</b> 158	,112	.065	.077
940	1 49	.972	.933	.835	.643	.570	. 655	.669	.679	.699	•115	•733	.767
,940	2.00	.975	.935	.832	.050	,429	.409	•233	.514	•253	• 536	,557	<b>∎</b> 589
.940	2,98	.347	.243	,238	.272	.431	.402	.347	_243	.238	.272	.463	.445
938	4,01	,547	.240	.154	.115	.238	.401	•347	.240	154	<b>↓</b> 115	.238	<b>307</b>
941	6,00	.599	.346	.244	,156	.109	.143	.346	.244	<b>.</b> 150	.109	.143	<b>1</b> 52
.941	8.05	. 597	. 345	.246	<b>1</b> 56	.111	.065	.345	.246	156	<b>111</b>	.062	090
940	9,95	+ 397	.345	.249	,157	,113	.068	.345	.249	157	.113	.068	,080
1,202	1,50	.975	•935	.835	. 6 3 9	.513	.591	<b>•</b> 643	.644	.656	.065	.694	•740
1,200	2.00	, 398	.935	,832	.625	.427	, 598	<b>411</b>	487	.509	.48.5	,510	•586
1,201	5,99	. 599	.346	.243	.264	.505	.261	.346	,243	.264	. • 295	,261	.427
1,200	4.01	.400	•346	.238	.157	.109	,153	.346	.238	,157	.109	.153	•580
1,201	5,99	. 399	.346	.540	,156	.108	.061	.346	.240	. 156	.108	,061	.119
1.205	7.99	. 598	.345	.242	.155	<b>110</b>	.062	.345	242	,155	•110	.065	•080
1.200	9,99	. 598	.345	.246	.156	<b>,</b> 111	- 062	.345	246	.156	.111	.065	•050

TABLE 12.- STATIC PRESSURES FOR LOW-EXPANSION-RATIO NOZZLE, ROW 12

┱

i

м	^p t,j		p	^{/p} t,j for	x/d of	-	
" <b>`</b> œ	$P_{\infty}$	0.912	1.002	1.050	1.100	1.155	1.200
0,000	1,51	.460	.644	.659	.666	.667	,666
000	1,99	.451	.402	549	512	509	503
000	3,00	<u>, 34</u> 8	.242	.270	285	.270	285
000	4.01	,398	.348	.249	, 151	151	,131
000	4,99	.396	.348	.248	.154	108	,108
.000	6.00	. 395	.348	.248	.156	.109	,109
.000	6.63	.396	,349	.249	.157	.110	.110
,602	1,49	•200	.081	.693	.694	,695	,694
,600	1,99	.452	,419	.560	.528	,524	,520
601	3.00	. 549	.253	,278	.293	,278	,293
,601	3,99	,349	.247	.150	.156	.150	,156
,602	5,99	,397	.348	.245	.154	,108	,108
,601	8.00	.396	.349	.247	,156	.110	.110
802	1,52	• 284	.691	<b>7</b> 01	.703	,705	.704
,800	1,98	.453	.469	•570	.548	.544	.542
800	5.99	,351	\$95	<b>3</b> 01	.316	,301	,316
.801	3,99	<b>.</b> 350	•246	.153	<b>1</b> 69	<b>153</b>	,169
.800	5,99	. 598	.348	•544	<b>153</b>	.108	,108
,800	8.05	.396	.348	.246	156	.110	,110
,800	9,84	•346	-349	.248	.157	.111	+111
.901	1.50	• 558	•081	.697	.704	.713	.719
,901	1,97	.451	.463	<b>.</b> 566	.544	.550	,553
,901	2,99	, 549	.263	.586	.321	.286	. 521
,901	4.02	, 548	.245	.151	.155	.151	,155
,901	5.99	, 399	. 548	.243	.153	.107	.107
,899	8.01	, 597	• 348	.240	,155	109	,109
899	9,99	, 396	.348	.247	,155	.111	.111
940	1.49	,525	.660	.074	.689	703	.713
940	5.00	.450	.417	•544	.521	.525	,753
940	2,98	. 550	-245	.256	284	.256	.284
+ 4.50	4,01	• 348	•244	•151	126	,151	.126
.941	6,00	.344	• 548	.243	.154	.100	108
.941	8.02	.390	• 547	.245	.155	.109	109
.940	9.95	. 390	.540	• 245	.155	.110	+10 650
1,202	1,50	200	1.7/2	.051	• • • • •	, C C O .	
1,200	2.00	,348	<b>*</b> .5/9	• 3/9	+454 353	94/3	4/9
1,200	2.44	. 344	• <u>540</u>	• 649	.255	.231	<b>457</b>
1 204	4.01	.349	e C (4 )	173	• [ 4 4	103	10-
1,201	7 00	1 101	• 547	• • • • • •	+174 +EE	.107	107
1,202	1.94	1 397	• <u>54</u> /	• 41	•155	•109	14.0
1,200	9,99	. 395	• 548	.242	.155	•110	•110

TABLE 13.- STATIC PRESSURES FOR LOW-EXPANSION-RATIO NOZZLE, ROW 13

and a second second

-

м	P _{t,j}		$p/p_{t,j}$ for x/d of -									
**œ	₽ _∞ .	0.573	0.591	0.650	0.750	0.850	0.912	0.950	1.002	1.050	1.100	
0.000	1.51	.997	.975	.934	.828	.633	,483	.573	,638	.660	.666	
.000	1.99	,997	.976	.934	<u>830</u>	,631	.467	.428	407	.528	,513	
.000	3,00	.398	•350	.248	.265	.243	.387	.426	.398	,350	.248	
.000	4.01	.395	• 349	•242	.151	.135	.263	.424	.395	.349	.242	
,000	4.99	.393	• 34.9	.242	.153	105	,159	.423	.395	.349	.242	
.000	6,00	.392	• 547	•244	.154	•107	.081	.423	.392	• 547	,244	
.000	0,03	.392	.547	.245	.154	108	• • / 0	.423	.392	. 547	.245	
,002	1.49	.998	.974	.434	.855	.070	13/7	•650	.674	.687	.091	
	1.99	.997	974	.935	827	+033	• 466	.428	435	.537	.526	
.001	5.00	. 399	• 349	.270	.270	.200	.466	427	.399	.349	.270	
.001	5.99	.397	.344	,241	.150	.147	.220	.426	, 397	.349	.241	
.002	5,99	, 394	. 548	.242	.151	.113	157	.424	. 394	.348	.242	
.001	8.00	+ 245	. 547	.245	153	•114	. 063	.422	.395	.347	.245	
, 80e	1,52	,444	.975	.940	.836	.669	,592	<b>6</b> 41	.683	,694	,698	
800	1,98	.998	.976	.937	.828	.635	.466	.431	.504	.553	.544	
,800	5.44	, 399	.348	.304	.289	,315	.467	.429	. 399	,348	.304	
.801	3,99	. 598	.349	.239	.158	,102	,219	,428	398	.349	,239	
.800	5.99	. 594	.348	<b>,</b> 238	.151	.114	,161	,425	.394	.348	.238	
.800	8,02	. 592	.347	.242	,151	.117	.061	.424	.395	,347	.242	
,800	9.84	. 591	.346	.246	.155	.118	• ⁰⁶⁵	.423	391	.346	.246	
.901	1,50	.998	.975	.939	.832	.660	.570	.055	_675	.691	,703	
,901	1.97	,997	.975	•936	.826	.632	.465	<b>428</b>	_490	•547	•245	
.901	5.44	• 397	.343	.285	.279	,322	,467	.427	397	.343	,285	
.901	4.02	. 396	• 344	,235	153	153	.241	,427	,396	• 344	₊235	
.901	5,99	,393	•342	.235	149	.114	.073	,425	.393	.342	,235	
.899	8,01	• 390	.345	,241	.149	.114	.062	,423	.390	.345	.241	
.499	9,99	.590	•345	.242	.153	.118	.061	423	` 390 م	.345	÷242	
940	1,49	.995	.975	.936	.828	.649	.534	<b>.</b> 578	653	<b>.</b> 671	•688	
940	5.00	.997	.977	,935	.826	.634	.404	<b>418</b>	412	.5555	•255	
.940	5,98	. 399	.343	,243	.254	,293	.466	,421	.399	.343	243	
938	4.01	. 395	+342	,238	<b>155</b>	,142	,251	,421	.395	.342	<b>*</b> 538	
941	6,00	. 594	• 541	.239	152	,115	.099	,426	394	.341	239	
.941	8,02	, 593	.342	.239	.157	.117	.061	.421	.393	.342	<b>.</b> 239	
.940	9,95	.389	.341	.239	.153	,120	.062	.421	.389	.341	.239	
1,202	1,50	.998	.976	.936	<b>828</b>	.648	.501	,498	,553	<b>_611</b>	.625	
1,200	2,00	. 195	• 362	.935	.826	.636	.460	<b>422</b>	395	.362	.458	
1,201	2,99	. 596	• 344	.238	.247	,229	.244	.423	, 396	.344	,238	
1,200	4.01	.595	.344	.238	.154	.147	126	,423	, 396	.344	,238	
1,201	5,99	,395	.344	.238	<b>.</b> 154	.119	.064	.422	395	. 344	,238	
1,205	7,99	,392	.343	.242	<b>15</b> 4	,120	.063	.423	.392	.343	.242	
1,200	9,99	• 591	. 541	.243	154	.120	063	.417	.391	.341	,243	

.

TABLE 14.- Concluded

	^p t,j	₽ı	^{'p} t,j for	x/d of	-
Mα	₽∞	1.155	1.200	1.300	1.500
0,000	1.51	.667	.000	.000	.670
000	1,99	,507	.506	.504	506
000	3.00	.265	.293	.387	315
000	4.01	151	.135	263	264
000	4 99	.153	.105	159	205
000	6.00	154	107	.081	.177
000	6.63	154	108	.070	160
506	1.49	691	.691	.696	708
600	1 99	.517	516	518	.534
601	3.00	.270	288	404	.336
601	5.99	.150	147	220	.289
602	5.99	.151	.113	.157	.169
601	8.00	.153	-114	.063	107
802	1.52	699	701	.707	.721
800	1.98	.538	539	541	558
800	2.99	289	.315	417	380
801	3.00	.158	.162	219	201
8001	5 00	.151	114	161	170
800	8 02	151	117	061	101
800	9 84	155	118	045	101
901	1 50	707	712	725	7/16
8 7 9 1 9 6 1	1 07	5/12	●/1C 5/17	612J 657	6/40 575
001	3 00	270	233	1 1 1 1 1 1 1 1	• <u>-</u>
a 701	6,77	+ C / 7 1 C 7	+ 222	.421	.420
,901	4,92	*T22	•155	.241	.212
.901	<b>D</b> • 99	+149	•114	.073	.151
.844	8,01	.149	<b>114</b>	.062	.100
.899	4,44	153	115	.061	.075
.940	1.49	.046	./0/	./24	.747
940	2,00	• 2 5 0	*554	.545	.566
• 440	5.48	,254	.295	.425	,413
938	4,01	•155	•142	.251	.275
.941	6.00	+152	•115	.099	,153
.941	8,02	•157	•117	.061	.095
940	9,95	,155	• ) 50	.062	.077
1,205	1.50	.642	•647	.690	•709
1.200	5.00	.456	.484	.495	562
1,201	2,99	.247	•556	.244	.341
1.200	4.01	•154	•147	.126	,223
1.201	5,99	.154	•119	.064	.098
1,202	7,99	,154	,120	.063	.074
0.05.1	9,99	.154	,120	. ú63	.061

4

and the second of the second o
м	^p t,j				p/Pt,j	for x/d	of -	<u></u>		
*****	₽∞	0.000	0.300	0.560	0.661	0.763	0.814	0.889	0.942	0.990
0.000	1,50	.904	.888	.856	.815	.638	,572	.478	495	.635
000	2,01	.394	.334	854	810	633	566	469	394	334
000	3,02	,393	.333	853	808	,632	,563	466	393	353
000	4.02	,393	,332	.857	,821	.640	,570	.467	393	332
000	4,12	, 393	.331	,853	.813	.644	,568	465	393	,331
.601	1,50	.901	-892	.854	.819	.645	.572	.476	455	.643
,603	2.01	. 594	•335	.853	.816	.640	,568	.469	394	,332
,603	3.01	.394	,335	.853	.815	<b>63</b> 8	,565	.467	394	,333
<b>6</b> 01	4.00	, 593	,332	.853	.816	.637	•565	.467	393	.332
602	5,06	.393	.332	.853	.816	.636	• 564	,466	393	.332
.801	1,49	.902	.893	.854	.817	.647	,571	.477	560	.659
<b>805</b>	2,02	.394	,333	.852	,812	<b>-</b> 641	.567	.469	394	.333
.801	3.00	.394	.334	.852	.811	.639	<b>,</b> 565	.468	394	.354
.801	4.01	.393	,332	.852	.810	<b>,</b> 637	• 564	.467	393	,332
.801	5,84	.393	<b>331</b>	.853	.812	<b>,</b> 636	.564	.466	.393	.331
,900	1.50	.901	.890	.854	.817	.648	,569	,479	602	,667
,903	2,00	. 593	• 333	.852	.813	.643	• 565	.469	393	, 333
,902	3.01	.393	.334	.853	.810	.640	,565	.468	393	.334
,901	4,02	. 393	,333	<b>.</b> 853	. 810	639	.564	,467	. 393	,333
,901	6.04	.392	• 331	.853	.810	<b>,63</b> 8	,563	.466	.392	.331
.902	6.31	,393	.331	.853	- <mark>.</mark> 811	<b>,638</b>	• 564	.466	393	.331
,943	1,50	.898	.887	<b>.</b> 852	.811	.644	<b>,</b> 566	.499	.621	<b>677</b>
_941	2.00	,391	•335	.850	.807	.639	<b>,</b> 562	,468	.391	,332
,942	3.00	,391	•335	<b>.</b> 85v	.806	.638	,563	,466	391	,332
,942	4.03	• 395	<b>3</b> 31	<b>.</b> 851	,805	.637	,562	,466	.392	.331
_942	6.05	, 392	,331	.851	.806	.637	.562	.465	.392	,331
,941	6,51	.392	.331	.852	<b>806</b>	,637	<b>,</b> 563	.465	392	.331
1,199	1,51	.898	.885	<b>.</b> 849	,817	<b>645</b>	• 561	.471	_443	.603
1,200	1,99	.392	•333	.853	.813	.643	<b>,</b> 561	.470	.392	.333
1,200	3,01	.391	•334	,853	.810	,639	<b>,</b> 563	.469	,391	.334
1,201	4,01	• 393	• 335	.855	.809	<b>,</b> 639	. 564	<b>,</b> 468	393	,332
1.201	6.00	• 395	•335	.853	.808	.637	<b>,</b> 563	,467	.392	,332
1,201	7,99	•395	. 332	.853	.808	.636	<b>5</b> 63	.466	,392	,332
1,200	8,67	,392	•335	,853	.808	<b>6</b> 36	.563	466	,392	• 335

İ

____

-

# TABLE 16.- STATIC PRESSURES FOR HIGH-EXPANSION-

- Alighter and a second

1.1

## RATIO NOZZLE, ROW 2

$P_{\infty}$ $0.763$ $0.942$ $0.000$ $1.50$ $652$ $572$ $000$ $2.01$ $598$ $398$ $000$ $3.02$ $385$ $385$ $000$ $4.02$ $583$ $383$ $000$ $4.02$ $583$ $383$ $000$ $4.02$ $583$ $383$ $000$ $4.02$ $583$ $383$ $000$ $4.02$ $583$ $383$ $000$ $4.02$ $583$ $383$ $601$ $1.50$ $648$ $548$ $603$ $2.01$ $391$ $391$ $603$ $3.01$ $383$ $383$ $602$ $5.06$ $582$ $382$ $801$ $1.49$ $649$ $592$ $802$ $2.02$ $391$ $391$ $801$ $3.00$ $384$ $383$ $801$ $5.84$ $382$ $383$ $801$ $5.84$ $382$ $383$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $582$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $381$ $381$ $942$ $6.02$ $381$ $381$ $942$ $6.02$ $381$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ <th>M</th> <th>^pt,j</th> <th>p/p_t,</th> <th>j for of -</th>	M	^p t,j	p/p _t ,	j for of -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	, <b>**</b> œ	₽∞	0.763	0.942
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000	1,50	.652	.572
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000	2,01	598	.398
000 $4.02$ $383$ $383$ $000$ $4.12$ $383$ $383$ $601$ $1.50$ $648$ $548$ $603$ $2.01$ $391$ $391$ $603$ $3.01$ $383$ $383$ $601$ $4.00$ $383$ $383$ $602$ $5.06$ $582$ $382$ $801$ $1.49$ $649$ $592$ $802$ $2.02$ $391$ $391$ $801$ $1.49$ $649$ $592$ $802$ $2.02$ $391$ $391$ $801$ $3.00$ $384$ $384$ $801$ $4.01$ $383$ $383$ $801$ $5.84$ $382$ $382$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $582$ $582$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $4.03$ $581$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $382$ $1200$ $3.01$ $382$ $382$ $1200$ $3.01$ $382$ $382$ $1201$ $4.01$ $581$ $38$	000	3.02	385	.385
000 $4, 12$ $383$ $383$ $601$ $1, 50$ $648$ $548$ $603$ $2, 01$ $391$ $391$ $603$ $3, 01$ $383$ $383$ $601$ $4, 00$ $383$ $383$ $601$ $4, 00$ $383$ $383$ $602$ $5, 06$ $582$ $382$ $801$ $1, 49$ $649$ $592$ $802$ $2, 02$ $391$ $391$ $801$ $3, 00$ $384$ $384$ $801$ $4, 01$ $383$ $383$ $801$ $5, 84$ $382$ $382$ $900$ $1, 50$ $648$ $611$ $903$ $2, 00$ $590$ $390$ $902$ $3, 01$ $383$ $383$ $901$ $4, 02$ $382$ $382$ $901$ $6, 04$ $362$ $382$ $902$ $6, 31$ $382$ $382$ $901$ $6, 04$ $362$ $382$ $902$ $6, 31$ $382$ $382$ $943$ $1, 50$ $646$ $627$ $941$ $2, 00$ $391$ $391$ $942$ $4, 03$ $381$ $381$ $942$ $6, 02$ $381$ $381$ $941$ $6, 51$ $381$ $381$ $941$ $6, 51$ $381$ $381$ $941$ $6, 51$ $381$ $381$ $941$ $6, 51$ $381$ $381$ $920$ $3, 01$ $382$ $382$ $1, 200$ $1, 99$ $385$ $382$ $1, 201$ <td< td=""><th>000</th><td>4,02</td><td>. 383</td><td>.383</td></td<>	000	4,02	. 383	.383
601 $1,50$ $648$ $548$ $603$ $2,01$ $391$ $391$ $603$ $3,01$ $383$ $383$ $601$ $4,00$ $383$ $383$ $602$ $5,06$ $582$ $382$ $801$ $1,49$ $649$ $592$ $802$ $2,02$ $391$ $391$ $801$ $3,00$ $384$ $384$ $801$ $4,01$ $383$ $383$ $801$ $5,84$ $382$ $382$ $900$ $1,50$ $648$ $611$ $903$ $2,00$ $590$ $390$ $902$ $3,01$ $383$ $383$ $901$ $4,02$ $582$ $582$ $901$ $6,04$ $382$ $382$ $902$ $6,31$ $582$ $382$ $901$ $6,04$ $382$ $382$ $902$ $6,31$ $582$ $382$ $902$ $6,31$ $582$ $382$ $943$ $1,50$ $646$ $627$ $941$ $2,00$ $391$ $391$ $942$ $4,03$ $581$ $381$ $942$ $6,02$ $381$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $1200$ $3,01$ $382$ $382$ $1201$ $4,01$ $581$ $381$ $1201$ $6,00$ $382$ $382$ $1201$ $7,99$ $581$ $3$	000	4.12	.383	.383
603 $2.01$ $391$ $391$ $603$ $3.01$ $383$ $383$ $601$ $4.00$ $383$ $383$ $602$ $5.06$ $582$ $382$ $801$ $1.49$ $649$ $592$ $802$ $2.02$ $391$ $391$ $801$ $3.00$ $384$ $384$ $801$ $4.01$ $383$ $383$ $801$ $5.64$ $382$ $382$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $582$ $582$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $901$ $6.04$ $582$ $382$ $902$ $6.31$ $382$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $4.03$ $381$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $381$ $1200$ $1.99$ $385$ $382$ $1201$ $4.01$ $581$ $381$ $1201$ $7.99$ $581$ $381$	601	1,50	.648	,548
603 $3,01$ $383$ $383$ $601$ $4,00$ $383$ $383$ $602$ $5,06$ $582$ $382$ $801$ $1,49$ $649$ $592$ $802$ $2.02$ $391$ $391$ $801$ $3,00$ $384$ $384$ $801$ $4.01$ $383$ $383$ $801$ $5.84$ $382$ $382$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $582$ $582$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $4.03$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $381$ $1200$ $3.01$ $382$ $382$ $1201$ $4.01$ $581$ $381$ $1201$ $6.00$ $382$ $382$ $1201$ $7.99$ $581$ $381$	603	2.01	.391	,391
601 $4,00$ $383$ $384$ $602$ $5,06$ $582$ $382$ $801$ $1,49$ $649$ $592$ $802$ $2,02$ $391$ $391$ $801$ $3,00$ $384$ $384$ $801$ $4,01$ $383$ $383$ $801$ $4,01$ $383$ $383$ $801$ $5,84$ $382$ $382$ $900$ $1,50$ $648$ $611$ $903$ $2,00$ $590$ $390$ $902$ $3,01$ $383$ $383$ $901$ $4,02$ $582$ $582$ $901$ $6,04$ $382$ $382$ $902$ $6,31$ $582$ $382$ $901$ $6,04$ $382$ $382$ $902$ $6,31$ $582$ $382$ $902$ $6,31$ $582$ $382$ $901$ $4,02$ $582$ $382$ $902$ $6,31$ $582$ $382$ $943$ $1,50$ $6446$ $627$ $941$ $2,00$ $391$ $391$ $942$ $4,03$ $581$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $1200$ $1,99$ $385$ $385$ $1200$ $3,01$ $382$ $382$ $1201$ $4,01$ $581$ $381$	.603	3,01	.383	.383
602 $5,06$ $582$ $382$ $801$ $1,49$ $649$ $592$ $802$ $2,02$ $391$ $391$ $801$ $3,00$ $384$ $384$ $801$ $4,01$ $383$ $383$ $801$ $5,84$ $382$ $383$ $901$ $5,84$ $382$ $383$ $900$ $1,50$ $648$ $611$ $903$ $2,00$ $590$ $390$ $902$ $3,01$ $383$ $383$ $901$ $4,02$ $582$ $582$ $901$ $6,04$ $382$ $382$ $902$ $6,31$ $582$ $382$ $902$ $6,31$ $582$ $382$ $902$ $6,31$ $582$ $382$ $902$ $6,31$ $582$ $382$ $943$ $1,50$ $646$ $627$ $941$ $2,00$ $391$ $391$ $942$ $4,03$ $581$ $381$ $942$ $6,02$ $381$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $1200$ $1,99$ $385$ $385$ $1200$ $3,01$ $382$ $382$ $1201$ $4,01$ $581$ $381$	601	4.00	.383	.385
801 $1.49$ $649$ $592$ $802$ $2.02$ $391$ $391$ $801$ $3.00$ $384$ $384$ $801$ $4.01$ $383$ $383$ $801$ $5.84$ $382$ $383$ $901$ $5.84$ $382$ $383$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $582$ $582$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $582$ $382$ $902$ $6.31$ $582$ $382$ $902$ $6.31$ $582$ $382$ $902$ $6.31$ $582$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $4.03$ $581$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $385$ $1.200$ $1.99$ $385$ $385$ $1.200$ $3.01$ $382$ $382$ $1.201$ $4.01$ $581$ $381$ $1.201$ $6.00$ $382$ $382$ $1.201$ $7.99$ $581$ $381$	,602	5,06	• 285	.382
802 $2.02$ $391$ $391$ $801$ $3.00$ $384$ $384$ $801$ $4.01$ $383$ $383$ $801$ $5.84$ $382$ $382$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $582$ $582$ $901$ $6.04$ $362$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $903$ $1.50$ $646$ $627$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $3.00$ $582$ $382$ $942$ $4.03$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $385$ $1.200$ $1.99$ $385$ $385$ $1.200$ $3.01$ $382$ $382$ $1.201$ $4.01$ $581$ $381$ $1.201$ $6.00$ $382$ $382$	801	1.49	<b>,</b> 649	.592
801 $3,00$ $384$ $384$ $801$ $4,01$ $383$ $383$ $801$ $5,84$ $382$ $382$ $900$ $1,50$ $648$ $611$ $903$ $2,00$ $590$ $390$ $902$ $3,01$ $383$ $383$ $901$ $4,02$ $582$ $582$ $901$ $6,04$ $362$ $382$ $902$ $6,31$ $382$ $382$ $902$ $6,31$ $582$ $382$ $902$ $6,31$ $582$ $382$ $943$ $1,50$ $646$ $627$ $941$ $2,00$ $391$ $391$ $942$ $3,00$ $582$ $382$ $942$ $4,03$ $581$ $381$ $942$ $6,02$ $381$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $385$ $1,200$ $1,99$ $385$ $385$ $1,200$ $3,01$ $382$ $382$ $1,201$ $4,01$ $581$ $381$ $1,201$ $6,00$ $382$ $382$ $1,201$ $7,99$ $581$ $381$	.802	5,05	.391	.391
801 $4.01$ $383$ $383$ $801$ $5.84$ $382$ $382$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $382$ $382$ $901$ $6.04$ $382$ $382$ $901$ $6.04$ $382$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $582$ $382$ $902$ $6.31$ $582$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $3.00$ $582$ $382$ $942$ $4.03$ $581$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $385$ $1.200$ $3.01$ $382$ $382$ $1.201$ $4.01$ $581$ $381$ $1.201$ $6.00$ $382$ $382$ $1.201$ $7.99$ $581$ $381$	801	3,00	.384	•384
801 $5.84$ $382$ $382$ $900$ $1.50$ $648$ $611$ $903$ $2.00$ $590$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $382$ $382$ $901$ $6.04$ $382$ $382$ $901$ $6.04$ $382$ $382$ $901$ $6.04$ $382$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $582$ $382$ $902$ $6.31$ $582$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $3.00$ $582$ $382$ $942$ $4.03$ $581$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $385$ $1200$ $1.99$ $385$ $385$ $1200$ $3.01$ $382$ $382$ $1201$ $4.01$ $581$ $381$ $1201$ $6.00$ $382$ $382$ $1201$ $7.99$ $581$ $381$	,801	4.01	.383	• 383
900 $1,50$ $648$ $611$ $903$ $2,00$ $590$ $390$ $902$ $3,01$ $383$ $383$ $901$ $4,02$ $582$ $582$ $901$ $6,04$ $582$ $582$ $901$ $6,04$ $582$ $582$ $902$ $6,31$ $582$ $582$ $902$ $6,31$ $582$ $582$ $943$ $1,50$ $646$ $627$ $941$ $2,00$ $391$ $391$ $942$ $3,00$ $582$ $382$ $942$ $4,03$ $581$ $381$ $942$ $6,02$ $581$ $381$ $941$ $6,51$ $381$ $381$ $941$ $6,51$ $381$ $381$ $1200$ $1,99$ $385$ $385$ $1200$ $3,01$ $382$ $382$ $1201$ $4,01$ $581$ $381$ $1201$ $6,00$ $382$ $382$ $1201$ $7,99$ $581$ $381$	.801	5.84	.382	<b>385</b>
903 $2.00$ $390$ $390$ $902$ $3.01$ $383$ $383$ $901$ $4.02$ $382$ $382$ $901$ $6.04$ $382$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $902$ $6.31$ $382$ $382$ $943$ $1.50$ $646$ $627$ $941$ $2.00$ $391$ $391$ $942$ $3.00$ $582$ $382$ $942$ $4.03$ $581$ $381$ $942$ $6.02$ $381$ $381$ $941$ $6.51$ $381$ $381$ $941$ $6.51$ $381$ $385$ $1.200$ $1.99$ $385$ $385$ $1.200$ $3.01$ $382$ $382$ $1.201$ $4.01$ $581$ $381$ $1.201$ $6.00$ $382$ $382$ $1.201$ $7.99$ $581$ $381$	900	1,50	•648	.611
902       3.01       383       383         901       4.02       582       582         901       6.04       382       582         902       6.31       582       582         902       6.31       582       582         902       6.31       582       582         903       1.50       646       627         943       1.50       646       627         941       2.00       391       391         942       3.00       582       382         942       4.03       581       381         942       6.02       581       381         941       6.51       381       381         941       6.51       381       381         941       6.51       381       381         1200       1.99       385       385         1200       3.01       382       382         1201       4.01       581       381         1201       6.00       382       382         1201       7.99       581       381	.903	2.00	. 390	.390
901       4.02       382       382         901       6.04       382       382         902       6.31       382       382         943       1.50       646       627         941       2.00       391       391         942       3.00       582       382         942       4.03       581       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         942       6.02       381       381         1200       1.99       385       385         1200       3.01       382       382         1201       6.00       382       382	506	3,01	.383	.383
901       6.04       382       382         902       6.31       382       382         943       1.50       646       627         941       2.00       391       391         942       3.00       582       382         942       4.05       581       581         942       6.02       581       381         941       6.51       381       381         942       6.02       581       381         941       6.51       381       381         942       6.02       581       381         943       1.51       647       487         1.200       1.99       385       385         1.200       3.01       382       382         1.201       4.01       581       381         1.201       6.00       382       382         1.201       7.99       581       381	,901	4,02	. 382	.382
902       6.31       .382       .382         943       1.50       .646       .627         941       2.00       .391       .391         942       3.00       .582       .382         942       4.03       .581       .381         942       6.02       .581       .381         941       6.51       .381       .381         942       6.02       .581       .381         941       6.51       .381       .381         941       6.51       .381       .381         1.941       6.51       .381       .381         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .381       .381         1.201       6.00       .382       .382         1.201       7.99       .581       .381	,901	6.04	. 382	•382
943       1.50       .646       .627         941       2.00       .391       .391         942       3.00       .582       .382         942       4.03       .581       .381         942       6.02       .381       .381         941       6.51       .381       .381         942       6.02       .381       .381         941       6.51       .381       .381         1.199       1.51       .647       .487         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .381       .381         1.201       6.00       .382       .382         1.201       7.99       .581       .381	.902	6.31	. 582	• 382
941       2.00       .391       .391         942       3.00       .582       .382         942       4.03       .581       .381         942       6.02       .581       .381         941       6.51       .381       .381         941       6.51       .381       .381         941       6.51       .381       .381         1.199       1.51       .647       .487         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .381       .381         1.201       6.00       .382       .382         1.201       7.99       .581       .381	,943	1,50	.046	.627
942       3.00       .382       .382         942       4.03       .381       .381         942       6.02       .381       .381         942       6.02       .381       .381         941       6.51       .381       .381         1.199       1.51       .647       .487         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .381       .381         1.201       6.00       .382       .382         1.201       6.00       .382       .382         1.201       6.00       .382       .382         1.201       6.00       .382       .381	.941	2.00	.391	.391
942       4.03       .381       .381         942       6.02       .381       .381         941       6.51       .381       .381         1.199       1.51       .647       .487         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .581       .381         1.201       6.00       .382       .382         1.201       6.00       .382       .382         1.201       7.99       .581       .381	.942	5,00	.582	. 582
942       0.02       .361       .381         941       6.51       .381       .381         1.199       1.51       .647       .487         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .581       .381         1.201       6.00       .382       .382         1.201       6.00       .382       .382         1.201       7.99       .581       .381	.942	4.03	+ 251	<b>1361</b>
• 941       • 951       • 361       • 361         1 199       1 51       • 647       • 487         1 200       1 99       • 385       • 385         1 200       3 01       • 382       • 382         1 201       4 01       • 581       • 381         1 201       6 00       • 382       • 382         1 201       6 00       • 382       • 382         1 201       7 99       • 581       • 381	,942	0,02	, 301	• 581
1.199       1.91       .047       .487         1.200       1.99       .385       .385         1.200       3.01       .382       .382         1.201       4.01       .581       .381         1.201       6.00       .382       .382         1.201       7.99       .581       .381	, 441	0,01	• 301 647	• 361
1,200       3,01       ,382       ,382         1,201       4,01       ,381       ,381         1,201       6,00       ,382       ,382         1,201       6,00       ,382       ,382         1,201       6,00       ,382       ,381         1,201       7,99       ,581       ,381	1,199	1 00	•04/ 195	+487 205
1.201     3.01     .302     .302       1.201     4.01     .381     .381       1.201     6.00     .382     .382       1.201     7.99     .581     .381	1 200	3 11	182	107
1,201         6,00         ,382         ,382           1,201         7,99         ,581         ,381	1 201	4.01	+ 302 - 581	- 302
1,201 7,99 381 381	1 201	6.00	.382	.301
+ # w x +	1 201	7.99	. 381	- 381
1.200 8.67 382 382	1.200	8.67	.382	.382

North State State Street St

**-**

{~_j

### RATIO NOZZLE, ROW 3

м	^p t,j	p/pt,j	for x/c	i of -
	$P_{\infty}$	0.763	0.942	1.018
0.000	1.50		,658	.061
.000	5.01	,585	.486	.491
.000	3,02	.316	.327	.327
.000	4.02	•258	,245	.245
.000	4,12	.254	•239	.239
.601	1,50	.649	,596	,638
_603	2.01	.574	.463	.469
,603	3,01	.300	.316	.316
.601	4.00	.256	.237	.237
.605	5.06	.239	.190	.190
.801	1.49	.651	.574	.649
.802	2.02	• 574	.453	.454
801	5.00	. 504	.510	,510
	4,01	• <b>25</b> 7	.235	.435
•001		, < 38	•1/1	•1/1
.900	1.50	+ 0 7 3 5 7 4	• 5 / /	*001 #50
903	2.00	• <b>7 / 0</b>	• 457	.454
870E	3.01	950 •310	• <u>5</u> 1 0	- <u>-</u> - 1 V 7 P
901	4 <u>0</u> 0 2	228	170	170
• 701 • 701	6 31	227	145	145
9 / L.	1 50	- CJ7 65/1	610J 60X	+105 
945	2 00	577	 	.072
9/12	3 00	415	218	***/E 318
942	4.03	257	- 242	.242
942	6.02	.237	.174	174
941	6.51	237	163	- 163
1 199	1.51	609	521	602
1 200	1.99	323	411	323
1.200	3.01	294	256	256
1.201	4.01	253	.217	.217
1 201	6.00	.237	.173	173
1.201	7,99	.237	.144	144
1.200	8.67	.237	135	135

_____

Salara and

4

м	P _t ,j					C _p for	x/d of -				
1 ¹¹ 00	P _∞	-0.100	0.000	0.100	0.150	0.200	0.250	0.300	0.400	0.450	0.490
0,000	1,50	.000	.000	000	000	000	.000	000	.000	000	000
000	2,01	-,000	000	- 001	-,001	-,001	- 001	- 000	- 000	001	- 000
000	3,02	001	001	-,001	-,001	= 002	- 002	- 001	- 001	-,001	• 001
000	4,02	.003	,002	.002	002	500	001	002	2002	002	003
000	4.12	•.000	001	001	-,001	-,002	- 001	-001	• 001	-,001	-,000
,601	1,50	=,167	-,275	-,345	- 348	-,327	- 296	• 229	• 097	026	.057
.603	2.01	<b>=</b> ,169	=,279	- 354	=,356	-,341	-,296	= 233	= 110	,016	040
603	3,01	<b>*</b> ,170	-,270	-,346	-,358	-,335	-,295	= 244	<b>=</b> <u>114</u>	.016	.036
,601	4,00	<b>*</b> .171	₽,280	-,353	•,356	-,331	<b>-</b> ,293	•.228	• 091	.023	<b>5</b> 90
605	5,06	-,168	<b>=</b> 275	-,342	<b>=</b> , <u>3</u> 39	=,316	-,281	217	-,079	,034	064
.801	1.49	=,179	317	-,438	<b>-</b> ,446	• 426	- 347	-,251	• 060	.013	.031
<b>802</b>	5.05	=,185	<b>=,</b> 321	=_451	<b>*</b> _462	-,433	• • • 52	<b>*</b> 259	= 066	.006	.027
.801	3.00	-,184	• 317	-,436	- 444	-,404	• 333	• 243	- 050	.021	.036
,801	4,01	<b>#180</b>	<b>**</b> 321	-,440	<b>=</b> _449	<b>=</b> _411	• 333	-,240	- 091	.021	.043
.801	5.84	-,170	=,306	-,406	<b>⇒</b> _415	-,385	=,510	=,216	<b>●</b> _067	032	.050
,900	1,50	= 146	299	-,483	<b>=</b> _577	<b>=</b> _655	-,570	- 265	= 115	084	074
,903	2.00	-,147	<b>=</b> ,297	-,485	<b>-</b> ,568	-,658	=*055	<b>-</b> ,306	= 162	=,130	-,122
<b>-</b> 902	3,01	= 149	-,297	- 485	<b>=</b> _553	<b>#</b> _659	050	- 285	<b>≈</b> ,142	=,115	-,101
,901	4.02	•.151	<b>+</b> ,296	<b>-</b> 481	541	<b>*</b> ,656	=,509	• 233	-,102	=,076	<b>=</b> ∎058
.901	6,04	-146	-,296	=,482	-,532	- 021	-,560	=,159	- 038	<b>=</b> _010	.005
902	6,31	=,143	-,294	<b>-</b> ,473	<b>=</b> ,519	=,624	- 554	+,171	=_049	<b>=</b> _014	.005
,943	1,50	•,118	-,250	-,431	-,518	-,593	-,060	<b>-</b> .657	= 269	- 232	=,219
.941	5.00	=,110	<b>#1</b> 253	-,428	• 517	-,501	=_671	•.650	<b>*</b> .276	="538	-,239
.942	3,00	-,108	-,251	- 424	<b>•</b> •517	= 598	=.674	-,711	= <u>.</u> 286	=_244	=,244
.942	4,03	<b>*</b> ,117	<b>+</b> ,257	-,431	-,517	- 599	= 669	-,604	= 247	<b>#</b> ,201.	=,196,
.942	6.05	=,124	= 264	-,437	=,523	=,606	-,033	•,312	=,160	<b>m</b> ,130	<b>*</b> ,115
.941	6,51	=,110	=.260	<b>-</b> ,434	=,518	• 594	<b>•</b> • <b>5</b> 66	•,251	<b>-</b> ,133	• 118	= 109
1,199	1,51	=.015	<b>=</b> ,094	204	-,263	=,291	-, 570	- 424	=_482	= 330	=,256
1.200	1,99	-,013	090	- 505	= 236	=,316	<b>*</b> , 571	• 422	=_482	= 3.35	=,263
1.200	5.01	-,014	092	202	251	-,517	= 574	- 423	<b>-</b> .477	-,345	<b>*</b> ,266
1.201	4.01	=,016	095	=.203	•.235	- 514	=, 375	• • 423	= 473	- 343	<b>-</b> ,272
1.201	6.00	015	-,096	-,203	•.230	-,240	* 576	<b>*</b> ,425	-,472	- 357	-,264
1,201	7,99	•.017	098	-,206	<b>-</b> ,233	=,287	• 571	+ 423	=_451	-,278	-,230
1,200	8,67	<b>=</b> ,013	-,095	505	=_230	+,207	268	<b>*</b> 423	- 450	<b>-</b> ,267	=,226

SAME AND ADDRESS OF

TABLE 18.- Concluded

◄-

M_	Pt,j		c	p for x	/d of -		
	P _∞	0.542	0.594	0.699	0.804	0.909	1.018
0,000	1,50	,000	-,000	000	000	000	005
.000	2.01	001	<b>-</b> ,001	000	001	-,002	-,012
000	3,02	=,001	001	005	=,002	<b>≠</b> •003	017
•000	4.02	.002	•005	.005	.001	.000	• 015
.000	4,12	001	<b>=</b> _001	001	-*005	<b>=</b> _003	=,015
.601	1,50	,056	•048	.044	037	.047	•055
.603	2,01	046	.034	.017	018	<b>.</b> 057	=,291
.603	3.01	.034	.027	.010	035	-,070	<b>-</b> .211
.601	4.00	.057	.043	.027	.005	=,012	<b>#064</b>
<b>509</b>	5.05	.065	.053	.043	.028	034	.046
.801	1.49	.050	,055	.051	.049	048	045
.802	2.02	.039	.039	.027	008	• • 053	<b>*</b> •455
.801	3.00	045	.045	.035	-003	-,042	- 140
.801	4,01	aUS7	.061	.052	.044	.023	.006
.001	2.04	0/5	,085	.080	.040	,105	•156
900	1,30		<b>#</b> •019	.050	.069	.079	.070
903	2.00		- 077	.024	.025	000	= 149
902	2.01		• 033	.020	• V <b>∠</b> Ø	.001	· · · · · · · · · · · · · · · · · · ·
901	6 0/	0/1	004	+ 102	137	1/16	
901	6 31	041	072	• 10.5	• 1 <i>E 1</i>	158	187
043	1.50	<b>.</b> 171		- 01%	052	084	805
0µ1	2.00	186	- 127	- 034	0.05E	021	- 066
0/12	3.00		- 128	- 073	011	018	- 063
942	4.03	1 9.150	096	- 002	049	.059	.033
942	6.02	077	.043	.048	.098	.127	.143
941	6.51	- 074	-019	.067	.116	.153	.162
1 199	1.51	- 186	+ 158	- 092	- 070	- 059	042
1 200	1.99	- 172	+ 146	- 094	- 072	- 080	= . 53A
1.200	5.01	- 212	= 171	- 087	- 057	- 049	- 084
1.201	4.01	- 202	= 166	101	- 033	.007	042
1.201	6.00	- 205	161	- 043	.040	094	.154
1 201	7,99	- 169	- 125	020	.090	.136	195
1,200	8,67	- 173	• 122	024	.098	144	200

____

### RATIO NOZZLE, ROW 5

-				
M	^p t,j	c _p	for x/d	of -
- 00	$\mathbb{P}_{\infty}$	0.000	0.490	0.804
0.000	1,50	-,000	000	000
.000	2,01	-,001	-,000	001
.000	3.02	-,001	001	-,002
.000	4.02	.003	.003	.001
000	4.12	<b>=</b> .000	-,000	-,002
<b>.</b> 601	1,50	-,235	•065	.025
603	2,01	<b>*,</b> 235	.052	010
,603	3,01	<b>**</b> 558	,052	016
.601	4.00	• 229	.064	.005
• <b>•</b> 605	5.06	••221	.069	•028
.801	1,49	-,265	.039	.036
805	2,02	•,267	.035	.000
.801	3,00	<b>*</b> •569	.036	.004
.801	4.01	=,265	• 057	.042
801	5.84	•,256	.085	.098
900	1,50	-,251	065	.066
903	2.00	-,248	-,085	.037
902	5,01	-,243	069	.040
,901	4.02	=.251	=.047	.065
,901	6.04	- 240	.003	122
902	0,51	=,230	•021	.135
.943	1,50	•• 415	• 250	.048
.941	2,00	<b>₩</b> ∎209	=,205	.050
.942	5,00	<b>₩,605</b>	=,214	.050
.942	4,03	- 202		,052
. 74C			<b>•</b> • 1 5 <b>5</b>	.096
1 100	1 51	- 062	- 210	,110 - 080
1.199	1921		- 207	
1 200	3 01	- 050	- 201	• 002
1 201	4.01			
1 201	6,00	. 070	- 203	- 044   Ata
1 201	7,99	.072	- 194	0.77
1 200	8.67	075		080
1 * 4 * * * *		<b>I V J</b>	1	1 AV. 7

and the second second second

Scargegram as a state of

	r	r <del></del>										
м	Pt,j					C _p fo	or x/d o	f -				
-**œ	₽∞	-0.100	0.100	0.200	0.300	0.500	0.650	0.800	1.002	1.224	1.400	1.614
0,000	1,50	000	005	.001	000	000	-,000	•.000	•.000	000	• • 000	-,006
,000	2,01	-,000	<b>-</b> 002	.000	-,000	•,000	-,000	001	=_001	-,001	-,001	=,009
000	3,02	001	=.002	001	001	-,001	-,002	-,002	- 002	₹,002	-,001	-,008
.000	4,02	.003	•00S	.003	002	.002	001	.001	- 000	200	.005	.034
000	4.12	-,000	001	-,001	- 001	-,001	- 005	= 002	= 003	-,001	.003	.033
601	1.50	-,118	-,219	-,160	= 124	-,083	-,013	-,051	- 039	017	.069	,186
603	2.01	-,126	-,250	= 164	- 125	- 079	- 068	+ 059	=_048	.018	, V92	,221
605	3,01	=,129	•,216	- 162	- 121	- 080	-,065	- 046	• 045	.010	.117	.290
601	4,00	-,121	805	-,150	= 106	-058	= 029	=,015	- 037	-,017	099	.239
509	5,06	114	-,203	-,150	-,107	- 049	• 015	- 007	- 042	077	027	,261
801	1,49	-,150	270	- 207	- 148	- 088	017	- 042	- 009	045	098	,201
802	5.05	-,150	-,276	-,213	- 157	- 094	-,060	- 048	- 032	0.58	110	,237
801	5.00	<b>=</b> ,154	<b>=</b> ,269	- 208	= 150	- 084	• 049	= 036	• 046	011	120	,294
801	4,01	=,133	-,253	- 192	130	-,050	,001	.007	- 012	- 220	.086	.230
801	5,84	=,128	=,241	-,175	-,108	-,026	.060	041	-015	- 140	=,138	,165
.900	1,50	-,144	-,370	•.359	- 235	-,099	-,029	- 030	• 000	560	.114	<b>,</b> 201
903	2.00	144	-,370	-,372	-,247	-,090	024	024	- 006	075	.147	.258
902	3,01	=,143	-,365	- 367	- 550	-,077	• • 016	-,008	• 018	032	.144	.308
.901	4.02	= 146	362	-,335	-,196	-,068	.006	.020	- 00Z	- 027	091	.263
901	6.04	-,134	•,352	-,269	144	-,027	.055	.071	030	•.124	-,183	,136
,902	6,31	= 137	=,346	-,269	=,138	-,016	060	.074	026	-,142	- 229	.076
,943	1,50	-,117	335	-,389	-,352	-,315	-,085	013	040	. 094	. 138	.211
,941	2,00	-113	-,337	-,392	-,362	-,530	-,084	-,010	030	.101	.170	,265
<b>942</b>	3,00	-,114	327	377	-,344	-,251	-,067	-,002	017	.070	,178	.320
,942	4.03	-,119	-,332	-,390	• 349	- 559	+,031	.037	031	-,000	<b>113</b>	<b>,28</b> 8
942	6.05	-,112	335	-,386	-,325	-,074	.039	. 081	048	-,097	-,153	,165
941	6,51	<b>+</b> ,114	336	-,387	=,314	-,052	.060	.099	057	.105	• • 213	.067
1 199	1,51	+,037	-,129	-,194	-,182	-,172	147	=,150	- 189	=,098	-,040	,036
1,200	1,99	-,030	-,130	<b>-</b> , <u>191</u>	-,178	-,170	-,130	• 152	- 155	= 198	-,104	,102
1,200	3,01	<b>-</b> .036	-,132	-,191	-,179	-,170	-,120	= 149	<b>-</b> _088	=,137	<b>*</b> ,209	.067
1,201	4.01	-,036	-131	-,188	-,176	-,171	-,121	• 149	-2045	<b>#</b> .080	-,156	016
1,201	6.00	-,029	-,135	194	- 180	=,168	-,099	- 155	<b>014</b>	<b>#</b> ,046	-,133	-,228
1,201	7,99	-,027	-138	-,195	- 180	-,169	-,003	• 123	.u27	-,038	- 146	-,252
1,200	8,67	-,034	137	-,195	<b>-</b> .180	-,168	<b>*</b> • ⁰⁰⁶	<b>=</b> ,101	<b>8</b> 50	-,037	-,144	-,246

TABLE 20.- PRESSURE COEFFICIENTS FOR HIGH-EXPANSION-RATIO NOZZLE, ROW 6

-

and the state of t

### RATIO NOZZLE, ROW 7

м	^p t,j	cp	for x/d	of -
· · · · œ	₽ _∞	0.150	0.500	0.800
0,000	1,50	.000	+,001	.000
.000	2.01	000	=,002	.000
.000	3.02	<b>•</b> •001		001
.000	4.02	.004	.001	.001
.000	4,12	.001	- • 0 U 1	005
,601	1,50	=,196	<b>=</b> .101	-,050
<b>,603</b>	2.01	-,192	-,098	-,055
,603	3,01	<b>=</b> ,196	087	034
<b>,6</b> 01	4.00	=,180	=.070	.007
<b>,</b> 602	5,06	<b>=</b> :175	<b>*</b> •063	.023
.801	1.49	-,256	<b>-</b> .107	061
802	5.05	-,251	•.098	041
.801	3.00	-,241	095	-,023
.801	4.01	=,234	070	.025
,801	5.84	<b>-</b> ,212	+.043	.066
.900	1,50	=,387	-,096	035
.905	5.00	= 596	-,097	-,018
.902	3,01	= , 394	<b>-</b> .089	.011
.901	4.02	<b>**</b> 377	# <b>.</b> 068	.041
.901	6.04	•,339	<b>■</b> 0.50	.102
.902	6.51	* 358	• 030	.101
.943	1,50	-,301	- 500	038
.941	2.00	<b>~,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• 505	028
.942	3,00	- 3/0	- 520	<b>•</b> •004
1942	4 0 0 0	= <u>3</u> 50	+,203	.040
.942	0,04	- 37A	*• U37	,10Z
,941	0,01	= 177	= 070	.109
1,197	1,21		= 197	<b>*</b> •233
1 200	2 01	- 177	- 102	- 190
1 201	4 01		- 100	- 157
1 201			<b>#1</b> 70	
1 201	7 00	-175	- 100	= 000 - 0E1
1 200	A 67	-177	- 101	- 040
1.200	0.0/	-****	<b>*</b> *171	=.000

N BARREN STREET

	P _{t,j}		<u></u>		C _p for 2	k/d of -			
M _®	₽∞	0.000	0.100	0.200	0.300	0.400	0.500	0.600	0.800
0.000	1,50	.000	.000	000	-,000	-,000	000	000	- 001
000	2,01	-,000	-,000	= 001	= 000	-,000	-,001	-,001	- 008
000	3,02	-,001	-,001	001	= 002	-,002	•,002	-,002	-,007
000	4.02	<b>=</b> 001	<b>-</b> 005	-,002	.002	.001	.001	.001	• 009
,000	4.12	<b>#</b> _001	-,002	005	001	-,002	=.002	=*005	-,011
.601	1,50	-,148	•,192	=,219	=,231	= 281	<b>**</b> 550	<b>*</b> •099	-,073
.603	2.01	= ₁ 151	<b>=</b> ,197	=,224	+.234	• • 283	-,231	<b>#</b> ,103	=,029
,603	3,01	<b>*</b> *151	<b>.</b> 197	- 552	•,233	-,287	-,430	••089	.035
,601	4,00	=.146	<b>-</b> ,192	-,217	= 237	-,280	•,231	077	.098
602	5,06	=.142	-,186	211	•.227	- 205	<b>•</b> ,198	=,046	149
.801	1,49	-,183	-,248	-,281	=.276	-,304	- 205	-,081	• 047
.802	5.05	=,185	=,251	=.286	-,280	= .321	=,216	084	-005
.801	3,00	-,183	-,248	=,282	- 282	= 307	<b>=</b> .214	•,067	<u>057</u>
.801	4.01	<b>•</b> 178	=,241	-,271	=,265	=,300	<b>=</b> ,191	<b>-</b> 040	.119
,801	5.84	= 167	•,226	-,252	-,240	+,262	= 142	.003	.191
,900	1,50	• 191	<b>*</b> •505	- 424	= 467	=,500	=,173	-,089	• 034
,903	2,00	<b>*</b> 189	=,502	- 427	=,496	-,554	=,176	• 087	.007
905	5.01	• 189	=,502	-425	- 459	=,505	#,157	• 069	.070
901	4.02	- 188	= <u>-</u> 500	' <b>≈</b> •418	+ 419		•,132	=,030	.145
.901	0.04	<b>₩</b> •103	<b>₩</b> ₩293	••542	529	<b>*</b> •230	: <b>*</b> • <b>086</b>	,024	.21/
- 90K	0,31	4.102	-,291	<b>**</b> 240	•.298	<b>*</b> • <b>CC</b> 4	<b>₩</b> 074	· • 0 3 5 ·	.224
	1,50	<b>■</b> •154	<b>₩201</b>		- 480	•••00Z	••549	<b>₩</b> •1/4	- 019
,941		# 1 1 5 0 1 5 0	₩ <u>#</u> €04	*• <b>3</b> 40	• <u>•</u> 478	•••072 - 707	- 480	• 105	.010
,942	2 0 U A	■ 15/	• • # # # # # # 	- 700	- 484	- 579	- 204	** <u>*</u> 100	.049
94C 0/2	4 a 0 3	- 152	- 261	- 197		- 257			.140
174C 0/11	6 51	- 152	- 261	- 187	- 475	- 202	- 090	- 0/13	• C C **
4 100	1 51	- 036	- 091	- 172	- 237	- 201	- 613	<b>₩</b> ,043	<u>, c ; r</u>
1 200	1 99	- 036	- 091	- 171	- 214	- 394	- 613		- 10/I
1 200	3.01		- 091	- 171	- 240	- 396	=_610	- 402	• 044
1 201	4.01	- 035	- 090	- 171	- 230	- 394	= g + + 0 m . 51 h	- 402	0.04
1 201	6.00	-,035	- 091	- 171	- 238	- 390		- 376	051
1,201	7.99	- 035	090	- 171	- 243	- 393		- 339	040
1 200	8,67	-,036	= 091	• 171	- 238	- 392	-,604	-,332	066

◄-

1

### RATIO NOZZLE, ROW 9

M	Pt,j		C _p f	or x/d	of -	
1°400	P _∞	0.750	0.920	1.002	1.200	1.400
0.000	1,50	.662	.570	.642	.658	.659
.000	2,01	• 378	<b>• 37</b> 8	.419	.483	,493
.000	3.02	,312	,197	.296	.330	,330
000	4.02	,316	•505	.197	.240	.240
.000	4,12	.310	.209	.192	.232	.232
.601	1,50	.063	•250	.611	.672	.681
,603	2.01	,332	• 353	.353	<b>_</b> 499	,509
.603	3,01	.317	.197	.281	.343	.343
.601	4.00	,316	,196	.185	.228	•558
<b>6</b> 05	5.06	<b>3</b> 08	<b>.</b> 196	.141	.147	.147
.801	1,49	.065	.529	.619	. 594	.705
805	5,05	.323	• 346	.346	.506	<b>.</b> 527
.801	3.00	+310	<b>,</b> 198	.283	,351	,351
801	4,01	.309	.196	.179	•559	•559
801	5,84	<b>,</b> 308.	<b>1</b> 96	.120	.121	<b>121</b>
.900	1.50	.062	.544	.631	.701	<b>7</b> 15
903	5.00	,323	.377	.377	.516	•546
.902	3.01	.309	<b>1</b> 97	.295	.355	<b>355</b>
901	4.02	.309	<b>.</b> 196	.179	,235	.235
901	6.04	.308	,196	.118	,115	,115
902	6.31	• 311	<u>, 196</u>	<b>116</b>	,112	.112
.943	1,50	.059	<b>•</b> 562	.649	.712	,729
.941	5.00	,323	.323	.409	<b>•</b> 527	•559
.942	3,00	.308	,196	.310	.368	,368
.942	4.03	.307	<b>1</b> 95	.186	,261	.261
.942	6.05	,308	,196	.118	.116	.116
.941	6,51	.308	.196	.116	<b>109</b>	.109
1,199	1,51	,654 .	<b>.</b> 464	.531	,592	.625
1.200	1,99	.315	.209	.209	•410	.471
1,200	3,01	.308	.195	.219	<b>,25</b> 8	,258
1,201	4.01	.309	,196	<b>153</b>	.169	.169
1.201	6.00	.308	197	•117	•117	.117
1,201	7,99	.507	.197	•111	.102	.102
1_200	8,67	.507	<b>197</b>	.111	.100	,100

and the state of the

[	p, .	<u> </u>		u. <del></del>		p. for	x/d of				
M	<u>ft,j</u>				P7.	^P t,j ¹⁰¹					
( ^w	₽∞	0.573	0.591	0.650	0.700	0.750	0.800	0.850	0.912	0.950	1.002
0.000	1,50	. 592	.898	.805	.712	,615	.509	.392	490	.489	.528
.000	2,01	.387	•225	,254	.382	,392	.506	.387	252	254	.382
.000	3.02	.386	.251	.223	211	,201	189	279	318	328	.334
.000	4.02	.393	.251	.223	212	.201	189	172	158	141	852
000	4,12	, 396	.251	.253	.212	.201	189	172	158	141	133
,601	1,50	,388	,905	.803	708	,613	506	388	413	480	550
603	2.01	.586	,252	.224	.366	,376	395	386	252	,224	.366
603	3.01	.386	•252	.252	,213	,201	,190	285	317	325	. 531
.601	4.00	.386	.252	<b>.</b> 225	,213	,201	,190	.172	158	,142	181
<b>,6</b> 02	5,06	. 385	.251	.224	,213	.202	,190	.174	159	.142	,128
.801	1.49	.389	.906	.804	708	<b>6</b> 15	,506	389	443	.506	.568
.805	5.05	,385	.253	.225	.344	.373	.391	385	253	225	.344
.801	3.00	. 586	• 253	•552	.213	.201	.191	299	321	,328	.331
801	4.01	,386	,252	,225	.212	.201	,190	.172	158	.141	,216
<b>801</b>	E 5 <b>.</b> 84	. 185	.251	.224	.212	.201	,190	,175	160	.145	.129
.900	1.50	,391	.906	,803	.707	,614	.505	.391	478	,530	.582
903	5.00	, 385	,253	•559	.337	.380	,503	.385	253	,226	.337
902	3.01	.386	.253	.559	.213	.201	,193	,303	323	.328	,331
<b>9</b> 01	4.02	<b>,</b> 386	.253	<b>.</b> 225	.213	.201	.190	,172	158	.141	.237
<b>9</b> 01	6,04	.385	,251	,225	,212	,201	,188	.174	159	.143	,128
<b>9</b> 02	6.31	<b>,</b> \$85	•251	.224	.213	.201	<b>.</b> 189	.174	160	.143	.129
.943	1,50	.392	•903	.801	.705	.613	.502	,392	.496	.550	.603
.941	5.00	.383	<b>.</b> 251	•550	.355	,393	,500	,383	.251	559	, 555
.942	3.00	.384	•225	.224	.212	•500	,192	,311	.326	<b>331</b>	,335
.942	4.03	.385	<b>₽52</b>	.225	.213	.201	.190	.171	.157	.143	.250
.942	6.05	.384	.251	•552	.212	,201	<b>.</b> 189	.174	160	.143	.128
.941	6.51	,385	•251	.224	.212	.200	,189	<b>175</b>	.160	.143	,129
1,199	1.51	,987	•904	•800	.707	<b>.</b> 611	.499	.404	467	.501	•517
1,200	1,99	. 584	•255	<b>.</b> 225	.215	.206	.244	.311	.357	<b>.</b> 225	<b>2</b> 15
1.200	3,01	,385	.254	.224	.213	.199	<b>1</b> 95	<b>1</b> 69	.166	.267	•580
1,201	4.01	.384	•254	•559	.213	.200	.191	.172	157	.142	.127
1,201	6.00	.385	.254	.550	.214	.201	,190	.175	<b>16</b> 0	.144	,129
1,201	7,99	.384	.254	•552	,213	•500	<b>.</b> 188	.174	159	.144	.129
1.200	8.67	.384	.253	.225	.213	. 500	,188	<b>.</b> 175	.159	.144	,129

┥_

TABLE 24.- Concluded

м	Pt,j	1		P	^{'p} t,j for	x/d of	-		
•**œ	$P_{\infty}$	1.050	1.100	1.155	1.200	1.250	1.300	1.400	1.500
0.000	1,50	• 595		.674	.084	.689	.692	.692	,705
000	2.01	•395	.406	.430	.455	.483	.506	,530	.549
000	3,02	,352	,377	.279	.318	, 528	,334	.352	.377
000	4,02	,257	.265	172	<b>.</b> 158	.141	<b>*</b> 558	.257	.265
000	4,12	.242	.249	.172	.158	.141	133	.242	.249
601	1.50	.604	•644	.671	.686	.695	.701	,691	.750
,603	2,01	,376	.395	.435	.474	,513	,537	.544	.570
603	3,01	.346	,376	,285	.317	<b>,</b> 325	.531	.346	.376
.601	4.00	,247	.251	.172	.158	.142	.181	.247	,251
<b>605</b>	5,06	.140	,196	.174	<b>1</b> 59	.142	128	.140	.196
.801	1 49	.015	<b>•</b> 652	.681	.700	.711	.718	.709	,739
<b>-802</b>	5.05	,373	,391	.441	.495	<u>,538</u>	.557	•553	<b>_</b> 581
.801	3,00	<b>,</b> 348	,383	,299	.321	•358	.331	.348	.383
<b>801</b>	4.01	.249	•225	•175	<b>15</b> 8	.141	.216	.249	,252
.801	5,84	<b>,</b> 113	.154	<b>●</b> 175	<b>16</b> 0	.143	,129	.113	.154
.900	1,50	*e55	<b>•</b> 652	.685	<b>,69</b> 8	.711	.721	.722	.749
.903	5.00	<b>3</b> 80	.411	.473	.521	,555	.569	.565	594
902	3,01	• 348	.395	. 303	.325	.328	, 531	.348	.395
,901	4.02	,256	•595	<b>172</b>	.158	.141	.237	<b>,</b> 256	.295
.901	6,04	.114	.146	.174	<b>1</b> 59	.143	128	•114	146
,902	6.31	.113	103	.174	.160	.143	,129	.113	.105
.943	1,50	.643	.675	.700	.715	.726	• / 54	.749	.758
,941	2,00	• 393	.440	.498	.539	.564	,577	.586	.602
942	3.00	.366	,192	.311	.326	• 5 5 1	+ 3 5 5 	.366	,404
.942	4,03	.264	.270	.171	.157	,14.5	.250	.204	. 270
942	6.02	.107	<b>∎153</b>	.174	<b>1</b> 60	145	128	.107	.153
,941	6,51	.107	•092	.175	.160	•145	.129	.107	092
1,199	1,51	.526	•547	•>60	.578	.574	.011	.024	.060
1,200	1,99	.206	•244	.511	.35/	.403	9440	• 474	
1,200	5.01	.290	.512	.104	100	1/13	137	233	202
1,201	4.01	. 222	.222	1/2	•17/	• 1 4 C	130	110	
1 201	6,00	•119	077	.1/5	100	• 1 4 4	120	•117	• U// 6772
1,201	7,99	105	.072	1/4	+177	• 1 4 4	120	102	072
1.200	8,67	102	1 .01C	•1/5	124	+ 1 4 4	124	. LVC	.072

Constantine -

		·					
м	Pt,j		p/	^P t,j ^{for}	x/d of	-	
	$P_{\infty}$	0.912	1.002	1.050	1.100	1.155	1.200
0.000	1,50	.483	.561	.611	.652	.674	.083
.000	2.01	,332	.378	390	408	426	454
.000	3,02	,269	,207	195	.187	005	298
.000	4,02	,251	.253	207	.186	169	155
000	4,12	,253	.230	207	185	.169	.155
.601	1.50	.451	.555	615	.653	.676	688
.603	2.01	.310	.355	383	403	439	478
603	3.01	,261	508	199	188	229	506
601	4.00	,252	.208	199	186	.169	.155
605	5,06	,238	\$09	199	.186	.170	156
801	1,49	,476	.569	623	.661	686	699
802	5.05	. 527	.249	378	415	460	503
.801	3.00	,274	.209	199	.191	259	514
.801	4.01	,253	.209	199	.185	168	155
.801	5,84	,232	.209	199	185	.171	.157
.900	1,50	.495	•578	624	.661	688	708
.903	2,00	• 511	.261	385	.437	489	.531
902	3,01	,271	.209	199	192	267	317
,901	4.02	,253	.210	199	187	168	155
.901	6.04	.233	.208	.199	185	.171	157
.902	6.31	•535	.209	<b>1</b> 99	183	.171	156
_943	1,50	•511	• 501	.646	683	707	.720
,941	5.00	+530	.303	. 397	.456	,508	545
.942	3,00	,265	•503	.197	.191	,291	522
.942	4.03	.249	.209	.198	.186	,167	154
,942	6.02	,232	•508	<b>1</b> 99	.185	,171	157
,941	6,51	.230	•508	<b>,</b> 199	.183	.171	,157
1,199	1.51	.450	.512	,528	.547	,564	,582
1,200	1,99	.514	.515	-50B	.255	,310	, 353
1,200	3,01	•583	.210	•197	.189	,165	,153
1,201	4.01	.234	.210	,198	.186	<b>168</b>	,155
1,201	6,00	•535	.210	<b>1</b> 99	.182	172	,157
1.201	7,99	.218	.510	199	.182	.171	,156
1,200	8.07	• 211	•508	.199	.182	.171	,157

-

TABLE	26	STATIC	PRESSURES	FOR	HIGH-EXPANSION-RATIO	NOZZLE,	ROW	12
-------	----	--------	-----------	-----	----------------------	---------	-----	----

м	^p t,j	1			p/	P _{t,j} for	x/d of -	-			
·**œ	$\mathbb{P}_{\infty}$	0.573	0.591	0.650	0.750	0.850	0.950	1.002	1.050	1.100	1.155
0.000	1,50	. 589	.973	.802	.618	.389	.482	.574	.641	.673	.678
.000	2.01	,377	°550	.349	.365	.377	.250	.349	365	402	.488
000	3,02	.375	.214	.200	,185	<b>177</b>	,155	.277	370	.291	<b>1</b> 55
000	4.02	,388	.229	.550	.201	,173	,156	.146	120	302	.156
.000	4.12	,390	.230	.217	.212	<b>173</b>	,156	.146	118	292	.156
,601	1.50	, 384	<b>•</b> 916	.804	.612	.384	.469	.573	.636	• 668	.683
.603	2.01	.376	•512	.361	.373	.390	.217	.361	.373	. 390	.437
.603	3.01	,376	.213	.201	.189	<b>177</b>	<b>.</b> 154	.278	.330	,316	154
.601	4,00	.376	+213	•201	.189	.173	<b>1</b> 56	.146	<b>.</b> 118	•580	.156
605	5.06	.375	.212	•505	.190	.174	<b>1</b> 56	.147	.119	.160	,156
.801	1.49	, 384	.916	.804	.612	.384	,493	.580	.637	<b>.</b> 672	.689
-805	5.05	.375	.218	,318	,369	.375	,218	,318	.369	.400	•466
.801	3,00	, 576	.213	.201	.190	.178	.176	,284	_315	<b>.</b> 369	<b>176</b>
.801	4.01	• 576	.213	.201	.189	.172	,156	.146	<u>,118</u>	.261	156
801	5,84	• 575	.212	.201	189	.175	157	.147	.119	<b>₽</b> 069	,157
900	1,50	.385	•914	<b>-805</b>	,613	.385	.516	.588	.640	.674	.695
903	2,00	, 575	.218	.283	379	.375	.218	.283	.379	.434	.505
.902	5,01	+ 376	.215	-202	.190	,178	.235	.301	.319	.178	.235
.901	4.02	. 3/6	.215	.201	.189	.172	<b>155</b>	,145	152	.261	,155
.901	6.04	• 375	+212	.201	,189	.174	.157	.147	,119	.069	•157
. 402	6,51	• 375	.212	.201	.189	•174	157	•147	,119	.069	,157
.943	1.50	, 300	.911	•/4/	.611	.300	.539	+616	.665	* 695	.710
.941	2,00	, 372	• 217	.335	.597	.3/2	.217	.535	.397	.460	,524
.942	5.00	• 3 / 5	.212	.200	.189	•17/	+217	.306	.333	+177	.277
942	4,03	274	•212	.201	.189	•1/1	+155	•144	.187	.277	155
942	6.02	, 374	• 21 2	• <b>2</b> 01	.189	174	+157	147	.119	.059	.157
	0,01	+ 3 / 3 DEE	1212	• <b>2</b> V I	.104	•174	.157	•14/	.119	,069	157
1 200	1 00	170 170	• 1/	• O U U 3 A (I	.000	104 266	4472	300	.520	+234	
1 200	X 01	170	211	204	•199	148	, <b>)</b> 18		+199 	• 277	9 318 1 E E
1 201	4 11	372	+C11 212	203	190	173	169	• • • • • • • • • • • • • • • • • • •	.257	• 334	12 7
1 201	6 00	475	212	202	190	170	150	1/1 <u>9</u>	• 1 1 9	070	150
1 201	7 99	374	1 212	- EVE	180	17/1	157	1/17	120	070	1.20
1 200	8 67	374	212	+ EVE	104	17/1	157	• • • • • • • • • • • • • • • • • • •	1 1 2 1	070	1 1 2 7
1.200	0.07	1014	+C1C	.eve	104	• 1 / 4		• [ • /	• • • •	.070	•12/

Contraction of the local division of the loc

### TABLE 26.- Concluded

+

M	Pt,j	p/pt,j	for x/d	of -
	$\mathbb{P}_{\infty}$	1.200	1.300	1.500
0,000	1,50	.082	.683	,688
.000	2,01	•533	•525	,526
.000	3.05	•277	. 370	.291
.000	4.02	.146	•150	-305
.000	4,12	,146	118	\$65
.601	1,50	,690	+698	.716
.603	2.01	,500	.556	,559
.603	3.01	,278	.330	.316
.601	4.00	,146	.118	.286
-602	5.06	.147	.119	.160
.801	1.49	•701	.716	•740
* 80e	2.02	,525	.560	.574
.801	5.00	-284	.315	.369
801	4.01	.146	.118	.261
.801	5.84	147	.119	.069
900	2 00	• / 1 0	,/20	· • /52
-903 -903	2.00	• 247	• 5 / 0	.391
-70£	2.01	1/16	1 3 1 7	-464
+ <del>7</del> 01		● 1 4 5 1 /i 7	110	0 E O I
901	6 81	• + 4 7 1 // 7	110	+ 007 0-0
902	1 50	730	9117 77/1	107 154
9/1	2 00	9 1 E U 55 H	677	•/30 608
9/12	3.00	- 306		• <u>0</u> + 10
942	4.03	144	.187	277
942	59.0	147	.119	1069
941	6.51	147	119	.069
1.199	1.51	578	.619	.676
1 200	1.99	159	455	562
1.200	3,01	144	259	334
1.201	4.01	145	119	210
1.201	6.00	148	120	070
1.201	7,99	147	,121	070
1,200	8.67	.147	.121	070

## TABLE 27.- STATIC PRESSURES FOR HIGH-EXPANSION-RATIO NOZZLE, ROW 13

	P _{t,j}		p/1	Pt,j for	x/d of -	•	
00°°	$\mathbf{P}_{\mathbf{w}}$	0.912	1.002	1.050	1.100	1.155	1.200
0,000	1,50	.372	.643	. 567	.673	,675	,075
000	2,01	.238	. 321	.413	537	,532	,516
.000	3.02	.230	.190	.181	.166	.166	.276
,000	4.02	.235	.191	.196	.167	,146	,135
.000	4.12	,232	.201	<b>1</b> 91	.167	.146	,135
<b>601</b>	1,50	, 363	<b>.</b> 618	.661	.67R	<b>.</b> 684	.687
<b>,</b> 603	2,01	,234	.297	.386	.449	<b>.</b> 515	•541
.603	3,01	•530	<b>189</b>	.178	.167	,147	,270
<b>.</b> 601	4.00	,231	•188	.177	<b>167</b>	<b>.</b> 146	<b>1</b> 34
.602	5.06	.231	<u>.188</u>	<b>177</b>	.164	.148	,135
801	1,49	. 596	•00B	<b>.</b> 665	.687	,698	.704
.802	5.05	,233	•264	,381	.440	<b>.</b> 505	.543
.801	3.00	.259	.189	.179	.172	<b>.</b> 148	.275
.801	4,01	,230	,188	.177	.167	,146	,135
.801	5,84	.230	<b>188</b>	.177	162	.149	,136
900	1,50	.410	.618	.666	<b>.69</b> 0	,702	,709
903	2,00	,233	,283	.383	.459	.517	•554
.902	3.01	•558	.189	.180	.177	.170	.284
901	4.02	.230	,189	.178	.167	.140	,134
901	6.04	, 230	.188	.177	.162	. 149	,135
506	6.31	.230	●188	.177	.162	•149	,136
945	1,50	,426	.647	685	507.	•715	.150
941	2.00	+251	.303	.411	.476	.528	.560
,942	5.00	.227	•189	.179	.177	. 230	.298
.942	4,05	.229	,188	.178	,166	•145	134
942	0.02	,229	■188	.178	.161	.148	.135
941	6.51	• < 50	188	.177	.162	149	.136
1.199	1.51	•454	.511	.527	.539	• <b>3</b> 34	. 374
1,200	1,99	1220	,190	.204	.257	, 320	, 380
1,200	5.01	1234	•180	170	.174		+ 1 3 5
1,201	4,01	• C C O	• 107	.170	.107	140	+135
		, 229	180	.1/9	.101	1/10	+ 120
1.601	1.77	220	•10/	<b>1</b>	101	9147 1//0	120
1.200	8.67	. 224	•187	•177	.162	•144	.156

an and the second s

an and the second second second

м	^p t,j				р/	Pt,j for	x/d of	_			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P _∞	0.573	0.591	0.650	·0.750	0.850	0.912	0.950	1.002	1.050	1.100
0.000	1,50	1.001	.915	.817	.024	.423	,499	.559	.644	.677	.075
000	2,01	,381	.248	,225	,388	, 381	,248	225	388	429	.509
.000	3,02	. 373	.234	.200	.184	.173	,171	289	339	,353	. 324
000	4,02	, 373	.237	-50S	,188	,173	,154	.140	153	234	.266
000	4,12	.374	.239	.204	,182	,172	,154	.140	145	555	,257
,6 01	1,50	,985	.915	.811	.612	.413	.476	498	594	.662	.084
,603	2,01	.380	.242	.235	.358	,355	.242	,235	358	.355	.448
603	3.01	.375	,233	.201	182	.169	.162	.246	328	.369	,345
,601	4.00	.375	,233	•500	.181	,168	,154	.139	134	,198	,273
605	5,00	.374	,233	.200	,181	,168	,155	.140	130	.114	.182
.801	1.49	•986	,915	811	.613	.414	.475	, ,507	605	, 668	.093
- 80 5	5,05	.380	.241	•583	.345	.346	241	,283	.345	.346	# 419
.801	3,00	.\$76	•533	.201	,183	,170	,162	,233	.321	377	,365
, 801	4.01	,375	•535	•500	.181	.168	,154	,139	132	.178	•585
.801	5.84	. 374	•533	•500	1 81	.107	1 55	•140	.130	.107	.127
900	1,50	,985	.915	812	.612	415	.480	•521	.623	,675	.695
.903	2.00	. 581	.245	.342	.357	. 508	. 245	. 342	.357	. 368	.424
206	3,01	. 570	•535	.201	182	.171	.164	241	.312	,385	•385
,901	4.02	.376	•535	•501	.182	168	. 154	,139	.132	.175	,287
.901	6.04	, 374	.233	.200	1 81	,168	155	.140	130	.107	.113
.902	6.31	, 375	.235	.200	. 182	,167	,155	.140	130	.106	.107
.943	1,50	,981	,911	.806	61 0	.420	.502	•548	.642	.691	•707
.941	2.00	,378	.261	.365	.370	.385	.261	.365	, 370	,385	•438
.942	3,00	• 57 3	.230	.200	,181	.170	.171	.274	_318	.399	171
.942	4.03	574	.231	,199	.181	168	,153	138	132	.206	*588
,942	6.05	. 574	•535	. 199	.181	.167	,15 5	1 39	.129	,106	,115
.941	6,51	• 374	.232	,199	.181	,168	,156	.140	.129	.107	.105
1,199	1,51	.982	.912	.808	.604	,405	.461	.497	.514	.532	•547
1.200	1,99	, 379	•537	.208	.192	,192	,278	.326	.390	.192	,278
1.200	5.01	• 577	.233	.201	.182	.169	153	.142	165	.276	. 205
1.201	4.01	577	.233	.201	.182	,168	.154	.140	.131	.155	198
1,201	6,00	. 577	.234	.505	183	.169	.156	.141	.131	, 108	.115
1,201	7,99	. 576	.234	.201	182	169	155	• 141	.132	1 08	.095
1,200	8.07	,376	.234	.201	<u>, 182</u>	169	i 156	<u>,141</u>	.133	1 08	•095

TABLE 28.- STATIC PRESSURES FOR HIGH-EXPANSION-RATIO NOZZLE, ROW 14

-

TABLE 28.- Concluded

м	Pt,j	p/	^{'p} t,j ^{for}	x/d of	_
• * 00	P_{∞}	1.155	1.200	1.300	1.500
0,000	1,50	,073	.673	.670	.673
000	2.01	.517	.510	.501	.507
.000	3,02	. 289	.339	.353	,324
.000	4.02	1 40	.153	.234	.266
000	4,12	140	.145	•555	,257
.601	1.50	,685	.684	.683	,695
.603	2.01	.527	.542	,524	,529
.603	3,01	,246	.328	.369	. 345
.601	4.00	1 59	.134	,198	,273
.605	5,06	.140	.130	.114	,182
801	1,49	• 6 9 9	.703	,706	.726
802	5.05	,505	•547	.545	. 551
.801	3,00	.233	•351	.377	,365
.801	4.01	,139	.132	,178	\$82
,801	5.84	.140	.130	.107	,127
.900	1,50	,706	•711	•717	.757
903	2,00	.500	.548	. 568	.572
.905	3.01	+241	•315	.385	.385
901	4.02	1 39	.132	.175	.287
901	5.04	,140	.130	.107	,113
902	6,51	,140	•130	.106	.107
943	1,50	.714	•20	•150	,748
941	5.00	+215	•200	.579	. 581
,942	3,00	.274	•318	.399	,401
.942	4,03	, 138	.132	*502	.299
,942	6.02	,139	,129	.106	,115
.941	6,51	,140	•129	.107	,105
1,199	1,51	.565	•583	.625	.668
1,200	1,99	. 326	• 390	.467	.535
1.200	3,01	•142	•165	.276	.305
1,201	4.01	•140	•131	.133	,198
1.201	6,00	.141	,131	.108	.113
1,201	7,99	.141	•132	.108	.093
1.200	8.07	•141	.135	.108	•092

A DECK DECK DECK

- CONSTRUCTION OF THE OWNER

Figure 1.- Air-powered nacelle model with nonaxisymmetric plug nozzle installed. All dimensions are in centimeters unless otherwise noted.

<u>z'(x')</u> n(x a(x')	$\frac{y'(x')}{b(x')} = 1$		
0.0 < x' < 15.2654		15.2654 <u><</u> ×	<u><</u> 67.31
$a(x') = x' \tan\left(\frac{14\pi}{180}\right)$	a(x') =	a ₁ x' + a ₂ +√	$a_3(x')^2 + a_4x' + a_5$
$p(x') = x' \tan\left(\frac{14}{180}\right)$	b(x') =	b ₁ x' + b ₂ +√I	$b_{3}(x')^{2} + b_{4}x' + b_{5}$
.(x') = 2.00	n(x') =	$3.5 \sin\left(\frac{x' - x'}{52}\right)$	$\frac{41.2877}{0446}$ + 5.50
	n	a _n	b _n
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	363118 208332 834887 x 10 ⁻¹³ 329327	-0.209539 -5.578971 213163 x 10 ⁻¹³ 11.548538

	Nose-forebody external geometry parameters										
x'	· a(x')	b(x')	ŋ(x')		x'	a(x')	b(x')	η(x')			
0.00 1.27 2.54 3.81 5.08 6.35 7.62 8.89 10.16 11.43 12.70 13.97 15.24 15.26 16.51 17.78 19.05 20.32 21.59 22.81 30.48 25.40 26.67 27.94 29.21 30.48	0.0000 3167 6332 9500 1.2667 1.5832 1.8999 2.2164 2.5331 2.8499 3.1664 3.483 3.7998 3.8062 4.1082 4.4003 4.6759 4.4003 4.4003 4.4003 4.6759 5.8577 6.0582 6.2481 6.2481 6.2482	0.0000 3167 6332 9500 1.2667 1.5832 1.8999 2.2164 2.5331 2.8499 3.1664 3.4831 3.7998 3.8062 4.1041 4.3845 4.6441 4.3845 4.6441 4.8847 5.5118 5.5172 5.5172 5.5172 5.5172 6.0228 6.1719 6.3116 6.4422	2.0000 2.2520 2.2520 2.2520 2.4642 2.9771 2.9754 3.1684 3.3752 3.5544 3.1684 3.55545555555555		34.29 35.56 36.83 38.10 39.37 40.64 41.91 43.18 44.45 45.72 46.99 48.26 50.80 52.07 53.34 54.61 55.88 57.15 58.42 59.69 60.96 62.23 63.50 63.50 63.50 63.50 63.70 64.77 66.04	7.0564 7.1923 7.3205 7.4412 7.5547 7.6614 7.7612 8.0231 8.0231 8.0231 8.025 8.1661 8.2324 8.2913 8.3937 8.3337 8.3437 8.5413 8.5413 8.5465 8.6585 8.6058 8.6192 8.6286 8.6342	6.6797 6.7871 6.8877 6.9817 7.0693 7.1514 7.2276 7.2276 7.2276 7.4254 7.4254 7.4816 7.53809 7.6243 7.6395 7.7313 7.6395 7.7313 7.7848 7.8402 7.8402 7.8402 7.8402 7.8667 7.8727 7.8777	4.0652 4.3139 4.5695 4.8307 5.0957 5.3632 5.6314 5.8989 6.1641 6.4253 6.6811 6.4253 6.6811 6.4253 6.6811 7.1704 7.4011 7.8276 8.3622 8.3622 8.3622 8.3622 8.3622 8.3622 8.3644 8.36444 8.36444 8.36444 8.36444 8.36444 8.36444 8.36444 8.36444 8			

(a) Nose-forebody section, with equations and table defining the external geometry.

Figure 2.- External geometry of nose-forebody section. All dimensions are in centimeters unless otherwise noted.

.

.

ŧ

.

$$z'(x') = r'(x') \cos \theta$$
 $y'(x') = r'(x') \sin \theta$

$$\mathbf{r'}(\mathbf{x'}) = \left\{ \begin{bmatrix} \cos \theta \\ a(\mathbf{x'}) \end{bmatrix} \eta(\mathbf{x'}) + \begin{bmatrix} \sin \theta \\ b(\mathbf{x'}) \end{bmatrix} \eta(\mathbf{x'}) \right\}^{-1/\eta(\mathbf{x'})}$$

Figure 2.- Concluded.

 $\frac{122.94 \le x' \le 134.29}{a(x')} + \frac{y'(x')^{n}(x')}{b(x')} = 1 \qquad \qquad 0^{\circ} \le \theta \le 38.1460^{\circ}$ $r'(x') = \left\{ \left[\frac{\sin \theta}{b(x')} \right]^{n} + \left[\frac{\cos \theta}{a(x')} \right]^{n} \right\}^{-1/n} (x') \qquad \qquad y'(x') = a(x') \tan \theta$ $r'(x') = r'(x') \sin \theta \qquad \qquad \qquad 38.1460^{\circ} \le \theta \le 90^{\circ}$ $r'(x') = r'(x') \cos \theta \qquad \qquad y'(x') = b(x')$

 $z'(x') = \frac{b(x')}{\tan \theta}$

inte	Transition-section internal-geometry parameters											
x'	a(x')	b(x')	ŋ(x')									
122.94 126.75 127.13 127.51 127.89 128.27 128.65 129.03 129.41 129.41 130.56 130.94 131.32 131.70 132.08 132.46 132.84 133.60 133.99 134.29 139.83	6.2865 6.28	6.2865 6.2675 6.2144 6.1303 6.0216 5.8953 5.7595 5.6215 5.4882 5.3647 5.2553 5.1623 5.1623 5.0874 5.0302 4.9893 4.9627 4.9474 4.9403 4.9378 4.9375 4.9375	2.0000 2.0151 2.0612 2.1406 2.2576 2.4187 2.6338 3.2908 3.7863 4.4539 5.3737 6.6810 8.6176 11.6511 16.7835 26.4952 48.4106 116.5000 587.9680									

Figure 3.- Transition section with equations and table defining the internal geometry. All dimensions are in centimeters unless otherwise specified.

No. of Concession, Name

(b) High-expansion-ratio configuration.

Figure 4.- Nonaxisymmetric wedge nozzles.

ļ

「「「「「「「」」」

d				15.748
l			•	25.417
ι,	<i>,</i> .		•	16.398
r	. 1			0.958
r	1.2			5.955
×,		•	•	9.019
x	v. 1	•	•	9.303
X	v. 2		•	14.729
X,	v. 3	•	•	9.477
×,	v. r	•	•	13.491
y,	v. 1	•	•	0.681
У	v, 2	•	•	2.272
y y	v, r	•	•	-3.553

(a) Wedge geometry.

Figure 5.- Internal and external geometry for both nozzle configurations. All dimensions are in centimeters unless otherwise noted.

High-expansion-ratio configuration

	Low expansion ratio	High expansion ratio		Low expansion ratio	High expansion ratio			Low expansion ratio	High expansion r atio
A _e /A _t ··	1.060	1.200	×w,t	. 14.366	13.068]	y _{w,e}	2.048	1.997
h _e	1.707	3,652	×1	. 7.274	7.274		у _{w,t}	2,337	2.387
h _t	1.611	3.044	×2		7.463	ļ	у ₀	4.937	4, 937
ι	25.417	25.417	×3	. 11.973	12.183		у ₁	4.937	4.937
ι _e	15.782	16.025	×4	7.553	7.553		y ₂		4.958
r ₁	23.622	23.622	у _в	3.856	5.750		у ₃	4.321	5.375
r ₂	0.871	0.871	y _e	3,755	5.649		у ₄	6.634	6.634
r ₃	18.220	18.220	y _{f, t}	3, 931	5,423		у ₅	7.874	7.874
x _e	15.782	16.025	у _{г,1}	-15.748	-15.748		α, deg · ·	8.448	4.073
x _{f. t}	14,603	12.852	y _{r,2}	5.809	5.809		β,deg ··	18.647	5, 955
x _{r, 2}	7.274	7.274	у _{г, 3}	-13.282	-12.828		∆a, deg ∙ ∙	0.000	12.521
x _{r. 3}	7,274	11.413	у ₅	0.606	0.606				

(b) Flap geometry.

Figure 5.- Continued.

_▶ ' '

「「「「「「「「「」」」」

ŝ

x-z plane

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h 7.874
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ι 25.417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l _w 16.398
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r ₁ 23.622
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r _s 23.622
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x ₄ 7.553
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	x _{s 1} 1.957
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	y ₄ 6.634
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	y _{r 1} 23.622
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y 0.606
z _s , 1 · · 8.555 z _s , 2 · . 8.636 z _s , b · . 6.604 · z _s , r ·23.622 β, deg · 18.647 β _s , deg · 4.753	z _{s 0} · · · 6.287
z _{s, 2} · . 8.636 z _{s, b} · . 6.604 · z _{s, τ} ·23.622 β, deg . 18.647 β _s , deg . 4.753	$z_{s,1} \cdot \cdot \cdot 8.555$
$z_{s, b} \cdot . 6.604 \cdot .$ $z_{s, r} \cdot23.622$ $\beta, deg \cdot 18.647$ $\beta_{s}, deg \cdot 4.753$	z _{z 2} 8.636
z _{s,r} 23.622 β, deg . 18.647 β _s , deg. 4.753	z _{s h} 6.604.
β, deg . 18.647 β ₅ , deg. 4.753	z _s r23.622
β _s , deg. 4.753	β, deg . 18.647
	β _S , deg. 4.753

(c) Sidewall geometry.

Figure 5.- Concluded.

s

(a) Internal flap pressure orifices.

Figure 6.- Pressure orifice locations. All flap pressure orifices are located on top flap; all wedge pressure orifices are located on top of wedge. All dimensions are in centimeters unless otherwise noted.

+ I

۰.

4

(b) External flap pressure orifices.

Figure 6.- Continued.

(c) External sidewall (right sidewall) pressure orifices.

Figure 6.- Continued.

~.

62

(d) Internal sidewall (left sidewall) pressure orifices.

Figure 6.- Continued.

and the second

Wedge internal and external orifice coordinates							
	y at -						
x/d	Row 10 (z = 0.000)	Row 11 (z = -1.572)	Row 12 (z = -3.144)	Row 13 (z = -4.715)	Row 14 (z = -6.033)		
0.573 .591 650	0,000 .681 1,434		0.000 .681 1.434		0.000 .681		
.700	1.867		2,160		2.160		
.800 .850 .950	2,335 2,401 2,223		2.401 2.223		2.401 2.223		
1.002 1.050	2.048 1.888 1.721	2.048 1.888	2.048 1.888	2.048 1.888	2.048 1.888 1.721		
1.155	1.536 1.721	1.721 1.536 1.721	1.721 1.536 1.721	1.721 1.536 1.721	1.721 1.536 1.721		
1.250 1.300	1.218 1.051 716		1.051		1.051		
1.500	. 382		. 382		. 382		

(e) Wedge pressure orifices.

Figure 6.- Concluded.

1

Figure 7.- Static performance data.

(b) High-expansion-ratio nozzle.

Figure 8.- Variation of discharge coefficient with free-stream Mach number.

|

(a) Low-expansion-ratio nozzle.

(b) High-expansion-ratio nozzle.

Figure 9.- Variation of thrust-minus-nozzle drag ratio with free-stream Mach number.

Con Real Property and Providence of the

(b) High-expansion-ratio nozzle.

Figure 10.- Variation of thrust coefficient with free-stream Mach number.

And the second s

(a) $M_{\infty} = 0.60$.

Figure 11.- Static-pressure distributions along wedge surface at selected test conditions for low-expansion-ratio nozzle.

and the part

(b) $M_{\infty} = 1.20$.

Figure 11.- Concluded.

......

CALLER COMPANY

(a) $M_{\infty} = 0.60$.

Figure 12.- Static-pressure distributions along wedge surface at selected test conditions for high-expansion-ratio nozzle.

(b) $M_{\infty} = 1.20$.

Figure 12.- Concluded.

4

(a) $M_{\infty} = 0.60$.

Figure 13.- Internal static-pressure distributions along the upper flap at selected test conditions for low-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

(b) $M_{\infty} = 1.20$.

Figure 13.- Concluded.

A CONTRACTOR OF THE PARTY OF TH

(a) $M_{\infty} = 0.60$.

Figure 14.- Internal static-pressure distributions along upper flap at selected test conditions for high-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

Constant of the local division of the local

(b) $M_{\infty} = 1.20$.

Figure 14.- Concluded.

a statement

(a) $M_{\infty} = 0.60; p_{t,j}/p_{\infty} = 1.99.$

Figure 15.- External pressure distributions along upper flap and right sidewall at selected test conditions for low-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

Ţ

(e) $M_{\infty} = 1.20; p_{t,j}/p_{\infty} = 4.01.$ Figure 15.- Continued.

「「「「「「「」」」」

(a) $M_{\infty} = 0.60; p_{t,j}/p_{\infty} = 2.01.$

Figure 16.- External pressure distributions along upper flap and right sidewall at selected test conditions for high-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

i

Figure 16.- Continued.

→ |

「日本」の時間の時間である。

Figure 16.- Continued.

Figure 17.- Effect of nozzle pressure ratio on center-line wedge static-pressure profiles for low-expansion-ratio nozzle.

(b) $M_{\infty} = 0.60$ and 0.80.

Figure 17.- Continued.

(c) $M_{\infty} = 0.90$ and 0.94.

Figure 17.- Continued.

.

などの日辺のあいと

Colorisa and a subscription of the subscriptio

Figure 18.- Effect of nozzle pressure ratio on center-line wedge static-pressure profiles for high-expansion-ratio nozzle.

(b) $M_{\infty} = 0.60$ and 0.80.

Figure 18.- Continued.

(c) $M_{\infty} = 0.90$ and 0.94.

Figure 18.- Continued.

and the second states of the second

Contraction of the local division of the loc

ļ

(d) $M_{\infty} = 1.20$.

Figure 18.- Concluded.

(a)
$$p_{t,j}/p_{\infty} = 2.00$$
. (b) $p_{t,j}/p_{\infty} = 6.00$.

Figure 19.- Effect of Mach number on wedge center-line static-pressure profiles at selected test conditions for low-expansion-ratio nozzle.

THE WARD

Figure 20.- Effect of Mach number on wedge center-line static-pressure profiles at selected test conditions for high-expansion-ratio nozzle.

Figure 21.- Effect of Mach number on internal flap center-line static-pressure distributions at selected test conditions for low-expansion-ratio nozzle.

a- 6425-10745-

(a)
$$p_{t,j}/p_{\infty} = 2.00$$
. (b) $p_{t,j}/p_{\infty} = 6.00$.

Figure 22.- Effect of Mach number on internal flap center-line static-pressure profiles at selected test conditions for high-expansion-ratio nozzle.

ł

:

(a) $M_m = 0.60$ and 0.80.

Figure 23.- Effect of nozzle pressure ratio on flap center-line external pressure profiles for low-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

(b) $M_{\infty} = 0.90$ and 0.94.

Figure 23.- Continued.

and in state

(c) $M_{\infty} = 1.20$.

Figure 23.- Concluded.

(a) $M_{\infty} = 0.60$ and 0.80.

Figure 24.- Effect of nozzle pressure ratio on sidewall center-line external pressure profiles for low-expansion-ratio nozzle.

(b) $M_{\infty} = 0.90$ and 0.94.

Figure 24.- Continued.

(c) $M_{\infty} = 1.20$.

Figure 24.- Concluded.

Contraction of the local division of the loc

è.

(a) $M_{\infty} = 0.60$ and 0.80.

Figure 25.- Effect of nozzle pressure ratio on flap center-line external pressure profiles for high-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

107

No. of Concession, Name

(b) $M_{\infty} = 0.90$ and 0.94.

Figure 25.- Continued.

(c) $M_{\infty} = 1.20$.

Figure 25.- Concluded.

109

. .

(a) $M_{\infty} = 0.60$ and 0.80.

Figure 26.- Effect of nozzle pressure ratio on sidewall center-line external pressure profiles for high-expansion-ratio nozzle.

- 1000 - 1760

(b) $M_{\infty} = 0.90$ and 0.94.

Figure 26.- Continued.

x/d

(c) $M_{\infty} = 1.20$.

Figure 26.- Concluded.

ġ.

AND ADD

Figure 27.- Effect of Mach number on external center-line pressure profiles at $p_{t,j}/p_{\infty} = 4.00$ for low-expansion-ratio nozzle. Base pressure is indicated by solid symbol.

Figure 28.- Effect of Mach number on external center-line pressure profiles at $p_{t,j}/p_{\infty} = 4.00$ for high-expansion-ratio nozzle. Base pressure is indicated by solid symbol

┟╵

1. Report No. 2. Government Accession No. NASA TP-2054 3. Sovernment Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle EXPERIMENTAL INVESTIGATION OF TWO NONAXISYMMETRIC WEDGE	5. Report Date September 1982
NOZZLES AT FREE-STREAM MACH NUMBERS UP TO 1.20	6. Performing Organization Code 505-32-13-01
7. Author(s) Mary L. Mason and William K. Abeyounis	8. Performing Organization Report No.
9. Performing Organization Name and Address	I 10. Work Unit No.
NASA Langley Research Center Hampton, VA 23665	11. Contract or Grant No.
	13. Type of Report and Period Covered
12 Separation Agency Name and Address	mechnical Danen
12. Sponsoring Agency Maine and Address	Technical Paper
National Aeronautics and Space Administration Washington, DC 20546	14. Sponsoring Agency Code
I.E. Cumulamentary Notae	l
· · · · · · · · · · · · · · · · · · ·	
16. Abstract	
An experimental investigation has been conducted in the hangley to bot industrie Tunnel to measure forces and pressures on two nonaxisymmetric wedge nozzles. Tests were conducted at static conditions and at free-stream Mach numbers of 0.60, 0.80, 0.90, 0.94, and 1.20. The range of nozzle pressure ratios varied with configuration and Mach number. The internal and external geometry of the nozzles and the test model are defined in detail. Nozzle performance data are presented as discharge coefficients, internal thrust ratios, thrust-minus-nozzle drag ratios, and ideal thrust coefficients. Extensive internal and external pressure measurements are pre- sented in figures and tables.	
17. Key Words (Suggested by Author(s)) 18. Distribution Stateme	
Propulsion nozzles Nonaxisymmetric nozzles Wedge nozzles Internal performance	Fied - Unlimited
	Subject Category 02
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of	Pages 22. Price
Unclassified Unclassified 11	5 A06

≁⊓

For sale by the National Technical Information Service, Springfield, Virginia 22161

- .

NASA-Langley, 1982

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business Penalty for Private Use, \$300

> 6 1 10,A, 820 DEPT OF THE AIR FORCE AF WEAPONS LABORATORY 820901 50090305 ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER:

NVSV

If Undeliverable (Section 158 Postal Manual) Do Not Return