NASA-CR-166399 19820024465

NASA CONTRACTOR REPORT 166399

¥. *

....

RSRA Vertical Drag Test Report

.

R. J. Flemming

CONTRACT NAS2-11058 December 1981

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

HOT TO LE MARKED AND AND SOOM

For

LIBRARY COPY

SEP 1 3 1982

٦.

.

.

NASA CONTRACTOR REPORT 166399

RSRA Vertical Drag Test Report

R. J. Flemming Sikorsky Aircraft Stratford, Connecticut

Prepared for Ames Research Center under Contract NAS2-11058

Ames Research Center Moffett Field, California 94035

ABSTRACT

The Rotor Systems Research Aircraft (RSRA) offers unique test opportunities because of its ability to measure rotor loads. This capability was used to conduct an experiment to determine vertical drag, tail rotor blockage, and threat augmentation as affected by ground clearance and flight velocity. Tests were conducted by NASA at the Ames Research Center in July 1981, with data reduced by NASA and sent to Sikorsky Aircraft for analysis and documentation.

The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, are generally confirmed.

The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots.

The test data show the effect of wheel height and forward speed on thrust, gross weight capability and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings. Data showing tail rotor trends are presented.

This test for the RSRA in the clean helicopter configuration should be repeated for a higher vertical drag configuration to identify the analytical versus experimental trends.

i

SA 111

SER-72052

TABLE OF CONTENTS

							Page
Abstract	•••••		• • • • • • •	••••	• • • • • • •		i
List of Tables	•••••			• • • • • • • • •			I I I
List of Figures	• • • • • • • • • •		•				iv
List of Symbols	• • • • • • • • •				• • • • • •		v
Introduction	• • • • • • • • • •		· · · · · · ·	• • • • • • • •			1
Aircraft Configuration .	• • • • • • • • • •		• • • • • •	•••••	• • • • • •	• • • • • •	2
Test Personnel	•••••	• • • • • • • •	· · · · · · · ·		• • • • • •	• • • • • •	3
Apparatus and Test Proce	dure	• • • • • • • •	•••••	••••••	• • • • • •		4
Data Analysis Methods	•••••	••••••	•••••	· • • • • • • • • •	••••		6
Results	•••••		••••			• • • • • .	9
Conclusions	••••	•••••				• • • • • •	14
Recommendations	•••••	• • • • • • •			••••	• • • • • •	15
References	• • • • • • • • • •	• • • • • • • •	 • • • • • • • •	• • • • • • • •	••••		16
Tables	• • • • • • • • •	• • • • • • •		• • • • • • • •	••••	• • • • • •	17
Figures	• • • • • • • • •	•••••			• • • • • • • •	• • • • • • •	43

VILL VS

SER-72052

LIST OF TABLES

		Page
Ι.	RSRA Flight Log	17
11.	RSRA Vertical Drag Test Log	18
III.	Sikorsky Data Analysis Code	19
IV.	Tabulated Data - Flight 3	23
v.	Tabulated Data - Flight 4	26
VI.	Tabulated Data - Flight 5	29
VII.	Tabulated Data - Flight 7	35
VIII.	Tabulated Data - Flight 8	38
IX.	Estimated Measurement System Accuracy	41
Χ.	RSRA Predicted Vertical Drag	42

SA 1114

LIST OF FIGURES

		rage
1.	RSRA NASA 740 In Helicopter Configuration	. 43
2.	RSRA Tail Rotor and Vertical Tail Without Rudder	44
3.	RSRA General Arrangement	45
4.	RSRA Landing Gear Doors a. Left Door b. Right Door	46
5.	Non-Dimensional Main Rotor Hover Performance, OGE	47
6.	Effect of Speed and Ground Effect on Thrust Recovery	48
7.	Power Measurement Correlation	49
8.	Total Component Power Versus Engine Power	50
9.	Airframe and Collective Pitch Angles	51
10.	Wind Axis Drag and Side Force - Hover	52
11.	Wind Axis Drag - Low Forward Speeds	53
12.	Non-Dimensional Main Rotor and Aircraft Hover Performance, OGE and IGE	54
13.	Thrust Augmentation In Ground Effect - Hover	55
14.	Thrust Augmentation In Ground Effect - Low Forward Speeds	56
15.	Gross Weight Augmentation In Ground Effect - Hover	57
16.	Gross Weight Augmentation In Ground Effect - Low Forward Speeds	58
17.	Effect of Airspeed on Augmentation Factor	59
18.	Thrush Augmentation Due To Ground Effect	60
19.	Impact of Ground Effect on Power	61
20.	Power Reduction Due to Ground Effect	62
21.	Comparison of RSRA Augmentation With Cheeseman, HDP, Hayden	63
22.	Comparison of RSRA Data with HDP Ground Effect Prediction	64
23.	Collective Pitch Variation In Ground Effect	65

111 15

SER-72052

LIST OF FIGURES (Cont'd)

		Page
24.	Collective Pitch Versus Rotor Height	66
25.	Download/Thrust Versus Rotor Height - Hover	67
26.	Download/Thrust Versus Rotor Height - Five-Knot Airspeed	68
27.	Download/Thrust Versus Rotor Height - Ten-Knot Airspeed	69
28.	Download/Thrust Versus Rotor Height - Fifteen-Knot Airspeed	70
29.	Download/Thrust Versus Advance Ratio - $(R/Z)^2 = .06$	71
30.	Effect of Airspeed and Ground Effect on Download	72
31.	Net Vertical Drag - Hover	73
32.	Tail Rotor Thrust Versus Tail Rotor Power - Hover	74
33.	Comparison of Predicted Blockage With RSRA Data	75
34.	Tail Rotor Power Ratio Versus Rotor Height - Hover	76
35.	Tail Rotor Power Ratio Versus Advance Ratio - OGE	77
36.	Tail Rotor Blockage Versus Rotor Height - Hover	7.8
37.	Tail Rotor Blockage Versus Rotor Height - Low Forward Speeds	, 79

SA 1114

LIST OF SYMBOLS

BMRQ Balance main rotor torque, ft-1b $^{\rm C}{}_{\rm D}$ Horizontal drag coefficient (= $D/\pi R^2(\Lambda R)^2 e$) Rotor power coefficient (= 550 HP/ π R²(Ω R)³e) С₀ Total power coefficient (= 550 SHP/ $\pi R^2(\Omega R)^3 e$) Cp Side force coefficient (= $SF/\pi R^2(\Omega R)^2 e$) C_{SF} Thrust coefficient (= $T/\pi R^2(nR)^2 e$) C_T Gross weight coefficient (= $GW/\pi R^2(\Omega R)^2 e$) CW D_v Net vertical drag, % DMR Balance main rotor drag, 1b D Download, 1b GW Gross weight, 1b i Incidence, degrees R Rotor radius, ft SFMR Balance main rotor side force in wind axis, lb T Thrust, 1b

TMR TRBLK TRT	Balance main rotor thrust in wind axis, lb Tail rotor blockage Tail rotor thrust in tail rotor shaft axis, lb
X	Balance force perpendicular to shaft, positive forward, lb
Y	Balance force perpendicular to shaft, positive right, lb
Z	Balance force along shaft, positive up, lb
Δт	Thrust recovery
θ	Pitch angle, positive nose up, degrees
Ju	Advance ratio
P	Atmosphere density, slugs/cu. ft.
φ	Roll angle, positive to the right, degrees
ΩR	Rotor tip speed, fps

Subscripts

51111 **8**2

B	Body	
H	Hover	
MR	Main Rotor	
S	Shaft	
TR	Tail rotor	н. ⁴
œ	Out of ground ef	fect

UNITED TECHNOLOGIES SIKORSKY AIRCRAFT

SN//

lins

Ś

INTRODUCTION

The verification of vertical drag prediction methodologies has been accomplished in the past using small scale models and by comparison of isolated and installed full-scale rotor performance. Both of these methods have produced realistic results for OGE hover conditions, but contain sources of uncertainty. Scale effects, if they do exist, are unknown. Use of flight test data, without the direct measurement of main rotor thrust, is accurate only to about 2% and there are no methods available to separate the effect of the interference of the tail rotor on the main rotor from the vertical drag. Similar problems exist in the determination of vertical drag in ground effect and at low forward speeds.

A flight test program utilizing the RSRA main rotor balance system was conducted to obtain data for the helicopter configuration. This report discusses the test program, data reduction methods, and results as required by Work Order 91 of Contract NAS2-11058.

The determination of rotor loads in this report uses the single loads correction matrix method reported in Reference 1. This is the initial method of loads correction. As improved methods are developed, the improved method will be used by NASA to update the results of this report if there are significant changes.

1

SA 111.

AIRCRAFT CONFIGURATION

The RSRA, NASA 740, used for the vertical drag test was in the standard helicopter configuration (see Figure 1). The configuration included the 35.4 square foot T-tail, a nose-mounted airspeed boom and fairings installed over the wing attachment region. The rudder was not installed, reducing the vertical tail area to 48.2 square feet (Figure 2). Dimensional data for the RSRA is provided on the General Arrangement drawing, Figure 3. Not shown in this drawing are the landing gear doors which were open during this test. These doors are shown in Figure 4.

The aircraft is powered by two T58-GE-5 engines with a take-off rating of 1500 HP each. Total power was limited to 2575 HP at a rotor speed of 209.1 RPM (103%). NASA 740 is equipped with a main rotor balance system to measure forces and moments at the base of the main gearbox. The tail rotor has a load cell to measure tail rotor thrust.

TEST PERSONNEL

The following individuals were a witness to all or portions of the vertical drag flight test program:

R. Erickson - Test Director, NASA

R. Flemming - Program Manager, Sikorsky

J. Burks - Technical Monitor, NASA

G. Condon - Helicopter Flight Investigations Branch Chief, NASA

J. Brilla - Flight Investigations, NASA

C. W. Acree - Flight Investigations, NASA

R. Kufeld - Flight Investigations, NASA

R. Hodge - Technical Representative, Sikorsky

D. Leischer - Flight Test, Sikorsky

G. W. Hall - Project Pilot, NASA

G. Tucker - Pilot, NASA

R. Merrill - Pilot, Army

SA III

UNITED TECHNOLOGIES SIKORSIKY AIRCRAFT

APPARATUS AND TEST PROCEDURE

Data Recording and Processing

On-board aircraft data measurements were recorded on the RSRA Piloted Aircraft Data System (PADS). The PADS is a hybrid FM and PCM system which records up to 110 FM and 104 PCM parameters. These parameters are recorded on two magnetic tapes. Re-calibration of the transducers and PADS was accomplished prior to conduct of the test.

Balance system load cell outputs were recorded on FM. The load cells were laboratory calibrated prior to the test. A system calibration was conducted before and after the test. The results of this system calibration were used to correct the laboratory calibration for errors that occur within the data recording and processing equipment. Identical components, by serial number, were used to record and process all load cell data. Final computation and correction of the load cell data to forces and moments in the shaft axis system was accomplished using the methods reported in Reference 1. This method used single loads correction matrices developed in the NASA Ames Static Calibration facility for RSRA 740.

Pace Vehicle

The pace vehicle was equipped with a calibrated fifth wheel speedometer system. Correction was made to pace speed for prevailing wind velocities.

Flight Test Plan

This test was conducted under Flight Test Plan (FTP) 2A for RSRA 740, Revision 1. Table I is a log of the flight tests conducted against this plan.

Test Procedure

The vertical drag test was conducted at Moffett Field, California, adjacent to the NASA Ames flight data acquisition facility. The taxiway, and later the nearby runway, were surveyed to establish elevation and centerline offset distance. A transit was then used to monitor wheel height, with information relayed to the RSRA when necessary. A pace vehicle was used to guide the RSRA at the required true airspeed, accounting for winds which were measured six feet above ground level. Aircraft position was recorded on film for later processing to determine actual speed and wheel height. Three consecutive records of each required data point were recorded, with each record treated as an independent data point. The run log is summarized in Table II. Flights 3-7 were flown at a referred rotor speed of 103%. Flight 8 was flown as a referred rotor speed of 104%.

Two events had an impact on the acquired data. First, Flight 4 does not include film data and the output for that flight is based on pace truck and transit-monitored wheel height. All points of Flight 4 were repeated in Flights 5 and 7 and, therefore, the Flight 4 data has not been used for the analysis of vertical drag and ground effect. Second, the taxiway was occupied during Flight 7 and the RSRA was flown over the runway centerline. The new offset distance, measured after the flight, resulted in wheel heights that differed from the target wheel heights. In addition, Flight 7 does not include film data. The height and forward velocity data are based on recorded transit wheel height measurements and pace truck speeds. Since most of the IGE data is plotted versus a non-dimensional rotor height parameter, this difference does not adversely affect the data analysis.

Standard pre- and post-flight calibration procedures were followed for each flight. NASA 740 was weighed before and after each flight and the gross weight during each flight is based on these weighings and the corrected cockpit fuel totalizer readings.

DATA ANALYSIS METHODS

The NASA/RSRA data reduction program (EASE) was used to process aircraft flight data taken on tape (see Reference 2). No modifications were made to this program to accommodate the special needs of the vertical drag test program. Tabulations of gross weight, wheel height and airspeed were prepared by NASA. The main rotor balance data were processed and oriented into the shaft axis system.

Main rotor balance forces were derived from individual load cell readings, which were processed by a set of calibration correction algorithms. These included corrections determined by load cell data system calibrations, individual load cell laboratory calibrations, a static calibration of the assembled rotor loads measurement system (Static Calibration Facility), and analysis of inertial effects due to the combined transmission, engine and rotor system masses. Procedures for determining the calibration algorithms are described in Reference 1.

A code to compute derived parameters was assembled at Sikorsky and used to analyze the NASA data. A listing of this code is included as Table III. This listing shows the constants used in the analysis. The assumptions that were made and the more important equations are discussed below.

The main rotor balance forces were transferred to the wind (horizon) axis system using the following relationships, with the sideslip terms omitted:

$$TMR = -Z \cos (\theta_p + i_p) \cos (\phi_p) - Y \sin (\phi_p) + X \sin (\theta_p + i_p)$$

+ 1377.7 - TRT sin (Ø_P)/TRBLK

where 1377.7 pounds is the weight of the blade flapping mass.

$$DMR = -Z \sin (\theta_{\rm R} + i_{\rm s}) \cos (\phi_{\rm R}) + X\cos (\theta_{\rm R} + i_{\rm s})$$

SFMR = -Z sin (θ_{B}) cos (θ_{B} + i_s) + Y cos (ϕ_{B}) + TRT cos (ϕ_{R})/TRBLK

Because the boom measurement of sideslip angle is influenced by the main rotor at low speeds, that quantity is not considered in this test. The resulting error, primarily in drag, will increase from a zero value in hover as speed increases. The tail rotor terms in these equations are:

6

TRT = Tail Rotor Thrust from Load Cell
TRBLK = Tail Rotor Blockage = TRT + Required Antitorque Thrust

= TRT \div (BMRQ/36.915)

SA : 114

This relationship ignores the favorable fuselage yawing moment caused by the swirl component of the main rotor wake. Model tests have shown this reduces the required antitorque moment by 2%.

The total power from either the balance or shaft torque readings is based on the following relationship, established in Reference (3):

SHP = 97.4 HP + 1.0123 X MRHP + 1.0197 X TRHP

For several points tail rotor torque was not available. To allow the computation of total power from balance and shaft torques for all data records, tail rotor power for these points was computed using the predicted tail rotor performance of Reference (3). Thus, where tail rotor torque test data is not available, it is based on the antitorque thrust:

 $C_{Q_{TR}} = .0002899 + 1.2024 (C_{T_{TR}})^{3/2}$

The tail rotor torque signal for several flights contained an excessive amount of noise. The averaging of the data sample has been judged inaccurate for the points from Flight 3, Point 28 through Flight 7.

The download on the RSRA fuselage is the difference between the main rotor thrust and aircraft gross weight. The ratio of download/thrust is:

$$\frac{D}{T} = \frac{T - GW}{T}$$

The net vertical drag, includes the effect of the additional rotor thrust due to thrust recovery and is defined so that the gross weight is equal to the isolated rotor thrust minus net download. Therefore,

$$D_v = \frac{D - \Delta T}{GW} = \frac{T - GW - \Delta T}{GW}$$

The thrust recovery results from the partial ground effect caused by the presence of the fuselage near the rotor. Ideally the RSRA balance system could be used to determine thrust recovery. However, we must consider several factors that have a significant impact on the calculation of a number that is expected to be less than 1%. The performance of the rotor in isolation, either from theory or whirlstand tests, and the adverse impact of the tail rotor on main rotor performance must be known with greater accuracy than is now possible. Figure 5 shows the RSRA hover OGE thrust-power relationship. The isolated rotor whirlstand data fits the test data well and could be used to say that the thrust recovery was zero or was of the same magnitude as the tail

rotor interference (which may be as high as 2% for some tail rotor configurations). Comparing the RSRA balance data with the theory of Reference 4, we could say that the thrust recovery exceeds the tail rotor interference by 0.8%. In either case uncertainties exist that are as great as the quantity being measured.

The thrust recovery that is predicted for the RSRA, using the Sikorsky Vertical Drag Standard Procedure (Reference 5) is 0.9% of the rotor thrust. The value is feasible based on the foregoing statements. Therefore, it has been used as the basis for the data analysis of this report. The thrust recovery can be expected to decrease as the helicopter enters ground effect and as forward speed increases. Limited data (References 6 and 7) show the trend of thrust recovery in ground effect. This is shown in Figure 6. The data has been extrapolated to give zero at an $(R/Z)^2 = 2.0$. Also, for the purposes of data reduction, the thrust recovery is assumed to become zero at 10 knots. Since the magnitude of the thrust recovery is generally within the data precision, this assumption is considered realistic. Thus, the thrust recovery is taken as:

 $\Delta T = T_{H} X (1 - .5 X (R/Z)^{2}) X (1-V/10)$

with

SA 1114

$$\Delta T = 0$$
 for $(R/Z)^2 > 2$ or $V > 10$.

The parameter $(R/Z)^2$ has been chosen as the asbcissa for all ground effect plots. When plotted against the thrust ratio raised to the 1.5 power, the data falls into a pattern that is nearly linear. However, a suitable "out of ground" effect thrust or gross weight versus power curve must be selected to yield a data fairing that gives no augmentation $(T/T_{\infty} = 1.0)$ at an infinite wheel height (R/Z = 0). This is satisfied by using a thrust that is about 1% less than the thrust at a 100-foot wheel height. The thrust and gross weight augmentation ratios, T/T_{∞} and GW/GW_{∞} have been raised to the 1.5 power in each of the ground effect plots, since the augmentation results from a decrease in induced power, a function of $(T/T_{\infty})^{1.5}$.

Tabulations of the reduced data are presented in Tables IV to VIII.

RESULTS

Balance Measurements

Of primary importance in a test where small quantities are being measured is the accuracy and precision of the data. The RSRA balance system offers the accuracy necessary for the determination of not only vertical drag and ground effect trends, but also absolute numbers. Most of the comparisons contained in this document were at a constant power setting. Any one of the three power measurements will give satisfactory results. The total power measurements contain more scatter than the main rotor shaft or balance torque measurements, due to either engine torque or tail rotor torque variability. Figure 7 shows the extremely low scatter that exists in the difference between main rotor strain gauge power and balance power. The tail rotor power measurement contributes to the scatter of the first two parts of Figure 7, most notably the circle symbols that are significantly above the remainder of the data. Figure 8 shows the same information in the form of total power based on strain gauge and balance data versus engine power. The balance system gave powers about 2% below that of the other two systems. The balance torque measurement is the only one that has been subjected to a complete system calibration and it has therefore been chosen as the torque reference in this report for all cases where main rotor power is plotted. The engine torque readings have been used where total power is shown to avoid any error that may exist in the tail rotor torque readings.

Figure 5 shows excellent agreement between the predicted and balancemeasured main rotor performance. (The effects of thrust recovery and tail rotor-main rotor interference are discussed on page 7.) The middle set of points fall above the predicted line. This may be due to winds aloft that were not recorded with the ground level anemometer. At ground level the winds during the high weight testing of Flight 3 were below 1 knot, were 3 knots for the middle weight points of Flight 3, and were 2 knots for the low weight testing of Flight 7.

The transfer of measured balance forces into the wind axis system requires. the use of the measured fuselage pitch and roll attitudes. These data have a scatter band of about \pm 0.6 degrees as shown in Figure 9. This scatter has a negligible effect on thrust, but introduces drag and side force errors of up to 200 pounds (see Figure 10). The scatter plus the demonstrated calibration accuracy (Table IX) exceeds the scatter band of the horizontal drag measured in hover, with the mean of the measurement near zero as expected. The side force scatter is reasonable, but the data has a positive value, rather than averaging zero. Since the offset is still within the measurement accuracy, no explanation of the offset is warranted. The drag measurements made in the speed range of 5 to 20 knots show similar trends (Figure 11). An in-depth examination of these forces at higher speeds must include the effect of yaw angle, not recorded during this test.

g

Ground Effect

Figure 12 shows the thrust and weight coefficients for the full range of rotor heights, plotted against engine power coefficient. The increase in thrust due to ground effect is evident in this figure. The hover thrust augmentation is shown in Figure 13. A linear fairing fits this data well. The thrust augmentation (T/T_{\odot}) at a 5-foot wheel height is 1.11 and is 1.07 at a 10-foot wheel height. No trend with C_W is evident over the range of gross weight tested.

Figure 14 shows the increase in thrust due to both ground effect and forward speed at a constant main rotor power. The data indicate that a linear fairing does not apply as speed is increased. The out of ground effect thrust at 10 knots (at constant power) is 4% above the hover thrust. An additional 4% increase in thrust will occur at a 10-foot wheel height. At 15 knots the forward speed increases thrust by 11% with a decrease in thrust due to a 10-foot wheel height of 1%. At a wheel height of 20 feet and a speed of 15 knots, the ground effect reduces thrust by 2%.

Similar trends have been produced for the ratio of gross weight IGE to hover gross weight OGE at a constant total power. Figure 15 shows the augmentation in hover. At a 5-foot wheel height the increase in gross weight is 15%, 1% less than provided in Reference 3. (The Reference 3 curve is based on SH-3A and SH-3D flight test data.) The increase in gross weight is 4% more than the increase in main rotor thrust because of the corresponding reduction in vertical drag. Figure 16 shows the gross weight augmentation for low forward speeds.

The airspeed-ground effect trends are summarized in Figure 17. This shows uniform trends for thrust augmentation, but the data for 5 and 10 knots gives less gross weight augmentation than expected. The augmentation due to ground effect has been separated from the speed effect in Figure 18.

The ground effect data can also be examined in terms of a power ratio at a constant thrust or gross weight. Figure 19 shows the main rotor balance torque ratio and the total engine power ratio versus the rotor height parameter. This and data at the forward speed conditions of this test are summarized in Figure 20. The upper portion shows the reduction in power referenced to the OGE hover power while the lower graph uses the OGE power at the noted speed as the denominator.

The RSRA ground effect data has been compared with the method of Cheeseman, Reference 8 in Figure 21. The agreement is good when compared with the RSRA gross weight augmentation up to speeds of 10 knots and at $(R/Z)^2$ below 1.6. The slope of the RSRA augmentation with rotor height decreases at low wheel heights while the Cheeseman slope increases slightly. The RSRA had very little augmentation at 15 knots, departing significantly from the Cheeseman prediction. The RSRA data has also been compared to the ground effect curves of References 9 and 10. The Reference 9 band of data from many U.S. Army

helicopters encompasses the RSRA data down to a wheel height of 12 feet. At lower wheel heights the augmentation was lower than the Reference 9 data band, with Reference 9 following the same trend shown by Reference 8. The ground effect parameter given by Reference 10 gives lower augmentations than shown by the RSRA. This reference assumes that the ground effect is insignificant for a rotor 2 radii above the ground. The RSRA data gives an augmentation of 2.3% at that height and reduces to 0.5% 4 radii above the ground.

Figure 22 shows that the RSRA agrees well with the reduction in ground effect with forward speed given by Reference 10, although the level of augmentation at a given wheel height is greater (see Figure 21). The rapid drop-off in ground effect at 15 knots is not predicted.

The ability to simulate a landing or takeoff profile requires a knowledge of not only the change in power but also the change in collective stick position. Figure 9 shows the collective pitch as a function of power, where wheel height and gross weight are not significant variables. For simulator use, this relationship must be redefined to determine collective control motion for a helicopter, where gross weight is the independent variable. This is shown for the RSRA in Figure 23. Figure 24 shows the reduction in collective versus rotor height, at constant gross weight. Figure 24 shows that the collective pitch must be reduced by 1.0 degree during hovering flight from a wheel height of 100 feet to 10 feet. The power is reduced by 13% for this condition.

Vertical Drag

The measurement of main rotor thrust on the RSRA makes it possible to obtain download in a direct manner. The download is simply the difference between the main rotor thrust and the aircraft gross weight. No other calculations or assumptions are required. Figures 25-28 demonstrate low scatter about $\frac{1}{2}$ % in hover increasing to only 1% in low speed flight. The hover data in Figure 25 shows the effect of the ground clearly. The download diminishes to half of its OGE value at a wheel height of 25 feet and is zero at a wheel height of 6 feet. The data do not show any trend with gross weight.

The download decreases with increasing speed at wheel heights above 15 feet. Below this height the download increases with increasing speed. These trends are shown in Figures 26-28. To increase the confidence in the download trends, data taken during Flight 8, a handling qualities flight, were analyzed. This flight extends the "OGE" download trending out to a speed of 60 knots, where the download-thrust ratio diminishes to a value of 0.5% as seen in Figure 29. Combining the data trends from Figures 25-28 into a single carpet plot yields consistent results. Figure 30 shows the effect of both speed and ground effect on D/T. This figure was used to obtain the fairings shown on the data plots.

While all of these figures provide useful information, the download used to give aircraft performance must include the improvement in rotor performance due to the presence of the fuselage beneath the rotor - a partial ground effect. (See discussion in Data Analysis Methods section.) This thrust recovery could, in theory, be obtained by comparing the RSRA balance thrust with "isolated rotor" whirlstand thrust at a constant power. However, the accuracy required for that comparison is better than that available. Any interference between the main and tail rotors would further complicate the comparison. Therefore, the OGE hover value of 0.9% of thrust has been used for the RSRA based on Reference 5. The thrust recovery is reduced to zero at a $(2/R)^2$ of 2.0 or a speed of 10 knots.

Figure 31 shows the impact of the ground on net vertical drag in hover. The OGE vertical drag is 4.0%, 1.1% higher than the Reference 3 prediction (adjusted to include the landing gear in the extended position) and 1.5% above that shown by current methodology (see Table X). The information necessary to extend the RSRA OGE vertical drag prediction for ground effect is taken from Reference 11. The RSRA vertical drag is half of the OGE value at a wheel height of 28 feet, agreeing closely with the prediction. The net vertical drag becomes zero at a wheel height of six feet, four feet higher than predicted.

Tail Rotor Blockage

The RSRA has a tail rotor thrust load cell to provide a direct measurement of this parameter. Comparison of this value with the necessary antitorque thrust gives a measure of tail rotor blockage. A further insight into the total installation effect can be made using both theory and tail rotor test stand data, using tail rotor torque as the common variable. While a sizable portion of the tail rotor torque data contained a high vibratory content (in some cases the vibratory gave impossible results; in others it biased the torque reading to a lower value), there is sufficient information to provide meaningful results. Only the tail rotor torque data from Flight 8 and points 13 to 27 of Flight 3 have been used to prepare Figures 32-35, however, all data is included in Tables IV through VIII.

Figure 32 shows the relationship between tail rotor thrust and power in hover. The calculated antitorque thrust agrees very well with the RSRA prediction of Reference 3. At a tail rotor torque coefficient of .0019 the OGE load cell thrust is 23% greater than the antitorque thrust, comparing well with the trend information given by References 11 and 12 and summarized for the RSRA. tail rotor-fin separation in Figure 33. The tail rotor thrust from the Sikorsky tail rotor test stand (which will cause some blockage) is 13% greater than the antitorque thrust while theory (Reference 4) is 16% greater. It is evident from Figure 32 that further work, including the measurement of the fin force, is required to identify the sources of the tail rotor loss and to better quantify the load cell thrust increase in the presence of the fin. The presence of a favorable wake interference effect on the rotor is possible and could explain differences in the measured and calculated performance.

Figure 34 shows the ratio of tail rotor power to main rotor power in hover. The predicted OGE value of .136 is substantiated by the data and this does not change with changes in wheel height. The tail rotor-main rotor power ratio trends with airspeed are given in Figure 35. The data indicates an increase in tail rotor power of up to 60% at low forward speeds (5 to 15 knots). The RSRA requires up to 9% more left pedal in this speed range. The tail rotor power requirements in right and left sidewinds follow expected trends.

Figures 36 and 37 present the ratio of load cell thrust and antitorque thrust versus rotor height for hover and low forward speeds. The OGE hover load cell thrust is 23% above the antitorque thrust value (see also Figure 32), increasing to 35% at a 5-foot wheel height for the RSRA. Figure 32 shows that this increase is primarily the result of higher load cell thrust in ground effect, although the antitorque thrust of a given tail rotor power may decrease slightly in ground effect. The thrust ratio increases significantly at low forward speeds, with the largest increases out of ground effect. The data contained in Table VIII indicate that this blockage is still greater than 30% at 60 knots, although aircraft yaw angle and fin lift must be known to provide more meaning to this value.

5.

7.

CONCLUSIONS

- 1. The rotor balance system is capable of providing high quality performance data. The ability to directly measure main and tail rotor thrust with a high degree of accuracy will make it possible to conduct tests where knowledge of thrust is mandatory, as in the vertical drag test.
- 2. The main rotor shaft and engine power measurement systems provided consistent data. The measurement of tail rotor power during this test was erratic.
- 3. The vertical drag of the RSRA is 4%, 1.1% greater than predicted. The vertical drag reduces with both forward speed and in ground effect. The vertical drag is zero for hover at a 6-foot wheel height. It is reduced to 0.5% at 60 knots out of ground effect.
- 4. At a 5-foot wheel height the gross weight augmentation was less than predicted by three prediction methods.
 - The load cell tail rotor thrust in hover is 23% above the calculated antitorque thrust at a constant tail rotor power level. This difference is a combination of the adverse fin force plus any wake interference effect (which may increase the isolated tail rotor thrust).
- 6. The ratio of load cell to antitorque tail rotor thrust increases in ground effect for hover and decreases at low forward speeds.
 - Tail rotor power percentage of main rotor power is not a function of wheel height at zero airspeed.
- 8. Tail rotor power percentage of main rotor power decreased with increased airspeed for speeds above 20 knots. An unexpected increase was found to occur between hover and 20 knots.

RECOMMENDATIONS

The following represent experimental studies that could provide additional information regarding the vertical drag and fin blockage effects on aircraft system performance.

- 1. Repeat this test for a higher vertical drag configuration using either a small wing or simulated stores. This could provide higher vertical drag levels that could be used to identify the analytical versus experimental trends.
- 2. Determine means to measure the vertical fin force so that components of tail rotor blockage can be isolated and understood. One possibility is the integration of fin surface pressures.
- 3. Conduct 1/6 scale model tests to correlate with full scale testing. This approach could identify the most promising configuration for full scale test while providing information on scale effects, thrust recovery, and tail rotor-main rotor interactions.
- 4. Investigate means to measure tail rotor main rotor interactions on the RSRA.

REFERENCES

- 1. Burks, J.S., "Rotor Systems Research Aircraft (RSRA) Rotor Force and Measurement System," AIAA First Flight Test Conference Proceedings, November 1981.
- 2. Michard, N.H., "Processing of On-Board Recorded Data for Quick Analysis of Aircraft Performance," NASA Reference Publication 1043, September 1979.
- 3. Rorke, J. B., "Performance, Stability and Control Report," SER-72006, June 21, 1974.
- 4. Landgrebe, A. J., Moffitt, R. C. and Clark, D. R., "Aerodynamic Technology for Advanced Rotorcraft - Part I," Journal of the American Helicopter Society, Vol. 22 No. 2, April 1977.
- *5. Flemming, R. J. and Schmidt, S. A., "Vertical Drag Standard Procedure," SER-50760, April 15, 1972.
- *6. Flemming, R. J., "Vertical Drag Tests 1/17 Scale Single Stowed Rotor," SER-50540, May 1, 1968.
- *7. Flemming, R. J., "Vertical Drag Tests 1/20 Scale Commercial Compound and Geometrically Simple Bodies," SER-50594, December 14, 1971.
- 8. Cheeseman, I. C. and Gregory, J. D. L., "The Effect of the Ground On The Performance Of A Helicopter," AGARD Flight Test Manual, Vol. 1, Chapter 11, Pergamon Press, 1962.
- 9. Hayden, James S., "The Effect Of The Ground On Helicopter Hovering Power Required," presented at the 32nd Annual National Forum of the American Helicopter Society, May 1976.
- 10. Studwell, R. E., "Helicopter Dynamic Performance Program, Engineer's Manual," USARTL-TR-79-27A, July 1980.
- 11. Keys, C. N., "Performance Prediction of Helicopters Volume II of Rotary Wing Aerodynamics," NASA CR 3083, January 1979.
- 12. Lynn, R. R. et al., "Tail Rotor Design Part I: Aerodynamics," Journal of the American Helicopter Society, Vol. 15, No. 1, October 1970.

*These reports are referenced only for completeness and are not generally available to the public.

TABLE I. <u>RSRA FLIGHT LOG</u> NASA 740, FTP 2A

HELICOPTER CONFIGURATION

Flt. No.	Date	GW/CG @ T.O.	Tape No.	Flt. Avg. Wind Data Time Vel – Kts Units	Comments
1	06/30/81	19800/302	740-2A-1A & B	0.5 10	Maintenance check flight
2	07/01/81	18700/302	740-2A-2A & B	0.5 10 -	Maintenance check flight
3	07/10/81	19800/302	740-2A-3A & B	2.0 $1\frac{1}{2}$ 60	Hover and slow forward flight performance
4	07/17/81	19800/302	740-2A-4A & B	2.3 3 59	Slow forward flight performance
5	07/21/81	19800/302	740-2A-5A & B	2.1 4 69	Slow forward flight performance
6	07/24/81	19800/302	740-2A-6A & B	0.2 3 -	Abort, fuel leak suspected
7	07/28/81	17800/302	740-2A-7A & B	$0.5 1\frac{1}{2} 25$	Lt wt hover, slow forward flight performance
8	07/28/81	19800/302	740-2A-8A & B	1.1 3 60	Forward flight, OGE to 60 kts, paced

SA 1114

17

Target	Wheel	Point Number								
Airspeed (Knots)	Height (Feet)	$C_{w} = .0053$	$C_{w} = .0056$	C _w = .0059						
0	5 10 20 40 100	7.18-20 7.21-23 7.24-26 7.27-29 7.30-32, 7.40-42	3.45-47 3.48-50 3.51-53 3.54-56 3.57-59	3.13-15 3.16-18, 5.13 3.19-21 3.22-24 3.25-27						
5	10 20 100	4.47-49, 5.56-58 4.56-58, 5.65-67 5.74-76	3.61-62 4.28-30, 5.37-39 4.41-43, 5.46-48	3.28-30 4.19-21, 5.17-19 5.26, 5.28-29 5.26, 28, 29						
10	10 20 100	4.50-52, 5.59-61 4.59-61, 5.68-70 7.33-35	3.63-65 4.31-33, 5.40-42 4.44-46, 5.49-51	3.31-3.33 4.22-24, 5.20-22 5.30, 5.32-33						
15	10 20 100	4.5355, 5.62-64 4.62-64, 5.71-73 7.36, 7.38-39	3.66-3.68 4.35-36, 4.40, 5.43-45 5.53-55	3.34, 4.16-18, 5.14-16 5.23-25 5.34-36						
1		1		A State of the second sec						

RSRA VERTICAL DRAG TEST POINT SUMMARY

8

C

С

C

0

C

C С DOCUMENT NO. SER - 72052

TABLE III

SIKORSKY DATA ANALYSIS CODE

C RSRA VERTICAL DRAG DATA ANALYSIS PROGRAM C ROBERT FLEMMING SIKORSKY AIRCRAFT OCTOBER 1981 DIMENSION PTN(100), VN(100), WHN(100), TCN(100), TMR(100), DMR(100), 1 SFMR(100),CTTRP(100),CTTR(100),CW(100),CT(100),CQB(100), 2 CQS(100), CPB(100), CPS(100), CPE(100), CQTR(100), HPTR(100), 3 GWN(100), DV(100), TRBLK(100), CDWLD(100), DOW(100), ROZSQ(100), 4 DOT(100), CWCWN(100), CTCTN(100), AMU(100) C PHYSICAL AND RSRA CONSTANTS R=31. PI=3.1415927 RAD=57.29578 HR=14.667 RT=5.3021 PO=.0023769 SI=-2. WBLD=1377.7 INPUT CURVE COEFFICIENTS AND TEST DATA 1 READ(5,5) DTIN, A0, A1, B0, B1, C0, C1 WRITE(6,6) DTIN, A0, A1, B0, B1, C0, C1 5 FORMAT(7F10.0) 6 FORMAT(1H ,7F12.7///) WRITE(6,7)7 FORMAT(1H ,' POINT V ΜН ΤВ PΒ TC ØR ΤE 1MP ALT GW TRQ TRT Х -7 Y BMRQ') WRITE(6,8) 8 FORMAT(1H , ' NO. (KT) (FT) (DEG) (DEG) (DEG) (FPS) (DEG 1 C) (FT) (LB) (FT-LB) (LB) (LB) (LB) (LB) (FT-LB) //) DO 50 I=1,100 READ(5,10)PT,V,WH,TB,PB,TC,OR,T,H,GW,TRQ,TRT,X,Z,Y,BMRQ IF(PT.LT.0) GO TO 60 WRITE(6,11)PT,V,WH,TB,PB,TC,OR,T,H,GW,TRQ,TRT,X,Z,Y,BMRQ 10 FORMAT(F5.2,F5.0,6F5.1,8F5.0)

11 FORMAT(1H ,F7.2,F7.1,6F7.1,8F7.0)

19 PAGE

DOCUMENT NO. SER - 72052

TABLE III (CONT)

	CALCULATE DENSITY AND THRUST AND POWER COEFFICIENTS	
	DELT=(16.875586*H/1000000.)**5.255853	
	TT=(T+273.15)/288.15	
	PP=DFLT/TT	
	7=-7	
.•	TETR=PI¥RT¥RT¥NR¥NR¥1 N968¥PN¥PP	
·	HETP=TETR+0R+1, 06728/550	
	TEMD+DT×D×D×D×D×DAVDD	
	TEPET-(TELET)/PAD	
	CTTP(I)-TPT/TETP	
	CTTPD(T)-DMP0//24 CTETPSCOC/PDD))	
	CALCULATE TATE POTOR POWER, USING INPUT FOUNTION, IF TRO IS	
	NOT AVAILABLE FOR TECT POINT	
	NO) AVAILABLE FOR TEST FOINT	
	TE/TRO LT 3100 TO 63	
	MP 1 K (1) = 1 K 4 * . 5 / 5 7	
	CQTR(1)=nrTR(1)/nrTR	÷
	41 UVIR(1)=BU+B1+UIIRF	
	HPTR(I)=CQTR(I)+HFTR	
	42 CW(I)=GW/TFMR	
	CALCULATE COEFFICIENTS AND BALANCE FORCES	
	CQB(I)=BMRQ/(TFMR*R)	
÷	CPB(I)=CQB(I)*1.0123+HPTR(I)*1.0193/HFMR +97.4/HFMR	
	TRBLK(I)=CTTR(I)/CTTRP(I)	
	TMR(I)=-Z*COS(TBRSI)*COS(PBR)-Y*SIN(PBR)+X*SIN(TBRSI)+WBLD	
	1 -TRT*SIN(PBR)/TRBLK(I)	
	DMR(I)=-Z*SIN(TBRSI)*COS(PBR)+X*COS(TBRSI)	
	SFMR(I)=-Z*SIN(PBR)*COS(TBRSI)+Y*COS(PBR)+TRT*COS(PBR)/TRBLK	(]
	DMR(I)=DMR(I)/TFMR	
	SFMR(I)=SFMR(I)/TFMR	
	CT(I)=TMR(I)/TFMR	
	CDWLD(I)=CT(I)-CW(I)	

DOCUMENT NO. SER - 72052

TABLE III (CONT)

```
C
С
  CALCULATE DOWNLOAD AND ROTOR HEIGHT VARIABLES
С.
      DOW(I)=CDWLD(I)/CW(I)
      DOT(I)=CDWLD(I)/CT(I)
      ROZSQ(I)=(R/(WH+HR))**2
      PTN(I)=PT
      VN(I)=V
      AMU(I)=V×1.688/DR
      WHN(I)=WH
      TCN(I)=TC
      GWN(I)=GW
   50 CONTINUE
   60 K=I-1
C
C
  READ ENGINE AND MAIN ROTOR SHAFT TORQUES
Ċ
      DO 70 I=1,K
      READ(5,15)CQS(I), CPE(I)
   15 FORMAT(2F5.0)
      CQS(I)=CQS(I)/1000000.
      CPE(I)=CPE(I)/1000000.
С
C
  CALCULATE THRUST RECOVERY AND NET VERTICAL DRAG
С
      DT=DTIN*(1.-.5*ROZSQ(I))*(1.-(VN(I)/10.))
      IF(DT.LT.0.OR.VN(I).GT.10.)DT=0.
      DV(I)=(CDWLD(I)-(DT*CT(I)))/CW(I)
C
C
  CALCULATE OGE (R/Z**2=0.) CW**1.5 AND CT**1.5 AND THRUST AUGMENTATION
С
      CWINF=A0+A1*CPE(I)
      CTINF=C0+C1×CQB(I)
      CWCWN(I)=(CW(I)**1.5)/CWINF
      CTCTN(1)=(CT(1)**1.5)/CTINF
      DV(I)=DV(I)*100.
      DOT(I)=DOT(I)*100.
   70 CPS(I)=CQS(I)*1.0123+HPTR(I)*1.0193/HFMR+97.4/HFMR
```

21

DOCUMENT NO. SER - 72052

TABLE III (CONCLUDED)

C								
C	OUTPUT					- -	e de la composición d	· · · · ·
C								
	WRITE(6,21)		•				•	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1
1	WRITE(6,22)							•
	WRITE(6,23)							
•	21 FORMAT(1H1, '	POINT	SPEED	WHEEL	COLL	GROS	S B/	ALAN
•	1CE BALANCE	BALANCE	D/T	VŒ	TAIL ROT	GW	T	R
	2 **2')							
	22 FORMAT(1H , '	NO.		HGT		WEIC	SHT 1	THRU
	1ST DRAG	SIDE FOR	CE .		BLOCKAGE	GW	T	Z
	2')			· ·	· · · ·		- · · ·	
	23 FORMAT(1H , '		(КТ)	(FT)	(DEG)	(LE	3)	(LB
	1) ()	()	(%)	(%)	()	()	()	(🛶 '
	2-)'/)							
	DO 80 I=1,K							
	WRITE(6,20) P	TN(I),VN((),WHN(I)	,TCN(I),	GWN(I),TMR	(I),DMF	(1),	
	1 SFMR(I),DOT(I),DV(I);	RBLK(I),	CWCWN(I)	,CTCTN(I),	ROZSQ()	()	
	20 FORMAT(1H ,F8	.2,F8.1,21	10.1,2F1	0.0,2F10	.6,2F8.2,4	F8.3)		
	80 CONTINUE				•••			
	WRITE(6,26)			1			4 - E.	•
	26 FORMAT(1H1,	POINT SPE	ED W.HGT	MU	CM	C.	r in	L ų B
	1 CQS	CPB	CPS	CP	E CI	TR	CQTR	
	2CTTRP'/1H ,'	NO. (KT), ···(FT)*	13				
	DO 90 I=1,K							
	WRITE(6,25) P	TN(I),VNC	(),WHN(I)	,AMU(I),	CW(I),CT(I	D, CQB(D,CQS(1)
	1 ,CPB(I),CPS	(I),CPE(I),CTTR(I)	, CQTR(I)	,CTTRP(I)			
	25 FORMAT(1H ,F6	.2,F6.1,F	7.1,F7.3,	7F10.6,3	F10.5)		14.1	
	90 CONTINUE			i.		•		
	READ(5,99)X	· /				· · ·		
	99 FORMAT(F5.0)			•				÷.,
	IF(X.LT.0)STO	P .						
	WRITE(6,100)	1 .	÷ ·					
	100 FORMAT(1H1)					- -	•	
	GO TO 1		• .					
	END						1.1	

22 PAGE

TABLE IV

TABULATED DATA - FLIGHT 3

POINT	ul v	HH.	TB	PB	TC	OR	TEMP	ALT	GM	TRQ	TRT	X	-Z	Υ	BMRQ
NO.	(KT)	(FT)	(DEG)	(DEG)	(DEG)	(FPS)	(DEG C)	(FT)	(LB)	(FT-LB)	(LB)	(LB)	(LB)	(LB)	(FT-LB)
· · · ·					· · ·			•							•
					11.2		16.2	-40-	19703.	413.	1545.	- 189.	18240.	-398.	42140.
3.14	0.0	5.0	2.2	-1.4	9.6	681.7	16.2	-40.	19668.	392.	1505.	273.	18150.	-374.	41690.
3.15	0.0	5.6	1.9	1.4	11.1	680.9	16.2	-40.	19639.	° °.	1544.	209.	18220.	-386.	42110.
3.16	0.0	10.8	2.0	-1.6	12.3	678.8	16.2	-10.	19582.	451.	1610.	237.	18330.	-339.	45870.
			1.8	-2.0	12.0	678.9	16.2	- 10.	19557.	421	1543.	- 152.	18270.	-352.	44840.
3.18	0.0	9.4	1.7	-1.7	- 11.4	679.7	16.2	-10.	19531.	409.	1522.	131.	18130.	-363.	43680.
3.19	0.0	19.6	2.0	-2.3	12.3	679.2	15.5	30.	19490.	447.	1579.	187.	18470.	-307.	46650.
3.20	0.0	21.0	1.5	-2.2	12.3	679.2	15.5	30.	19475.	463.	1605.	137.	18480.	-328.	46990.
				2.3					19450.	430.	1568.	158.	18460	-333.	47200
3.22	0.0	40.2	1.4	-2.4	12.7	678.2	15.5	65.	19390.	450.	1580.	86.	18500.	-235.	49300.
3.23	0.0	40.7	1.7	-2.7	12.3	678.3	15.5	65.	19373.	431.	1562.	129.	18490.	-225.	4895 0.
3.24	0.0	40.9	1.5	-2.7	12.6	678.5	15.5	65.	19349.	436.	1547.	114.	18450.	-224.	4875 0.
3.25	0.0	101.7		2.7	12.7.	. 677.8	15.2	135.	19258.	462.	1587.	158.	18580.	12.	50070
3.26	0.0	100.6	1.9	-2.7	12.8	677.9	15.2	135.	19241.	449.	1572.	203.	18630.	22.	49990.
3.27	0.0	103.0	1.9	-3.1	12.8	678.0	15.2	135.	19210.	487.	1573.	244.	18560.	25.	49930.
3.28	5.1	6.6	2.1	-1.0	10.8	683.3	16.1	-34.	19005.	0.	1641.	204.	17710.	-334.	40570.
3.29	5.7		1.5	1.4			16.2	41.	18995.	····· 0 •····	1603-		17690.	-313.	40120
3.30	5.3	5.2	1.3	-2.0	11.0	684.2	16.7	-46.	18950.	0.	1627.	104.	17650.	-296.	39530.
3.31	9.3	6.1	1.9	-0.6	10.0	684.5	16.6	-25.	18907.	ο.	1550.	166.	17600.	-328.	40010.
3.32	10.8	5.4	1.9	-2.2	10.5	684.7	16.9	-18.	18873.	. 8.	1473.	147.	17700.	-253.	40140.
3,33	. 10.7		1.3.	-1.4	.10.9	684.6	16.7		18823.		1488.		17530.	-282-	39780
3.34	16.0	12.1	2.4	-2.2	11.3	684.7	16.9	-3.	18784.	426.	1538.	99.	17780.	-350.	39830.
3.45	.0.0	5.2	1.8	-1.4	11.3	683.8	16.8	-500.	18324.	Ο.	1444.	189.	16960.	-241.	38180.
3.46	0.0	5.0	1.9	-1.4	11.0	682.9	17.1	-500.	18305.	0.	1434.	224.	16920.	-250.	38170.
3.47	0.0	4.9	2.0	-2.0	11.2		17.5	-500-	18274.		1364		16990.	-206.	
3.48	0.0	10.7	1.4	-2.0	10.8	680.5	17.0	-150.	18264.	. 0.	1482.	99.	17070.	-240.	40590.
3.49	0.0	10.4	1.7	-1.3	10.3	677.1	17.0	-150.	18249.	0.	1602.	108.	17120.	-288.	40110.
3.50	0.0	9.9	1.9	-2.0	9.0	682.1	17.0	-150.	18238.	0.	1424.	166.	17070.	-200.	39820.
3.51	0.0	20.1	1.1	2.3.	11.4.	. 681.7		200	18224.		1504		17240.	242.	42490
3.52	0.0	19.5	1.5	-2.2	10.9	672.1	16.5	200.	18212.	. 0.	1564.	90.	17270.	-254.	42790.
3.53	0.0	20.4	1.5	-1.6	12.0	679.6	16.5	200.	18203.	0.	1451.	128.	17250.	-256.	43390.
3.54	0.0	39.6	0.9	-2.5	11.6	677.4	16.5	250.	18145.	σ.	1578.	37.	17330.	-313.	44320.
3.55	0.0	40.2	1.6	-1.9		678.0			18137.				17380.	295.	. 44560
3.56	0.0	39.5	1.5	-2.6	11.3	680.6	16.5	250.	18127.	451.	1481.	134.	17320.	-221.	44040.
3.57	0.0	98.7	.1.4	-2.5	12.2	675.2	16.1	650.	18079.	432.	156 8.	-5.	17600.	-298.	45450.
3.58	0.0	105.1	1.3	-3.0	12.3	679.0	16.1	650.	18052.	0.	1451.	13.	17470.	-212.	45230.
3.59	0.0	100.4	1.6		12.3	678.9		. 650 .	18041.		1493		17530.	253.	46090
3.61	7.6	12.9	1.0	-1.3	11.4	682.6	16.8	.0.	17959.	0.	1629.	31.	16880.	-297.	39730.
3.62	8.2	12.4	1.6	-0.6	11.5	681.5	16.5	0.	17933.	0.	1686.	137.	16890.	-337.	40360.
3.63	9.2	13.3	1.2	-1.1	10.7	682.6	16.6	0.	17926.	0.	1596.	. 59.	16880.	-317.	40060.
3.64	9.3	12.5	1.5	-0.6	10.4	681.4	17.4	0.	17871.	0.	1612.	121.	16690.	-308.	39920.
3.65	11.2	14.7	1.4	-1.5	11.0	682.5	17.5	-12.	17865.	0.	1583.	41.	16770.	-296.	39630.
3.66	10.5	8.4	2.1	-1.7	10.8	681.6	17.6	-12.	17748.	Ο.	1575.	158.	16680.	-265.	38620.
3.67	14.4	12.9	1.6	-1.3	11.2	682.7	17.7	0.	17692.	ο.	1454.	-40.	16770.	-331.	37940.
3.68	16.2	_ 13.8	2.3	-1.2	11.0	683.0	17.0	-12.	17666.	0.	1498.	. 89.	16730.	-360.	37520.
3.69	13.8	14.0	1.5	-0.5	11.3	682.4	17.5	-10.	17640.	0.	1515.	42.	16630.	-393.	38300.

DOCUMENT

NO.

SER - 72052 TABLE IV

23 PAGE

SA 29 REV. G

TABLE IV (CONT)

											and the second second				
	POINT	SPEED	WHEEL	COLL	GROSS	BALANCE	BALANCE	BALANCE		DV .	TAIL ROT	(<u>64</u> %	14	2/ 1 **2	
	NO.	(1/7)	HGT	(DEC)	WEIGHT	THRUST	URAG	SIDE FORCE	- (7)	(7)	BLUCKAGE	1040	()	(2)	
		(KD	(FI)	(DEG)			()	()	(2)	(2)	· • • • • •	()	()	()	
	3.13		6.0	11.2	19703.	19630.		0.000099	-0.37	-0.37	1.353	1.224	1.168	2.250	
	3.14	0.0	5.0	9.6	19668.	19542.	0.000101	0.000094	-0.65	-0.64	1.332	1.237	1.173	2.485	
	3.15	0.0	5.6	11.1	19639.	19610.	0.000053	0.000093	-0.15	-0.15	1.353	1.212	1.168	2.340	
	3.16	0.0	10.8	12.3	19582.	19726.	0.000072	0.000119	0.73	0.50	1.295	1.117	1.082	1.482	
		0.0				19666-	0.00027-	0.000 68	0.55	0.32	1.270	1.153	1.102	1.470	
	3.18	0.0	9.4	11.4	19531.	19523.	0.000011	0.00086	-0.04	-0.19	1.286	1.184	1.119	1.659	
	3.19	0.0	19.6	12.3	19490.	19871.	0.000057	0.000065	1.92	1.41	1.248	1.100	1.074	0.818	٠.
	3.20	0.0	21.0	12.3	19475.	19878.	-0.000007	0.000071	2.03	1.50	1.260	1.067	1.066	0.755	
÷	3.21	0.0			. 19450. .	19861	0.00038	0.000062	. 2.07 -	- 1.54 -	1.225	1.089	1.060		
	3.22	0.0	40.2	12.7	19390.	19906.	-0.000033	0.000099	2.59	1.88	1.182	1.036	1.018	0.319	
	3.23	0.0	40.7	12.3	19373.	19898.	0.000010	0.000070	2.64	1.93	1.177	1.045	1.025	0.313	
	3.24	0.0	40.9	12.6	19349.	19857.	-0.000014	0.000069	2.56	1.85	1.170	1.051	1.026	0.311	.,
			101.7			19999	-0.000011-	- 0.0 00150	3.70	2.95		1.007	1.010	0.071	
	3.26	0.0	100.6	12.8	19241.	20052.	0.000052	0.000152	4.04	3.31	1.160	1.012	1.016	0.072	
	3.27	0.0	103.0	12.8	19210.	19985.	0.000065	0.000114	3.88	3.13	1.161	1.011	1.012	0.069	
	3.28	5.1	6.6	10.8	19005.	19099.	0.000070	0.000136	0.49	0.49	1.493	1.172	1.163	2.125	
			5.2	10.5	18995.	19079		0.000102	0.44		1.475	1.188	1.174	2.435	
	3.30	5.3	5.2	11.0	18950.	19041.	-0.000033	0.000048	0.48	0.48	1.518	1.202	1.189	2.435	
	3.31	9.3	6.1	10.0	18907.	18984.	0.000040	0.000171	0.41	0.41	1.430	1.200	1.169	2.228	
	3.32	10.8	5.4	10.5	18873.	19096.	0.000035	0.000046	1.17	1.18	1.354	1.218	1.176	2.386	
		10.7				18920	-0.000046	-0.000110				1.217	.1.1/0	2.010	
	3.34	16.0	12.1	11.3	18784.	19173.	0.000067	0.000014	2.03	2.07	1.424	1.211	1.193	1.341	
	3.45	0.0	5.2	11.3	18324.	18351.	0.000038	0.000112	0.15	0.15	1.396	1.188	1.159	2.435	
	3.46	0.0	5.0	11.0	18305.	18311.	0.000057	0.000110	0.03	0.03	1.386	1.190	1.158	2.485	
	3.47	0.0			18274		0.000063	.0.000070			1.317	1.202	1.104	2.510	
	3.48	0.0	10.7	10.8	18264.	18465.	-0.000024	0.000080	1.09	0.87	1.34/	1.139	1.109	1.475	
	3.49	0.0	10.4	10.3	18249.	18511.	0.000006	0.000125	1.41	1.22	1.4/4	1.124	1.154	1.547	
	3.50	0.0	9.9	9.0	18238.	18468.	0.000041	0.000085	1.24	1.07	1.319	1.103	1.167	1.372	
		0.0					-0.000066		····· 2.26 ·· ···	1 04	1 7/0	1 001	1 005	0 227	
	3.52	0.0	19.5	10.9	18212.	10008.	-0.000019	0.000075	2.44	1.70	1.240	1.001	1.005	0.023	
	3.55	0.0	20.4	12.0	18203.	10045.		0.000134	2.3/	2.07	1 717	1.071	1.050	0.701	
	3.54	.0.0	39.6	11.6	10145.	10/20.	-0.000091	0.000041	3.10	2.43	1 201	1.055	1 041	0.320	
				11.0 . ·	10137.	10712	-0.000005	0.000057	7 19	2.10-	1 240	1 076	1 044	0.328	
	3.30	0.0	37.5	11.5	1012/.	10/22.		0.000057	5.10	4 10	1 272	1 045	1 040	0.075	
	3:5/	0.0	90.7	12.2	100/9.	19001.		0.000052	4.05	7.17	1 183	1 071	1 038	0.047	
	3.20	0.0	105-1	12.3	10032.	100/5.		0.000031	4.30	4 04	1 105	1 040	1 023	0.007	
	2.27	7.6	100.9	17 4	17050	10733	-0.000013	0 000172	1 49	1 66	1 513	1 118	1 115	1 265	
	3.01	1.0	12.9	11.4	17077	12277	-0.000077	0.0001175	1.07	1 94	1 542	1 082	1 100	1 312	
	3.02	0.2	12.4	11.2	17024	102/3.	-0.0000053	0.000175	1.00	1.87	1 670	1 100	1 105	1 229	
	3.03	9.2	12.5	10./	1720.	18077		0.000181	1.12	1 11	1 491	1.107	1 005	1.302	
	J.04	<u>7.</u>	16.7	11 0	17845	18141	-0.0000007	0.000101	1 67	3.66	1.474	1.117	1,109	1.114	
	3.09	10 5	24.7	10.8	17748	18074	0.000041	0.000087	1.80	1.84	1.505	1.131	1.133	1.806	
	3.03	14.6	12 0	11 2	17692	18159	-0.000047	0.000095	2.57	2.64	1.414	1.166	1.161	1.265	Ϊ.
	3 68	16 2	17 0	11 0	17666	18118	0.000053	0.000092	2.49	2.56	1.474	1.170	1.169	1.186	
	3.00	17.8	14.0	11 3	17640	18012	-0.000031	0.000151	2.06	2.11	1.460	1.143	1.136	1.169	
	3.07	10.0	74.6	و د هد ا	11070.	TOATC.									

24 PAGE

SA 29 REV. G

DOCUMENT NO. SER · 72052 TABLE IV (CONT) 'n

THECHNOLOGIES

TABLE IV (CONCLUDED)

POINT NO.	SPEED (KT)	W.HGT (FT)	MU	С.	с ст	CqB		CPB.	CPS	CPE	CTTR	CQTR	CTTRP
3.13	0.0	6.0	0.0	0.005933	0.005911	0.000409	0.000416	0.000497	0.000504	0.000506	0.01450	0.00172	0.01072
3.14	0.0		.0.0	0.005914	0.005876	0.000404	0.000414	0.000489	0.000499	0.000498	0.01410	0.163	0.01059
3.15	0.0	5.6	0.0 .	0.005919	0.005910	0.000409	0.000420	0.000494	0.000504	0.000509	0.01450	0.00162	0.01072
3.16	0.0	10.8	0.0	0.005945	0.005988	0.000449	0.000459	0.000544	0.000553	0.000555	0.01523	0.00190	0.01176
3.17	0.0	10.9	0.0	0.005935	0.005969	0.000439	0.000447	0.000529	0.000536	0.000537	0.01460	0.00178	0.01150
3.18	0.0	9.4	0.0	0.005914	0.005911	.0.000427	0.000433	0.000515	0.000521	0.000520	0.01436	0.00172	0.01117
3.19	0.0	19.6	0.0	0.005904	0.006020	0.000456	0.000465	0.000550	0.000558	0.000558	0.01491	0.00188	0.01194
3.20	0.0	21.0	0.0	0.005900	0.006022	0.000459	0.000469	0.000556	0.000565	0.000574	0.01515	0.00195	0.01203
3.21	0.0	21.0	0.0	0.005895	0.006020	0.000462	0.000472	0.000553	0.000563	0.000562	0.01481	0.00181	0.01209
3.22	0.0		.0.0	0.005899	0.006056	0.000484	0.000498	0.000579	0.000592	0.000591	~ 0.01 498 -	~ 0.00191	0.01267
3.23	0.0	40.7	0.0	0.005892	0.006051	0.000480	0.000494	0.000573	0.000585	0.000585	0.01481	0.00182	0.01258
3.24	0.0	40.9	0.0	0.005881	0.006035	0.000478	0.000489	0.000571	0.000581	0.000580	0.01465	0.00184	0.01252
3.25	0.0	101.7	0.0	0.005874	0.006100	0.000493	0.000511	0.000590	0.000607	0.000604	0.01509	0.00196	0.01291
3.26	0.0				0.006114	0.000492	0.000509	0.0 00587	0.00603	0.000600	0.01494	0.00191	0.01288
3.27	0.0	103.0	0.0	0.005856	0.006092	0.000491	0.000508	0.000592	0.000608	0.000599	0.01495	0.00207	0.01287
3.28	5.1	6.6	0.013	0.005687	0.005715	0.000392	0.000398	0.000473	0.000480	0.000496	0.01530	0.00154	0.01025
3.29	5.7	5.2	0.014	0.005676	0.005701	0.000387	0.000393	0.000467	0.000474	0.000488	0.01493	0.00151	0.01013
3.30	5.3.		0.013	0.005665.	0.005692	.0.000381	0.00388	0.000460	0.000468	.0.000481	0.01516	0.00149	0.00998
3.31	9.3	6.1	0.023	0.005649	0.005673	0.000386	0.000391	0.000465	0.000472	0.000480	0.01443	0.00151	0.01009
3.32	10.8	5.4	0.027	0.005643	0.005710	0.000387	0.000394	0.000467	0.000475	0.000472	0.01373	0.00152	0.01014
3.33	10.7	4.5	0.026	0.005623	0.005652	0.000383	0.000389	0.000463	0.000469	0.000470	0.01385	0.00150	0.01004
3.34	16.0	12.1	0.039	.0.005620.	0.005736	0.000384	0.000389	0.000473	0.000478	0.000472	0.01434	0.00176	0.01007
3.45	0.0	5.2	0.0	0.005397	0.005405	0.000363	0.000373	0.000438	0.000451	0.000453	0.01326	0.00140	0.00950
3.46	0.0	5.0	0.0	0.005411	0.005413	0.000364	0.000375	0.000440	0.000453	0.000454	0.01321	0.00141	0.00953
3.47	0.0	4.9	0.0	0.005400	0.005433	0.000364	0.000376	0.000440	0.000454	0.000448	0.01256	0.00141	0.00954
_3.48	0.0		0.0	0.005504	.0.005565	.0.00395	0.000402	0.000476	0.000484	0.000486	0.01392	0.00155	0.01033
3.49	0.0	10.4	0.0	0.005555	0.005635	0.000394	0.000401	0.000476	0.000482	0.000499	0.01520	0.00155	0.01031
3.50	0.0	9.9	0.0	0.005471	0.005540	0.000385	0.000394	0.000465	0.000474	0.000472	0.01331	0.00151	· 0.01009
3.51	0.0	20.1	0.0	0.005533	0.005659	0.000416	0.000422	0.000502	0.000507	0.000507	0.01423	0.00166	0.01090
	0.0			0.005689	0.005831	0.000431	0.000439		0.000525	0.000537	. 0.01523	0.00173	0.01129
3.53	0.0	20.4	0.0	0.005561	0.005696	0.000428	0.000435	0.000516	0.000522	0.000515	0.01382	0.00171	0.01120
3.54	0.0	39.6	0.0	0.005589	0.005768	0.000440	0.000447	0.000531	0.000535	0.000537	0.01515	0.00178	0.01154
3.55	0.0	40.2	0.0	0.005577	0.005774	0.000442	0.000449	0.000533	0.000538	0.000539	0.01494	0.00179	0.0115/
3.56			0.0	_0.005531	0.005713	0.000454	0.000440 .	. 0.000528	0.000534	0.000518	0.01409	. 0.00191	0.01130
3.57	0.0	98.7	0.0	0.005679	0.005969	0.000461	0.000461	0.000556	0.000552	0.000554	0.01535	0.00190	0.01207
3.58	0.0	105.1	0.0	0.005608	0.005863	0.000453	0.000455	0.000547	0.000545	0.000551	0.01405	0.00105	0.01100
3.59	0.0	100.4	0.0	0.005606	0.005883	0.000462	0.000465	0.000552	0.000551	0.000546	0.01440	0.00176	0.01210
3.61	7.6		0.019	.0.005405	0.005498	.0.000385.				0.000402	0.01505	- 0.00151 -	0.01010
3.62	8.2	12.4	0.020	0.005409	0.005511	0.000393	0.000399	0.0004/4	0.000480	0.000490	0.01/02	0.00154	0.01020
3.63	9.2	13.3	0.023	0.005391	0.005494	0.000389	0.000395	0.000469	0.0004/8	0.000404	0.01470	0.00152	0.01017
3.64	9.3	12.5	0.025	0.005408	0.005470	0.000390	0.000395	0.0004/1	0.000476	0.000407	0.01920	0.00195	0.01020
3.65	11.2	14.7	0.028	0.005389		0.000377	0 000390	0.000460	0.0004/0	0.000400.	0.01400	0 00167	0.01010
3.66	10.5	8.4	0.020	0.005369	0.005408	0.000349	0.000352	0.000450	0.000400	0.000472	0.01368	0.00147	0.00967
3.67	14.4	12.9	0.030	0.005339	0.005460	0.000369	0.0003/4	a noo447	0.000451	0.000454	0.01404	0.00141	0.00957
3.68	10.2	15.0	0.040	0.005512	0.005440	0.000304	0.000300	0 000440	0.000445	0.000447	0.01425	0.00145	0.00976
3.07	72.0	_ 1 • • • •	V. V. 24	0.0000223									

DOCUMENT NO.

SER - 72052 TABLE IV (CONCLUDED) 0

INITED INCHNOLOGIES

G

25 PAGE

SA 29 REV. G

TABLE V

TABULATED DATA - FLIGHT 4

DOTIVE	· · v	1.11.4	TR		τĊ	00	TEMD	ATT	cu	מסד	דער	· Y	-7	Y	RMDG	
NO	(87)	(57)	(DEC)	INFO	(DEC)	(FDG)		(FT)	(18)	(FT-18)	(18)	(IR)	(18)	(18) (FT-IR)	
	- CNT J		(0:0)	(010)	(DLO)	(1:57			()			(00)	(
4.16	15.0	10.0	2.7	-0.9	12.1	685.7	14.9		19070.	488.	1673.	124.	17890.	-367.	41180.	
4.17	15.0	10.0	1.1	-2.0	11.4	685.4	15.0	39.	19038.	٥.	1526.	95.	17590.	-198.	41340.	
4.18	15.0	10.0	1.6	-1.9	11.3	684.2	15.2	53.	18985.	531.	1572.	167.	17700.	-221.	41480.	
4 19	5.0	20.0	1 5	-1 4	11.7	683.7	15.0	42	18923.	527	1730	157.	17500.	-211.	41560.	
6 20	5.0	20.0	2.4	-1 0	11.1	684.0	15.2	. 27.	18844		1648		17450	-186	40750	•
6 91	5.0	20.0	1 3	_1 8	11 7	684.0	15.2	43	18822	0	1643.	111.	17430	-194	41480	
4 22	10-0	20.0	25	-1 5	11.4	683.9	15.1	43	18766	0.	1597.	255.	17450.	-216.	41230.	
4.22	10.0	20.0	1 0	-1 7	11 5	684 1	15.2	43	18757	n.	1604	178.	17380.	-208	41160	
4.23	10.0	20.0	2.7	_1 5	12 0	686 8	15.2	43	18715	n	1450	242	17350	-176	40840	
		20.0	1 2	_0 0	11 6	. 004.0 682 2	15 0		18580	0	1750	168	17160	-311	41060	
4.20	5.0	20.0	0.7	-0.7	11.4	681 9	15.1	42	18558	0	1739	112	17300.	-261	41700	
6 70	5.0	20.0	1 9	-1 2	11.7	682 5	15.0	40.	18553	0.	1648.	148.	17250.	-259	41650.	
4 73	10.0	20.0	2.07	-0.6	12 1	682 3	15 0	76	18505	n.	1656	256	17110.	-286	41140	
4.71 . 	10.0	20.0		~0.7	11 6	. 002.J	15.2	77	18696		1597	186	17200.	-268	41150	
6 37	10.0	20.0	2.0	_1 6	11.0	685 9	15.2	53	18397	0.	1568	292	17108.	-205.	40730	
4.35	15.0	20.0	31	-1.0	17 0	689.8	15.4	18	18287		1300	299	17100.	-321	36280	
4.33	15.0	20.0	1.7	-0.4	17 5	686 5	15 5	54	19238	400	1544	63	17160	-371	38720	
	75 0	20 0		_7 5	31 7	488 E	15 5	44	1202304	400	1462	189	16860	-248	37610	
4.40	19.0	100 0	1 5	_2 2	11 7	686 4	15 0	120	17068	420	1621	74	17140	-217	43130	
4 42	5.0	100.0	1 2	-1.8	11 6	687 0	15.0	120	17033	400	1633	31.	17090.	-330.	41430	
4 43	5.0	100.0	1 2	-2.2	10.0	686 6	15.0	120	17023	450	1651	37	17160	-328	41910.	
4 66	70 0	100.0		-27	12 0	686 2	14 9	170	17879	480	1705	138	17120	-356	42200	
4.65	10.0	100.0	0.0	-2.2	11-4	687 1	14.9	110	17858	460	1668	164.	16960.	-345.	40710.	
4.43	10.0	100.0	0.7	-17	11 7	688 6	14 8	347	17813	, 40 0 .	1594	280	16870	-749	39390	
4.40	10.0	100.0	2.7	-1.7	11 4	480 0	15.6	477.	17716	101	1535	- 196	16298	-201	36660	
	E 0	10.0		_1 0	31 4		15 5		17700	420	1626	116	16280	-267	36820	
4 40	5.0	10.0	1.0	-1.0	71 4	480 8	15.5	4	17603	432 .	1600	133	16270	-276	36840	
4 50	10.0	10.0	2.0	-1.1	11.5	686 8	15 7	10	17616	361	1467	172	16180	-145	36960	
4.50	10.0	10.0	2 2	_1 0	13 6	486 0	15.7	28	17605	400	1496	274	16320	-186	38030	
	10.0	10.0	10	_1 2	11 6	486 6	15 5	25	17565	406	1500	180	16190	-208	38030	
4.52	15 0	10.0	2.2	-1.5	11.5	687 8	15.6	48	17521	450	1521	140	16220.	-252	36720	
4.55	15 0	10.0	2 4	_1 6	11 4	488 4	15.8	70.	17471	450	1482	80	16270.	-288	35860.	
4.54 6 EE	15.0	10.0	2 1	_1 0	11 2	689.6	15.8	52	17466	425	1403	-15	16310.	-318	34790	
4 E4		20 0	17	_1 6	11 6	2 783	15 6	48	17382	1	1588	174	16040	-207	37080.	
4.50	5.0	20.0	1 4	_1 0	11 3	684 0	15.6	40	17372	0.	1500	157.	16100.	-185.	37928.	
4.57	5.0	20.0	1.0	-1.7	11.5	683 6	15.7	36	17361	n -	1612	165	16130.	-224	37720	
4.50	10 0	20.0	1.8	-1.4	11 7	683.7	16.0	43	17286	а. С	1521	144	15960.	-240.	38330.	
4 60	10.0	20.0	1.7		11.3	682 9	15.9	28	17274	0	1603	90	16020	-288-	38150	
4 67	10.0	20.0	2.3	-1.6	11.7	683.1	15.9	24	17269	0	1617-	170.	16080	-270	38500	
4.62	15.0	20.0	2.2	-1.4	11.3	686.0	15.8	44	17227.	0	1389.	- 99	16030	-286	35070	
4 67	15.0	20.0	1 6	_n x	11.1	687.3	15.8	18	17219		1357	53.	15910.	-340	33740	
4.64	15.0	20.0	2 7] E	11.3	686.6	15-9	43	17188		1372	118.	15990	-264	34660	
4.04	19.0	20.0	C .3	3	****	000.0			21200.	•••						

26' PAGE

SA 29 REV. G

DOCUMENT NO

SER - 72052 TABLE V

INTED

TABLE V (CONT)

POINT	SPEED	WHEEL	COLL	GROSS	BALANCE	BALANCE	BALANCE	D/π	DV	TAIL ROT	/ GH X	(T ^{3/2} (R) *	¥2
NO.		HGT		WEIGHT	THRUST	DRAG	SIDE FORCE	E		BLOCKAGE	(GM2)	$\left(\frac{T_{0}}{T_{0}} \right) \left(\frac{Z}{Z} \right)$	
	(KT)	(FT)	(DEG)	(LB)	(LB)	()	()	(Z)	(%)	. ()	()	()	
4 16	15.0	10 0	12.1	19070	19277	0.000102	0.000139		1.09		1.179	1.157 1.5	79
4 17	15.0	10.0	11.4	19038	18986	-0.000054	0.000092	-0.28	-0.28	1.362	1.201	1.127 1.5	79
4 18	15.0	10.0	11.3	18985	19096	0.000013	0.000094	0.58	0.59	1.398	1.182	1.135 1.5	79
4 19	5.0	20.0	11.7	18923	18893	0.000001	0.000146	-0.16	-0.26	1,536	1.139	1.115 0.8	00
4 20	5.0	20.0	11.1	18844	18843	0.000117	0.000183	-0.01	-0.10	1.493	1.178	1.133 0.8	00
4 21	5 0	20.0	11.7	18822	18326	-0.000030	0.000114	0.02	-0.03	1.461	1.156	1.111 0.8	80
4.22	10.0	20.0	11.4	18766	18847	0.000122	0.000133	0.43	0.43	1.429	1.160	1.120 0.80	00
4 23	10.0	20.0	11.5	18757	18777.	0.000044	0.000117	0.10	0.10	1.438	1.166	1.116 0.8	00
4.24	10.0	20.0	12.0	18715	18748	0.000117	0.000142	0.17	0.17	1.310	1.191	.1.121 0.80	00
4 28	5.0	20.0	11.4	18580.	18547.	0.000032	0.000159	-0.18	-0.27	1.573	1.120	1.100 0.80	00
4.29	5.0	20.0	11.1	18558.	18689.	-0.000084	0.000098	0.70	0.61	1.539	1.103	1.096 0.8	00
4.30	5.0	20.0	11.3	18553.	18642.	0.000035	0.000152	0.48	0.38	1.460	1.130	1.092 0.80	00
4.31	10.0	20.0	12.1	18505	18497.	0.000113	0.000195	-0.04	-0.04	1.486	1.133	1.093 0.80	00
4.32	10.0	20.0	11.6	18496.	18585.	0.000020	0.000191	0.48	0.48	1.433	1.142	1.100 0.80	00
4.33	10.0	20.0	11.4	18397.	18498.	0.000131	0.000125	0.55	0.55	1.421	1.141	1.100 0.80	00
4.35	15.0	20.0	11.0	18287.	18491.	0.000184	0.000072	1.11	1.12	1.423	1.291	1.235 0.80	00
4.36	15.0	20.0	11.5		18543.	-0.000008	0.000148	1.65		1.472	1.190	1.164 0.80	00
4.40	15.0	20.0	11.7	18083.	18252.	0.000160	0.000097	0.93	0.94	1.434	1.225	1.169 0.80	00
4.41	5.0	100.0	11.7	17968.	18542.	-0.000022	0.000034	3.10	3.04	1.386	1.050	1.041 0.03	73
4.42	5.0	100.0	11.6	17933.	18482.	-0.000062	0.000076	2.97	2.90	1.454	1.077	1.079 0.03	73
4.43	5.0	100.0	10.9	17923.	18554.	-0.000060	0.000044	3.40	3.36		1.056	1.073	73
4.44	10.0	100.0	12.0	17879.	18509.	-0.000065	-0.000006	3.40	3.52	1.490	1.030	1.062 0.03	73
4.45	10.0	100.0	11.4	17858.	18348.	-0.000048	0.000032	2.67	2.74	1.511	1.078	1.086 0.07	73
4.46	10.0	100.0	11.7	17813.	18253.	-0.000013	0.000064	2.41	2.47	1.493	1.109	1.114 0.03	73:
4.47	5.0	10.0		17716.	17682.	0.000082	0.000132	0.19			1.183	-1.142 1.5	79
4.48	5.0	10.0	11.4	17700.	17667.	0.000001	0.000131	-0.19	-0.22	1.630	1.155	1.135 1.57	79
4.49	5.0	10.0	11.4	17693.	17658.	0.000022	0.000120	-0.20	-0.23	1.603	1.155	1.134 1.57	79
4.50	10.0	10.0	11.5	17616.	17579.	0.000059	0.000070	-0.21	-0.21	1.465	1.178	1.128 1.57	79
4.51	10.0	10.0	11.6	17605.	17717		. 0.00 0099	0.63	0.64	1.451	1.136	1.109 1.57	79 : ,
4.52	10.0	10.0	11.5	17565.	17581.	0.000048	0.000143	0.09	0.09	1.456	1.129	1.095 1.57	79
4.53	15.0	10.0	11.5	17521.	17612.	0.000058	0.000094	0.52	0.52	1.529	1.170	1.137 1.5	79
4.54	15.0	10.0	11.4	17471.	17660.	0.000057	0.000084	1.07	1.98	1.525	1.189	1.170 1.53	79
	15.0		11.2	17466.	17696		0.000100	1.30	1.32		1.238	1.210	79
4.56	5.0	20.0	11.6	17382.	17433.	0.000027	0.000105	0.29	0.19	1.580	1.103	1.114 0.80	36
4.57	5.0	20.0	11.3	17372.	17495.	0.000013	0.000092	0.70	0.61	1.556	1.104	1.094 0.80	00
4.58	5.0	20.0	11.6	17361.	17522.	0.000033	0.000121	0.92	0.83	1.577	1.107	1.103 0.80	00
4.59	10.0	20.0	11.7	17286.	17348.	0.000026.	0.000164		0.36	1.465	1.107	1.069 0.80	30
4.60	10.0	20.0	11.3	17274.	17408.	0.000005	0.000131	0.77	0.78	1.551	1.093	1.081 0.80	30
4.61	10.0	20.0	11.7	17269.	17474.	0.000076	0.000097	1.17	1.19	1.550	1.080	1.076 0.80	00
4.62	15.0	20.0	11.3	17227.	17419.	0.000346	0.000081	1.10	1.12	1.462	1.216	1.177 0.8	00
4.63	15.0	20.0	11.1	17219.	17289	-0.000025	0.000145	0.41	0.41	1.485	1.267	1.210 0.80	30
4.64	15.0	20.0	11.3	17188.	17380.	0.000060	0.000076	1.11	1.12	1.461	1.231	1.187 0.80	30

27 PAGE

SA 29 REV. G

SER 72052 TABLE V (CONT)

DOCUMENT NO.

W/,

UNITED TECHNOLOGIE:

A
TABLE V (CONCLUDED)

DOTINT	epren	U HCT	MİL	CH		COB.	CQS	CPB	CPS	CPE	CTTR	COTR	CTTRP	
NO	(KT)	(FT)	2 1 N 2 1											
110.	((()))	(1))			. •						1		· ·	
4.16	15.0	10.0	0.037	0.005663	0.005725	0.000395	0,000404	0.000491	0.000500	0.000490	0.01549	0.00200	0.01033	
4 17	15 0	10.0	0.037	0.005655	0.005640	0.000396.	0.000405	0.000478	0.000486	0.000480	0.01413	- 0.00156	0.01037	
<u> </u>	15.0	10.0	0.037	0.005666	0.005699	0.000399	0.000408	0.000503	0.000510	0.000489	0.01462	0.00219	0.01046	
6.19	5.0	20.0	0.012	0.005650	0.005641	0.000400	0.000406	0.000503	0.000508	0.000505	0.01610	0.00217	0.01048	
4 20	5.0	20.0	0.012	0.005622	0.005622	0.000392	0.000396	0.000473	0.000476	0.000485	0.01532	0.00154	0.01027	
4 21	5.0	20.0	0.012	0.005619	0.005620	0.000399	0.000404		0.000486	0.000494	0.01529	0.00158	0.01046	
6 22	10 0	20.0	0.025	0.005602	0.005626	0.000397	0.000407	0.000479	0.000488	0.000490	0.01486	0.00156	0.01039	
4.00	10.0	20.0	0.025	0.005598	0.005604	0.000395	0.000405	0.000478	0.000486	0.000487	0.01492	0.00156	0.01038	
4.24	10.0	20.0	0.025	0.005574	0.005584	0.000392	0.000399	0.000473	0.000480	0.000474	0.01346	0.00154	0.01027	
4 28	5 0	20.0	0 012	0.005570	0.005560	.0.000397	0.000403	0.000479	0.000484	0.000503	0.01635	0.00156	0.01039	. 1
 6 20	5 0	20.0	0.012	0.005572	0.005612	0.000404	0.000412	0.000487	0.000494	0.000511	0.01627	0.00160	0.01058	
4 30	5 0	20.8	0.012	0.005560	0.005586	0.000403	0.000412	0.000486	0.000494	0.000497	0.01539	0.00159	0.01054	
4 31	10.0	20.0	0.025	0.005547	0.005544	0.000398	0.000406	0.000480	0.000487	0.000494	0.01547	0.00157	0.01041	
4.32	10.0	20.0	0.025	0.005537	0.005564	0.000397	0.000403	0.000479	0.000484	0.000489	0.01490	0.00157	0.01040	~
4.32	10.0	20.0	0.025	0.005463	0.005493	0.000390	0.000397	0.000471	0.000477	0.000480	0.01451	0.00153	0.01022	
4.35	15 0	20.0	0.037	0.005367	0.005427	0.000343	0.000349	0.000416	0.000422	0.000414	0.01280	0.00132	0.00899	
4.36	15 0	20.0	0.037	0.005413	0.005503	0.000371	0.000377	0.000454	0.000461	0.000454	0.01428	0.00163	0.00970	
6 40	15 0	20.0	0.037	0.005334	0.005384	0.000358	0.000365	0.000441	0.000449		0.01344	. 0.00162	0.00937	
6 41	5 0	100.0	0.012	0.005338	0.005508	0.000413	0.000417	0.000500	0.000504	0.000503	0.01501	0.00172	0.01083	
6 62	5 0	100.0	0.012	0.005318	0.005481	0.000396	0.000400	0.000480	0.000484	0.000488	0.01509	0.00163	0.01038	
4.43	5.0	100.0	0.012	0.005321	0.005508	0.000401	0.000409	0.000492	0.000500	0.000498	0.01528	0.00184	0.01051	
4.44	10.0	100.0	0.025	0.005310	0.005498	0.000404	0.000412	0.000500	0.000507	0.000509	0.01578	0.00196	0.01059	• .:
4.45	10.0	100.0	0.025	0.005290	0.005436	0.000389	0.000393	0.000481	0.000485	0.000484	0.01540	0.00187	0.01019	
6.46	10.0	100.0	0.025	0.005262	0.005392	0.000375	0.000384	0.000453	0.000462	0.000467	0.01468	0.00146	0.00983	
4.47	5.0	10.0	0.012	0.005195	0.005185	0.000347	0.000353	0.000428	0.000435	0.000430	0.01403	0.00157	0.00908	
4.48	5.0	10.0	0.012	0.005192	0.005183	0.000348	0.000355	.0.000433	0.000441	0.000440	. 0.01487	0.00169	0.00912	
6 69	5.0	10.0	0.012	0.005192	0.005182	0.000349	0.000356	0.000435	0.000444	0.000440	0.01463	0.00174	0.00913	
4.50	10.0	10.0	0.025	0.005221	0.005210	0.000353	0.000363	0.000431	0.000441	0.000435	0.01355	0.00147	0.00925	
4.51	10.0	10.0	0.025	0.005231	0.005264	0.000365	0.000375	0.000448	0.000459	0.000452	0.01385	0.00164	0.00955	
4.52	10.0	10.0	0.025	0.005209	0.005214	0.000364	0.000371	0.000448	0.000456	0.000452	0.01386	0.00166	0.00952	
4.53	15.0	10.0	0.037	0.005181	0.005208	0.000350	0.000357	0.000440	0.000448	0.000433	0.01402	0.00183	0.00917	-
4.54	15.0	10.0	0.037	0.005156	0.005212	0.000341	0.000345	0.000431	0.000435	0.000423	0.01363	0.00182	0.00894	
4.55	15.0	10.0	0.037	0.005142	0.005210	0.000330	0.000334	0.000416	0.000421	0.000405	0.01287	0.00171	0.00865	
4.56	5.0	20.0	0.012	0.005199	0.005214	0.000358	0.000375	0.000433	0.000450	0.000461	0.01480	0.00138	0.00937	
4.57	5.0	20.0	0.012	0.005193	0.005229	0.000366	0.000373	0.000442	0.000449	0.000460	0.01490	0.00142	0.00958	
4.58	5.0	20.0	0.012	0.005196	0.005245	0.000364	0.000374	0.000440	0.000449	0.000459	0.01504	0.00141	0.00954	
4.59	10.0	20.0	0.025	0.005179	0.005198	0.000370	0.000376	0.000448	0.000452	0.000457	0.01420	0.00144	0.00970	
4.60	10.0	20.0	0.025	0.005183	0.005223	0.000369	0.000375	0.000446	0.000451	0.000463	0.01499	0.00143	0.00967	
4.61	10.0	20.0	0.025	0.005178	0.005239	0.000372	0.000379	0.000450	0.000456	0.000468	0.01511	0.00145	0.00975	
4.62	15.0	20.0	0.037	0.005124	0.005181	0.000336	0.000344	0.000408	0.000415	0.000410	0.01288	0.00128	0.00881	
4.63	15.0	20.0	0.037	0.005097	0.005118	0.000322	0.000325	0.000391	0.000394	0.000391	0.01252	0.00122	0.00843	
4.64	15.0	20.0	0.037	0.005105	0.005162	.0.00332	0.000334	0.000403	0.000405	.0.000403	0.01270	0.00126	0.00869	• •
			art 1475 - 544a											

28 PAGE

SA 29 REV. G

DOCUMENT NO.

-(ŋ

RCRAFT MUTROLOGI

SER - 72052 TABLE V (CONCLUDED)

TABLE VI

TABULATED DATA - FLIGHT 5

DOCUMENT

NO.

SER 72052 TABLE VI

POINT	v	1254	TB	PB	TC	0R	TEMP	ALT	GM	TRO	TRT	x	-Z	Y	BMRQ
NO.	(KT)	(FT)	(DEG)	(DEG)	(DEG)	(FPS)	(DEG C)	(FT)	(LB)	(FT-LB)	(LB)	(LB)	(LB)	(LB)	(FT-LB)
											:				
5.14	14.6	8.2	1.2	-1.8	11.5	. 683.3	15.2		19675.	423.	1647.	62.	18360.	-296.	43190.
5.15	15.5	6.2	1.8	-1.8	11.5	682.4	15.2	30.	19618.	453.	1706.	103.	18220.	-284.	43120.
5.16	17.8	6.4	3.0	-1.7	11.4	683.8	15.5	40.	19561.	386 .	1599.	132.	18360.	-295.	41610.
5.17	6.2	21.7	1.4	-1.7	11.9	679.0	15.0	40.	19530.	447.	1681.	64.	18350.	-311.	45920.
5.18		.21.3	1.5.	-2.1.	11.8	679.8	15.0	- 50.	19499.	542	1811.	103.	18250.	-293.	46630.
5.19	6.5	17.3	0.7	-2.0	11.7	680.4	15.0	50.	19468.	393.	1599.	15.	18190.	-221.	44980.
5.20	8.5	14.5	1.2	-1.1	11.6	679.8	15.0	50.	19429.	509.	1793.	76.	18110.	-339.	45220.
5.21	9.6	16.3	1.0	-1.8	11.8	680.0	15.1	30.	19390.	442.	1701.	153.	18180.	-261.	45430.
5.22		17.4	1.7.	-1.2		678.7	15.2		19351.		1806.		18120.	-320.	45510.
5.23	15.9	22.3	2.7	-0.4	11.4	686.3	15.4	6	19270.	520.	1823.	381.	18130.	-480.	41110.
5.24	16.2	23.7	2.3	-0.3	11.4	686.2	15.2	25.	19217.	501.	1766.	226.	18110.	-469.	42760.
5.25	15.5	21.1	2.0	-0-8	. 11.3	686.5	15.3	16.	19163.	406.	1622.	238.	17950.	-427.	40020.
5.26			1.0		12.0	. 680.7		91 .	19087.	576	. 1850	<mark>27.</mark>	18300.		47880.
5.28	9.5	125.9	2.0	-2.1	11.4	683.3	15.0	109.	18935.	679.	2072.	303.	17820.	-564.	41310.
5.29	8.6	93. 0	0.8	-0.7	12.0	680.9	14.7	73.	18897.	751.	2100.	24.	18260.	-518.	46110.
5.31	11.4	104.0	4.1	-1.4	11.5	682.7	14.5	106.	18820.	622.	1964.	576.	17680.	-415.	40980.
5.32	9.4	. 98.2	1.1	-0.7					18782-		2217.	275.	-18040		43970
5.33	11.7	121.8	1.5	-1.0	11.7	681.1	14.6	113.	18715.	740.	2084.	118.	17880.	-454.	45060.
5.34	15.5	101.1	4.0	-1.6	11.4	683.8	14.5	82.	18649.	556.	1885.	577.	17580.	-387.	40820.
5.35	12.7	110.9	3.1	-1.0	11.4	683.2	14.7	101.	18582.	650.	1996.	495.	17590.	-451.	40340.
	. 17.6.	155.1	4.4	0 3	10.8	686.6	14.5	149	18515.	····· 488 . ···	1818	71.9.	17430.		- 36820.
5.37	7.9	20.2	1.3	-1.3	11.3	683.1	14.9	.4.	18463.	488.	1748.	65.	17270.	-255.	42870.
5.38	8.5	21.4	1.3	-2.2	11.3	682.7	15.0	20.	18411.	507.	1773.	52.	17300.	-248.	43420.
5.39	8.5	23.5	1.4	-1.4	11.2	683 .5	15.0	20.	18359.	502.	1758.	72.	17230.	-319.	42530.
5.40	11.0	17.7		-1.8		683.5			18341.				17210.		
5.41	10.8	19.2	1.7	-1.1	11.2	684.9	15.0	10.	18322.	450.	1689.	20.	17150.	-276.	41330.
5.42	10.7	19.3	0.8	-1.6	11.2	684.1	15.2	10.	18304.	456.	1696.	-30.	17180.	-287,	42170.
5.43	14.2	18.4	1.2	-1.1	10.9	686.7	15.0	30-	18271.	375.	1572.	8.	1/120.	-297.	39390.
5.44	16.6	. 17.6.	0.4	1.0	11.3	685.9		47	18238.		. 1626		17220.		
5.45	16.2	15.8	1.8	-1.3	10.8	687.1	15.0	17.	18206.	374.	1564.	-13.	17000.	-307.	39030.
5.46	12.6	109.1	2.6	-2.2	11.5	682.6	14.7	.98.	181/6.	581.	1863.	101.	174/0.	-33/.	43650.
5.47	10.8	117.3	1.6	-1.9	11.5	682.2	14.7	106.	18147.	606.	1909.	50.	1/500.	-362.	44050.
5.48		106.1				681.2			18117.				.17700	~ -422.	44240.
5.49	12.1	93.2	2.8	-1.7	11.6	682.0	14.5	80.	18086.	595.	1890.	227.	17390.	-419.	43340.
5.50	10.6	99.1	1.1	-1.1	11.5	685.2	14.6	80.	18055.	603.	1902.	41.	17010	-432.	77700
5.51	13.9	103.2	2.8	-0.5	10.7	6//.6	14.6	80.	15024.	462.	1/43-	435.	1/010.	-3/0.	37300.
5.53	19.5	119.3			10.1		14.5	.100.	1/903.		1433		140740		33000.
5.54	22.4	126.2	2.6	-0.2	10.2	690.7	14.5	100.	17057.	270.	14/0.	473.	16030.	-510.	34040.
5.55	16.1	121.7	2.5	-0.8	10.6	-68/.8	14.5	100.	17707	373.	7000.	476.	14440	-341.	20220.
5.56	6.Z	11.1	1.6	-2.2	10.8	002.1	14.0	12.	17754	20/.	1471.	00.	16600.	-104.	78880
5.57	4.8	11.8	1.3	-2.0	10./	002.5	15.0	12.	17714	777	1491	107	16670	_187	39170
5.58	4.8	11.8	1.5	~2.3	10.8	202.0	15.0	12.	17700	5/3. 672	1400.	102.	16410	-101.	39100
5.59	10.2	8.6	د.۱	-1-4	10.5	202.0	13.9	12.	17677	4/6.	1613		16400	-2/4.	38650
5.60	11.4	0.0	1.1	-2.2	10./	202.3	14.0	15.	17658	472	1635	10	16430	-210	39090
5.61		<u></u>	<u>1.2</u>		10.0		15.0	20	17633	352	1498		16670	-201	38350
5.62	10.0	9.1	2.3	-1.3	10.0	204.0	12.2	20.	17406	756	1460	-18	16520	-274	36410
5.05	10.3	7:0	T * A	2.4	10.2	000.3	72.3	c 0 .	TAO'A#*		1-107.		20200		

29 PAGE

SA 29 REV. G

POINT NO.	(KT)	NH (FT)	TB (DEG)	PB (DEG)	TC (DEG)	OR (FPS)	TEMP (DEG C)	ALT (FT)	GH (LB)	TRQ (FT-LB)	TRT (LB)	X (LB)	-Z (LB)	Y (LB)	BMRQ (FT-LB)
5.64 5.65	15.8 6.7	7.5 21.1	2.2 1.0	-2.3 -1.9	10.6 10.8	684.6 684.2	15.3 15.2	20. 20.	17577. 17559.	379. 361.	1559. 1462.	36. -11.	16530. 16420.	-259. -199.	36890. 39830.
5.66 5.67 5.68	7.7 8.3	21.5	0.9 1.2 2 0	-2.1 -0.5	11.0 10.9	683.1 683.8 684 7	15.4 15.4 15.1	20. 5.	17540. 17522.	450. 454. 352	1638. 1658.	-9. -12. 75	16480. 16510.	-228. -322.	40690. 40130. 39600
5.69 5.70	11.3	18.7 20.8	2.2	-1.3	10.9	683.8 683.5	15.1 15.2	5. 5.	17487. 17470.	424.	1617. 1657.	68. 28.	16500. 16440.	-284. -311.	40030. 39670.
5.71 5.72 5.73	15.0 15.0 15.7	20.0 20.0 16.4	1.0 2.4 1.4	-1.5 -0.2 -1.6	10.7 10.5	685.0 686.6	15.2 15.2	21. 10. 25.	17447. 17423. 17294	365. 346. 407.	1512. 1479. 1607.	-58. 71.	16420. 16340. 16290.	-308. -351.	38690. 37030. 38230.
5.74 5.75 5.76	7.5 8.7 9.6	92.6 91.8 90.8	1.6 1.5 1.8	-1.7 -2.5 -1.7	11.0 11.3 11.1	683.6 683.2 683.7	14.9 14.6 14.7	25. 77. 70.	17186. 17181. 17175.	537. 474. 592.	1806. 1719. 1898.	60. 18. 126.	16690. 16640. 16590.	-361. -290. -410.	39690. 42090. 40020.

UNITED TECHNOLOGIE

æ

DOCUMENT NO.

SER - 72052 TABLE VI (CONT)

30

SA 29 REV. G

POINT	SPEED	WHEEL	COLL	SROSS	BALANCE	BALANCE	BALANCE	D/T	DV	TAIL ROT	(GH 3/2	·/I 13/2	<u>/R +*2</u>	
NO.		HGT	-	KEIGHT	THRUST	DRAG	SIDE FORC	E		BLOCKAGE	GHa	(Tec)	\z/	÷
	(KT)	(FT)	(DEG)	(LB)	(LB)	()	{}	(Z)	(%)	()	()	()	()	
			· .											
	14.6	8.2	11.5	19675.	19753.	-0.000058	0.000089	0.40	0.40	1.407	1.199	1.146	1.838	
5.15	15.5	6.2	11.5	19618.	19616.	0.000012	0.000094	-0.01	-0.01	1.460	1.191	1.137	2.207	
5.16	17.8	6.4	11.4	19561.	19754.	0.000135	0.00086	0.98	0.99	1.418	1.242	1.191	2.165	•
5.17	6.2	21.7	11.9	19530.	19746.	-0.000039	0.000118	1.09	1.03	1.351	1.120	1.081	0.727	
5.18	6.5	21.3	11.8		19649.	-0.000017	.0.000091	0.77	0.70	1.433	1.071	1.055	0.743	
5.19	6.5	17.3	11.7	19468.	19586.	-0.000120	0.000109	0.60	0.55	1.311	1.158	1.089	0.940	
5.20	8.5	14.5	11.6	19429.	19499.	-0.000053	0.000163	0.36	0.34	1.463	1.116	1.076	1.130	
5.21	9.6	16.3	11.8	19390.	19574.	-0.000050	0.000120	0.94	0.94	1.381	1.124	1.077	1.002	
5.22	9.4			. 19351		0.000011	0.000162 -	0.82	0.82	1.465	1.099	1.072	0.935	
5.23	15.9	22.3	11.4	19270.	19515.	0.000179	0.000150	1.26	1.27	1.637	1.179	1.180	0.703	
5.24	16.2	23.7	11.4	19217.	19492.	0.000095	0.000176	1.41	1.43	1.525	1.144	1.130	0.653	
5.25	15.5	21.1	11.3	19163.	19335.	0.000070	0.000120	0.89	0.90	1.496	1.242	1.196	0.751	
			12.9	19087		-0.000088	0.000117		3.14	1.426	1.020	1,029		
5.28	9.5	125.9	11.4	18935.	19206.	0.000091	-0.000029	1.41	1.42	1.850	1.117	1.152	0.049	
5.29	8.6	93.0	12.0	18897.	19641.	-0.000108	0.000153	3.79	3.89	1.681	0.986	1.065	0.083	
5.31	11.4	104.0	11.5	18820.	19079.	0.000367	0.000079	1.36	1.37	1.769	1.114	1.150	0.068	
5.32	9.4		11.8	18782.	19418.	-0.000003	0.000142	3.28	3.37	1.861	0.989	1.100	0.075	
5.33	11.7	121.8	11.7	18715.	19267. ·	-0.000011	0.000137	2.86	2.95	1.707	0.997	1.060	0.052	
5.34	15.5	101.1	11.4	18649.	18980.	0.000355	0.000058	1.75	1.78	1.704	1.120	1.144	0.072	
5.35	12.7	110.9	11.4	18582.	18982.	0.000249	0.000100	2.11	Z.16	1.826	1.097	1.160	0.061	
5.36				18515.	18825.	0.000430		1.65	1.6/		1.234	1.255	······································	
5.37	7.9	20.2	11.3	18463.	18662.	-0.000044	0.000154	1.06	1.04	1.505	1.079	1.050	0.790	
5.38	8.5	21.4	11.3	18411.	18699	-0.000048	0.000079	1.54	1.55	1.506	1.054	1.050	0./39	
5.39	8.5	23.5	11.2	18359.	18621.	-0.000032	0,000123	1.41	1.40	1.525	1.069	1.005	0.000	
5.40				18341		-0.000058	0.000087		1.43.	1.501	1.005	1.000	0.917	
5.41	10.8	19.2	11.2	18322.	18540.	-0.000021	0.000153	1.18	1.19	1.508	1.109	1.000	0.000	
5.42	10.7	19.3	11.2	18304.	18572.	-0.000116	0.000112	1.44	1.46	1.404	1.085	1.009	0.033	
5.43	14.2	18.4	10.9	18271.	18508.	-0.000068	0.000131	1.20	1.29	1.4/5	1.1/5	1.137	0.077	
5.44	16.0	17.6		18238		-0-000124			1 01	1 470	1 1 20	1 170	1 075	
5.45	16.2	15.8	10.8	18206.	18390.	-0.000021	0.000108	1.00	7.01	1.4/7	1.101	1.120	1.035	
5.46	12.6	109.1	11.5	181/6.	10000	0.000105	0.000052	3.0/	3.01 4 4F	1.574	1.014	1.027	0.005	
5.47	10.8	117.5	11.5	18147.	10755.	-0.000020	0.0000/5	4.20	4.43	1.277	0.775	1.057	0.055	
5.48				1811/.	100/0:	-U.UUUU57.	0.000105		7 94	1 400	1 000	1 040	0.097	
5.49	12.1	93.2	11.0	10000.	10/04.	0.000141	0.000072	2.12	3.00	1 479	1 021	1.000	0.003	
5.50	10.0	77.1	11.3	10033.	10772.	0.0000007	0.000103	2.03	2.07	1 721	1 226	1 207	0.049	·
5.51	13.9	105.2	10.7	10024.	1037/.	0.000204	0.000150	2.03	1.20	1 504	1 755	1 204	0.007	
5.55		126 2		1793	19214	.0.000270	0 000101	1 97	1 04	1 553	1 313	1 258	0.004	
5.54	16 7	120.2	10.2	1707.	10214.	0.000190	0.000100	1 70	1 73	1 686	1.206	1 195	0.040	
5.55	70.1	121.7	10.0	17701	10137.	-0.000100	0.000122	0 36	0 33	1 433	1 148	1 114	1 667	
5.50	0.2	11.1	10.0	17754	17020		0.000051	0.07	.0.88	1 357	1 148	1 105	1 372	
5.51	4.0	11.0	10.7	17714	17960	-0 000004	A.000051	0.25	0.81	1,300	1.118	1.093	1.372	
5.50	10 2	11.0	10.0	17700	17800		0.0000000	0.65	0.57	1 628	1.130	1.117	1.775	
5.57	11.4	8.4	10.0	17677	17797	-0.000077	0 000068	0.67	0.68	1.539	1.121	1.099	1.775	
5.60	17 6	0.3	10.2	17658	17825	-0.000063	0.000083	0.94	0,95	1.543	1.106	1.091	1.619	
5.62	16 6	2.1	10.0	17631	17863	0.000050	8.000138	1.30	1.31	1.442	1.153	1.113	1.701	
5.02	16.7	7-1	10.0	17604	17013	-0.000014	8.000006	1.72	1.76	1.438	1,192	1.479	1.605	
5.03	10.3	7.0	_ • . 3	T1004.	217230	0.000014		֥16		.		/		

31 PAGE

5A 29 REV. G

SER - 72052 TABLE VI (CONT)

DOCUMENT NO.

JINI I ED

AIRCRAFT WITHOUGH

6

DOCUMENT NO

SER 72062 TABLE VI (CONT)

POINT	SPEED	WHEEL	COLL	GROSS	BALANCE	BALANCE	BALANCE	0/Т.	nv	TATL ROT	/GH I	3/21T 34	(R\ **2
NO.		HST		NEIGHT	THRUST	DRAG	SIDE FORCE			BLOCKAGE	GW	Ta	IZ.
	(KT)	(FT)	(DEG)	(LB)	(LB)	{}	()	(2)	(%)	()	()	() ;	()
5.64	15.8	7.5	10.6	17577.	17924.	0.000028	0.000023	1.94	1.97	1.559	1.166	1.166	1.956
5.65	6.7	21.1	10.8	17559.	17816.	-0.000089	0.000100	1.44	1.39	1.354	1.105	1.067	0.751
5.66	7.7	21.5	11.0	17540.	17876.	-0.000097	0.000081	1.88	1.87	1.485	1.050	1.050	0.735
5.67	8.3	20.2	10.9	17522.	17892.	-0.000072	0.000185	2.07	2.08	1.525	1.060	1.066	0.790
5.68	11.2	18.5	10.8	17505.	17860.	0.000022	0.000079	1.99	2.03	1.388	1.108	1.076	0.874
5.69	11.3	18.7	10.9	17487.	17892.	0.000037	0.000127	2.26	2.31	1.491	1.068	1.068	0.863
5.70	11.3	20.8	10.9	17470.	17826.	-0.000034	0.000159	2.00	2.04	1.542	1.066	1.073	0.764
5.71	15.0	20.0	10.7	17447.	17810.	-0.000102	0.000092	2.04	2.08	1.442	1.115	1.098	0.800
5.72	15.0	20.0	10.5	17423.	17720.	0.000055	0.000176	1.68	1.70	1.474	1.164	1.138	0.800
5.73	15.7	16.4	10.8	17294.	17682.	-0.000070	0.000087	2.19	2.24	1.551	1.103	1.100	0.996
5.74	7.5	92.6	11.0	17186.	18081.	-0.000017	0.000065	4.95	5.13	1.679	1.022	1.095	0.084
5.75	8.7	91.8	11.3	17161.	18038.	-0.000038	0.000037	4.75	4.95	1.506	0.994	1.027	0.085
5.76	9.6	90.8	11.1	17175.	17980.	0.000020	0.000054	4.48	4.67	1.750	0.997	1.077	0.086

32 PAGE

SA 29 REV. G

	POINT	SPEED	W.HGT	MU	Сы	СТ	CGB	CQS	CPB	CPS	CPE	CTTR	COTR	CTTRP
	NO.	(KT)	(FT)								• •			
	1.1						-							•
	5.14	14.6	8.2	0.036	0.005885	0.005908	0.000417	0.000425	0.000505	0.000513	0.000510	0.01535	0.00175	0.01091
	5.15	15.5	6.2	0.038	.0.005881	0.005881	0.000417	0.000425	0.000510	0.000518	0.000513	0.01594	0.00188	. 0.01092
	5.16	17.8	6.4	0.044	0.005848	0.005906	0.000401	0.000409	0.000484	0.000492	0.000488	0.01490	0.00159	0.01051
	5.17	6.2	21.7	0.015	0.005912	0.005977	0.000448	0.000460	0.000542	0.000552	0.000549	0.01586	0.00188	0.01174
	5.18	6.5	21.3	0.016	0.005890	0.005936	0.000454	0.000467	0.000562	0.000573	0.000571	0.01705	0.00227	0.01190
	5.19	6.5		.0.016	0.005871.	0.005906	0.000438	0.000446	0.00523	0.000530	0.000526	0.01503	0.00164	0.01146
	5.20	8.5	14.5	0.021	0.005869	0.005890	0.000441	0.000447	0.000543	0.000548	0.000545	0.01688	0.00214	0.01154
	5.21	9.6	16.3	0.024	0.005852	0.005907	0.000442	0.000450	0.000535	0.000541	0.000539	0.01600	0.00185	0.01158
	5.22	9.4	17.4	0.023	0.005865	0.005913	0.000445	0.000453	0.000549	0.000555	0.000553	0.01706	0.00219	0.01165
	5.23	_15.9		0.039	0.005710	0.005783	0.000393	0:000399	0.000494	0.00501	0.000496	- 0.01684 -	0.00212	0.01029
	. 5.24	16.2	23.7	0.040	0.005696	0.005778	0.000409	0.000415	0.000507	0.000514	0.000509	0.01632	0.00204	0.01070
	5.25	15.5	21.1	0.038	0.005675	0.005726	0.000382	0.000387	0.000467	0.000472	0.000467	0.01497	0.00165	0.01001
	5.26	8.3	98.7	0.021	0.005757	0.005941	0.000466	0.000474	0.000578	0.000585	0.000579	0.01739	0.00241	0.01220
	5.28	9.5	125.9	0.023	0.005674.	0.005755	0.000399	0.000398	0.000524	0.00522 -	0.000518	0.01935	0.00281	0.01046
	5.29	8.6	93.0	0.021	0.005689	0.005913	0.000448	0.000454	0.000584	0.000589	0.000588	0.01970	0.00314	0.01172
	5.31	11.4	104.0	0.028	0.005639	0.005716	0.000396	0.000401	0.000513	0.000517	0.000515	0.01834	0.00258	0.01037
	5.32	9.4	98.2	0.023	0.005661	0.005853	0.000427	0.000437	0.000580	0.000587	0.000582	0.02083	0.00360	0.01119
	. 5.33	11.7	121.8	0.029	0.005637	. 0.005803	0.000438	0.000441	0.000573	.0.000574	0.000574	0.01956	- 0.00309 -	0.01146
	5.34	15.5	101.1	0.038	0.005565	0.005664	0.000393	0.000398	0.000500	0.000505	0.000502	0.01753	0.00229	0.01029
	5.35	12.7	110.9	0.031	0.005562	0.005682	0.000390	0.000396	0.000510	0.000516	0.000512	0.01862	0.00269	0.01020
	5.36	17.6	155.1	0.043	0.005493	0.005585	0.000352	0.000355	0.000448	0.000452	0.000448	0.01681	0.00199	0.00922
		7.9		0.020	.0.005513.	0.005572	0.000413	0.000418	0.000510	0.00515	0.00514	0.01627	0.00201	0.01081
	5.38	8.5	21.4	0.021	0.005509	0.005595	0.000419	0.000427	0.000520	0.000527	0.000525	0.01653	0.00210	0.01098
	5.39	8.5	23.5	0.021	0.005480	0.005559	0.000410	0.000416	0.000509	0.000515	0.000514	0.01636	0.00207	0.01072
	5.40	11.0	17.7	0.027	0.005473	0.005551	0.000406	0.000414	0.000508	0.000516	0.000515	0.01660	0.00214	0.01063
	.5.41	10.8		0.027	0.005445	0.005510	0.000396	0.000401	0.000487	0.000493	0.000491	0.01564 -	- 0.00184	0.01037
	5.42	10.7	19.3	0.026	0.005456	0.005536	0.000405	0.000412	0.000498	0.000505	0.000504	0.01576	0.00188	0.01062
	5.43	14.2	18.4	0.035	0.005405	0.005475	0.000376	0.000380	0.000456	0.000461	0.000459	0.01449	0.00153	0.00984
	5.44	16.6	17.6	0.041	0.005380	0.005486	0.000379	0.000385	0.000461	0.000468	0.000463	0.01495	0.00158	0.00993
	5.45	16.2	15.8	0.040	0.005377.	0.005432	0.000372	0.000375	0.000451	0.000456	0.000453	0.01440	0.00152	0.00974
1	5.46	12.6	109.1	0.031	0.005450	0.005657	0.000422	0.000427	0.000533	0.000538	0.000537	0.01741	0.00241	0.01106
	5.47	10.8	117.3	0.027	0.005449	0.005691	0.000427	0.000433	0.000542	0.000547	0.000547	0.01787	0.00252	0.01117
	5.48	7.5	106.1	0.019	0.005451	0.005678	0.080429	0.000435	0.000555	0.000559	0.000559	0.01875	0.00282	0.01124
	5.49	12.1	93.2	0.030	0.005425	0.005634	0.000419	0.000426	0.000533	0.000539.	0.000536	0.01/6/	.0.00247	
	5.50	10.6	99.1	0.026	0.005398	0.005614	.0.000404	0.000405	0.000517	0.000519	0.000521	0.01/72	0.00249	0.01056
	5.51	13.9	103.2	0.035	0.005479	0.005592	0.000367	0.000357	0.000462	0.000450	0.000449	0.01551	0.00196	0.00959
	5.53	19.5	119.3	0.048	0.005220	0.005287	0.000317	0.000322	0.0003/9	0.000386	0.000379	0.01322	0.00105	0.00829
		22.4	126.2	0.055	0.005229	0.005330	0.000329	0.000331	0.000393					0.00001
	5.55	16.1	121.7	0.040	0.005262	0.005353	0.000348	0.000351	0.000429	0.000454	0.000430	0.01554	0.00159	0.00910
	5.56	6.2	11.1	0.015	0.005314	0.005333	0.0003/0	0.000378	0.000450	0.000458	0.000458	0.01775	0.00152	0.00900
	5.57	4.8	11.8	0.012	0.005314	0.005364	0.000375	0.000388	0.000450	0.000462	0.000458	0.01335	0.00155	0.00007
	5.58	4.8	11.8	0.012	0.005314	.0.005360	_0.000379	0.000388	0.000460		01000470	0.01E24		0 00049
	5.59	10.2	8.6	0.025	0.005313	0.005343	0.000370	0.000372	0.000465	0.000467	0.000465	0.01500	0.00170	0.00900
	5.60	11.4	8.6	0.028	0.005276	0.005312	0.0003/2	0.000379	0.000460	0.000407	0.000404	0.01500	0.00174	0.009/5
	5.61	11.4	9.7	0.028	0.005290	0.005340	0.0003/8	0.000332	0.000467	0.000470	0.000472	0.01527	0.001/5	0.00707
		10.0	9-1	0.041	0.005250	0.005319	0.000769	0.0005/2	0.000440	0.000450	0.000440	0 01350	. 0.00145	0 00017
	5.05	10.5	9.8	0.040	0.005221	0.003313	0.000340	0.0000001	0.000425	0.000420	0.000430	0.01000	0.00140	

33

SA 29 PREV. G

DOCUMENT NO.

THE HAD DE

SER - 72052 TABLE VI (CONT)

TABLE VI (CONCLUDED)

POINT	SPEED	W.HGT	MU	CM	СТ	୯ବ୍ଟ	CQS	CPB	CPS	CPE	CTTR	CQTR	CTTRP	
NU.	IKIJ	(F1)										• •		
5.64	15.8	7.5	0.039	0.005235	0.005339	0.000354	0.000362	0.000435	0.000443	0.000441	0.01447	0.00156	0.00928	
5.65	6.7	21.1	0.017	0.005234	0.005311	0.000383	0.000388	0.000462	0.000467	0.000465	0.01358	0.00149	0.01003	
5.66	7.7	21.5	0.019	0.005249	0.005350	0.000393	0.000401	0.000485	0.000493	0.000491	0.01528	0.00186	0.01029_	
5.67	8.3	20.2	0.020	0.005230	0.005341	0.000386	0.000392	0.000479	0.000484	0.000484	0.01542	0.00187	0.01011	
5.68	11.2	18.5	0.028	0.005206	0.005312	0.000380	0.000386	0.000457	0.000464	0.000460	0.01381	0.00144	0.00995	
5.69	11.3	18.7	0.028	0.005214	0.005335	0.000385	0.000391	0.000473	0.000479	0.000478	0.01503	0.00175	0.01008	
5.70	11.3	20.8	0.028	0.005216	0.005322	0.000382	0,000385	0.000474	0.000477	0.000479	0.01542	0.00187	0.01000	
5.71	15.0	20.0	0.037	0.005189	0.005297	0.000371	0.000379	0.000450	0.000459	0.000455	0.01402	0.00150	0.00972	•
5.72	15.0	20.0	0.037	0.005156	0.005244	0.000353	0.000357	0.000429	0.000434	0.000432	0.01364	0.00141	0.00925	
5.73	15.7	16.4	0.039	0.005143	0.005258	0.000367	0.000373	0.000452	0.000458	0.000454	0.01489	0.00167	0.00960	
5.74	7.5	92.6	0.019	0.005128	0.005395	0.000382	0.000388	0.000486	0.000492	0.000487	0.01679	0.00221		
5.75	8.7	91.8	0.021	0.005137	0.005393	0.000406	0.000410	0.000501	0.000505	0.000502	0.01602	0.00196	0.01063	
5.76	9.6	90.8	0.024	0.005128	0.005368	0.000385	0.000388	0.000497	0.000500	0.000499	0.01766	0.00244	0.01009	
												and the second	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	

34

SV 28

DOCUMENT NO. SER - 72052 TABLE VI (CONCLUDED) •

- Willinguogen

æ

TABLE VII

TABULATED DATA - FLIGHT 7

TECHNOLOGI

DOCUMENT NO

SER - 72052 TABLE VII

POINT	V (KT)	HH (FT)	TB (DEG)	PB (DEG)	TC (DEG)	OR (FPS)	TEMP (DEG C)	ALT (FT)	GH (1B)	TRQ (FT-LB)	TRT (LB)	(LB)	-Z (LB)	Y (LB) (BMRQ FT-LB)
7.18	0.0	9.9	0.6	-2.0	10.1	688.5		5.	17795.	240.	1381.	-7.	16540.	-406.	38870.
7.19	0.0	9.9	0.9	-2.1	10.1	689.4	16.6	5.	17780.	240.	1347.	27.	16520.	-367.	38460.
7.20	0.0	9.9	1.5	-2.2	10.0	689.4	16.6	5.	17765.	257.	1360.	118.	16530.	-390.	38720.
7.21	0.0	14.0	1.7	-2.1	10.3	686.8	16.5	30.	17750.	260.	1386.	112.	16670.	-428.	39970.
7,22	0.0	14.0	1.5.	2.5		687.4	16.5		17735.	260	1392.	77.	16620.	-423.	40010.
7.23	0.0	14.0	0.7	-2.0	10.3	686.2	16.5	30.	17718.	280.	1417.	4.	16580.	-468.	40070.
7.24	0.0	21.5	1.3	-2.2	10.5	686.7	16.5	40.	17705.	260.	1439.	23.	16680.	-425.	41710.
7.25	0.0	21.5	0.8	-2.7	10.5	682.5	16.5	40.	17695.	259.	1443.	-17.	16620.	-413.	41660.
7.26		21.5		2.8	10.6		16.5		17683.		1445.	-17.	16580.	-412.	41800.
7.27	0.0	39.8	1.5	-2.7	10.8	685.6	16.5	65.	17672.	318.	1489.	72.	16780.	-465.	43950.
7.28	0.0	39.8	1.1	-3.2	10.9	684.9	16.5	65.	17660.	314.	1499.	28.	16810.	-446.	44440.
7.29	0.0	39.8	1.5	-2.9	10.8	685.6	16.6	50.	17646.	300.	1469.	45.	16840.	-449.	43420.
7.30	0.0	142.6			11.1.	685.8	16.5	. 148.	17640.	. 300. L	1472.		16940.	-456 -	44580.
7.31	0.0	142.6	1.9	-2.1	11.0	685.8	16.5	139.	17625.	290.	1467.	171.	17020.	-400.	44100.
7.32	0.0	142.6	1.4	-2.4	11.0	685.1	16.5	150.	17612.	320.	1488.	119.	17120.	-447.	44540.
7.33	10.0	140.0	2.0	-2.7	10.6	685.9	16.2	136.	17554.	410.	1746.	24.	16810.	-509.	41060.
7.34	10.0	140.0		3.8	10.7	68 6 . 8 .	16.3	124	17495.	. 320	1634.	-125.	16800	491	41350.
7.35	10.0	140.0	1.2	-3.1	10.6	687.9	16.3	121.	17437.	290.	1469.	-47.	16740.	-480,	41380.
7.36	15.0	140.0	2.0	-0.5	10.4	689.6	16.3	99.	17387.	322.	1485.	298.	16480.	-592.	39150.
7.38	15.0	140.0	3.4	-1.6	10.3	689.3	16.3	73.	17338.	300.	1493.	457.	16550.	-479.	37630.
7,39	15.7	141.9	0.8	3.1	.10.6	6873		.110.	17288.	450	1678		16670.	449.	41190.
7.40	0.0	130.4	1.3	-2.3	10.8	685.4	16.3	112.	17280.	450.	1772.	56.	16800.	-512.	43100.
7.41	0.0	135.1	1.8	-2.4	10.8	686.5	16.3	119.	17273.	300.	1581.	25.	16750.	-466.	42980.
7.42	0.0	141.5	1.0	-1.5	10.6	686.3	16.3	125.	17265.	320.	1604.	-84.	16710.	-548.	42040.

SA 29 REV. G

-

TECHNOLOGIES ©

DOCUMENT NO.

SER 72052 TABLE VII (CONT)

POINT NO.	SPEED	HEEL	COLL	GROSS WEIGHT	BALANCE	BALANCE	BALANCE SIDE FORCE	D/T	DV	TAIL ROT BLOCKAGE	(GH)32	$\left(\frac{T}{T_{m}}\right)^{\frac{1}{2}}$	<u>R</u>) **2	
	(KT)	(FT)	(DEG)	(LB)	(LB)	()	()	(2)	(%)	{}	()	()	()	
7 10	0.0		10.1	17705	17025	-0 000121	0.000021	0 77	0 EE	1 211	1 146	1 100	7 502	
7.10			10.1	17796	17009	-0.000121	0.000021	0 71	0.55	1 202	1 101	1.100	1 502	
7.17	0.0	7.7	10.1	17700.	17900.	-0.0000005	0.000021	0.71	0.55	1.272	1.171	1.107	1.574	
7.20	0.0	9.9	10.0	1//65.	1/919.	-0.000008	0.000007	0.80	0.68	1.296	1.100	1.105	1.592	
7.21	0.0	14.0	10.5	1//50.	18060.	0.000007	0.000013	1./1	1.36	1.279	1.118	1.085	1.169	
					18009	-0.000020	-0.000019	1.52	1.17.	1.283	1.114	1.077	1.169	
7.23	0.0	14.0	10.3	17718.	17965.	-0.000111	0.000012	1.37	1.01	1.305	1.099	1.073	1.169	
7.24	0.0	21.5	10.5	17705.	18071.	-0.000054	0.000019	2.03	1.49	1.273	1.075	1.037	0.735	
7.25	0.0	21.5	10.5	17695.	18010.	-0.000110	-0.000020	1.75	1.20	1.277	1.069	1.039	0.735	
7.26	0.0	21.5		17683		-0.000126	-0.000026	1.59	1.04	1.275	1.062	1.027	0.735	
7.27	0.0	39.8	10.8	17672.	18172.	-0.000022	-0.000019	2.75	2.05	1.249	1.015	0.992	0.324	
7.28	0.0	39.8	10.9	17660.	18201.	-0.000071	-0.000054	2.97	2.29	1.243	1.007	0.984	0.324	
7.29	0.0	39.8	10.8	17646.	18232	-0.000030	-0.000037	3.21	2.54	1.247	1.030	1.010	0.324	
7.30	0.0	142.6			18329.	-0-000144	. 0.000031		2.99	1.218	1.006	0.992	0.039	
7.31	0.0	142.6	11.0	17625.	18415.	0.000042	0.000051	4.29	3.56	1.227	1.018	1.010	0.039	
7.32	0.0	142.6	11.0	17612.	18512.	-0.000018	0.000013	4.86	4.18	1.232	1.006	1.008	0.039	
7.33	10.0	140.0	10.6	17554.	18198.	0.000007	-0.000056	3.54	3.67	1.568	1.034	1.068	0.040	
7.34	10.0	140.0	10.7	17495.	18181.	-0.000159	-0.000144	3.77		1.456	1.044	1.057	0.040	
7.35	10.0	140.0	10.6	17437.	18127	-0.000083	-0.000078	3.81	3.96	1.309	1.065	1.050	0.040	
7.36	15.0	140.0	10.4	17387.	17861.	0.000088	0.000096	2.65	2.73	1.400	1.121	1.086	0.040	
7.38	15.0	140.0	10.3	17338.	17943.	0.000254	0.000023	3.37	3.49	1.464	1.147	1.139	0.040	
7.39	15.7	141.9	10.6	17288.	18055.	-0.000096	-0.000070	4.25	4.44	1.502	1.025	1.050.	0.039	
7 40	8 0	130 4	10.8	17280.	18189 -	-0 000045	-0.000005	5.00	4.33	1.516	0.966	1.015	0.046	
7 41	0.0	135 1	10.8	17273	18142	-0 000010	-0 000001	4.70	4.11	1.357	0.998	1 013	0.043	
7 49	0.0	141 5	10.6	17265	19004	-0 000112	0 000044	4 50	3 80	1 408	1 015	1 033	0 070	
/.46	0.0	141.3	70.0	1/203.	10070.	-0.000112	4.000940	7.27	3.07	1.400	1.013	1.033	9.937	

36 PAGE

SA 29 REV. G

TABLE VII (CONCLUDED)

			· · · · · · · · · · · · · · · · · · ·					· · ·						
POINT NO.	SPEED	W.HGT	HU	CH	ст	CQ8	CQS	,		CPE	CTTR	CQTR	CTTRP	
								- · ·	•		•			
7.18	0.0	9.9	0.0	0.005261	0.005300	0.000371	0.000382	0.000432	0.000444	0.000445	0.01273	0.00097	0.00971	
7.19	. 0.0		.0.0	0.005243	0.005281	.0.000366	0.000377.	0.000426	0.000439	0.000433	0.01238	0.00097	0.00958	
7.20	0.0	9.9	0.0	0.005239	0.005284	0.000368	0.000381	0.000431	0.000445	0.000444	0.01250	0.00104	0.00965	
7.21	0.0	14.0	0.0	0.005277	0.005369	0.000383	0.000398	0.000448	0.000463	0.000465	0.01284	0.00106	0.01004	
7.22	0.0	14.0	0.0	0.005263	0.005345	0.000383	0.000398	0.000447	0.000463	0.000465	0.01288	0.00106	0.01003	
7.23		14.0	0.0	0.005277.	0.005350.	0.0385	. 0.000401	0.000452	0.000469	0.000473	0.01315	0.00115	0.01008	
7.24	0.0	21.5	0.0	0.005267	0.005376	0.000400	0.000415	0.000465	0.000480	0.000482	0.01334	0.00106	0.01048	
7.25	0.0	21.5	0.0	0.005329	0.005424	0.000405	0.000419	0.000470	0.000484	0.000493	0.01354	0.00108	0.01060	
7.26	0.0	21.5	0.0	0.005268	0.005353	0.000402	0.000417	0.000468	0.000483	0.000488	0.01342	0.00111	0.01053	
7.27				. 0.005279	0.005428	0.000423	0.000438	0.000497	0.000511	0.000512	0.01386	0.00131	0.01110	
7.28	0.0	39.8	0.0	0.005286	0.005448	0.000429	0.000445	0.000502	0.000518	0.000517	0.01398	0.00130	0.01125	
7.29	0.0	39.8	0.0	0.005270	0.005445	0.000418	0.000432	0.000489	0.000503	0.000503	0.01367	0.00123	0.01096	
7.30	0.0	142.6	0.0	0.005282	0.005488	0.000431	0.000445	0.000502	0.000516	0.000517	0.01374	0.00124	0.01128	
7.31	0.0			0.005276	0.05512	0.000426	0.000438				0.01369	0.00120	0.01115	
7.32	0.0	142.6	0.0	0.005285	0.005555	0.000431	0.000445	0.000505	0.000519	0.000517	0.01392	0.00132	0.01129	
7.33	10.0	140.0	0.025	0.005247	0.005439	0.000396	0.000403	0.000482	0.000489	0.000498	0.01627	0.00169	0.01037	
7.34	10.0	140.0	0.025	0.005215	0.005420	0.000398	0.000408	0.000471	0.000481	0.000489	0.01518	0.00131	0.01043	
7.35	10.0	140.0	.0.025		0.005386	.0.000397.	0.000406	0.000465	.0.000475	0.000475	0.01360	0.00118	0.01040	
7.36	15.0	140.0	0.037	0.005136	0.005276	0.000373	0.000379	0.000445	0.000452	0.000446	0.01367	0.00130	0.00977	
7.38	15.0	140.0	0.037	0.005122	0.005300	0.000359	0.000366	0.000428	0.000436	0.000434	0.01375	0.00121	0.00939	
7.39	15.7	141.9	0.039	0.005143	0.005372	0.000395	0.000403	0.000486	0.000495	0.000488	0.01556	0.00184	0.01036	
7.40	0.0	130.4	0.0	0.005170	0.005442	0.000416	0.000428	0.000508	0.000520		0.01652		0.01090	
7.41	0.0	135.1	0.0	0.005153	0.005412	0.000414	0.000427	0.000484	0.000498	0.000502	0.01470	0.00123	0.01083	
7.42	0.0	141.5	0.0	0.005154	0.005403	0.000405	0.000415	0.000478	0.000488	0.000494	0.01492	0.00131	0.01060	
		•												

37 PAGE

SA 29 REV. G

DOCUMENT NO.

SER - 72052 TABLE VII (CONCLUDED)

KORSKY INTED

TABLE VIII

TABULATED DATA - FLIGHT 8

GIIES

DOCUMENT

ŇÖ.

SER 72052 TABLE VIII

POINT	Y 1	WH	TB	PB	TC	OR	TEMP	ALT	GM	TRQ	TRT	. X	-Z	Υ	BMRQ
NO.	(KT)	(FT)	(DEG)	(DES)	(DEG)	(FPS)	(DEG C)	(FT)	(LB)	(FT-LB)	(LB)	(LB)	(LB)	(LB)	(FT-LB)
		·				·		. <u>.</u> .						••	
8.05	0.0	110.0		-2.4	13.4				19578.	:	1676.	. 113.	18830.	66 -	49630.
8.06	5.0	110.0	0.8	-2.5	13.2	681.1	16.8	70.	19565.	560.	1871.	40.	18870.	-40.	49010.
8.07	10.0	110.0	1.6	-2.7	13.0	682.3	16.8	70.	19552.	692.	2045.	150.	18830.	-216.	47350.
8.08	15.0	110.0	0.8	-1.4	12.9	684.6	16.8	70.	19538.	669.	2024.	156.	18760.	-291.	4652 0.
	20.0	110.0	4.0.		11.9	690.4	16.5	70 ₊.	19525.	346	1651.	669.	18270.	-156.	39890.
8.10	25.0	110.0	3.6	-1.8	11.9	690.0	16.5	70.	19512.	370.	1638.	740.	18380.	-161.	39030.
8.11	30.0	110.0	2.6	-1.4	11.3	693.0	16.1	95.	19499.	250.	1437.	672.	18270.	-126.	35970.
8.12	35.0	110.0	2.7	-0.5	11.1	693.9	15.8	95.	19486.	220.	1358.	701.	18340.	-102.	35060.
8.13	40.0	_110.0_	3.9	0.1.	10.5	6958		100	19448.	190.	1241.	1049.	18250.	17.	31960.
8.14	45.0	110.0	4.9	-0.3	10.2	696.3	15.8	100.	19411.	129.	1038.	1122.	18130.	1.	29930.
8.16	50.0	110.0	4.1	-0.8	10.0	697.6	15.8	100.	19374.	115.	1048.	1055.	18170.	-9.	29280.
8.17	60.0	110.0	6.3	9.0	. 9.1	700.7	15.9	100.	19344.	104.	885.	1141.	18150.	-110.	23690.
8.18	0.0	110.0			13.2	. 682.3	16.5	. 100 .	19313.		1667	278.	18510.	187.	49300.
8.19	5.0	110.0	2.9	-2.0	12.8	683.5	16.8	60.	19298.	590.	1941.	360.	18400.	-241.	45580.
8.20	10.0	110.0	2.4	-1.5	12.6	684.5	16.8	60.	19284.	544.	1902.	334.	18210.	-241.	43680.
8.22	15.0	110.0	3.6	-1.6	12.0	687.4	16.8	.60.	19270.	300.	1613.	635.	18000.	-207.	39260.
8.23	20.0	110.0		1.3	11.5	690.1			19255.		1428.		17920.		36730
8.24	25.0	110.0	1.7	-2.0	11.9	687.7	16.3	60.	19241.	340.	1544.	555.	18140.	-112.	39470.
8.25	30.0	110.0	3.7	-1.8	11.2	690.9	16.1	60.	19226.	214.	1287.	806 -	18110.	-67.	34860.
8.26	35.0	110.0	2.9	-0.1	11.4	690.0	16.1	60.	19212.	220.	1358.	742.	18280.	-148.	36230.
8.27	40.0	110.0	7.1	-0.2		699.3	16.2		19194.	116	998.	1210.	17770.		27060.
8.28	45.0	110.0	3.2	-0.5	10.6	694.4	16.0	90.	19175.	132.	1145.	1021.	18080.	52.	32370.
8.29	50.0	110.0	4.8	0.3	10.0	698.0	15.9	115.	19157.	102.	1004.	1062.	18050.	-63.	27930.
8.30	55.0	110.0	5.2	-0.8	9.9	699.9	16.0	118.	19139.	108.	1045.	1099.	17870.	18.	29000.
8.31	55.0	110.0	5.1	0.2	9.4	. 701.6	15.9	. 137.	19121.			1038.	17800.	-127.	26340
8.32	60.0	110.0	2.8	0.1	10.0	698.8	15.9	116.	19103.	93.	1046.	1027.	17910.	19.	29770.
8.33	5.0	110.0	0.2	-6.0	12.6	686.2	16.6	172.	19080.	340.	1509.	17.	18020.	100.	46790.
8.35	10.0	110.0	0.9	-6.2	12.3	688.7	16.6	. 225.	19056.	200.	1080.	-137.	18270.	162.	43060.
8.36	15.0	110.0	1.1	-9.0	12.3	687.9		. 198.	19033.		1305.	129.	18090.	173	43830
8.37	20.0	110.0	0.9	-9.4	11.9	689.9	16.5	283.	19009.	210.	1206.	-256.	17940.	175.	41880.
8.38	25.0	110.0	2.2	-13.1	12.3	689.1	16.9	165.	18982.	200.	992.	-108.	18150.	355.	42600.
3.39	30.0	110.0	2.6	-10.1	11.9	692.0	17.1	115.	18954.	180.	828.	-97.	17700.	143.	39710.
8.41	5.0	110.0	2.8	0.0	12.8	684.6	17.0	. 106.	18927.	490.	.1852		18100.	-64.	47480.
8.42	10.0	110.0	1.1	1.1	12.9	683.7	17.0	64.	18900.	680.	2106.	20.	18010.	÷199.	47780.
8.43	15.0	110.0	2.8	3.3	12.1	685.7	17.2	64.	18872.	798.	2163.	150.	17750.	-260.	40980.
8.44	20.0	110.0	3.2	3.6	12.1	685.4	17.0	89.	18845.	840.	2229.	210.	17920.	-214.	42050.

38 PAGE

SA 29 REV. G

				•										
POINT	SPEED	MHEEL	COLL	GROSS	BALANCE	BALANCE	BALANCE	σ/τ	DV	TAIL ROT	(GH)3	2 (<u>I)</u>	$\left(\frac{R}{T}\right)$ **2	
NO.		HGT		MEIGHT	THRUST	URAG	SIDE FORCE			BLUCKAGE	(ORC)	(a)	121	
	(KT)	(FT)	(DEG)	(18)	(LB)	{}	()	(Z)	(2)	()	()	()	()	
8.05	0.0	110.0	13.4		20250.	0.000035	0.000191	3.32	2.53	1.246	1.033	1.041	0.062	
8.06	5.0	110.0	13.2	19565.	20281.	-0.000108	0.000141	3.53	3.21	1.408	1.020	1.052	0.062	
8.07	10.0	110.0	13.0	19552.	20236.	0.000006	0.000054	3.38	3.50	1.593	1.012	1.085	0.062	
8.08	15.0	110.0	12.9	19538.	20148.	-0.000071	0.000153	3.03	3.12	1.606	1.030	1.094	0.062	
8.09	20.0	110.0	11.9	19525.	19679.	0.000385	0.000113	. 0.78	0.79	1.527	1.279	1.230	0.062	
8.10	25.0	110.0	11.9	19512.	19790.	0.000369	0.000094	1.41	1.43	1.548	1.297	1.269	0.062	
8.11	30.0	110.0.	11.3	19499.	19669.	0.000252	0.000118	0.86	0.87	1.474	1.441	1.365	0.062	
8.12	35.0	110.0	11.1	19486	19732.	0.000269	0.000200	1.24	1.26	1.430	1.488	1.406	0.062	
8 13	40.0	110.0	10.5	19448	19654	0.000479	0.000247	1.05	1.06	1.433	1.636	1.538	0.062	
8 14	45.0	110.0	10.2	19411.	19545.	0.000589	0.000207	0.69	0.69	1.280	1.770	1.634	0.062	
8 16	50 0	110.0	10.0	19374	19533.	0.000496	0.000153	1.07	1.08	1.321	1.824	1.675	0.062	
8 17	60.0	110.0	9.1	19344	19562.	0.000714	0.000152	1.12	1.13	1.379	2.209	2.092	0.062	
8 18	0.0	110.0	13.2	19313	19930	0.000094	0.000265		2.29	1.247	1.012	1.017	0.062	
8 19	5.0	110.0	12.8	19298.	19805.	0.000195	0.000106	2.56	2.18	1.571	1.046	1.091	0.062	
8 20	10.0	110.0	12.6	19284	19608.	0.000138	0.000140	1.65	1.68	1.607	1.100	1.122	0.062	
8 22	15.0	110.0	12 0	19270	19405.	0.000338	0.000105	0.70	0.70	1.516	1.277	1.230	0.062	
8 23	20 0	110.0	11.5	19255	19327	0.000448	0.000119	0.37	0.37	. 1.435	1.391	1.305	0.062	
8 24	25.0	170.0	11.9	19241.	19537.	0.000136	0.000096	1.51	1.54	1.443	1.278	1.234	0.062	
8 25	30.0	110.0	11.2	19226	19522	0.000394	0.000091	1.52	1.54	1.362	1.477	1.398	0.062	
8 26	35 0	110.0	11.4	19212	19669.	0.000303	0.000236	2.32	2.38	1.384	1.411	1.359	0.062	
8 27	40.0	110.0	9.7	19194	19187.	0.000799	0.000168	-0.04	-0.04	1.361	1.920	1.764	0.062	
8 28	45.0	110.0	10.6	19175.	19483.	0.000407	0.000224	1.58	1.60	1.306	1.597	1.500	0.062	
8 29	50 0	110.0	10.0	19157.	19454	0.000560	0.000227	1.53	1.55	1.327	1.872	1.744	0.062	
2 30	55 0	110.0	9.9	19139.	19291.	0.000601	.0.000159	0.79	0.79	1.330	1.818	1.651	0.062	
8 31	55 0	110 0	9.4	19121.	19206	0.000571	0.000185	0.44	0.44	1.396	1.983	1.814	0.062	
8 32	60.0	110.0	10.0	19103.	19299.	0.000367	0.000246	1.01	1.03	1.297	1.756	1.608	0.062	
8 33	5.0	110 0	12.6	19080.	19433.	-0.000163	-0.000154	1.82	1.41	1.184	1.070	1.029	0.062	
8 35	10.0	110.0	12.3	19056	19684	-0.000145	-0.000192	3.19	3.30	0.920	1.203	1.141	0.062	
8 36	15 0	110.0	12.3	19033.	19460.	-0.000122	-0.000439	2.19	2.24	1.086	1.161	1.102	0.062	
8.37	20.0	110.0	11.9	19009.	19295.	-0.000177	-0.000482	1.48	1.50	1.049	1.226	1.139	0.062	
8 18	25 0	110 0	12.3	18982	19404	-0.000014	-0.000777	2.17	2.22	0.837	1.228	1.128	0.062	
8.39	30.0	110.0	11.9	18954	19018	0.000025	-0.000556	0.34	0.34	0.758	1.342	1.173	0.062	
8 41	5.0	110.0	12.8	18927.	19480.	0.000164	0.000367	2.84	2.47	1.440	1.004	1.019	0.062	
8.42	10.0	110.0	12.9	18900-	19361	-0.000079	0.000434	2.38	2.44	1.627	0.956	1.004	0.062	
8.43	15.0	110.0	12.1	18872	19050	0.000119	0.000560	0.93	0.94	1.945	1.056	1.147	0.062	
8.44	20.0	110.0	12.1	18845	19205.	0.000175	0.000614	1.87	1.91	1.953	1.021	1.131	0.062	
~ ••••														

ECHNOLOGIES

1

DOCUMENT NO. SER - 72052 TABLE VIII (CONT)

39 PAGE

SA 29 REV. G

TABLE VIII (CONCLUDED)

							· · · · ·					· ·	
	POINT SPEE	D W.HGT	MU	СМ	СТ		CQS	CPB	CPS	CPE	CTTR	CQTR	CTTRP
					·				•				
	8.05 0	0 170.0	nn	0.006001	0.006207	0.000491	0.000525	0.000581	0.000613	0.000608	0.01601	0.00176	0.01286
	8 04 5	0 110.0	· // //2	0.005929	0.006146	0.000479	0.000508	0.000589	0.000617	0.000605	0.01767	0.00235	0.01255
	2 07 10	0 110.0	0:025	0 005904	0.006111	0.000461	0.000484	0.000590	0.000611	0.000606	0.01925	0.00289	0.01209
	0.07 10.	0 110.0	0.025	0.005860	0 006043	1 000450	0 000470	0.000574	0.000594	0.000589	0.01892	0.00277	0.01178
	0.00 19.	0 110.0	0.037	0 005753	0 005798	0.000130	0 000776	0 000656	0 000471	0.000463	0.01516	0.00139	0.00993
	0.09 20.	0 110.0	0.047	0.005755	0.005937	0 000377	0 000389	0 000450	0 000470	0.000457	0.01506		0.00972
	0.10 22.	0 110.0	0.077	0.005/55	0.005749	0.000371	0.000355	0.000400	0.000418	0.000406	0.01309	0.00100	0.00888
	0.11 .50	0 110.0	0.075	0.005077	0.005747	0.0003337	0.000344	0.000386	0 000415	0.000391	0 01233	0 00087	0 00862
	8.12 35.	0 110.0	0.005	0.005675	0.005/40	0.000329	0.000314	0.000350	0.000368	0 000353	0.01121	0.00075	0.00782
	0.13 40.	0 110.0	0.097	0.005650	0.005077	0.000270	0.0000014	0.000322	0 000337	0 000325	0 00936	0.00075	0.00731
		0		0.005615	0.005634	0.000277	0.000292	0.000322	0.000337	0 000313	0.00920	0.00000	0 00713
	8.16 50.	0 110.0	0.121	0.005505	0.005044	0.000272	0.000201	0.000313	0.000324	0.0000000	0.00741	0.00049	0.00572
	8.17 00.	0 110.0	0.145	0.005527	0.005570	0.000218	0.000220	0.000257	0.000607	0.000595	0.00700	0.00171	0 01258
	8.18 0.	0 110.0	0.0	0.005052	0.005017	0.000400	0.000313	0.000567	0.000501	0.000572	0.01907	0.001/1	0.01159
		0					0.000401		0.000574.	0.000572	0 01779	0 00245	0.01106
	8.20 10.	0 110.0	0.025	0.005784	0.005661	0.000423	0.000430	0.000528	0.000344	0.0000041	0.01//05	0.00223	0.01100
	8.22 15.	0 110.0	0.037	0.005/31	0.005/71	0.0003//	0.000392	0.000446	0.000465	0.000401	0.01475	0.00125	0.00700
	8.23 20.	0 110.0	0.049	0.005676	0.005697	0.000349	0.000365	0.000415	0.000430	0.000410	0.01312	0.00113	0.00914
	. 8.24 25.	0 110.0	0.061	0.005707	0.005795	.0.000378		. 0.000453	9.000472.	0.000458	0.01427	. 0.00138 -	0.00989
	8.25 30.	0 110.0	0.073	0.005646	0.005733	0.000330	0.000349	0.00038/	0.000407	0.000391	0.011/8	0.00086	0.00865
۰.	8.26 35.	0 110.0	0.086	0.005657	0.005/91	0.000344	0.000364	0.000402	0.000423	0.000410	0.01246	0.00089	0.00901
	8.27 40.	0 110.0	0.097	0.005509	0.005507	0.000251	9.000261	0.000291	0.000304	0.000292	0.00893	0.00045	0.00555
	8.28 45.	0110.0	0.109	0.005579.	_0.005668	0.000304	0.000320.	0.000348	0.000366	0.000356	0.01038 -	0.00052	0.00795
	8.29 50.	0 110.0	0.121	0.005519	0.005605	0.000260	0.000272	0.000299	0.000313	0.000300	0.00902	0.00040	0.00679
	8.30 55.	0 110.0	0.133	0.005487	0.005530	0.000268	0.000277	0.000308	0.000319	0.000306	0.00934	0.00042	0.00702
	8.31 55.	0 110.0	0.132	0.005457	0.005481	0.000242	0.000250	0.000280	0.000291	0.000279	0.00886	0.00038	0.00635
	.8.32 .60.	0 110.0	0.145	0.005491	0.005548	0.000276	0.000287	0.000314	.0.000327	0.000317	0.037	- 0.00036	0.00723
	8.33 5.	0 110.0	0.012	0.005713	0.005819	0.000452	0.000478	0.000529	0.000555	0.000546	0.01408	0.00140	0.01189
	8.35 10.	0 110.0	0.025	0.005676	0.005863	0.000414	0.000437	0.000470	0.000494	0.000482	0.01003	0.00082	0.01089
	8.36 15.	0 110.0	0.037	0.005677	0.005804	0.000422	0.000445	0. 000489	0.000513	0.000499	0.01213	0.00115	0.01117
	8.37 20.	0 110.0	0.049	0.005652	0.005737	0.000402	. 0.000422.	. 0. 000459.,	0.000480	0.000470	0.01118	0.00085	0.01066
	8.38 25.	0 110.0	0.061	0.005641	0.005766	0.000408	0.000431	0.000464	0.000488	0.000468	0.00919	0.00081	0.01097
	8.39 30.	0 110.0	0.073	0.005579	0.005598	0.000377	0.000398	0.000429	0.000452	0.000422	0.00760	0.00072	0.01002
	8.41 5.	0 110.0	0.012	0.005688	0.005855	0.000460	0.000482	0.000559	0.000581	0.000578	0.01735	0.00203	0.01205
	8.42 10.	0 110.0	0.025	0.005687	0.005825	0.000464	0.000489	0.000590	0.000615	0.000606	0.01975	0.00283	0.01214
	8.43 15.	0 110.0	0.037	0.005649	0.005702	0.000396	0.000408	0.000537	0.000549	0.000544	0.02018	0.00329	0.01037
	8.44 20.	0 110.0	0.049	0.005647	0.005755	0.000406	0.000421	0.000554	0.000568	0.000562	0.02082	0.00347	0.01066

SA 29 REV. (

SER - 72052 TABLE VIII (CONCLUDED)

DOCUMENT NO.

0

12 ()

CHNOLOGI

SA 1114

SER-72052

	and the second			
		Full Scale	e	Accuracy
Rotor				Hover-All Axes
X	•	8,620 Lb	•	41 Lb. (± 0.5%)
Y		5,420 Lb	•	62 I.b. (± 1.1%)
Z		48,800 Lb	•	25 Lb. (± 0.05%)
L	•	16,650 Ft	. Lb.	142 Ft. Lb. (± 0.9%)
М		25,000 Ft	. Lb.	129 Ft. Lb. (± 0.5%)
Ň		58,200 Ft	. Lb.	70 Ft. Lb. (± 0.1%)
Tail Rotor		3,250 Lb	•	76 Lb. (± 2.3%)

TABLE IX. ESTIMATED MEASUREMENT SYSTEM ACCURACY

DOCUMENT NO. SER-72052

TABLE X

RSRA PREDICTED VERTICAL DRAG

	THRUST CT HAUIUS	17730.6 • 005383 - 31.00	RHD .002377 TIP SPEED 678.8 Thrust Hecry .9000	
ELEMENT X/R H/R 1 .620274 2 .925218 4 .912155 5 .236 .067 6 .154 .075 10 .241 .075 12 .948 .215 14 .542 .154 14 .075 12 .948 .215 14 .548 .215 15 .236 16 .046 .048 .075 12 .194 14 .548 .215 15 .236 16 .075 12 .194 14 .225 15 .236 16 .046 .075 12 .194 14 .225 15 .236 .194 14 .237 15 .236 .194 .194 .194 .215 .194 .194 .194 .215 .194 .194 .194 .194 .215 .194 .194 .194 .215 .194 .194 .194 .215 .194 .194 .194 .194 .215 .194 .194 .194 .215 .194 .194 .215 .194 .194 .194 .215 .194 .194 .194 .194 .215 .194 .194 .194 .215 .194 .194 .215 .194 .194 .215 .194 .215 .194 .215 .194 .194 .215 .194 .194 .215 .194 .215 .258 .258 .244 .244 .244 .245 .258 .244 .244 .245 .258 .244 .244 .244 .245 .258 .244 .244 .244 .245 .258 .244 .244 .245 .344 .345 .345 .344 .345 .345 .345 .344 .345 .345 .345 .344 .345 .34	C000 •7500 •7500 •94700 •47700 •47700 •47700 •47700 •47700 •55500 •55500 •55500 • • • • • • • • • • • • •	FACTOR AREA 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 15.80 1.000 20.10 1.000 1.80 1.000 1.80 1.000 5.80 1.000 5.80 1.000 5.80 1.000 5.19 1.000 5.19 1.000 5.19 1.000 5.19 1.229 6.11 229 6.11 1.000 78	VEL U U U MAG 58 60 4.08 47.1 45 92 2.51 74.7 50 60 1.651 55.4 71 50 60 1.651 11 55 1.611 55.4 11 44 1.611 55.4 14 41 1.24 5.4 14 41 1.44 5.4 14 41 1.44 5.4 55 74 5.14 52.5 55 74 5.14 52.5 55 74 5.14 52.5 55 5.44 5.4 77 50.4 5.14 55 5.14 52.5 74 5.14 52.5 74 5.14 52.5 74 5.14 52.5 74 5.14 52.5 74 5.14 52.5 74 5.14 52.5 74 5.14 54.9 90 1.687 29.1 39 65 1.697 10.1 74 50 1.15 5.1 74 50 1.15<	NUSE AND CUCKPIT FURWARD CABIN AFT CABIN TAILCUNE LEFT MLG DUUH RIGHT MLG DUUH VUN/LUC ANTENNA: AIRSPEED HUUM MISCELLANEUUS
TOTAL DRAG ROTOK THRU (POUNDS) (PUUNDS) 540,2 17730.6	ST GRO (THRUST	98 WEIGHT VERT PUUNDS) (P 17300,0 20194,3 .006108	ICAL DRAG DRAG/THRUS ERCENT) (PERCENT 2.51 3.33 RHD .002377 TIP.SPFED .002377]
ELEMENT X/R H/R 1	CO V 6400 1150 1150 910 870 870 870 1050 1050 1070	FACTUR AREA 1.000 15.80 1.000 25.90 1.000 19.00 1.000 19.00 1.000 19.50 1.000 15.80 1.000 15.80 1.000 20.10 1.000 20.10 1.000 16.80 1.000 13.80	VEL W DRAG 711.61 6.10 54.3 46.73 2.82 84.1 39.46 1.85 40.4 139.13 1.01 15.0 129.13 1.01 15.0 12.51 1.99 3.3 15.72 29 4.0 29.42 1.03 15.3 40.62 1.98 41.8 55.32 3.64 66.0 63.39 4.76 70.54	NOSE AND CUCKPII FOHWARD CAHIN AFT CAUIN TAILCUNE

SA 29 REV. G

RSRA NASA 740 IN HELICOPTER CONFIGURATION

RSRA TAIL ROTOR AND VERTICAL TAIL WITHOUT RUDDER

i ž . .

a. LEFT DOOR

b. RIGHT DOOR

RSRA LANDING GEAR DOORS

46 PAGE

1

 $\sum_{i=1}^{n}$

SIKORSKY AIRCRAFT UNITED TECHNOLOGIES.

DOCUMENT NO. SER-72052

FIGURE 5

. RSRA NON-DIMENSIONAL MAIN ROTOR V OVER PERFORMANCE = , 608 M-OUT OF GROUND EFEET 3 O FUGHTS AND 7 0064 BALANCE :::**!**: ook D.8 % (-) REFERENCE 3 REDICTED 0056 (FROM WANKLISTAND DATA) PREDICTED - SIKORSKY CCHAR (REFERENCE 4) 0052 ÷ 6048 oona 00044 00048 00072 00052 .00056. 12 · i Э BALANCE

UNITED TECHNOLOGIES

DOCUMENT NO. SER-72052

FIGURE 6

UNITED TECHNOLOGIES...

DOCUMENT NO. SER-72052

FIGURE 7

SIKORSKY AIRCRAFT

DOCUMENT NO. SER-72052 FIGURE 8

SA 31-1 REV. A

SIKO

1

SIKORSKY AIRCRAFT

DOCUMENT NO. SER-72052

FIGURE 9

DOCUMENT NO. SER-72052 FIGURE 10

RSRA WIND A, DRAG STN 15 AND FURCE -----HOVER त्व ΞE OFLT 3 C.4 = 200 005 0002 CIN 0051 1 1 7 0001 C. f 0,0 ACCURACY = + ONDOT \Box 0001 미막면 0 0002 1. H. H. 0002 Ð D ന് 0001 ø 21 ACCURACY = +00008 ------- - - i. 5. İ. 0003 0006 0007 mont 0005 CP-CA 1 ENGINE

52

SIKORSKY AIRCRAFT UNITED

DOCUMENT NO. SER-72052 FIGURE 11

RSRA WIND Axis Deag Eow FORWARD SPEEDS A FLT 5 9005 SKT4V48 KT odal Ø ÷ 4 25 0001 Â 2003 BO KTOV 612 < 107 200 Ð 0001 .0-000 A. 2003 - <u>A</u> 125 KT SY KZO KT 0001 4 Đ Δ **9619** ¢**P** U A Δ Δ Ēc 0001 Δ MOL 0007 ______ Cro4 CODS -----CIENGINE

 \bigcap

1

SIKORSKY AIRCRAFT

DOCUMENT NO. SER-72052

FIGURE .12

64

UNITED TECHNOLOGIES

DOCUMENT NO. SER-72052

FIGURE 13

. SA 31-1 REV. A

^{3/2}

 $\left(\begin{array}{c} T_{\mathcal{T}_{\infty_{H}}} \end{array} \right)$

SIKORSKY AIRCRAFT

DOCUMENT NO. SER-72052 FIGURE 14

RSRA AUGMENTATION TN GRO FORWARD SPEED DW 112 \odot 3KT CY C P KT Δ E Ø 00.59 00 13 7 C 14 8 KT VIZ. 2 5 KT Ø 6 F KT < V 12.5 4 2 G KI Ø Δ Δ \odot Ο Ð Θ O Œ **D**

66)

DOCUMENT NO. SER-72052

FIGURE 15

57

SIKORSKY AIRCRAFT

DOCUMENT NO. SER-72052

FIGURE 16

RSRA AUGMENTATION TH GROUND EFFECT WEIGH OW FORWARD SPEED 3 KT 4 V 4 8 KT O. ---------Ø 0 I rD يل ت * 2059 Ċ. 00.54 C. ÷. 00.33 Ç SH2 SKT KIT ₹/2 ------Q Ŀ 4. 'n. 芯 Ð 4 O KT KT K 0 \odot 0 111: Ð 1 <u>.</u> Ð Ð ž 2: Ŧ.2 2.8 1.6 20 2

GW

1

DOCUMENT NO. SER-72052

FIGURE 17

 $\mathsf{T}_{\mathcal{T}_{\mathfrak{m}_{\mathcal{V}}}}$

DOCUMENT NO. SER-72052

FIGURE 18

(

60

 \int

UNITED TECHNOLOGIES

DOCUMENT NO. SER-72052

FIGURE 19

AF PAGE SIKORSKY AIRCRAFT

Power

TRU

REN

AIRSPEED, KI

DOCUMENT NO. SER-72052 FIGURE 20

To GROUND EFFERT

2 4

6

2.8

Cp/

Cp/ CPv=0

Cox

CPv=x

R

Du

EFFECT OF ARSPEED

TION

4 6 12 (R/Z)²

· .

SA 31-1 REV. A

62

UNITED TECHNOLOGIES...

DOCUMENT NO. SER-72052 FIGURE 21

SA 31-1 REV. A

B3 PAGE
UNITED TECHNOLOGIES...

ON CH

PARIS

RSRA

RSRA DATA WITH HDP

DOCUMENT NO. SER-72052 FIGURE 22

OB.

IdN

STROUBUDE F

R3RA DATA HDR (REF 14) PREDISTION (R/z) THEEL HTE 2:48 1.58 Vei 20 0.80 HO 0.32 02 OH Ċ. ADVANCE RATIO

64

PAGE

SA 31-1 REV. A

UNITED TECHNOLOGIES.

DOCUMENT NO. SER-72052 ·

FIGURE 23

																										[r=
													R	S	RA														
					£	O1	1.1	EC	ŦŦ	E	P	ΞĊ	H	Ve	RI	ιτε	OL	ίĪ	N	G	OL	HI	L E	ĒE	EC	-			ļ
,																										Ţ		.:	
					4.1														÷						<u> </u>				
											-	01			<u>v c</u>		r.s.		r				: 		4	1.12	: - 1 -4	HF	.
1	<u>.</u> 01	١£	CT	WE.																					za:	Ē		5.	l÷.
		217	СН																			12	64	ΦĴ	32]	4	5.	
		DE	G		2		1									1					R	Ξ	Ĥ.		1	4	0		
																2	A			-	-22	Γ.,	L.		<u> </u>	_			
										λ	ć		5				~			ð									
										Ŧ	-		P			-									3.07	FT	ζ	R/Z	2
					~		Ø	5	0.7 .7					6	Σ									6	21	00		0	7
							Y																	8	4	b		.3	2
							5					<u> </u>	Į											h	2	0		.8	b
	1												ľ											77	Ę	4		1.1	7
																								5		b		1.5	8
																								A		Ł		2:4	Hi.
																								M		Ţ		_	
										5	O	LE	CI	IVE	Y	5	C,	4			(5	/z	Ŷ	W	F		1		•
r	OT.	ιr	стi	¥																		07		>1	bo				i.
	P	+ + 7	ų.																Ð,	P		35		9	2				
		DF												Θ	0				-1	1	2								
								I.I.					2		11			_		2							1		-
							a		-	F			12			سبنا	f.			X.	-2	49		5					
					φ		1		سنبت	127		2			E			~		N.									
						12	X.		سب				Ø.																
						120														A									
																				1									
											\diamond																		t
					5	19			$\overline{\alpha}$	Cu			00												5	1.			+
-														20								aat.				nc.		1	1
												T																	+
																												† ;…:	44
				<u> </u>	1																				+				·
:::	1																											-	

 \bigcap

1

65

UNITED TECHNOLOGIES...

RSRA

DOCUMENT NO. SER-72052 FIGURE 24

Pitr

qw 00 59 0054 0053

7 #

SA 31-1 REV. A

최

Ш

ЦЩ

D/T,

DOCUMENT NO. SER-72052 FIGURE 25

%

I R 12

..... :::::::

20

214

2.8

(8/2)* i i i i i i

DOCUMENT NO, SER-72052 FIGURE 26

SA 31-1 REV. A

 \int

69

DOCUMENT NO. SER-72052 FIGURE 27

.

SA 31-1 REV. A

DOCUMENT NO. SER-72052 FIGURE 28

SA 31-1 REV. A

UNITED TECHNOLOGIES.

DOCUMENT NO. SER-72052 FIGURE 29

.

RERA DOWNLOAD THRUST VERSUS ADVANCE Ratio (8/z)2 = 0.06 ----................ 0:057 1056 0 DA 01 $\Delta |$ ত্য $\tilde{\omega}$ 11 Ø 0 ::: Δ :::::::: 04 OB ADVANCE PATIO

. DOCUMENT NO. SER-72052

FIGURE 30

SA 31-1 REV. A

(|

 $\left(\right)$

UNITED TECHNOLOGIES... DOCUMENT NO. SER-72052 FIGURE 31

UNITED TECHNOLOGIES... DOCUMENT NO. SER - 72052 FIGURE 32

٠

RSPA -----ROTOR POWER ROTOR THRUST VERSUS H HOVER WIIIT 18/2 o >lod 5.07 40 -12 $\mathbf{z}_{\mathbf{\alpha}}$ 716 NOTEDATA FROM LIGHT a \circ RECORDS 13 TO 27 ONLY **S** <u>920</u> Ŧ s : .**.**. 2 49 Ú. ¥. THR FINT ATCH 1..... W 9 tt. LOAD CEU THRUST Ö. 1 ANTITORQUE THEORY (REF :#} 015 4 PARDICTED / REF D ി 56.5 111 Hill ROTOR OH STAND RSPA TAIL TECE 1111 111 - W. ODOH 0008 10012 OOG 0020 0024 TAN E. ROTOR TOROUT OUEFFICIENT ¢ TR EIEE -

SA 31-1 REV. A

DOCUMENT NO. SER - 72052 FIGURE 33

SA 31-1 REV. A

(|

!

UNITED TECHNOLOGIES...

DOCUMENT NO. SER-72052 FIGURE 34

SA 31-1 REV. A

78

DOCUMENT NO, SER-72052 FIGURE 35

 \int

RSRA POWER RATIO VERSUS ADVANCE TAN ROTOR RATIO 111111 OGE 1111 :1::1 (FLIGHT 8) % -----FLT MODE FORWARD 0057 $\hat{}$ TORWARD 0056 -2**O** EFT SE 0054 RIGHT SE DO 57 18 MRHP . DATA FATRING REFERENCE A (FOR WARD FLIGHT) Ð Ö :::: YA. A 12 08 04 20 ADVANCE RATIO 3 1 ...**.** Ŧ 10 80 40 60 27 -60 141 TRUE AIRSPEED KNOTS

UNITED TECHNOLOGIES.

SA 31-1 REV. A

DOCUMENT NO. SER - 72052 FIGURE 36

.78

SER - 72052 FIGURE 37 DOCUMENT NO.

SA 31-1 REV. A

:

\frown	1. Report No. NASA CR-166399	2. Government Accession No.	3. Recipient's Catalog No.									
	4. Title and Subtitle	<u></u>	5. Report Date December 1981									
	RSRA VERTICAL DRAG TEST RE	6. Performing Organization Code										
	7. Author(s)	8. Performing Organization Report No.										
	R. J. Flemming	SER-72052										
	9. Performing Organization Name and Address											
	Sikorsky Aircraft		11. Contract or Grant No.									
	N. Main Street	602	NAS2-11058									
	Strationa, connecticut oo	002	13. Type of Report and Period Covered									
	National Approximation and S	Contractor report										
	Washington, DC 20546	14. Sponsoring Agency Code										
	Ames Contact: R. E. Erickson, M/S 237-3, NASA-Ames Research Center, Moffett Field, CA. 94035; FTS #448-6575; (415) 965-6575											
	16 Aberrart											
	The Rotor Systems Research Aircraft (RSRA) offers unique test opportunities because of its ability to measure rotor loads. This capability was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. Tests were conducted by NASA at the Ames Research Center in July 1981, with data reduced by NASA and sent to Sikorsky Aircraft for analysis and documenta- tion.											
	The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, are generally confirmed.											
	The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predic- ted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots.											
	The test data show the effect of wheel height and forward speed on thrust, gross weight capability and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings.											
	17. Key Words (Suggested by Author(s)) Vertical Drag Helic Ground Effect Hover Thrust Augmentation Low S	Statement ified - Unlimited										
	Iail Rotor Blockage f	ormance Subject	Category 05									
i f •.	19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price* 79									
- 1			I									

.

,

.

*For sale by the National Technical Information Service, Springfield, Virginia 22161

End of Document