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TOWARD A BETTER UNDERSTANDING OF HELI(I0PTER STABILITY DBRIVATIVXS 

Raymond S. liansem 

U.S. Army Aeranechenics Laboratory 
NASA Ames Reeearch Center 

Moffett F ie ld ,  California 94035 U.S.A. 

ABSTRACT 

An amended six-degree-of-freedom hel icopter  s t a b i l i t y  and cont ro l  
der iva t ive  model was developed In which body acce lera t ion  and control-rate 
derivii t ives were included i n  the  Taylor series expansion. 
deriv; , t ives were derived from considerat ion of the e f f e c t s  of the higher-order 
rotor-flapping dynamics, which are known to  be inadequately represented in the 
conventional six-degree-of-freedom, quas i - s ta t ic  s t a b i l l t y - d e r i v a t i v e  models 
The amended model was found to  be a subs t an t i a l  improvement over the conven- 
t iona l  model, e f f ec t ive ly  doublfng the usable bandwidth anJ providing a more 
accurate  representat ion of the  short-period and cross-axis  characteristics. 
Further inves t iga t ions  assessed the app l i cab i l i t y  of t h e  two s t a b i l i t y -  
der iva t ive  model s t ruc lu rea  f o r  f l i g h t - t e s t  parameter i den t i f i ca t ion .  
e t e r s  were iden t i f i ed  using simulation da ta  generated from a higher-order base- 
l i n e  model having sixth-order ro to r  tip-path-plane dynamics. Three lower-order 
models were ident i f ied :  
s t ruc tu re  , a second using the  amended six-degree-of -f reedom model structure, 
and a th i rd  model having e igh t  degrees of i'reedom t h a t  included a s impl i f ied  
ro to r  tip-path-plane tilt  representat ion.  

These add i t iona l  

Param- 

one using the  conventional s t ab i l i t y -de r iva t ive  model 

LIST OF SYMBOLS 

- -e - main-rotor l a t e r a l  cyc l ic  pitch-control input 

- -e = main-rotor longi tudina l  cyc l i c  p i tch-cont ro l  input  
l C  

BIS lS 

f - nonlinear equations of motion f o r  fuselagelbody -B 

f = nonlinear equations f o r  higher-order dynamics -R 

FAM,GAM,G&, - s t a t e ,  cont ro l ,  and control-rate  matrices f o r  the  amended 
six-degree-of-freedom model 

FB,FBR.Fm,FR - submatrices of F r e su l t i ng  from pa r t i t i on ing  the s t a t e  
vector i n t o  zB and xR - s t a t e  and cont ro l  matr ices  f o r  the conventional six-degree-of- 
freedom quas i - s ta t ic  model 

FQS*GQS 

F* - matrix of body acce lera t ion  deriv-.rives 

= submatrices of G r e su l t i ng  from pa r t i t i on ing  the s t a t e  vector 
i n t o  zB and xR GB 9 %  

G" = metrix of cont ro l - ra te  der iva t ives  
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t 

- i d e n t i t y  matrix 

= pitch-axis moment of i n e r t i a  

- rolling-moment derivat: r e  

- pitching-moment de r iva t ive  

= yawing-moment de r iva t ive  - rol l ,  p i t ch ,  and yaw rates 

= Laplace operator 

= time 

= longi tudina l  , lateral , and v e r t i c a l  v e l o c i t i e s  

= cont ro l  vector  

= fuselagebody state vector  - [Au Av Aw Ap Aq Ar A 4  AeIT 
= s t a t e  vector  f o r  a l l  higher-order dynamics; a l s o  can r e p n s e n t  

any one of severa l  s impl i f ied  r o t o r  models (see Table 1) 

= components of decomposed ro to r  response 

0 longi tudinal  force  der iva t ive  

= lateral force  der iva t ive  

= v e r t i c a l  force de r iva t ive  

= blade-flapping angle, f o r  i t h  blade: 
8 i  = 8, + B1 

= e leva tor  def lec t ion  

COB Jli + Bl s i n  Jli (tip-path-plane assumption) 
C 8 

- i nd ica t e s  per turbat ion of quant i ty  i n  parenthesis  

- body p i tch  a t t i t u d e  - blade p i t ch  angle, f o r  i t h  blade: - 0, + 0 COB Jli + e, s i n  Jli 
Obi l C  8 - t a i l - ro to r  co l l ec t ive  p i t ch  input - body ro l l  a t t i t u d e  

- main-rotor blade azimuth pos i t ion ,  (J ,  - 0 is a f t )  

- matrix inverse 

= matrix transpose 

= t b e  der ive t ive 
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1 . In t roduc t l o a  

S t a b i l i t y  and control  der ivat ive8 are umd for evaluat iq  he l i cop te r  
f l i g h t  dynaadcs about a given operating point or trim condition. 
source of l n f o w r t i o n  about small-perturbation r u b l l i t y  and response to  control 
inputs ,  and are necessary f o r  a wide va r i e ty  of appl icat ionr ,  iacludiag 
handling-qualities analysis ,  f l ight-control a y s t e m  design, and rul-time 
simulation. 

%'hey are a 

S t a b i l i t y  and control  der ivat ives  are a t t r i b u t e d  t o  Bryan (Ref. (11) who, 
i n  1911, developed them t o  invest igate  the s t a b i l i t y  of a i rplaner .  
method, the change i n  an aerodynamic force or moment associated with each of 
the primary s i x  degrees of freedom (6 W F )  of an a i r c r a f t  is expressed as a 
Taylor series consis t ing of perturbation terns i n  each of t he  air primary motion 
states and the controls .  The series is truncated such that cmly the linear 
terns are retained i n  the etabi l i ty-der ivat ive expansion. In  the years since, 
airplane f l i g h t  dynamicists recognized that addi t ional  d e l e d  degrtee of 
freedom above the basic s i x  contr ibute  to a i rcraf t  f l i g h t  dynamic behavior. 
s ignif icance are air-mss dynamics, which cause a l a g  i n  downwash a t  t he  hori- 
zontal  t a i l ,  and control-surface dynaadcs, which are necessary f o r  evaluating 
a i r c r a f t  s t ick-free s t a b i l i t y .  
of freedom, f l i g h t  dynamicists s e l ec t ive ly  introduced body accelerat ion and 
control-rate der ivat ives ,  such as w, z\s, and i n t o  the s t ab i l i t y -de r iva t ive  
expansion. 

Ualng hi8 

Of 

I n  order t o  approximate these unmodeled degrees 

Helicopter f l i g h t  dynamicists have t r a d i t i o n a l l y  used the stme s t a b i l l t y -  
der ivat ive expansioir formulation as t h a t  used f o r  a i rplane ana lys i s  (except that 
asymnetric cross-coupling de r iva t ives  have been retained) , and have j u s t l f  led 
t h e i r  ac t ion  based on the assumption of the quasi-s ta t ic  perturbation der ivat ive.  
The perturbation der ivat ive for  the change i n  pi tching moment r e s u l t i n g  from a 
change i n  v e r t i c a l  veloci ty ,  fo r  example, is defined as: 

holding a l l  other components of ICE and u a t  tr im 
value; allowing XR t o  reach new equili6rium 

where the change i n  pi tching moment (AM) w i n g  t o  an instantaneous change i n  
v e r t i c a l  veloci ty  (Aw) is calculated by suppressing the integrat ion of the  body 
s t a t e s  holding the controls  (u) a t  the trim value, and allowing the 
higher-order ro to r  degrees of freed& ( 5 ~ )  t o  reach t h e i r  new equilibrium. The 
quasi-s ta t ic  s t a b i l i t y  der ivat ive is the steady-state AH divided by both the 
constant-perturbation Aw and the pitch-axie inertia I,,. (To ba s t r i c t l y  
co r rec t ,  the s t a b i l i t y  der ivat ive is the l i m i t  of t h i s  quantity a s  Aw + 0 ;  
however , p r a c t i c a l  considerat  ions generally require an assessment of l i n e a r i t y  
by varying the s i z e  of 3w.)  

Figure 1 demonsirutes the AM "response" r e su l t i ng  from a constant- 
perturbation hw f o r  several  systems. For ai1 ideal six-degree-of-freedom sys- 
tem, the AM response Is  instantaneous and time-invariant, indicat ing tha t  the 
system can be perfectly represented using the s t ab i l i t y -de r iva t ive  formulation 
of B r y m .  For tin ;iirplune, the response is very  s imilar .  There may be nome 
i n i t i a l  t r i tns i rn ts  because of air-mass dynamics o r ,  perhaps, s t r u c t u r a l  wing 
bending; hlwwer, for moat priictical purposes, a i rplane f l i g h t  dynamics can be 
we1 1 modclrd by thv constant-cocf f i c i cn t  d t a b i l i t y  der ivat ives ,  Inclusion of 
body wcelcrn t ion  and control-rate  de r iva t ives  t o  approximate the i n i t i a l  tran- 
sients i n  AM is generally on attempt to fine-tune an already good model. 



For a he l icopter ,  Fig. 1 shows a s i g n i f i c a n t  i n i t i a l  transient l a e t l n g  
about 0.25 sec as the  ro to r  f l a p s  t o  i t s  new equilibrium posi t ion.  The AM 
response is made up of two d i s t i n c t  cont r ibu t ions  - f i r s t ,  an instantaneous 
contr ibut ion owing t o  body and ta i l  aerodynamics, as  well as r o t o r  shears  trans- 
mitted v i a  the blade-hinge o f f s e t ,  and a second t r ans i en t  cont r ibu t ion  r e s u l t i n g  
from a l l  higher-order degrees of freedom (above the  bas ic  six) achieving a new 
equilibrium. The quas i - s ta t ic  s t a b i l i t y  der iva t ive ,  as advanced by Hohenemset 
i n  1939 (Ref. [ 2 ] ) ,  assumes t h a t  the ro to r  instantaneously reaches its new 
equilibrium, as is indicated by the dot ted l i n e  i n  Fig. 1. 
that from a s t r i c t l y  6-DOF point of view, the  per turbat ion der iva t ive  I s  actu- 
a l l y  time-varying. The conventional six-degree-of-freedom s t a h i l i t y - d e r i v a t i v e  
model, which has  the time-invariant quas i - s ta t ic  s t a b i l i t y  and con t ro l  derlva- 
t i v e s  as its elements, is a poor approximation, because the  dynamics of the 
ro to r  response are not  w e l l  separated from those of t he  bas ic  a i r f rame dynamics. 

The f i g u r e  shows 

Use of the conventional quas i - s ta t ic  s t a b i l i t y - d e r i v a t i v e  model is ade- 
quate f o r  many appl ica t ions  associated with low-frequency (such as phugoid) and 
s teady-state  f iight-dynamic behavior; however, i t  is of ten nl i representa t ive  
of the  higher frequency short-period dynamics, owing t o  the  s t rong  influence of 
the  m o d e l e d  ro to r  modee. I n  the l i t e r a t u r e ,  E l l i s  (Ref. (3 ) )  discusses  the  
shortcomings of using the  6-DOF quas i - s ta t ic  model f o r  design analyses  of 
angular r a t e  and a t t i t u d e  feedback systems, 
vent ional  model would r e s u l t  i n  inaccurate  estimates of the s t a b i l i t y  bound- 
aries f o r  high-gain feedback systems, and would lead t o  an overly opt imis t ic  
appra isa l  of t rue  system capab i l i t i e s .  
e f f o r t  f o r  the AH-56A (Ref. [4]), i t  is s t a t e d  that the  use of the  6-DOF quasi- 
s t a t i c  der iva t ives  is found t o  give a deceptive impression of g rea t e r  a i r c r a f t  
s t a b i l i t y ,  because the regressing f lapping mode is neglected. I n  Ref. 151, two 
optimal c o n t r o l l e r s  are designed, based on a 6-DOF quas i - s ta t ic  model and on a 
model that included the  ro to r  tip-path-plane t i l t  dynamics. 
t ha t  f o r  very t i g h t  cont ro l ,  ro to r  dynamics should be included i n  designing 
such cont ro l le rs .  

H e  concluded tha t  use of t h i s  con- 

I.. an extensive cont ro l  system design 

It was concluded 

Attempts t o  ex t r ac t  s t a b i l i t y  and cont ro l  de r iva t ives  from f l i g h t  da ta  
have raised fu r the r  questions about the  v a l i d i t y  of quas i - s ta t ic  der iva t ives .  
Molusis (Ref. [ a ] )  has indicated that iden t i f i ed  de r iva t ives  can take on con- 
s iderably d i f f e r e n t  values from those of the ana ly t i c  per turbat ion der iva t ives ,  
owing t o  t he  fact t h a t  i n  f l i g h t ,  the  ro tor  is continuously being exci ted by 
p i l o t  cont ro l  inputs  and turbulence, and is not operat ing i n  a quas i - s ta t ic  o r  
s teady-state  fashion. Reference [ 7 ]  a l s o  ind ica t e s  that f o r  a Bo-105 he l i -  
copter ,  there  a r e  s ign i f i can t  discrepancies  between f l i gh t - iden t i f i ed  values 
and manufacturer-supplied ana ly t i c  and wind-tunnel s t a r t u p  values. Increasing 
the a p r i o r i  weighting m d e  the iden t i f i ed  de r iva t ives  more cons is ten t  with the  
s t a r tup  values, bu t  only a t  the expense of degraded curve f i t s  with the  fl!pht 
data. In  R e f .  [ a ] ,  Could and Hindson incorporated se lec ted  3gdy acce lera t ion  
and cont ro l - ra te  der ive t ives  i n  an iden t i f i ca t ion  of the l a t e r a l  -d i rec t iona l  
s t a b i l i t y  c h a r a c t e r i s t i c s  of a teeter ing-rotor  he l icopter .  In t h e i r  study, 
these der iva t ives  were introduced by assuming that the lag8 1.. the main-rotor 
tip-path-plane response and the side-wash a t  the  t a i l  ro tor  can each be approxi- 
mated by f i r s t -order  time-constants. No general theory f o r  body-acceleratim 
and control-rate  der ivacives  e x i s t s  i n  the l i t e r a t u r e ,  and the implications of 
including these terms i n  the s t ab i l i t y -de r iva t ive  expansion a r e  not c l e a r l y  
understood. 

I n  s p i t e  of a l l  its problems, use of the conventional s t a b i l i t y -  
der iva t ive  formulation p e r s i s t s  i n  the he l icopter  community. Ferhaps t h i s  is  



because l i n e a r  ro to r  + body models are not  readi ly  derived by ana ly t i c  m e a n s  
and must be extracted from the more comprehensive nonlinear models. 
l i k e l y ,  i t  p e r s i s t s  because the re  is a certain lo= of physical i n t e r p r e t a t i o n  
that goes with the higher-order ro to r  + bodv models. Except i n  those cases in 
which i t  IS c l e a r l y  necessary to  80 with a higher-order model, i t  Is preferred 
t o  s t ay  i n  the 6-DOF domain. Because of t h i s ,  i t  is necessary to  develop a 
b e t t e r  understanding of the l imi t a t ions  of the conventional model, and t o  inves- 
t i g a t e  po ten t i a l  improvements t h a t  can extend its app l i cab i l i t y .  

More 

2. Helicopter Linear Modeling 

General Formulation 

The nonlinear d i f f e r e n t i a l  equations of motion for the dynaatics of any 
f l i g h t  vehicle can be wri t ten i n  a par t i t ioned state-vector notat ion as follows: 

where the f irst  vector d i f f e r e n t i a l  equation represents  the dynamics of the  
basic  s i x  degrees of fuselage/body motion, and the second vector equation rep- 
r e sen t s  a l l  higher-order dynamics that may be of significance.  For a he l i -  
copter,  the second equation would, i n  its most general form, include rotor- 
blade dynamics (e.g., f lapping, lead-lag, and to r s ion ) ,  inflow/air-mass 
dynamics, control-system dynamics, and bending modes). 

Linearization of the nonlinear equations r e s u l t s  i n  equations tha t  are 
periodic with ro to r  azimuth. A constant-coefficient formulation is obtained by 
averaging each periodic :em over one rotor  revolution. Further discussion of 
the l i nea r i za t ion  of nonlinear equations f o r  hel icopter  f l i g h t  dynamics can be 
found in Refs. [9] and [ lo ] .  

Rotor + Body Models 

Linearization and averaging of the nonlinear equations (1) and (2) w i l l  
r e s u l t  i n  the following l i nea r  matrix equations of motion: 

i~ 5 FBXB + FBRXR + GBU 

where 

= [Au hv Aw Ap Aq Ar A $  A O ] *  XB 

= state  vector fo r  higher-ora - dynamics XU 

(3)  

Equations (3) and (4) a r e  par t i t ioned i n  order to  spec i f i ca l ly  break out the 
individual e f f e c t s  of the rotor  and the body. The FR and CR matrices alone 
represent the 4ynamics of the isolated ro to r  ( i n  a wind tunnel, f o r  instance) .  

5 



The Fg and C, matrices represent  the body-aaly aerodynamic e f f e c t s  that occur 
in the  absence of rotor-flapping dynejnics. (Direct hub fo rces  and moments act- 
ing a t  the  r o t o r  head are included in these matrices.) 
matr ices  account f o r  t he  rotor-to-body and the body-to-rotor coupliag, 
respectiwely. 

The Fm and Fm 

For many flight-dynamic appl ica t ions ,  only the rotor-flapping degrees of 

The nine-degree-of-freedom (9-DOF) model incorporates  
freedom need t o  be considered i n  the  9 vector. Table 1 shows several typi- 
c a l  rotor + body models. 
the  rotor as a three-degree-of-f reedom tip-path-plane, with each degree of 
freedom represented by a second-order d i f f e r e n t i a l  equation. 
a sixth-order rotor-flapping system of equations which have three periodic  nor- 
mal modes of motion: 
regressing f lappjng mode. 

This r e s u l t s  in 

the  a d v s c i n g  f lapping mode, t he  coning mode, and the  

The advancing (progressing) f lapping  mode, its frequency being roughly 
twice the  ro to r  ro t a t iona l  frequency, is not of s ign i f icance  f o r  he l icopter  
f l i g h t  dynamics (Ref.  [ l l ] )  and should be eliminated; only the  coning and 
regressing modes should be retained. The coning model, as  it is ca l l ed ,  still 
has 9 W F ,  but t he  longi tudinal  and lateral tip-path-plane tilt equations are 
now each of f i r s t  order  and couple t o  give the  regressing f lapping  mode. The 
coning mode is general ly  only s ign i f i can t  f o r  those he l icopters  t h a t  have low 
ro tor  ro t a t iona l  rates, that is, for  high gross weight or slowed ro to r  vehicles .  
I f  the coning mode is a l s o  eliminated, one has the 8-DOF tip-paL’b-plane tilt 
model t h a t  r e t a i n s  only the  regressing mode In addi t ion tc the  fusdage/body 
modes. 

S t a b i l i t y  Derivative Models 

Mathematical manipulation of equation (4) w i l l  y i e l d  a so lu t ion  in terms 
Of ZB’ u, - and higher-order der iva t ives .  Taking the  Laplace transform of 
equation (4): 

Solving f o r  XR(S) - gives, 

The matrix inverse term (SI - FR)-~ may be expressed a s  an i n f i n i t e  series, 

(SI - FR)-’ E -FR1(I + Fils + FR2s2 + FRJs3 + . . .) (7) 

This s e r i e s  can be shown t o  converge absolutely i n  t h a t  region of the s-plane 
ins ide  a c i r c l e  of convergence centered a t  the o r ig in  with a radius  equal t o  the 
magnitude of the smallest eigenvalue of That eigenvalue generally corre- 
sponds t o  the ro tor  regressing mode, and consequently the series is convergent 
f o r  t h e  range of frequencies of i n t e r e s t  t o  the f l i g h t  dynamicist. 

FR. 

Subs t i tu t ing  equation (7) back i n t o  equation (6). and taking the inverse 
Laplace transform w i l l  y i e l d  the following so lu t ion  t o  equation (4): 

6 



Equation (8) includes terms f o r  the body states, the controls ,  and a l l  t h e i r  
higher-arder der ivat ives .  
a solut ion t o  equation (4). 

It  can be e a s i l y  v e r i f i e d  by subs t i t u t ion  that i t  is 

Conventional Quasi-Static Model. The first two terms of t he  series shown 
i n  equation ( 8 )  are i d e n t i c a l  t o  the solut ion from the  r e s idua l i ea t ion  method of 
model order reduction, where 
vector x can be expressed as a function of xB and 3 alone. This is equiva- 
l e n t  t o  -;Re quasi-s ta t ic  assumption discussed previously, where the r o t o r  is 
assumed t o  reach i ts  new equilibrium instantaneously, and can therefore  b e  
expressed i n  terms of the immediate body states and con t ro l  posit ions:  

tR is  set equal t o  zero,  and the r o t o r  state 

Subst i tut ing t h i s  approximate solut ion back i n t o  equation (3) 
standard expression f o r  the quasi-s ta t ic  model: 

(9) 

results i n  the 

(10) 

The quasi-s ta t ic  s ta te  matrix FQs and control  matrix GQS are defined as 
shown i n  terms of the fundamental rotor  +body submatrices. The elements of the 
matrices are i d e n t i c a l  t o  the conventional quasi-s ta t ic  perturba- 
t i on  der ivat ives ,  except t h a t  the L,  M, and N derivat ives  now r e f l e c t  the 
effects  of vehicle  cross-products of i n e r t i a ,  and the usual l inear ized inertial 
terms ,lave been included. 

FQS and GQS 

Amended 6-M)F Model. The conventional model can be improved by including 
the th i rd  and fourth terms of equation (8) i n  the solution: 

The use  of those two addi t ional  terms is equivalent t o  including body- 
accelerat ion and control-rate der ivat ives  i n  the solut ion f o r  the higher-order 
dynamics. Subst i tut ing t h i s  solut ion f o r  the ro to r  i n t o  equation (3) y i e l d s  the 
solut ion 

where the body-acceleration matrix F* and control-rate matrix G* are defined 
as shown. I t  should be noted tha t  i n  the general case i n  which xR includes 
the e f f e c t s  of the rotor  dynamics ( i .e . ,  blade flapping, lead-lag, and torsion) 
a.id the air-mass dynamics ( i . e . ,  inflow, l ag  i n  downwash, e tc . ) ,  contr ibut ions 
a r e  introduced i n t o  the F* and G* matrices from a l l  of these sources. I f  a 
rotor  + body model is used a s  a bas i s  f o r  generating the amended model matrices, 
only the "pseudo" unsteady der ivat ives  coming about because of rotor-flapping 
dynamics alone w i l l  be r e f l ec t ed  i n  the F* and G* matrices. 
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Equation (12) can be rewritten i n t o  an a l t e r n a t i v e  form by grouping the  
body-acceleration terms t o  give 

i B  = (I - F * ) - ~ F ~ ~ I C ~  + (I - F*)-'G~~~ + (I - F*)-'G*I~ - (13) 
JI -- 

FAM GAM G& 

* where the  matrices Fm, GAM, and GAM a r e  defined as  shown. 

Rotor-Response Decomposition Models 

Rotor-response decomposition models a r e  an intermediate formulation f a l l -  
ing between the  ro to r  + body models and the  s t ab i l i t y -de r iva t ive  models. 
idea i s  t o  decompose the  response of t he  higher-order states i n t o  a response 
that is  self-induced and a response t h a t  is forced by the  body motions. 
posing 5~ as follows, 

The 

Decom- 

SR = XRr 4- XRb (14) 

is the  response owing t o  . > t o r  motions and 
5%- b 9 is the  response where 

owing t o  body motions. The d i f f e r e n t i a l  equation (4) then s p l i t s  t o  give 

can be wr i t ten  using the same approach as f o r  equation (8). 5% A so lu t ion  f o r  

I f  only the f i r s t  term is  retained,  the assumption is t h a t  the body dynamics are 
slow compared with the ro to r  motions, and the ro tor  response t o  the Lody motions 
only a r e  assumed t o  be instantaneous. The ro to r  state vector  XR can the.1 be 
wri t ten a s  

- 

Subst i tut ing t h i s  i n t o  equation (3) y i e l d s  

is the Jtate matrix derived fo r  the conventional quas i - s ta t ic  model 
where i n  equat FY on (10). An approximation similar t o  t h i s  was used i n  Ref. 131, except 
t h a t  the GBU term was neglected. When t h i s  is  the case, the combined 
ro to r  + body dynamics can be t rea ted  as the product of two t r ans fe r  funct ions,  
tha t  is, a ro tor  t r ans fe r  funct ion 

function XB(s)/XR (a )  (notat ion used c t u a l l y  i m p l i e s  mul t ip l ica t ion  of trane- - r  
f e r  functiop :a t r lces ) .  

Up.,(s)/lJ(s) - multiplying a body t r ans fe r  

- 
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I f  the second term of equation (17) is included in t h e  solution (as was 
done i n  the amended model formulation), a solut ion to  
e ra t ion  terms can be writ ten: 

XJ includ- body accel- 

The d i f f e r e n t i a l  equations then become 

. 
XRr + %!! 

where FAM 
t i on  (13). 

is i d e n t i c a l  t o  t h a t  state matrix used i n  the  amended model equa- 

Equations (22) and (23) may provide a pa r t i cu la r ly  good model s t r u c t u r e  
f o r  combined ro to r  + body parameter iden t i f i ca t ion .  The i so l a t ed  ro to r  equa- 
t i on  (23) might already be w e l l  known o r  could be obtained from ro to r  t e s t i n g  
i n  a wind tunnel. The matrices i n  equation (22) could then be i d e n t i f i e d  from 
f l i g h t  tes t ing.  (Note, however, t h a t  ER is not d i r e c t l y  measurable.) r 

3. Evaluation of Linear Fl ight  Dynamics Models 

Method of Approach 

Since the pr incipal  purpose of t h i s  study i s  t o  assess the e f f e c t s  of t he  
rotor-f lapping dynamics on the 6-DOF s t a b i l i t y  der ivat ives ,  a 9-DOF hel icopter  
model was chosen as the baseline model- the "absolute" with which a l l  lower- 
order models are to  be compared. 
l i n e a r ,  i n  order t o  avoid any problems i n  d i f f e r e n t i a t i n g  between l i n e a r  and 
nonlinear e f f e c t s ,  and t o  have only the rotor-flapping dynamics included as t he  
higher-order modes, i n  order t o  assess t h e i r  e f f e c t  alone. 
degrees of freedom not included (air-mass dynamics, Inplane motions, etc,) are 
assumed t o  be quasi-s ta t ical ly  lumped i n t o  t h i s  base l ine  s t ructure .  The model 
used was a l i n e a r  fourteenth-order (sixth-order ro to r )  model of the CH-53A a t  a 
100-knot, level-f l ight  t r i m  condition (published i n  Ref. [12]). 

The model was in t en t iona l ly  chosen t o  be 

The add i t iona l  

The general approach, consis t ing of two p a r t s ,  is shown in Fig. 2. The 
first involves model-order reduction, where the basel ine model is mathemtical ly  
reduced i n t o  three models - the conventional 6-DOF quasi-s ta t ic  s t a b i l i t y -  
der ivat ive model, the amended 6-DOF model, and the 8-DOF tip-path-plane t i l t  
model. The objective is t o  evaluate the s t ab i l i t y -de r iva t ive  models against the 
baseline model and t o  d i r e c t l y  assess the e f f e c t s  of the r o t o r  dynamics on these 
models. The 8-DOF model is included because i t  is the lowest-brder ro to r  -I- boay 
model and represents the next higher model j n  complexity above the s t a b i l i t y -  
der ivat ive models. 

The second pa r t  of the approach is  a system-Identification cpproach i n  
which three models a r e  iden t i f i ed  from basel ine model simulation data ,  using the 
s t ruc tu res  of each of the evaluation models. The purpose is  t o  see how w e l l  
each of the models can be iden t i f i ed  i n  these idealized conditions. It is 
expected that  the iden t i f i ed  models would be somewhat d i f f e r e n t  from the reduced 
models, since the iden t i f i ca t ion  is a curve-f i t t ing process t h a t  w r l l  be attempt- 
ing t o  f i t  the baseline data with a lower-order model. 
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The system-identification resul ts  are expected t o  provide $uidelines f o r  
t he  in t e rp re t a t ion  of s t a b i l i t y  de r iva t ives  ex t rac ted  from f l i g h t  data. 
i den t i f i ed  models can be cmsidered  t o  represent  an upper bound on t he  qua l i t y  
of r e s u l t s  that can be obtained from f l i g h t  t e s t ing ;  that bound w i l l  probably 
be somewhat op t imis t ic  considering the  measurement and t e s t i n g  d i f f i c u l t i e s  
associated with parameter-identification f l i g h t  experimentation. 

The 

Mathematically Reduced Models 

Reduced-order models f o r  the  conventional 6-M)F model, the  amended 6-DOF 
model, and the  8-DOF tip-path-plane model were generated by mathematically 
reducing the  base l ine  model. FB, 
FBK, F u ,  FR, GB, and GR matrices, and the  tw' hcabi l i ty-der ivat ive models were 
computed from equations (10) and (13), respecLigely. The 8-DOF model was gen- 
erated using standard res idua l iza t ion  techniques, whereky th? base l ine  model is 
par t i t ioned  such that the  res idua l  vector  is [ABo Abo A B  AB1s]T, and the time- 

der iva t ive  of t h i s  res idua l  vector  is set equal t o  zero. 

?he base l ine  model was par t i t i oned  i n t o  its 

1 C  

Co-lparison of Time-History Responses. Time-histories from simulations 
of each of the three  mathematically reduced models and the base l ine  model are 
shown i n  Fig. 3. 
(B1 ) inpct.  

cross-axis ( ro l l - r a t e )  responses are shown i n  Fig. 3, f o r  these s a t i s f a c t o r i l y  
represent  the extremes of the  comparison. 

The cont ro l  exc i t a t ion  is  a 2.1-rad/sec s inusoida l  p i t c h  a x i s  
Only p l o t s  f o r  the  primary-axis response (p i tch  r a t e )  and the  

S 

In  the primary ax i s ,  t he  responses from a l l  three  reduced-order models 
c lose ly  resemble the  baseline-model response. I f  the  primary-axis response is 
considered alone, it could be concluded rwt the  conventional 6-DOF quas i - s ta t ic  
model is  adequate f u r  p red ic t lng  handl ing-qual i t ies  behavior. However, there  
a r e  considerable d i f fe rences  i n  the cross-axis response of t he  four  models. 
Whereas the 8-DOF model does dupl ica te  the  base l ine  response, the mathematically 
reduced conventional model (having the usual s t ab i l i t y -de r iva t ive  formulation) 
does not. This conventional mcdel incor rec t ly  p red ic t s  the  i n i t i a l  t ranbien t  
response i n  the  f i r s t  second, - id  does not  co r rec t ly  pred ic t  the  phase response 
f o r  the subsenuent motion. h t t 2  o ther  hand, t he  amended 6-DOF model (which 
includes the L Jy-acceleration and cont ro l - ra te  der iva t ives)  does provide a 
more reasonable predict ion of the  r o l l - r a t e  response, co r rec t ly  pred ic t ing  the  
ini t ia l  response d i r ec t ion  and the  co r rec t  phase re la t ionship ;  however, i t  does 
have some problems i n  predict ing the co r rec t  amplitude behavior. 

Frequency-Response Comparison. Phase and amplitude discrepancies  in 
Fig. 3 prompted a c lose r  inspection of the  frequency-response c h a r d c t e r i s t i c s  
of the  reduced-order models, i n  order  t u  determine the  usable bandwidth of each. 
(Usable bandwidth can be defined as t h a t  bandwidth f o r  which a given model w i l l  
dupl ica te  the  t r u e  f requency-response cnarac teristics. 
and phase p l o t s  f o r  two t r ans fe r  funct ions are shown i n  Fig. 4. The pi tch- ra te  
response t o  a pitch-axis input (primary-axis response) and the  r o l l - r a t e  
response t o  pitch-axis input (cross-axis response) have been normalized by the  
corresponding baseline-model responses. 
indicated by the  unity a x i s  on the  normalized amplitude p l o t  and the  zero a x i s  
on the r e l a t i v e  phase p lo t .  
with the phugoid frequency typica l ly  being between 0.2 and 0.5  rad/bec), the  
Dutch r o l l  between 1.0 and 2.0 rad/sec,  and the shor t  period between 2.0 and 
5 . 0  rad/sec. 

Normalized amplitude 

The baseline-model response is  then 

A frequency range from 0.2 t o  5.0 rad/sec l a  shown, 

i n  



Although the  reduced-order models a l l  dupl icate  the low-frequency 
response characteristics of the baseline model, major discrepanciee show up in 
the  higher-frequency cross-axis response. 
departure from t h e  basel ine response a t  about 0.3 rad/sec, the amended model 
a t  0.8 rad/sec, and the 8-DOF model a t  about 1.3 rad/=. The usable bandwidth 
of the amended model is roughly twice that of the conventional quasi-s ta t ic  
perturbation der ivat ive model. 

The conventional model show8 B 

Eigenvalue Comparison. Characteristic roots  f o r  the basic 6-WF 
fuselagelbody motion are campared i n  Fig. 5. 
r ec t ly  predict  the lw-frequency modes, with some s l i g h t  d i f f e rences  showing 
up i n  the Dutch r o l l  mode, and the  s ign i f i can t  discrepancies occurring in the 
short-period dynamics. Both the 8-DOF and amended models give a p o d  account- 
ing of the baseline short-period eigenvalues; however, t he  conventional model, 
although i t  co r rec t ly  p red ic t s  the n a t u r a l  frequency, gives  an optimistic esti- 
mate of the damping. Note that inclusion of the body-acceleration de r iva t ives  
in  the amended model is s u f f i c i e n t  t o  modify the state matrix of the conven- 
t i o n a l  model (i.e., F m  = (I - F*)-lF s) and t o  y i e l d  improved short-period 

lead one t o  conclude that the body-acceleration de r iva t ives  alone are respon- 
sible f o r  the s ign i f i can t  increase i n  the usable bandwidth of the amended model; 
however, that is not the case. Additional analyses of a model that included the 
body-acceleration terms but not  the control-rate de r iva t ives  showed frequency- 
response characteristics comparable t o  those of the conventional model, indicat. 
ing that the control-rate der ivat ives  are a necessary component of t he  amended 
model. 

As expected, a l l  the m o d e l s  cor- 

eigenvalues without changing the low- P requency characteristics. This might 

Ident i f ied Models - 
System iden t i f i ca t ion  from ana ly t i c  models is discussed i n  Ref. [ lo].  

The procedure used In t h i s  study cons i s t s  of two par t s  - parameter i den t i f i ca -  
t i on  and evaluation of the €dent i f ied models. 

Iden t i f i ca t ion  from Simulation Data. The baseli;-.e model w a s  excited 
using two representative inputs  f o r  each of the four con t ro l  axes, t he  first 
beiug a doublet with a period of 3 sec and the second a 3-2-1-1 input  (intervals 
i n  seconds) t h a t  is of ten used f o r  parameter i d e n t i f i c a t i o n  because of wide-band 
exci ta t ioi  (see Ref. 1131). The doublet was chosen s p e c i f i c a l l y  t o  excite the  
short-period aircraft  dynamics. 
a l l  axes was 0.02 rad. 
t o t a l  of 80 sec) and were then sequent ia l ly  processed, using a least-squares 
algorithm. 
order model st ructures .  

The amplitude used f o r  both input  waveforms i n  
The eight  maneuvers were simulated f o r  10 sec each (a 

Three sets  of parameters were iden t i f i ed ,  using each of the reduced- 

The least-squares algorithm is the standard solut ion t o  the  equation- 
e r ro r  formulation of the parameter-identification problem and w i l l ,  i n  the 
absence of meaqurement noise,  y i e l d  optimum unbiased parameter estimates. Since 
there is no noise associated with the simulation i t s e l f ,  except perhaps negli-  
gible  computer round-oif and integrat ion rout ine e r r o r s ,  the least-squares algo- 
rithm is best  f o r  this application. A l l  unmodeled higher degrees of freedom are 
treated as process noise ( the assumption when using the equation-error 
formulation). 

A large amount of data (30 sec i n  a l l )  w a s  used t o  assure  convergence of 
the parameters. 
and inter-axis  amplitudes (i.e.,  r e l a t i v e  amplitudes between control  axes! is 

I t  should be noted t h a t  using d i f f e r e n t  con t ro l  input waveforms 
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expected to  y i e ld  s l i g h t l y  d i f f e r e n t  converged parameter values. 
gence proper t ies  generally w i l l  depend on control-input waveform, amplitude, 
and s p e c t r a l  content, as w e l l  as on bas i c  considerat ions,  such as number of 
maneuvers, maneuver length, and sample rate. Investigation of a l l  these factors 
w a s  beyond the  scope of t h i s  e f f o r t  and remains an area f o r  continuing reeearch. 

The cmver- 

Evaluation of Iden t i f i ed  Models. The c r u c i a l  test f o r  eva lua t ing  the 
goodness" of any iden t i f i ed  model is simulation and comparison with an input  It 

not  used i n  the  iden t i f i ca t ion .  For the  evaluation, a 2il-rad/sec sinueoldal 
pitch-axis input was used t o  d r ive  both the  base l ine  model and the  i d e n t i f i e d  
model. The simulated t ime-his tor ies  were then compared. 

Figure 6 shows the  r e s u l t s  of the  simulation and comparison of the models. 
As done previously f o r  the mathematically reduced models, only the  primary axis 
(p i t ch  r a t e )  and cross-axis response ( ro l l  rate) are shown. 
':cry l i t t l e  d i f fe rence  i n  the  primary-axis response, with major discrepancies  
occurring i n  the cross-axis response. The Iden t i f i ed  m o d e l  using the convcn- 
t i o n a l  model s t r u c t u r e  is unable t o  pred ic t  the  correct cross-axis  response, 
being grossly in e r ro r .  It does not w e n  come c lose  t o  the  inco r rec t  xeduced 
model response of Fig. 3. 
s iderably b e t t e r  agreement with the a c t u a l  base l ine  motel response and, in  f a c t ,  
does not display the shortcomings of the  mathematically reduced amended model 
(Fig. 3), which had the  incor rec t  amplitude behavior. 

Again, there is 

The amended model, on the o ther  hand, does show con- 

Iden t i f i ed  Derivatives and Eigenvalues. 'In addi t ion  to the d i r e c t  corn- 
parison of the time-history responses, i t  w a s  a l s o  des i r ab le  t o  evaluate  the  
s t a b i l i t y  der iva t ives  and eigenvalues of the  iden t i f i ed  m o d e l s .  
several  important s t a b i l i t y  de r iva t ives  is shown i n  Fig. 7, where the  i d e n t i f i e d  
der iva t ives  a r e  compared with the  time-varying basel ine model -perturbation 
der iva t ives  . 

A se l ec t ion  of 

The basel ine reference der iva t ives  are p lo t ted  in t h e i r  6-M)F time-varying 
per turbat ion form, where the i n i t i a l  value ( t  = 0 )  is i d e n t i c a l  t o  the coef f i -  
c i e n t  of the  
value is the same as the  mathematically reduced conventional 6-WIF quasi-s tdt ic  
der ivat ive.  
6-nnF time-varying per turbat ion der iva t ive .  
thc appropriate coe f f i c i en t  of the  iden t i f i ed  
and the steady-stace iralue is t h a t  der iva t ive  value that would r e s u l t  should the 
8-DOF iden t i f i ed  model be mathematically reduced i n t o  quas i - s ta t ic  der iva t ives .  
The conventional 6-%F s t a b i l i t y  der iva t ives  are time-invariant and are repre- 
sented by a constant-valued l i n e  acros9 the p lo t .  

FB submatrix of t he  9-DOF base l ine  model, and the  steady-state 

The 8-DOF iden t i f i ed  de r iva t ive  is a l s o  p lo t ted  as an equivalent 
Its i n i t i a l  value corresponds t o  
FB matrix f o r  the 8-DOF model, 

The p l o t s  i n  Fig. 7 show that i den t i f i ca t ion  of parameters, using the  
conventional 6-DOF model s t ruc tu re ,  w i l l  y i e l d  der iva t ive  values  that are quan- 
t i t a t i v e l y  d i f f e ren t  from the conventional (i.e., mathematically reduced) quasi- 
static der iva t ive  ( t h i s  was f i r s t  noted i n  Ref .  (61). The iden t i f i ed  deriva- 
t i v e s  are always smaller i n  magnitude than the conventional value, but  are in 
a l l  cases  within the extremes of the f luc tua t ions  of the  t l m e  varying base l ine  
der ivat ive.  This ind ica tes  t h a t  f o r  the data  used i n  the iden t i f i ca t ion ,  the  
ro tor  is not operating i n  its steady-state  equilibrium; r a the r ,  because of 
exc i ta t ion  from the cont ro l  inputs  and body motions, i t  is operat ing i n  a tran- 
s i en t  manner. 

The 8-DOF time-varying de r iva t ives  generally attempt t o  duplfcate  the  
dynamlc nature  of t h e  time-varying basel ine der iva t ive .  I n  most cases ,  i ts  
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steady-state values are c lose r  t o  the conventional de r iva t ive  (Le., matheamti- 
c a l l y  reduced) values than the iden t i f i ed  values from the  conventional 6-DOF 
s t a b i l i t y  der ivat ive model. 

The eigenvalues f o r  each of the iden t i f i ed  models are shown in Fig. 8 
(body roots  only). A l l  models compare favorably with the lawer frequency base- 
l i n e  characteristic roots; however, there  are marked discrepancies in the  short-  
period roots.  The short-period eigenvalues f o r  t he  i d e n t i f i e d  8-DOF d e l  show 
f a i r l y  good agreement with the basel ine model roots, co r rec t ly  estimating the 
natural  frequency but s l i g h t l y  underestimating the damping. The eigenvalues of 
the model i den t i f i ed  using the amended-model s t ruc tu re ,  although et111 periodic, 
great ly  overpredict the short-period damping, and are not  i n  a s  good agreement 
with the baseline roo t s  as they were f o r  the amended reduced m o d e l  in  Fig. 5 .  
The eigenvalues of the model i den t i f i ed  using the  conventional m o d e l  s t r u c t u r e  
are aperiodic and provide even worse correlat ion.  

I t  is i n t e r e s t i n g  t o  note t h a t  the discrepancies i n  the short-period 
eigenvalues can be shown t o  be r e l a t ed  t o  the low values of the iden t i f i ed  
der ivat ives .  Since the t r ace  of any square matrix (i.e., the sum of the diag- 
onal elements) is equal t o  the sum of the eigenvalues of t h a t  matrix (see 
R e f .  1141). the sum of the damping de r iva t ives  
a given 6-DOF model w i l l  be equal t o  the sum of the real p a r t s  of the eigen- 
values of t h a t  model ( the  imaginary p a r t s  cancel ou t ) .  Evidence of the lcwer 
parameter e s t h t e s  can be seen i n  Fig. 8, where the mean of the real p a r t s  of 
the short-period eigenvalues ( for  e i t h e r  of the 6-DOF i den t i f i ed  models) is 
v i s ib ly  less than t h a t  f o r  the basel ine model. This is an indicat ion t h a t  the 
accuracy of i l e n t i f  i ca t ion  of the hel icopter  short-term response is l i k e l y  t o  
have a strong e f f e c t  on the values of the parameters i den t i f i ed .  

xu, Yv, 1;. Lp, Mq, and N r  for 

4. Conc l u s i m s  

The v a l i d i t y  of several  hel icopter  models t h a t  can be used f o r  f l i g h t -  
dynamics analysis  has been investigated.  The purpose of the  study was t o  a s ses s  
thz e f fec t  of the rotor-f lapping dynamics on the hel icopter  handling-qualit ies 
motion spectrum, and t o  evaluate various s implif ied inodel representations.  The 
effects of non l inea r i t i e s  and a d d i t i m a l  degrees of freedom above the rotor  t i p -  
path-plane flapping dynamics were not included i n  the analysis .  

Three models were investigated - the conventional 6-mF model, which is 
composed of the conventional quasi-s ta t ic  s t a b i l i t y  de r iva t ives ;  an amended 
6-DOF model, which includes body-acceleration and control-rate  der ivat ives;  and 
the 8-DOF tip-path-plane t i l t  model, which i s  evaluated because it  represents 
the next higher l eve l  of camplexity above the 6-DOF s t ab i l i t y -de r iva t ive  models. 
Another uodel, a l i n e a r  9-DOF (fourteenth order) body + ro to r  model, which 
includes rotor  advancing, coning, and regressing flapping modes, i n  addi t ion t o  
the fuselage/body modes of motion, was used a s  a basel ine model. 
t h i s  bascline model t ha t  the mathematically reduced models were generated, and 
i t  w a s  against  t h i s  model t ha t  a l l  the lower-order models, including the iden- 
t i f i e d  models, were evaluated. 

It w a s  from 

System iden t i f i ca t ion  of models using each of the three model s t r u c t u r e s  
was undertaken i n  order t o  assess the e f f e c t s  of the higher-order ro to r  dynam- 
ics on parameter i den t i f i ca t ion  and t o  determine how w e l l  the parameters could 
be iden t i f i ed  under these idealized circumstances. The iden t i f i ed  de r iva t ives  
p rov ide  an upper bound on the qua l i t y  of r e s u l t s  t ha t  can be obtained from 
f l i g h t - t e s t  s t a b i l i t y  der ivat ive extract ion using dynamic t e s t i n g  techniques. 
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The following conclusions can be made about the mathematically f durd 
mode 1 s : 

1. The conventional quasi-s ta t ic  s t a b i l i t y  de r iva t ive  model was found 
t o  have problems i n  pred ic t ing  the  short-period cross-axis response. 

2. 
rate der iva t ives ,  e s s e n t i a l l y  doubled the usable bandwidth and r e su l t ed  in 
better predic t ions  of the  he l icopter  cross-coupling dynamics. 

The amended model, which included the  body-acceleration and caatrol- 

3. 
dynamics . The 8-DOF codel provir-d the  b e s t  co r re l a t ion  with the  base l ine  model 

The following conclusions can be made about the  iden t i f i ed  aodels: 

1. Parameters iden t i f i ed  using the  conventional model s t ruc tu re  were 
grossly i n  error, and were unable t o  predict  the  he l icopter  cross-axis response. 

2. Parameters i den t i f i ed  using the  amended model s t r u c t u r e  [eq. (1311 
were ab le  to  predic t  accurately the-helicopter cross-coupling behavior. 

3. The 8-DOF iden t i f i ed  model provided l i t t l e  not iceable  improvement 
over the amended m o d e l  i n  the  time-history comparisons, but did provide b e t t e r  
agreement with the base l ine  short-period eigenvalues and with manv s t a b i l i t y  
der ivat ives .  

4. Derivatives iden t i f i ed  under the  condi t ions of t h i s  study were 9 .  .n- 
t i t a t i v e l y  d i f f e r e n t  from the  conventional de r iva t ives  cur ren t ly  used by he l i -  
copter  f l i g h t  dynamicists. True hel icopter  6-M)F perturbat ion der iv- t ives  a r e  
time-varying, and iden t i f i ed  der iva t ives  r e f l e c t  t h i s  by e f f e c t i v e j  
the  t i m c  va r i a t ions  of the der ivat ive.  

"averaging" 
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TABLE 1.- ROTOR + BODY MODELS 

Rowr + body 
model c 

Coning 

Rotor model 
~~ 

Sec l--d-order 
' .p-path-plane 
dynamics 

L acond-order 

F i r s  t -0 tdc? r 
coning 

ti. ?ath-plane 
t i l t  

Tip-pa th-plane 

( f i r s t  order 
each DOF) 

t i l t  only 

- -  

Rotor states Rotor modes 

Advancing 
flapping 

Coning 
Regressing 
flapping 

Coning 
Regressing 

flapping 

Regressing 
flapping 

Order 
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Fig. 1. AM response to a con8tant-perturbation Aw for an ideal slx-degree- 
of-freedom system, an airplane, and a helicopter. 
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