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Random pmcesses with statiorqv nth d$'jkences stwe as models for osciuatorphase 
mike. The theorem proved here allows one to obtain the structure function (comriances 
of the nth diffmnces) of such a process m terms of the differens of a single fslnctdon of 
one time VmFirhle. In turn. this function cun easily be obtained from the spectral d e d y  
of the pr0ces.x m e  rheorem is used for computing the viuiunce of two estimators of 
frequency stabdify. 

1. Introduction A class of unbiased estimators of ~ ( 7 )  is given by 

Let the output of a precision oscillator be modelled by cos 
{2rvo [t + x ( t ) ]  } , where x( t )  is a random process representing 
the "phase time" noise. The most widelv used time-dornam 
measure of oscillator stability is the Allan variance, defmed by 
the ensemble average 

v = 6 t 2 ( r )w( t )d t .  (2 )  

2 1 1 where w(t j is a weighting function (or measure) whose total 
weight on [2r ,  a is 1. 'Two members of this class are treated 
in Section IV. 

u,(r) = - E [A:J~s)] , ( l )  
3 2  

Assume further that at) is a stationary Gaussian process 
wit,, mean and autocovariance functionRl(t). Then t Z ( t )  

is a stationary process with mean of(r)  and autocovariance 

provided that the expectation exists and is independent of the 
time s. Here, A: ia the backward 2nd difference operator, 
given by 

The theorem g w n  here arose from the desire to compute EV = Et2(1) = U j ( 7 ) .  

the performance of estimators of 0: ( r ) .  Suppose that x ( t ) l s  
given on an interval 0 G t < T. Fix r G U 2 ,  and set 

Var v = m:(s -. t ) w ( s ) w ( t ) a t .  (3) I 
H t )  - - ~ : x ( t ) .  

n/? 
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Evidently, to  compute Var V, we need to obtain R&r) 
from the mode1 forx(r). Let us suppose. temporarily, that&) 
is stationary, with autocovariance function 

not depending on s. A straightforward computation yields 
E a f d s )  = 0, and 

EA:x(s + r)A:x(s) = 6:Rx(r), (4) 

where 6: = *A%,. the central 4th difference operator, also 
given by 

6 : f ( r )  = f ( r  - 2r) - 4j7r - r) + 6nr) - 4f(r + r) + j7t + 2r). 

The left side of (4) is called the 2nd smcmficncrion ofx(r) 
(Refs. 1,2). Letting t = 0 in (4). we have 

as pointed out by Barnes (Ref. 3). Consequently, since IR,(t)l 
G R,(O) = Var x. 

8 Varx 
r2 

o j ( r )  Q - , 

provided R,(r ) + 0 ( r  -L 00). 

Thn is for stationary x ( r ) .  On the other hand, for actual 
oscillators a behavior like (6) is observed only for mall r ,  
below I s for quartz cr> stal oscillators and 100 s for hydrogen 
maseis. As r increases, the measured ~ ~ ( 7 )  decreases to a 
minimum, then stays constant or increases. Of course. since 
our measurement times are f d t e ,  this observation does not 
"prove" that x(r  ) is nonstationary. A stationary process with a 
huge variancy and a tiny bandwidth would explain what we 
see. for we would be looking onlv at a small piece of the 
process. If T were to increase beyond the scale of our observa- 
tions, then o ~ ( T )  would ultimately behave like ( 6 )  again. 
Howewr. if we want to describe the behanor of x ( r )  on 
re311stic time intervals. a nonobservable low-frequency cutoff 
only pets in the way. and enntually has to be driven to zero. 
I t  is mathcrnatically easier to use a nonstationary model from 
the very start. 

Nevertheless, we always have 

for this class of processes. An example is the power-law 
spectm 

K q u )  = - 
lo? ' 

A rigorous theory of these processes exists (Ref. 1); basi- 
cally, it shows that one can plunge ahead nith the formalism 
from stationary procmes as long as the integrals converge. For 
example, the transfer function of the operator Af is 
( 1  - e b r 1 2 .  Therefore, 

I 

The extra term c2r" comes from a frequency drift component 
d / 2  in q t ) .  Letting t = 0, we obtain the Allan variance (1). 
By this method, the theoretical Allan variance has been evalu- 
ated and tabulated (Ref. 4) for SJw) =K/lulk, k an integer, 
0 C k C 4. (For k G 1, a hlgh-frequency cutoff is provided.) 
Mowing f to be nonzero appears to make (8) more difficult to 
evaluate. Yet, for our estimation problem, we do need the full 
covariance function of the process A:x(t). One longs for the 
simplicity of (4). with R,(r) given by the simplc Fourier 
integral 

(9) 



This mtegral does not exist, however, unlesp x(r)  is stationary 
(or equal to a quadratic polynontial pius a stationary prom). 

The theonmr to be proved here gives an easily camptable 
replacement for Rx(r), valid for all process with stationary 
n* differences. Equation (4) is replaced by 

where the (noslunigue) runctiOnC(r) can be computed by two 
different methods. Here is the second method: Choose an 
integer & such that WikS,(u) is integrable near o - 0. Then let 

in thc upper hdf-plane Im L > 0. The operatorf R iastructs the 
user to integrate k times with respect to L. One may then d o w  
2 to be real. 

F o d y ,  all w: are doing is differentiating (9) R times and 
integrating k times. I i  one does this correctly, one easily gets 
valid results for all the power-law d a t o r  noise models. 
Although Lindsey and Chie (Ref. 2) give a number of formuias 
that generalize (S), they have to assume that either the phase 
x(r )  or the frequency dx/dr is stationary. For flicker F?U or 
random walk FM noise, these assumptions are false. Lindsey 
and Chie do hint at the need for distribution theory m this 
situation. Although our method has obvious connections to 
the analytic representation of distribu;ions (Ref. 5). we use 
only the elementary theory of real and analytic functions to 
arrive at the main result. 

( 0  

(where I - klh), whkh is a perfectty good autocovariance fime 
tion. In particular. 

The re~(13)canalsobe&rivedbyexpressing#r)crrthe 
output of a fdter acting on white noise. The method given here 
is easier and applies to mOre general difference operators. 
Moreover, as Section III shows, all of the power-law spectral 
models become equally simple. Previously, the odd powers 
(the "flicker" models) were more difficult to handle than the 
even powers. 

To illustrate the theorem, let us consider ?ne noise called 
mndom wfk frrcrucncv modubrion, defuted by S,(o)= 
K/u4. For this noise, o f ( t )  is proportional to T (as we shall 
soon see); this kind d Allan variance behaeor has been ob 
served in hydrogen maser frequency standards for T > 10% 
(Ref. 6). Taking k = 4 in (1  1). we have 

11. 

srcltionmy nm &-- H, for 
a=x(r) is stationary (in the de sense). F~~ 

the dc coefFier by 

Re(#earerrCation 
A mean-continuous random process x ( r )  is said to  have 

real T, the procerrs 
a pr- 

Ki 
2ltz C(z) = 14 - 

(Im z > 0), K i  z 3  In z 
2n 6 

= -- (in moan square). 

For applications, we shall assumc that the n* difference- 
of x( f )  are ergodic, so that c is nonrandom. It can then be 
shown that in which In z is to be analytic in !m i > 0. The function 

(z3 In 2)/6 is just a particular solution to the equation f14)(2) = 
Ilr. Taking In z = In k l t  i Arg i in the upper half-plane. we 
Bet c?' = EA:x(r). 



The process xo(t) = x(t) - cP/n! equals a polynomial of 
degree 61 plus a mean-zero process. Associated with xo(t) is a 
(two-sided) nonnegative fonnal specnal density S.,(o), from 
which d the covariances of the n* differences of x(r )  can be 
obtained. If x(r)  is real, then SJ-0)  = SJo). 

L and M have orders 1 and m, and A = tM, them A has order 
I + m, and 

(0) L(') (0) A&'"" (0) 
(I + m)! I! m! 

In connection with these processes, it is convenient to 
inmduce a general real difference operator L that, when 
applied to a function f ir) ,  gives the result 

If L is given by (IS), then the operator L"(of the same order) 
is defined by 

Y 

(a f d t e  sum), where the u, are real. Its transfer function is the 
trigonometric polynomial 

As we mentioned, an example of order n is L = A:, for 
which t ( " ) ( O )  = n!P. h 0 t h t . r  examfle, for n = 2, is the 
inixed difference operator 44, which was used for estimat- 
ing the relative drift rate of a pair of frequency standards 
(Ref. 7). 

We are now set up to give the main result. 
For example, 

Theorem. Let x(t) be a real process with stationary nth 
differences, nonmndom dc coef€icient c, and spectral density 
Sx(w). Let L and M be real difference operators of order n, 
and let A be the difference operator Lbf of order 2n. Then, 
the mixed second moments of the prooesses k ( t )  and Wr) 
can be put into the form 

A difference operator L is said to have order n if its transfer E k ( s  + r ) k ( s )  = I\ [(-l)n $$- + 2 Re ~ ( t j  , 

(18) 

where the (nonunique) function qz) is analytic in Im z > 0, 
continuous in Im z 2 0, and can be obtained by either of the 

function satisfies 

L q o )  = c UY+U = 0 ( O < j < n )  , 
Y following recipes: 

Recipe 1. Choose an integer k between 0 and 2n such that 

Y 1' wk S,(w) dw <a. Such an operator annihilates all polynomials of degree -31, and 
reduces the degree of other polynomials by n, as shown by the 
computation 

m 
Let C(z) = C&), where 

(Recall that  ( 7 )  = 0 for j > m.) In  particular, tr" = L(")(O). If If k = 0. then omit the sum. 
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a 2 1 (PM noises). 

Corohty. Let x( r )  have stationary nth differences. The 
First, let a = 0, - 1, or - 2  (white, flicker. or random walk structure function 

FM). Using Recipe 2 of the theorem with k = 2 - a, we have 

D(t ,  7 )  = EA:x(s + r )  A;x(s) 

of the process x(t) can be obtained from a function of one 
variable, namely 2 Re C(r). by 

Kai"' 
B(z) = K a l m  8 " ' f ~  = - 2m (Imz>O). 

(24) 

where 

6;" = (a;)" = (-A~A-,)", 

K i k + l  zk- I 
C(Z) = 0- Inz ( J m z 2 0 ) .  (25) 2n ( k -  I)! 

the central difference operator of order 2n. in which the branch of In z must be analytic in the upper 
half-plane. We shall let In t be real for t > 0. Let us examine 
the three cases separately. These results show thnt 2 Re C(r) contains the same infor- 

mation as S,(w) about the process x(r). We can regard 2 Re 
C,i) as an analog of the covariance fuiiction of a stationary 
process. 

White FM: u = 0, k = 2.  

111. Examples for n = 2 
Oscillator phase noise is often modelled by a linear com- 

bination of independent power-lau noises with spectra 

KO C(r)  = -z In z , 2ni 

( I  3 0) 
where F(u/w,,) IS an integrable low-pass power response func. 2 Re C(i) = - ho .lo ( 2 6 )  
tton whose one-sided noise bandwidth is w,,/(h). Examples (I ( t < O ) .  
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FdicRerEM: a = - l , k = 3 .  

C(2) = - K - l  22 Inz.  
4n 

ORIGINAL PAGE IS 
M POOR QUALm 

h2% 2 Re C(r) = 
8n3(1 tu:?) ' 

which is just Rx(r), because now x ( r )  is stutionary. 

f+acrioMI noises. It is well known (Ref. 4) that the 
spzctrum satisfies a power law S J ~ )  = ~ ~ 1 w v - 2 ,  where -3 
< a < 1 ,  then the M a n  variance satifies another power law 
d(r) = const 7". where p = - 1  -a. When AUan variam;e 
measurements are made, fractional values of p sometimes 
appear over a certain range of 7. Thus, we ought to &ow how 
to  use the representation theorem for fractional values of a in 
the range - 3  < a  < 1. We shall do this for 0 < a  < 1 ,  leaving 
the other cases as an exercise for the reader. Take k = 1 .  Then 

h 
(27) 2 R~C(C)  = -li r2 ~n I ~ I .  

2 

Random WOlkIW. a = -2, k = 4. 

K-?i z3 
2n 6 

C(Z) = - --In z ,  

In a sense, the flicker cas? is easier than the others hscause 
we don't have IO keep track o i  the imaginary part of In z. 

For handling the PM noises, d,e exponential cutoff is easier 
10 use than the sharp cutotT, and may even be more realistic. 
Let S,(w) = K,lola-* expi- Iwi/wh), where a = 1 or 2. Again 
letti~ig k = 2 -a, we get 

K, r (4 
C(z) = i B(z)d( -K)  = - (-K)' -" , J 2n(l -a)  

where the power functions are analytic in the right half-plane 
and positive on the positive real axis. Then 

K j k + l  

(29) 
1 B(z) = + -. 

J z + i / w h  

FlickerPM: a =  I , k =  1.  

1 
2 ha r(a) sin ( - m) 

Ir l ' -"  , (32)  2 Re C(r) = - 
( 2 R ) " " ( 1  - a )  

C(z) = - 7i- Kl In (zt i / o h ) ,  As a + 0, this expression tends to -holrl/4, which is indeed a 
valid representative of 2 Re C(r) for a = 0. ,n 

2 Re C(r)  = - - hl In ( r 2  t I /ai) .  (30) IV. The Varianca of Two Allan 
8n2 Variance Estimators 

Let us return to the estimation problem mentioned in the 
introduction. Recall that phase time x(r) is given for 0 6 
< r. Therefore. & ( I )  = A:x(r)/(Ffi) is available for 27 6 r 
< T. Set m = T/r .  Two unbiased estimators of the Allan 
variance ( I )  are 

For the sharp high-frequency cutoff, 2 ReC(f) turns out to be 
2 cosine integral. 

White PM. a = 2, k = 0. 
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(m an iqteger 3 2), called the t9wrlap estimator, and 

m t  
p(f)df (341 

Zr 

(m real, >2), called the conrinuous estimator, which, although 
it cannot be achieved in p r a ~  tice, represents a limiting case for 
a sample time to much less than 7. The use of such an 
estimator was suggested b] HoV c. Allan, and Barnes (Ref. 8). 

Although the o-overlap esijmawI has been used for n a y  
years, it is reasonable to ask whether the continuous estimator 
has a smaller variance. In other words, ii T~ << 7, should we 
average all the available samples t2(i7,), or should we use only 
the samples tZ(ir)? Since the data collection time T may be 
weeks or months, this question is more chan academic. 

The answer depends both on m and on the spectrum of the 
phase noise. Assume that x(f) is a Gaussian process with 
stationary 2nd differences and zero dc component c. If we 
know S,.(o), then we can compute C(z). By the corollary, the 
autocovariance function of the mean-zero process 4(r) is 

1 REO) = - 6; (2 Re C(f)). 
2 2  

(35) 

As we said in the introduction, the autocovariance function of 
the stationary process g2(r) is 2R:(f). The means and variances 
of V, and Vo are now computed straightforwardly: 

E V, B Vo = RE(0) = u t ( r ) ,  

- m-7 

where T2 = (rn - 2)r. (Of course, we recognize that R&f) is an 
eveti function.) 

The computations have been carried out for white FM, 
flicker FM, and random walk FM (see Section 111). all of which 
have been observed in actual oscillators. The flicker FM results 

were computed numerically; the others are in dosed form, 
which, however, we shall not give hem. For white FM and 
random walk FhQ, the tsverlap formules agree with those of 
Lesage and Aiidoin (Ref.9); for flicker FM, the mverlap 
numbers agree with Yoshimura's (Ref. 10). 

The results are presented in terms of "degrees of freedom,' 
defined for a positive estimator V by 

2 (EV)' 
varv * 

d.f. = 

Given d.f., one sometimes uses the appropriate chiquared 
distribution for constructing confidence intervals about tL 
estimate (Ref. 8). Whether or not this is done, the d.f. remains 
a useful figure of merit. 

In Fig. 1, for the above Ihre- noise types, we plot d.f./ 
(m- 1) vs m for V, and V,,. For white FM, Vo is always better 
than Vt. For flicker FM, Vo is better rhan V, except for 
m 6 3. For random walk .FM, V, is better than Vo for m rC 18. 
Of course, the smaller values of m are moE critical, since d.f. 
is roughly proportional to m - 1. 

It may seem paradoxical for V, to be better than Vo, since 
Vo uses all the available data. Bot!! estimators iue special cxses 
of (2), however; if one looks for the optimal (minimal vari- 
ance) estimator oc the class (2) (for a given noise type), one 
will probably fmd that the optimal weighting function w(f) is 
noncoirstant and almost everywhere nonzero. In other words, 
one should use all the data, but in a nonuniform my. 

V. Concluding Summary 
Oscillator stability is usually characterized by the behavior 

of nth order differences of the phase. The theoreticd evalua- 
tion, from &e phase noisy spectrum, of the variances and 
covariances of these differences involves messy trigonametric 
integrals, such as (9). The messiness is caused by a (2n)th order 
difference operator tangled up inside the integral. Our repre- 
sentation theorem breaks the integral evaluation into two easy 
steps. (1) ekaluation of a much simpler integral depending 
only on the noise spectrum; (2)application of that m e  
difference operator to the result of step (I). 

In effec., the evaluation of these integrals is uncoupled into 
two independent operations. In Section 111, we tabulated only 
the result of step (1) (the function called 2 Re C(f)) for all the 
usual powcr-law oscillator noise models. This short "one- 
dimensional" table, plus another onedimensional table of dif- 
ference operators, can generate a twodimensional table of 
resul:, as found, for example, in Ref. 4. 

43 



As an iipplication, we exmined two Allan -dance esti- 
mators Because the %presentation theorem deliver; such 
simple closed forms for the required autocovariance functions, 
!he computations were quickly executed by a rumple BASIC 
program. The theorem can As0 be twd  for evaiuting the 

performance of frequency drift estimators. In general, we get 
an estimator of frequency drift rate (the dc coefl’icient c) by 
operathig upon oscillator phasr. wit!! a second-order difference 
ope-dioi. L that need not be of form A:. Hew, the fa 
gernidity of the theorem is needed. 
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For convenience, let ss first set down an elemmtary esti- 
mateoftheTaylorremeanderforP: l t & z ~ O . t > l , t h e n  

This can be obtained from t! integral form of the remainder. 

in analogy with the d notation for mixed structare 
functions o ( r ;  t l ,  r2) (Ref. I), denote the left side of (18) by at; L. M). Without loss of gnerdity. we can asswue that the 
dc coefficient c is zero. Begin with the spectral represerttatim 
o f q t ;  L, Iw) as given by Yaglon.: 

= 2 Re Atr )  . 
where 

for z = r + iu (u  > 0). and .I operates on functions of r. The 
name of the game is pulling h outside the integral. If you do 
this brutally, the integral usually blows up. 

Since the spectral density SJo) always satisfies 

(Ref. I ) ,  the integer k specified in Recipe 1 exists. u': can 
alwq: take k = Zn; it is often pvssible and desirable to use a 
sn\alkr R .  If k = 0 works. then SJo) IS integrable, A comes 
outside the integral in (A3). and we are: dow. In this case. 
q r )  = A(z). and .qi) is a puiynominal plus a stationary process 
whose auttxcovaicance funct:on is 2 Re q r ) .  

46 

h m i n g  (a) - (c), me see that C&) is a io- afs(2) 

at most a p o l y n d  of- <&. !%ace A annihantes all 
poiynomials of degree <2n, properties (a)- (c) hdd with 
C&) re- by qz), a d  & theorem folloars fnrm (A2). 

an I m t  > o  any UtlEer &a mte& 4 2 )  difks frmnC&) by 

To prove (a) - (c) denoted the btacMed expression in (19) 
by E(r. w). which splits into the two parts 

E#, 0) = - 
1 t w2" i= 0 

2 A  

Accordingly. Co(z) splits into two integrats C,(z) and C&). 
Since Cz(z) is the Fourier traasfonn of an integrable functim, 
C,(r j is continuow on Im L > 0; on im z > 0 it is anafytic and 
can be differentiated repeatedly under the in:egral sign. 

Differentiati% E, repeatedly and applying (AI), we get the 
bound 

vdid for 0 G p  6; k, Im z > 0, I t 1  6 u .  The nghtside of(A4) 
times SJw) is integrable. Therefore, the function Cl(z), on 
the domain Im z > 0. can be differentiated k tima under the 
integral SI@. In particular, CI(z) is continuous on tnio domain. 
This proves (a), and shows th3t C&) can be differentiated & 
times under the integral sign on Im z > 0. Doing so gives (b). 
Property (c) is true because A andda te s  polynomials of 
degree k - 1 .  The theorem is proved. 


