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NOMENCLATURE 

A Channel cross-sectional area, 1-0 test problem 

CPU Computer processor unit 

E Error norm 

L Differentlal operator of POE system, length of channel for 1-0 test 
problem 

POE Partial differentlal equation 

U Dependent variable vector of POE system 

~ Dependent variable 

VL Volume of computational cell, 1-0 test problem 

W Cartesian velocity component 

We Carteslan veloclty component at domaln entrance 

y Cartesian coordinate normal to flow direction, tlme-like coordinate 

Z,Z Cartesian coordinate in flow dlrectlon 

1~+1 Prolongatlon operator for coarse-to-fine grld interpolatlon 

I 
11+1 Restrictlon operator for fine-to-coarse grid interpolatlon 

I Grid lndex, positive integer 

19 'Goal grid ' index value of superscript I 

RI Local residual error on grid I 

RSI Source term for defect correctlon 

rI Local truncation error on grid I 

UI Unknown variables on grid I, an error term is 
associated with each value 

uI9 Certlfled values of dependent variable vector on 'goal grld ' 

M Integer for identifying the cell location in grid I, positive integer 

~ax Number of cells in the analysis domaln 
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1.0 SUMMARY 

The current practice for applied analysis in the aerospace industry is to use 
specially selected combinations of coupled zonal models - inviscid, shear 
layer, etc. - to approximate the field equations of fluid mechanics for 
various applications. 

partial differential 

The zonal models involve systems of ordinary and 
equations (field equations). These equations are 

simulated with numerical methods which possess two types of numerical errors -
residual errors and truncati on errors. Residual (sol uti on process) errors 
arise due to insufficient iterations of implicit algebraic equations by 
relaxation or the inversion of ill-conditioned matrices. Truncation (grid 
related) errors arise due to the selection of the grid, the grld-re1ated 
algebraic equations and the associated boundary and initial conditions. 
Residual errors and truncation errors can be very significant. Assessing the 
effects of numerical error on the modeling of the field equations is a tedious 
and expensive process involving parametric cycling through various tolerances 
on residual error and various grid densities and distributions. Grid 1ength
scale control to properly resolve shock and shear layer singularities is 
unava i 1 ab 1 e except for speci a 1i zed cases. Because of these di ffi cu1 ti es , 
numerical error effects are not commonly examined or controlled with precision 
using conventional methods of numerical analysis, and this can lead to a 
misinterpretation of computed results. 

Efficient solution of the equations of fluid mechanics requires the 
availability of adaptive mesh generation and numerical error assessment 
methods to define numerical errors and guide the grid adjustment process. The 
overall goal of this research program is the development of these methods. 

The obj ecti ves of the work reported herei n were to begi n development of 
algorithms to define error norms (for use as resolution monitors) for 
numerical solution of POE's and to begin development of a multi-level adaptive 
grid technique for application to the solution of the various equation sets 
used to model fluid flow. The present work is an inltia1 exploratory 
investigation of resolution monitors and adaptive grid technology. 
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The approach was as follows. 
multl-grid methods was briefly 

The llterature on error assessment ana 
reviewed. From this, conventional error 

assessment methods were defined and are brlefly described. Three variable
order-accuracy defect-correction approaches were identified. The 
one-dlmensional (1-0) incompressible potentlal equation was selected as a test 
bed to investigate error assessment and multi-grid methods. A test problem, a 
channel wlth a constrlctlon, was selected for WhlCh analytic Solutlons were 
available. The equation was solved for the test problem using point 

relaxation for a range of mesh densitles and distributlons and the varlOUS 
error assessment techniques were evaluated. The test problem was also solved 
uSlng point relaxation and a multi-grid scheme and the characterlstlcs of the 
multi-grid method were evaluated. 

One result is that multl-grid schemes are promising as a basis for developlng 
resolution monitors and adaptive grid techniques. Brandt's methodology 
appears to be the most suitable approach to adaptive-grld-control. The 
present study suggests that the multi-grid technology is conceptually 
straightforward to apply to conventional computer codes WhlCh solve elliptlc 
problems. A second is that for the test problem, reliable estimates of the 
maximum glooal error were obtained from solution output for a number of grld 
levels. From the work completed, it is expected that substantial improvements 
are posslble for assesslng and controlling numerlcal errors. A thlrd result 
is that slgnificant improvement for efficlent residual error control was 
demonstrated with the test problem. Further work is, however, requlred to 
develop the three key elements: (1) error norms to guide grid adjustment for 
truncation error control, (2) methods for efflclent resldual error control 
(relaxatlon schemes that work well with irregular mesh intervals), and (3) 
adaptive mesh structures based on these error norms. The efflcient 
interaction of these three key elements is necessary to obtain adaptive 
Solutlon of the Navier-Stokes equatlons. 

A follow-on research program is recommended which addresses development of the 
three key elements deflned in the work reported herein and noted above. The 
development of these elements would occur simultaneously, utilizing a series 
of research computer programs of increaslng complexlty. 

Work reported herein was supported by NASA contract NASl-16408 and Boeing IR&D 
funds. 
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2.0 INTRODUCTION 

The Navier-Stokes equations with continuity, energy and state equations are 
the accepted analytical model for fluids whose constituative properties are 
Newtonian. They apply to the flight envelope of most aircraft in the earth's 

atmosphere and to all steady and unsteady laminar and turbulent flow processes 
which influence the performance of these aircraft. The development of 
numerical techniques to model the Navier-Stokes equations has been 
revolutionary in recent years and the pace is accelerating. 

The Navi er-Stokes equations are always simpl ified to rel ated but di fferent 
partial differential equations (POE). These simplified POE systems are chosen 
to model the essenti a 1 properti es of the Navi er-Stokes equati ons for the 
intended application. In the solution of many of these flows, it is difficult 
to sort out modeling errors from numerical errors. An obvious example is the 
use of the Reynolds averaged Navier-Stokes equations for turbulent flow. 

Selecting appropriate PDE systems depends upon havlng an understanding of the 
PDE solution properties. These are defined through analytica:l and numerical 
methods. POE modeling depends upon understanding the numerical results 
including distortions induced by numerical errors. It is important to control 
these numerical distortions to within tolerances that are consistent with the 
intended application. The cost to achieve a given level of accuracy is also 
important. The cost/benefit relation must be readily accessible, otherwise 
unrealistic levels of accuracy may be demanded without real benefits or 
insufficient accuracy may occur with misleading results. 

The present effort is di rected at the physics of smooth steady flows wi th 
interacting singul arity regions such as shocks, boundary 1 ayers, free shear 
layers, flame fronts and contact surfaces. Existing solution techniques for 
the equations describing these flows are usually unable to control the length 
scales of the mesh in these singularity regions sufficiently to accurately 
resolve these flow features because they are inefficient at the necessary grid 
scales. As a consequence, computed results are of low accuracy. 
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Efficient numerical model ing of these equations Wl th systems of algebraic 
equations for a grid is difficult because of residual errors in the solution 
process and truncation errors. Resldual errors occur because of the Gibbs' 
effect (wiggles or high frequency oscilla~ions in the solution) and the 
stiffness of the equati ons (acousti c, diffusi ve and convecti ve stiffness). 
Stiffness is defined as slow convergence toward the target of zero residual 
errors. Truncation errors are due to the grld selected, the grld related 

algebraic equations solved, and the boundary and initial conditions - all used 
to approximate the field equations in an analysis domain. These problems are 
compounded by the grid requirements of singular flows; grid length scales are 
needed near singularities that vary by orders-of-magnitude from those required 
in regions of low gradients in flow properties. 

Algorithms for numerical solution of the Navier-Stokes equations are sought 
which address simultaneously the requirements for 

a. grid related algebraic solution procedures for improved reduction of 
residual errors 

b. error monitors that efflclently asslst the grid adJustment process 
and optimize the residuals relative to the truncation errors 

c. solution procedures WhlCh are less sensltlve to mesh and permit grld 
nesting. 

Adaptive grid control is the interaction of these elements to reduce numerlcal 
error. Manual and automatic processes can be used to implement adaptivity. A 
balance between computer code development time and computer code user 
complexity must be kept in mind. 

1 1
· ,(1) . The multi- eve adaptlVe grid procedure produces truncatlon error 

estimates as a by-product of the solution procedure which could be used as a 
resolution monitor. This procedure is thus especially attractive as an 
approach to the development of automatic POE solvers which control numerical 
errors to a prescribed tolerance. 

Work reported herein was supported by NASA Contract NASl-16408 and Boeing IR&O. 
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2.1 THE OBJECTIVES OF THE STUDY 

The first goal of the research is the development of numerical error 
assessment methods for use as gr1d resolution monitors. The second goal is 
adaptive mesh generation methods to refine the grid locally where indicated by 
the resolution monitor. The third goal is to improve the efficiency of 
resi dual error control with non-uni form meshes. It is expected that the 
availability of this technology will provide significant improvement in the 
numerical solution of the PDE's of fluid mechanics. Substantial work is 
necessary before this will be possible. The objectives of the present work 
were to begi n development of a 1 gori thms to defi ne error norms and to begi n 
development of mUlti-level adaptive grid techniques.(l) The present work is 
an initial exploratory investigation of resolution monitors, grid adjustment 
methods, and residual error control efficiency. 

2.2 THE TECHNICAL APPROACH 

Two overall strategies are being used to guide the development of resolution 
monitors and adaptive grid methods. The first strategy is to define as early 
as possibl e all of the el ements necessary to the development of the desi red 
technology and to address these simultaneously. The second is to use simple 
one-dimensional numerical "test beds" to define and develop the necessary 
technology elements. Once the technology elements are defined and developed, 
extension of the technology to test bed codes for 2-D and 3-D POE's of fluid 
mechanics should be relatively straightforward. With this background, the 
error-norm adaptive grid technology can then be applied to codes for efficient 
solution of fluid flow analysis problems. 

Specifically for the work reported herein the detailed technical approach was 
as follows: 

1) The 1 i terature on error assessment and mul ti -gri d methods was bri efly 
reviewed. Error sources were identified, Section 3.1, and a brief 
mathemati cal descri pti on of these is presented in Secti ons 3.1.1 and 
3.1.2. Control of numerical error with filtering and damping and the 
necessary interaction with error assessment methods are described in 
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Section 3.1.3. The problem of efficient residual error control is 
discussed in Section 3.1.4. 

Conventional approaches to error assessment and control are di scussed in 
Section 3.2. Three approaches were identified; the conventional 

certification process, Section 3.2.1, the engineering approaches, Section 
3.2.2, and the error norm approaches, Section 3.2.3. 

Four error norm approaches to numerical error assessment were 1 dentlfied. 
Conventional error norms are defined in Section 3.2.3.1. A Taylor series 
error monitor approach is described in Section 3.2.3.2. Variable order 
accuracy algorithms for error assessment are described in Section 
3.2.3.3. Multi-grid error norms are then described in Section 3.2.3.4. 

2) Solution of the one-dimensional potential equation was selected as a test 
bed to investigate error assessment and multi-grid methods, Section 4.0. 
Numerical solution of the potential equation using point relaxation is 
described in Section 4.1 and using point relaxation and a multi-grid 
procedure, in Section 4.2. 

3) The test problem was solved using the point relaxation and the multi-grid 
scheme as described in Section 4.3. 

4) The various error norms were evaluated as described in Section 4.4, and an 
adaptive mesh example is presented in Section 4.5. 

5) Computed results were evaluated and are discussed in Section 5.0. 

6 
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3.0 NUMERICAL CONSIDERATIONS 

3.1 TYPES OF ERROR SOURCES 

The numerical methods for solving PDE's have two types of error sources: 
gri d-rel ated sol uti on process (resi dual) errors and gri d-p1 acement re1 ated 
(truncation) errors. Explicit marching techniques (time or space) do not have 
residual errors unless there is an implicit equation imbedded in the marching 
scheme. Residual errors occur when implicit equations are solved by explicit 

marching techniques, specialized relaxation schemes or matrix inversion 
processes. Only i deal difference schemes have no truncati on-error effects. 

Practical flow analysis tools are not ideal. Truncation-error and 
residual-error effects produce many curious phenomena which must be understood 
in order to develop reliable error norms. The error norms must be able to 
detect any spurious or peculiar numerical phenomena. 

3.1.1 Mathe.atical Description 

Let 
LU = 0 3.1.1-1 

represent the POE system of interest. 

In discretized operator notation, equation 3.1.1-1 is 

3.1.1-2 

where LI is the discretization operator, UI is related to the discretized 
dependent variable vector, and TI is the local truncation error and RI is 
the local residual error for each cell of the analysis domain. The grid 
structure index, I, is related to choices of the grid density distributions 
for each selected trial grid where in general the computational grid features 
coupled conformal grids with grid nesting in sub-regions. Ideally the grid 
adjustments are made in some pattern that tend toward a limiting grid 
configuration or 'goal grid. ' Thus each unique grid shape is represented by 

-an integer value of I. The 'goal grid ' is assigned the index Ig, which is 
known once the numerical error has been constrained to the desired bound. 
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An ideal or perfect difference scheme for 3.1.1-2 is one in WhlCh the local 
truncation error does not contaminate the variables of interest, such as 
velocity, density, pressure, etc. Only the residual errors impact these 
variables. Thus, the user specifies exactly the locations in the geometry at 
which values of these variables are deslred. Wlth resldual error control 
within adequate bounds, the accuracy of the result is insured within selected 
1 imits. 

Non-ideal difference schemes are defined as those in WhlCh tne local 
truncation error and residual errors simultaneously influence the value of the 
decoded variables. Except for specialized difference schemes for model 
problems, difference schemes for conventional applied analysis are non-ideal. 
Control of both error sources is addressed herein with emphasis on controlling 
the truncation error. This subject is closely related to the problem of 
proper grid adjustment from an initial state to the I goal grid ' state, with 
p~oper residual control during the grid-adjustment process. 

3.1.2 Truncation (Grid Related) Errors 
Truncation errors are due to the selection of the grid, the grid related 
algebraic equations, and the boundary and initial conditions which approximate 
the field equations of interest. 

The local truncation error is formally defined as the magnitude that the 
left-hand side of (3.1.1-2) yields for each cell when the 'goal grid ' solution 
is interpol ated (restri cted) to a trlal gri d difference equati on mi nus the 
interpolated value of the left-hand side of (3.1.1-2) from the 'goal grid ' • 
It is set at zero in conventional representations of (3.1.1-2) for all values 
of 1. In the defect- and deferred-correction methods discussed in Sections 
3.2.3.3 and 3.2.3.4, truncation error estimates are used to correct for 
truncation error effects. The right-hand side of equation (3.1.1-2) can also 
be a high-order accurate truncation error correction. 
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3.1.3 Filtering and Damping Spurious Numerical Waves 
The linear wave equation is 

u + U = 0 y Z 

This equation exhibits many of the features of the convection tenns of 
Navier-Stokes equations but it is simple enough that the powerful methods of 
linear analysis apply. Such analysis indicates that all the numerical methods 
that have been applied to model this equation have the following properties: 
Contro 1 of the phase errors, amp 1 i tude error and the Gi bbs-effects errors ( 2) 
within selected accuracy bounds depends upon the proper grid density selection 
per period of propagation for wavelengths of interest and with properly 
designed Gibbs-effects filters. Truncation errors have an accumulative effect 
upon the accuracy. 

Gi bbs-effects errors are hi gh frequency osci 11 ati ons near the juncture of 
sharp changes in gradients. For the linear case, the Gibbs' error wavelength 
is about four, seven, sixteen and infinite (zero Gibbs effect) mesh intervals 
for eighth, fourth, second, and first order accuracy convective difference 
schemes, respecti vely. For nonl inear cases such as near shocks, the wave 
length of the Gibbs-effect error is about two mesh intervals for most schemes 
of all orders of accuracy above two. Wavelength smoothing(2) is very 
effective for controlling the amplitude of the Gibbs effect to within chosen 
bounds without introducing global damping. Low order accurate Gibbs-effects 
filters are especially useful for providing the global damping that is 
necessary for removing transient waves from certain types of relaxation 
processes. When properly tuned for the most effective use of the grid, the 
low order accurate fil tering devices whil e servi ng to adequately damp the 
global waves may not provide sufficiently for the control of the Gibbs' 
oscillations within desired bounds. Wavelength filtering in addition to the 
global damping is well suited to the control of the Gibbs' oscillations within 
desired bounds because the smoothing can be localized as desired. 

Intelligent use of smoothing is one of the central difflculties of modeling 
transient and steady state analysis involving mixed elliptic/hyperbolic 
equations. Where analytical solutions are unavailable, the error nonns for 
analysi s of requi red accuracy must account somehow for the phase, ampl itude 
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and Gibbs-effects errors. The question whether the solution processes must be 

free of Gibbs-effects errors should be treated in future work? 

Dissipative and non-dissipative convective difference schemes permit expansion 

shocks, artificial gross separation, etc. to form under certain conditions. 

Artificial diffusion is added to eradlcate the expansion shocks. Tuning the 

artificial diffusion coefficients for peak accuracy is troublesome. The goal 

of the tuning process is that the artificial diffusion must decay globally and 

locally with mesh refinement so that the accuracy of the sonic line shape and 

position increase with mesh refinement. The error norm used must ensure this. 

3.1.4 Residual Errors 

The numeri ca 1 model i ng of the potenti al equati on or of the NaVl er-Stokes 

equations leads to algebraic forms in which the propagation of signals is 

retarded as the grid density increases. This stiffness problem leaas to 

inefficient reduction of residual errors among the simultaneous system of 

algebraic equations, often leading to exponential or power function decrease 

in convergence as the grid density increases. Typically diffusive stiffness 

is evi dent in potenti a 1 flow codes. In Navl er-Stokes codes, three Stl ffness 

probl ems can appear simul taneously or separately - acoustic, convective, or

diffusive stiffness and can be aggravated by non-uniform grid. Any or all of 

these factors can undermine the convergence rate severely and can enlarge 
errors substanti ally. The error moni tors must be desl gned to detect slow 

convergence or inefficient residual error control. For some error norms this 
is a severe requirement. When the local residual error is reduced to some 

fraction of the local truncation error, further reduction of the residual is 

not cost effective; determination of this fraction is a subJect for further 

study. 

3.2 ERROR ASSESSMENT AND CONTROL 

Three approaches are used to assess the accuracy of POE modeling. The first 

is to construct an error difference table with solutions on trial grids of 

various mesh densities and distributions. The second is the use of auxiliary 

information such as experimental data and related analytical solutions for 
various regions of the analysis domain, and the third is the use of the local 

truncation and local residual error estimates associated with suitable error 

norms and error bounds. These three are referred to as the conventional, 
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engineering (analogical) and the error-norm approaches to certifying the 
accuracy of POE modeling. Direct numerical evidence of the accuracy of the 
POE model ing results from the conventional and error-norm approaches. These 
methods have their origins in numerical analysis technology. In the 
engineering approach no attempt is made at achieving direct evidence. 
Inferential reasoning is predominately used. Discussions of this are given in 
the following sections. 

3.2.1 Conventional Certification Process 
The process of numerical error assessment with conventional POE modeling 
techniques is the following.(3) A solution of finite difference equations 
(simultaneous system of algebraic equations) for a specific discretization of 

the analysis domain is generated for different choices of grid density and 
grid distribution in the analysis domain. It is common to use a sequence of 

grids of the same grid distribution that differ in grid count in each 
independent variable direction by factors of two -- 2, 4, 8, 16, 32, etc. The 

coarser grids can be generated by deleting every other point of the finer 
grids. The effects of the choice of grid distribution are examined by 
choosing sequences of grids which have different mesh distributions. The data 
from all of these solutions of the grid-related equations is organized by 
constructi ng an error di fference tabl e. Sol ution differences are posted in 
order of the coarse-to-fine grids for each grid sequence. The solution 
differences are generated by subtracting the values of adjoining pairs of grid 
solutions of the dependent variables at all physical locations in the analysis 

domain that correspond to the grid coordinates of a grid of a selected 
intermediate density. Interpolation is used to relate other grid solutions to 
these sel ected gri d coordi nates. As the gri d densi ty increases the 
differences should decay approximately* according to the formal order of 
accuracy for some selected mesh distribution. Iterative adjustment of the 
grid distribution and density is made until this type of error decay is 
realized. If this occurs, extrapolation may be used to solutions at infinite 
grid density and reliable estimates of the maximum global error may result. 

*Error decay according to the formal order of accuracy is expected globally 

but not locally in regions of singularity. 
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The preceding process appears to work best on the modeling of parabol ic and 
ell iptic equations in smooth domains with smooth boundary conditions. For 
mixed elliptic/hyperbolic systems, erratic results may occur due to unresolved 
singularity regions and/or poor residual error control, and/or Gibbs I error 
effects. 

A key feature of this method is that grid adjustments are made in some pattern 
that tends toward a limiting grid configuration. A way to think about this is 
to define a goal grid to which the selected grid sequences must evolve. The 
'goal grid ' is a grid upon which the solution is sought to some specified 
error bound. It should be understood that the 'goal grid ' may not be unique 
because of grid initialization, grid generator, and grid-equation solver 
properties. It is assumed that adequate control of the residual error effects 
has been maintained in the process of assessing the truncation error effect. 
This is done by developing a sequence of several solutions on each grid choice 
with various choices of constraints on the residual tolerances that are used 
to terminate the computations for each solution on that grid. Because of the 
need to assess the contamination by residual error, the 'goal grid ' may not be 
the grid of greatest density but it will have the correct shape. 

Conventional techniques for developing the data necessary to certify the 
accuracy of numerical modeling procedures are limited by the following factors: 

12 

1) Costs. 

2) Because of (1) above, a very limited number of solutions and thus 
sparse information are usually available from which error estimates can 
be constructed. 

3) Because grid adjustment to control the error within desired bounds is 
cumbersome or impractical, arriving at proper grid configurations in 
mesh density and distribution is also difficult or impractical. 

4) Numerical error during grid refinement may vary erratically, not 
monotonically with grid density. Confusion as to grid adjustment needs 
can result. 



5) The software is usually not available for conveniently constructing the 

error table. This means that the error assessment process is manpower 

intensive. These factors di scourage development of the I goal gri d I 

solution. Without this, the accuracy of the result is unknown; the 

meaning of the resul tis undefined and useless unl ess appropri ate 
external information (user experience) is applied to the result. 

The certificati on process with conventi onal computer codes util i zes error 

information from many grid densities and grid geometries. This is a 

multi-grid process albeit a very cumbersome and inefficient one. For the 

present purposes thi s technology wi 11 be referred to as fi xed gri d (FG) even 

though it is not, when properly used for numerical error assessment. It is 

called FG because that is the manner in which it is used in applications; the 
error term associated with each number in the output is set to zero and this 

is often ignored in the use of the numbers from the output. 

3.2.2 Engineering Approaches 
Judgement in engineering applications as to what grid should be selected for 

numerically model ing a POE system is often based upon an exterior body of 

kAowledge(3) rather than direct numerical evidence. For example, 

boundary-layer analysis can be performed with finite difference and related 

analysis tools. Mesh refinement studies and conventional error norms can be 

used to defi ne the accuracy and grid-choice rel ationships. Simil ar studies 

can be performed on free shear layer and inviscid model problems with 

analytical solutions to establish the accuracy and grid-choice relationships. 

The various component features of the physics of the POE system can be studied 

in this manner. The selection of the trial grid for the POE system of 

engineering interest can be made upon the b~is of the physics that is 

expected in each flow region of the analysis domain. The grid selection in 

the various flow regions of the analysis domain can reflect the desired 

accuracy that is required locally and globally for the purposes of the 

analysi s. Interpretation of the resul ts of numerically model 1 ed POE systems 

involves qualitative aspects of the solution. Inspection is used to insure 

that solution features such as wall shear stress, wall boundary layer, free 

shear layer, inviscid structure, or shock structure characteristics occur 
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where they are expected. The success of thlS approach depends on the 
knowledge and skill of the analyst and the time allotted for the analysis. 
Important physi cal processes may be inadvertently 1 gnored because numeri ca 1 

errors mask solution properties. For example, artificial diffusion can be 
interpreted as turbulent diffusion. 

Another approach to grid selection is used in engineering applications as well 
and sometimes augments the above approach. It i nvol ves the compari sons of 
computed and experimentally measured flow properti es. Gri d and local and 
global numerical smoothing adjustments are used to generate favorable 
agreement between the computed and measured flow properti es. Where 
experimental data is available, this approach is preferred to those that are 
described above and it encourages the use of analysis for predictive purposes 
where favorable agreement occurs. 

In engineering approaches, direct numerical evidence is not used to understand 
the nature of the numerical properties; rather inferential and analogical 
reasoning are used. 

3.2.3 Error Norm Approaches 
Four possible methods are considered here. The first method is a brlef review 
of conventional error norms; the second is the use of truncated Taylor series 
expansions for an error monitor; the thlrd is the use of variable order 
accuracy al gori thms; and the fourth is the mul ti -gri d approach. These are 
discussed below. 

3.2.3.1 Conventional Error Nor.s 
Standard error norms(4) include: 
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E1 = [ ~(.I _ ~I1)1]/N 

E2 ~ [E(~I _ ~I1)2/ (.I)2]1/2 

Emax = [I(~I - ~I1) /~~ ]max 
~ :: amplitude 

3.2.3.1-1 

3.2.3.1-2 

3.2.3.1-3 



where ~I is the dependent variable of the analyt1cal solution restricted to 

the coordinate location of grid point 1. N is the number of grid points. 
~ 11 is the d1 scretlZed sol Ut1 on on gri d 1. The sums denote component sums 

in 2-0 and 3-0 situations. E1' E2, and Emax are known as the average 
error, the root-mean-square (rms) error and the maximum global error, 
respectively. The ~ax norm is best applied to non-singular problems (no 
shocks, shear layers, or geometry discontinuities) with smooth boundary 
conditions although it can be used if the regions of steep gradients are 
excluded. E1 and E2 are used for singular perturbation problems including 
the steep gradient regions. The use of these def1n1tions as written depends 
upon knowing ~I which is not available for cases of general interest. 
However, modified forms of these relations may be considered. 

For example, equat10ns 3.2.3.1-1 through 3.2.3.1-3 can be given by: 

EP,I2 = [ 1:1($12 _ ~11)\G(Z) ]/N 

E
2

I1 ,I2 = [E(($I2 _ ~Il)2/(~I2)2)]1/2 

E11 ,I2 = [G(Z)j(th I2 _ ~I1) /m \12, 
max ~ ~ imax 

,nI2 . ,n11+l 11+2 where. 1S any of, , 0 , 

3.2.3.1-4 

3.2.3.1-5 

3.2.3.1-6 

~I2 is also regarded a 

higher order accurate solution on grid Ii. G(Z) is a weighting factor which 
may be used to exclude regions in the analysiS domain where the local 
truncation error estimates exceed a selected threshold value. N is the number 
of cell sin the summati on. These error norms shoul d be of general use for 
understanding the role of residual and truncation errors, especially when used 

with the error norms discussed below. 

There are error estimators in addition to the ones listed above which should 
be considered in any application of interest. For example, certain components 

of POE systems requ1re that kinetic energy, mean vortic1ty, total pressure, 
entropy, mass, etc. should be conserved. Oiscretized forms of these integral 
relations could be constructed which are relevant to the applicat10n of 
interest. 
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3.2.3.2 Taylor Series Error Monitor 
The idea of using truncated Taylor serles expanslons for an error monltor has 
been explored and conclusions about the cost effectlveness of such a 
development are summarized as follows. Consider a simple harmonic function 
such as the y=sin x. From calculus, the derivatives of all orders exist. The 
odd-order derivatives vanish when the modulus of the even-order derlVatives 
are maximum. At the least, pairs of odd-order and even-order derivatives 
would have to be approximated by flnite difference expressions to prevent 

spuri ous decay of hi gher-order terms in any proposed error moni tor. The 
second requirement is that, in regions of the grid with long wavelength 
variations of a dependent variables of interest, it must establish how many 
pairs of odd and even orders are required to certify the numerical accuracy of 
the POE modeling. The third requirement is that, since high frequency 
oscill ations (two mesh interval 1 imit) can exci te two mesh interval 

oscillation on all discretized derivative of the order of two and above, this 
information must be used somehow to sort GibbS errors, geometric 
discontinuities, etc. While the Taylor series error monitor idea is 
i ntri gui ng, it has conceptual and impl ementati on problems. The next secti on 
describes a related but perhaps better approach to error assessment. 

3.2.3.3 Variable Order Accuracy Algorithms for Numerical Error Assessment* 
Rather than using only mesh refinement to assess numerical error, it is 
conceptually reasonabl e to define numerical al gori thms of variabl e order of 
accuracy from which direct error estimates emerge for a given grid. A way to 
think about this is to define a sequence of higher order accurate discretized 
solutions on the same grid each of which satisfy a certain smoothness 
property. The higher order accurate solutions on the grid are regarded as the 
trial analytical or reference Solutlons. The lowest order accurate solution 

is regarded as the approximation. The error estimate is performed with 
conventional error norms. The error norms of Section 3.2.3.1 are slightly 
modified for error assessment by using higher order accurate solution data in 
place of the 12 finer grid data. Iteration can be used to determine how high 

* 
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Oefect- and deferred-correction schemes are closely related because error 
estimates are used to improve the efficiency of residual error control. 
Both methods are multigrid methods. 



the order of accuracy must go for reliable error estlmates. Grid adJustments 
are needed to provide the highest order accurate scheme with sufficient grid 
to meet desired accuracy bounds. 

To implement the above process, a convergent variable order of accuracy 
algorithm approximating the POE system of interest must be available. For the 
boundary layer equations, Wornom(5) presents an approach. Forester(2) 
suggests a method for mixed hyperbolic/parabolic POE systems using odd-degree 
splines although other basis functions can be used. The order of accuracy of 
this scheme is selected simply by choosing the appropriate coefficlent matrix 
that is associated with the desired accuracy. With this method, orders of 
accuracy six, ten, fourteen, nineteen, etc. are possible and they are 

activated by an input control function. Interpolation is used to initialize 
successive solution processes of higher accuracy. 

Lindberg(6), Pereyra(7) and Stetter(S) have developed an approach which 

is related to the one described above but in which certain simplifications are 
implemented. Basically Lindberg uses a low order accurate approximation to 
the POE system with a non-zero right-hand-side term that is lagged in the 
iteration process. This perturbation operator is a 
discretization (usually fourth order) of the POE system. 

high-order-accurate 
The data for the 

perturbation operator is derived from the low order of accuracy di screte 
equation system solution. The perturbation equation is repeatedly solved 
until some convergence criterion is satisfied. The output of the perturbation 
equation is a correction parameter. It is added to the low order of accuracy 
solution to yield a fourth order accurate solution at convergence. Error 
estimates are produced with conventional error norms by using the high-order
accurate solution as an exact representation of the POE system. The low order 
accurate resul t represents the approximate sol uti on. Li ndberg presents many 
exampl es of the effi ci ency of thi s defect-correction procedure to reduce 
residual and truncation errors. Success is not universal with hyperbolic 
problems, however, when some smoothness property is violated. It may be 

inferred from Lindberg's data that if sufficient smoothing is applied to 
regions of rapid change in gradient, convergent results are achieved. To make 
Lindberg's scheme useful for hyperbolic systems, empirical studies would have 
to be performed to develop cri teri a for how local the smoothi ng must be 
constrained so that the global errors are definable. See Section 5.3 for 
related discussion. 
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The approaches of references (1-8) presume that some sort of mesh refinement 

process toward the 'goal grid ' is used. The accuracy of these error 
estimators improves dramatically as the accuracy moves toward the one percent 
error range. They are useful gui des for gri d refi nement when errors are 
larger than ten percent but are not precise in the predicted magnitude. These 
approaches are promising for modeling mixed parabolic/elliptical/hyperbolic 
systems of equations but are difficult to implement when grid nesting is 
required. 

Another approach to defect-correction has been proposed by Brandt(9). This 
approach suggests vari abl e order of accuracy, nested gri ds, ennancement of 
residual control efficiency and the efficient generation of an error term that 
may be useful for numerical error assessment. This approach has been called 
the multigrid method but it is misnamed since all numerical assessment and 
control schemes are multigrid.* Many variations of this methodology are 
possible. Most examples of this approach(l,a,lO) are for residual control 

efficiencies near theoretical limits with uniform grid intervals. Irregular 
grids (nested grids) have yet to be widely addressed in this method. 

3.2.3.4 Multi-Grid Error Norms 
Modifications are suggested in Section 3.2.3.1 to conventional error norms for 
assessing numerical error schemes. This is applicable to the FAS-MG (Full 
Approximatl0n Storage-Multi-Grid) scheme with one exception. The solution 
data at each grid level must be saved before finer grid levels are invoked in 
the multi-level solution process. This approach insures that the targets of 
residual and truncation errors are zero in the output for the various levels 
of grid. If this is not done, solution errors may appear on coarser grlds 
when in fact none exist. 

The FAS-MG scheme estimates local truncation error by interactlng coarse and 

fine grid solution data. Brandt suggests that the weighted integral 

ET = IG(z)IT(z)ldZ 3.2.3.4-1 

* Brandt's approach could be called defect-correction multi-grid or Tau multi
grid, TMG. 
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is a measure of global error level. ET• where G(z) is eitner zero or unity. 
G(z) represents a welghting to exclude singularitles in the analysis domain. 
T(z) is the local truncation error. The discussion in paragraph 3.1.4 
suggests that additional error norms should be considered f9r the control of 

residual errors. For example. relationships such as 

ER = IIR(z)\dz 
ERT = J\R(z)\/\T(z)\dz 

may be suggested. 

3.2.3.4-2 
3.2.3.4-3 

These error norms can be readily generalized for more space dimensions. R(z) 
and T(z) are normalized by some suitable reference quantity so that they 
cannot exceed unity during the solution process. Singularities in the POE 

modeling are detected by T(z) of the order of unity. 
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4.0 NUMERICAL ANALYSIS AND RESULTS 

With reference to the technical approach, Section 2.2, solution of a 
one-dimensional potential equation was selected as a test bed to evaluate 
error assessment and multi-grid methods. Solution of the one-dimensional 
potential equation was selected because of its simplicity, only a single 
dependent variable. The equatlon was solved using a point relaxation scheme 
alone and then a multi-gridded point relaxation scheme. 

A test problem, a channel flow with a constriction, was selected because 
analytical solutions are available for comparisons with the numerical 
solutions. The test flow was solved for a range of mesh densities and 
distributions and the more promising error assessment techniques were 
evaluated. The test problem was also solved with a multi-gridded point 
relaxation scheme to understand and evaluate the characteristics of the 
multi-grid scheme. A semi-self-adaptive mesh scheme was briefly investigated. 

4.1 SOLUTION OF THE 1-0 POTENTIAL EQUATION 

The discretized 3-D full-potential equation for steady incompressible flow is 
restricted to a 1-0 analysis tool by deleting the K and L indicies in the Ref. 
10 formulation. The total velocity can be computed in many ways. One 
formulation(10) yields values of the total velocity in which the truncation 
errors in the velocity potential do not contaminate the computation of the 
total velocity. 

The forms of the 1-0 continuity equation for the purposes of the present study 
are in terms 
potenti al , <l>. 

20 

(WA)Z = 0 
[~zA]z = 0 
W = ~z 

of the primitive velocity compon~nt, W, and the velocity 
They are given by 

4.1-1 
4.1-2 
4.1-3 



where A is the channel cross section. 

The transformed discretized forms of these equation are given by 

I I I 
[{ {W} {D}}M+%- {(W}{D}}M_J = TM - RM 

[(~M+1 - $M)(CM+~} - (~M - ~M_1}{CM_~)]I = T~ - R~ 
W~+% = [(~+% - ~M)(CM+~)/DM+%)]I 

4.1-4 

4.1-5 

4.1-6 

I = grid level index, I = 1 coarsest grid, two cells in domain range of 
zero and unity for Z/L 

= 1 - YM+~ 

= 1 Z less than zero 

= Y{z) o < Z < L cubic functions 

= 1 Z greater than 1 

~ = residual error due to inexact solution process 

M = the grid index of cell centers 

M = 1, dummy cell for boundary condition data 

M = 2, first cell in analysis domain 

Ml = Mmax + 1, last cell in analysis domain 
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M2 = Mmax + 2, dummy cell for boundary condition data 

$M2 = We (V~l + V~2)/(~1+%)/2 + 0M1 boundary value 

$1 = ~2 - We (V~ + V~)/(D2_%)/2 boundary value 

t4+%"M-% = grid index of cell face of cell M, Zr.t+W ~_% 

M = grid index of cell face on cell M 'lIlax 

We = velocity at entrance of the 1-D channel 

Gi ven We, DM+ % for 2<M~1, and RM for 2~M<M1, equati on 4.1-4 is 
solved exactly for WM+% by marching from M=2 to Ml. The analytical solution 
to equation 4.1-1 is recovered by equation 4.1-4 at any selected z coordinates 
if RM is identically zero during the marching process (round-off error 
effects are ignored for practical purposes.) With T~ and R~ 
selected equal to zero, equation 4.1-4 is regarded as a perfect or ideal 
difference scheme. Equation 4.1-5 is regarded a perfect difference scheme in 
terms of WM since equation 4.1-4 results from combining equations 4.1-5 and 
4.1-6. 

Relaxation methods can be used to approximate equation 4.1-5. Two relaxation 
equations are 

a = 0, Richardson scheme 4.1-7a 

a = + , Liebmann scheme 4.1-7b 

$~ = updated 

~ = 01 d val ue 
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Note that ~ is set to zero when derlVing equalons 4.1-7 by the manipulation 
of 4.1-5. 

The FG method of sol vi ng equati on 4.1-2 is defl ned by i terati ng equati on 
4.1-7a or 4.1-7b until some test on the residual show that this process should 
be tenn; nated. 

4.2 SOLUTION OF THE 1-0 POTENTIAL EQUATION WITH MULTI-GRID 

The FAS-MG scheme is more elaborate. It is defined as follows. Equations 
4.1-7a and 4.1-7b are modifled by inserting a tenn, R~, into the numerator 
so that they read 

a = 0, Richardson scheme 4.2-1a 

a = +, Liebmann scheme 4.2-1b 

4.2-1c 

R~iS the local truncation error estimated on grid I relative to grid Ig 
on which RS~g is set to zero. l~g is the restriction operator for 
the conversion of data on grid Ig to a usable form on grid I. The subscripts 
in equation 4.2-1c refer to gri d I. The process of generati ng ~~g data 
that is necessary to use equation 4.2-1c is provided in an excellent form by 
Brandt (Ref. 8). The variant of this process adapted here (see diagram 1) is 
to start on the coarsest grid (Levell) with equation 4.1-7b. When the mean 
residual tolerance of 10-4 or lower (see below) is satlsfied, standard 

23 



linear interpolation of the velocity potential to the next finer grid level is 
implemented. Equation 4.1-7b is iterated on this grid (Level 2) until a 
minimum number of iterations (1, 2, 4, 8, 16, 32 were used) are completed. 
Further iterations are required if the ratio of the new and old residuals, the 
eigenvalue, is less than some amount - .82 was used based upon trial-and-error 

experience. The rate of residual error reduction is slowing if .82 is 
exceeded. When this occurs, it is time to SWltch to the next coarser grid 
(Levell). This means that the ~~ are interpolated from the Level 2 grid 
to the Level 1 grid and Equation 4.2-1b is introduced. RS~ is estimated 

from Equation 4.2-1c with Ig replaced by 2. A converged solution to a low 
residual tolerance is produced on Levell. Velocity potential data for Level 
2 again must be interpolated from existing data at Levels 1 and 2. For this 
purpose, Brandt's prolongation* operator is used. The details of this 

equation are provided later in this discussion. It may take several Levell 
and Level 2 cycles before a low residual tolerance is achieved on Level 2. 
Once convergence on Level 2 is achieved, prolongation to Level ~ is used with 
standard linear interpolation of the velocity potential on Level 2. Equation 
4.1-7b is iterated on Level 3 until the minimum number of iterations are 
performed or until the critical eigenvalue is exceeded. Restriction to Level 
2 provides an estimate of RS~ from Level 3 using the Equation 4.2-1c with 
Ig replaced by 3. Level 2 is iterated with this value until the solution is 
stalled. Restriction to Level 1 provides a corrected estimate of RS~~ 
Cycling between Levels 1, 2, and 3 continues until Level 3 residual tolerances 
are satisfied. Level 4 is then used. This process can go on indefinitely, 
but it is usually terminated at Level 5. See Diagram 1 for a flow chart 
description of the FAS-MG scheme that is used. 

The R~ term is composed of two components -- the residual and the local 
relative truncation estimate. At the finest grid yet arrived at during the 
multi-level solution process, these elements are of equal and of opposite si9n 

so that the target of RS~ is exactly zero. In regions of the coarse grid 
solutions where the truncation error estimate should be zero, it is not zero 

but it has a magnitude proportional to the residual error on the finest grid 

yet arrived at. Its actual magnitude depends on how many grid levels it is 

*Prolongatlon is defined as interpolation to a finer grid. 
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EI2 
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Brandt's F AS- MG Scheme (Modified wIth Error Control on Restdual) 

Coarest-to-Finest Grid Approach to L ~ = 0 

Prolonption Full 

Relaxation Loop 

LI ; 1_ RS I 

IS - Finest Grid to be 
Cycled Through to 
Generate Trial Error Datil 
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removed from the finest grid yet arrived at. A rule-of-thumb is that the 
residual error of the finest grid yet arrived at is about doubled each tlme 
the grid intervals are doubled. 

For the present studies, two approaches to the selection of residual 
tolerances are examined. The residual tolerance can be chosen either for the 
coarsest gri d or the fi nest gri d. In the former method, the coarsest grid 
residual tolerance is reduced by a factor between two to four each time the 
grid size is doubled. Alternatively, if the finest grid residual tolerance is 
chosen, it can be applied to all grid levels. Both methods have been used. 
The latter method is recommended for simplicity in the use of the modified 
error assessment fonnulas of paragraph 3.2.3 which are discussed in Section 
4.4. 

4.3 THE TEST PROBLEM 

The 1-D test probl em i nvol ves an analyti cal geometry of a strai ght channel 
with a cubic function for a constriction that reverts either abruptly 
step-wise or smoothly to a straight channel. Figure 1 shows the channel 
section shape distribution with respect to the flow direction. Figure 2 snows 
the analytical solution restricted to 65 grid coordinates (64 cells) with the 
grid intervals constant. Eleven trial fine-grid sets were used to examine the 
1-D potential solution properties for a) grid with unlfonn mesh intervals, 
b)grid with unifonn mesh intervals in the region of cross sectional area 
variation but with a stretch factor of two in the straight sections, and c) 
grids with unifonn mesh intervals in the straight sections but with a stretch 
factor of .80, .85, .90, .95, 1.0, 1.05, 1.1, 1.15, and 1.2 in the constricted 
region where the finest grid is near the abrupt enlargement of the channel 
cross sectional area for stretch factors less than unity. The total number of 
grid intervals for each set of trial grids are 4, 8, 16, 32, and 64, where the 
number of grid intervals in the constriction region are respectively 2, 4, 8, 
16, and 32. FG and MG methods have been applied to generate solutions, shown 
in Figure 2, by the solid line for the finest grid. Also shown in Figure 2 is 
the FG and MG solutions with very high residual error tolerances. Using point 
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relaxation* and sweeping the grid in the flow direction, MG yields a maximum 
global error** of less than 4% in the equivalent*** of twenty-five sweeps of 
the 64 node grid, whereas FG requires over one thousand sweeps of the 64 node 
grid to achieve the same accuracy. The maximum error occurs at the geometric 
discontinuity. Increasing the accuracy by an order of magnitude requires less 
than a factor of three increase in the work for the MG and the FG.' The 
process of solving the problem to greater accuracy can be continued until the 
maximum global error satisfies desired constraints up to round-off error 
effects. The boundary conditions are imposed both on the FG and MG as set 
mass rates of equal magnitude at the entrance and exit cross sections. 

Figure 4 shows the truncation error spectrum for the peak values of the local 
truncation error asymptotically approach nearly the same values including 
T-extrapolation, on the next-to-the-finest grid solution. The magnitude of 
these terms are substantial near the discontinuity and, because they form the 
right-hand side of the cell-wise flux balance equations, induce large errors 
in the total velocity profiles that are shown in Figure 3. The coarse-to-fine 
grid correction equation of Brandt very effectively interpolates the Poisson 
type solutions on coarser grids so that the coarser grid solutions mimic the 
finer grid solutions. Standard interpolation (prolongation), 

cannot account on the next finer grid, 1+1, for the fact that the right-hand 
si de term is si gnifi cant in the coarser gri d sol uti ons. For thi s reason, 
standard interpolation is not useful and must be replaced by a more elaborate 
interpolation. Brandt recommends (for prolongation) 

* 

~I+1 1+1 ~I I !I+1 ~I+l 
~new = II (~new - 11+1 ~old) + ~old 

Both Richardson and Liebmann point relaxation were used. As expected, the 
efficiency of FG and MG are improved with Liebmann relaxation. 
Conclusions about the asymptotic efficiency with mesh refinement holds 
irrespective of the form of the relaxation used here. All of the 
displayed results are with Liebmann relaxation. 

** The global error is defined by equation 3.2.3.1-3. 
*** See the discussion in Section 5.2 for a definition of equivalent sweeps. 
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I where 11+1 is the fine-to-coarse grid interpolatlon operator and 
It+1 is the coarse-to-fine grid interpolation operator. This expression 
functions well as illustrated in Figure 5. Linear interpolation is used for 
these operators with weightings of 1/4 and 3/4 for 111+1 and weightings of 

I 1/2 and 1/2 for 11+1• These weightings are derived directly from the 
geometric relationship between the coordinates of the cell centers of the two 
adjacent grid levels whose cell faces coincide at every other cell face. No 
modification of this weighting is used for stretched grid cases whose 
pri nci pl e effect is to retard the convergence rate by up to one-thi rd for 
cases with stretch factors of .80 and 1.2. 

4.4 ERROR NORM EVALUATION 

The utility of the error norms of paragraphs 3.2.3.1 and 3.2.3.4 is examined 
in this section. Errors in the computed velocity are studied with the use of 
the maximum global error estimator and average and maximum truncation error 
estimators. It is expected that similar conclusions would be reached if other 
error estimators of paragraph 3.2.3.1 were used. 

The unmodified (analytical reference) and the modified (finer grid reference) 
maximum global error norms (Emax ' ~~~I2) of Section 3.2.3.1 and the 
error norms of Section 3.2.3.4 have been applied to a number of cases of 1-D 
incompressible channel flow that have smooth and abrupt cross sectional area 
changes. A new error norm is defined and is used as well. The results for 
these error norms are summarized as follows. 

To illustrate the properties of Emax and E~~~i2, an output station 
is chosen for which the grid levels -- 2,4,8,16, and 32 cells in the 
trans i ti on regi on of the c hanne 1 geometry. I n all cases, the 1 oca ti on is 
selected nearest the minimum channel cross section where the largest errors in 
velocity reside. ~ax increases in size as the grid size and/or the 
residual tolerances grow. However, this nice behavior does not occur with 
E11 ,I2 1='11,12 is not unique since the output from the various max· l11ax 
grid levels, 12, is used for the reference solution. 

28 



Let 12 equal grid levels 2, 3, 4, and 5 to 
global error for the coarsest grid, 11=1. 

examine the maximui.l estlmated 
E11 ,12 values lncrease in max 

size as the reference grid level and/or the finest grid residual tolerances 
grow. ~!~12 values are a measure of relative error between Solutlons 
at different grid levels and as such may have a different sign and level than 
Emax. Furthermore, ~;~12 values define the error in the reference 
grid solution, 12, rather than in the approximate solution, 11, under 
examination. This conclusion is predicated upon having the residual tolerance 
for the approximate sol uti on wi thi n an error bound that is about the same 
magni tude as the reference gri d whi ch causes a more accurate coarse gri d 
solution than that of the finer reference grid solutions. This result holds 
strictly only for a perfect difference scheme. For nonperfect difference 
schemes, local truncation error will likely dominate the coarse grid 
solutions. However, it is possible that peculiar local truncation error may 
produce smaller real error in coarse grid solutions. Therefore, it is 
necessary to use additional information to determine if the error indicator 
E~~~ 12 is a measure of coarser gri d error. One method of determi ni ng 
this is to examine the behavior of E~~~12 as the residual tolerance is 
reduced. For a nonperfect difference scheme, E~~~12 should reach a 

fixed value for some range of residual tolerance. If so, the E~~~12 
indicator is measuring the coarser grid error. Otherwise, residual error 
effects are dominant. 

The behavior of E~i~12 is illustrated for E~~~, E3~~x and 
E1,5. E3,4 predicts the error in the level 4 solution to about max max 
thirty percent accuracy of the true error. E~i~ predicts the error in 
the level 5 solution to about a five percent accuracy of the true error on 
level 5. ~~~ predicts the error in the level 5 solution to about a 
one-half of one percent accuracy of the true error. These statistics are for 
a residual error of 10-6 at all grid levels. This residual tolerance 

reflects about a one tenth of one percent true error range for the level 5 
sol uti on. For the ten percent true error range of 1 evel 5 sol utlons, the 
precision is reliable to better than an order of magnitude. This provides a 
useful guide for grid density adjustments. 
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The behavior of E11 ,12 is spurious when the residual is controlled on max 
each grid level to yield the true error of the same magnitude on each grid 
level. Brandt recommends residual error control in this fashion which renders 

11 12 . 
Ema~ useless for ideal dl fference . schemes. For this reason and 
because nonideal difference schemes may locally, in certain cases, behave like 
an ideal difference scheme, it is suggested that it is better to control the 
residual to the same level on each grid level even though this gUldeline may 
not yield peak computatonal efficiency exclusive of the error assessment costs. 

Application of Equation 3.2.3.4-1 with G(z} set equal to unity yields the 
average value of the local truncation error. The average and maximum values 
of the local truncation error are exami ned for util i ty in error assessment. 
When scaled by the channel cross section, these quantities are converted into 
average and maximum velocity perturbati ons, respectively. The scal e factors 
are the average and the minimum channel cross sectional areas, respectively. 
These velocity perturbations have been correlated to the maximum global error 
in the fluid velocity for various grid levels that contain the nonzero R.H.S. 
on all but the finest grid. The average velocity perturbation predicts 
conservatively the_ right order of magnitude that the MG generated maximum 
vel oci ty must be corrected by in order to estimate the error in the MG 
output. This result applies to smooth and discontinuous channel shapes with 
uniform grid intervals. The use of the maximum value of the local truncation 
error appears to be best reserved for locating discontinuities in the solution 
since it tends to overestimate the solution error levels in all grid levels. 
Thi s error estimator will be especi ally useful to ; dentify regi ons in the 
analysis where the mesh interval is too large irrespective of how coarse the 
gri dis in the nei ghborhood of di sconti nui ty independent vari ab 1 es such as 
temperature, pressure, tangential velocity, etc. For the immediate future 
this error estimtor has application to all existing flow codes. The 
installation of the FAS-MG scheme in these codes would be useful just for that 
purpose alone. Considerable cost saving could be realized by using this 
method of guiding the grid adjustments. 

Only one exact method of evaluating the maximum and local global error has 
been found for the perfect difference scheme. The sums of the same-sign local 
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truncation error are converted into velocity perturbations by the use of 
Equation 4.1-4. The sign content of these terms oscillate to produce 
non-smooth corrections. Starting at the edge of the analysis domain, these 
sums are added one-by-one. This velocity is called the modified exact 
velocity. At each point where the sign change occurs in the velocity 
perturbation, the error between the grid solution and the modified exact 
velocity is computed and saved. All of these errors are sorted until the 
largest is found. The largest value is the maximum global error on the finest 

grid level to within round-off error effects which means that it has extreme 
accuracy. Roughly the error is bounded by one part in ten to the ten on the 
CDC CYBER 175 computer. 

4.5 ADAPTIVE GRID EXAMPLE 

In this section, uses of the local truncation error estimates for grid 
adjustment are discussed. A simple example of semi-adaptive grid refinement 
is shown in Figure 6 in which grid compression toward the region of high local 
truncati on error is used. Iterati ve gri d compressi on is conti nued unti 1 a 
condition of the maximum normalized local truncation error is less than .08. 
Semi-adaptive grid compression is implemented in the interval 0 ~ Z/L ~ 1 
by iteratively decreasing the grid stretch factor from an initial value of 1.2 
in steps of .05. As expected, the tolerance on the maximum local truncation 
error is not satisifed as long as an exact step-wise discontinuity is enforced 
at a Z/L equal to uni ty. Wi th a cubi c transi ti on functi on in the i nterva 1 
31/32 < Z/L < 32/32 which has a slope continuity with the remaining 
channel geomtry, local truncation error reduction results with grid 

refinement. Figure 6 shows the results of the analytical solution and 
solution with a grid contracted toward Z/L equal to unity. Over an order of 
magnitude reduction in the local truncation is readily achieved with a 
contraction ratio of .85. The lower the magnitude selected for the stopping 
cri teri a, the more gri dis compressed into the regi on of the abrupt geomtry 
change. Eventually this approach starves the remaining domain of the analysis 
of sufficient mesh to satisfy the selected maximum local truncation error 
tolerance. Therefore a preferred strategy involves sub-dividing the region of 
small length scale, 31/32 < Z/L < 32/32, with a uniform grid of varying 
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number of grid points. It is easy to implement. It is regarded also as 
semi-adaptive. A 'fully' adaptive strategy requires labeling each cell of a 

trial grid with a special flag that designates cells with a local truncation 

error that exceeds a selected threshold value. Cells so flagged may be 

sub-divided by nesting compressed grids or by uniform interval grid 

embedding. It is expected that the rapid grid-interval changes may produce a 

growth in local truncation error in that region. If this occurs, criteria 

must be developed for the control of the rate of the grld interval varations 

or the meani ng of the truncati on error reassessed. 'Fully' adaptive MG 

strategy only requires that iterative work to reduce the truncation error be 

applied to the flagged cells. This approach may be more efficient, 'fully' 
adaptive and more computer programming intensive than the semi-adaptive 

strategies. This approach appears to be practical to program for machine 

computations for multi-dimensional numerical analysis. 
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5.0 DISCUSSION 

5.1 ERROR ASSESSMENT 

For the test problem, local normalized truncatlon error estimates of the order 
of unity seem to indicate the region in which grid adjustment (mesh density or 
distribution) should occur or the region in which the geometric representation 
of the boundary of the analysis domain may need modification. The local 
truncation error estimates in themselves cannot distinguish the cause of large 
local error or whether the results of the analysi s are adversely affected. 
Therefore additional information must be associated with the local truncation 
error estimates to make them useful. The behavior of the solution in high 
gradient regions in terms of second derivatives of certain dependent variables 

may be useful in developing criteria which distinguish the source of 
truncation error from Gibbs' error. Together with the residual data, each 
regi on havi ng 1 arge truncati on error can be sorted as to the cause of the 
large truncation error. Criteria for choosing the G weighting in the error 
norms of 3.2.3.1 and 3.2.3.4 perhaps can be developed from this basis. See 
Section 5.3 for further dlScussion of this point. 

At a geometric discontinuity, the sign of the local truncation error 
oscillates at the highest possible frequency of two mesh intervals for an 
ideal difference scheme. This produces a cancellation of the local truncation 
error in the velocity solution. 

It is hypothesized that nonideal difference schemes will exhibit 
two-mesh-interval sign oscill ations in the local truncati on error estimates 
only at singularities or at _locations which have grid-related problems. 
Otherwise the local truncation error estimates will persist at longer 
wavelengths. It is hypothesized that sums of the same-sign local truncation 
errors are significant to estimating the maximum global error for nonideal 
difference schemes. Useful sums mayor may not i ncl ude the regi ons of 1 arge 
local truncation error depending on the purpose for the error norm. It is 
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hypothesized that the magnitude and the rate change of the local truncation 
error may have use for an error norm where gri d juncture in composi te gri ds 
occur or where rapid variations in the dependent variables occur. 

Residual errors and maximum global errors were observed to be directly 
linked. This was examined by computing the discrete continuity balance (local 
mass balance) on each cell. By dividing the local mass balance by the local 
channel cross secti onal area, a del ta velocity resul ts whi ch, added to the 
local velocity, is the correction necessary to remove the local residual 
error. The maximum global error was reduced to round-off error (below ten to 
the minus ten) when the residual velocity correction was applied successively 
from the entrance region point-by-point through the grid to the exit region. 
Alternatively the maximum global error can be computed directly from the sum 
of the residuals of the same sign divided by the channel cross section at 
which the sign in the residual changes. Control of residual errors is all 
important for satisfying desired global error bounds. It is hypothesized that 
the local residual error should be constrained to some value smaller than the 
local truncation error on the grid which is next to the 'goal grid.' 

5.2 MULTI-GRID 

The form of MG that was used for the computations involves a nonzero 
right-hand side term. With this formulation the discretized continuity 
equation has a mass source right-hand side term which is constructed from the 
estimate of the local truncation error. Fine grid velocity potential data are 
interpolated (restricted) to coarse-grid continuity balances to obtain 
estimates of the local truncation error where global integral is zero for mass 
conservation. Total velocity output that is decoded from solutions of these 
coarse-gri d Poi sson-type equations are not di rectly useful (wi th an academi c 
exception). This is a key point about MG output: the total velocity output 
on the coarsest grids may be contaminated with large truncation errors. This 
point is illustrated in Figure 3 for three grid levels. Note that the results 
near the geometric discontinuity are always badly in error. In the coarsest 
gri d the 1 oca 1 truncati on error from the geomtri c di sconti nuity contami nates 
the total velocities at three cell faces where the solution is developed. The 
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extent of the contamination is reduced dramatically as the grid is refined but 
it is only e1 imi nated on the fi nest gri d 1 eve1 where it is exactly zero by 
choice. Any other chOlce for the finest grid solution would generate ~ 
resu1 ts than that shown; the maximum gl oba 1 error wou1 d be 1 arger near the 
discontinuity than occurs in the present example. Therefore the truncatlon 
error extrapolation(9) cannot be inserted at the finest grid level, only at 
next to the finest grid levels. As shown in Reference 9, it can be used as a 
method for accelerating solution convergence or for generating still finer 
grid solutions (finer than 64 cell cases in the present example) at lower 
cost. Alternatively, a finest grid selection of 32 cells could be used with 
T-extrapo1ation to get the solution that is shown in Figure 2. 

Standard interpolation fails to be useful for prolongating coarser grid MG 

solutions to finer grid levels. Brandt's FAS-MG formulation is effective for 
this purpose. Estimates of the local truncation error are a direct 
consequence of the FAS-MG process. The maximum value has utility for 
identifying discontinuities. The mean value is a useful guideline of the 
maximum global error. 

It appears desirable to modify conventional applied analysis codes with the 
Brandt FAS scheme so that local truncation error estimates are a routine 
output. This will aid in quickly identifying regions of the analysis domaln 
where truncation error problems exist. An optimum MG scheme is not the issue 
for the short term. It is desirable to reduce the labor involved in 
determining where in an analysis domain serious numerical error problems are 
occurring. It may al so be feasible to develop error norms that exploit the 
local trunation error estimates of MG so that conventional, semi-adaptive and 
adaptive composite grid technology can achieve high efficiency. 

The grid generation and the PDE solution processes must be drawn together to 
be effecti vee Composite gri d technology shoul d be encouraged. Composi te 
grids refer to coupled conformal grids in which nested grids, grid overlays, 
and discontinuous grids are permitted by the analysis approach. 
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Multi-Grid Computer Cost Overhead 
The effici ency of resi dual error control in tenns of computer overhead cost 
for the MG approach was briefly examined. Under the test problem Section 4.3, 
the word "equivalent" sweep was utilized to compare the number of sweeps 1n an 
MG scheme with FG sweeps. "Equivalent" sweep is defined as follows. 
Neglecting the overhead for the use of the restriction and prolongation 
operations for generating RS~ and o~ estimates, the number of 
iterations on each grid level can be equated to one sweep on the finest grid. 
Thus 16, 8, 4, and 2 are "equivalent" sweeps on grid levels 1, 2, 3, and 4 
respectively relative to level 5 grid. The ratio of the "equivalent" sweeps 
and FG sweeps is not identical with the ratio of (CPU) MG to (CPU) Fb To 
achi eve pari ty between these measures of work, a correcti on factor must be 
empirically generated which corrects the "equivalent" sweeps for the overhead 
of the MG process. This factor is computer and computer code dependent and it 
is not identical with operation counts. No effort has been made to study the 
optimum magnitude of this cost correction factor. For the present 

application, this correction factor is about the same magnitude as the cost to 

sweep the relaxation equation on the finest grid. No optimization of the 
coding was attempted to reduce the Slze of th1S factor. Therefore the 
(CPU)MG/(CPU)FG ratio is approxima~ed by lsweeps)MGf(sweeps)FG times 
two. A preferred definition of "equivalent" is one that includes this factor. 

Control of the contamination of the total velocity output is correlated with 
the computer work expended in solving the grid equations. The data shows that 
the residual error control efficiency increasingly favors MG over FG as the 
number of grid pOints is increased. To illustrate this, computations were 

perfonned as follows. Level 5 grid equations were iterated until a selected 
maximum global error was achieved. The same problem was repeated four more 
times for the maximum global error level using MG. Each problem was 
constrained between two limits of grid level in the MG processes. The grid 
levels are: level 4 - levelS, level 3 - levelS, level 2 - levelS, and 
level 1 - levelS. The (CPU)MG/(CPU)FG ratio was estimated by the above 
fonnula for each problem. It decreased with the extension of the grid level 
separati on. The same resul t was found if the study was perfonned ; n the 

36 



opposite order; namely, (level l)FG and (level l)MG' (level 2)FG and 
(level 1 level 2)MG' (level 3)FG and (level 1 level 3)MG' 
(level 4)FG and (level 1 - level 4)MG' and (level 5)FG and (level 1 -
level 5)r~G' This result is in keeping with Brandt's results. For a simple 
elliptic problem, this establishes one type advantage of MG over FG 

procedures: MG is asymptotically more efficient than the FG strategy in 
controlllng residual error. Hence the number of grid points that can be 
consi dered in an analysi s wi th MG is greater than FG for a given computer 
budget. The potential for control of truncation error is thus greater with MG 
than FG strategy for nonideal difference schemes. 

5.3 CONTROL OF THE LENGTH SCALES OF STEEP GRADIENT REGIONS 

The practical utility of the error nonns listed in paragraphs 3.2.3.1 and 
3.2.3.4 requires quantitative relationships between error norms and such 
parameters as wall skin friction, separation and reattachment points, 
stagnation point location and properties, growth rates of shear layer 
thickness, and the length scale of the resolution of shock waves relative to 
shear layers with which they interact. 

Special attention should be devoted to developing the criteria for the control 
of the length scale of shock waves and stagnation points. One interesting 
recent hypothesis (12,13,14) is that shock waves and stagnation pOints often 

need not be resolved to their true physical length scale. They only need to 
be resolved to length scales of the order-of-magnitude of the key or diffusive 
and boundary regions of the flow field with which they interact. The 
development of quantitative infonnation on the length scale of the large local 
truncati on error regi ons (shock, fl arne fronts, chemi ca 1 speci es fronts, and 
stagnation regions) relative to the diffusive and and boundary regions with 
whi ch they interact is needed. The 1 ami nar shock/boundary 1 ayer i nteracti on 
problem(12,13,14) would be especially suitable for such studies. For 
inviscid computations, singularity length scales must be an input parameter. 

The error norms of equations 3.2.3.1-4, 3.2.3.1-6, 3.2.3.4-1, and 3.2.3.4-3 
have a parameter whi ch must be set to zero in the nei ghborhood of the 
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singularity regions. The purpose of this parameter is to allow the local 
truncation error to be large relative to the smooth parts of the flow field. 
The detection of these regions is essential. How this can be accomplished is 
a key problem for future work. 

Ideas for detecting these regions can be drawn from mathematical and physical 
features of singularities. For example, shock waves have associated jump 
conditions which characterlze the upstream and downstream states in the 
inviscid flow. As the grid refinement process develops, periodic checks can 
be made for the cells that have large second derlvatives of these dependent 
variables. Empirical tuning will probably be necessary to define the amount 
of guard mesh around the steep gradient regions that is necessary for limiting 
the grid refinement process. 
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6.0 CONCLUSIONS 

An initial exploratory investigation has been completed toward the development 
of error nonns for use as resolution monltors, multi-level adaptlVe grid 
techniques, and residual error control efficiency for the numerical solution 
of the PDE's of fluid mechanics. Key results are that multi-grld schemes are 
promi si ng as a basi s for devel opi ng sol uti on resol uti on moni tors, adapti ve 
grld techniques, and lmproved resldual error control efflclency. ThlS work 
suggests that multi-grid technology is conceptually straightforward to apply 
to conventlonal elliptic equatlon computer codes. Further work is requlred to 

develop convenient error norms for the local error quantities to guide 
adaptive mesh adjustment with efflcient resldual error control. 
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7.0 RECOMMENDATIONS 

Various research codes can now be written, based on this initial study, to use 

as vehicles to develop the technology further towards the ultimate goal of 

(semi-)automatic numerical error control in solving the compressible, 

rotational viscous 3-D equations of fluid flow. Reliable numerical error 

monitors for residual and truncation error assessment with efficient control 

methods in conjunction with nested, composite grids should be addressed. The 

following research codes are recommended, with the speciflc study items listed 

for each of the codes that examine the utility of E1, E2, EMax ' ET, 

ER, ERT , TMax and RMax • 

3-D Mult;grid Potential Code 

A three-dimensional multi-grid code, modeling the full potential equation for 

shockless and shock containing flows, is needed as a test bed for studying 

error norms that relate the maximum global error to the integrals of the local 

multigrid truncation error estimates. With this code, items can be studied 

such as: 

a. Correlation of the maXlmum global error .wlth different residual 

tolerances 

b. Convergence cri teri a for resi dual tol erance based on maximum local 

truncation error estimates at each grid level or the finest grid 

level 

c. Exam; ne ways to best i ncl ude steep grad; ent regi ons in error norm 

computations. 

1-0 Multi-Grid Euler Code 

A one-dimensional multi-grid code, modeling the Euler equations for 

analytically generated channel shapes is needed to study shockless and shock 

containing flows to develop technology features, such as: 

a. The residual control efficiency as affected by the choice of 

relaxation schemes 
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b. The inherent behavior of schemes to remove the acoustlC stlffness as 

a stability constraint or modifications needed to achieve the 
infinlte speed of sound in low Mach number flow reglons 

c. Error norm candidates based on lntegrals of the local truncation 
error estimate and their relatlonship to the maXlmum global error 

d. The inherent capability of multi-grid schemes to remove diffusive 
stiffness from the stability constralnts on flne grld levels 

e. Examine approaches to the treatment of steep gradient regions in the 
error norm computations. 

2-D Multi-Grid Euler/Navier-Stokes Code 
A twa-dimensional multi-grld code, modellng the Euler and Navier-Stokes 
equations for shockless and shock containing flows is needed to begin applying 
the technology features of error control multi-grld schemes to selected 
problems such as laminar boundary layer and shock/boundary-layer interactlons 
on a flat plate. 

Adaptive Embedded Multi-Grid Technology 
The above studies with the various research codes wlll examine crlteria for 
the local mul ti -gri d truncati on error estimates that can be uti 1 i zed for 
labeling cells in which grid nesting is necessary. Recommendations can then 
be made for work tasks to further develop adaptive grid embeddlng in the 1-0 
Potential, Euler and Navier-Stokes codes and simllarly for the 2-D and 3-D 
codes. The design of each of the recommended computer codes should be carried 
out with the goal of flexible grld nestlng capablllty given top prlorlty. 
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