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EXTENDING THE FREQUENCY OF RESPONSE OF LIGHTLY DAMPED SECOND 

ORDER SYSTEMS: APPLICATION TO THE DRAG FORCE ANEMOMETER 

Gustave C. Fralick 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio 44135 

SUMMARY 

It is shown in this paper that a conventional electronic frequency com­
pensator does not provide adequate compensation near the resonant frequency 
of a lightly damped second order system, such as the drag force anemometer. 
The reason for this is discussed, and a simple circuit modification is pre­
sented which overcomes the difficulty. The improvement is shown in theore­
tical frequency response curves as well as in the experimental results from 
some typical drag force anemometers. 

INTRODUCTION 

The use of electrical or electronic means to extend the frequency re­
sponse of a transducer is not new. For instance, passive electrical net­
works have long been used to improve the response of thermocouples (ref. 1), 
and a frequency compensation is a practical necessity in hot wire anemometry, 
raising the useful frequency range from a few hundred Hz to nearly 100 kHz. 

A similar situation has arisen in the application of the drag force ane­
mometer (ref. 2), which is a probe that is used to measure either velocity 
head or flow angle in moving fluids. Because of the design of the device, 
which is described in greater detail in the next section, it has inherently 
200d frequency response. Some designs have a natural frequency as high as 
43 kHz, but there arise situations such as flow monitoring in jet engines, 
where frequencies as high as 100 kHz are of interest. This paper describes 
the problems encountered in applying a frequency compensator to the drag 
force anemometer, describes the remedy, and describes the results of using a 
modified compensator on sample drag force anemometers. 

By way of background, the paper begins with a brief description of the 
drag force anemometer and then a brief discussion of second order systems in 
general. Next, electronic frequency compensation is discussed along with 
the problems encountered in applying compensation to the drag force anemome­
ter. It is then shown that the problem may be overcome by means of a simple 
change in the compensator circuit. Both calculated and experimental results 
are presented which show the improvement. The detailed mathematics are 
given in an appendix. 

DESCRIPTION OF THE DRAG FORCE ANEMOMETER 

The drag force anemometer has found application in many different flow 
measurement areas. Some of the applications are described in reference 2. 



The drag force anemometer is a cantilever beam, with strain gauges 
mounted near the base. When the free end of the beam is exposed to a moving 
fluid, the fluid exerts a drag force F(t) on the beam. If the beam orien­
tation is approximately normal to the flow, F(t) is proportional to the 
velocity head of the moving fluid. If the beam is oriented so that the flow 
is roughly parallel to the beam, F(t) is proportional to the product of the 
velocity head and flow angle (see figure 1). Thus, in one probe, one has a 
tool for measuring both velocity head and flow angle. 

The drag force exerted by the fluid on the beam causes a strain in the 
beam and a resistance change in the strain gauges. This ~s turned into an 
electrical signal x(t) by the associated electronics. 

It is shown in reference 2 that the dynamic response of the anemometer 
is described by the equation. 

•• 2 
x/w + 2 c x/w + x = K F(t) n n 

(1) 

The parameter fn = wn/2~ is the natural frequency, c is the damping 
coefficient, and K is a proportionality constant. 

If fn is large compared to any frequency in the flow, the first two 
terms in equation (1) may be omitted, and equation (1) reduces to x = KF(t); 
that is, x(t) is directly proportional to F(t) and the output is an accu­
rate representation of the dynamic velocity head (or product of velocity head 
and flow angle, as explained above). Hence, one way to improve the frequency 
response is to increase the natural frequency. The natural frequency can be 
increased by making the beam of a high specific stiffness material such as 
silicon or alumina, instead of a material like stainless steel, whose speci­
fic stiffness is lower. The natural frequency can also be increased by mak­
ing the beam shorter and thicker, but this reduces sensitivity. 

The drag force anemometer shown in figure 2 has a beam made of silicon 
and a natural frequency of 42.8 kHz. This is the highest natural frequency 
of any of the beams built at the Lewis Research Center. 

DYNAMIC BEHAVIOR OF SECOND ORDER SYSTEMS 

The frequency response of the drag force anemometer and other second 
order systems (i.e., systems described by linear second order differential 
equations such as eq. (1)) may be examined by letting the driving function 
KF(t) = ~o sin wt, with ~o constant. With this function on the right side 
of equation (1), the solution x(t) is 

x(t) = A sin wt + B cos wt = R(w) sin [wt - ~(w)J 

R(w) =,; A2 + 82 , tan [~(w)J = BfA 
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A( w) = 6' 
o 

The amplitude R and phase shift ~ are 

~-~) 
2 

R(w) ~ + 4 2 w = r;--z 0 w n 

-1 [2 :n/ (1 -~) 1 ~ (w) = tan r; 

(2) 

(3) 

The amplitude response defined as 20 log Rlgo and ~ are plotted in 
figures 3 and 4 for the case fn = 1300 Hz and r; = 0.024. These values are 
for a drag force anemometer similar to the one in figure 2, except that the 
beam is slightly longer and made of stainless steel rather than silicon. 

The figures for different damping coefficients would be essentially the 
same, with the peak near fn being higher and sharper for smaller values 
of r;; such figures are widely available throughout the technical literature. 

These figures show that the amplitude response and ~ are strongly 
dependent on frequency above flfn = 0.2. In fact, for this example, the am­
plitude increase is about 4 percent (0.4 dB) at f = 0.2 fn and is about 10 
percent (0.8 dB) at f = 0.3 f n. If no correction is made, these changes 
become measurement errors, in addition to any other system errors present. 
They are an inherent characteristic of second order systems. 

Even if higher frequencies are not of interest in the measurement, there 
may be frequency components in the flow that can excite a drag force anemo­
meter beam to resonance. The result is a signal in which the low frequency 
information is obscured by large amplitude oscillations at the natural 
frequency. 

COMPENSATION: PRINCIPLES OF OPERATION 

Since the problem with using the drag force anemometer to make dynamic 
flow measurements is that the amplitude response and phase vary with fre­
quency, a solution would be to feed the signal into a device (amplifier) 
whose gain and phase shift varied with frequency in a manner exactly the 
inverse of the way they vary in the anemometer. The large increase in ampli­
tude response near the natural frequency would be attenuated, but for higher 
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frequencies the gain would increase, making up for the decreasing sensitivity 
of the anemometer. 

This is what happens in the compensator, but instead of viewing it as a 
device whose gain varies with frequency, it is easier to understand the prin­
ciple of operation by considering what it does to the signal it gets from 
the anemometer. As is shown in figure 5, the anemomet~r output x(t) is 
fed into the compensator which electronically performs; on x(t) all of 
the mathematical operations indicated in equation (1). The ideal differen­
tiators introduce a phase shift of 90

0 

at the output of the first differen­
tiator and a phase shift of 180

0 

at the output of the second differentiator, 
both referred to the input. This compensation completely eliminates the 
peak centered at f = fn shown in figure 3. The output is KF(t), which 
is the desired signal. This topic is discussed more fully in reference 3. 

COMPENSATION: SOME PRACTICAL CONSIDERATIONS 

Since real circuits and real signals are not ideal but always have noise 
associated with them, some practical considerations arise in the application 
of compensators. One consideration is that it is not possible to extend the 
frequency range indefinitely. As the sensitivity of the anemometer continues 
to drop, a point will be reached where the signal from the anemometer will be 
buried in the noise at that frequency and the compensator will not distin­
guish between them. Another consideration is that because of the differen­
tiators it contains, a compensator tends to act as a noise source in its own 
right. As is explained in reference 4, the gain of a differentiator in­
creases linearly with frequency, so it amplifies any high-frequency noise. 

A standard operational amplifier differentiator circuit is shown in fig­
ure 6(a}. In order to reduce the noise, the circuit must be modified so 
that the gain does not continue to increase with frequency. The usual modi­
fication is to add a small resistor in series with the input capacitor, and 
to add a small feedback capacitor. The modified circuit is shown in figure 
6(b). These changes reduce the gain at high frequencies, but permit approx­
imate differentiation at lower frequencies. All the compensators discussed 
in this report, whether called "conventional" or "modified", are assumed to 
be built with modified differentiators. 

A compensator built using the modified differentiators shown in figure 
6(b) had a peak-to-peak noise of about 5 mV (0 to 100 kHz) with the input 
shorted. This is acceptable in most applications of the drag force anemo­
meter. 

ADDITIONAL CONSIDERATIONS FOR SYSTEMS WITH LOW DAMPING 

Because of the modifications required in the differentiators, their out­
put is no longer exactly proportional to the derivative of the input; there 
is now a small error. When these modified differentiators are incorporated 
into a compensator, there is also an overall compensator error. The error 
is most important for frequencies near fn, and the size of the error is 
related to the size of the damping coefficient. 

The example plotted in figure 7 shows that if the damping coefficient is 
not too small, the conventional compensator of figure 5 is able to achieve 
adequate compensation by maintaining the amplitude response flat to within 
1 dB for frequencies out to about two and one-half times f n• Note that 
unlike the results obtained with perfect differentiators, the peak is not 
completely eliminated since cancellation occurs only at fn and not over 
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the entire frequency range. Figure 8, however, shows that for a system with 
a smaller damping coefficient the conventional circuit (with modified dif­
ferentiators) is unable to provide adequate compensation due primarily to an 
inability to achieve cancellation at f = f n. 

Fortunately, it turns out that just by removing the inverter from the 
circuit of figure 5, the cancellation at fn can be restored. The details 
are in appendix B, but the idea can be discussed briefly here. 

To see what causes the problem, suppose that the compensator input is 
el = sI sin wt. Let the output of the first differentiator be e2 and the 
output of the second be e3, and let the damping adjustment be set at 2k. 

With a compensator input el = sI sin wt, equation (BI0) of appendix B 
gives for e2 

(4) 

and equation (Bll) of appendix B gives for e3 

2 2 
e3 = _.w~ sin (wt - 2a) = .ww2 sin [wt - (IT + 2a)j (5) 

wn wn 

A perfect differentiator introduces a phase shift of IT/2 between its input and 
output, so that a is a small additional phase shift due to the noise reduction 
circuitry. For a perfect differentiator, a = O. 

The output of the compensator of figure 5 is eE = el - 2 ke2 + e3. 
Since ~ is small, cos ~ = 1, sin ~ = a, and 

2k ~ cos wt 
wn 

2 
+ 2 k a ~sI· sin wt + 2 a~w2 cos wt (6) 

wn w 
n 

Without the noise reduction modifications on the differentiators, the last 
two terms in equation (6) are not present, since e = O. At f = fn, the 
first term vanishes, and if k = ~, the damping coefficient of the anemo­
meter, eE = 21; sI cos wn t. Th is is what the compensator output shoul d be 
for an input ~ sin w t. 

Now consider the ~ast two terms in equation (6), the error terms. Ordi­
narily k .. e, which is small. The phase error a is also small, so that 
the first error term, which contains the product el;, can be ig~ored. It 
is the second error term which predominates. For w = Wn, el: .. 2~(k + a) 
cos wt. As long as I; > a, which occurs for moderately high damping, the 
value of k can be adjusted so that k + a = ~, and the compensator has the 
correct output 2.we cos wnt at f n. For the compensator built at the Lewis 
Research Center, the value of a at w = wn is about 0.1 while the typical 
drag force anemometer has a damping coefficient which does not exceed about 
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0.03. In this case t < e so k must be negative to have k + e = t. 
This is accomplished merely by removing the inverter from the circuit of 
figure 5. The exact value for the minimum damping coefficient which can be 
accommodated without removing the inverter depends on the values of the 
extra resistor and capacitor added to the differentiator to reduce the gain 
at high frequencies and on the natural frequency of the anemometer. An 
exact formula is given in appendix B. 

The above discussion indicates that it is only necessary to adjust the 
damping control, but the more elaborate analysis of appendix B shows that 
both the amplitude and phase must be considered and that the natural fre­
quency control must also be adjusted slightly. Nevertheless, the basic idea 
is to use a small amount of the signal from the first differentiator to can­
cel the overall phase error which results from using the modified differen­
tiators. 

RESULTS 

The results discussed in this section are both computed and experimental, 
and are based on the compensator circuit shown in figure 9. For the theore­
tical curves, the settings of the natural frequency and damping controls 
were determined as explained in the example in appendix B. A spectrum analy­
zer was used to obtain these settings for the experimental curves. The con­
trols were adjusted by eye to give the smoothest curve on the spectrum analy­
zer in the region of the natural frequency while the beam was excited by flow 
from an open jet with turbulence frequency components extending beyond f n• 

The first of the computed results (fig. 10) can be compared to figure 8 
to see the results of removing the inverter. The improvement 'in suppressing 
the large increase in gain for frequencies near fn is apparent. 

The next two figures (figs. 11 and 12) are the computed and experimental 
results for a drag force anemometer with fn = 1300 Hz and ,= 0.024. To 
obtain figure 12, the beam was excited by the turbulence in the flow in a 
half-inch diameter free jet. 

The calculated frequency response for a high frequency anemometer is 
shown in figure 13. It has a natural frequency of 42.8 kHz and damping coef­
ficient of 0.007. The transient response of this anemometer was also mea­
sured by placing it in front of a shock tube, as shown in figure 14. Figure 
15 shows the output of this anemometer with no compensator in the circuit. 
The characteristic ringing is quite evident. The next figure (fig. 16) shows 
the results when the compensator is added to the circuit. The ringing is 
suppressed and the shock profile can be seen much more clearly. 

The last figure is the shock profile measured with an infinite line pres­
sure probe, which has no characteristic natural frequency, and frequency 
response which is estimated to be flat out to the 50 to 100 kHz region. 

CONCLUDING REMARKS 

This paper has discussed the electronic frequency compensation of second 
order systems, particularly those such as the drag force anemometer which 
have small damping coefficients. 

The electronic frequency compensator has two differentiators which must 
be modified to reduce their high frequency gain. It was shown in this re­
port that because of these modifications, lightly damped systems are not as 
adequately compensated near their natural frequencies as they might be. 
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A simple circuit modification, that of removing the inverter from the 
conventional circuit, was shown to improve the compensation near f n .. 
Numerical calculations, consisting of computer generated frequency response 
curves, and some experimental frequency response and some transient response 
curves were presented showing that adequate compensation can be achieved in 
practice. 
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APPENDIX 8 

It is shown in this appendix that it is possible to achieve acceptable 
amplitude compensation of second order system even while using differen­
tiators modified to reduce their gain at high frequencies, so that circuit 
stability is increased and noise is reduced. What shall be done is to assume 
an input into the sensor which is to be compensated, and then examine the 
overall response of the sensor and compensator. 

It is convenient to take the input to be of the form Po sin wt. In the 
case of the drag force anemometer, Po is the amplitude of the variation in 
velocity head. The output x(t) of the anemometer is related to the input 
by the differential equation 

.. 2· 
A.r + -" x + x = KP sin wt = C sin wt 

Co wn 0 0 
wn 

The two parameters which characterize the second order system are the 
natural frequency fn = wn/2n and the damping coefficient ". Equa­
tion (81) has solution 

(Bl) 

x(t) = A sin wt + 8 cos wt = fA~ + 82 sin (wto - cp), cp = -tan -II (82) 

In terms of amplitude and phase, 

9 

2 
4 2 w 
"z w 

n 

2 
+ 4 2 w 

"2 w 
n 

(83) 

(84) 



In order to reduce the noise associated with the differentiators, they 
are modified as shown in figure 6. If el is the input to the modified 
differentiator, and e2 is the output, it is shown in reference 3 that 
el and e2 are related by 

In equation (85), P 

p 

d 
stands for dt' w1 

1 
for R C' wf 1 1 

1 
for R C' 

f f 
1 and Wc for R C . In our case, e1, which is the input to the first 

f 1 

(85) 

differentiator, is the output from the drag force anemometer, x(t) = A sin 
wt + 8 cos wt. Then (85) yields a differential equation for e2, which is 

w d [ e = - --~ A sin wt + 8 cos wt] 
2 Wc ut 

= - ~ [A cos wt - 8 sin wt] (86) 
Wc 

Equation (86) is solved by letting e2 = C sin wt + 
solving for C and 0, which satisfy the algebraic 

(. 
2 ) C 1 w 

w1 wf 

+ 0 

Using this solution, 

e
2 "- (1 + :D (1 + ~ ) 

o cos wt 
equations 

and then 

( 87) 

sin wt 

+ [A (1 - w~2Wf) + B (:1 <f)] cos W} (B8) 
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This may be more compactly written as 

I 

""A2 + B2 e2 = - y. 
w/w 

C -------- cos 

~~A~· V - wiV - w~ 

(wt - ~ ), 

I 

tan ~ = tan [(~l + ~f) + ~] - tan (~ + ~) 

In equation (B9), 

tan ef 

The phase shift ~ due to the drag force anemometer is -tan- l B/A 
as in equation (B4). 

With these definitions, 

e2 = -~ :c cos ~l cos ~f cos [(wt - ~) - e] 

(89) 

= -~ ~ cos el cos ef sin [(wt - ~) - (Z + e)] (BlO) V·' - wc . 

The output of the first differentiator, e2, is the input of the se­
cond, whose output is called e3. Using (BlO), e3 is easily written 
down; it is 

B2 
2 

e3 = ~A2 + 
w 2 2 sin [( wt - cp) - 2 (Z + e)] -Z cos el cos ~f 
w c 

f 2 2 2 2 = - cos2 ~f sin [(wt - cp) - 2 e] ( 811) A + B ~ cos el 
Wc 
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The output of the compensator is called eEo As shown in figure 5, if 
the inverter has been removed and k is the setting of the damping adjust­
ment 
e

E 
= e1 + 2 k e2 + e3 

( B12) 

where 
2 

T 1 2 k ill • III 2 2 2 1 = - - cos B1 cos Bf Sln B- 2 cos B1 cos Bf cos B 
IIlc IIlc 

(B13) 

. 2 
III III 2 2 

T2 = - 2 k ;- cos 91 cosf cos 9 + -z cos 9 1 cos 9 f sin 2 e 
c IIlc 

Using the identities \!A2 + B2 sin (lilt - ~) = A sin lilt + B cos lilt and 

"A2 
+ 62 cos (rot - ~) = A cos rot - B sin lilt, equation (B12) can be 

written 

where 
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-tan cP + tan CPE 

= I + tan cP tan CPE = tan (CPE - cp) (B14) 

fhe amplitude is the product of the amplitudes due to the sensor 

( VA 2 
+ 8

2
) and the compens a tor (YTi + T~) and the tota 1 phase sh i f t 

CPTis the sum of the two phase shifts, cP due to the sensor and CPE due to 

the compensator. 

Now the purpose of the compensator is to undo the effect of the probe so 
that the output of the compensator is equal to the input to the anemometer; 
that is, eE = ~ 0 sin wt for all w. Unfortunately, perfect compensation 
with this circuit is not possible for all w. Choosing the match at w = Wn, 
however, turns out to be a good choice, since it results in excellent ampli­
tude compensation to well beyond Wn. At w = wn, then, equation (814) 
gives 

= a 

At w = Wn, A = a and 8 = - rff 0/2 1;, so equations (813) and (815) 
give 

(815) 

(816) 

The subscript n means that the quantity is evaluated at the natural 
frequency. 

The solution of (816) for wn/wc and 2k is 
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( B17) 

sin 2 en - 2 ~ cos 2 en 
2 k = ----------

cos -en ,p + 2 ~ tan -en 

These are the settings required for the natural frequency and damping coef­
ficient controls to give exact compensation at W = wo. Note that if perfect 
differentiators had been used, the equations (B17) reduce to wn/wc = 1 and 
2 k = - 2 ~, since then en = O. The result wn/wc = 1 means that the na­
tural frequency control is set at fn' and the result 2 k = - 2 ~ means 
that the damping coefficient control is set at ~. The minus sign means 
that the inverter is in the circuit. 

The second of equations (B17) provides a means of distinguishing between 
"high" and "low" damping. If the numerator is positive (~ < 1/2 tan 2 en), 
the inverter is not in the circuit and this is the low damping case. On the 
other hand, if the numerator is negative (~ > 1/2 tan 2 -en), the inverter is 
required and this is the high damping case. 

The value of ~ which establishes the boundary between the high and low 
damping cases depends on the values of the extra resistor and capacitor added 
to the differentiator circuits to reduce high frequency noise and on the na­
tural frequency of the anemometer. This value of ~ is about 0.105 for 
fn = 1300 and is about 0.18 for fn = 42.8 kHz for the circuit shown in 
figure 9. 

The compensator schematic is shown in figure 9. It has R1 = 505 0, 
C1 = 510 pF and Cf = 51 pF. These values were chosen in accord with 
acceptable practice (ref. 5). The value of Rf varies from 0 to 50 ko 
to give the desired value for w~. (Fixed 250 kn resistors were added 
to allow for an fn of 1300 Hz.) 

Since the formula in (B17) for wn/wc implicitly involves wn/wc 
on the right side also, for example, through 

( 

2 )1/2 [ 2]1/2 
cos ~fn " 1 + ~ "l + (:: :;) 

it is still necessary to solve for wn/w. This can be done algebrai­
cally but the result is a complicated cuBic equation, so it is easier to 
solve by iteration. The form 

:> Hl + 2 z tan (tan-l :; + tan-l[:: :~)] t <;] ~ +~c:/:J]} 1/2 

( (318) 
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converges to ten places after about six iterations, starting with wQ/wc = 1. 
For the example under consideration~ wn/wl = 2~fn RICI = (2~ x 1300) 
x (505 x 510 x 10-12 ) = 2.104 x 10- j and wc/wf = RfCf/RfCI = Cf/C~ = 0.1. 
For this case, wn/wc = 1.008. Once w9/wc has been found, 2 k 1S deter 
mined from the second of equations (81). For this example, 2 k = 0.1568. 
Having found wn/wc and 2 k, Tl and T2 are obtained from (813). This is 
sufficient to calculate the overall response, as is done in figure 10. 
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Figure 8. - Calculated output frequency response for uncompensated 
and conventionally compensated second order system (natural fre­
Quency· 1300 Hz, damping coefficient· 0. 04) compensator controls 
set for minimum output at peak cI second order system. 
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Figure 9. - Compensator circuit 
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Figure 10. - Calculated output frequency response for uncompensated 
and compensated (with modified design compensator) second order 
system (natural frequency' 1300 Hz, damping coefficient· 0.04) 
compensator controls set for zero output at peak ct second order 
system. 
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Figure 11. - Computed output frequtncy response for compensated (with 
modified design compensator) arid uncompensated second order system 
(natural frequency· 1300 Hz. dalllping coefficient· 0. (24) compensa­
tor controls set for zero output at peak of second order system. 
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Figure 12. - Measured frequency response for compensated 
(with modified design compensator) and uncompensated 
second order system (natural frequency· 1300 Hz. damp­
ing coefficient· 0. (24) compensator controls set for zero 
output at peak of second order system. 
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Figure 13. - Computed output frequency response for compensated (with modified design compensator) and 

uncompensated second order system (natural frequency' 42.8 kHz, damping coefficient· 0. 0071 compen­
sator controls set for zero output at peak of second order system. 
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Figure 14. - Location of drag force anemometer in front of shock tube. 
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Figure 16. - Transient response of compensated (with 
modified design compensator) to shock wave. 
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probe to shock wave. 
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