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ABSTRACT

In this report, the ability of a spaceborne synthetic-aperture
radar (SAR) to detect soil moisture is evaluated by means of a com-
puter simulation technique. The computer simulation package includes
coherent processing of the SAR data using a range-sequential proces-
sor, which can be set up throuéh hardware implementations, thereby |
reducing the amount of telemetry involved. With such a processing
approach, it is possible to monitor the earth's surface on a contin-
uous basis, since data-storage féquirements can be easily met through
the use of currently available technology.

The development of the simulation package is described first,
followed by an examination of the application of the technique to
actual environmepts. The results indicate that in estimating soil-
moisture content with a four-look processor, the difference between
the aséumed and”estimated Vé1ués of soil moisture is within x20% of
field capacity for 62% of the pixels for agricultural terrain and for
53% of the pixels for hilly terrain. The estimation accuracy for
soil moisture may be improved by reducing the effect of fading through

noncoherent averaging.
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1.0 INTRODUCTION

Although the synthetic aperture radar (SAR) that was carried
aboard Seasat-A in 1978 was configured as an ocean-monitoring sensor,
the images of land surfaces it produced have provided valuable infor-
soil-moisture detectiqn. The Seasat-A SAR results, together with those
recently obtained from Shuttle SAR imagery, have generated momentum in
the remote sensing community for incredsed support and emphasis on the
utilization of imaging radar for earth observations.

One of the applications for which radar imagery is particularly
suitable is soil moisture mapping. The availability of information
concerning the temporal and spatial variations of soil moisture can _
be extremely valuable for hydrologic, agricultural, and meteorological
applications. The radar response to soil moisture has been investigated
in several studies over the past decade and.optimum sensor parameters
have been defined (Ulaby et al., 1978, 1979; Dobson and Ulaby, 1981).
The results of these studies are based on experimental measurements
conducted from truck-mounted and airborne platforms. To examine the
performance of a space-SAR soil-moisture sensor, a computer simulation
study was conducted using data from a test site containing an agricul-
tural floodplain as well as hilly terrain (Ulaby et al., 1981). A soil
moisture simulation study also was conducted by Meier (1981) for a
real-aperture radar (RAR).

In the previous SAR simulations (Ulaby et al., 1981), the spatial
resolution and the number of looks were specified and variations due to

signal fading were computed based on Rayleigh statistics. However, the



effects of the synthesized aperture were not taken into account. This
report examines sidelobe effects as viewed by computer simulation of

a SAR using a range-sequential processor. This type of processor,
which was chosen because of its capability to process data aboard a
satellite (thereby reéucing the amount of telemetry needed), was

proposed by Moore et al. (1977) for mapping different types of sea ice.

2.0 SAR MODEL

2.1 General Description

SARs may be djvided into different classes on the basis of the
scheme used to process successive echoes. These differences pertain
to only the azimuth (along-track) resolution. | )

Among the various SAR-processing schemes, we have adopted a
range-sequential approach (Moore et al., 1977) in order to simulate
SAR procéssing because of its potential to reduce the amount of telemetry
data, which may be an advantage'for the continuous monitoring‘of soil
moisture by a spaceborne SAR since, in the range-sequential processor,
coherent processing of the echoes is accomplished in real time by means
of analog circuitry onboard the satellite. In almost all of the other
approaches, coherent processing is done after collecting and storing
the echoes, which may require large amounts of computer-processing time.

The following descriptioh of the range-sequential processor is
based on a report by Moore et al. (1977). Figure 1 shows a block
diagram of a comb-filter, which is a key element in the makeup of the
range-sequential processor. In the figure, Tp refers to the amount
of time delay which is chosen to be the same as the interpulse period.

The interpulse period must be an integer number of cycles at the carrier

frequency.



Fig. 1;"Imp1ementation of the comb-filter.



In the first stage, switch S1 is closed and 52,15 open. After the first
echo passes through the delay element, the signal is fed back toward |
the input of the delay element. Since the amount of delay is exactly
the same as the interpulse period and the interpulse period is an
integer number of cycles at the carrier frequency, the delayed signal
is added in phase to the second echo. The summed signal again passes
through the delay element and is added to the third echo and so on.
This in-phase addition, which corrésponds to the coherent along-track
processing, can be done along the across-track direction before range
sampling -- thus the name "range sequential processor." After the
addition of the necessary number of echoes, S1 is opened and 52 is
closed to allow the output of the comb-filter to be processed. The -
output of the filter consists of processed images of the target in the
along-track direction and in the rénge—seqUentia1 manner. By sampling
the output with an appropriate range interval, we can obtain the images
of the target in the across-track direction. The feedback gain g in
the figure can taper with aperture distribution along the synthesiied
array to control the sidelobe level and the beamwidth. In the present
study, however, no aperture taper is introduced because of the complexity
of calibrating a SAR as a scatterometer. A relatively high sidelobe
level may, therefore, degrade the SAR's capability for fine-resolution along-
track mapping of the target.

To use the comb-filter as é SAR processor, a bank of fi]ters is
necessary to map the target two-dimensionally. The discrimination of
the target in the along-track directfon is made by using the difference

in the Doppler frequency. The Doppler frequency shifts of targets at



different locations, for a sidelooking radar are illustrated in Fig. 2.
Each trace represents the history of the Doppler shift for a target
located at a different position along the spacecraft's trajectory. By
applying an appropriate phase correction to the radar echo to eliminate
the phase rotation due to the Doppler shift, the history of each target
echo represented by a solid Tine in Fig. 2 is translated into a constant
frequency bias as shown in Fig. 3. Appropriate conversions of frequency
allow us to extract the specific frequency component that corresponds

to the image of the specific target produced by the comb-filter.

For the following simulations, the SAR is assumed to have the form
shown in Fig. 4 1in order to map the target area two-dimensionally. The
Doppler frequency shift is compensated for by the sweep oscillator in the
figure. After that, the echo from each particular target has a constant
frequency deviation from the radar frequency. Signals from the offset
frequency synthesizer are applied to each echo to extract the specific

frequency component by the band of comb-filter.

2.2 Design of the SAR for Simulation

For computer simulations, some parameters of the SARvmust be
determined by referring to the aim of the work; Since the final goal
of the present study is to evaluate the ability of a SAR to detect soil
moisture, the frequency of the radar should be chosen to be between
4 GHz and 5 GHz as recommended by Ulaby et atl. (1981). For ease of
comparison with the previous simulation results and due to the availability
of experimental data relating the backscattering coefficient and the

soil moisture, the frequency chosen is 4.75 GHz with horizontal polarization
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for transmission and reception. As stated later, the target area is
very small (1.8 km x 1.8 km), therefore, for simp1ici£y of treatment,
the earth is assumed to be flat. HoweVer, considerations for determining
the parameters of the SAR are also made for the earth as a sphere in
terms of actual appf?éation.
For a SAR being carried by a spacecraft at an altitude of 600 km,
the s1ant-sWathw1dth is 38.5 km for the range.of incidence-angle
between 7 degrees and 22 degrees as shown in Fig. 5 (Ulaby et al., 1981).
The pulse-repetition frequency fp must be chosen so that the echoes

from the swathwidth do not overlap each other for two successive

pulses. Therefore,

fé < C/2R = 3896.1 (Hz), (1)

where ¢ is the velocity of light and RS is the slant swathwidth.

Additionally, f_ must satisfy the following equation to obtain

p , _
the Doppler frequency-shift components that are necessary for a range

sequential processor:

fo 24Uk, (2)

where u is the speed of the spacecraft carrying the SAR and L is the
antenna length of the SAR along its direction of motion. The speed
of the spacecraft, at an altitude of 600 km, is calculated to be

7545 m/sec and the antenna length is chosen as 8.7 m, in accordance

with the previous work, so that Eq. 2 becomes,

f, 2 3469.0 (Hz). (3)
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Fig. 5. Geometry of a side-looking radar at an altitude

of 600 km for a spherical earth (after Ulaby
et al., 1981).



Since the radar frequency must be an integer multiple of the
pulse-repetition frequency in the range-sequential processor, the pulse-
repetition frequency fp and the radar frequency f were chosen to be
3600 Hz and 4.750002 GHz, respectively.

The maximum obtainable resolution of a SAR with an antenna length
of 8.7 m 15.4.35 m; one ha]fnéf the antenna length, acgording to theory
(Ulaby et al., 1982). However, due to the Timitations of computer
memory and computer time, an along-track resolution for a one-look
processor is assumed to be 36 meters.

The data base to be mapped by the SAR is now assumed to be a
1.8-km x 1.8-km-square area with the angle of incidence to the center
being 7.5 degrees as shown in Fig. 6. The length from the SAR to thé
data-base center R is 605.177 km.

The length of the synthetic aperture La and the resolution in

P

the along-track direction r_ are related apprbximate]y as follows:

a

L. = -2, (4)

where X is the wavelength of the radar frequency. By substituting
R0 = 605.177 km, A = 6.316 cm, and ry = 36 m, the Tength of the synthetic

aperture needed to realize a 36-meter resolution can .be calculated as

Lap = 1061.7 meters. The necessary -number of pulses.is then obtained
as follows:
fy X Lyp/u + 1 = 508. (5)

10
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In a partially focused SAR, fine along-track resolution can be
achieved by discriminating the target using the differences in Doppler
frequency shifts. As for the range-sequential processor, frequency
offsets are applied to the video signal to shift the spectrum. Then
the appropriate frequency component is extracted by the following
comb-filter. The amount of the Doppler frequency shift, which could
be compensafed for by the frequency offsetting corresponding to the

length of one resolution cell is expressed by,

2ur

2 = 14.2 (Hz) . | (6)
AR

Therefore, coherent-reference oscillators with frequencies différing
by a shift of 14.2 Hz must be used, the number of which is equal
to the number of along-track resolution cells. In the present case,

a 36-meter resolution is assumed for a data-base Tength of 1.8 km, so
that the number of coherent oscillators is 50.

In the partially focused SAR, depth of focus should be considered;
however, it can be ignored in the present case because of the short
swathwidth of the'assumed data base.

It is assumed that the across-track resolution becomes 36 meters
after range sampling. The receiver bandwidth is sufficiently wide for
the transient of the range-sampling signal to die out quickly and not

affect the following samples.



3.0 COMPUTER SIMULATIONS FOR CONTROLLED SCENES

3.1 Brijef Explanation of the Simulations

The simulation program begins with the transmitted pulse.
The pulse-repetition frequency is 3600 Hz and the number of pulses

needed is 508, so that the actual time for mapping the data base is,

(508-1)/3600 = 0.141 (sec). (7)

However, much more time is necessary for computer simulations. The
first pulse is transmitted when the SAR is located at a distance of
-531.3 m from the center coordinate of the data base, and the 508th .
(1ast) pulse is transmitted at 531.3 m from the center coordinate in the
along-track direction as shown in Fig. 7. The echoes from each data-
base cell are calculated for the received power and its phase angle by
accounting for the round-trip distance trave]ed'by the pulses. No phase
rotation is as§umedin the scattering process. The received echoes are
then divided into so-called in—phase’and quadrature components and
accumulated into the appropriate range-bin memory. In the actual
range-sequential processor in which hardware implementations are employed,
range sampling will be made after accumulating the echoes in analog
form. In the computer simulations, however, all data have to bemhandled
in a discrete form, so that range sampling is made first, before the
data accumulations. These calculations are made for each transmitted
pulse across the entire data base. The number of echo calculations per
single transmitted pulse is 50 x 50 = 2500 and the number of transmitted

pulses is 508, so that the total number of echo calculations is 1,270,000.
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~ Fig. 7. SAR dimensions and data base.
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After comp]eting the calculations, the contents of the two-
dimensional computer memory are examined to obtain a two-dimensional
map of the data base. The output of each of the 50 comb-filters provides
a map of a 36-meter-wide strip in the along-track direction, and range
sampling provides a 36-meter resolution in the across-track direction

on the flat surface.

3.2 Flat Earth

At the beginning of the work, a simplified data base is assumed,
in which a square, a triangle, a cross, and a hexagon are included
as shown in Fig. 8. The data base is 1.8 km x 1.8 km, with cells of
36 m x 36 mon a flat earth. There is no elevation variation across-
the data base. The backscattering coefficient ¢® is assumed to be
10 m2/m2 inside the four figures (symbol "a" areas) and O outside them.
For the geometrical relationship between the SAR and the data base,
refer to Figs. 6 and 7. In the simulations, the_distance term in the
radar equation is fiXed at a constant value, since the distances to the
farthest and nearest targets are approximate}y the same and the difference
between them is very small compared with the distances themselves. |
Figure 9 shows the results of simulation for the data base of
Fig. 8. Each number in the figure represents a resolution cell of
36 mx 36 mand its value is the estimated backscattering coeffié%ent
obtained at each resolution cell. The range of the backscattering
coefficients and their numbers are listed in Table 1 to relate them
to each other. In accordance with the assumption, the backscattering
coefficients inside the figures should be 10; however, almost all of the

estimated backscattering coefficients are smaller than 10. This may

15
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TABLE 1

Correspondence Between the Symbols that Appear in
the Simulation Image and the Backscattering Coefficient
in Real Value

Letter or Number Range of Scattering Coefficient
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be the result of coherency between received echoes. In the present
simulation, no illumination taper is applied along the synthetic aperture,
so that the sidelobes are relatively high compared with the usual
antenna-array system. The echoes picked up by these re]atiVe1y high
sidelobes may affect thé coherency between the echoes.

The radiation pattern of the synthetic array is written as follows:

F(s) = Sin(254¢) '
(¢) o (8)
2
with
¢ = g§g sino (9)

where 6 is the angle measured from boresight and d is the distance
between the array elements, which corresponds to the distance the SAR

travels during the one-pulse interval. Therefore d is giVen as,

~

545

d = 3500

|

= 2.096 (m), (10)

w

A is the wavelength of the radar signal and eqUa1 to 6.316 x 10'2 m.
In this case, the first sidelobe peak may occur in the vicinity of
\254¢ = 270 (degrees) and its level is computed to be about -13.5 dB
relative to the mainbeam. By solving Eq. 9, substituting the values
of d and A, and approximating sing = 6, the first sidelobe occurs at

the angle of 8.9 x 10'5

radians from the mainlobe. This means that,
at a distance of 605 km, the first sidelobe points to the location
53.8 meters away from the mainlobe location. The echoes in the first

sidelobe direction are -27 dB relative to those in the mainbeam direction
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because of two-way attenuation. This value can be further reduced
by applying the aperture taper along the synthetic array; howeVer, for
simplicity of the treatment, no aperture taper is adopted in the
present simulations.

Interpretation of the underestimated backscattering coefficients

will be made later.

3.3 Flat Earth with Elevation Variations

In the previous simulation, the data base was assumed to be perfectly
flat, meaning that there are no elevation variations. The effects of
overlay and shadow, therefore, do not appear ih the simulation results.
In the actual environment, however, there are elevation variations, such
as hills, mountains, and valleys, so that it is necessary to develop
a simulation package that can handle a target area having elevation
variations. The modification to the previous simulation package is
to select the appropriate range-bin memory for each echo according to
the distance betWeen the SAR and each of the dafa—Base cells.

Figure 10 shows a distribution of the backscattering coefficients
across the data base to be mapped in the simulation. In the ffgure,

"a" means that the backscattering coefficient is 10 mz/mz. In Fig. 11,
the elevation variations are shown for the data base as it is seen from
above and along the spacecraft trajectory. The height of the hif] and
the depth of the valley are 50 meters and the height of the tower located
at the Very center of the data base is 100 meters.

Computer simulation is made for the data base and the results are
shown in Fig. 12. Again each number represents a 36-m x 36-m resolution

cell and the value refers to the scattering coefficient as listed in
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Fig. 11.
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Table 1. A1l of the SAR parameters are the same as those in the

previous simulation. The incidence angle to the flat earth is

designed to be 7.5 degrees, so that the effect of the shadow of

the image cannot actually be seen except for the tall tower at

the center. Since the slopes of the hill énd the valley are not steeper

than the angle of incidence, there are no shadows in the other regions.
On the other hand, the effect of overlay can be clearly seen in

Fig. 12, which demonstrates the advantage of using the present simu-

lation package. The estimated backscattering coefficients also differ

slightly from the assumed values in the data base of the previous

simulation. The countermeasure against this tendency is discussed in

the next section.

3.4 Calibration of the SAR

In scatterometer measurements, the scattering coefficients are
estimated by solving the radar equation along with the measured
received power. Therefore, calibration of the scatterometer becomes
significant for accurate measurements of the backscattering coef-
ficients. Usually, a kind of lens, or a metallic body having a known
backscattering cross-section is employed for calibrating the scatterometer,

In a SAR, the received power at each resolution cell is obtained by
coherent addition of echoes of a certain number of transmitted pulses, N.
Therefore, the SAR's received power theoretically becomes N times the
received power for one trasmitted pulse. However, some causes, for
example the sidelobe effect, may degrade coherency among the echoes,
which results in the difference between the estimated and the assumed

backscattering coefficients. To establish the relationship between the
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estimated and the assumed backscattering coefficients, these quantities
are compared with each other. These are chosen from among the results
of the simulations described in the previous sections. The regions
upper-right and lower-left corners of Fig. 12.

Figure 13 shows the distributions ofnfhe echo amplitudes at each
resolution cé11 for the specific areas. The upper one is the result
for the square in Fig. 9 and the lower one is that for the upper right-
hand corner in Fig. 12; the number of resolution cells in both examples
is 225, 1In spite of the differences in the conditions of the surrounding
backscattering coefficients, the shapes of the distributions are almost
the same, and the difference in the averaged value is only 0.49 dB. In
Table 2, the averaged values and the standard deviations of the echo
amplitudes obtained by the previous simulations are shown, which are
normalized by the theoretically derived amplitude of the resolution cells.
From the above result, we will adopt a calibration factor of 0.825.
This means that the measured amplitude is smaller than the theoretical
value by an amount of -1.671 dB on the average. Therefore, we must add.
1.671 dB to the simulated amplitude to account for the effect of side-
Tobe and other causes of errors in the computations. It should be noted
that this compensation value is valid only for the present simulations,
and different values may be adopted for SAR simulations with different

parameters.
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TABLE 2

Summary of the Distributions of the Estimated Backscattering
Coefficient Normalized by the Assumed Value

Figure Averaged Number
Target or Backscattering Standard of
Area Location Coefficient Deviation Samples
1 Square 0.804 0.132 225
1 Hexagon 0.824 0.103 165
1 Cross 0.817 0.125 125
1 Triangle 0.807 0.098 113
2 Upper Right 0.851 0.137 225
2 Lower Left 0837 0.176 225
Total Total Number
Average: 0.825 of Samples: 1078
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4.0 COMPUTER SIMULATIONS FOR SOIL MOISTURE ESTIMATION

4.1 General Description

The backscattering coefficients of soil both with and without

vegetation cover vary according to soil water content. This means

hat, by measuring the backscattering coefficient of the soil, one
can estimate its water content. Simulation studies for estimating
soil moisture by means of a SAR (Ulaby et al., 1981) and a SLAR
(Meier, 1981) have been made, the former being based on measure-
ments of backscattering coefficients (Ulaby et al., 1978, 1979;
Dobson et al., 1981). The SAR simulation, however, assumed
a nominal resolution which may be attained by éoherent
processing.

The present section concerns a SAR simulation for soil moisture
estimation in which the coherent processing of echoes is included in
its entirety. The basic concept of the SAR simulation pa;kage is
written and tested as described in the previous chapters, along with

its calibration scheme,

4.2 Data Base

In evaluating the ability of a SAR to estimate soil moisture,
two data bases are extracfed from the large data base constructed
for the previous work, whose test site was located east of Lawrence,
Kansas (Ulaby et al., 1981). One of the data bases represents an
almost flat area, which will be called the "floodplain" hereafter,
and the other is a hilly area called "hilly" hereafter. These areas

are chosen in order to compare the influence of surface elevation on
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the accuracy of the soil moisture estimation. Both of the data bases
again have dimensions of 1.8 km x 1.8 km, with cells of 36 m x 36 m,

so that the number of cells is 2500.

The data base includes surface elevation, target category
(i.e., bare soil, classes of vegetation, or cultural features) and
soil texture. One can_ignore the effect of soil texgﬁre when soil
moisture is expressed by the percent of field capacity, MFC’ where
field capacity is the gravimetric moisture content at 1/3-bar tension.
In the following, therefore, we use only surface-elevation and target-
category data. Figure 14 shows distributions of the target category
across the floodplain and hilly data bases. Each Tetter represents
the 36-m x 36-m cell and the letters S, V, T, W, and A correspond to
the target catedories of bare soil, vegetation-covered soil, trees,
‘water bodies, and artificial objects, respectively. The bare soil
category is divided into three groups according to surface roughness
as shown in Table 3. The vegetation-covered soil is also divided
according to the kind of vegetation present, as shown in Table 4.
The soil moisture can be defined for the above two category groups;
however, for trees, water bodies, and artificial objects, one cannot
define the level of soil moisture. In Table 5, percentages of each
target category are summarized for both data bases. The areas where
soil moisture can be defined are 82.4% for the entire floodplain data
base and 94.8% for the hilly area.

Figure 15 shows elevation distributions across the data bases;
a plus (+) signifies that the elevation is higher than the reference
elevation, and a minus (-) means the e]evatidn is lower. The reference

elevations are 246.9 m (810 ft.) for the floodplain and 265.2 m (870 ft.)
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the floodplain data base.
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Fig. 14(b).
the hilly data base.
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TABLE 3

_ Classification of Bare Soil According
to Surface Roughness .

Smooth 0 < RMS ¢ 2.0 cm
Medium Rough 2.0 cm < RMS height < 4.0 cm
Rough 4.0 cm < RMS height

TABLE 4

Classification of Vegetation-Covered Soil
According to the Type.of Vegetation

Mown Pasture

Pasture

Alfalfa

Wheat

Soybeans (N/S and E/W Rows)

Milo"(N/S and E/W Rows)

Corn (N/S and E/W Rows) _ ‘ -
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TABLE 5
Statistics for Target Categories

Floodplain _—

Data Base Percentage
Rough Bare Soil 2.11
Medium-Rough Bare Soil | 13.80
Smooth Bare Soil 9.30
Pasture ‘ 8.42
"~ Soybeans N/S 1.00
Milo N/S 1.85
Corn E/W 11.23
Corn N/S 23.95
Wheat 10.69
Trees 16.53
River 1.12

Hilly

Data Base Percentage
Rough Bare Soil 0.62
Medium-Rough Bare Soil 2.54
Smooth Bare Soil 1.92
Pasture 5.38
Alfalfa 19.80
Soybeans E/W 3.04
Soybeans N/S 18.34
Milo E/W 3.96
Milo N/S - 19.11
Wheat 15.38
Corn E/W 3.08
Corn N/S 1.61
Trees 0.85
Highway 4.38
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Fig. 15(a). Elevation distribution across the flood-
plain data base.
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Fig. 15 (b). Elevation distribution across the
hi1ly data base.
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for the hilly area at each data-base cell. A zero (0) signifies that
the elevation is simply the reference value described above. It can
be seen clearly that the flat plain dominates the floodplain data base,
especially in the northern half. The mean value and the standard
deviation of elevation vgriations are 247.4 meters (811.8 feet) and
3.6 meters (11.95 feet) for the floodplain data base. For the hilly
data base, they are 265.3 meters (870.5 feet) and 4.8 meters (15.74 feet),
respectively, which indicates that the elevation variation is a little
Targer than it is for the floodplain data base.

In Fig. 16, distributions are shown for the elevation slope with
respect to the surface distance in the‘across—track direction for
both data bases; where a "+" means that the surface slope is toward the
radar and a "-" means it is away from the radar. Zero indicates that
there is no slope. By comparing the figures of the two data bases,

one can again see the difference in the surface-elevation variations.

4.3 Backscattering Coefficients

The backscattering coefficient ¢° is the most significant value
for the radar measurement of soil moisture. It varies with the contents
of water along with the Tocal angle of incidence, which is usually

expressed by the following empirical form:
o _ . .
o = f(ez) + g(ez) x Mec (11)

where ¢° is expressed in dB, f(ez) is the scattering coefficient at zero
soil moisture as a function of local angle of incidence, g(ez) is the
sensitivity of the scattering coefficient to soil moisture as a function

of local angle of incidence, MFC is the 0-5 cm soil moisture expressed
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Fig. 16(a). Distribution of the elevation derivative
in the across-track direction for the
floodplain data base.

37



--+++00000000~---00-~~~~~ 0=~ = =++++++ = =++++00++++00

==t ++00000 === m ==~ Jmvmmmmm e bttt at =+ 000+ 4+ - -
0-++000000-==~=~~ g PR 0= = —ttttttttttt om - Q0++++ -~
-0+000000-==~=- Qemmmmmm 00 == =t++tt+ -tttt e o ettt o
--000000~~=mmmmm——————— 00 == —Ft+tttttttt o e m ettt o=
-=-0000--~t++omenmneane 00-~~F++++++++++00- = =Ft++amn
-=-0000-=~+++0~==-0-====00~ -+++++++++++000 - -++00~ -~
0-0000~=m-tt+tomacman= 000--++0++++++++000~--++000 -~
00-00+----0t+++-em-uu- 00000000+++++0+++0000000000 -~

-0--++----00+00-0~--000000+++++++0++++000000000 - -~
-0--++---00000000 - ~--0000++++++++-++++00000000-- -~
“0-menen 000-+0000-~-~000+++++++++-0++000000000---~
-0-===- 00-=-+++00~~=-000++++00+++ - -++000++--00 -~~~
-=0-===00-=-++++0-~ - -00+++++0++++ - ~++ 0+ 4+~ =0 -~~~
m=0===0= == =++0+0- == 00+++++00++++ - =tttttt e mmem o -
-===0000----00~-~-00000++++00+++++0++++++ - mmcemmem
~---0000----0----00000++++0+++++00++++0- - w == mm ==~
====0000--0-0~=~=0+-00++++0+++++0+++++ = e eun0~=-00-~
«~==00+0-000- -=-0++= =00+ +++0+++++++++ = ===-00---0---

«==00++===00===0++--=Q0++++0++++++++ - o m e 00-«-=- 0-
== =Q0++==~00-=~t++= o O +++ttttttttt o amme e 000---==-
ae=(0++-~-000-=++0- = =0++++ 0+ttt emcm e e 00-==~-
SR g RSP 00+++==~0--~0++++0+++0++++ == -0-~==00-~ <=~
S ) SRR 000+++—<=o=mem +ttttttt+ 0+ ++0-~0-===00--=~=
SRy B 00++++mmmmmmm ++4+ 4+ +4+000+0-00= === 0m = mm e
«ea00====00++++emmmeuc 4 4++4+++++0000000 = m = mm e == - 0
~==000-==0++t+tmcmm ++++00+++++00+0000- -~ = = =~ +++
w000~ -=+++++00-- ===~ +4+++00+++++++++0000=- - - - O++
«=-000-~-++++00-- =~~~ +++++0000+++++++0000-~ - -~ 0++0
e ==000-==+++00= == == = =+++++00000++++++00000~ - - = 0+++
~==000=~-++000--~~-- +++++00+++ = =++++000000 - - - -0+++
-==~0000-+000==~==== +++00+++++ - -+++000000~~ - ~00+++
----000000000~~~~=~~- ++0++++++ -« -++000000~ - - - 0F+++
-===0000---0--~-00~~~++0++++++0~-++000000- - - Ot++++

+---000-~--0--~-0000~0+0++++000--++000000~ -~ ~0+++++
++--000~---00~-000++--00++++0000-++000000~ -~ Q+++++
++--000----000000+++----0+++0000000000000~ - ~++++++
++-=000-===00000++++ = = t+++000++ = = =+ 0 =00 == Ob++++

++-000-==-~ 0000+++++0=«~0+++00+++ o vt e Q= m e et ++44+
++-00-~=== 000+0+++++0- - =+++00+++ = = e+ = == 00 = = = +++++
+tmtt o oo et 0F O+ 00 - - = =+ +H Q0+ = o e b= =00 = ==
UL RS & S § e o | P +4+4+0++++0-=F e =00 = = =+
B e UTTS e 01 o PR +++0++++0-00-=--00~ =~ ~++++
B U 0 o SR S g TS A S o PR S 2
—=QF++ = ~0++++4+00++ 00~ --~- +4++ 0+ ++++ 0=t = == =00~ = ~++++
w e Qb+t = <+ +4+4+000++00 - = === 0+0++++++000-~~-000 ~ ~++++

===+++00++++00000000 -~ - -000++++++0000~---0000+++++
~==+++00++++00000000---000++++++00000=- - --0000++++0
-===+++0+++000000000-- --0+++++00000000~--0000+++++
+=-~+++0+++000000000~ -~~~ ++++000000000 -~ --0000++++

(b)

Fig. 16(b). Distribution of the elevation derivative
in the across-track direction for the
hilly data base.

38



as a percentage of the 1/3-bar water content and o, is the Tocal

angle of incidence. Based on the large amount of experimental data
relating the backscattering coefficients and the soil moisture at
specific angles of incidence, f(eg) and g(ez) were determined
empirically. The data collections were made at the frequencies
between 4.25 GHz and 4.9 GHz with horizontal po]arizations both

for transmission and reception for each target category for which soil
moisture could be defined. The measured data at the angles of incidence
of 0, 10, 20, and 30 degrees as a function of MFC are first sub- ...
mitted to a Tinear least-squares regression to establish the relation-
ship between ¢° and MFC at each angle of incidence. The linear
regression coefficients of the above four angles are then fitted with

third-order polynomials as a function of the angle of incidence to

produce f(8) and g(e). Their forms are given as follows:

[

flo) = fy + 1, 3 4

f, + f, 6+ f, 02+ f, o3 (12)

g(e) = g; + g, 0 + g3 6% + g, 03, (13)
and the coefficients f; (i=1,..,4) and 95 (i =1, .., 4) for each
target category are summarized in Table 6. For farmland having con-
spicuous row structure (soybeans, milo, and corn), determination of
f(s) is made separately, for both parallel and perpendicular radar
Took direction with respect to row structure. The f(e) and g(e) given
here are valid only within the.angﬁ1ar range of 0° to 30°.

The target categories where no water content is defined are trees,

water bodies, and artificial objects. Among them, trees and water

bodies have backscattering coefficients that vary with angle of incidence.

For these targets, the backscattering coefficients are expressed by f(s),
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iy

Coefficients of the Algorithm for Computing the Backscattering “

TABLE:- 6

Coefficient of Bare Soil and Vegetation-Covered Soil

- - Algorithm Coefficients*

Roughness Class fle) g(ex
O f f, | Fx102 [£,x107° | g, |g,x10% | g,x107*|g,x107°
Target Class | Row Direction 2 3 47 1 2" .73 4
|
Bare Soil Smooth - 5,13 | - 1.961 8.59 | - 1.375 0.182] - 0.122| -'0.123 0.287
Medium Rough -11.69 0.512 1.52 | - 0.202 0.137 0.463} - 0.381 0.70
_ Rough -15.09 0.219] - 2.25 | 0.332 0.157| - 0.353 0.191]| - 0.22
Mown Pasture NA - 513 | - 1.961 8.59 | - 1.375 0.182} - 0.122} - 0.123 0.287
Pasture NA - 1.675 3.045f 19.8 - 3.674 0.107 2.522| - 2.523 5.278
Alfalfa NA - 1.675| - 3.045| 19.8 - 3.674} 0.107 2.5221 - 2.523 5.278
Soybeans Parallel -10.00 | - 0.591 2.81 | - 0.509 0.181} - 0.614 0.041 0.228
+Perpendicular -10.00 | - 0.574 3.31 | - 0.676 0.181{ - 0.614 0.041 0.228
Milo Parallel - 9.74 | - 0.311 0.835 0.108 0.124{ - 0.502 0.132| - 0.113
+Perpendicular - 9.74 | - 0.294 1.34 0.275 0.124y - 0.502 0.132{ - 0.113
Corn Parallel - 7.77 | - 0.369| - 0.036 0.133 0.128| - 0.093{ - 0.205 0.607
+Perpendicular - 7.77 | - 0.352 0.464] - 0.034 0.128] - 0.093]| - 0.205 0.607
Wheat : - 1.675] - 3.045] 19.8 - 3.674 1.107{" 2.522} - 2.523 5.218
Sandbars - -5.13{ - 1.961 8.59 | - 1.375 0.182{ - 0.122]| - 0.123 0.287

*See Eqs. 12 and 13




and are summarized in Table 7; the sensitivity terms against the
water content g(e) are put at zero. For artificial objects, such
as roads, bridges, and buildings, the backscattering coefficients
are assumed to be independent of the angle of incidence, and to be
10 dB as shown also in Table 7.

Figure 17 shows the backscattering coefficiehts of each target
category as a function of the angle of incidence at soil moisture
Mec of 25% and 100%, and those values will be used for the simulations
to follow.

The descriptions here are from Ulaby et al. (1981).

4.4 Determination of Local Angle of Incidence, Mean Elevation,
and Effective Area

For purposes of computing the backscattered power by means of

the radar equation shown below,

P = » (14)

the local angle of incidence, which is necessary to determine the
backscattering coefficient; the mean elevation, which is necessary
to calculate the distance R; and the effective area A must be determined.
The data base provides information on the surface elevation at fhe
Tattice points of a mesh having 36-meter intervals in the along- and
across-track directions as shown in Fig. 18.

The mean elevation of the (i,j)th cell is determined by averaging
the elevations of the (i,j)th, (i+1,j)th, (i,j+1)th and (i+1,j+1)th
lattice points as,

EL(7.3) - EL(7,3) + EL(i+1,j) + EL(i,3+1) + EL(i+1, j+1)
4

(15)
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TABLE 7

Algorithm for Computing the Backscattering Coefficient of
the Target, Where no Water Content Can be Defined

Target Class f(e)*
Water Bodies 22.82 - 5.1266 + 0.2376% - 3,973 x 107"
Deciduous Trees . 10 Tog (10°%*1%3 x coso)
Target Class Constant Value (dB)

Railroads 10.0

Bridges 10.0

Buildings 10.0

Highways | | 100
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Fig. 17(a). Backscattering coefficients of some target categories

at Mpc = 25% as a function of the local angle of incidence.
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Fig. 17(h). Backscattering coefficients of some target categories
at Mpc = 100% as a function of the local angle of incidence.
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Fig. 18. Data-base lattice points and cells. Surface
elevations are specified at each lattice point.
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at the very center of the four lattice points. By using this mean

elevation, we can calculate the distance between the radar and the‘

target area, and then specify the appropriate range bin for SAR processing.
The local slopes in the along- and across-track directions are

calculated by a linear approximation as follows:

EL(i+1,3) + EL(i+1,3+1) _ EL(i,j) + EL(4, j+1)

tana = 2 2 (16)
dA,
EL(i, 3+1) + EL(i+1, 3+1) _ EL(i,j) + EL(i+1,3)
tang = 2 2 (17)
dA,

where Q and g are the inclination angles of the surface, and dAa ana dAC
are the length of the data-base cell in the along- and across-track
directions, respectively. The Tocal angle of incidence of the surface
can be derived as a function of o and 8 as follows (Holtzman et al.,
1977 Ulaby et al., 1981):

tang sine + coso -
6 = cos™t 2 (18)

L Ytan2q + tan2g + 1

where o, is the local angle of incidence and e the angle of incidence
when no surface slopes exist. By introducing this local angle of
incidence into the algorithms of the backscattering coefficient, we

can obtain the mean value of the backscattering coefficient at the
data-base cell.

The effective area A can also be determined by the following equation:

dA dA
A=-—2x _C (19)
COSa COSR ' . '
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In the present simulations, the data-base cell is assumed to be

36-m x 36-m, so that dAa and dAc are 36 meters for Eqs. 16, 17, and 19.
The (i,j)th data of the target category are assigned to the data-

base cell surrounded by the four lattice points of the (i,j)th,

(i+1,3)th, (i,j+1)th and (i+1,j+1)th cells. By using these quantities,

we can calculate the backscattered power at each data-base cell.

4.5 Simulation of Fading

In radar measurements, fading of the received signal is inherent,
especially for a SAR. Therefore, the effect of fading must be included
in the radar simulation package to simulate exactly the behavior and
-the performance of the SAR with respect to an actual target. This
effect is not included in the previously described simulation package,
since it was used for developing the package itself. The fading that
appeared in the radar measurements is shown to obey the Rayleigh
distribution in power, and we canvsimulate it by using‘two Gaussién
distributions for in-phase and quadrature components (Ulaby et a].2 1981).

The mean received power ?;' is written in terms of the inQphase '

and quadrature components, VI and VQ’ as follows:

(20)

To accommodate the effect of fading, the mean received power is again

divided into two orthogonal components as,

PY‘
E; = Y up(0,1) (21)

_ |
Eq /—23 1y (0,1), (22)
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where “1(0’])’ i=1, 2 signifies the Gaussian random numbers of
zero mean, having a standard deviation of one. From Egs. 21 and 22,

the simulated received power is expressed by the following equation:

P
P, = El + Eé = Er- (u3(0,1) + u5(0,1)). (23)

The Gaussian random numbers are computer-generated.

4.6 Multilook Processor

Fading causes so-called "speckle" in a SAR image. Bright and
dark spots in the image make it hard to distinguish the targets of
the image; therefore, this can resuTt in an error in the estimation 9f the
level of soil moisture in the present problem. The technique of
noncoherent averaging is used to reduce the effect of fading by
averaging the received powers of some of the resolution cells.
The effect of fading can be further reduced by increasing the number
of cells to be averaged; howéver, the resolution then becomes poor.
In the present simu1ations,.the basic (one-look) resolution cell is
36 m * 36 m in size for the 1.8-km x 1.8-km data base, having 2500 cells.
If a large number of cells is submitted to averaging, the number of cells
after averaging becomes small, which may reduce the statistical signi-
ficance of the following analysis. The four-look processor is, therefore,
developed as a comp}omise between reduting the fading effects and keeping
statistical significance.

Two of the four looks are‘picked up from the along-track direction
and the rest are from the across-track direction, as shown in Fig. 19.
The final resolution cell, therefore, become$.72 m X 72 m, which provides

625 cells across the entire data base.
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Fig. 19. Averaging of four one-look resolution cells
to make a four-look resolution cell.
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4.7 Estimation Algorithm for Soil Moisture

In a SAR, the scattering coefficient, ¢°, can be calculated for
each resolution cell by solving the radar equation. The radar equation

is again written simply as follows: : —

(o]
Pr - CAg . “(14)
R

For convenience, in the simulations C is chosen to be equal to Rg
where R0 is the distance between the radar trajectory and the center
of the assumed data base.

For remote-sensing situations, the surface elevation is usually
unknown at the processor, so the effective area A is chosen as the
theoretical value for a surface without elevation variations. In ad-
dition, because the difference between R* for the farthest and R* for
the nearest resolution cell is very small compared with Rg (about 0.16%),
R = RO is used for all cells.

The scattering coefficient o° is then calculated as follows:
P

=L (24)

The soil-moisture estimation algorithms are applied to the above-
calculated scattering coefficient ¢° to estimate the soil moisture in
the form of percent MFC' The algorithms are for bare soil, vegetation-
covered soil, and the two together. For developing the algorithms, the
experimental data at the angles of incidence of 0°, 10°, 20°, and 30° are
submitted to least-squares Tlinear regression to establish the linear
dependence of ¢° on percent MFC° The results are then introduced into

the third-order polynomial fitting to determine the relationship between



¢° and the percent MFC as a function of the angle of incidence.
The general form used to relate o° to percent MFC is the same as
that described previously,

o]

o® = f(0) + g(0) x M )

Rearranging the terms of the above equation, we can obtain the general

form of the soil moisture estimation algorithm as follows:

v - (co - f(e))
FC ~ g(e) ) (25)

The f(e) and g(e) functions have the form of Egs. 12 and 13. The
coefficients of the algorithms for the general case, including bare
soil and vegetation-covered soil, are listed in Table 8.

Figure 20 shows the estimated MFC against ¢° at an angle of
incidence of 7.5 degrees, which is the value chosen for the simulations.
The sensitivity of the estimated M. with respect to ¢ is a little
higher for the vegetation-covered soil than for the bare soil; however,
the difference is not very significiant. The curve for the agricultural
target, including both bare and vegetation-covered soil, lies between

the curves for bare soil only and for vegetation-covered soil only.

4.8 Results and Discussion

The computer simulations are carried out against the two data
bases in order to evaluate the ability of a SAR to detect soil
moisture in the actual environment. The soil moistures, MFC’ in the
data bases are assumed to be 25% and 100% to simulate dry- and wet-soil
conditions, respectively. A detailed explanation of the simulation

package can be found in the Appendix.
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TABLE 8

Coefficients of the Algorithms for Estimating Soil Moisture

AgriculturaT Scene
Classes

f(e), intercept in dB

g(e), slope in dB/1.0% MFC

A11 agricultural
scene data

Bare soil data
only

Crop canopy data
only

2,2

Vo+4.587x1072%02.8.272x10"%

-9.666-8.432x10"

1 2.2

-10.92-8.366x10" '6+4.0635x10 “6~7.838x10"

1 2

-9.377-9.572x10" ' 0+6.339x10"26%-1.233x10 6

3

4 3

6

3

.1653+3.997x10"

.1615+9..383x10~%0-4.975x10" %6 %+1.207x10"2°

1697+6.017x10"%6-3. 755x10™6%+1.003x10™ 6"

3 4 2 53

8-9.47x10™"8°+2.273x10™%p




TABLE 9

Correspondence Between the Symbols in the Soil Moisture
Estimation Map and the Ranges of Estimation Error
Relative to the Assumed Soil Moisture

Symbo1l Range of Estimation Error (E.E.)

- E.E. < -100%

0 -100% ¢ E.E. < - 80%
1 - 80% ¢ E.E. < - 60%
2 - 60% < E.E. < - 40%
3 - 80% < E.E. < - 20%
4 - 20% < E.E. < 0%
5 0% < E.E. < 20%
6 20% < E.E. < 40%
7 40% < E.E. < 60%
8 60% < E.E. < 803
g 80% < E.E. < 100%
+ 100% < E.E.
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Figure 21 shows the results of soil moisture estimation by means of
computer simulation at MFC = 25% and 100% for the floodplain data base.
The estimations are made under the assumption that no a priori infor-
mation about Tand usage is available. Each letter represents the

72-m x 72-m resolution cell and its value denotes the estimated soil
moisture. In Table 9, a correspondence is shown between the Tetter
and the range of the percentage of MFC relative to the assumed value.
The color yellow is assigned to the resolution cell where the estimation .
error of soil moisture is within £20% of the estimated and assumed Mec
(4 and 5). 1In the red regions, MFC is overestimated in excess of 20%
(6, 7, 8, 9, +), and underestimated by more than 20% in the blue
regions (-, 0, 1, 2, 3).

In the results for MFC = 100%, the underestimated area having the
numbers -, 0, 1, 2, and 3 (blue areas) corresponds well to the tree
category referring to Fig. 14. The backscattering coefficient for
trees 1is smaTier than that for bare soil and végetétion-covered soil
at an angle of incidence of 7.5 degrees (see Fig. 17), so that the
backscattered powers at the cells are small, which results in an
apparently Tow estimation of soil moisture. No such clear trend can
be seen in the results for the MFC = 25% map, since the scattering
coefficient for trees is closer to that for bare soil and vegetation-
covered soil at MFC = 25%. Thé overestimated area located at the |
bottom center of the MFC = 100% map may be due to the topographic
effect where the slope runs toward the radar (see Fig. 16).. At these
sites, the local angle of incidence becomes smail, i.e., closer to
vertical, so the backscattered powers become higher than for the

flat surface, which results in the overestimation of soil moisture.
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Fig. 21(a). Distribution of estimated soil
moisture for the floodplain data
base at MFC = 25%.
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However, the tendency to underestimate is not clearly seen in the
backslope region. This may be dge to the difference in the angles
of the slopes. The water bodies can be recognized in the MFC = 100%
map because of their relatively small backscattering coefficient as
compared with bare soil and vegetation-covered soil; however, they
are hard to distinguish in the MFC = 25% map because the value of
the backscattering coefficient of the water body is nearly the same
as those for bare soil and vegetation-covered soil (see Fig. 17).

The region with a soil moisture estimation error of within *20%
dominates the flat plain (upper half of Fig. 21), as expected, for
the MFC = 100% map; however, this tendency is not necessarily clear
in the MFC = 25% map. The overestimation area is in greater evidenéé
in the MFC = 100% map .(in the upper half) than in the MFC = 25% map,
but is not as severe.

Figure 22 shows the simulation results for the hilly data base.
It can be eési1y seen that the area having the yellow color
(symbolized by the numbers 4 and 5) is narrower than for both cases
in the floodplain data base. In the MFC = 25% map, the red horizon-
tal and vertical lines having a plus sign correspond to the artificial
object (road) which has a higher backscattering coefficient than those
of the surrounding objects. Therefore, it results in an apparent over-
estimation of soil moisture by the bhlind classifier, in spite of the
fact that no water content can be defined. The overestimation areas
in the center and the lower-left portions of the map seem almost to
correspond to the area having slopes that run toward the radar. It may,
therefore, be possible that these overestimations occur because the

Tocal angle of incidence is closer to vertical, so that the backscattering
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coefficient increases more than that for the 7.5-degree angle of
incidence. However, there is no such clear trend for the backslope
region. The road images do not appear clearly in the MFC = 100% map
as compared with the MFC'= 25% map, since the backscattering coef-
ficients of bare soil and vegetation-covered soil approach that of

a road when MFC = 100%. This makes it a Tittle difficult to distin-
guish the road from the other agricultural land. However, the road
images can still be recognized when the image is compared with a
Tand-use map (Fig. 14). The underestimation areas on the extreme
right-hand sides of both maps in Fig. 22 are due to the Tack of data
at these locations as a result of the effect of range creep.

By comparing the maps in Figs. 21 and 22, the yellow areas
(estimation error within #20% in the difference between the estimatéd
and assumed soil moisture) are wider for the floodplain data base than
for the hilly data base, as expected. Figure 23 shows the cumu1ative
distributions of the absolute value of the estimation error in Meeo
and percentages for specific values of estimation error are listed in
Table 10; Using a small value for the estimation error (i.e., within
+20%), a more accurate estimation of soil moisture can be made for the
floodplain data base than for the hilly data base, and for MFC = 25%
than for MFC = 100%. The superiority of the f]oqdp]ain data base over
the hilly data base can be interpreted as being due to the difference
in the elevation variation of the surfaces, which causes the range-creep
effect; and that of MFC = 25% over MFC = 100% as being due to the
reduced effect of the sidelobes, since the backscattering coefficients

of the surroundings are smaller at MFC = 25% than they are at MFC = 100%.
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TABLE 10

Summary of the Estimation Error of Soil Moisture.
Estimation is Made by Using a Generalized Algorithm and
no a priori Knowledge about the Surface Usage is Available.

Absolute Floodplain Hilly
Value of Assumed Mg Assumed Mg
Estimation
Error 25% 100% 25% 100%
0 1.9 2.1 1.2 1.3
5 17.1 18.7 17.3 15.5
10 31.5 33.4 30.8 28.3
15 47.7 46.1 44.0 39.5
20 62.1 58.2 ' 54.8 52.3
25 70.9 66.1 64.5 61.0
30 79.4 71.7 73.5 67.7
35 85.3 76.2 77.8 76.5
40 89.9 80.2 82.7 82.3
45 93.4 84.0 85.3 87.0
50 95.4 87.2 86.2 90.2
55 9.3 89.4 87.2 92.5
60 97.8 90.9 87.8 93.8
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In the MFC = 25% map for the hilly data base, the effect of artificial
objects and elevation variation may degrade the ability of the SAR

to estimate soil moisture. In the MFC = 100% map, however, the back-
scattering coefficients for bare soil and vegetation-covered soil are
close to those for artificial objects, so the estimation error‘appears
to be smaller.

Figure 24 shows the cumulative distributions of estimation error
in soil moisture when the distribution of land usage across the data
bases is known a priori. This knowledge pertains, however, only to
their distribution as projects onto a flat earth, so that if the
target locations on the images move from their original Tocations due
to the effect of foreshortening, we cannot discard the target cells
in which no water can be statistically defined. In addition, the
effect of the slopes may degrade the performance of the SAR for use
in soil moisture estimation, especially for the hilly data base.

" This trend can be seen cfear1y in Fig; 24 and Table 11, where some
percentages are Tisted at certain values for estimation errors.

The amount of data included in the above statistics is sufficiently
small (when compared with the previous results [Ulaby et al., 1981]),
that it is a little risky to make a direct comparison. In addition, a
difference in the category of distribution across the data base éxists,
o] that-a.comparison is.made between only one of the present results
(the floodplain data base, MFC = 100%).and the previous result for a
floodplain with the angle of incidence between 7.5° and 9.3°. The
resolution of the present result (72 m x 72 m) is close to the 100-m
resolution of the previous result: however, the accuracy is less than

that for the 100-m resolution case.
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TABLE 11

Summary of the Estimation Error of Soil Moisture.
Estimations are Made by the Algorithms Corresponding
to the Target, i.e., Bare Soil or Vegetation-Covered Soil.

Floodplain Hilly
Absolute
Value of Assumed Mg Assumed Mg

Estimation

Error 25% 100% 25% 100%

0 2.0 3.3 1.7 2.6

5 18.5 23.1 18.4 18.0

10 37.9 44,1 34.0 29.7

15 53.5 57.2 48.0 41.0

20 65.7 68.1 60.0 52.1

25 76.8 78.7 71.2 64.0

30 85.5 - 85.1 78.8 71.2

35 90.4 88.9 83.1 79.0

40 93.3 91.4 86.8 84.6

45 96.2 93.8 88.8 88.3

50 97.6 9.0 90.1 91.1

55 98.4 97.1 90.9 93.3

60 98.7 97.6 91.1 94.8
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In order to take these differences into account, we will examine
the following two points. First, in the present simulation study,
coherent processing of the SAR is completely included, so that the
power ‘received through the sidelobes may affect the performance of
the SAR in its ability to detect soil moisture. To examine this point,
simplified computer simulations are made in which the beamwidth of the
SAR is assumed to have the value that is attained by cocherent processing
in the absence of sidelobes. This situation is the same as the one in
the previously cited work (Ulaby et al., 1981). Some percentage values
for the specific error of the soil moisture estimation are Tisted in
Table 12, along with the values for the SAR, using coherent processing.
As seen in the table, there are no significant differences between a
SAR with sidelobes and a SAR without sidelobes at an estimation error
of 20%, except for the hilly data base when MFC = 25%. Therefore, we
cannot attribute the cause of the differences in estimation error to
the effect of the sidelobes. The second point is that the generalized
estimation algorithm for soil moisture is based on experimental data
for some target categories, and these contributions to the algorithm
are almost even with each other. In the actual data base, however,
the percentages of area for each target category are weighted in a
specific manner, so that the estimation by the generalized algorithm
may introduce an estimation bias thét may degrade the accuracy of the
soil moisture estimation. The estimation algorithms are tailored by
taking into account the percentage of area of each target category, and
are applied to soil moisture estimation. The results are shown in
Table 13 alond\with the results obtained with the generalized algorithm.

Again, there are no clear improvements in estimation accuracy, so the
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TABLE 12

Accuracy Comparison of Soil Moisture Estimation
for a SAR With and Without Sidelobes

89

Floodplain Hilly
Assumed Mpc Assumed Mpe
Absolute 25% 100% | 25% 100%
Value of .
Estimation With Without With Without With Without With Without
Error Sidelobes | Sidelobes | Sidelobes | Sidelobes | Sidelobes|Sidelobes|Sidelobes|Sidelobes
1.9 1.1 2.1 1.4 1.2 2.7 1.3 0.3
17.1 17.4 18.7 19.4 17.3 20.0 15.5 15.2
10 31.5 33.9 33.4 36.5 30.8 36.3 28.3 27.5
15 47.7 50.1 46.1 49.6 44.0 52.2 39.5 40.7
20 62.1 63.4 58.2 59.5 54.8 62.7 52.3 51.3
25 70.9 75.2 66.1 - 68.0 64.5 70.7 61.0 61.5
30 79.4 83.5 71.7 74.6 73.5 76.2 67.7 70.2
35 85.3 88.3 76.2 78.6 77.8 79.5 76.5 75.0
40 89.9 91.7 80.2 83.5 82.7 83.0 82.3 80.8
45 93.4 93.8 84.0 86.1 85.3 84.7 87.0 86.3
50 95.4 9%.9 87.2 88.2 86.2 86.5 90.2 89.0
55 9.3 96.0 89.4 88.8 87.2 87.3 92.5 91.8
60 97.8 96.6 90.9 89.3 87.8 88.3 93.8 94.5




TABLE 13

Accuracy Comparison of Soil Moisture Estimation by Means of
a Generalized and a Tailored Algorithm

69

Floodplain ) Hilly

Assumed Mpe - Assumed Mpe
Absolute 25% _ - 100% 25% 100%
Value of :

Estimation |Generalized| Tailored |Generalized|Tailored |Generalized| Tailored |Generalized| Tailored
‘Error Algorithm |Algorithm|{ Algorithm. {Algorithm{ Algorithm [Algorithm{ Algorithm [Algorithm
0 1.9 1.4 2.1 1.6 1.2 1.8 1.3 1.0
5 17.1 16.6 18.7 17.3 17.3 18.5 15.5 17.0
10 31.5 32.2 33.4 31.7 30.8 31.3 28.3 29.5
15 47.7 46.1 46.1 44.2 44.0 43.5 39.5 40.2
20 62.1 59.8 58.2 54.6 54.8 55.2 52.3 52.0
25 70.9 70.2 66.1 63.4 64.5 65.2 61.0 60.3
30 79.4 78.2 71.7 70.1 73.5 73.6 67.7 67.7
35 85.3 83.0 76.2 73.8 77.8 78.7 76.5 75.5
40 89.9 87.2 80.2 77.9 82.7 81.8 82.3 82.5
45 93.4 91.0 84.0 81.3 85.3 85.0 87.0 86.8
50 95.4 93.4 87.2 84.8 86.2 86.2 90.2 90.0
55 96.3 95.2 89.4 87.8 87.2 87.0 92.5 91.8
60 97.8 96.5 90.9 89.8 87.8 87.7 93.8 94.0




main cause of the difference between the present and the previous
results (Ulaby et al., 1981) cannot be attributed to the difference in
the distribution of target categories.

Summarizing the above, the infériority of the present results with
regard to soil-moisture estimation accuracy as compared to the previous
results may be due to the effect of fading, since the previous work
employed 23-look averaging while only four-look averaging was employed
in the present study. To improve the accuracy of the soil moisture
estimation, the number of samples used in the noncoherent averaging

should be increased.

5.0 SUMMARY AND CONCLUSIONS

The ability of a spaceborne SAR to detect soil moisture was
evaluated by means of a computer simulation technique. In the present
simulation, coherent processing of é SAR is included except for the
transient effect in the receiver. This means that the receiVer has a
sufficiently wide bandwith so that the signal from a certain range bin
does not affect the signals in the following range bins. The SAR model
adopted has a range-sequential processor, the main portion of which can
be replaced by hardware implementations in order to reduce the amount
of telemetry involved. | -

After developing the simulation package, it is applied to the
actual data bases to evaluate the ability of a SAR to estimate soil
moisture. The data bases represent a floodplain and a hilly area, in
order to compare the effect of surface elevation. Two soil-moisture
conditions, MFC.= 25% and MFC = 100% are compared, representing dry

and wet conditions, respectively.
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The results, using a blind classifier, indicate that the estimation
accuracy for the floodplain data base, where surface elevation is not so
pronounced,is, as expected, higher than that for the hilly data base.
The inferiority of the results for ﬁhe hilly data base may be due to the
effects of foreshortening and range-creep, along with the variation of
the backscattering coefficient resulting from the surface elevation.

To examine the causes of estimation error, the results of computer
simulations of the SAR, including coherent processing, are first com-
pared with those of the idealized SAR in which there are no sidelobes.
There exist no significant differences between the two, so the power
received through the sidelobes does not play a significant role in
performance degradation. Subsequently, soil moisture estimation is
made by means of an algorithm that is tailored to match the data bases
by accounting for the percentages of the areas of each target category.
The results of a comparison between the estimation a1§orithms again do
not show significant differenceé. The main cause of degradation in the
estimation error of the present results, as compared with the previous
results (Ulaby et al., 1981) can, therefore, be considered to be due to
the smaller number of noncoherent averaging used in the present study.

Usingvthe generalized estimation algorithm, estimation accuracies
of 62% (floodplain data base, MFC = 25%) and 52% (hilly data base,

Mec = 100%) are obtained within +20% of soil moisture. Estimation ac-
curacies of about 80% to 90% are obtained for x40% soil moisture.

These accuracies indicate the promisfng role of SARs for use in future
systems utilizing spaceborne soil moisture estimators. However, to improve
the accuracy of soil moistd}e estimation, a much larger number of pixels

should be averaged to reduce the effect of fading.
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APPENDIX

In this appendix, program listings along with brief explanations
for each are provided. The present simulation package consists of one
main program and nine subroutines. Table Al shows the names of the
programs and their principal functions. The explanations of each

program are given below.

Main Program

In this program, the definition of some constants, computations
of current time and position of the SAR, computations of slant range
for each cell, accumulations of data into the appropriate range bins,
simulation of fading, etc., are made. First, the range-bin referencé
R(I) is computed to make the range bins correspond exactly to the
data-base cells having a 36-m x 36-m resolution. This allows us to
compare the SAR images directly with the data base itself.

The temporal progress of the simulations is governed by the
pulse transmission, NPULSE. The cufrent position of the SAR (RX)
is computed at the time of pulse transmission. The slant range XYRNGE
is calculated for each data-base cell at the time. The data-base data
(surface elevation, soil texture, and target category) are condensed
into one word representfng each cell. By using the subroutine UNPACK,
the contents are "unpacked" into three words for computation. By use
of the subroutine ANGLE, the local angles of incidence for each data-
base cell are computed. Backscattering coefficients for each data base

are computed using the subroutine SCATCF by accounting for the Tocal

angle of incidence and the assumed soil moisture MFC‘ After computing

the backscattered powers by means of the radar equation (subroutine RADREQ),



the data are arranged so that the appropriate range bins can form a
train of received echoes (video signal) for one transmitted pulse in
the in-phase and quadrature form (VDOR and VDOI). These are then
introduced into the subroutine for éoherent processing (called SARPR)
along with the current time.

After computing the received powers for each resolution cell,
random numbers having Gaussian statistics of zero mean and unit
standard deviation are added by the system function RMS to simulate the
fading effect. Then, received powers for four resolution cells
(two in the along-track and two in the across-track direction) are
averaged to give the final simulated received power RPOWER for a
resolution cell of 72 m x 72 m. The results are submitted to the

subroutine MFCEST to estimate the soil moisture of the resolution cell.
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TABLE Al

Names of Programs and Their Principal Functions

Program Name

Function

Main Program

Subroutine DBASE
Subroutine AZOFF

Subroutine UNPACK
Subroutine GEOMET

Subroutine ANGLE
Subroutine SCATCF

Subroutine RADREQ.

Subroutine SARPR

Subroutine MFCEST

To control the program flow.

Formation of video signals in in-phase
and quadrature components.

Addition of fading.

Providing four-loock processor.

Qutput control.

To read data from the computer file.

To prepare reference oscillators to
shift the video spectrum.

To recover the data for surface eleva-
tion and target category from a one-
word expression of the data for each
data-base cell.

To compute the mean elevation, incliina-
tions in the along- and across-track
directions, and the effective area.

To compute the local angle of incidence.

To compute the backscattering coeffi-
cient for the target canopy accounting
for the soil moisture and the local
angle of incidence.

To compute the backscattered power for
each data-base cell.

To accumulate the video signal to form
the image of the target area.

To compensate the Doppler frequency
shifts for 50 resolution cells.

To estimate the soil moisture from the
simulated backscattered power.




MAIN PROGRAM

~~

.

2 & ~A~D .

[aV] o © =0

ot [UPR— ~NDODDr

<L w v OO0 N

a x o L i N

. w  w S AN

~ > D oN g et

o Z 2 x O SNeul & ~

w o O * [ TR s P LSV o V] o~

[ [BREE S ~ X e Iu AN O A~
~Q L] ~ At 2 <
Ll s 2 w O N WS N X =%
[Ta 3 <€ s M I P ] >  wd
Nt S S B+ 4 x w SWierinj & sk It
xa. QO o O ~ TN ADFoN Ow - [
ST O « w 0 )} wWZwWwZe-~ MO 8N [Tal
~E - x o [aV] ~ VXV d<C x*2Z o o~
[e]e4 ] . W Z—Zwiug ~NE =W N2
[7aATEN w o o -t o D O MOy a0 N> wE weoO o
~ o~ @ - - ~ o 2 e i~ W< st O S OUNDO -
- - NolTa NN I R X X Y Wy S AN wMn
Oy o w =2 < MM et NNNPNON NY <O (@]
Qa wwn - W < (@] NV s L L - §F ZATHE=M-20 O
>0 N x - — AN e L U ~AETOW Xk o~
LYTaR oS o v o s 9 u, [+ o] N & s = (D00 NXE ST OWX ~
AN w Wy e Qo + o I s O W S S LA NL b =T KO
O~ E Qo ni [7a) [7a w3 NN LO —wu s Y Z2Wwlewn
AW D N O~ . [N OMNL. <L L~ ITMN OO L I OO~ N
VLNUWO v EMEN Nnwiw L -—in N e OoMOmmMJIa e b 222 D> 2~ N
XELCuMm N ONOMND sVV o Has? Diedpinooaauwdo WIS L Nt
OXMOWV «€ wWJIWwiNNe22 o~ We OO O * Yy Sttt L & O X TN X |~
QN O L. 000 N~ ONsitxoe —~Q~ it i SV e ) X O K X e
D AN OV O O O\ L e e NI _Juwimsey T O MMM WU Me bl e RUY 0D o

LNOMO= OOC #111YW S N Wik s DWW —NZONNOVOLOLW WV wrZ2ROO sk wintk—
Z X O o o0 = sk Z NN Nt 0200 gahrodadL<CaE «—M | UL J= O SO0
QA OANYVW LVOVINCECIWUWUCON —~XWZ2ZEZ22WO X =0 00O 0w XD erd sod o0
NN S AL O C Nt D DM N 3D X EDIW N Z2Z22Z22W 1 8 X 20T =0
NZZZ20r-S 0wl W ZZOodgq W20 =H=ZuTOHODIDDIV 00 HwilCcuCxxnOwm-—
Z0001HM — & OO0 ritrt MO N ~=OQON e I = OWO wo wog (Sl BIR Tt R Ne)
WEEsoull H O OVNNOOl-td_Jn ¢m=eNEri=wi-NOM Jd Sl YO OZ-dd-n~aNeZ2-
EEEE—E L L2 Ldd M= 2 QOzZEMN Z ddddd il Z2RWd I U N
~OO0OCD u W QO0EZZ0O0ACLCOIN OO0 OMXOXOCLCACCL . JT E>ITCCL =L Oumo
DLLWALO £ O XOAXXUVUUWLUWOOXUAODDUREAOULVUOUUW WE XXmmWOOmEZEOMOrO

Qe ™M [aV]
[7alVa) wn wy
(SRS IS 0d (&7

CAMFNOMNOONO e~ AIMTVNON00 O NIM TN OO O NIM SN ONOP O e IM T INON 0 OO =N M N0
T e e e € et o NN O O OO O SN MNPV MY VIVINIST ST W3 T T o3 < ~F T SSninnanmnin

75



~
(&
o~ w
' x vy >
* o *
~ ~ (o 4
~ o - O <
a =2 } x m
= a. N~ 'S
< x X~ —
A ~ TN o
< o . X
o~ (7] N .
D wus — x w
[ X717 ~ —N . <
(2K -4 -4 v ~ K Ll o]
\NIT I h- [o ] Wy
<a.a N o~ >~
W e R hed < —
Xwn2 * + =a . s e
N O ~ N & < W o~ o
- NOwm —  * += ~NO WMo
<L % & ~ LI ~a XX O Wan
[sWe 4 T N - - — 4 ~ Z= s ~
*x NEE (o] et o I~ Mo O o
A g [=] -~ 32 NN~ Qe 4
~O + 4 > a a * x O { x LY g wi
O Z A~~~ . £ X e B J UV o~ ~NwMmM
22 24 E A~ L Y= UM <CW N (T
¢ QO & o —e O 2w 2 [&]
—smm O o + w t 1 s X |l
CWr4— O > NS~ -t [aV TN} <4 =0 N <<
O s P} [ * N\~ x K s N~ a s N W
. s L) w X W —t ot A= O <N (%]
EALXOO N ~ ~OE haad * 4 Ll N AUl o) T
Dwi xXao < QOO k@ nNnnxE oo HO> S~ [ew]
QU 2> - WD S Do [aTa Ve Mo WL, ] B AN e N —~T
x<NI NN u — A2 NS il VWIS QS
T CWA~N O @ o O~ —EE A 24+ CTNNO- o
mwaIX=22 a ol v B QN = < Wi —MI
Wi 0 QO ~WO W WOWM =0 b AW W 4+ It o<l S LILINS S
DD0aXv<DMDODZI DL Drw <Lx—=2D 1" =2 i WO~ IDDOOw
SZIUHNEaZWUZN ZNNeCQECwZZMNNE w2200 WNEw 22 i
oUW S e SO0 N —HOOW OO WO
N JErb~ ) R BTN G NNE AN e S -2 0
ZZCPCIO0Z 249 200 Exa2 2 O «2Z MU IEZZ —EOOo

COIATITCOOO O OVNMOOIRFTOOO0A EZEO00QOHTIOICAxOVOOOXEOKZ
LOOA~ALOUDZOU QO VUH~OOOL G XVOLUOOr OOV OAOFOUILLVOURW U

QO o O o Qe M TN NQe-

(Talle] Q O o (=] oo OooCOD OO

[aN EaV] M N L ad [7aYVal [FaY¥al wnyy MM O
(& o )

)

o e Ve Yoo

=

77



Subroutine DBASE

This subroutine reads the data-base data from the computer file
and stores them into the array IDBASE. The original data in the file
are at an interval of 18 m in both the along- and across-track
directions. The designated value of the data interval for the simula-
‘tions is 36 m for both directions, so that the data are transferred
alternately from the file to the IDBASE array. The dimensions of
IDBASE are (51, 51) to accommodate the elevation data for computation

of 2500 mean elevations.
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Subroutine DBASE
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Subroutine AZOFF

This subroutine provides us with the reference-oscillator
signals used to shift the spectrum of the SAR video signal. The
frequency difference between two adjacent oscillators is DOPCEL
(14.2128638 Hz) which corresponds to the differeﬁce in the Doppler
frequency shift at the two points with an interval of 36 m in the

along-track direction. DOPCEL is calculated by the following equation:

2ur

DOPCEL = ARa , (A.1)

where u is the speed of the spacecraft; r_ is the resolution, which is

a
36 m; A is the wavelength of 6.316 x 10~% m; and R is the distance
between the SAR and the target. The number of reference oscillators,

FOFF, is 50, to provide 50 resolution cells.
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Subroutine AZOFF
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Subroutine UNPACK

Data for the three parameters, which are surface elevation, soil
texture, and target category, are packed into one word, IDATA, in
order to reduce computer-memory usage. This subroutine recovers
the values of the surface elevation IEL and the information of the
target category ICAT by using bit manipulations. A soil-texture
extraction is not included in this subroutine, since the information

is not used in the present simulation.
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Subroutine UNPACK
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Subroutine GEOMET

One of the factors that should be accounted for in radar simulation
studies is the topography of the target area. By using the surface
elevation data at the four corners of the square data-base cell, the
mean elevation, the inclination angles of the data-base cell in the
along- and across-track directions, and the effective area of the data-
base cell are all computed in this subroutine.

‘ The mean elevation EL is given by averaging the four elevations

at the four corners of the data-base cell. The surface inclinations
ALPHA and BETA in the along- and across-track directions are calculated
by computing the difference between two averaged elevations, which are
derived by averaging two elevations inthe across-track direction fo}
ALPHA énd in the along-track direction for BETA, at a distance of 36 m
(236.2204724 feet) as,

A=FLOAT (112+122-111-121)/236.2204724

ALPHASATAN(A) | (A.2)
B=FLOAT (121+122-111-112)/236.2204724

BETA=ATAN(B). | (A.3)

The effective area AREA normalized by the assumed 36-m x 36-m area

is comouted by accounting for the surface inclinations as,

AREA=1/COS(ALPHA)/COS(BETA). (A.4)
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Subroutine GEOMET
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Subroutine ANGLE

This subroutine computes the local angle of incidence THETAL
by accounting for the inclination of the data-base cell (ALPHA and
BETA) along with the angle of incidence for the flat surface (THETA).

The formula is as follows:

TAN(BETA)*SIN(THETA)+COS(THETA)

THETAL=ARCOS : .
SQRT (TAN(ALPHA)**2+TAN(BETA)**2+1)
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Subroutine ANGLE
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Subroutine SCATCF

The backscattering coefficient o® is calculated using the
empirically determined algorithm based on the experimental data.
For bare soils and vegetation-covered soils, the general form

of the algorithm is shown below:

SIGMA = F + G * MFC (A.6)
with

F=F1+F2*THETA+F3*THETA**2+F4*THETA**3 (A.7)

G=G1+G2*THETA+G3*THETA**2+G4*THETA**3, (A.8)

where MFC is the soil moisture and THETA is the local angle of
incidence. The coefficients Fi (i=1,..,4) and Gi (i=1,..,4) are
listed in Table 6 in the text. |

The baékscattering coefficients for railroads, highways, bridges,
and buildings where no water content can be defined are assumed to
have'a constant value.of 10 dB indepeﬁdent of fhe local ahgie of in-
cidence, therefore, F=10 and G=0. For trees and water bodies (lakes
and rivers), again no water content can be defined, and the backscat-
tering coefficients are assumed to be only a function of the local angle

of incidence as follows:

Trees
F=10*ALOG10(10**—1,143;co;(THETA)) (A.9)
G=0 | (A.10)
Water Bodies N

F=22.82-5.126*THETA+0.237*THETA**2+3,973E-3*THETA**3 (A.11)

G=0 R (A.12)
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F and G are substituted into Eq. A.6 together with the soil moisture
MFC to determine the backscattering coefficient SIGMAO. The target
category is specified through the value of index ICAT. The corres-

pondence between ICAT and the target category is listed in Table A2.
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TABLE A2

Correspondence Between the Index ICAT and
the Target Category

ICAT ' Target Category
3 Rough bare soil
4 Medium-rough bare soil
6 Railroads, highways, bridges, and buildings
7 Smooth bare soil and mown pasture
8 Pasture, alfalfa, and wheat

10 Trees

15 Soybeans E/W

16 | Soybeans N/S

17 Milo E/W

18 Milo N/S

19 Corn E/W

20 Corn N/S

22 Rivers and lakes
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Subroutine SCATCF
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* 20
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0

F

G
SIGMA IS CALCULATED IN OB

100 SIGMA=F+G*FLOAT(MFC)

TRANSLATE INTO REAL VALUE

SIGMA=10.**(SIGMA*0.1)
200 ESEURN
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Subroutine RADREQ

The computations of the received powers are made by means of

the radar equation, having the following form:
P =C * AREA * SIGMA / (X**2 + Y**2 4 Z*k*2)k*2 (A.13)

where P is the received power, AREA is the effective area, SIGMA is
the backscattering coefficient, and X, Y, and Z are the distances
between the radar and the target in each coordinate. C is a function
of the transmitted power, antenna gain, and the wavelength of the
radar signal; however, it is assumed to be the same as the value of
R;, where R0 is the distance between the spacecraft's trajectory and
the center of the data base in order to prevent P from having an
extreme value. In the estimation of soil moisture, this slight modi-

fication of the radar equation will be taken into account.
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Subroutine RADREQ
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Subroutine SARPR

This subroutine simulates the function of the comb-filter,
which is the SAR processor itself, together with phase compensations
to remove the effect of the Doppler frequency shift for the data-base
center.

The amount of the Doppler frequency shift fd is given as follows:

-2uX
Fo= , A.14
p R ( )

where u is the speed of the spacecraft, X is the distance between the

radar and the target in the along-track direction, A is the wavelength
of the radar signal, and R is the distance between the radar and the-

target. The phase of the Doppler frequency shift can be expressed as

follows by substituting X = ut - x, where -x is the position of the

radar at time t = Q.

(A.15)

p = _ 2mu?t2  dwuxt
AR AR

Substituting u = 7545, A = 6.3158 x ]0‘2, R = 605.177 x 103 and

m = 3.14159265, the above equation is rewritten in the following form:
P = (-1489.389685*TIME+209.755714)*TIME. (A.16)

The frequency offsets needed to provide 50 resolution cells in tﬁe
along-track direction are made by adding their phase terms as com-
puted by FOFF*TIME, where FOFF is the reference frequency generated
in the subroutine AZOFF and TIME is the current time. Phase compen-
sations are performed for the in-phase (VDOR) and quadrature (VDOI)

components of the radar video signal as,
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DR

VDOR * CR - VDOT * CI (A.17)

DI

VDOR * CI + VDOI * CR, (A.18)

where DR and DI are the in-phase and quadrature components after phase

compensations and CR and CI are given by the following equations:

CR = COS(P + FOFF * TIME) (A.19)

H

CI = SIN(P + FOFF * TIME). (A.20)

1]
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Subroutine SARPR
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Subroutine MFCEST

In this subroutine, soil moisture is estimated in the form of
percent MFC from the simulation results. The backscattering coef-
ficients simulated are first divided by 508, which is the number of
pulses transmitted, and gives the coefficient for one-pulse transmission.
It is translated into dB by adding the calibration factor, 1.671 dB,

which is explained in Section 3.4 of the text as,
SIGMA = 20 * ALOGIO(SIGMA) + 1.671. (A.21)

The estimation a]gorithms are then applied to the calibrated back-
scattering coefficients, along with the angle of incidence for a

flat surface. Three algorithms are used, and consist of one for bare
soil, one for vegetation-covered soil, and an amalgam of the two.

The general form of the estimation algorithm is shown below:

SIGMA+AT+AZ*THETA+AI*THETA**2+A4*THETA**3
MFC = . - (A.22)
B1+B2*THETA+B3*THETA**2+B4*THETA**3

The coefficients Ai (i=1,..,4) and Bi(i=1,..,4) are listed in Table 8

in the text for the above three target categories.
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Subroutine MFCEST
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