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PREFACE

The Agriculture and Resources Inventory Surveys Through Aerospace
Remote Sensing Program, AgRISTARS, is a six-year program of research,
development, evaluation, and application of aerospace remote sensing
for agricultural resources, which began in Fiscal Year 1980. This pro-
gram is a cooperative effort of the National Aeronautics and Space

Administration, the U.S. Departments of Agriculture, Commerce, and the
Interior, and the U.S. Agency for International Development. AgRISTARS
consists of eight individual projects.

The work reported herein was sponsored by the Supporting Research
(SR) Project under the auspices of the National Aeronautics and Space
Administration, NASA. Mr. Robert B. MacDonald, NASA Johnson Space

Center, is the NASA Manager of the SR Project and Dr. Glen Houston is
the Technical Coordinator for the reported effort.

The Environmental Research Institute of Michigan and the Space
Sciences Laboratory of the University of California at Berkeley comprised
a consortium having responsibility for development of corn/soybeans area
estimation procedures applicable to South America within both the Sup-
porting Research and Foreign Commodity Production Forecasting Projects
of AgRISTARS.

This reported research was performed within the Environmental

Research Institute of Michigan's Infrared and Optics Division, headed
by Richard R. Legault, a Vice-President of ERIM, under the technical
direction of Robert Horvath, Program Manager and William A. Malila, Task
Leader.
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1
INTRODUCTION

The signal which the Landsat multispectral scanner generates is

a function of many variables, few of which we have any control over.
The ideal method of understanding a process is to hold all of the
variables constant, except those under consideration. This method
fails for the most part in the study of the Landsat signal-generation
process with its seeming contradiction of vast amounts of data at the
pixel level but a scarcity of data with unique combinations of factors
such as scan angle, day of year, crop, field pattern, etc. Simulation
is a tool which allows one to use combinations of assumed or known
effects to infer the composite effect. The uses of a simulation
include:

(1) The study of the interaction of known first order effects;

(2) Tests of procedures on data generated under known condi-

tions, and

(3) Empirical estimation of model parameters when fitted to

"real data."

The major motivation for the simulation model described here was

the need for a capability to investigate, in detail, the effects of
various factors on pixel values from small fields, boundaries between
fields, and misregistered pixels. Both spectral and spatial properties
were of interest. With this model any desired polygonal field pattern
can be simulated and spectral-temporal characteristics can differ from
field to field, even within a single crop type, and with within-field
variances being included.
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THE MODEL

Consider the point (x,y) on the ground at time t. Except for a

set of area zero, (x,y) will be contained in the interior of a field.*
Denote this field as k. The main effect which a sensor could detect
is that of the crop at point (x,y). We denote the crop in field k as C

We use crop development profiles in Greenness and Brightness to simu-
late the mean crop response as a function of time since planting.
Reference 1 gives the empirically estimated profiles used, while
Figure 1 illustrates those for corn, soybeans, small grains, pasture,
etc.

Denote the profile for crop c as P (.). Note that two fields
with the same crop would not in general have the same profile value
at time t due to different planting days. Denote the planting date
for field k as T. . The model further assumes that there are field
effects beyond crop type and planting date due to soil characteristics,
crop variety, fertilizer, etc. These additional between-field, within-

crop sources of variability are viewed as geometric noise factors which
scale each profile. Denote the scale factor for field k as U, , where
U is a random variable with a mean of 1. The profile at (x,y) is:

g(x,y,t):=UkPck(t-Tk)+etxy

where e. is assumed to be a bivariate normal with mean of zero.

The model assumes that the covariance of e. is a function of crop
and time. This is reasonable if the dominant effect in within-field

variation is due to crop-field effects. If sensor noise were the real

e.g., a hedgerow between agricultural fields is, itself, considered
to be a field of finite area.
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dominant effect, then variances of the Landsat Bands 4, 5, and 6 would

be proportional to the signal and the variance would be constant in

Band 7.

One of the major problems encountered in multi temporal Landsat

data is spatial misregistration between dates. The coordinate system

changes between passes of the satellite. The point (x,y) in the satel-

lite's coordinate system does not correspond to the same ground point

for different passes. The relationship between ground coordinate sys-

tem and that of the sensor's is non-linear. There are registration

procedures which reduce the differences in coordinate systems; however,

there is always a residual error in registration procedures. The model

assumes the sensor coordinate system changes only by a translation

between passes. If the ground coordinates are (x,y) then the sensor's

coordinates at time t are (x + x., y + yt).

This form of misregistration is suitable for most applications

using simulation. A more general form of misregistration could be

simulated by warping the coordinates which define the fields.

The signal which the sensor receives is not g(x,y,t) but rather

f(x,y,t) = //g(x+xt - r, y+yt - s,t)p(r,s)drds

where p is the Landsat point spread function.

p was derived in Reference 2 using the sensor's size, blur circle and

properties of its three-pole Butterworth filter. Figure 2 gives a

three-dimensional drawing of p and Figure 3 gives plots of p along the

scan line and along track, at pixel center. The signals which the

sensor allows us to observe are:

{f(x + idx, y

Values for a 5x6-mile AgRISTARS segment are dx = 79M, dy = 57M,

Nv = 196, and N =117.x y
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(a) Landsat Along Scan Line Point Spread Function

j-l

(b) Landsat Along Track Point Spread Function

FIGURE 3. LANDSAT MARGINAL POINT SPREAD FUNCTIONS
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IMPLEMENTATION

3.1 THE FIELD GEOMETRY

Each field is stored in the computer as a polygon, The vertices

of all of the fields are contained in arrays, say (U. ., V. .}. Polygon
KJ KJ

(field) k is defined by the vertices k, ,kp,... ,k., , such that the
K

points {U, ., V. .}._, w circumscribe field k in a counterclockwise
KJ KJ J I , INi

direction. It is important that there be no gaps in adjacent fields

and non-nil intersections can cause unexpected results. We assume

that all fields are simply connected, but more general sets could be

incorporated into the model easily.

A two-dimensional grid of points is assigned polygon identifica-

tion. The point (x,y) is assigned to the first polygon whose winding

number is positive. We view these points as subpixels. The polygon

search begins with the polygon which contained the previous pixel.

If only translation misregistration is to be simulated then this sub-

pixel-to-field assignment only has to be performed once. If more

general misregistration is to be simulated then the points {U. ,V.} can

be replaced by {H.(U.,V.)} where H is the warping transform for time t.

Examples of H. are:

/ 5 q , _ , 5 q , _. \
- -„ -qj- • ' 0)

q=0 j=0 qj

\
and

Ht(Z) = A.(Z - Z.) + Z
I* \* \* \*

where

Z = u + vi , Z, = u + v.i, and At = R.e t (2)

9
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Functions of the form (1) are often used to correct geometric
distortions in Landsat data (see Reference 3). Regression methods
are often used to estimate the coefficients a .'s and b .'s. Sinceqj qj
there are 21 terms in each coordinate of (1) there should be somewhat
more than 21 control points used in the estimation, if estimates of all
coefficients are desired. Stepwise regression methods tend to good
results with 5-9 control points. Functions of the form (2) represent
a rotation of e. and a scaling by R. about (u.,v.).

3.2 CROP RESPONSE AS A FUNCTION OF TIME AND FIELD

The crop for point (x,y) on the ground at time t is:

9(x.y,t) - UkPck(t-Tk) + £txy

where

k is the field containing (x,y),

U. is the scale factor for field k,

C. is the crop growing in field k,

T. is the time of planting,

P (.) is the Greenness/Brightness response of
crop c as function of time since planting, and

e. is the within-field noise,txy

The polygon specific parameters Uk, Ck and Tk are saved in a file until
all acquisitions are generated. U, and T. are viewed as a random vari-
ables such that E{U|) = l and the distribution of Tk is obtained from a
crop calendar specific to the region being simulated. Empirical profiles
were incorporated for grain, sunflower, corn, soybeans, and three types
of grass/pasture/hay. New profiles can be added or old ones modified
easily.

10
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Presently the within-field error term is used only to add texture

to the pixels contained in a given field. Data which would support an

accurate estimation of the covariance matrix of et do not exist. Thetxy
reason is that ground truth polygons often contain more than one field

with the same ground truth code, while the field-finding algorithms are

constrained to construct field-like regions with small within-field

variances.

3.3 THE CONVOLUTION

The convolution of the sensor's point spread function blurs the

image by adding correlations between nearby pixels. The sensor's re-

sponse at point (x,y) and at time t is:

f(x,y,t) = //g(x-r,y-s,t)p(r,s)drds.

We use two different levels of approximations of f(x,y,t):

48 16 . , , ,
fi(x,y,t) = I I g(x - yg, y - ±,

i=-16 j=-16

where

^ ^' ^ "16' ~ 48 16 . .

£ 2 P(T6' 16 >
r=_16 s=-16

 lb lb

and

16 4
. . g(x -, y -

where

1 -
' ) ~4' 16 4^

I ILi LJ

-4 s=-4

11



4

EXAMPLE SIMULATION

To illustrate the capabilities of the model, the field pattern

from the southwest quarter of Segment 844, during the year 1978, was

digitized in polygonal form. Crops were assigned to the fields at

random. The crop probability and planting date distributions in

Table 1 were used. The field scale factor was generated randomly from

the uniform (.95,1.05) distribution for each field. Figure 4 gives a

plot of the field pattern used in this simulation. This region was
represented by a 256x256 subpixel grid. Each pixel was defined to be

a 4x4 subpixel region. The crop signatures were generated at the sub-

pixel level; thus, within-pixel mixture were in multiples of 1/16. The

field identification of each point in the subpixel grid was obtained

from the polygons. A 64x64 simulated image was produced for the follow-

ing dates: 160, 169, 178, 187, 196, 205, 214, 223, 232, 241, 250, 259,

268, 277, and 286 with no misregistration. As illustrated in the fol-

lowing discussion, these simulations exhibit spectral, temporal, and

spatial characteristics which we have come to associate with real data.

TABLE 1. PARAMETERS USED IN GENERATING THE SIMULATION

Crop P T|< Distribution

Grai n

Pasture VI

Pasture V2

Pasture V4

Sunflower

Corn

Soybeans
Flax

.10

.05

.05

.10

.10

.25

.25

.10

N(105,10)

N(105,10)

N(105,10)

N(105,10)

N(138,10)

N(148,10)

N(156,10)

N(105,10)

13
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Figures 5(a) and 5(b) give Brightness/Greenness scatterplots for
pure non-summer crop and pure summer crop pixels respectively for day
of year 160. The vast majority of the pure non-summer crop is above
15 while all of the summer crop is below 15. This example simulation
is somewhat unrealistic since 100% of the scene is agricultural. Thus
in this simulation one must first separate summer from non-summer crops

and then corn from soybeans. At a pixel level we obtain 98% correct
classification of summer vs. non-summer crops, using the G=14 decision
line. On the field level we obtain 100% correct classification because

the field geometry allows averaging which reduces variation.

Figures 6(a) and 6(b) give the Greenness/Brightness scatterplots

for pure corn and soybean pixels respectively for day of year 160. The
mean planting date of corn is 8 days before soybeans in this simulation,
see Table 1, thus corn is ahead of soybeans in emergence. This is
represented by the higher Greenness values for corn compared to soybeans.

Figures 7(a) and 7(b) give the scatterplots for pure corn and soy-
beans pixels respectively for day of year 178. The corn tends to have
a higher Greenness value than soybeans. Corn and soybeans are separable
to the extent that 80% correct classification is possible at the pixel
level using a G=12 decision line. Better separation can be obtained at
the field level.

Figures 8(a) and 8(b) give the pure corn and soybeans Greenness/
Brightness scatterplots for day of year 205. Most of the corn has
obtained their state of peak Greenness 20 to 30. The soybeans

are for the most part still greening up. About 30% of the soybeans
are greener than the greenest corn field and about 20% have Greenness
values less than the darkest corn field. Classification using the dates

160, 178 and 205 gives an overestimation of corn by 10%.

15
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Figures 9(a) and 9(b) give the Greenness/Brightness scatterplots
for pure corn and soybean pixels respectively at day of year 223. This

is the date that the expected corn/soybeans separation occurs in this
simulation. Soybeans are now at their peak green value. The decision
line G = -.62B + 11.32 allows about 90% correct classification of corn
and soybeans at the pixel level and about 98% at the field level.

Figures 10, 11, 12, and 13 give Greenness/Brightness images for
the same dates.

In Figure 10 (Day 160) summer crops can be separated from grain
pasture, sunflowers, and flax. The summer crops are very dark on the
image for this date.

In Figure 11 (Day 178) summer crops are greening up with most
corn fields displaying a higher Greenness value than soybean fields.
Pasture and sunflowers still have a fairly high Greenness value. The
flax fields are very dark in this image. The grain fields have a low
Greenness value and a high Brightness value which shows up as a light
blue on this image.

In Figure 12 (Day 205) soybeans generally have a higher Greenness

value than corn but many soybean fields have not separated from corn
which would give a biased proportion estimate in favor of corn. The
pasture fields have greened down and now look a lot like the grain
fields. The sunflowers still display a detectable Greenness value.

In Figure 13 (Day 223) almost all of the soybean fields have a
higher Greenness value than corn fields. The soybean fields appear as
bright yellow/orange while the corn fields appear as a dark brown/orange.

Fields can be detected for the most part when all four dates are
used, the Date 160 provides perfect summer crop/non-summer crop separa-

tion, and the Date 223 provides nearly perfect corn/soybeans separation.

20
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5

SUMMARY

The present understanding of several components in the Landsat

signal-generation process allows the simulation of Landsat data. The

simulation described in this report allows for:

(1) Mixed pixels,

(2) Field geometry,

(3) Landsat point spread function,

(4) Crop development spectral profiles,

(5) Variation in planting dates,

(6) Within-field variation, and

(7) Misregistration.

The simulation has been used in small field research. Other

applications include the simulation of other sensors, the test of new

procedures, and the study of new crop mixes and field patterns.

25
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