General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

$9950-721$

THE SMALL MODULE FIXED MIRROR DISTRIBUTED FOCUS (FMDF) PHOTOTHERMAL CONCENTRATOR STUDY (Modification No. 4 of 18 February 1980)

FINAL REPORT

A. B. Meinel

27 February 1981

JPL Contract No. 955162

Optical Sc iences Center University of Arizona Tucson, Arizona 85721

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS 7-100.

This document contains information prepared by the Optical Sciences Center, University of Arizona, under JPL subcontract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, or its sponsors.

Abstract

This report covers the period of the contract extension, from 1 September 1979 to 31 August 1980. Tasks established and carried out during this period were: the development of a general ray trace evaluation program, called ICARUS; the study of novel Fresnel concepts; and the review of a report draft on novel Fresnel concepts. ICARUS is documented herein; reports on the novel Fresnel concepts have been submitted earlier.

NEW TECHNOLOGY

Fresnel Computation Program

A general ray trace evaluation program, designated ICARUS, has been developed, with the goal of widening the generality over that in commercially available optical evaluation programs. The main thrust of the effort has been to expand the number of geometrical shapes, tilts, and decenters that could be explored, to include conic, aspheric, and toric surfaces. To keep the program task within time and budget, the effect of facet errors was not to be included. This task has been performed principally by Steve Eckhardt, graduate student, under the supervision of A. B. Meinel. Documentation is appended to this report (Appendix A).

A review of the program led to the decision by us and by JPL's program management to terminate this taisk before completion; however, we were able to bring it to a usable state; examples of Fresnels that can be ray traced are shown in Appendix B. One reason for withdrawing
from the hope of a fully general program was the conclusion that a specific program could be written for any novel Fresnel surface that could not be handled by an existing program.

It is important to know what has not been included in the program to date. Not included are the following capabilities: (1) finite groove size, (2) diffraction, (3) local groove effects (facet tilt error), (4) substrate effects (lens surface errors), and (5) general aspheric substrate shapes. The facet tilt error and surface errors are relatively easy to handle for reflective Fresnels in that whatever the angular distribution of assumed errors is, the effect at the focus is twice the angular distribution, subject to the geometrical cosine effect of oblique incidence on the focal plane. The effect is considerably more complicated for refractive Fresnels. We will examine the analytical expressions in future work if JPL requests it.

Questions of adding facet error statistics have yet to be incorporated. The analytical approaches to this are currently being evaluated and could appear as an addendum at the appropriate time.

Fresnel Optic Study

The rest of the current funding was expended in addressing novel Fresnel concepts, on which reports have been submitted, and in reviewing a report draft on this topic prepared by JPL. Several of the novel concepts appear to be patentable, and a report was written on this question, but no reply was received concerning JPL's desire to proceed with this question. In the absence of a reply we will, at an appropriate time, prepare a paper for journal publication on these novel concepts.

PROGRAM IDENTIFICATION

Program Title:	Optical Sciences Center Fresnel Evaluation Program
Program Code Name:	ICARUS
Writer:	Steve Eckhardt Optical Sciences Center University of Arizona Tucson, Arizona 85721
Date of Completion:	May 1980
Source Language:	Fortran (Data General FORTRAN 5)
Availability:	Program listing as computer printout (attached)
Abstract:	ICARUS is a ray trace program of greater gen- erality than commercially available programs.

PROGRAM DESCRIPTION

Method of Solution: Paraxial rays are traced by normal methods. Real rays are traced in accordance with the conic ray trace equations given in Table 1. Fresnels are treated by assuming that the point of intersection of the ray with the surface is in the tangent plane of the lens and that the angle of the normal to the ray is the same as if the Fresnel were an ordinary conic.

Program Capabilities: Paraxial and real ray tracing, as well as radiant energy distribution computation, for conic, fresnel, toric, curved fresnel, toric fresnel, and curved toric fresnel surfaces. Not included are finite groove size, diffraction, local groove effects (facet tilt error), substrate effects (lens surface errors), and general aspheric substrate shapes.

Data Inputs:	Data are ontered interactively at the terainal, in response to questions posed by the progran. Tables 3 and 4 provide guides to input options and format.
Program Options:	See Table 3
Printed Output:	N/A
Other Outputs:	A file is created for each new lens. These can only be deleted outside of the program.
Flow Chart:	Figure 1 is a general system flow chart.
Sample Run:	Table 3 is an annotated "walk-through" of the program.
	SYSTEM DOCUMENTATION
Computer Equipment:	Data General Eclipse
Peripheral Equipment:	N/A
Source Program:	Table 5 is a complete source code listing for ICARUS and its subroutines.
Variables and Subroutines:	See the source code listing for variables. Table 2 is a list of subroutines, with descriptions of their functions.
Data Structures:	N/A
Storage Requirements:	Minimal
Maintenance and Updates:	None

Fig. 1. ICARUS System Flow Chart

ORIGINAL PAGE IS

OF POOR QUALITY

Fig. 1. ICARUS System Flow Chart (Continued).

ORIGINAL PAGE IS OF POOR QUALITY

Table 1, Ray Trace Equations for Conics.
Opening:
$A=\left[t^{2}+\left(h_{y}-y_{t}\right)^{2}+\left(h_{x}-x_{t}\right)^{2}\right]^{\frac{1}{2}}$
$L=\frac{h_{x}-x_{t}}{A}$
$M=\frac{h_{y}-y_{t}}{A}$
$N=t / A$

Transfer to Surface:

$$
\begin{aligned}
& B=c\left(x_{t}^{2}+y_{t}^{2}\right) \\
& C=N-c\left(L_{X_{t}}+M y_{t}\right) \\
& D \quad=\left[C^{2}-c B\left(1+k N^{2}\right)\right]^{\frac{3}{2}} \quad D^{2}<0: \quad \text { ray missed surface } \\
& A=B /(C+D) \\
& X_{S}=X_{t}+A L \\
& y_{S}=y_{t}+A M \\
& z_{S}=A N
\end{aligned}
$$

Refraction:

$$
\begin{aligned}
E & =\left[1-2 c k z_{s}\right]^{-\frac{1}{2}} \\
\cos I & =D E \\
\mu & =n / n^{\prime} \\
0 & =\left(1-\mu^{2}+\mu^{2} \cos ^{2} I\right)^{\frac{1}{2}}-\mu \cos I \\
& \frac{1-\mu^{2}+\mu^{2} \cos ^{2} I<0:}{\frac{\text { total internal reflection }}{}}
\end{aligned}
$$

ORIGINAL PAGE IS
 OF POOR QUALITY

Table 1. Ray Trace Equations for Conics (Continued).
$\alpha=-C E x_{s}$
$\beta=-C E y_{s}$
$Y=\left[1-C(k+1) z_{s}\right] E$
$L^{\prime}=\mu L+\delta \alpha$
$M^{\prime}=\mu M+\delta \beta$
$N^{\prime}=\mu N+\delta \gamma$

Transfer to Tangent Plane:

$$
\begin{aligned}
& x_{t}=x_{s}+L\left(t-z_{s}\right) / N \\
& y_{t}=y_{s}+M\left(t-z_{s}\right) / N \\
& A=\left[\left(t-z_{s}\right)^{2}+\left(y_{t}-y_{s}\right)^{2}+\left(x_{t}-x_{s}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Variable Definitions:

$x_{t}=$ ray height in x on tangent plane
$y_{t}=$ ray height in y on tangent plane
$x_{s}=$ ray height in x on surface plane
$y_{5}=$ ray height in y on surface plane
$t=$ distance from object to first lens surface, or distance betwsen surfaces
$h_{x}=$ object height in x
$h_{y}=$ object height in y
$L, M, N=x, y, z$ direction cosines for the ray before refraction
$L^{\prime}, M^{\prime}, N^{\prime}=x, y, z$ direction cosines for the ray after refrection
$\alpha, \beta, \gamma=$ direction cosines of the normal to the surface in x, y, and z, respectively
A a geometrical path length between a surface and the following tangent plane; also vice versa, the refractive index times the optical path length
I = the angle of incisence on the surface
$n, n^{\prime}=$ the refractive indices of the materials before and after the surface
$B, C, D, E, \delta=$ dumay variables

Table 2. List of Subroutines.

Name	Called by	Description
CHANGE	Main program	Interacts with user to make individual changes in the lens without requiring retyping of entire lens; inputs are as in subroutine STORE
LENR (lens read)	Main program, PARAX	Reads a currently existing lens file into the active area
LENT (lens type)	Main program	Displays the current lens on the terminal in tabular form
LENW (lens write)	CHANGE, STORE	Creates a file called by any name the user specifies, and writes the lens to it. Should the need arise, this file may be accessed for modification without use of the program
Parax	Main program	Does a paraxial ray trace that enables the user to locate the Gaussian image plane, and in general to do a rough lens design
RAY	Main program, RED	Traces a specified ray through the lens (see TORT and SYMM)
RED	Main program	Calculates the radial energy distribution in the image plane
SORT	RED	Orders the rays by incr asing radial distance from the paraxial image point
STORE	Main program	Interactively accepts data input
SYM	RAY	Does refraction calculations for symetrical surfaces
TORT	RAY	Does refraction calculations for toric surfaces

Subroutines Programed into the Data General Eclipse
CLOSE LENR, LENW Subroutine for closing a file
FOPEN LENR, LENW Subroutine for opening a file

Table 3. Walk-Through of ICARUS Program.

To \log onto the system:
USER NAME:
SLN [sample user inputs are indicated in this special type face] PASSWORD:

STEVE [this can be changed]
After much printing, ueer moy execute the progrom by typing:
MXEQ ICARUS 15 [this is system dependent]
IS THIS A NEW LENS? [Y or N]
Y
WHAT IS ITS NAME? [up to 7 alphanumeric characters]
LENSID [for example]
If this were not a new lens, the identifier statement would ause subroutine LENR (lens read) to be oalled; this routine reads in stored lens data from memory.
The follaving comes from subroutine STORE:
ENTER OBJECT TYPE [the choices are: SUN (specifies sun as the object), PNT (point source), LIN (specifies an object defined in terms of its linear dimensions, ANG (specifies an object defined in terms of angular subtense); entering LIN or ANG triggers the following interactions]

SUN

ENTER ENTRANCE PUPIL DIANETER [currently only circuler optics can be handled; the entrance pupil diameter for most solar collectors will be the collector dianoter]
10
ENTER DIMENSIONS [MM or IN or M or CM or FT, etc.; this could be changed to ENTER UNITS. Currently, this is of no use except perhaps to help the designer remember; in the future, program additions could make use of this feature to scale output]

DO YOU WISH TO SPECIFY RADII (R) OR CURVATURES (C)? [R or C: since the program works in curvatures, if R is entered, all curve inputs will be divided into 1 to obtain curvatures; this pertains to surface data, toric curvatures, and Fresnel curvature]

HOW MANY LENS SURFACES ARE THERE? [generally, the answer will be 1, but the program can handle several; this number does not include object or image surfaces; the image is assumed to be plane and normal to the optical axis]

2

ENTER SURFACE TYPE [options are as follows]

CON: a conic section (ellipse, sphere, parabola, hyperbola)
FNL: a normal Fresnel lens; aspheres are permitted
CFN: curved Fresnel, a Fresnel lens that does not lie on a plane; only spherical base curves are permitted
TOR: a toroid, a lens with different curvatures in the x and y directions
TFN: toric Fresnel, aresnel with differing x and y curvatures
CTF: curved toric Fresnel, a toric Fresnel that does not lie on a plane; only spherical base curves are permitted
CON
ENTER SURFACE DATA [respectively $R, C C, T H, N_{1}, N_{2}$, and N_{3}, defined as follows; as in input elsewhere, numbers are separated by a space]

R: radius of curvature or curvature of surface
$C C$: conic constant: $C C=0 \rightarrow$ sphere, $C C=-1 \rightarrow$ paraboloid, $C C>0 \rightarrow$ oblate spheroid, $C C<-1 \rightarrow$ hyperboloid, $0>C C>-1 \rightarrow$ ellipsoid
TH distance to vertex of next surface
N_{1}, N_{2}, N_{3} indices of refraction of three wavelengths
$200-2101.5231 .581 .527$
ENTER DECENTERS AND TILTS [respectively XDEC, YDEC (x - and y-decenters in comon units), a, B, Y (tilts in degrees); these are currently not operational, but soon to follow are progran additions that will incorporate them; since they are currently disregarded by the program, 0 is a good entry]
05000

ENTER RECENTERS AND BACKTTLTS［respectively REC $_{1}$, REC $_{2}, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} ;$ again，these are not currently operational］

ロロロロロ

ENTER SURFACE TYPE

 CTFENTER SURFACE DATA
口（10011
［first two entries negated by choice of surface type；if a nontoric is requested in preceding line，then the R appears as the first entry here］
ENTER DECENTERS AND TILTS
DODOD
ENTER RECENTERS AND BACKTILTS［same sign as original decenter or tilt cancels the former］
－50 D
ENTER TORIC CURVȦTURES［CVX，CVY（ x curve and y curve）；this question appears only if a toroid has been specified］
140 ［curvatures（ C ）or radii（ R ），as previously specified］
ENTER CURVATURE OF FRESNEL［base curve；appears if Fresnel is specified］ -150 ［curvature（ C ）or radius（ R ），as previously specified］

Subroutine LENW（lens write）is now called；it creates a file called by the name the user specifies，and writes the lens to it．Should the need arise，this file may be accessed for modification without using the program．
Return to main program：
WOULD YOU LIKE TO REVIEW YOUR LENS？［Y or N ；Y（yes）triggers subrou－ tine LENT，which displays the tabulated data on the lens；this step is used to see whether any errors have occurred or whether the de－ ：igner wants to change anything］ Y
Subroutine LENT（lens type）：disploys the owrent lens on the termi－ nal in tabular form．
WOULD YOU LIKE TO MAKE ANY CHANGES？［Y or N ；Y triggers subroutine CHANGE，which will then ask for the changes you＇d like to make］ Y
Subroutine CHANGE：interacts with the user to make individual changes in the lens without having to retype the entire lens；all user inputs are as in subroutine STORE．

WHAT WOULD YOU LIKE TO DO NOW? [options are RAY, LENT, CHANGE, PARAX, RED, NEW, QUIT; handled by subroutines described below]

RAY
Subroutine RAY: traces a specified ray through the lens. RAY in turn I uses two subroutines, TORT and SYMM, to do the refraction aaloulations for toric surfaces and axially symmetrioal surfaces, respectively. Interaction is as follows:
WHICH COLOR IS THE RAY, 1,2 , or 3 ? $\left[1,2\right.$, or 3 : refers to N_{1}, N_{2}, and N_{3}]
ENTER FRACTIONAL OBJECT HEIGHTS [FOBY, FOBX: the normalized (full field $=1$) height on the object from which the ray is to start; excluded if the object is SUN]
ENTER FRACTIONAL PUPIL COORDINATES [RHOY, RHOX, the normalized (half of the entrance pupil diameter $=1$) ray height on the entrance pupil can be any coordinates, not the $0.7,1.0$ rays, which are built in when RED is required. The output is as follows:

RAY COORDINATES AT IMAGE PLANE: $X=, Y=, R=$ $R=\left(X^{2}+Y^{2}\right)^{1 / 2}$

LENT

Subroutine LENT (lens type): disploys the current lens on the terminal in tabutar form.

CHANGE
Subroutine CHANGE: interacts with the user to make individual changes in the lens without having to retype the entire lens; described above.

PARAX

Subroutine PARAX: does a paraxial ray trace that enables the user to looate the Gaussian image plane, and in general to do a rough lens design. One question is asked:
IS THIS IN COLOR 1, 2, or 3? [1, 2, or 3: determines whether N_{1}, N_{2}, or N_{3} is used for each surface in the trace. Output is in the following form:

SURF	AXIAL Y	CHIEF Y	AXIAL U	CHIEF U
0	*****	-	-	-
1	-	-	-	-
-	-	-	-	-
-	-	-	-	-
-	-	-	-	-

1 where SURF is the surface number (0 = object; the last surface is 1 the inage surface), AXIAL Y represents the height of the ray that passes through the center of the object and the edge of the entrance pupil, CHIEF Y is the height of the ray that passes through the edge of the object and the center of the entrance pupil, AXIAL U is the angle the axial ray makes with the optical axis prior to refraction at specified surface, and CHIEF U is the angle of the chief ray; angles are measured counterclockwise from the axis]

RED
Subroutine RED: calculates the radial energy distribution in the image plane. The object is always assumed to be the sun. Interaction is as follows:
HOW MANY COLORS WOULD YOU LIKE? [1, 2, or 3: If 1 is specified, index N_{1} is used and 96 rays are traced through the system. If 2 is specified, 96 additional rays are traced using N_{2} at each surface. If 3 is specified, 96 rays are traced usirg N_{3} in addition to those with N_{1} and N_{2}. To do this, subroutine RAY is used. The radial coordinate in the image plane is then stored, and subroutine SORT is called. This subroutine arranges the points in order of increasing radius, and puts them into 10 bins. Each bin is now assumed to contain 10% of the energy entering the system.]
Output is as follows, where $r_{n}=$ the radius containing successive percentages of ray intercepts:

PERCENT ENERGY	RADIUS
10	\mathbf{r}_{1}
20	\mathbf{r}_{2}
30	\mathbf{r}_{3}
\vdots	\vdots
100	\mathbf{r}_{10}

WHAT NEXT? [options are any of the above]
QUIT
To \log off Eclipse:
BYE

ORIGINAL PAGE IS OF POOR QUALITY

Table 4. User's Notes on Progran ICARUS.

1. The program takes 12 points to describe the sun, eight points on the lens in up to three wavelengths specified by three indices of refraction. This set then specifies 288 rays. If more points on the lens are desired, it will require recompiling the program and will involve considerably more computation time (unless a single wavelength is desired, thus permitting 24 points on the lens).

The pattern of points on the sun is as shown below. They are distributed in rings of equal area, each ring being weighted for a cosine solar limb-darkening effect. In reality, the power associated with limb darkening should be less than unity for closer approximations to the true sun, but for simplicity we have assumed a cos $1.0 x$ relationship.

Pattern of points on the sun distributed in weighted equal-area rings.
2. The choice of surface type encompasses plane and plane tilted (as in the faceted Fresnel panel concept).

ORIGINAL PAGE IS OF POOR QUALITY

Note that the Fresnel surface has no finite grooves in this analytical program. The proper tilt of the Fresnel element at the point where the entering solar rays reach the lens surface is automatically calculated as discussed below.

The entrance pupil is in a plane normal to the vertex of the Fresnel base curve, as show below. The present program takes eight rays: two radii ($\mathrm{r}=0.7$ and 1.0 the lens diameter at $\theta=$ each of $0,90,180$, and 270 degrees. No central ray is traced.

Definition of the pupil plane and Fresnel base (substrate) curve.

The rays from the finite sun are directed to a single point (r, θ). When the rays are transferred to the specified Fresnel base curve, the r, θ values will be slightly different because the rays from the disc of the sun are tilted with regard to the normal at the pupil surface. The same effect arises from either a tracking error or a deliberate tilt.

The program calculates the normal at its intersection point of the Fresnel surface. The equivalent cursature of the Fresnel optical

ORIGINAL PAGE IS OF POOR QUALITY

surface is calculated, as illustrated below. The equivalent Fresnel element surfaces are always considered as curved elements, curved to yield a point focus at the specified TH value given for the final optical surface (if more than one is involved).

Illustration of the difference between the base (substrate) curvature and the equivalent element curvature.

The "proper tilt" of the Fresnel element has a subtle definition, as illustrated in the next figure. The equivalent Fresnel curvature has a constant value of RD (or CV) and CC, but is shifted by an amount Δ so that the slope at r brings the reflected ray at r to the focus. In other words, the program shifts the conic.

The radius and curvature are defined by the focal length F or the power P, by

$$
\begin{aligned}
& C V=P / 2 \\
& P=1 / F
\end{aligned}
$$

$R D$ equals $2 F$ for a reflector, or

$$
\left.\begin{array}{l}
1 / F=\left(n^{\prime}-n\right)\left(1 / r_{1}-1 / r_{2}\right) \\
P=\left(n^{\prime}-n\right)\left(C V_{1}-C V_{2}\right)
\end{array}\right\} \quad \text { for a lens. }
$$

Geometry illustrating the shift in the effective conic surface defining facet angles.

There is a strategy for finding the best value of $C C$ for the equivalent facets, depending on the base surface used. For example, the best value of CC for a plane reflective Fresnel mirror is a hyperboloid, $C C=-3.0$. The strategy is to try a CC and examine the ray distribution in the focal surface, then change $C C$ to find the best distribution.

The curvature is the inverse of the radius of curvature. The conic constant is:

$$
\begin{array}{ll}
\text { hyperboloid } & C C<-1 \\
\text { paraboloid } & C C=-1 \\
\text { ellipse } & -1 \leq C C \leq 0 \\
\text { sphere } & C C=0
\end{array}
$$

3. To find a better value of TH for the focus, take the output value of the y intercept with the $T H$ plane and paraxial angle ϕ, and calculate. Calculate an unproved TH using a pocket calculator.

Table 5. Source Code Listing of Program ICARUS.

```
PMRNOTER mRAY-96.IP-11,0P-1%,MF-2
CONMOM/MNNS/LmNT,IREC,IE,IC,ICOL
```



```
CONMON/8D/8UR(15),CV(if),CC(if),T#(1f),汭 11,3)
```



```
COMON/TD/CVF(1#)
```



```
COMMON/RAYS/R(MRAY, 3)
RENL M,LMX,INY
LOGICAL IG
TYPE"IS TAIS A MEW LEMST"
RMAD(IF,9&E) IMOE
TYPE"WHAT IS ITS MANET"
READ( IF,9&5) amave
IF(IAGE.EQ. "Y") CALL STORE
IF(IAGE.EO."&") CALL LEMR
TYPE"WOULD YOU LIKE TO REVIEN YOUR LEMS?"
READ(IF,9#E) LR
IF(LR.EO."Y") CALL LENT
TYPE"WOULD YOU LIRE TO MAKE ANY CHANGES?"
READ(IF,90%) ICO
IF(ICQ.EQ."Yn) CALl CHANGE
TYPE"WHAT WOULD YOU LIRE TO DO NOW?"
READ(IF,905) WORK
IF(WORR.EO."RAY") GOTO 1EE
IF(WORK.EO. "LENT") GOTO 11%
IF(WORX. EO. "PARAX") GOTO 12%
IF(WORX. EQ."RED") GOTO 13&
IF(WORK.EO. "CHANGE") GOTO 15%
IF(WORR.EO. "REW") GOTO 3%
IF(WORR.EO. "QUIT") GOTO 4%
TYPE"SORRY, I DON'T KAOW HOW."
TYPE"WRAT NEXT?"
READ(IF,9@5) WORK
GOTO 2%
LGO.TRUE.
CALI RAY
GOTO 25
CALL LEAT
GOTO 25
CALL PARAX
GOTO }2
CALL RED
GOTO }2
cALL chaNGE
coTO 25
GOTO 10
continue
FORMAT(81)
FORMAT(57)
END
SUBROUTINF STORE
PARANETER NRAY-96,IF-11,OP=1旦,MF-2
COMOMON/RAME/AMAME, IREC,LC, IC, ICOL
CONMON/OD/OBJ,DIM, EPD,LS,ANY, ANX,LETY, LDX ,TTES
```



```
COMMON/TD/CVF(IE)
COMONON/RAY8 / FOBY( MRAY), FOBX(MRAY) , YTA(MRAY ) YTA(MRAY), DA(MRAY ) , RAD(1%)
COMPMOS/RAYS/R(NRAY,3)
REAL M,LNY,IMX
```


ORIGINAL PAGE IS OF POOR QUALITY

Table 5．Source Code Listing of Progran ICARUS（Continued）．

TYPE＂ENTER ONSECT TYPZ＂
READ（IF．999）OBJ
IF（OBJ．EO．＂SUR＂）THEF－1．NE＋1月
IT（OBJ．EO．＂80月＂） $60 T 0$ 1\％
ACCEPT＂ONTECT DIsTANCE IS＂．TTH
IT（OBS．EO．＂AMO＂）ACCEPT＂ANGULR FIELD（B）－＂，ANY，AX
LKY－THE円TAR（AKY／57．296）
LIX－TE日＊TAM（ MAX／57．296）
IF（OBJ．EO．＂ANG＂）COTO 1%
IP（OBJ．EO．＂LIA＂）ACCEPT＂LIMEAR FIELD（B）－＂，LMY，工斯
MYY－ATAM（ LIM／THE）$=57.296$
ANX－スTAM（LEX／TBE）＝57．296
ACCEPT＂EATER EATRANCE PUPIL DINEEER－．EPD
TYPE＂EMTER DIMENEIORS＂
READ（F．999）DIM
TYPE＂DO YOU WISE TO SPECIFY RADII（R）OR CURVATUREE（C）？＂
READ（IF，998）IRO
ACCEPT＂HOW MNY LENS SORTACES ARE TEERE？＂．LS
DO 2 I $1=1$ ，Ls
TYPE＂EATER SURFACE TYPE＂
READ（IF，999）SUR（I）

ACCEPT＂ENTER DECENTERS AND TILTS $n,(D E C(I, J), J=1,2),(T I L T(I, J), J=1,3)$
ACCEPT＂EATER RECENTERS AND BACKTILT8＂，（RDEC（I，J），J＝1，2），（RTILT（I，J），
1 J＝1，3）
IF（ SUR（ I）．EO．＂TOR＂．OR．SUR（I）．EO．＂TFR＂．OR．8UR（I）．EO．＂CTF＂）ACCEPT
1 ＂EATER TORIC CORVATURES＂，CVX（I），CVY（I）
IF（ 8 OR（I）．EO．＂CFA＂．OR．8UR（I）．EO．＂CTF＂）ACCEPT＂EATERR CURVATURE OF
1 FRESAEL＂，CVF（I）
CORTIROE
IF（IRO．EO．＂C＂）GOTO 40
DO $30 \mathrm{~J}=1.18$
$\operatorname{IP}(\operatorname{CV}(J) . \mathrm{EO} . \beta) \operatorname{coto~} 22$
CV（J）＝1／CV（J）
1F（CVY（J）．BO．D）GOTO 24
CVY（J）－1／CVY（J）
IE（CVX（J）．EQ．g）GOTO 26
CVX（J）＝1／CVX（J）
IP（CVE（J）．EO．E）coto 3』
CVF（J）＝1／CVF（J）
CONTINUE
CALL LEAW
FORMAT（51）
rornat 83 ）
RETURA
END
SUBROUTIRF LEAR

COMMON／MANE／ANAKE，IREC，LG，IC，BCOL
COMMOS／OD／OBJ，DIM，ERD，LS，AYY，ANX，LAY，LEX ，THE

COMMON／TD／CTF（16）

COMMOM／RAY8／R（MRAY， 3 ）
REAL M，LHX，LMY
CALL FOPEM（ XF，AMANE）
READ（MF．999）ARAKE
READ MF，998）OBJ，DIM，EPD，L8，AMY，ABX，LMY，LMX，THE
DO 1\％I－1．Ls
READ（ME，997） $\operatorname{suR}(I), C V(I), C C(I), \operatorname{TH}(I), I(I, 1), I(I, 2), \operatorname{II}(I, 3)$

ORIGINAL PAGE IS OF POOR QUALITY

Table 5. Source Code Listing of Program ICARUS (Continued).
CONTIMOE
EORmat(1X,3F1%.6)
FORMAT(1X,1\&F1%.6)
FOmMat(ix,83.6F12.6)
TORNAT(1x,83,2X,83,4F1.f.6,3E1%.4)
FORMAT(1X,84)
CALL CLOSE(AE,IER)
RETURN
END
SUBROUTIENE IFFW
FARALLYER KRAY=96,IF-11,OF-1%,ME-2
CONGON/BAME/ARAME, IREC,LG, IC, BCOL
COMMOK/OD/OBJ,DIM, EPD,LS,AMY, ANX, LNY, LINX, TH%
CON4ON/SD/gOR(1%),CV(1%),CC(1f),T\&(1%),N(11,3)
COMON/TD/DEC(19,2),TILT(1%,3),RDEC(1%,2),RTILT(19,3),CVY(1%),CFX(1%)
COMNON/TD/CVF(1E)
COMMON/RAYS/FOBY(RRAY), FOBX(ERAY) ,XTA(GRAY) , YTA(MRAY) , RA(MRAY) , PAD(10)
COMNON/RAYS / R(NRAY, 3)
REAL N,LNY,LNX
CALL FOPEN(NF, AKAME)
WRITE(SF.999) ANAME
WRITE(AF,998) OBJ,DIM,EPD,LS,ANY,ANX,LNY,LNX,THM
DO 1% I=I,LS
WRITE(AF,997) SUR(I),CV(I),CC(I),TH(I),M(I, 1),M(I, 2),M(I, 3)
WRITE(NE,996) (DEC(I,J),J=1,2),(TILT(I,J),J=1,3),(RDEC(I,J),J-1,2),
1(RTILT(I,N),J=1,3)
WRITE(AF,995) CVY(I),CVX(I),CVF(I)
CONTINUE
FORMAT(1X,3F1F.6)
FORmAT(1X,1EF1%.6)
FORMAT(1X,83,6F12.6)
FORYAT(1X,83,2X,83,4F10.6,3E1%.4)
FORMAT(1X,84)
CALL CLOSE(NF,IER)
RETURN
END
SUEROUTINE LEAT
PARMMETER NRAY-96,IF-11,OP-1\#,MF-2
COMMON/RAME/ANAME, IREC,LG, IC, MCOL
COMMON/OD/OBJ,DIM, EPD, LS, ANY, ANX, LNY, LAXX, TH\#
COMMON/SD/SUR(1E),CV(I|),CC(If),TH(1E),8(11,3)
COMMON/TD/DEC(1%,2),TILT(1%,3),RDEC(1%,2),RTILT(1N,3),CVY(1%),CVX(1%)
COMMON/TD/CVF(1%)
COMMOM/RAYS / FOBY(ARAY) , FOBX(MRAY) ,XTA(MRAY) ,YTA(MRAY) , RA(MRAY) , RAD(IF)
COMNON/RAYS/R(MRAY , 3)
REAL M,LNY, EMX
DIMENSION RD(1%)
WRITE(OF,999) NENRE
WRITE(OF,899)
WRITE(OF,998) OBJ,DIM
WRITE(OF.898)
WRITE(OF,997) EPD,AMY, MMX,LIY,INX,TES
WRITE(OF,897)
DO 1% I=1,LS
IF(CV(I).EO.E) RD(I)=1.EE+1%
IF(CD(I).RE.E) RD(I)=1/CV(I)
contimue
DO 2f I=1.Ls

```
    1 (RTILT(I,J),J=1,3)
    READ (ME.995) CVY(I), CVX(I), CVF(I)

\section*{ORIGINAL PAGE IS}

OF POOR QUALITY

Table 5．Source Code Listing of Progran ICARUS（Continued）．
```

MRITE(OT,996) CV(I),RD(I),CC(I),TE(I),M(I,I),M(I, 2),M(I,3)
CONTIEDE
WRITE(OF,896)
K-m
DO 4^ I=1,I8

```

```

 IF(SUM.EO.E) GOTO 25
 WRITE(OF,995) (DEC(I,J),J=1,2),(TILT(I,J),J=1,3)
 BUM-RDEC(I,1)=*2+RDEC(I,2)=*2+RTILT(I,1)**2+RTILT(I, 2)**2*RTILTT(I, 3)**2
 IF(8UM.80.f) coto 3%
 WRITE(OF,994)(RDEC(I,J),J-1,2),(RTILT(I,J),J=1,3)
 COTO 4%
 K=K+1
 COMTIEND
 IF(X.EO.LS) WRITE(OF,895)
 K-%
 WRITE(OF,894)
 DO 6% I=1,LS
    ```

```

 1 .NE."TFK") GOTO 5%
 WRITE(OF,993) CVY(I),CFX(I),CVF(I)
 COTO 60
 K-K+1
 CONTINUE
 IF(R.EO.L8) WRITE(OF,895)
 FORMAT(2X,"Y CURVE",2X,"X CURVE", 2X,"FRIL CURVE")
 pormat(1X,"mone")
 FORMAT(2X,"Y DECEATER", 2X,"X DECENTER",5X,"ALPEA",5X,"8ETA",5X,"GAMMA")
 FORMAT(1X,"CURVATURE",3X,"RADIUS",3X,"COMIC", 2X,"THICKMESS", 2X,"A1",4X,
    ```

```

 FORMAT(6X,"EPD",7X,"AMGULAR FIELDS",4X,"LIMEAR FIELDS",5X,"OBJ. DI8TAMCE
 FORMAT(1X,"OBJECT URITS")
 FORMAT(1X,3F8.6)
 FORMAT(1X,5F1I.4)
 FORmAT(1X,5F11.4)
 FOммат(1X,2F1%.6,F6.3,F1%.4,3F7.4)
 FORMAT(1X,5F1%.4,E1%.4)
 FORmat(3X, g3,5X,53)
 PORMAT(1X,87)
 RETURN
 EHD
    ```
    1 ")
    SUBROUTIAE CBANGE
    PRLAKLTER NRAY-96, IF=11,0F=1月, MF-2
    CONMOM/ BAME/ANAME, IREC, LG, IC, INCOL
    COMMON/OD/OBJ, DIM, EPD, LS, AMY, ANX, LYY, LEXX, T2E
    CONON/8D/8UR( \(1 \%\) ), \(\mathrm{CV}(1 \%), \mathrm{CC}(1 \%), \mathrm{TE}(1 \%), \mathrm{M}(11,3)\)

    COMYON/TD/CVE( 1\%)

    COMOON/RAYB / R( MRAY, 3)
    REAL M, LMY, LEXX
    IETEGER RO
    TYPE"WOULD YOU LIEE TO CRAMGE TEE OBJECT?"
    READ (IF,999) ITO
    IF(ITO.EO."月") GOTO 1月
    TYPE"EMTER HEW OBJECT"
    READ (IF,998) OBJ
    TYPE"WOULD YOU LIEE TO CENMEE TEE UITS?"

ORIGINAL PAGE IS
OF POOR QUALITY

Table 5．Soruce Code Listing of Progran ICARUS（Continced）．
```

MERD(IT,999) 150
IE(ITR.80."Y") cor0 2m
TYPE"EMTER MEW URITS"
READ(IT,998) DIM
TYPE"WOULD YOU LIES TO CHANGE ORNECT DIETANCEP"
READ(IT,999) ITO
IF(ITQ.EO."田") coro 3%
ACCSPT"REW ORJECT DIBTANCE - ",TMD
TYPE"WOULD YOU LIKE TO CHANGE EPD?"
READ(IF,999) ITO
IE(ITO.EO."E") coTO 4\&
ASCEP\&"ENTER NEW EPD",EPD
TYPE"WOULD YOU LIXE TO CEAMEE FIELD 8IEE?"
READ(IE.999) ITO
IF(ITO.EQ."\#") GOTO 68
IF(OBJ.EQ."LIM") GOTO 5E
ACCEPT"AMOULAR FIELDS - ",ANY, NMX
LHY -TH/年TAN(ANY/57.296)
LMX-THF*TANT(ANX/57.296)
GOTO 6%
ACCEPT"LIMEAR FIELDS - ".LMY,LNX
ANY-57.296*ATAN(LNY/THE)
ANX-57.296"ATAN(LPX/THE)
TYPE"DO YOU WISE TO EPECIFY RADII (R) OR CURVATURES (C)P"
READ (IF,999) RO
TYPE"DOES THE LEMS 8TILL RAVE",LS," suRIACES?"
READ (IF.999) ITO
IF(ITO.EO."Y") 60TO 7\#
ACCEPT"EATER THE MONBER OF BURFACES*,IS
DO 9% I=1,Ls
TYPE"DO YOU WISH TO CRANGE SUREACE ",I,"?"
READ(IF.999) ITQ
IF (ITQ.EO."M") GOTO 9%
TYPE"EATER SURYACE TYPE"
READ(IF.998) 80R(I)
ACCEPT"EATER 8URFACE DATA: ",CV(I),CC(I),TA(I),M(I, i),M(I, 2),IN(I,3)
ACCEPT"EETER DECEATER DATA: ",(DEC(I,J),J=1,2),(TILT(I,J),J=1,3)
ACCEPT"ENTER RECENTER DATA: ",(RDEC(I,J),J=1,2).(RTILT(I,J),J=1,3)

```

```

 1 ACCEPT"EATER TORIC CORVATURES",CVY(I),CVX(I)
 IF(8UR(I).EO."CFR".OR.SUR(I).EO."CTP") ACCEPT"EATER FRIL CORVE",CVF(I)
 IE(RO.EO."C") GOTO 9%
 IF(CV(I).80.E) GOTO 82
 CV(I)=1/CV(I)
 IF(CVY(I).EO.E) GOTO 84
 CVY(I)-1/CFY(I)
 IF(CVX(I).EO.E) 005086
 CVX(I)= 1/CVX(I)
 IF(CVP(I).EO.E) cOTO 9%
 CVF(I)=1/CVF(I)
 COMTIMUE
 CALL LEEW
 Format(83)
 romuat(81)
 RETURA
 END
 sUPROUTTME PARAX
    ```

```

COMMON/MAME/AMAME,IREC,IC,IC,MCOL

```



Table 5．Source Code Listing of Progran ICARUS（Continued）．

```

COm03/RD/CVP(1%)

```

```

CONMOM/RAY8/R(MRAY,3)
DIMEM8IOM Y(12),CY(12), O(22), CO(12), PII(12)
RMAL H,L\#Y,LEX
ACCEPT "IS TRIS IN COLOR 1.2.0R 37",J
Y(f)-g
CY(f)0-2HY
O(f)=EPD/(2*TH⿱⺈⿵⺆⿻二丨⿱刀⿰㇒⿻二丨冂刂灬)
CO(B)=-LNY/TME
PEI(界)=f
Y(1)-EPD/2
CY(1)-\&
U(1)\propto(\nabla(3;-Y(1)*(\#(1,J)-1)*CV(1))/M(1,J)
CU(1)-Cu(苗)/\&(1,J)
PHI(1)=(\#(1,J)-1)=CV(1)
DO 1% I=2,Is+1
Y(I)=Y(I-1)+TE(I-1)*U(I-1)
CY(I) =CY(I-1)+TM(I-1)*CU(I-1)
IF(I.EO.LS+1) coto 1%
PAI(I)=(B(I,J)-B(I-1,J))*CV(I)
U(I)=(\&(I-I,J)*O(I-1;-Y(I)=puI(I))/\#(I,J)
CD(I) =(B(I-I,J)*CU(I-1)-CY(I)*PHI(I))/\#(I,J)
\#(I,J)-ABg(M(I,J))
CONTINUE
PHI(L8+1)-0
U(LS+1)-U(LS)
CU(LS+1)=CD(LS)
WRITE(OF,999)
DO 2EI=1,LS+2
K=I-1
WRITE(OT,998) R,Y(X),CY(X),U(Y),CU(X),PRI(X)
CONTINUE
FORMAT(1X,I4,5F1%.6:
FORMAT(1X,"SORE", 2X,"AXIAL Y",3X,"CAIEF Y",3X,"AXIAZ O",3X,"CHIEF 0",
1 5X,"POWER")
CASLL LEAR
RETUR:
END
8UBROUTTAF RAY
PARMLLILR MLUY-96,IF-11,OF=1苗,NF-2
COMMOM/mAME/ANANE,IREC,LG, IC,MCOL
CONOMOM/OD/OBJ, DIM, EPD, LS, ANY , ARX, LETY, LEX, TZH
COMMOM/8D/8UR(10),CV(if),CC(10),TH(1f), (11,3)
CONOM/TD/DEC(10, 2),TILT(10,3), RDEC(10,2), RTILT(1\#,3), CVY(10), CVX(1%)
COMMOM/TD/CVF(If)

```

```

CONMOK/RAYB/R(MRAY , 3)
COMMON/TRACE/YT,XT,A,L,M,MD
COMMOM/POP/ RROY(MRAY),RROX(MPAY)
REAL M,L,M,MD, MO, LMY , LMX
zOGICAI IG,IG2
IF(.HOT.LG) HR-MRAY
IF(.MOT.LG) GOTO 3%
rOEX(1)-5
FOQY(1)-曾
\#R-1
ACCEPT "WBICH COLOR IS THE RAY, 1.2 OR 37".IC
X, \#,IC)=1
IF(OBJ.EO.-8U\#") coTO 1%

```

Table 5．Source Code Listing of Progran ICARUS（Continued）．
```

 ACCEPT "EmFER FRACTIONN ONECT mTOETE",FONY(1),F0日X(1)
 05%0 2.
 1%
IP(LG) TYPE "RAY COORDIMATE\& AT IMAGE PLNAE; X= ",XT," Y= ",YT," R= "
, RXY
IF(LG) COTO 2月0
XTA(I) -XT
YTA(I)=YT
RA(I)-RXY
cOMTIMUE
RETURA
END
8URROUTTME TORT(J.LG2)
PRLNLTLN WHY=96,IF-11,0F-1月,ME-2
CONMOM/MAME/AMAME, IREC,IG,IC, MCOL
CONMOM/OD/OBS, DIM, EPD,LS, ANY, ANX,LIY,LNX, THED
COMMOM/SD/8UR(1%),CV(1%),CC(15),T2(15),界(11,3)
COMON/TD/DEC(1%,2),TILT(1%,3), DDEC(1f,2), ETILT(10,3),CVY(10),CVX(1f)
COMMOM/TD/CVF(1%)

```

```

COM00B/RAY8/R(mRAY, 3)
COMOHON/TPACE/YT,XT,A,L,M,UD
CONg\OM/POP/ RHOY(HRAY), DHOX(mRAY)
REAL M,X,M,MD,MO,LEX,LNX
LOGICAL LG,LG2
Y=Y +DEC(J,1)-\operatorname{REC}(J,1)
X=X+DEC(3,2)-\operatorname{REC}(J,2)
\#-8IM(A8IM(B) +TILT(J,1)/59.29578)
M-8IM(A8IM(M)+TILT(J,2)/57.29578)
L-8Im(AEIM(L)*TILT(J,3)/57.29578-RTILT(J,3)/57.29578)
M-8IM(AsIM(M)-RTILT(J,2)/57.25578)
M-8IM(A8IM(M)-RTILT(J,1)/57 29578)
IF (sUR(J).EC."CTF") GOTO 1%
8X-CvX(J)*XT**2
BY-CVY(J)*YT*=2
CX=吕-CVX(J):Z*XT
CY-MD-CVY(J)\#Y*YT
DsX-CX**2-(CVX(J)*XT)**2
DSY-CY**2-(CFY(J)*YT)**2
GOTO 2\&

```

Table 5. Source Code Listing of Program ICARUS (Continued).
```

BX-CVF(J)*(XT**2+YT***2)
BY-BX
CX-RD-CVF(J)*(I*XT+M*YT)
CY-CX
DEX-CX**2-CVE(J)*BX
D8Y-DSX
IF(ABS(DSX).LE.1E-1\#) DSX-觡
IF(ABS(DSY),LE.1E-1%) DSY-%
DX=SORT(DSX)
DY-SORT(DSY)
A=(BX/(CX+DX)+BY/(CY+DY))/2
IF(SUR(J).EO."TEN") A-E
XS-XT+A*L
YS=YT+A*M
2S-A*\&D
CSIX-DX
CSIY=DY
MU-N(J-1,IC)/ABS(M(J,IC))
DEXS-1-MU**2*(1-CSIX**2)
DEYS=1-MO**2*(1-CSIY**2)
IF(DEXS.LE.\&.OR.DEYS.LE.E) GOTO 7.
DEX-SQRT(DEXS)-NU*CSIX
DEY-SORT(DEYS) -NU*CSIY
ALPHA=-CVX(J)*XS
BETA--CVY(J)*YS
L-MU*L+DEX*ALPHA
M-MU*M+DEY*BETA
ND-SORT(1-L**2-M**2)
XT-XS +L* (TH(J)-2S)/NDD
YT=YS +M*(TH(J)-2S)/ND
A=SORT((TH(J)-ZS)**2+(YT-YS)**2+(XT-XS)**2)
GOTO 95
IF(LG) TYPE"TOTAL INTERYAL REFLECTIOR AT SURFACE",J
GOTO 9%
IF(LG) TYPE"RAY MISSED SURFACE".J
LG2-.TRUE.
RETURN
EED
SUBROUTINE SYMM(J,LG2)
PARNME'TER NRAY=96,IF-11,OF-10,NF=2
COMMON/RAYE/ANAME , IREC,IG , IC, NCOL
COMMON/OD/OBJ,DIM, EPD, LS, ANY , ANX, LNY, LNX, THD
COMMON/SD/SDR(10),CD(16),CC(16),TH(10),N(11,3)
COMMON/TD/DEC(10,2),TILT(1%,3),RDEC(10,2),RTILT(1%,3),CVY(1%),CFX(18)
COMMON/TD/CVF(10)
COMMON/RAYS/FOBY(MRAY) , FOBX(GRAY) ,XTA(NRAY) , YTA(GRAY), RA(MRAY) , RAD(18)
COMRON/RAYS/R(ERAY , 3)
COMYON/TRACE/YT, XT,A,L,M, ND
COMDYON/PUP/ RHOY(RRAY), RHOX(NRAY)
REAL N,L,M.ND,NU, LNY, LEX
LOGICAL IG,LG2
Y=y+DEC(J,1)-RDEC(J,1)
X-X+DEC(J,2)-RDEC(J,2)
N-SIN(ASIN(N)+TILT(J,1)/57.29578)
M-SIN(ASIN(M)+TILT(J,2)/57.29578)
L-SIN(ASIN(L)+TILT(J,3)/57.29578-RTILT(J,3)/57.29578)
MOSIN(ASIN(M)-RTILI(J,2;/57.29578)
M-SIN(ASIN(N)-RTILT(J,1)/57.29578)
IF(SUR(J).EO."CFN") GOTO 10
B-CV(J)=(XT=\#2+YT=\#2)

```

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

Table 5. Source Code Listing of Program ICARUS (Continued).
```

C-MD-CV(J)*(I*XT+M*YT)
DS-C*C-CV(J)*B*(1+CC(J)*MD*2D)
GOTO 2%
B=CVF(J)\#(XT**2+YT**2)
C-RD-CVF(J)*(L*XT+M*YT)
DS-C*C-CVF(J)*B
IF(ABS(DS).LE.1E-1%) DS-多
D-SORT(DS)
A=B/(C+D)
IF(OBJ.EO."FIN"") A-g
XS-XT+A*L
YS=YT+A*M
2S-A*ED
E2=1/(1-2*CV(J)*CC(J)*ZS)
E-SORT(E2)
CSI-D*E
MO-N(J-1,IC)/ABS(B(J,IC))
DELS-1-MU**2*(1-CSI**2)
IF(DELS.LT.E) GOTO 7%
DEL=SORT(DELS) -MU*CSI
ALPHA--CV(J)*E*XS
BETA=-CV(J)*E*YS
GAYMA-(1-CV(J)*(CC(J)+1)*ZS)*E
L-MU*L+DEL*ALPBA
M=MO*M+DEL*BETA
ND=MO*ND +DEL *GAMMA
XT-XS+L*(TH(J)-ZS)/ND
YT=YS +M*(TH(J) -2S)/ND
A-SORT((TH(J)-ZS)**2+(YT-YS)**2+(XT-XS)**2)
GOTO }9
IF(LG) TYPE"TOTAL INTERXTAL REFLECTION AT SURFACE ".J
GOTO 90
IF(LG) TYPE "RAY MISSED SURFACE ",J
LG2-.TRUE.
RETURN
END

```

\section*{SUBROUTINE RED}

PARAMETER NRAY-96,IE-11,OF-1\%, AF-2
COMMON/ NAME/ANAME, IREC, LG , IC , ACOL
COMMON/OD/OBJ, DIM, EPD, LS, ANY, ANX, LNY , LNX , THE
COMMON/SD/SUR(10), CV(18), CC(1末), TH(10), MK 11,3)

COMMON/TD/CVE(18)

COMMON/RAYS/R(NRAY,3)
COMMON / PUP / RHOY( MRAY) , RHOX (MRAY)
REAL N, LNY, LEIX
LOGICAL LG
DIMENS ION FY( 12 ), FX( 12 ), RY( B), RX( 8)
DATA FY/.31, \(0,-.31,8, .57,0,-57,0, .89,8,-.89,81\)
DATA FX/0,.31, ®, -.31, \(0, .57, \%,-.57,8,89,8,-.89 /\)
DATA RY/.7,0,-.7,0,1,0,-1,01
DATA RX/8, 7,0,-.7,0,1,5,-1/
LG-. FALSE.
LINX-4.36E+7
LINY-4.36E+7
DO \(20 \mathrm{I}=1,12\)

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

Table S. Source Code Listing of Progran ICARUS (Continued).
```

DO 1% J-1,8
K=8*(I-1) +J
FOBY(K) -FY(I)
FOBX(X)=FX(I)
REOY(R)-RY(J)
RHOX(X)-RX(J)
COMTINOE
CONTINUE
ACCEPT"BOW MANY COLORS WOULD YOU LIKE? ".NCOL
DO 4% J=1, ICOL
CALL RAY
DO 3% I=1,NRAY
R(I,J)=RA(I)
CONTINUE
CONTIMUE
CALL SORT
WRITE(OF,999)
DO 5% I-1,1%
J=15*I
WRITE(OF.998) J, RAD(I)
CONTINOE
FORMAT(1X,"PERCENT ENERGY",5X,"RADIUS")
RETURN
END
SUBROUTINE SORT
PARAMETER NRAY=96,IF-11,OP=10,HF-2
COMMON/NAME/ANAME, IREC,IG, IC, HCOL
COMMON/OD/OBJ,DIM, EPD, LS , ANY, ANX ,LNY , LNX ,TH%
COMMON/SD/SUR(1%),CV(if),CC(if),TH(If),R(11,3)
COMMON/TD/DEC(10, 2),TILT(10,3), RDEC(1f, 2), RTILT(1%,3),CVY(18),CVX(18)
COMMON/TD/CVE(10)
COMMON/RAYS / FOBY(NRAY) ,FOBX(NRAY) ,XTA(NRAY),YTA(GRAY) , RA(NRAY), RAD(1E)
COMmON/RAYS/R(NRAY,3)
NRA-NRAY*NCOL
DIMENSION A(288)
REAL N,LNY,LNX
DO 68 I=1,NRA
A(I)=0
DO 20 K=1,NCOL
DO 1% J-1,NRAY
A(I) = AmAXI(A(I),R(J,R))
CONTINUE
COMTINUE
DO 4R K=1, NCOL
DO 3% J-I,NRAY
IF(A(I).RE.R(J,K)) GOTO 30
R(J,K)=\&
GOTO 6.0
CONTIMUE
continue
CONTINUE
M=IFIX(NRA/18+.5)
DO 7% I=1,9
RAD(I)-A(NRA+1-M*I)
CONTINUE
RAD(16)-A(1)
RETURN
END

```
58
998
999

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

\section*{APPENDIX B \\ examples of lenses through which rays can be traced}
1. Front Surface Reflective Fresnel

2. Rear Surface Reflective Fresnel


\section*{3. Rear Surface Transmissive Fresnel}


Note that, when "Fresnel" is specified, the limitation of only a spherical base curve enters. This limitation can be removed, but isn't in this edition. The Fresnel elements, as specified by the "surface data," can be conic, toric, etc.

\section*{4. Flat Transmissive Fresnel}


Note wat a flat surface can be designated as a conic even though it is flat, and it will be treated as an asphere with the departure from the plane being the same as the departure of the corresponding conic from the sphere whose curvature it approximates at its vertex.```

