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ABSTRACT

Numerical weather prediction (NWP) is an initial-value problem for
a system of nonlinear partial differential equations, in which initial
values are known incompletely and inaccuratel&. Observational data
avallable at the initial time must therefore be supplemented by data
available prior to the initial time, a problem known as meteorological
data assimilation.

A further complication in NWP is that solutions of the governing
equations evolve on two different time scales, a fast one and a slow
one, whereas fast scale motions 1n the atmosphcre are not reliably
observed. This leads to the so-called initialization problem: initial
values must be constrained to result in a slowly evolving forecast.

The theory of estimation of stochastic-dynamic systems provides a
natural approach to such problems. For 1linear stochastic~dynamic
models, the Kalman-Bucy (KB) sequential filter is the optimal data
assimilation method. We show that, for 1linear models, the optimal
combined data assimilation-initialization method is a modified version
of the KB filter. This modified KB filter combines the standard KB
filter with a projection onto the slow solution subspace.

The shallow-water equations are a simple system whose solutions

exhibit many features of large=-scale atmospheric flow important in NWP.
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We implement the standard and modified KB filters for a linearized
version of these equations, given a simple observational pattern. The
numerical results show that the modified £ilter produces a slowly
evolving forecast, at the expense of forecast errors only slightly
larger than those incurred by using the standard KB filter.

A statistical data assimilation method widely used at NWP centers
1s known as optimal interpolation (O0I). We dimplement OI for the
shallow-water model, and we use the estimation-theoretic framework to
compar: the performance of OI with that of the standard and modified KB
filters. .

Numerical results show that the simplifying assumptions involved
in 0T lead to relatively large errors near boundaries separating
data-dense and data-sparse regions, and that proper initialization is a
partial cure for this boundary effect. We show also how estimation
theory can be used to tune the free parameters involved in OI, in such
a way that the tuned scheme performs roughly as well as the modified KB

filter.
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CHAPTER ONE

INTRODUCTION

l.1. Description of the Problem and Qutline of Results

One of the main reasons vhy we cannot tell what the weather will
be tomorrow is that we do not know what the weather is today. In other
words, numerical weather prediction (NWP) is an initial-value problem
for which initial data are not available in sufficient quantity or with
sufficient accuracy.

Numerical forecasts are now produced routinely by weather services
in many countries. The models used in NWP are discretized versions of
the partial differential equations which govern large-scale atmospheric
flow. The spatial domain of muny models surrounds either the entire
globe or at least an entire hemisphere. Values of the atmospheric
variables must be specified over a regular three~-dimensional mesh at
each infitial forecast time.

Observational data, collected from a variety of ground=-based,
airborne and space~borne observing systems, are distributed very
irregularily in space and time. At any single time, the data are too
sparse over most of the globe to determine a complete set of initial
values. Observational data are also subject to significant random,
systematic and correlated errors.

Data available at the initial time of each forecast must therefore
be supplemented with information from previous observations. The
attempt to provide initial wvalues for NWP models by use of all

availabre data is known as four-dimensional data assimilation. The
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adjective "four—dimensional" emphasizes that data distributed in both
time and space must be used,

The current data assimilation practice at NWP centers is to
linearly combine observations available at the initial time with a
forecast issued from previous observations. A new forecast 4is then
issued, and the process 1is repeated as further observations become
available: the forecast model assimilates the data. The problem of
four~dimensional data assimilation is essentially that of determining
the best way to combine forecast and observed values.

The peculiar dynamics of the earth’s atmosphere present a further
difficulty in the determination of initial values. Namely, NWP is a

problem with two time scales, in which motion on the fast time scale is

not reliably observed.

The system of nonlinear partial differential equations which
governs *he atmosphere’s dynamics admits two types of solutions:
rapidly evolving solutions, which in the earth’s atmosphere consist

mostly of inertia-gravity waves, and slowly evolving solutions,

consisting mostly of Rossby waves. In the earth’s atmosphere, the

fast-scale motions occur mainly on small spatial scales which are
resolved neither by the observational network nor by global NWP models.
Fortunately, the fast=-scale components of motion typically carry much
less energy than the slow=-scale components. On spatial scales which
NWP models are designed to resolve, the slow motions are the
significant ones,

Initial data for NWP models must be chosen accordingly: the data
must be constrained to result in a 8lowly evolving forecast.

Improperly chosen initial data lead to spurious fast waves which appear
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as large, transient errors i{in the forecast of every meteorological
variable. Forecasts of vertical motion, and therefore precipitation
forecasts, are particularly affected by the spurious waves.
The process of idjusting initial data so that s slowly evolving

forecast ensues is known as initialization. Customarily, a data

assimilation method provides "first gvess" initial data, which are then
adjusted by application of an initialization scheme,

The estimation theory of stochastic-dynamic systems provides a

natural framework for studying the data assimilation-initialization
problems In the approach of estimatiou theory, the evolution of the
atmosphere 1s aesumed to differ from that of a given NWP model by
random increments; the random increments are meant to ac¢count for
modeling errors. Thus, the "true" atmospheric state is governed by a
stochastic~dynamic model. Observations are treated similarly: they are
noisy "output" of the stochastic~dynamic atmospheric model.

In the context of eséimation theory, the data assimilation problem
is that of estimating the "true" sgtate, glven the unperturbed,
imperfect NWP model, and given inaccurate, incomplete observations of
the "true" state. The initialization problem is that of tonstraining
the state estimates, or f;recast, to evolve slowly.

In this dissertation, we apply estimation theory to study the data
assimilation-initialization probiem, in two ways. First, we formulate
a combined data assimilation-iniiialization method which {is
statistically optimal for linear stochastic-dynamic models. Second, by
means of numerical experiments with a simple linear model, we compare
this method with the method of "optimal interpolation" which is widely

used at NWP centeys.
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For linear stochastic-dynamic models, the discrete Xalman-Bucy
(kB) filter of estimation theory is the statistically optimal data

assimilation method. The KB f£ilter 1is optimsl 1in that it
simultaneously minimizes all quadcatic measures of the estimation
error, i.e., all quadratic functionala of the difference between the
estimate] state and the true state. Like data assimilation methods in
operational use at NWP ceanters, the KB filter processes data
sequentially: observations are discarded once they have been processaed,
so that past observatious are used only 4in the form of a forecast
issued from them. The optimality and sequential nature of the KB
filter has led to 1%s successful use in a wide variety of engineering
problems.

The KB filter does not automatically provide slowly evolving state
estimates, however, and therefore it is not directly applicable to NWP.
To find a combined data assimilation-initialization algorithm, we solve
a constrained minimization problem. Namely, we require that a
quadratic functional of the estimation error be minimized, subject to
the constraint that the ensuing state estimates will evolve slowly.

The solution turns out to be a modified form of the standard KB
filter, It is given by multiplying the usual KB gain matrix, which
specifies the linear combination of forecast and observed values, by a
matrix which projects onto the get of data which lead to slowly
evolving forecasts. That is, the KR gain matrix 18 multiplied by a

projection matrix onto the model’s slow-wave subgspace. The projection

matrix depends on the choice of error functional, and thus a tradeoff
is involved 1in constraining the estimates to evolve slowly: the

modified filter depends on the choice of error functional, whereas the
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standard KB filter does not. When using the modified XB filter, one
must choose the error functivnal to be minimized.
The modified KB filter is equivalent to combining the standard KB

filter with the method of variational linear normal mode initialization

which 1is used at NWP centers. In this initialization method, the first
guess estimate provided by a dota assimilation scheme is projected onto
the slow-wave subspace, in such a way as to minimize a quadratic

functional of the difference between the first guess and the

initialized estimala., Inasmuch as the first guess in our case is
provided by the KB filter, the modified filter minimizes also a
functional of the difference between the true state and the initialized
estimate, This property is important in deciding upon an appropriate
error functional to be minimized.

A simple model whose solutions exhibit many features of
large~scale atmospheric flow, including the two time-scale behavior, is

the one governed by the shallow-water equations. We implement the

standard and modified filters for a linear, one-dimensional version of
the shallow-water equations. We use a simplified observing pattern
based on the conventional meteorological observing network.

One of the advantages of the estimation-theoretic framework 1is
that 1t provides a way of assessing the performance of data
assimilation schemes: the estimation error variances evolve in a known
way. We make use of this fact to compare the performance of the
standard and modified filters in our shallow-water model. The results
show that the modified filter does indeed produce slowly evolving
estimates, and at the expense of estimation errors only slightly larger

thun those of the standard KB filter.
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Our numerical experviments siso demonstrate that the two filters
automatically determine observational weights in accordance with loéal
data density and with tiie amount of information advected betweern
data=densc and data~sparse regions. 1In particular, the filters are
able to discern between data=sparse regions located upstream and
downstream from a data~dense region,

For our second appliceiion of estimation theory, we implement a

version of optimal interpolation (0I) for our shallow-water model,

This data assimilation method 1s in use at a number of NWP centers and
is under development at several others. Optimal interpolation is based
on a nunber of assumptions concerning forecast error correlations and
the evolution of forecast error variances.

We use the estimation-theoretic framework to assess the
performance of OI 1in our model, and we compare the performance of OI
with that of the standard and modified KB filters. Our numerical
results suggest that the simplifying statistical assumptions involved
in 0I lead to relatively large errors +near boundaries separating
data-dense and data-sparse regions. We show that proper initialization

4s a partial cure for this boundary effect, in that dinitialfzation

helps keep estimation errors localized.

A number of free parameters, such as forecast error variance
growth rates over different regions, are specified in OI schemes. We
show that, by monitoring the size of estimation errors, these
parameters may be adjusted, or tuned. The results show that, when the
growth rates are properly tuned, the performance of an initialized

version of OI 1is roughly comparable to that of the modified KB filter.
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The tuning 4s a way of allowing the OI schieme to make some use of
advected information.

We hope thet our results, both theoretical and numerical, iead to
a better understanding of the interaction between initialization and
four-dimensional data assimilation.

In Section 1.2, we review &everal aspects of NWP models and
metcorological observing systeiss, in order to acquaint the reader with
some of the practical considerations involved in numerical weather
prediction. We also discuss the general formulation of data
assimilation methods and we discuss normal mode initfalization methods
in some detail.

Tn Chapter 2, we review the relevant aspects of estimation theory.
We show, in particular, how estimation theory can be used to assess the
performance of dJata assimilation schemes. A simple derivation of the
KB filter is presented also.

In Chapter 3, we introduce the linearized shallow-wanter equations,
and we formulate and discuss their slow-wave subspace. The discrete
version of the shallow-water equations upon which our numerical
experiments are based is given in Chapter 4, where we also define the
slow-wave subspace of the discrete shallow-water model. The modified
filter will depend upon the slow-wave subspace of the discrete model,
rather than upon that of the original differential equations.

Our main theoretical results appear in Chapter 5. After
preliminary remarks in Section 5.1 and a review of projection matrices
in Section 5.2, the modified KB filter is presented in Section 5.3; it
is given by Theorem 1. An efficient method for computing the projection

matrix upon which the modified filter depends is given by Theorem 2 of

A PR AN S TR TR

R e cher

W i



-8~

Section 5.4. We describe a varlety of choices for the error

functional, and the corresponding projection matrices, in Section 5.5.

The description and results of our numerical experiments with the
standard and modified KB filters are given in Chapter 6; the OI
experiments are described in Chapter 7. A preliminary version of the
experiments in Chapter 6 was reported in Ghil et al. (198l). The
results in Chapter 7 are summrized in Cohn et al. (1981).

Theorems 1 and 2 of Chapter 5, and also the lemmas of Sections 5.2

and 5.4, ars proven in the Appendix.

1.2. Background on Numerical Weather Prediction

Most forecast models used in NWP are discretized versions of the
so~called primitive equations, which are the Eulerian hydrodynamical
equations modified by the hydrostatic assumption. Finite difference
element methods are used to a much lesser extent. The models are fully
three-dimensional, depending on a wvertical coordinate and on two
horfzontal coordinates. Global, hemispherical and limited-arca models
are all in use. See Haltiner and Williams (1980) for a full treatment
of numerical modeling in NWP,

The highest resolution global and hemispherical models have
105-106 degrees of freedom =-- a large number even by present
computational standards. Still, this resolution corresponds to a
horizontal mesh spacing of 100-200 km, which 1s‘not adequate fof local
prediction. Local forecasts are carried out by use of 1limited-arza

fine-mesh models and by subjective judgement. In any case, local
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forecasts are based upon forecasts provided by global (or
hemispherical) models.

Exrors are incurred at each step of the ptcdiction process. Some
errar is made at the local levels The global models are another source
of error, primarlly due to discretization and improper modeling of
physical processes. Finally, there is error in the determination of
global injtial values.

Inicial error i1s important, especially because the resulting
forecast error grows rapidly. This growth is a consequence of the
atmosphere’s nonlinear dynamics, and is not an‘artifact of the model.
In stable linear systems, the effect of an initial perturbation tends
to zero with time. The atmosphere 1s nonlinear and has locally
unstable modes. Perturbations at small scales of motion are
nonlinearly fed into the larger scales and eventually grow emough to
completely contaminate a forecast. The atmosphere is 4in this sense
unpredictable.

Three approaches have been used to determine the rate at which
predictability of large-scale atmospheric flow is lost. Lorenz (1969a)
examined a five-year observational data set for atmospheric
"analogues", or pairs of similar states, and studied their divergence
in time. In the second approach (Charney et al., 1966; Williamson and
Kasahara, 1971), one studies instead the divergence of pairé of
nmerical forecasts issuing from slightly different initial states. In
the third approach (Leith and Kraichnan, 1972; Lorenz, 1969b), the
transfer of error between different scales of motion, based on a
presumed atmospheric energy spectrum, 318 calculated by means of

gtatistical theories of turbulence,
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The three approaches give the same quantitative results. For
scales of motion resolved by current NWP models, two atmospheric states
differing initially by # small amount diverge exponentially at first,
with an rms error-doubling time of about 2-3 days. Errors level off in
about 2-3 weeks, after which time the two states become statistically
uncorrelated.

Errors in initial states are due to the incompleteness and
inaccuracy of data provided by the global observing network. Here we
briefly describe the observing systems and the error structure of the
data they provide. For a more complete discussion we refer to
Bengtsson (1975) and Fleming et al. (1979a,b).

The largest number of obsz2rvations made at a single time each day
are made at the so-called synoptic times, 0000 and 1200 hours Greenwich
Mean Time (GMT); the synoptic times are chosen as initial forecast

times. Synoptic data are provided by the conventional observing

network of surface stations and radiosondes. In Figure 1, in the

panels marked "surface", "pilots" and "temps", we show the distribution
of conventional observations available at 1200 GMT on January 9, 1979.
The wuneven spatial distribution of conventional data 1s clear:
observations are concentrated over the continents, especially those of
the Northern Hemisphere,

A number of additional observations, mostly surface observations,
are provided by the conventional network at the subsynoptic times, 0600
and 1800 MT. A much larger number of observations, exceeding by now
that given by the conventional network, are made in an essentially
time-continuous manner by polar-orbiting satellites, geostationary

satellites and other nonconventional observing systems (remaining

Gt emsateiac oo o i e
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panels in Fig. 1). Satillite observations greatly improve upon the
spatial coverage of conventional observations, but their usefulness in
providing initial data iz limited by the fact that satellite coverage
of the globe is incomplete at any one time.

Each observing system has {its own particular error
characteristics. The conventional network provides point values of
pressure, temperature, horizontal velocity and humidity. These fields
are highly variable, and hence point measurements are not
representative of volume averages, as they should be for numerical
models. Although instrumental errors are relatively small, the total
observational errors of conventional data can be quite large.

Observational errors from nonconventional measurements are often
even larger. Geostationary satellites ("satwind" in Fig. 1), for
example, provide sequential cloud images from which horizontal wind
velocities are deduced. Veloclty errors in this case are large,
primarily because of difficulty in determining the vertical location of
the clouds being tracked.

Observational errors are also correlated in a number of ways.
Errors from radiosonde measurements are spatially correlated, as the
sondes rise through the atmosphere. Pols »orbiting satellites
("satems" {in Fig. 1) measure radiances at different wavelengths, from
which vertical temperature profiles are deduced. The errors in a given
profile are vertically correlated; profile errors are also horizontally
correlated along the satellite track. Sequences of measurements from
any single instrument are also likely to have temporally correlated

errors.
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The inaccuracy and incompleteness of observational data available
at any single time gives rise to the necessity of four-dimensional data
assimilation. Bube (1978, 1981) has studied some theoretical aspects
of data assimilation for general first-order linear hyperbolic uylﬁ;ms.
He gives conditions under which aolutioﬁs of such equations€ are
uniquely determined by nonstandard data, di.e., by data other than
complete initial data. For the method of direct 4insertion of
nonstandard data during an integration, he shows how the rate of
convergence toward the solution depends on the frequency with which
data are available for insertion. In a similar theoretical study,
Talagrand (1977, 1981) has examined the convergence of direct insertion
methods based on both forward and forward-backward integration, for
linearized versions of the shallow-water equations and of the primitive
equations. Both studies assume perfect observations.

Direct insertion, or replacement of forecast values with observed
values, is not desirable in practice, because of observationsl error
and forecast ervor. Rather, an appropriate combination of observed and
forecast values is sought. The usual procedure is as follows.

At a given time when observations are available, differences are
formed between the observed and forecast values, after an interpolation
between grid points and observation locations. Thus, 1f w° d1s the

vector of observations, 1if gf is the vector of forecast values at all

the grid points, and 1f H 15 a matrix which interpolates from grid
points to observation Jlocations, then the observed-minus-forecast
residual 1is given by g°-Hgf. Once the residual vector has been
determined, it is multiplied by a matrix K of weighting coefficients,

and then added back to the forecast vector. The result,
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Wt = f + X(w° - nuf), (1.1)

is known as the analysis vector, since it represents an "analysis" of
the available observations. The forecast then proceeds, using the
analysis vector as initial data, and the entire process 18 repeated
when new observations becom¢ available. Thus, the schemes are
sequential, in that obser.ations are discarded once they have been
processed.

The central problem of four-dimensional Qaca assimilation i{s to
determine an appropriate choice for the matrix K, as thiz matrix
characterizes an assimilation scheme. This matrix 48 known in
estimation theory as a gain matrix. In global NWP, gain matrices are
very large, on the order of 106 x 105, so that almost all elements must
be zero in order to leave a tractable computational problem. In actual
practice, data assimilation 1is always carried out locally, so that gain
matrices are block diagonal and have rather small bandwidths,

Until very recently, most assimilation methods used relatively
little statistical information. The most popular such method, known as
the successive correction method, was developed by Bergthorsson and
DBYs(1955) and by Cressman (1959). In this method, weights assigned to
observational data surrounding a grid point are functions of radial
distance only; scans of the data over successively smaller radii from
each grid point are employed, so that a smoothly varying analyusis field
results. A complete review of assimilation methods, including the

successive correction methcd, appears in Gustavsson (1981).
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We have already secen that the error itrugturélnof satellite
observations is quite different than that of conventional observations.
Thus, as nonconventional, satellite~based observations became
available, it was realized that nonstatistical procedures would no
longer suffice.

Statistical assimflation was first suggested by Eliassen (1954)
and by Gandin (1963). The statistical schemes in current use are known
as "optimal interpolation" methods. In these methods, the gain matrix
is based upon a presumed forecast error covariance mitrix and its
presumed evolution in time. Current formulations of OI are
multivariate, 1in that forecast error correlations between different
atmospheric varifables are prescribed (Rutherford, 1973, 1976;
Schlatter, 1975; Schlatter et al., 1976). Statistical assumptions
based on the atmosphere’s approximate dynamics are 4involved in
specifying the correlations.

In Chapter 2 we will see that, 1like OI, the KB filter is a
statistical, sequential data assimilation method. The difference 1s
that the KB filter is based upon the correct evolutinn of the forecast
error covariance matrix, which {is known by virtue of a
stochastic~dynamic atmospheric model.

We describe 1in Chapter 7 the statistical assumptions made in OI.
Our implementation of OI will be based on that at the U. S. National
Meteorological Center (NMC; Bergman, 1979; McPherson et al., 1979) and
at the European Centre for Medium Range Weather Forecasts (ECMWF;
Lorenc, 1981).

In actual practice, all data assimilation methods are

intermittent, rather than continuous. That is, observational data  are
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grouped 4in intervals centered at the synoptic times, and sometimes at
the subsynoptic times also, and data are assimilated only at those
times. Assimilation is performed intermittently for two reasons.
First, intemittent assimilation is more compatible with data-handiing
procedures such as croas-checking for gross errors. Second,
intermittent assimilation allows some time for the dispersion and
dissipation of transient fast waves induced by each assimilation.
Still, it is necessary to combine data assimilation with some form
of initialization. The initialization methods which have dominated
both research and practice in recent years, are the normal mode

initialization methods. We describe them briefly here; see Daley

(1981) for a complete veview of these methods. For a review of other
initialization metheds, see Bengtsson (1975).
Normal mode 1initialization 4s based on writing the unforced

forecast equations in phase space, as

Y = -1 Ay +r(y.2 ., (1.2a)

z = -1 hxz +1y(y,2) 5 (1.2b)

y(t) and 2z(v) are the slow and fast mode expansion coefficients,
respectively; the Aj are constant, diagonal matrices, and the 1y are
nonlinear terms which depend on both slow and fast mode coefficients.
The eigenfrequencles Al are generally small compared to the
eigenfrequencies A2 , and the vonlinear terms are generally small
compared to the linear terms.

Linear normal mode initialization was suggested by Dickinson and

Williamson (1972); it was tested with a shallow-water equations model
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by Williamson (1976), and with a primitive equations model by
Williamson and Dickinson (1976). In this method, the "first guess"
analysis vector provided by data assimilation is adjusted by setting to
zero its fast components, while leaving its slow components unchanged.
Thus, 1f y®(0) and z%(0) are the modal coefficients of the analysis
vector at time t = O, wsay, then the modal coefficients of the
Yecorrected”, inttialized vector from which the forecast proceeds are

given by

y€€0) =y ,  z°(0) = 0. (1.3a,b)

Were Eqs. (1.2) 1linear, the fast oscillations would thereby be
eliminated for all time: z(t) = 0 if 2(0) = 0 and £y = 0. The equations
are not linear, however, and the nonlinear terms excite fast modes

during the forecast. Indeed, at the initial time we have
z * L(3™0) » (1.4)

whereby 2(0) # 0, since y*(0) # 0 generally.

Nonlinear normal mode initialization was introduced by Machenhauer
(1977), and independently by Baer (1977) and Baer and Tribbia (1977).
This method attempts to eliminate the nonlinear excitation of fast

modes by adjusting the initial vector so that

z(0) = 0. (1.5)

That 1is, the fast waves are required to be stationary at the initial

time. The slow coefficlients are not changed,
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y©(0) = y2¢0) . (1,6a)

To satisfy Eq. (1.5), the fast coefficients z*(0) are discarded, and

replaced by

26(0) = ~ 1 A3lry(y©(0),25(0)) ; (1.6b)

a small, balancing fast component is introduced. In the Machenhauer
formilation, the nonlinear equation (1.6b) is solved approximately, by
one or two steps of functional iteration. The Baer~Tribbia method is
slightly different, and is based on a careful nondimensionalization
with respect to thlie t¥o time scales involved,

An extension of the nonlinear wchemes, known as variational
nonlinear normal mode initialization, has been developed by Daley
(1978). In this method, the fast coefficients are still required to
satisfy Eq. (1.6b), but the slow coefficients are now altered also, to
reflect the relative accuracy of different atmospheric variables
provided by the assimilation scheme. Thus, a discrete version of an

error functional
n=/ [qu(.u"-u")2 + qv(v"--va‘)2 + q¢(¢°-¢a)zl dA (1.7)
A

is minimized, subject to Eq. (1.6t) as a constraint. Here u® and v3
denote velocity components of the an&lysis vector, and ¢2 denotes the
geopotential, while the minimization 1s with respect to corrected
values u®, vC, ¢ ; the integration is carried out over the entire
atmosphere. The prescribed weighting factorsk.,qu » Ay » 9y may vary in

space and time; they reflect data density and accuracy. The weights

e e L I
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are taken to be large over data-dense regions, for example, s0 : that
most of the correction 1s over regions of sparse coverage where the
analysis vector is not likely to be very accurate, The variational
approach can also be applied, of course, to the linear initialization
scheme.

The slow manifold concept of Leith (1980) has provided a framework

for understanding the behavior of normal mode initialization methods.
The slow manifold approximates the set of slowly evolving solutions of
the forecast equations; nonlinear normal mode initialization is viewed
as projection onto the slow manifold. The nonvarfational method
corresponds to one type of projection. In the variational approach,
the type of projection depends upon the weighting functions q, , q, ,

Q¢-
The Rossby manifold 1is the set of solutions of the forecast

equations having z = 0; linear normal mode initialization 1s projection
onto the Rossby manifold. For linear models, such as the shallow-water
equations model we will work with, the Rossby manifold and slow
manifold coincide. For linear models, the slow, Rossby manifold is in
fact a subspace, i.e., linear combinations of slow solutions are also
slow solutions.

We will see in Chapter 5 that the modified KB filter corresponds
to combining the standard KB fiiter with variational linear normal mode
initialization. That is, the standard KB filter can be viewed as the
underlying assimilation scheme, with the KB analysis vectors being
projected onto the s8low~wave subspace, Essentially, we prove

rigorously that this is the best that can be done for linear models.

e e et e .
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For the modified KB filter, one must still ¢hoose the¢ variational
weights which define the type of projection. We will show that, in
addition to mi:dmizing the functional (1.7), the modified filter also

minimizes the expected value of
n’ =f [fqu(uc-ut)Z + qv(vc-v_t)2 + q¢(¢c.*t)2] dA , (1.8)
A

where ut, vt, ¢' are components of the "true" atmospheric state
governed by a stochastic-dynamic model; n’ 4s a functional of the

actual error of the initialized state. In our numerical experiments,

we thercfore minimize the expected value of the ftotal energy of the
error, i.e., we choose constant weights q , q, , Qg o The theory,

however, 1s developed for the most general quadratic error functiomal.

S
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CHAPTER TWO
ESTIMATION THEORY AND METEOROLOGICAL DATA ASSIMILATION

In this chapter, we review some of the aspects of estimation
theory which apply to the problem of assimilating meteorological
observations. The theory 4is presented only for the case of
discrete-time, linear systems. Jazwinski (1970) rigorously treats both
nonlinear and linear estimation theory, and Davis (1977) gives an
elegant account of the lincar case. An elemeéntary treatment is

available in Geld (1974),

2,1. 'The Stochastic=Dynamic Models

In the application of estimation theory to data aasimilation, the
atmosphere 1is assumed to be governes by a stochastic-dynamic model
which is a randomly perturbed version of a given NWP model. The random
perturbation 1is meant to aczount for the discrepancy between the
evolution of the actual atmosphere and the evolution described by the
given forecast modei. The observation process is represented by a
second stochastic-dynamic model: the observations are considered to be
noisy ‘"output" of the stochastic-dynamic atmospheric model. The
assumptions on which the stochastic-dynamic models are based lead to a
statistically optimal assimilation scheme, and to a method for
assessing the performance of alternative schemes. The
stochastic-dynamic models are described 1in this section, and their

ramifications are discussed in subsequent sections.




We present only a simple special case of the theory: the given
forecast model 1is 1linear, and hence does not represent an actual NWP

model. The forecast model is expressed symbolically as
¥k = Y-l Wk-1 » 2.1)

for values of the discrete time k = 1,2,3,... «+ The vector Wi has

dimension n and the dynamics matrix ¥, _, 1s nxn, where n is the number
of degrees of freedom of the model: n is as large as 106 for actual NWP
models, Interpreting Eq. (2.1) as a finite-difference model, the
components of W, approximate at time k the values of the atmospheric
variables at each grid point; V¥, , consists of finite~difference
coefficients and advances the forecast from time k=1 to time k. Forcing
terms are omitted from Eq. (2.1) for simplicity.

The model (2.1) is linear: ¥ does not depend on W, The linearity
assumptior. leads to substantial simplification of the theory reviewed
in this chapter and extended in Chapter 5. Linearity does not obscure
the main phenomenon of interest: linearized NWP models have solutions
which wvolve on two time scales.

Given the forecast model (2.1), it {s assumed that the true

atmospheric state evolves according to the stochastic=dynamic model
o L t
B = Yi-1¥ic-1 + Be-1 (2.28)

The superscript t demotes that the state vector wf i an n-vector of

the true, but unknown, values of the atmospheric variables. The random

perturbation, or system noise, is the n-vector Eﬁ-l' In general, it 1is

supposed to account for dynamical and physical processes improperly
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modeled by the forecast equations (2.1), as well as for truncation
errors due to discretization. Since the dynamics of Eq. (2.2a) are
linear, we will want the noise to account 1in particular for the
nonlinear effect of wunpredictability,

The sequence {bf: k = 0,1,2,...} is assumed to be a white noise

sequence with mean zero and known covariance matrix Q:
EbE = 0, E(BE)(BE)T = Qo (2¢2b,¢)

The operatoy E indicates the expected value, or ensemble average, the
superscript T denotes the vector or matrix tr;nquse, and the symbol
§yq 18 the Kronecker delta, §yg = O if k ¢ £ and §yp = 1 if k = £. The
mean-zero assumption (2.2b) is made for convenlence, and 1s not
essential to the theory.

Having desciibed the state model, Eqs. (2.2), we now describe the

observation model. Suppose that a vector of observations gﬁ is

available at a given time k. It is assumed that the observations can be

modeled by the equation

o - ek + - (2.30)

The dimension p of the observation‘ vector gﬁ is the number of

measurements available at time k: p = p(k). The cbservation matrix H

is a nonrandom pxn matrix, and the observation noise gﬁ is a random

p-vector. Typically p << n.
The elements of the observation vector are the raw observational
data themselves. We merely assume that they are related to the true

atmospheric state, and hence to Eq. (2.2a), by Eq. (2.3a). The




g

-23-

observation model is assumed to be linear: H  does not depend on gﬁ.
In other words, Eq. (Z.2%) models noisy observations of linear
combinations of elements of the state vector.

The 1linear combinations correspond to the fact that the
observation matrix iwust interpolate from variables defined at grid
locations (the elements of gg). The two sets of variables need not
represent the samé meteorological fields. For example, part of the
observation miatrix could contain 1linear regression coefficients for
conveyting between temperature components of gﬁland satellite-measured
radiances in wp.

The random vector bY models observational error, which includes
both instrumental error and the sampling error inherent in point
measurements of fields with considerable spatial variability. The
observational noise 1s assumed to be white, with mean zero and known

covariance matrix Rk:
EBY = 0, EGBDGDT = Resy, (2.3b,c)
and 1s assumed to be uncorrelated with the state noise:

E(b) ()T = 0. (2.34)

Assumptions similar to (2.3b,c,d) are also 1implicit 4in the data
assimilation schemes 4in use at NMC (Bergman, 1979) and at ECMWF

(Lorenc, 1981).

TR T T T R S
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The stochastic-dynamic models (2.2, 2.3) express the basic
assumptions involved 1in our application of estimation theory to NWP.
Next, we introduce the class of data assimilation methods to be
considered, and then we discuss the implications of the models for the

data assimilation problem.

2.2, Unbiased Linear Data_Assimilatipn Methods

Suppose that at some time k~1l, observational data 3&*1 have been
used to provide an estimate wp_,| of the true atmospheric state 3&—1'
The superscript a is used for the estimate because the estimate 1s

known 1in meteorological practice as the analysis vector: it represents

an "analysis" of the observations available at time k-l. The analysis

vector is assumed to be unbiased, i.e.,

Ewl_) - wi.)) = 0. (2.4)

Like the state vector, the analysis vector has dimension n.
The purpose of a data assimlilation scheme 1s to combine the
estimate gﬁ_l with new observations gﬁ which become avallable at time

k, Lo produce a new estimate wi, We consider only unbiased, linear

d

assimilation methods: a new unbiased estimate is sought as a linear

combination of the old estimate and the new observations, i.e.,

E(uf - wl) =0, (2.5)
Wi = Ly-19k-) + Kewpe (2.6)



=25

D i adiall o dhie o o i R e e i

The matrices L, _) and Ky are nonrandom and have dimensions nxn and nxp,

respectively.

The assumptions inherent in the stochastic-dynamic models actually

deternine L, ., and allow En. (2.6) to be written in a more

intuitively appealing way. Substituting Eq. (2.6) 4into Eq. (2.5),

and using Eqs. (2.2a,b), (2.3a,b) and (2.4), one finds that

0 = ECuR - wl) = [y = (T = KyHy)¥yoy JEWK) -

Since Ewl_; # O generally, it must be that

Lp-1 = (I = KyHp)¥yey o

s0 that Eq. (2.6) becomes

WR = YimquRol + Kie(uR = Hp¥g-19k-1)-

Now ¥p_jwR.) 1s just a one-step prediction from time k-1 to time

k, cf. Eqe. (2.1). Defining the forecast vector gi,

a
¥k = Yee198-1 o
we therefore have

W = wf o+ K (uR - mb)

cf. Eq. (l.1). The forecast and analysis vectors,

(2.7a,b), are boch estimates of the atmospheric state.

(2.7a)

(2.7b)

given by Egs.

The forecast is
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a first guess; the analysis is presumably a better estimate since it
incorporates the new observational information.

Eqs. (2.7) represent the general form of all linear, unbiased
data assimilation schemes. With Eq.(2.7a) replaced by a fully
nonlinear NWP model, all statistical assimilation schemes used at NWP
centers can be written in the form (2.7); see, for example, Gustavsson
(1981).

The general form of the scheme (2.7) states that the analysis
vector is the sum of the forecast vector and a linear combination of
the elements of the observed-minus-forecast residual gg - “k!§° The
gain matrix K, specifies the 1linear combination, and therefore
characterizes the assimilation methed. We take the dynamlcs matrix ¥
and the observing pattern H, to be given, and focus attention on how to
specify the gain matrix.

If there are no observations available at some time k, then the
second term on the right-hand side of Eq. (2.6) is not present;

equivalently, K = 0, In this case, Eqs. (2.7) become

8 = Yi-19f-1 (2.8a)

Wt o=wf | (2.8b)

i.e., the forecast simply proceeds when there are mo data to be

assimilated.

In particular, Eqs. (2.8) hold for all k > N, where N is the most

recent time at which observations are available. The assimilation

scheme 1s provided an unblased initial estimate 23 , data are
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assimilated at times k = 1,...,N, and then a forecast is issued, using

Wi as initial data. We are concerned primarily with the case k < N.

2.3. Assessing the Performance of Data Assimilation Methods

One of the main advantages of assuming the stochastic-dynamic
models (2.2) and (2.3) is that they lead to a method for assessing the
performance of data assimilation methods of the form (2.7). That {is,
for any choice of gain matrix sequence {K.: k = 1,2,3,...}, it can be
determined bzw well the corresponding estimates fy{, gﬁ: k =1,2,3,...}
represent the true states {gﬁ: k = 1,2,3,004).

To show how this 18 so, we 1introduce the estimation error

covariance matrices. These are the forecast error covariance matrices,

defined by

P = Bk - wh) ek - ¥ (2.9a)

and the analysis error covariance matrices, defined by

PR = EGuf - wf) G} - )" (2.9b)

The forecast and analysis error variances, which are the primary
measures of an assimilation scheme’s performance, are located along the
main diagonals of P£ and PP, respectively.

From Egs. (2.2) and (2.7a), 1t follows that P“_l is advanced by

one time step to P{ according to

£ T
P = Y1 Pk-1¥k-1 + Q-] » (2.10a)
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while Eqs. (2.3) and (2.7b) {mply that Pa is found from P{ by the

The estimation error variances and covariances can therefore actually
be computed, provided that P§ is known. Eqs. (2.10) will be wused
repeatedly 1in our numerical experiments, to compare the performance of
data assimilation schemes based on a variety of cholces of the gain
matrix sequence.

The terms in Eqs. (2.10) have a simple intuitive interpretation.
The first term on the right-hand side of Eq. {2.10a) determines how
estimation errors are advected between data-dense and data-sparse
regions from one time step to the next. The numerical experiments

reported in Chapters 6 and 7 indicate that the effect of advectiun of

information is important in data assimilation. The second term in Eq.

(2.10a) 4is due to the presence of system nolse, and results in a
tendency of Anear growth of estimation error variance.

The first term on the right-hand side of Eq. (2.10b) determines
the extent to which new observational information improves the
forecast, and the second term indicates the deterioration due to
observational error. For a data asiimilation scheme to perform
properly, its gain matrices X, must be such that the error reduction
given by the first term dominates the error growth given by the second

term.
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The simple form of Eqs. (2.10) is due primarily to the assumed
linearity of the stochastic-dynamic models. For nonlinear models,
equations like (2.10) still hold but are more complicated (Jazwinski,
1970, Sec. 6.4): the right-hand sides depend on higher-order moments
of the estimation errors.

Still, the computational task involved in advancing Eqs. (2.10)
exactly 1s laborious; matrix-matrix operations must be performed at
every time step, regardless of how often observations are assimilated.
For this reason, our numerical experiments will be performed with a

simple model involving only n = 48 state variables.

2.4, Derivation of the Kalman-Bucy Filter

Eqs. (2.10) give the estimation exror variances corresponding to
any choice of the sequence of gain matrices. Hence, a sequence which
minimizes the variances can be determined. The assimilation method

based on the minimizing sequence is called the Kalman or Kalman-Bucy

(KB) filter, after Kalman (1960) and Kalman and Bucy (1961), who first
formlated it for processes governed by linear systems of ordinary
differential equations.

Before deriving the KB filter, we review some facts £from linear
algebra. All vectors and matrices in the following discussion are
real.

A square matrix A is symmetric 1f AT = A. An mxm matrix A is

positive definite 1if 41t is symmetric and 1if §TA§ > 0 for all nonzero
m-vectors X. If A is positive definite, then A is nonsingular, {i.e.,
A~l  exists. Every positive definite matrix A can be factored

(nonuniquely) as A = A?Al, where A} 1s nonsingular.
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An mxm matrix A is positive semidefinite if it is symmetric and if

5’A§_2 0 for all m~vectors x. Every positive semidefinite matrix A can
be factored (nonuniquely) as A = A}ﬁl¢ vhere A) may be singular.

A covariance matrix A 1s a matrix of the form A = Eyyl, where y is

A random m=-vectour with,Ez = 0, All covariance matrices are symmetric

and positive semidefinite. If every nontrivial linear combination = of

the elements of y has positive variance, i.e., if E( ? xiyi)z > 0 for

all nonzero m-vectors X, then A = ExxT is actually po::éive definite.
The trace of a square matrix A is the sum of its diagonal

elements, The trace operator has the properties’

trace AT = trace A, (2.11a)
trace (A+B) = trace A + trace B , (2.11b)
trace AB = trace BA , (2.11¢)
trace ng - ng , (2.114)
trace BBT > 0, (2.11e)
trace BB =0 1f and only if B = 0, (2.11f)

for all mxm matrices A,B, and for all mvectors x, y.
We now give an elementary derivation of the KB filter, based on
minimizing a quadratic functional of the analysis error. Let A be an

arbitrary nonrandom positive semidefinite nxn matrix, and let
e = ELGR - v AR - wD)). (2.12)

The functional ny, 1s a general measure of the analysis error. The
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functional could represent the total expected kinetic energy of the
analysis eiror, for example, in which case A would be a diagonal matrix
with appropriate weights for the mass and wind fields along 1itse
diagonal, Weighting matrices of interest are usually positive
definite, but we allow A to be positive semidefinite to include the
possibiiity that one might not be concerned with the error in one or
more meteorological fields at one or more grid points.

Eq. (2.12) will now be rewritten to make the dependence of N
upon K, explicit, and then ny will be minimized with respect to Kg.

First, notice that

n = E{ trace[ A(w® = w') (w® = wO)T]} (2.13a)

= trace AP8 ; (2.13b)

the first equality follows from property (2.11d), while the second
follows fram the fact that the expectation and trace operators commute,
from the nonrandomness of A, and from the definition of P2, The
subscript k has been dropped in Egqs. (2.13), and will be omitted
throughout the derivation. It is implicit that k is a time at which
observations are available, for otherwise Kk = 0; cf« Eqs. (2.8).

To find a suitable expression for P2 to be inserted into Eq.

(2.13b), we expand the products in Eq. (2.10b), to get

p8 = KCKT - kHpf - PEHTKT + pf | (2.14a)

where
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C = HPEHT + R . (2.14b)

The matrix C is symmetric, since Pf and R are covariance matrices.

We assume that all nontxivial linear combinations of the elements
of the observational noise b® have nonzero variance, i.e., no linear
combination of the measurements 18 "exact". The observational error
covariance matrix R is therefore positie definite; it follows that C
is also positive definite, and hence nonsingular. Consequently, one

can complete the square in K in Fq. (2.l4a), to get
P8 = (K - PERTCY)c(k - PEHTC~1)T + 2z, (2.15a)

where

7z = pf - pfuTc-lypf, (2.15b)

Notice that Z is independent of K,

Finally, substituting Eq. (2.15a) into Eq. (2.13b), we have

n = trace [A(K - PEHTC-1)c(k - PfWTC-1)T 4+ Az]. (2.16)

Factoring A and C as A = A$A1 , C= clc¥, and using properties

(2.11b,c>, m. (2.16) becomes

n = trace BBT + trace AZ , (2.17a)

where

S EP St e yd
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B = Aj(x - pfuTc-l)c,, (2.17b)

Since AZ does not depend on K, and due to properties (2.1%e,f), it
follows from the representation (2.17) that n is minimized with respect
toK 1f and only 1f B = 0, {.,e., 1ff

Ak - pfRTC=l)c, = o, (2.18)

Therefore, a gain matrix which minimizes n ie given by

K = pfyTe-1, (2.19)

Moreover, the minimizing gain matrix is unique 1f the weighting
matrix A, which was assumed to be only positive semidefinite, 1is
actually positive definite. 1If A = ATA; 1s positive definite, then A
is nonsingular; C = Clcf is already known to be positive definite, so
C, 1s nonsingular.  Premultiplying Eq.  (2.18) by AJl and
postmultiplying by CII yields Eq. (2.19); i.e., the minimizing gain
matrix is unique.

The gain matrix given by Eq. (2.19) is the Kalman or Kalman-Bucy
(KB) gain matrix, which we denote by KKB, Using Eq. (2.14b) in Eq.

(2.19), the KB gain matrix 18 given for each observation time k by
KKB = pEHT(H pEHT + Ry)~L. (2.20a)
We have simply

kKB = 0 (2.20b)
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if there are no observations at time k.
Requiring ny to be minimized successively, at each time k =
1,2,3,¢+0, Tesults in the KB gain matrix sequence {KFB: k = 1,2,3,...};

the Kalman or Kalman-Bucy filter is the corresponding data assimilation

method.  Since K&” depends upon P{, the estimation error covariance
matrices (2.10) must be computed during the assimilation. When K =
KEB, however, it follows readily from Eqs.(2.15, 2.19) that the general
formula (2.10b) simplifies to

P2 = (1 - kKB )ef. : (2.21)

Eqs. (2.7, 2.10a, 2.20, 2.21) constitute the Kalman filtering
algorithm for discrete-time, linear systems. We recapitulate the

equations here for convenience:

uf = Vie-qufy (2.22a)
Bf = ¥im1PEe1¥R-1 + Qk-1 o (2.22b)
KK = PERT(npfHE + RiO™D (2.22¢)
PR = (1 - kkBH R , (2.224)
W= uf + PR - meb), (2.22¢)

for k = 1,2,3,..., given w§ and Pj. In the absence of observations at
time k, Eq. (2.22c) 1s replaced by KKB = 0, and Eqs. (2.224,e)
simplify accordingly.

Notice that Eqs. (2.22b,c,d) do not depend on the estimates
provided by Eqs. (2.22a,e). This is a consequence of tlie linearity of

the stochastic-dynamic models. Given P§ and the dynamics ¥y, the gain

ke eadames . — . I s . el




T

Lok auSei

=35~
matrix sequence depends only on the observing patterns and noise
covariance matrices., If these are known in advance, then the gain

matrix sequence can be computed before the assimilation begins.

2.5, Optimality Properties of the Kalman-Bucy Filter

We now discuss some of the optimality properties of the KB filter.
Notice, first of all, that KKB 1g actually independent of the weighting
motrix A which defines n: A does not appear, explicitly or implicitly,
in Eq. (2.20a). In other words, KXKB gimultaneously minimizes all
positive semidefinite quadratic functionals of the analysis error, and
uniquely minimizes all positive definite quadratic functionals of the
analysis error.

Suppose in particular that A = ejeg, where ey is the jth column of
the nxn identity matrix. Then, according to definition (2.12), n 1is
just the wvariance of the 4th  component of the analysis error.
Consequently, since j is arbitrary, KKB minimizes the analysis error
variance of each meteorological variable at each grid point. The KB

filter is a minimum=variance estimator.

Suppose we fix a time k = 2, It was shown in Sec. 2.4 that
requiring 7, to be minimized, in turn, for each time k = 1,2,.4.,8,
results in the KB gain matrix sequence {K&B: k = 1,2,...,2}. Suppose
that instead we wish to minimize only Ng, without regard for the values
of ny at the previous times k = 1,2,...,8-1. In other words, ng is to
be minimized with respect to the entire sequence Kl’Kl'---vK£° The
result is still K = kfB , k = 1,2,...,2. That 1s, the KB filter is

time-optimal: the minimum value of ng, for each fixed £, is attained by

using the KB gain matrix sequence,
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A slightly more general statement of this fact is the following.

Assimilation schemes of the form (2.7) are sequential, or recursive:

the only observations tupon which the current analysis vector ga
explicitly depends are the current observations wP, so that
observations may be discarded as soon as they are processed. Suppose
that we consider a more general class of assimilation schemes, in which
each analysis vector 1s explicitly a 1linear combination of all

avallable data:

k
!ﬁ - Lk’o !6 + Zl I"‘k,J !g ’ k= 1,2,3,.-- s (2-23)

It can be shown (e.g., Jazwinski, 1970, Sec. 7.3), that in fact the KB

filter is optimal among assimilation schemes of this more general
class: with wf given by Eq. (2.23), minimizing ny elther for all k or
for a fixed k still results in the KB filtering algorithm.

This wider optimality is due to assumptions (2.2¢,2.3c,d) that the
system nolse and observational noise are uncorrelated in time. If the
system nolse and observational nolse are also assumed to be Gaussian,
it 18 known (e.g., Jazwinski, 1970, Sec. 5.2) that the optimal
nonlinear assimilation scheme, i.e., one in which w might depend

nonlinearly on all past and present observational data, is still the KB

filter.

2.6. Further Remarks on Estimation Theory

By applying the theory outlined in Secs. 2.1-2.4 to a simple
model ¥ based on the linearized shallow-water equations, we will see in

Chapters 6 and 7 that much can be learned about the properties of data
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assimilation schemes in a meteorologically familiar, but somewhat
idealized setting. The method of Secs 2.3 provides a way to determine
how well any scheme of the form (2.7) performs, and for comparison we
have an "optimal" scheme, namely the KB filter. For completeness, we
now discuss some extensions of the rudimentary theory we have outlined,
which might lead to practical assimilation schemes for global NWP.

First, notice that the sequential nature of the Kalman-Bucy filter
is made possible by the fact that the forecast error covariance matrix
P£ is known at each time k. All observational information available
prior to time k I8 embodied in the forecast veztor gﬁ énd the
covariance matrix P{ » 80 that the only additional information needed
at time k is the current observational information (WR,Hi,Ry), of.
Eqs. (2.22¢c,e). That P£ is known is a consequence of the fact that
the system nolse covariance matrix Qk was assumed to be known, cf.
Eqs.  (2.2c, 2.22b). A priori knowledge of Q. is, however, not
esgential: Q. can be determined adaptively, i.e., during the
assimilation process itself (Bélanger, 1974; Ohap and Stubberud, 1976;
Chin, 1979; Maine and I1Lff, 198l). The observational nolse covariance
matrix Ry, as well as the means of the observational and system noise,
can also be determined adaptively.

For a realistic NWP model, the corresponding stoachastic~dynamic
model (2.2a) would be nonlinear. Estimation theory still leads to an
optimal assimllation methnd in this case (e.g., Jazwinski, 1970, Ch.
6). Wowever, as the right-hand sldes of the equations corresponding to
(2.10) would depend on all the higher-order moments of the estimation

error, approximations would be required to make the algorithm finite.
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Many approximate nonlinear filters have been formulated
(Jazwinski, 1970, Ch. 9, and references therein). A particularly
simple nonlinear filter, often used in engineering applications, is the

extended Kalman filter (EKF: Jazwinski, 1970, Sec. 8.3; Gelb, 1974,

Che 6). The EKF is essentially the usual linear KB filter, with the
nonlinear dynamics being linearized about each successive state
estimate. Discussion of the applicability of the EKF to numerical
weather prediction appears in Ghil et al. (1981, Sec. 5).

Even for linear stochastic-dynamic models, the KB filter presents

a formidable computational task. The matrix-matrix operations in Eq.

(2.22b) must be performed at every time step; Eqs. (2.22¢c,d) are
needed only when observations are avallable. Assimilation achemes in

current use require only matrix-vector operations (2.8) in between

observation times., There are, however, a varfety of ways to
reformulate Eqs. (2.22) for computational efficlency (Bierman, 1977;
Paige and Saunders, 1977). In particular, the matrix inversion in Eq.
(2.22¢) can be avoided.

Still, for global NWP, 1t would probably be necessary to calculate
Eq. (2.22b) in an efficlent approximate form. Many approximate forms
are possible. In fact, the "optimal interpolation" (0I) methods in
operational use at NWP centers can be regarded as being based on such
an approximation. In Chapter 7, we describe the approximate version of
Eq. (2.22b) upon which OI is based, and we implement OI for our
dynamical model ¥. The method of Sec. 2.3 is used to determine the

effect of the approximations involved in OI.
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In summry, the framework of estimation theory is well-suited to
study the problems of meteorological data assimilation, and we have
indicated how the theory outlined in Secs, 2.1-2.4 wmight lead to
practical assimilation algorith~s for global NWP.

Our purpose here 18 to develop the theory in a different
direction, l.e., to account for the d{nitialization aspect of data
assimilation. We show in Chapter 5 that for dynamical models having
two time scales, requiring the state estimates to evolve slowly leads
to a modified wversion of the KB filter. First, in Chapter 3, we
describe the linearized shallow-water equaticns and their slow
solutions, and then in Chapter 4 we describe the slow solutions of a

corresponding discrete model ¥,
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CHAPTER THREE

SLOW SOLUTIONS OF THE LINEAR SHALLOW-WATER EQUATIONS

The shallow-water equations govern the motion of a thin layer of
incompressible, inviscid fluid over a given surface. The shallow-water
equations over a rotating sphere give a simplified description of the
dynamics of the earth’s atmosphere, and solutions of the equations
exhibit many {mportant properties of large-scale atmospheric flow
(e.g., Pedlosky, 1979, Ch. 3). In particular, the equations possess
both slowly evolving solutions and rapidly evolviﬁg solutions.

In this chapter we describe the slow-wave subspace of a linear,

spatially one-dimensional version of the shallow-water equations. The
slow-wave subspace is the set of all initial data which 1lead only to

slowly evolving solutions of the linearized equations.

3.1, The Equations

The 1linear, spatially one-dimensional shallow-water equationms,
written in cartesian coordinates for a plane tangent to the earth at

latitude 00, are given by

ut + qu + ¢x - fy =0 ’ (3018)
Vi + Uvy + fu=0, (7s1b)
¢t + U¢x + OUx - fUy = 0 . (3.1C)

The coordinate x poi~ts eastward, in the zonal direction, along the

circle of latitude 8 = 6,, while y points northward, in the meridional

direction; u and v are velocity components in the x and y directions,
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respectively. ?he geopotential ¢ = gh measures the deviation of the
height H+h of the free surface from its equilibrium value H; ¢ = gH is
constant and g is the acceleration due to gravity. The constant U {is
the mean zonal velocity and £ = 2Q sin 60 is the Coriolis p@rameter,
with § the angular velocity of the earth, The subscripts x and ¢t

denote differentiation with respect to x and the time t; all quantities

are independent of y.

These equations are derived from the full, nonlinear shallow-water

equations on a tangent plane,

ue +uuy +vuy + dy - fv = 0, (3.2a)
Ve Y uvy +vvg + éy + fu = 0, (3.2b)
$r + udy + voy + d(ugt vy) =0, (3.2¢)

by 1linearization around the solution u = U, v = 0, ¢ = ¢(y) satisfying
fu = - °y = consts The quantities (u,v,$) in Eqs. (3.1) are
perturbation quantities, or departures from the equilibrium values
(U,0,%), while in Eqs. (3.2) they denote the total amplitudes. The
derivation of Eqs. (3.1) from Eqs. (3.2) is based on the assumption
that the perturbation quantities do not depend on y.

The parameters £, U and ¢ in Eqs. (3.1) will be chosen to
correspond to midlatitude flow, 0,5 = 45°N. An important feature of
large-scale midlatitude atmospheric dynamics 15 the approximate balance
which exists between the pressure-gradient force and the Coriolis force
(e.g., Holton, 1972, Sec. 2.4). Atmospheric statzs in which these two
forces are exactly balanced are called geostrophic. In the nonlinear

system (3.2), the pressure-gradient terms are by and> ¢y , and the
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Coxiolis terms are —-fv and fu ; geostrophic states of this system are
those for which u = - QY/f and v = ¢,/t. Notice that the solution
about which Eqs. (3.2) were linearized is geostrophic.,

Since x 1is the coordinate along a circle of 1latitude, the
appropriate boundary conditions for Eqs. (3.1) are perfodic: u(x+2L,t)
= u(x,t), and similarly for v amd ¢, where 2L 48 the earth’s
circumference at latitude 60. For reasons described in Sec. 6.1, we
seeﬁ only two-pzriodic solutions of the equations, We therefore impose

the boundary condition
L L
,w.,("2'9t) = !(‘2‘:"—), (3.3)

where w(x,t) = [u(x,t),v(x,t),¢(x,t)]T, and we solve the system
(3.1,3.3) in the spatial domain -L/2 £ x < L/2.

Corresponding to latitude 6,= 45°N, we take f = 104 gec™! and L =
14000 km for our system (3.1,3.3). The nean zonal current is taken to
be U = 20.ms'1, which is typical £«r mid-tropospheric flow at this
latitude, while ¢ = 3(104m28"2, which corresponds to an equivalent
depth of H 2 3 km for a homogeneous atmosphere.

The initial-value problem for the hyperbolic system (3.1), with
boundary condition (3.3), is well=-posed (e.g., Courant and Hilbert,
1962, Sec. 5.6). That is, for arbitrary initial data w(x,0) which
satisfy the boundary condition and have continuous first derivatives,
there exists a unique solution w(x,t) of Eqgs. (3.1,3.3) and the
solution depends continuously on the initial data. If the initial data
are j times differentiable, then all jth order partial derivatives of

the solution exist.
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Since the equations are linear and have constant coefficients, the
solution corresponding to any legitimate choice of initial data can be
expregsed as a Fourler series. We shall do so, and then use the result
to determine the slow-wave subspace. Slowly evolving atmospheric

states are approximately geostrophic, or quasigeostrophic (e.g., Leith,

1980), We will see that slowly evolving solutions of our linear system

are also quasigeostrophic.

3.2. Fourier Series

First, we review some of the properties'of Fourler series; f-~r
further reference see, e.g., Churchill (1969). Let g(x) be a vector or
scalar function defined for x e [-.§T§], which is continuous there, and

which satisfies g(-L/2) = g(L/2). The Fourier coefficients a(E) of

g(x) exist and are defined by

L/2

é(&) '-% 5 e~1Ex g(x) dx, (3.4a)
-L/2

for £ ranging over the discrete values

E - E(w) -—2%1‘0), W = 0,:1,1-'2,-00; (3-"b)

£ 1s the spatial frequency and w is the wave number. Henceforth it is
understood that the variable E takes on only the discrete values
defined in Eq. (3.4b).

If g(x) is real, it follows immediately from Eq. (3.4a) that

(=€) = g(€), (3.5a)
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for all §, where the overbar denotes complex conjugation. In

particular,

(0) 1is real ; (3.5b)

E(O) is just the average value of g(x).
If g(x) 1s also differentiable on [-L/2,L/2}, then the Fourier

series representation of g converges pointwise to g on [-L/2,L/2].

That is,

g(x) =J 16X 3 (), (3.6)
g

for all x e [-L/2,L/2], where §(5) is given by Eq. (3.4a). The symbol

Eg indicates summation over the discrete values of E given by Eq.

(3.4b).
If, 4in addition; the second derivative Bxx €Xists on [q;,;J, and

if g .(-L/2) = g.(L/2), then the series obtained by termwise

differentiation of the series 1iu Eq. (3.6) converges pointwise on

[-L/2,L/2] to g,. That is,
gx(x) - 2 eigx éx(g)i (3-78)
£
for all x ¢ [*éwgd, where

Bx(E) = 15(E). (3.7b)

I s . s i i e e D e e o
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3.3. Solution of the Initial=Vaiue Problem

L§t L be the set of real 3=vectors 'g(;;) which are
twice~differentiable on [=L/2,L/2]) and which satisfy g(q;‘.) - g(-l!'-) and
gx(-.;‘-) - gx(-lz‘.). We consider for Eqs. (3.1) only those initial data
which lie in L.

Sappose initisl data w(x,0) ¢ L are given. According to the
well-posedness discussion in Sec. 3.1, a corresponding unique solution
W(x,t) exists, and w(x,t) ¢ L for each t > 0. Eqs.(3.4-3.7) therefore

apply to w(x,t), fram which it follows that

w(x,t) = J X w(E,e), (3.8)
E

for all x ¢ [';-,-12'-]. where, corresponding to Eqs. (3.1), the Fourier

coefficients Q(g,t) satisfy the ordinary differential equation

2o 8EL) = 16(6) R(E,L), (3.9a)

for all £ , and G(E) 18 given by

r.“E,'U if ET
G(E) =-|-1f g o] . (3.9b)

Ed 1fU EU

bt o

To express the solution w(x,t) in terms of the Fourler
coefficients Q(E ,0) of the initial data, it remains to solve Eqs.(3.9)
and substitute the result into Eq. (3.8). The solution of Eqs. (3.9)

is simply
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u(E,t) = 16t S(e,0) ; (3.10)

see, for example, Coddington and Levinson (1955, Sec. 3.4).
Equation (3.10) can be expressed more conveniently by expanding
Q(E,O) in terms of the eigenvestors of G(f). lat A,(g), & = -1,0,1, be

the eigenvalues of G(£), with corresponding eigenvectors g, (£):
G(E)qu (E) = Ay (E) q4(E), (3.11a)

for £ = 0,21, and for all E. The matrix elGE)t has the same

eigoenvectors, but with eigenvalues eixz(E)t:

el6E)t g () = M q,6), (3.11b)

for £ = 0,x1, for all £, and for all t > O.

It will be shown 4n Sec. 3.5 that the three eigenvalues A (£)
corresponding to each £ are real and distinct, Given that the
eigenvalues are distinct, it follows that each triplet of eigenvectors
is a 1linearly independent set. ©Each Fourier coefficient Q(E,O)

therefore has a unique expansion in terms of the eigenvectors:
W(E,0) = J ag(E) qq(E), (3.12a)
L

for some scalars ag(f), where the summation runs over the values ¢ =

-1'0,10

San . . PR . e —— i e DTt
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Tt follows from Eqs. (3.11b, 3.12a) that Eq. (3.10) can be

written

DG (3.12b)

w(E,t) =] ag(E) qu(5) e
L
Substituting this result into Eq. (3.8) yields the Fourier series

solution of the initial-value problen for the system (3.1,3.3):

i
w0t) =3 T ag(t) gp(e) e O,

)

(3.13)

The solution is a superposition of plane waves (e.g., John, 1978, Sec.
5.2d).

3.4, The Slow-Wave Subspace

From Eq. (3.13) it is clear that the eigenvalues A, (£) are also

the eigenfrequencies of the solutions of Eqs. (3.1,3.3); 1.e., they

are the rates at which waves of spatial frequency { can evolve. For
glven £ and £, eigenfrequency A (£) is present in the solution if, and
only 1if, the coefficlient ao(E) % O in Eq. (3.13). The quantities
“2(5) are the defining coefficlents in expansion (3.12a): frequency
Ap(6) 1s present in the solution 1if, and only if, the Fourier
cocfficlent Q(E,O) of the initial data has a component along the
eigenvector g, ().

As previously mnoted, 1t will be shown that, for each {, the
eigenfrequencies Az(g) are real and distinct. It will also be shown

that one eigenfrequency, say Ag(E), in fact has magnitude much smaller

than the magnitudes of the other two:

R VI
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for each §. Actually, because of tha reality condition (3.5a), this

need be verified only for £ > 0: according to BEq. (3.9b), G(~£) =

<G(E), vhich implies that A=) = -i',(e), so that |Ag(=E)| = A, (E)].
Slow solutions °f system (3.1,3.3) are thoge in which only the low

frequencies Ag(E) are present. The preceding discussion makes it clear

that for a solution to evolve slowly, it is necessary and sufficient

that the iuitial data W(x,0) lie in the slow-wave subspace R., which 1s

given by

Re = {w(x) ¢ L: w(E) = ag(E) go(&) for all g,

for some scalars ag(£)}. (3.15)

The slow-wave subspace is the set of all initial data in L which 1lead
to slowly evolving, Rossby wave soluticns of the continuous, or
differential, equations.

It follows from the linearity of Eqs. (3.4a,3.6) that all 1inear
combinations of vectors from R, 1ie in R,, so R, is in fact a subspace

of L. Furthermore, Rc is an invariant subspace of the solution operator

of the system (3.1,3.3): it follows from Eq. (3.13) that w(x,t) ¢ R,

for all t > 0 1f w(x,0) € R..

3.5, The Eigenfrequencies and Phase Speeds

Exact and approximate formulas for the eigenfrequencies AL(E) will
now be determined, in order to show that the eigenfrequencies are real

and distinct, and in order to verify their relationship (3.14). The

i — . e e e eer e e e et e s o
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slow-wave elgenvectors q,(£) will be determined afterwards, to make the
definition (3.15) of the slow~wave subspace more explicit.
The eigenfrequencies are the eigenvalues of G(§), which is given

by Eq. (3.9b). Setting the determinant of AL - G equal to zero gives

D)3 - (€% + £2)(A4EU) + £2kU = 0, (3.16)

Equation (3.16) is the dispersion relation for the system (3.1,3.3),

relating the temporal frequencies A to the spatial frequencies £.

For £ = 0, the roots of Eq. (3.16) are

Ap(0) = 0,  243(0) =z£, (3.17a)

Oscillations with frequency f = 2@ sin 6, known as inertial

cscillations, are quite rapid outside the tropics. The period of

inertial oscillations at @ = 8, i.e., for £ = 10%sec™l, 1s 2n/E2 17.5
hr. Pure inertial oscillations are rare in the atmosphere (Dutton,
1976, Sec. 9.3). The root AO = 0 1{s the slow-wave eigenfrequency for
E = 0.

The eigenvectors corresponding to the eigenvalues Az(O) are

19(0) = (0,0,1)T , guy(0) = (1,21,0)T. (3.17b)

Since Q(O,t) i1s the average value of w(x,t), the expression for gqg(0)
means that all slow solutions of the system (3.1,3.3); as well as the
corresponding initial data w(x,0) € Rc' must have u and v components
with average value zero. Equations (3.17) correspond to the

spatially~independent solutions

da
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; u(t) = ugcos ft + vgsin ft,
) v(t) = vocos ft - ugsin ft,

¢(t) = ¢ + U(-up + ugcos £t + vosin ft),

i which arise from constant initial data (uo,v0,¢0).

For £ > 0, it 1s natural to express the roots of Eq.

related to the eigenfrequencies by

ey () = =g A ) 5

e e s

legte) | << lexy ()|
The roots of the cubic equation
y3 ~ay+b = 0
are given by

vy = oy V3 cos (@) 2oL cog”l(- 23 ;3‘.’7.2_) 1.

The roots of Zg. (3.16), expressed as phase speeds, are

given by

(3013‘)

(3.18b)

J/

(3.18¢)

(3.16) as

i phase speeds. Referring to Eq. (3.13), the phase speeds cy (£) fgé

(3.19)

relationship (3.14) will be demonstrated in the equivalent form

(3.20)

(3.21a)

(3.21b)

therefore

§ e 5 L . . o e i e e st it st LSS st 0
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cy(€) = U - y(E) cos [(z+1) -~ 1 cos~l(= ()], (3.22a)
where
Y(E) -7?5% (e% +£2)1/2, (3.22b)
e(€) = 1"; £2eue2 + £2)3/2, (3.22¢)

The eigenfrequencles are real since 526 + £2 > 0.

Equation (3.22a) can be approximated in such a way as to make the
magnitudes of the phase speeds more transparent. The dimensionless
quantity e€(£) 1s small, and approaches zero quadratically ag £ + 1w,
For the choice of parameters f, U, ¢ and L given in Sec. 3.1, e(E(w))
= 0.115 for wave number w = 1, ¢ = 0,074 forw = 2, ¢ = 0,043 for w =

3, and ¢ = 0.007 for w = 8., Since
cos™1(-¢) '-;- +¢e +0(ed),
a good approximation to ¢; is given by
cg(6) = U - Y() cos [(e+1) 2 3-z 3e(5)] (3.23)

Expanding the cosine to first order in a Taylor series about (&+1) T

% glves
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co6) T U= gy(E)e®), (3.24a)
@) 2 U2 Y3y + Ly e (3.24b)
1 ~ 7 Y T Y H .

substituting Eqs. (3.22b,c) into Eqs. (3.24) gives

. £2u

coE) = U-__—gzo+f2 . (3.25a)
. 1 /2.2, 1 flu

ey () = Ut g /glou vt (3.25b)

For the aforementioned choice of parameters £, U, ¢, L, and for
the first eight wave numbers, the exact values of the phase speeds,
Eqs. (3.22), are presented in Table 1. The corresponding approximate
phase speeds, Eqs. (3.25), are presented in Table 2. Comparison of the
tables 1indicates excellent agreement between the approximate and exact
values, and both tables verify the separation of phase speeds (3.20).

Individual wave components of slow solutions of the differential
equations have the relatively small phase speeds co(g) and are called

slow waves, or Rossby waves. They are an important feature of

midlatitude atmospheric dynamics. The slow waves retrogress: as
indicated by Eq. (3.25a), thelr propagation relative to the mean
current U is westward. The slow wave phase speeds are comparable to U,

and increase monotonically toward U as the wave number increases.
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The fast waves, with the large phase speeds c,(E), are known as

inertia-gravity waves since they are the usual gravity waves of

shallow-water theory, for which cyy = U £ /3; modified by the presence
of the Coriolis force. The speed of the inertia~gravity waves is
dominated by the second term in Eq. (3.25b); waves with speed )
propagate toward the east and waves with speed C_) propagate toward the
west. The inertia-gravity wave phase speeds decrease monotonically in
magnitude, toward |U * /3|, as the wave number increases.

As explained in Sec. 1.2, Rossby waves and inertia=-gravity waves
are both present in slow solutions of the fully nonlipear,
primitive~equation models actually used in NWP: a small inertia-gravity
wave component maintains the quasigeostrophic equilibrium. Slow
solutions of our linear shallow-water equations model, produced by
initial data in the slow-wave subspace R., consist entirely of Rossby

waves.

3.6, Approximate Slow Initial Data

Having determined the slow-wave elgenvalues Ay(E), the slow-wave
elgenvectors gg5(£), upon which the definition (3.15) of the slow~wave
subspace depends, are obtained by solving Eq. (3.11a) with £ = 0, It

is found that

2
SO(E;) = [H(E), ifg" ’ 'i—z' (' ¢ + WUE-Y)]T’ ’ (3.26a)

for each £ , where
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2 ,
WE) =253 con [ - g cosl= @], (3.260)

and Y(E), €(E) are given by Eqs. (3.22b,c).
Introducing the same approximations into Eq. (3.26b) as thcse

that lead to Eqs. (3.24) results in

2
w(e) z 29 (3.27)
£20+4£2
whence Eq. (3.26a) becomes
~ g2y ig T
90() = | 1]T. (3.28)

g24£2 " ¥’

Eq. (3.28) is exact for £ = 0: it reduces to the expression for 90(0)
in Eq. (3.17b).

If w(x,0) e R, then u(x,0) and v(x,0) are determined by ¢(x,0).
Eq. (3.28), with Eqs. (3.6,3.7,3.15), dimplies that if ¢(x,0) is

specified arbitrarily,

$(x,0) =] ag(E) elbx, (3.29a)
11
then approximate formulas for u(x,0) and v(x,0) such that wix,t)

evolves slowly are

2
£ 4oe) elfX, (3.29b)

u(x,0) =
£20+£2

Y 2
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v(x,0) = E.*f.ao(o.“-'x = FHxx0.  (3.29%)

Formulas (3.29b,c) are exact to first order in the small parameter
e(€).

Geostrophic states of our linear system (3.1) are those for which
u=20, ved/f; (3.30a,b)

the u~component of a geostrophic state 1s =zero since there 1s no
pressure-gradient term to balance the Coriolis term in Eq. (3.1b).
Equivalently to Eqs. (3.30), the Fourier components of a geostrophic

state are

w(g) = [0, /¢, 11T . (3.31)

Comparing Eq. (3.31) with Eq. (3.26a), it follows that slowly
evolving states of our linear system are not geostrophic.

However, comparing Eqs. (3.30) with Eqs. (3.29b,c), we see that
slowly evolving states are quasigeostrophic. For the v-components,
Eqs. (3.29¢,3.30b), this 1s readily apparent. As for the
u-components, a numerical calculation shows that £2¢ is the dominant
term in the denominator of Eq. (3.29b), except for wave number w = 1,
for which £% and f2 are roughly equal. It follows that u(x,0) and
$(x,0) = ag(0), given by Egs. (3.29b,a) respectively, are
approximately proportional, with constant of proportionmality U/¢. The

amplitude ¢4 of the perturbation geopotential ¢(x,0) 1is typically
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smaller than the mean geopotential height ¢ by an order of magnitude.

The amplitude u, of u(x,0),

up = g-NO'Go(O)l < 340

is therefore smaller than the mean zonal current U by at least an order
of magnitude: slowly evolving solutions have small u-components.
Hence, srlowly evolving solutions are quasigeostrophic.

The u~component of solutions of the 1linear system (3.1) 1is
special. Its magnitude 4in our assimilation experiments will provide

one convenient check of the proximity of state estimates to the

i slow=wave subspace.
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CHAPTER FOUR
SLOW SOLUTIONS OF DISCRETE LINEAR SHALILOW-WATER EQUATIONS

We 1introduce now the discretization ¥ of the linear shallow-~water
equations which will be used later 1in the assimilation experiments;
here we “ormulate the discrete model’s slow-wave subspace R . The
discrete slow-wave subspace 1s defined directly in terms of ¥, rather
than in terms of the original differential equations or their slow=-wave
subspace R, . In particular, R will have the property of being an
invariant subspace of ¥ , and this property will be important in our

formulation of the modified KB filter.

4.1, The Discrete Equations

To discretize the differential equations, we wuse the Richtmyer
two-step formulation of the Lax-Wendroff scheme (Richtmyer and Morton,
1967, Secs 12.7 and 13.4). Reasons for the suitability of this
particular scheme to discretization of the 1linear shallow~water
equations appear in Ghil et al. (1981, Sece 3.2). The scheme 1is
second-order accurate in time and space, and fourth-order dissipative
in the sense of Kreiss (Richtmyer and Morton, 1967, Sec. 5.4).

The finite-difference grid

t, = kat, k=0,1,2,..., (4.1a)

xj - iji j - --bzd-"'l. -;"'2, evey sz-. (Aolb)

is introduced, where
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Ax = L/M , (4.1¢c)

and the number of grid points M is assumed to be even. The 3=vector
ul = pud,vde )T (4.1d)

will approximate the exact solution w(jAx,kat).

Rewriting the original system (3.1) in matrix notation,

Et - C!x + Bg » . (4023)
where
v o0 1]
C = - 0 U 0 » (4.2b)
L ¢ 0 U _]
0 -f 0 |
B = ~ f 0 O » (4.2(")
| 0 -fu 0 _|

the difference scheme is written, for k = 1,2,3,..., as

wy = !?z-l + (at) !ulé—l/z

- whey + 8% o{uttlE - wlol) + 45 Bzl + /D), 30

W “w%""wﬂw.v.-n

e e e it i ™~ = (W]
B A e T A N S
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for § = =(M/2)+1,.44,M/2, where the intermediate values !atl;% are

given by

wd1/g = wdtl/ 2 5F w | 2Y/2

= 5 L+ 5wl with + 5 o Claft] - wlop), (4.3b)

for § = =M/2,...,M/2 ; the scheme is closed by defining

gﬁ?‘.{z - w”kl% , w{g/zﬂ l-(-)l{Z-H’, (4.3c,d)

which corresponds to the periodic boundary condition (3.3).

By combining Eqs. (4.3a,b), the scheme may be rewritten as

1
ug = I n Wit (4.4a)

for j- -(M/2)+1’lll’M/2, and k = 1’2,3’000, where

A2 - S - P (bt
and the 3x3 matrices ¥, are given by

Yo =1-0%? +5k s+ 5k p), (4.5a)

2
¥, -'«i’lca»i“,‘,_.ch-"At (cn+sc)+Tn(1+ézEB). (4.5b)

where
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g '-,_..*. . (4.5¢)

Finally, to write the difference scheme in the notation of Chapter

2, we introduce the composite vector

W = [(!;u/2+1)r’ (!EM/2+2)T,,,,.(!§/2)TJT ; (4.6)

Wi 1is an n-vector, with n = 3M, which is composed of M 3-vectord.

Equations (4.4) can then be written as
LA (4.7a)

vhere ¥ 1s the 3Mx3M block-circulant matrix with 3x3 blocks (Davis,

1979, Sec. 5.6) denoted by

‘.y, - Citc ["0,‘?1,0,...,0,‘&’_1] ; (4.7!’)

the individual blocks ¥(,¥4) are given by Eqs. (4.5).

A 3IMx3M block=circulant matrix with 3x3 blocks is a matrix that,
when partitioned regularly into M2 3x3 blocks, has M arbitrary blocks
across 1its first row, with each of the succeeding M-1 rows obtained by
circularly shifting the previous row one block to the right. It {is
denoted by listing the blocks which appear across the first row, as in
Eq. (4.7b).

Thus, our dynamics matrix ¥ has only three nonzero blocks in each
TOW. In fact, ¥ is almost block-tridiagonal: the only nonzero blocks

away from the diagonal are in the upper right and lower left corners of
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Y, vhich contain the blocks Y_, and ¥,, respectively, as a result of
the periodic boundary conditions. The matrix is independent of the
time kAt, unlike the general dynamics matrix of Chapter 2.

Equations (4.7), with the submatrices ¥, , ¥;; given by Eqgs.
(4.5), constitute the discrete '"forecast model" upon which the
assimilation experiments of Chapters 6 and 7 will be based. The
remainder of this chapter 1s devoted to formulation of the discrete
model’s slow-wave subspace. The development parallels that of Chapter
3: the discrete Fourier transform 1s introduced first, then w, is
written in terms of the Fourier coefficients of ‘arbitrary initial data

¥ » and finally the slow-wave subspace is defined.

4,2, The Discrete Fourier Transform

An M-vector u ig now denoted by

R TCE-SE DI L (4.8a)

for consistency with Sec. 3.2, spatial indices appear as arguments

instead of as superscripts. The discrete Fourler transform of u {8 the

M=vector
i = [ R4 e, 0T, (4.8b)
whose components u(w) are defined by

W) = LT M y(y) (4.9a)
3
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for w = =(M/2)+1,...,M/2, 1If uw) is given by Zq. (4.9a), then u(j)

can be recovered by the inversion formula

“(j) - 713'}: e2lij(“/“ :l((&)). (l‘igb)
W

for §= ~(M/2)4},...,M/2; In Eqs. (4.9) and in the sequel, the
symbols Zj and §, always refer to summation over the index set
{- ;-+1,..., ;3. Formulas (4.9) are discrete analogues of Egs.
(3.4,3.6).

Equations (4.9) can be written more compactly in matrix notation.

The MxM Fourier matrix Fy (e.g., Davis, 1979, Sec. 2.5) is the matrix

whose (2,m)th element is

Py m = 71;{ exp [-2ni(p- ;)(q- %)/M] i (4.10)

The Fourier matrix is symmetric and unitary, i.e.,

PR = Fy ,  Fy=Fg', (4.11a,b)

where the asterisk indicates the complex conjugate transpose. From
definitions (4.8, 4,10), it follows directly that Eq. (4.9a) can be

written as

n o= Fy u, (4.12a)

while Eqe (4.11b) then implies that Eq. (4.9b) becomes
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4 = Fy 4.
For an n-vector w, composed of M 3-vectors,
W = [T 54,00,
where

w(1) = [u(d), v, 61T,

the Fourier transform is defined consistently with Eqs.

is, Q is the n-vector

N R RO DI LI} L
whose component 3-vectors

W) = W), v(w), $w)IT,

are given by

W) -;,!ﬁg e 2l /M y(y),

for w = =(M/2)+1,...,M/2, The inversion formula is

9(1) = ] 2M0M 50,
Ww

(4.12b)

(100 13‘)

(4.13b)

(409)0 That

(4.14a)

(4.14b)

(4'158)

(4.15b)

)
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fo!: J - "’(“/2)""12 oo o."/Zo
In order to write Eqs. (4.15) in matrix notation, we define the

nxn permutation matrix V as that matrix which reorders the elements of

w, Eqs. (4.13), according to

w = 1T, yT, ¢TI, (4.16)

where the M-vector u is defined in Eq. (4.8a), and v and ¢ are defined

similarly; V is real and unitary, so that

VT w y* =yl | (4.17)

It follows from Egs. (4.11,4.17) that the nxn matrix F, defined
by

F=v3i} 0o Ff o0 fv, (4.18)

is symmetric and unitary,

FT = F » F* Ld F-l v (40198,b)

Equations (4.12a,4.16,4.18) imply that Eq. (4.15a) can be written as

W =Ty, (4.20a)

which, with Eq. (4.19b), implies that Eq. (4.15b) becomes

e i . " e S \‘\ e p®
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wer. (4+20b)

The n-vectors W and Q given by Eqs.(4.20) constitute a discrete Fourier

transform pair.

4.3. Solution of the Initial-Value Problem

The iterates W, of the finite-difference scheme (4.7) can now be

expressed in terms of the Fourier components of arbitrary initial data

¥g. It follows from Eqs. (4.20) that Eq. (4.7a) 1s equivalent to

ék - (i’ E’k-l » (4»21)

where the nxn matrix ¥ is given by

¥ = FYF* , (4.22)

Due ti the block-circulant structure of ¥, the matrix ¥ is

block-diagonal: the matrix F block-diagonalizes all 3Mx 3M

block=circulant matrices having 3x3 blocks (Davis, 1979, Thm. 5.6.4).
The matrix ¥ has M 3x3 blocks, denoted by ¥(w), along its main

diagonal, and zeros elsewhere. It is denoted by

¥ = dtegl¥ (- 3 41,8 T 42),...,8 (1, (4.23)

and the individual blocks are given by

.
F) = § e2rij/M Yy, (4.24)
p=-1




for w = =(M/2)+1,...,M/2; the matrices ¥, are defined by Eqs.  (4.5).

The matrix ¥(w) is called the symbol, or amplification matrix, of the

difference scheme (e.g., Isaacson and Keller, 1966, Sec. 9.5).
Since ¥ 1s block-diagonal, the n-vector equation (4.21) decouples
into M 3-vector equations. The decoupled equations are written, in the

notation of Eqs. (4.14), as

We(w) = ¥W) Wy (), (4.25)

forw = - %-+1,...,¥; therefore, by repeated application of Y),

e(w) = ¥RW) o). (4.26)

Eqs. (4.25,4.26) correspond to the fact that, for constant-coefficlent
linear difference (or differential) equations, waves with different
wave numbers evolve separately.

Equation (4.26), 1ike 4its continuous counterpart (3.10), is
gimpiified by an appropriate eigenvector expansion. Let Gz(m) be the

eigenvalues of ?(m), with corresponding elgenvectors I, (w):

V() rp) = 8;) W), (4.27)

for £ = 0,1, The elgenvalues are genorally complex, and we write them

in polar form, as

i\)z(ul )/ 4
)

Sy (w) =pgyw) e (4.28)
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where o, (w) and vy(w) are real. The matrix Y%(w) in Eq. (4.26) has

the same eigenvectors as ¥(u), but with eigenvalues 6}0»):

W) £y ) = 65W) 5y ). (4.29)

It will be shown in Sec. 4.4 that the triplet of eigenvectors
corresponding to each w 1is a linearly independent set. Hence, the

Fourier transform of the initial data can be expanded as
Yow) =T Byw) rpw), (4.30)
2 .

for some scalars Bg(w). From Eqs. (4.28-4,30) 1t follows that Eq.

(4.26) can be written as

a ivg (w)t .

V) =T Bp() rg(w) pkw) e AT K, (4.31)
L

Finally, using Eq. (4.31) in the inversion formula (4.15b), it follows

that w (J) can be written as

we (1) -Vlﬁi Y Bp(w) ryw) p}f(w) exp{ L[ ()x{3) +vg)tel}, (4.32)
w2

where E(w) = 2rw/Maix and x(j) = jAx.

Equation (4.32) 1is the Fourler series solution of the
initial-vaive problem for the discrete system (4,7). The quantities
(Bz,gz,vz) in Eq. (4.32) have counterparts (ag,dg,Agy) in the solution
(3.13) of the continuous equations. The factors p,(w) are due to

'

discretization.
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4.4, The Eigenfrequencies and Phase Speeds

According to Eq. (4.32), the eigenfrequencies associated with the
difference scheme are the quantities vz(w). We now show that they
separate naturally into low and high frequencies, 1ike the
eigenfrequencies of the differential equations, and then we define the
discrete slow-wave subspace.

To classify the eigenfrequencies, the eigenvalues Gx(w) were
computed nuwmerically, cf. Eqs. (4.27 4.24,4.5), after which the

eigenfrequencies were obtained by use of Eq. (4.28). As 1in the

assinilation experiments of Chapters 6 and 7, the values M = 16, At »~

30 min., were used in the eligenvalue computation.

The eigenfrequencies corresponding to w = 0 are

vg(0) = 0, wvep(0) = +1.0053 £ , (4.33)

in close agreement with the corresponding result (3.17a) for the
continuous system.

For wave numbers w = 1,2,...8, the phase speeds

vg (w) |
Cz(w) = "‘-—E—(GT (4034)

are presented in Table 3, Comparison with Tables 1 and 2 shows that the
phase speeds assoclated with the difference scheme are good
approximati s to those of the differential equations only for the
smallest one or two wave numbers. This behavior 1is typical of
dissipative difference schemes, such as the Richtmyer scheme, although

the discrepancy beween discrete and continuous phase speeds is somewhat
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exaggerated by our relatively coarse mesh: Ax = L/16 = 875 km., which
is much larger than mesh spacings typically used 1in NWP. The
discrepancy 18 an indication of the difference between the discrete and
continuous slow-wave subspaces,

Except for w = 8, the table does show that the phase speeds, and

hence the efgenfrequencies, are well-separated:
Vo) | <€ [vaylud], (4.35)

forw = l,...,7. The same is true for w = =~1,...,~7, since Eq. (4.24)

implies ¥(~w) = ¥(w), whence 8§g(-w) = &y (w) and |vg(w)| = vy (w)].

For w = M/2 = 8, all phase speeds and eigenfrequencies are zero:
waves with the highest spatial frequency are stationary. All three of
these waves could be associated with the discrete slow-wave subspace,
but we select only one, as follows. According to Eqs. (4.5,4.24),

¥(M/2) is given by
T =vg - ¥y -vy =1 - 2%, (4.36)

where C 1is given by Eq. (4.2b). Since the eigenvalues of C are U, U %

Y%, the eigenvalues of ¥(M/2) are given by

SoCp =1 - 20202, (4.37a)

851Cp = 1 = 262U £ V8)2; (4.37b,c)

the eigenvalues Go,tl(M/Z) are distinct, although the corresponding
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frequencies “o,:l(M/z) are all zero. Due to the appearance of the
factors U and U % v® in Eqs. (4.37), and according to the discussion
following Eqs. (3.25), it is appropriate to refer to GO(M/Z) as the
Rossby eigenvalue for wave number M/2.

According to Eqs. (4.33,4.37) and Table 3, the eigenvalues 6&(m)
are distinct for eachw. The corresponding eigenvectors r,(w) are

therefore linearly independent, and expansion (4.30) is valid.

4,5. T™e Discrete Slow=Wave Subspace

It has been shown that the elgenfrequencies v, (w), defined in Eq.
(4.28) by the eigenvalues Gz(w), can be classified into Rossby
frequencies v,(w) and inertia-gravity frequencles veq(w), for each
possible wave number w. The corresponding Rossby elgenvectors ry(w)
and inertia-gravity eigenvectors E:l(w) are defined by Eq. (4.27).

According to Eqs. (4.30,4.32), {if the initial vector W, has
Fourier compoments solely along the Rossby eigenvectors, then the
corresponding solution w,. of the difference scheme (4.7) evolves
slowly, with frequencies v,y(w). That is, analogously to the definition

(3.15) of the continuous slow-wave subspace, the discrete slow-wave

subspace is the set R, given by

R ={we R": W) =Bgw) ro(w) for some

scalars Bo(w) and for all w = -§-+1,.... %-}, (4.38)

where RD denotes the set of real n-vectors.




-71=
We give two further definitions of R, equivalent to (4,.38).

Introducing the n=-vector

8, = [0,¢04,0,£5(w),0,...,0]7T, (4.39)

where there are 3(w+-;.-1) zeros on the left and 3(%-- w) zeros on the

right, an equivalent definition is
R ={we R™ % -7 Bolw)s, for some scalars Bo(w)} ;  (4.40)
W

definition (4.l4a) has been used. It follows from the Fourier

transform pair (4.20) that another equivalent definition is
R ={wer": w=] 50(w)F*gw for some scalars Bg(w)} . (4.41)
w

Definition (4.41) makes it clear that R 1s a subspace of R". That is,

R is a nonempty subset of RM", and
ajy; +azyp e R if y); e Rand yp e R, (4.42)

for all real scalars aj,ap. In fact, R 4is an M = n/3~dimensional

subspace of RR.,

*
The n-vector F's represents a pure wave of wave number w. It is

also, for each w, an eigenvector of ¥ with eigenvalue So(w):

¥F%s, = F*¥FF*s, ,  from (4.19b,4.22)
= F*ng , from (4.19b)

= 8ow)F’s,, from (4.23,4.27,4.39). (4.43)
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According to definition (4.41), R 1s thersfore an invariant subspace

of ¥

Yye R 1f ye R. (4o44)

This fact also follows immediately from Eqs. (4:30,4.32): if the
initisl data Wy e R, then ¥ € R for all k.

Analogously to Eq. (4.38), the discrete fast-wave subspace G,

consisting of inertia-gravity waves, is defined as
G={we R W) =B_j() r-1(w) +81(w) )

for some scalars By (w) aud for all w = -%;+l,..., §~};(4.45)

G is a 2M-dimensional invariant subspace of ¥. Taken together,R and G

span all of R%,
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CHAPTER FIVE
ESTIMATION THEORY AND INITIALIZATION

5. 1. IntrOduction

Although the Kalman-Bucy filter possesses many optimality
properties, it lacks one property of primary importance in numerical
weather prediction. Namely, there 18 no guarantee that the state
estimates produced by the KB filter evolve slowly: the KB filter does
not solve the initialization problem. In this chapter we introduce a
filter, or data assimilation scheme, which, automatically produces
slowly evolving state estimates and which retains much of the
optimality of the KB filters The f£ilter consists of a simple
modification to the usual KB gain matrices. We now summarize the
results concerning the modified KB filter.

The standard KB filter was derived in Chapter 2 by solving an

unconstrained minimization proilem: the quadratic error functional

ne = ELGR - u)T AR - wb))

was minimized, in turn, at each time k = 1,2,3,... . The modified KB
filter 1s derived by solving a constrained minimization problem: again

Nk 1s minimized with respect to the gain matrix Ki , but now subject to

the constraint that

Range K, C R,

i.e., that each column of K lies in the discrete slow-wave subspace.

As a result of the fact that the discrete slow-wave subspace 1is an




4

~7 4~
invariant subspace of ¥, and provided whe R, we will see that
satisfaction of this constraint is necessary and sufficient for the
state estimates to evolve slowly.

It was shown in Chapter 2 that the KB filter minimizes ny for all
choices of the positive semidefinite weighting matrix A. Constraining
the state estimates to evolve slowly results in a trade-off: the
modified filter depends on the choice of A. When using the modified
filter, one must actually choose the error functional to be minimized.

Provided the class of weighting matrices A is suitably restricted,
the constrained minimization problem has a uniﬁue solution, and the
modified KB filter is uniquely determined. It {is given by multiplying
the usual KB gain matrices by a projection matrix I which depends on A,

T =1(A) ; T 1s the A~orthogonal projection matrix onto R , and will be

defined below. We denote the modified filter’s gain matrices by K{{KB:

kKB = kK8,

The modified filter corresponds to foilowing the standard KB filter
with linear normal mode initialization at each observation time.

Linear normal wmode initialization, in its nonvariational form,
consists of setting to zero all fast components of the analysis vector,
while leaving the slow components unchanged, ¢f. Eqs. (1.3). For the
modified filter, this is atcomplished by taking I to be the projection
onto R along the fast-wave subspace G. We refer to this projection as

the parallel proiection. This projection 1s A-orthogonal for an

appropriate choice of the weighting matrix A.

Other choices of A correspond to performing variational linear




normal mode initialization: the fast components are still eet to zero,

but the slow components are altered also, cf. Eqs. (1.7,1,8). One

such choice is A = I, in which case N 4is the wusual orthogonal \

projection onto R. As a result of the fact that the slow-wave subspace
R is not orthogonal to the fast-wave subspace G, we will see that the
orthogonal projection 1s not the same as the parallel projection, so
that the corresponding filters produce different resulis. This is the
general situation: it is not particular to the continuous model (3.1)
or to 1its discretization (4.7). Cases in which G and R are
orthogonal are very special. '

The choice A = I 1is not appropriate for our model, since it
corresponds to minimizing a sum of squares of dimensionally
inconsistent quantities, We introduce therefore an additional

projection, the minimum-energy projection, in which A is chogsen as the

diagonal matrix which makes n, the expected energy of the analysis
error.,

After relevant material on projections is discussed in Sec. 5.2,
the modified filter {s formulated in Sec. 5.3. It is shown in Sec.
5.4 how to efficiently compute A-orthogons? projections onto R , for
general classes of welighting matrices A. ilie parallel, orthogonal, and
minimum-energy projections are discussed in Sec. 5.5.

Some of the results of this chapter are stated as lemmas and

theorems. These are all proven in the Appendixe.

5.2. Projection Matrices

Let S be a subspace of R", That is, S 1is a nonempty subset of

R™ and
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ajx) *tagxpe S if x 6 S andxye S ,

for all real scalars dj,as., Notice that S must contain at least the

zero vector.

An mxn matrix ]l is called a projection matrix onto $, or simply a

projection, 1f 1t has the properties

Range 1 = § , (5.1a)

n = p; ' (5.1b)

the range of a macrix is the set of linear combinations of its columns,

1.&- ]
Range 1 = {x: x =y for some y ¢ R"} .

If N1 4s a projection onto S and x = Ily, we refer to the vector x as a
projection of y onto S.

A subspace has a simple characterization in terms of projections
onto 1it. Suppose I is a projection matrix onto S. If x is a vector

in S, then

X=Ny, for some yeR"™, by Eq. (5.1a) ,
"
'H"x » by.qu (Solb) ’

=JIx, sincelly =x ;

i.e., x = Ix. On the other hand, 1f xe R" and x = Iix, then Eq.
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(5.1a) implies that x ¢ S ., Tat is, 1f I is & projection onto S, we

can write

S={xeRMNx=x} . (5.2)

Equation (5.2) states that a projection matrix acts on its range
like the identity matrix, To completely characterize a projection
matrix, it remains to specify how it acts on the rest of R®, One way
to do so is as follows.

Let V be a fixed, but arbitrary, positive semidefinite nxn matrix.

The kernel, or null space, of V is the set of its mull vectors,

Ker V = {x ¢ R": Vx = 0} .

Since V is positive semidefinite, rather than positive definite, Ker V

may contaln vectors other than the zero vector.

Two vectors Y;,yp € R" are said to be orthogonal if 1?22 = 0, |
More generally, 1if z?sz = 0, then the vectors are sald to be

V-orthogonal. In particular, Y1 and y; are V-orthogonal if y; € Ker V

or Xz € Ker V-
Suppose one can find a projection matrix I which, in addition to

satisfying Eqs. (5.1), satisfies

vm)T = v . | (5.3)

It follows that, i1f y is any vector in RV, then

X V(g-ny) = 0

T O O T - BTN T O T L ~ p G i i
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for all xeS . ‘That 18, the vector y~ly, which 1s the vector
difference between y and its projection onto S , 1is V-orthogonal to

every vector X e S . Indeed, fromEq. (5.2) we have Nx = x, whence

xTV(y-y) = %) TV(y-ny)

xL (VDT (gy)

XTVI (y-Ty)

-0;

the last twe equalities follow from Eqs. (5.3,5.1b), respectively.

A projection matrix onto S 1is therefore called V-orthogonal if,

in addition to satisfying Eqs. (5.1), it satisfies Eq. (5.3). In the
special case in which V is actually positive definite, it is well=-known
that Eqs. (5.1,5.%} define a unique matrix II (e.g., Halmos, 1958, Sec.
75), 4i.e., Eq. (5.3) serves to characterize the proajection matrix
(5.1). For reasons which will soon be made clear, we allow V to be
semidefinite. One can still find a V-orthpgonal projection matrix cito
S in this case, and there 1s a simple necessary amnd sufficient

condition under which the projection matrix is determined uniquely.

Lemm 1. Let S be a subspace of R" and let V be a positive
semidefinite rixn matrix. Then there exists a V-orthogonal projection

matrix onto S.

If S= {0} or if S=R", it is clear tha*t there exists exactly one
V-orthogonal projection matrix onto §, regardless of the choice of V.

Tn the former case it follows from Eq. (5.la) that T = 0, while in the
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latter case I = I since I must act like the identity on 1its rvange,
which in this case is all of R™; in both cases Eqs. (5.!,5.3) are
satisfied. We therefore state the uniqueness criterion only f'or proper

subspaces S, i.e., for subspaces of R? other than {0} and RM itself.

Lemma 2. Let S be a proper subspace of R™ and let V be a positive
semidefinite vxn matrix. There exists a unique V-orthogonal projection

matrix onto S if and only 1if

SN Ker V= {0}, ' (5.4)

The symbol N indicates set intersection. Lemma 2 states that
for exactly one matrix II to exist which satisfies Eqs. (5.1, 5.3), it
is necessary and sufficient that S and the kernel of V have only the
zero vector in common.

The uniqueness condition (5.4) ig satisfied, in particular, 4if V
is actually positive definite, for then V is nonsingular and Ker V =
{0}+ The I-orthogonal projection matrix onto S, known simply as the

orthogonal projection onto S, is therefore unique.

We have already seen that if 1 is a V-orthogonal projection matrix
onto S and if y € R", then the vector y-lly is V-orthogonal to every
vector in S. The following lpmma states that, provided the uniqueness
condition (5.4) 1s satisfied, there 1is a vector in S which is

"closest" to y, and in fuct the "closest" vector is Ny.
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lemm 3, Let $ be a proper subspace of R", let V be a positive
semidefinite nxn matrix, and let en arbitrary vector y ¢ R® be given.

There exists a unique solution X of the problem

minimize (x - z)T Vix - y), (5.5a)

subject to xe S , (5.5b)

if and only 1£ S and V are such that Eq., (5.4) ic satisfied, in which

case the solution is

x=0y, (5.6)
where 1 18 the unique V-orthogonal projection onto S.

Suppose now that V is actually positive definite. In this case,
there 1s a simple formula for the V-orthogonal projection onto S, in
terms of the (I-) orthogonal projection onto S and in terms of the
square root of V.

For every positive definite matrixz V, there i1s a unique positive
definite matrix B such that B2 = V, This matrix is called the

(positive) square root »f V, and we denote it by vl/2, The inverse

(positive) square root of V, defined by

y-1/2

(v1/2)-1’

is also positive definite.
The square root of V can be constructed as follows., Since V is

symmetric, V can be diagonalized by an orthogonal matrix U,

st
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v = ypuT , uTy = vuT = 1, (5.7a,b)

Here U i1s an nxn matrix whose columns are the normlized eigenvectors

of V, and D is a diagonal matrix whose diagonal elements A, are the

eigenvalues of V; Ay > Osince V is positive definite., The square root

of V is then given by

v1/2 w0y pl/2yT | (5.7¢)

where Dl/2 is the diagonal matrix whose diagonal elements, +/XI'. are

the positive square roots of the eigenvalues of V. We have also

v-1/2 w y p~1/2¢T, (5.7d)
where D1/2 z (pl/2)-1,

lemma 4. Let S be a subspace of R™ and let V be a positive
definite nxn matrix. Denote by Ny the V-orthogonal projection onto S

and denote by Iy the orthogonal projection onto S. Then

My = v-1/2 ng /2, (5.8)

Lemma 4 has a simple generalization. Applying the lemma to

another positive definite matrix W, we have
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which, upon substitution into Eq. (5.8), gives

My = v-3/2 41/2 g y=1/2 y1/2, (5.9)

Thus, two projections based on positive definite matrices can always be
expressed in terms of one another.

In case V is positive definite, then

(Z,x)v ] §TV2 y for x,ye R®,

4
defines an inner product on R?, with corresponding norm Ixty ,

1%§ = (xx)y = ¥'Vx , for xe RV ;

L12

Iy > 0 and Ixly = O if and only if x = 0. Equation (5.3) is
equivalent to requiring a matrix I to be symmetric with respect to this

inner product, i.e.,

(x,Mly)y = (%,y)y for all x,ye R",

which 1s the usual way of defining orthogonality of projection matrices
on inner product spaces (e.g., Halmos, 1958, Sec. 75).
For positive semidefinite matrices V, lgiv'- 0 does not {(mply x =

0, i.e., I-lv is only a seminorm on R™. However, we note that the




uniqueness condition (5.4) is necessary and sufficient for Iely to
define a norm on the subspace S ; see the proof of Lemma 1 in the
Appendiyx.

Lemmas 1 and 2 will be {important in the derivation of the modified
Kalman-Bucy f£ilter. The arbitrary subspace S of the present section
will be taken to be the slow-wave subspace R, and the matrix V will be
the weighting matrix A of the error functional n. .

The uniqueness condition of Lemma 2 will turn out to be the
condition for uniqueness of the modified KB filter, i.e., the class of

rositive semidefinite matrices A satisfying

R N Rer A = {0}

will be the appropriate class of weighting matrices. We saw in Sec.
2.4 that positive definiteness of A is the condition for uniqueness of
the standard KB filter; positive definiteness <f A is not necessary for
uniqueness of the modified KB filter. However, the modified filter
will d2pend on A, regardless of whether A is positive definite. Some
natural weighting matrices, both semidefinite and definite, will be
considered in Sec. 5.5.

Lemma 3 serves as a prototype for Theorem 1 of Sec. 5.3, from
which the modified filter follows, and it gives the modified filter an
interpretatica in terms of normal mode initialization. Lemma 4 will be
used in Sec. 5.4 to describe vne way, among others, of computing the

modified filter.
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5.3. The Modified Kalman~Bucy Filter

We begin by formulating a simple necessary and sufficient
condition under which an assimilation scheme for our discrete model ¥ ,
Eqs. (4.7), will yield slowly evolving state estimates. As usual, we
consider only assimilation schemes which are 1linear and unbiased.

According fo Eqs. (2.7,2.8), these schemes are of the form

W = vufo1 (5.10a)
Wl = wf + Kl , (5.10b)

for times k when observations are available; when no observations are

available, Eq. (5.10b) is replaced by

The nwtation

wf = w? - Huf , (5.11)

for the observed-minus-forecast residual, has been introduced in Eq.
(5.10b). The true states, Eﬁ , and the observations, gﬁ , are assumed
to be given by stochastic-dynamic models (2.2,2.3), with¥, = ¥ given
by Eq. (4.7b).

The state estimates in Eqs. (5.10) will be said to evolve slowly

if they always lie in the discrete slow-wave subspace, i.e., 1if

wi e R and wle R for k=1,2,3,... . (5.12)
Wi Yk




An immediate consequence of the fact that R is an invariant subspace of

Y , Eqs. (4.42,4,44), is that (5.12) is satisfied if and only 1if

wje R (5.13a)
and
Kewk € R at each observation time k. (5.13b)

Condition (5.13a) says that the assimilation must start from an
initialized state, while (5.13b) is a condition on the "correction"
vectors in Eq. (5.10b).

To see that conditions (5.13) dmply (5.12), notice that if
!ﬁ-l e R, then gi ¢ R since R is invariant under ¥ ; 1f k 1is not an
observation time then we have gﬁ - gﬁ e R, while 1f k is an observation
time and K.wf € R then we still have w ¢ R, since R 1is a subspace.
Upon continuing the cycle, the implication is clear. On the other
hand, 1if g£ € R at some observation time k but K.wk ¢ R, then wi ¢ R
since R is a subspace. Thus, (5.12) and (5.13) are equivalent, H

Conditions (5.13) are necessary and sufficient for the
assimilation scheme to yield slowly evolving estimates for a particular
realization of the state end observation processes, Eqs. (2.2a,2.3a).
For the scheme to yield slowly evolving estimates for all realizations
of the state and observation processes, it is necessary and sufficient

that

wh e R (5.14a)

and

i
g
T e
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Range K, C R at each observation time k . "(5.14b)

To see that this is the case, recall from Sec. 2.2 that the gain
matrices K, are supposed to be nonrandom, 1,e., they are supposed to be
independent of individual realizations of the satate and observation
processes. The residual gﬁ is a random vector and, unless restrictions
are placed on the system noise and observational noise, Wi can take on
any value in RP, Therefore condition (5.14b), which says that Kex e R
for all xe R" , is just the statement that (5.13b) should hold for all
realizations. In other words, the set of gain matrices which satisfy
(5.14b) is the set of gain matrices which are independent of gﬁ and
which satisfy (5.13b).

If the initial estimate satisfies (5.14a) and if the gain matrices
satisfy (5.14b), then the state estimates evolve slowly in between
observation times, as well as after the final observation time k = N,
That slow evolution is possible depends crucially, as we have seen, on
the fact that R 1s an invariant subspace of ¥. This is why we work
directly with the discrete slow-wave subspace R. Any other discrete
approximation to the continuous slow-wave subspace }zc will not have
the property of being invariant under Y.

The Kalman-Bucy filter generally does not yield slowly evolving
state estimates, unless it 4s assumed that the true state evolves

slowly,

g‘t( € R > for k = 0,1.2,..0 . - (5.158)
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If (5.14a) is satisfied, then (5.15a) is equivalent to requiring the

initial estimation error and the system noise to lie in R,

wi-wf e R and Bt e R for k=0,1,2,... ; (5.15b)

cf. Eq. (2.2a). If (5.15b) holds, then 1t follows from Eqs.
(2.22b,c,d) and the definitions of the initial estimation error
covariance and the system noise covariance, Egs. (2.9b,2.2c), that the
KB gain matrices satisfy (5.14b): the state estimates evolve slowly.
See also Petersen (1973) for a similar result,

We do not assume conditions (5.153). or (5.15b) to hold:
atmospheric states generally do have fast components., Instead, we seek
an alternative to the KB filter, by imposing condition (5.14b) as an

explicit constraint on the minimization of the usual error functional

Nk »
N = E[ f-ef)T AGR-gD] 5 (5.16)

A is a fixed, but arbitrary, nonrandom positive semidefinite nxn

mtrix. That is, we seek gain matrices Kk which

minimize n, with respect to Ky , (5.17a)

subject to Range K C R, (5.17b)

at each successive observation time k; we already know that K, = 0 1if
there are no ohservations at time k. Notice the similarity between
problem (5.17) and problem (5.5) of Lemma 3. The solutions, and

conditions for their uniqueness, are also similar.
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Theorem 1. All solutions of problem (5.17) are given by

K =1, KRB + 1L, (5.18)

where Il is any A-orthogonal projection matrix onto R, 1.e., any matrix

such that

Range I = R , (5.19a)
n2 = g, (5.19b)
(AT = an , . (5.19¢)

and where L, is any nxp matrir such that

Range L, C R N Ker A ; (5.20)

KEB is the usual Kalman-Bucy gain matrix, Eq. (2.20a). There exists a
unique solution of problem (5.17) if and only if the weighting matrix A

is such that

RN Ker A = {0} ; (5.21)

in case Eq. (5.21) holds, there exlists exactly one A-orthogonal
projection matrix onto R, denoted by I, and the unique solution of

problem (5.17) is

K, =k = 1 kKB, (5.22)

A A e A A s AT AR R 10 i A A v s S Sl G
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The proof of Theorem 1, which appears in the Appendix, follows
easily from Lemmas ) and 2 and from our derivation of the KB filter in
Sec, 2.4.

Theorem 1 states that the constrained minimization problem (5.17)
uniquely determines a gain matrix sequence if and only i1f the error
functional 1is based on a weighting matrix A which satisfies R™Ker A =
{0}, in which case the gain matrices arc obtained by multiplying the
usual KB gain matrices by the A-orthogonal projection onto R. The
uniqueness condition 1s not very restrictive. For example, weighting
mitrices of interest are usually positive definite, rather than merely
positive semidefinite; 1f A 4is positive definite, then 1t 1is
nonsingular and Ker A = {0}, so that RN Ker A = {0} automatically.
Essentially, weighting matrices satisfying the uniqueness condition are
the appropriate ones for consideration. We discuss some of them,
including some singular ones, in Sec. 5.5.

Suppose, therefore, that A satisfies the uniqueness condition, Eq.

(5.21). According to Eqs. (5.22,2.20), the resulting gain matrices

are given by

KK w npful (u pEnE + Ry)™! (5.23a)

at observation times k, where Nl 1s the unique A-orthogonal projection

onto R, and

xgxﬂ = 0 (5.23b)

in the absence of observations at time k. We refer to the corresponding




B PPN

ORIGINAL PACE 10
-90- OF POOR QUALITY

data assimilation scheéme as the modified Kalman-Bucy f£ilter, To

sunmarize, 1t is given in full by

PACRT (5.24a)
Pk = ¥R T + Qe (5.24b)
K = KR, (5.24c)
P2 = (I-KyHy)PE (1K BT + K RKE, (5.244)
wR = uk o+ Kl - meb), (5.24e)

for k = 1,2,3,,..; cf. the standard KB filter, Eqs. (2.22), Note
that the general formula (2.10b) 4is used for the analysis error
covariance matrix P§.,

The modified KB filter results in slowly evolving state estimates
provided initialization 1s performed at the start of the assimilation,
Eq. (5.14a). The filter is optimal in the sense that slow evolution
is achieved simultaneously with the successive minimization of the
error functionals Nice Unlike the standard KB f£ilter, however, the
modified f£ilter depends on the error functional’s weighting matrix A,
cf. Eqs. (5,19c,5.8). One mist therefore choose the error functional
to be minimized.

Lemm 3 offers a simple interpretation of the modified filter.

Equation (5.24e) can be written

B

ud = wf + KPR - mf).

If w} € R and the modified filter has been used up to time k, then

2& e R . Therefore g{ =L g{. cf. Eq. (5.2), and we have
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t

who= 1 [k + KPR - mah)] =gk (5.25)

here zﬁ is the analysis vector that would be produced by using the KB
filter at time k, cf. Eq. (2.22e). Thus, gﬁ is the A-orthogonal
projection of y2 onto R,

In fact, according to Lemma 3 and Eq. (5.25), gﬁ is that vector

in R which is clcsest to the KB analysis vector xﬁ » in the sense that

(e -y A - 1) (5.26)

is minimized. In other words, the modified KB filter is equivalent tc
following computation of the KB analysis vector with variational normal
mode initialization: y® is an "objective analysis" and wj is the
"initialized" version of yR , as wie R and (5.26) is minimum.
Equation (5.24d), as compared with Eq. (2.22d), determines the effect
on the analysis error of combining initialization and assimilation.
Theorem 1 shows that (5.26) is not the only functional being
minimized by use of the modified KB filter. The functional N of the
difference between the analysis vector gﬁ and the true state gﬁ is also
being minimized. This stronger result obtains, in essence, because the
assimilation part of our initialization-assimilation scheme 1s the

standard KB filter.

To conclude this sention, we point ocut thai although Theorem 1 1is
stated for our discrete model ¥ and its slow-wave subspace R, the
theorem is actually quite general. The proof of Theorem 1, and the
discussion leading to the statement of the theorem, depends only on the

fact that R is a proper invariant subspace of ¥ ; the actual definition

-2
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of R 1s immaterial. In particular, the theorem holds for other
discrete models ¥ and their slow-wave subspaces, In general, the
theorem shows how to estimate the state of a stochastic-dynamic system,
given noisy observations, in case the state estimates are confined to
an invariant subspace of the systum’s dynamics.

In the trivial case R=R", Eq, (5.17b) presents no constraint
and, as one would expect, the modified filter reduzes toc the standard
KB filter. To see this we can still use the first part of Theorem l,
since only the uniqueness part of the pronf depends on the fact that R

is a proper subspace of R",

Lf R™ RM then, regardless of the choice of A, there is exactly

one A-orthogonal projection onto R, nemely I = I; see the discussion

following Lemma 1. Equations (5.18,5.20) therefore become

K, = KRB + 1, , (5.27a)
Range 1y C Ker A. (5.27b)

This gives the unique formula K, = K&B. the KB gain matrix, if and only
1f Kexr A = {0}, i.e., 4ff A 1is positive definite. Positive
definiteness of A was the condition already found to be necessary and
sufficient for uniqueness of the KB filter; see the discussion

following Eq. (2.19), 1In fact, the general solution of Eq. (2.18) is

given by Eqss (5.27).

5.4, Computation of Projections onto the Slow-Wave Subspace

In order to actually carry out computation of the modified KB

filter, one must be able to calculate the A-orthogonal projection

/r‘4
g s
i
i
i
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matrix I, or at least to compute Nl for arbitrary vectors w ¢ R". The
main result of this section; Theorem 2, gives a formula for efficient
computat/on of I in case the weighting matrix A i{s block circulant. We
show that in this case, the fast Fourier transform (FFT) can be uried to
compute Ilw in only O(n log n) arithmetic operations. After discussing
this case, we app’y Lemma 4 to the more general case, in which A is not
necessarily block circulant.

Suppose that in the error functional

n = E[@-u)T AGwi-w®)) ,

the weights are homogeneous in space, i.e., the weights applied to
variables situated avound a glven grid point are the same as the
weights applied to the variables identically situated around each of
the remaining grid points. Since our domain is periodic, and due to
the ordering (4.6) of the components of the vectors w? and gc, this

means that the weighting matrix A is block circulant with 3Ix3 blocks,

A= Cir‘:[l\o,f\l, XX ,AM/2,A.M/2+1, X -,A-l]; (5628)

cfe FEq. (4.7b). That is, with A partitioned regularly into M2 3«3
blocks, the 3x3 submatrices Ag,Aj,...,Aq/2,A-M/241s+++,A=1 appear in
order across the first row of A, and each of the remaining M-1 rows 1is
obtained by circularly shifting the previous row one block to the
right.

The submatrix Aj (A_j) glives the weights applied to the variables
u,v,¢ at the grid point located j intervals to the right (left) of a

given grid point. In case one applies only local welghts, which is

R




typical in practice, one has Aj = 0 for § ¥ 0O and A would be

block-diagonal, with the matrix AO repeated along the main diagonal of

As

In the sequel, whenever we refer to a matrix as being block
circulant, it is implicit that the blocks are 3x3 and that the matrix
is nxn = MxM, since these are the only block circulant matrices with
which we will be concerned.

Our results are based on the fact that if A is block circulant,
then the Fourier matrix F defined in Eq. (4.18) block-diagonalizes A,

and vice-versa. That is, if A 18 of the form (5.28) then, defining
A = FAF*, (5.29)
we have
A = diag [A(- %.-0-1), AC- 32’.+2>, cees ?\(,’})], (5.30)
where the 3x3 matrices A(w) are given by

) M/2
A) = ZM

AWM AL wm =R, L, B (53D
dmp +1

On the other hand, given any 3x3 matrices R(w), and defining

A = F*AF, (5.32)

where A is given by Eq. (5.30), then A is block circulant. For proof,
see Davis (1979, Theorem 5.6.4).

The nxn matrix A therefore defines 3x3 matrices Kﬁn). and
vice-versa; i1t will be most convenient to work with the 3x3 matrices.

Recall that A is supposed to be real), symmetric, and positive

dgah g s
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semidefinite., We first trnnqhate these conditions into restrictions on

x(m).

Lemma 5. If the block circulant matrix A in Eq. (5.28) is real,
symmetric, and positive semidefinite, then the matrices Aw) in Eq.

(5.31) satisfy

Mw) = R@), for w=01,.0u, 21, (5.33a)
- M ~ M. ‘ e

A(‘T) = A LI-)’ . (5-33b)
A'w@) = R@), for w = =24, .., .‘2‘. (5.33c)
YRy 20, for w=-pH, vy g (5.33d)

and for all complex 3-vectors y.

Conversely, given any 3x3 matrices Aw) which satisfy Eqs. (5.33), the
block circulant matrix thereby defined in Eqs. (5.30,5.32) is real,

symmetric and positive semidefinite.

Equations (5.33a,b) express the condition that A is real; they are
similar to Eqs. (3.5). The conditions that A 1is symmetric and
positive semidefinite are expressed by Eqs. (5.33c,d); these equations

state that A(w) mist be Hermitian positive semidefinite.

We would now like to translate the condition for uniqueness of the

modified KB filter,
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RN Ke:ﬂA - (0} ,

into an equivalent condition on the matrices A@)e To do so, we will
have to be somewhat more specific about the vectors rg(w) which define
the slow-wave subspace in Eq. (4.38),

Recall that the vectors _:;O(w) are eigenvectors of \?(m). ﬁq-
(4.27).  Since the submatrices ¥, which define ¥(@) 1n Eq. (4.24) are

real, it follows that

¥(w) = V‘a"(m), forw = O,l,....‘g--l , (5.34a)
o M My
w(zh - *‘7’ . (5,34b)

Since the eigenvalues §,(0) and 60(;) are real, Eqs. (4.28,4,33,4,37),

it follows from Eqs. (5.34) that the elgenvectors can be chosen in

such a way that

Eo(w) = o) , forw = 0,1,.eu, 3 -1, (5.350)
0p = rolp- (5.35b)

That 1s, we can assume that r,(0) and go(g) are real and that, for the
remaining eigenvectors, EO("") is the complex conjugate of _:_'o(w). Wei
do not assume, however, that the eigenvectors are scaled in any

particular way.

Definition (4.38) of the slow-wave subspace can now be replaced by




R ={wecm ?j(@) = Bolwikolw) for allw = "’-;1 1,000 ;‘v
where Bo(w) are any scalars such that go(-w) = gglw) .
and 8o = 8oCpls (5.36)

where C" denotes the set of complex n-vectors; Eqs. (4.15) imply that

a complex n-vector W ig real if and only if

Q(ﬂn) - Q(w); forw = 0,1,..4, g;-l, (5.37a)
" M ~ .M
!(‘2‘) - ,‘_’,(-2') ’ (5.37b)

whence, by £qs. (5.35), a vector w defined by
ww) = Bolw) rolw) (5.38)
is real iff the scalars 8(w) satisfy the conditions in Eq. (5.36).

Lemma 6. Suppose the block circulant matrix A in Eq. (5.28) is
real, symmetric, and positive semidefinite, and define matrices Aw) by

Eq. (5.31)., Then the following three statements are equivalent:

RN Ker A = {0} , (5.39a)

AW) £olw) #0, for w= =m+l, eeey B, (5.390)

ro@AWEg) > 0, forw = =3 +1, oy 3o (5.39)
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Condition (5.39c) eimply states that 4in addition to being
Hermitian positive semidefinite, Eqs. (5.33¢c,d), A(w) must be positive
definite on the space spanned hy the slow-wave eigenvectors rp(w). We

are now ready to state the main result concerning computation of .

Theorem 2. Suppose the block circulant matrix A in Eq. (5.28) is
real, symmetric, and positive semidefinite, and define matrices Aw) by

Eq. (5.31). Suppose further that

RN Ker A = {0} , (5.40)

so that there exists a unique A-orthogonal projection matrix onto R,

denoted by . Then Il is block circulant and is given by

n = F*iF, (5.41a)
where
i o= diag [ fi- 34, G- B42), oo, BCD], (5.41b)
fiw) =a, £gw) o) Aw) , (5.41c)
a, = [£5(w) Aw) o] . (5.414)
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Notice that, according to Lemmas 5 and 6; the hypotheses of
Theorem 2 can be replaced by Eqs., (5.33) and either of Eqs.
(5.39b,c). This will be important in the next saction, where we define
projections directly in terms of prescribed matrices A(w), rather than
in terms of the corresponding matrix A. Notice also that Lemma 6
guarantees that the ecaling constants o, in Eq. (5.41d) are
well-defined.

Theorem 2 gives an efficient method for computing NW for any we
RM, First, one finds Fw, i.e.,, the discrete Fourier transform of each
of the three M-vectors of which v is composéd. This can be done in
only 0(n log n) arithmetic operations, by use of the FFI algorithm
(e.g., Brigham, 1974). Next, one mltiplies the resulting 3-vector
Fourier components QQA) by M), to £ind ﬁFg ; this takes only O(n)
operations. Finally, one finds [lw = F*ﬁFg by performing three inverse
FFTs, taking an additional O(n log n) operations. To carry out the
second step, of course, one must have already computed the slow-wave
eigenvectors r,(w) and the matrices A(w); this computation necd only be
done once and for all.

In our discussion of variational normal mode inftialization in
Sec. 1.2, we saw that different weights are usually specified over
teglons of different data densities. 1In this case A is not block
circulant, but we still have recourse to Lemma 4. To compute Ilw in this
case, according to Eq. (5.8), one computes Al/zg , then HIAl/zg, then
A’I/ZHIAI/Zg = lw. The second step is carried out according to Theorem

2: Ny 4s the projection matrix corresponding to the trivially block

circulant matrix I. Computation of Al/z and A'l/z is wusually simple

also, becaus¢ one 1s usually interested in local weighting, in which

3
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case A i3 block-diagonal with 3x3 blocks, or even diagonal, as in the
case of functionals (1.7, 1.8). At worst, therefore, one would have to
compute square roots of ?x3 matrices. In the usual case, in which A is

diagonal, only scalar square roots are required.

5,5, Choice of the Weighting Matrix

We have seen that the modified KB filter depends, through the
A-orthogonal projection matrix I, upon the weighting matrix A chosen
for the error functional. We now describe several choices of A and
discuss the projections to which they lead,’ namely, the parallel
projection, the orthogonal projection and the minimum-energy
projection. The latter projection is the one chosen for the numerical
experiments described in the following two chapters.

First we introduce some assumptions and notation. Recall that the
slow-wave subspace R 1s defined in Eq. (5.36) in terms of the
eigenvectors rg(w) of Q(w), Eq. (4.27), and that the fast-wave
subspace G 1s defined in Eq. (4.45) in terms of the remaining

eigenvectors &1, (w). We assume that the eigenvectors have been chosen

in such a way that

Ej("w) - Ej(w) y w = 0,1,..., ;-"1, (5.42a)

EJ(%) - 53(;), (5.42b)

for § = 0,t1; we already saw that this is possible for j = 0 and, for
the same reasons, suck a choice is possible for j = +1, For simplicity

we now assume that also
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ey w) =1, o= -.l;.-ﬂ. s a3 mO0EL, (5.49)

i.e., that all the eigenvectors have been normalized.

Equatior, (4.27) can be written as

¥@) =R@W) D) R~} w), (5.44a)

where R(w) is the 3x3 matrix whose columns are the eigenvectors,
RGt = (£o)(w), rolw), r1()l, (5.44b)

and where D(w) is the diagonal matrix of zigenvalues,

D(w) = diag [8_;(w), 8gw), §1(w)]. (5.44¢)

We denote by z*(w) the rows of R'l(m):
Ch |

141w
R71@w) = | 2fw) . (5.45)
L&i‘(w)
Clearly we have
Ly(w) =E3G@), w = 01,000, -1, (5.46a)
&3(5}> -&,3(5}). (5.46b)




=102~
for § = (*.541, since, for example, ¥q. (5.42a) is equivalent to R(-w) =
R(w), and therefore R™1(w) -k’l(w).

The g‘;(w) are left eigenvectors of Y(), i.e,,

£30) ¥ = 640) £iW) 4 (5.47)

which follows upon premultiplying Eq. (5.44a) by R ). Notice also

that the equation RG»)RTlon) = I can be written as

Eo() £h W) +rgl) £hw) + 1) i) =1, (5.48a)

and that

L7() £4(w) = 84y, (5.48b)

which follows from R'l(w)R(w) =1,

Before discussing the projections mentioned at the beginning of
this section, we point out that the correspondence between "legitimate"
weighting matrices A, i.e., those satisfying RN Ker A = {0}, and
A-orthogonal projections onto R 18 not one-to-one; rather, it 1is
many-to-one. For example, Lf I is the unique A-orthogonal projection
onto R for sume block circulant matrix A satisfying RN Ker A = {0},

then T is also the unique A’~orthogonal projection, where

A'W) =AW) +yog @)@t @) +y e @iiw) ,  (5.49)
for any real scalars vy, (w). It is clear from Eqs. (5.46,5.48b) that

if 30») satisfies conditions (5.33,5.39c) of Lemmas 5 and 6, then ro

does K’Gn), while from Eq. (5.48b) we also have

B TP SO T T o i
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\ TR * 1
rp(w) A’@W) =rg Aw) ,

from which Theorem 2 implies that the projections corresponding to Aw)
and A’{w) are identical.
It is similarly verified that another such equivalent weighting

matrix is A", vhere

A"w) =Aw) + T - rolwdegw)/rwdrgw), (5.50a)
or simply

A@w) =A@W) +T - gow) o), (5.50b)

in 1light of the scaling assumption (5.43), Although the modified KB
filter is chosen to minimize a certain functional n(A) of the analysis

error, it will also minimize, for example, n(A’) and n(A").

The parallel projection. For the parallel projection it is most

ratural to define the projection matrix first, and then to deteraine a
welghting matrix A from which it can be obtained.

By the parallel projection we mean the projection onto R along the
fast~wave subspace G . That is, the parallel projection matrix is that
matrix I, such that for each xe¢ R%, w = I;x has the same slow
components as X, and no fast components: the projection is parallel to
the G ~"axis". In other words, the parallel projection 1s the one
which corresponds to the nonvariational formulation of normal mode
initialization. A two-dimensional interpretation of the parallel

projection 1s given in Fig. 2,
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A precise definition of the parallel projection 1s as follows.
Since R and G together span all of R™, it 4s clear from Eqs.
(4.45,5.36,5.42) that the Fourier components of every x ¢ R"™ can be
written in the form

1

x@) = I 8y gy, (5.51a)
3=-1

for some scalars Bj(m) satisfying

Bj("‘ﬂ) - Bj(m)n W = 0’19--.0) ;1—'1 ’ (5.51b)
83(;-) - Bj(-g-)» (5.51c)

for 3§ = 0,1, The parallel projection matrix is that matrix I, for

which the Fourier components of w = II,x are given by

ww) = Bolw) rolw) ; (5.52)

the slow components of X are unaltered and the fast components are set
to zero.

The parallel projection matrix is defined implicitly by Eqs.
(5.51,5.52), Clearly there is at most one such matrix, for we have
defined how &t acts on all of R®, It {8 also clear that Range I, =R
and that I, (1, x) =Tyx for every x € R", so that such a matrix mst
indeed be a projection matrix onto R.

Now define 3x3 matrices A(w) by

AW) = o) Lo) , (5.53a)
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and define the corresponding block circulant matrix

A= AR, (5.53b)

where

A= dtag [AG- J41), A= Z42) poen, RGD]. (5.530)

It 1s clear from Eqs. (5.46) that A(w) satisfies conditions (5.33a,b)
of Lerima 5; satisfaction of conditions (5.33¢,d) is obvious. The block
circulant matrix A is thexrz2fore vreal, symmetric and positive
semidefinite. Notice that A is not positive definite; it has rank M =
n/3 since, for each w, the rank of K(m) is one. However, it follows

from Eq. (5.48b) that

53(‘“) 3((0) rgw) =1>0,

whereby Lemma 6 implies that RN Ker A = {0}, There exists, therefore,
a unique A-orthogonal projection matrix onto R ; we show that it is in
fact the parallel projection matrix.

With A(w) glven by Eq. (5.53a), and using Eq. (5.48b), it
follows from Theorem 2 that the A-orthogonal projection matrix is that

block circulant matrix 'IIA for which

fia) = £g(w) o). (5.53d)

Letting w = II,x with x ¢ R", we have

W= Fllyx = (FIED Gy = fyx

PRSI | S
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ww) =M, x)
1

= Bow) rolw) 3

the last equality follows from Eq. (5.48b). Comparing this result
with Eq. (5.52), it is clear that Eq. (5.53d) does give the parallel
projection matrix, i.e., HA =1y .

To summarize, the parallel projection matrix n' is a block

circulant matrix; it is defined by setting

ﬁ'(m) =row) &S(m) . (5.54)

The parallel projection matrix is A-orthogonal for A given by Egs.
(5.533-c) []

The orthogonal projection. The orthogonal projection matrix is

the one corresponding to the choice A = I, In Sec. 5.2, the orthogonal
projection matrix was denoted by lly ; we now denote it by N; , in
contradistinetion with the parallel projection matrix H‘ .

If A= 1, then we can write

A =circ [1,0,..,,0] ,

whence, by Eqs. (5.28,5.31), A(w) =1 for all w. According to Theorem

2, the orthogonal projection matrix M, is therefore block circulant,

and is defined by setting
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i, @) = £glw) £5w), (5.55)

as the scale factora = ) by assumption (5.43).
It was shown in Sec, 5.2 that for every x e R", the vector x -
M, x, which is the vector between x and its orthogonal projection onto

R, 18 orthogonal to every w ¢ R, i.2.,

gT(g-ﬂlg) =0 forall weR, xeR"

Equivalently, for all w and for j = 0,1, we héve
gg(w)[gj(m) =N W) gy)] =0,

which foilows from Eqs. (5.43,5.55). The orthogonal projection in two
dimensions is illustrated in Fig. 2.

The orthogonal projection is not appropriate for our discrete
system (4.7). With A = I in the error functional (5.16), we see that
the modified filter based on the orthogonal projection would minimize a
dimensionally inconsistent sum of squares, 1i.e., squares of the
velocity components (m/s) and of the geopotential (mzlsz).

Comparison of the parallel and orthogonal projections. Having

defined the parailel and orthogonal projections, we wish to make it
clear that these two projections are not the same, Ii, L nl , and to
clarify why this is the case.

Since the Fourier mtrix F is nonsingular, it is clear thatvﬂ' -
M, 1f and only if ﬁlﬁn) - ﬁl(m) for all w. According to definitions

(5.54,5.55), the latter equality holds if and only if
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tow) = rolw) for all w. (5.56a)

Notice that 4f Eq. (5.56a) 4is satisfied, then there is no
conflict between the matrix Afw) = Lo(w )ga(m) which we used to obtain
the parallel projection and the matvix ﬁ(m) = T which generates the
orthogonal projection. From Eq. (5.50b) it follows that the parallel

projection is also A"-orthogonal, where

AM@) = £oldeg(e) + 1 = goGlrg@) ,

and 1f Eq. (5.56a) is satisfied, then A"(w) = I.

Now, from Eq. (5.45), we have

Low) = R gg

where ey 1is the vector (O,I,O)T; therefore Eq. (5.56a) is equivalent

to

) = R ey, toralle,
or

R*(m)go(m) =eqg, forallw,
or

};;l(w)_r_o(m) =0, forallw, (5.56b)

since we already assumed 53(“’)50(“) = 1, Eq. (5.43). By definition of

the fast-wave and slow-wave subspaces, Eq. (5.56b) is equivalent to

R S T S
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f

x'y =0 forall x¢6G, yeR. (5.56c)
Thus, the parallel and orthogonal projections are identical if and%ﬁnly
if the fast-wave subspace is orthogonal to the slow-wave subspace.
This statement should also he clear from the geometrical 1nterbretation
of the parallel and orthogonal projections indicated in Fig. 2.r

The axes in Figure 2 are drawn obliquely because the eigenQactorB
of our discrete model do not satisfy Eq. (5.56b): the fast-wave and
slow-wave subspaces are not orthogonal. Primitive-equation models
linearized about a state with nonzero mean flow also have nonorthogonal
fast-wave and slow-wave subspaces (Kasahara, 1981).

This nonorthogonality 1is not an artifact of discretization.
Rather, it is a property of the differential equations.
Nonorthogonality of the fast-wave and slow-wave subspaces of the
shallow-water equativpns (3.1) is due to the asymmetric form of the
equations and to the appearance of the term (-fUv) in Eq. (3.1¢c).
This term arises because the solution about which Eqs. (3.2) were
linearized has ¢y # 0, i.e., a free surface with nonzero slope in the
meridional direction.

With the term (~fUv) removed from Eq. (3.1c), the change of

variables

urvdu, v+V7O v, ¢+é (5.57)

4n Eqs. (3.1) results in the symmetrized shallow-water equations,
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U+ Uuy + /8 ¢y ~ £V = O, (5.5€a)

v, + Uvy +fu = 0, (5.58b)

bp + Upy + Vo uy = 0; (5.58¢c)

cf. Kreiss and Oliger (1973, Ch, 7). For this system, corresponding
to Eq. (3.9b) we have

" EU if e/o"]

Gg(E) = =1 =1f  EU o | .

EV® 0 EU

Since,Gs(g) is Hermitian, i.e.,

GR(E) = Gg(e) , |

its eigenvectors are orthogonal, and therefore the slow-wave and
fast-wave subspaces of the continuous system (5.58) are orthogonal.

Since G (t) is Hermitian, it is also normal, i.e.,

GH(E)G(E) = G4(E)GA(E) .

A matrix has a completz set of orthogonal eigenvectors 1f and only if
it 1s normal. The matrix G({) given by Eq. (3.9bj) is not normzi, and
the slow-wave and fast-wave subspaces of the original system (3.1) are
not orthogonal.

As a consequence, the 8low-wave and fast-wave subspaces of the

discrete model (4.7) are not orthogonal: the symbol ¥(w) given by Eq.
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(4.24) 4s not a normal matrix and its eigenvectors do %oc satisfy Eq.
(5.,56b), The Richtmyer two-rtep scheme for the modified system (5.58)
does have a normil symbol, and therefore has orthogonal slow-wave and
fast-wave subspaces,

We hope to have 4{llustrated by means of this example that
continuous models having orthogonal fast-wave and slow-wave subspaces
are special: the eguations mist be written in symmetric form and must
have been linearized about a specially chosen rtate. Orthogonality may
or may not carry over to a corresponding discrete version vf the model;
one must still check to see if the discrete model’s symbol is normal.

The minimum—energy »rojection. For the numerical experiments, we

choose the modified filter to minimize a physical quantity, namely, the
expected energy of the analysis error. The energy of solutions of Egs.

(3.1) is proportional to

L/2
i (u? + v? + p2/3) dx .
-L/2
We choose A to be the diagonal matrix with the elements (1,1,1/9)
repeated along 1its diagonal; the corresponding error functional n
represents the expected energy of the analysis error, and we refer to
the corresponding projection as the minimum-energy projection. The
minimum-energy projection, denoted by Mg , 4s distinct from the
parallel and orthogonal projections, and is depicted in Fig. 2.
The minimum-energy projection was computed by the method of

Theorem 2, The weighting matrix A is block circulant,

A= circ [A0,0,C.0,0] ’ (5.598]
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where
Ag= diag (1,1,1/¢) , (5.59%)
whence, from Eq. (5.31),
Alw) = d1ag (1,1,1/0) . (5.59¢)

According to Theorem 2, therefore, the minimum—energy projection matrix

is the block circulant mafrix HB for which

flg(m) = a, rolw) gs(w) diag(l,1,1/%) , (5.60a)
where
a, = [xhw) diag(1,1,1/8) o]t (5.60D)

)
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CHAPTER SIX
EXPERIMENTS WITH THE STANDARD AND MODIFIED KALMAN-BUCY FILTERS

Numerical experiments with the standard and modified KB filters
will now be described. The results show that the modified filter
produces slowly evolving state estimates, at the expense of estimation
errors only slightly larger than those resulting from use of the
standard KB filter. Results show also how each filter utilizes the
information advected between data-dense and data-sparse regions. The
importance of proper use of advected information will be further

demonstrated in Chapter 7.

6.1, Observing Pattern, Noise Covariances and Initial Data

We complete the description of our implementation of the standard
and modified ¥XB filters, Eqgs. (2.22, 5.24), by chnosing an
observational pattern H  , noise covariances Ry and Qy , and initial
data wj) and P§ ; the dynamics matrix ¥ and projection matrix NI = Iy
have already been described.

To recapitulate, the projection matrix is given by Eqs. (5.60):
by the gymbol I we now always mean the minimum-energy projection “E .
The dynamics matrix ¥ is given by Eq. (4.7b); the parameters £, U, ¢
and L are given following Eq. (3.3), and the mesh parameters are M =
16 grid points and At = 30 min., as mentioned 4in Section 4.4,
Discretization with 16 grid points leaves a computational problem of
easily manageable size. The corresponding choice of At = 30 min. 1is
near the stability limit of the difference scheme, and results in r =

24 time steps per synoptic period. An experiment using 32 grid points,
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for a spatial resolution c¢loser to that of operational NWP models, gave
results quite simila. to the comparable experiment with 16 points.

We study an observing pattern corresponding to the coaventional
meteorologlical upper-air network: all quantities (u,v,4) are observed
over "land", at synoptic times, and there are no observaticns over the
"ocean". The distribution of land and ocean at latitude 6 = 6, , where
the earth’s circumference is 2L, is simplified to be 2-periodic, #o
that half of each interval of length L is covered by ocean (Pacific or
Atlantic), ard half by land (North America or Eurasia). For this
reason we consider only 2-periodic solutions of 'Eqs, (3.1), and our
computational domain is of length L ; c€. Eq. (3.3).

We consider the left half of the computational domain to be
covered ty land, and the right half to be covered by ocean., For
simplicity we take the ohserving stations to be located precisely at

grid points., The observation matrix is therefore

when k 1s a mltiple of r = 24 time steps, and

otherwise; observations are availahle at syroptic times only, 1i.e.,
every twelwe hours.

For a single wave number w, initial data for the contimious system
(3.1) which lead only to slow waves are given approximately, according

to Eqs. (3.29), by
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¢(x,0) = ¢4 sinEx, (6.2a)
2
u(x,0) = ¢t %o sin Ex , (6.2b)
52.,’{2
v(x,0) = 2 con £x (6.2¢)

where £ = 2w/L. We choose initial data wf corresponding to a single
Rossby wave with wave number w = 2, i.e., £ = /L, and amplitude ¢, =
2,5 x 103 m?/s2, e latter 1is in accordance with a typical
ridge=to-trough difference of 500 m in 4he height of the 500 millibar
pressure surface (Palmen and Newton, 1969, Sec. 6.6)., It follows that

$o/® = 1/12, which partially justifies thpz 1linearization of Eqgs.
3.2).

It follows also that the amplitude of v(x,0),

vy = E;.(l = 1.0220, (6.3)

is roughly equal to U, a realistic value. Note, however, that the

amplitude of u(x,0),

g%
£20+£2

ug = % 0.059 U, (6.4)

is relatively small., This is in agreement with the results of Section
3.6: due to the absence in Eq. (3.1b) of a pressure-gradient term to

balance the Coriolis term, the continuous and discrete slow-wave
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subspaces have rather un}ll'u-componants. The u~-conmponent is special,
and its behavior during an assimilation will provide one convenient
check of the dejarture of estimates from the slow~wave subspace.
Infitial data for experiments with both the standard and modified
filters were obtained by evaluating w(x + (M/2 - 1l)ax, 0), given by
Eqs. (6.2), at the grid points xJ = jox, § = M/2+1,...,M/2, Denoting

the result by gg, we then set
wg = 1uf (6.5)

in accordance with Eq. (5.14a). The difference between wj and gg is
indicative of the difference between the discrete and continuous
slow-wave subspaces, and of the degree of approximation in Eq. (3.2B).
We found a small but significant difference between wd and gg + In
particular, the amplitudes of the u~, v-, and ¢~components of gﬁ are
0.993 uy , 1.016 vg and 0,960 ¢¢ .

As we have already pointed out following Eqs. (2.2%, 5.,14), the
gain matrices of the standard and modffied KB filters are independent
of the state estimates, In particular, the gain matrices are
independent of wd. Thus the cholice of wj is made primarily for
orientation purposes, and similar results will obtain for any initial
estimate satisfying Eq. (5.l4a).

The observations, made twice per day over the eight grid points
located on "land", xJ < 0, are assumed to have errors uncorrelated in
space, as well as in time. That is, we take the observation error
covariance matrix R, to be diagonal. The observation error variances,

or diagonal elements of R, , are taken to be constant in time: R =« R =
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const, when k 1s a multiple of 24 time steps. The variances are also
constant in space, and their values are based on data from McPherson et
al. (1979, Table 2).

The standard deviaticn of conventional temperature observations
used there is 1°C, This can be converted, based on the cuetomary
hydrostatic assumption, to a 500 millibar level geopotential error of
approximately 200 n?/s?, Tis value corresponds to an error of about
0.1 ¢p5. A corresponding 10 ¥ error in the wind components, relative to
Vo , 18 roughly 2 m/s ; this is slightly larger than the value of 1.5
m/s used by McPherson et al. (1979). We take the standard deviation
in observations of ¢ to be 200 mzlsz. and that in observations of u and
v to be 2 m/s. Relative errors in all observations are thus about 10%,

The initial error covariance matriwaa is taken to have the form

P =noinT+ (x-mof(-mT, (6.6)

which results from the assumption that the slow-wave and fast-wave

components of the initial error are uncorrelated:

wh - uwf = My + (-Dyy (6.7a)

where

Ezixg - D% 615 . (607b>

This assumption is made for convenience, amd because of 1lack of
information on the cross-correlations of the two types of errors; it

can, of course, be easily removed.
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Denoting by D the diagonal matrix with the elements <Vonvo-00)

repeated on the diagonal, we take

Dl = 0.,40D, Dp = 0,1 D . (6.8)

Thus the 1initial error covariances are uniform over the entire domain
and the initial error variances are much larger than the ¢bservational
error variances. Most of the initial error lies in tlie discrete
slow-wave subspace; the true initial state 35 has only a small fast
component., (N-I)y, . This uniform distribution of initial error will
make it easy to visualize the reduction nf error resulting from the
first synoptic ohservation,

The form chosen for the system noise covariance matrix Qk 1;

similar to that of P§. We take Q. to be constant, Q = Q, with

Q=1 0§ nT + (1-mpZ(1-m)T, (6.9a)
where

The parameter Y is chosen on the basis of atmospheric predictability
studies, cf. Sec. 1.2 and the discussion following Eq. (2.2a), as
fellows,.

Suppose that ‘{gﬁ} and {gﬁ} ar¢ two realizations of our
stochastic-dynamic model, Egs. (2.2, 4.7v, 6.9), starting from

identical initial states, gg - 36. The covariance matrix

% = B} - wef - wol | (6.10)
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evolves according to

X = ¥ X YT +20Q, (6.11a)

X = 03 (6.11b)

cf. ¥q. (2,10a). The expected energy of the difference between the

two realizations is Ez,
EZ = E@f - uD)T A - ub) , (6.12)

where A 18 the energy-welghting matrix given by Eqs. (5.59a,b). We

have

E% = trace AXy (6.13a)

E} = 0; (6.13b)

cf. Eqs; (2012,2.13)0

The correlation matrix of the two realizations is given by

¢ = EWPHT, (6.14a)

and evolves according to

Ck = ¥ Ck_,l ?T . (6.11013)

The correlation matrix starts from a nonzero value and tends to zero as
k + », as a result of the dissipation of the dynamics matrix ¥.

For our stochastic-dynamic model to have the same predictability
as the atmosphere, we would 1like the two realizations, perfectly

correlated at the initial time, to become nearly uncorrelated,
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= 9

after a finite predictability time p of about two to three weeks. If

cp = ) exactly, then we would have

Xp = E(y_;)(g’)'l' + E(gg)(gp'r
and

E2 = BT AGuD) + E(g{,‘)'r Alwl).

That 1s, EZ would grow from zero at time zero to an amount at time p
k

equal to twice the expected emergy EZ of either w8 or uf ,

Eg -2 EZ, (6.15)

Of course Eq. (6.15) would be true of functionals other than the
energy. For simplicity we base the choice of Q on only one free
parameter, Q = Q(y), so that the growth of only one functional can be
prescribed.

We regard the energy E} as a “typical" ewergy, as system (2.2a) is

not conservative. We take the typical energy to be that of ga ,

EZ = trace A(gﬁ)(ga)T R | (6.16a)

with w3 given by Eq. (6.5). Our assimilation experiments are run for
10 days, i.e., for N = 480 time steps. We determine Y, and hence Q(y),

by specifying a parameter a close to one and requiring
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E3 = 2a2E% . ° (6.16b)

Thus, for convenlence we specify the amount of loss of predictability
over the length of an assimilation run.
We set a = 0,7, and foundy = 0,028, This was easily done by

trial and error: according to Eqs. (2.10a, 6.11, 6.13),

E§ = 2 trace APy , (6.16¢c)

where Py is the estimation error covariance at the end of a run with
zero 1initial error and no observations. Thus, we computed E% in Eq.
(6.16c) for varfous cholces of vy, until Eq. (6.16b) was satisfied.

The cholce of a = 0.7 corresponds to ; 702 rms loss of
predictability at time k = N, This value of a, rather than a value
closer to one, was chosen because N < pt Eﬁ continues to grow after
time N and Cy continues to decay. The leveling-off time of E, , and
the decay time of C, , 1s much longer than N and is a function only of
the amount of dissipation in the dynamics matrix V¥ ; cf. Eq. (6.14b).

To complete the description of our assimilation experiments, we
note that the observations gﬁ in Eqgs. (2.22e, 5.24e) were obtained
from an actual realization of the stochastic-dynamic system (2.2, 2.3).
That is, we generated independent random vectors {gg,gﬁ,gﬁ} having the
prescribed covariances, Ps for !5'!8’ Q for gﬁ, and R for hﬁ, and

accordingly obtained random vectors gﬁ from Eq. (2.3a).
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6.2, Numerical Results

In Figure 3 we show at selected grid points the time histories of
the estimates {gﬁ,gﬁ; k = 0,1,2,...,N} produced by the KB filter;
u-components of the estimates are shown in Fig. 3a, v-components in
Fig. 3b, and ¢-components in Fig. 3c, We show a point on the West
coast of the continent, labeled SF (for San Francisco), one on the East
coast, labeled NY (for New York), and one in the middle of the ocean,
labeled HA (for Hawaii). Note that "Tokyo" = "New York" by
perfodicity. The ordinates 1in Figs. 3a,b _are scaled by v, , Eq.
(6.7), and the ordinate in Fig. 3c 1s scaled by ¢, .

On each curve, small-amplitude fast oscillations are superimposed
on a smooth, slowly varying wave pattern. The fast oscillations are
caused by the introduction of noisy observations of the true state; the
true state has a fast component due to that of the system noise and
that of the initial utate gg. The fast oscillations are especially
apparent in the u-components, Fig. 3a; recall from Sec. 3.6 and from
the discussion following Eq. (6.4) that u—-components are very
sensitive to departures from the slow-wave subspace. Notice in Figs.
3b,c the underlying periodicity of about 6 days. This is in agreemert

with the phase speed ¢;3(2) shown in Table 3,

L

co(2) = 13.12 m/s = T7:T57ﬁ§§§ '

one~half of the 2-wave we are estimating passes through the L-domain in

Just over 6 days.
For the assimilation run with the modified filter, the results

corresponding to Fig., 3 are shown in Fig. 4. The time histories of
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the estimtes in this case are perfectly smooth, apart from the jumps
due to observational insertions: the estimates evolve entirely in the
slow-wave subspace. The 6-day periodicity is now evident even in the
u-components, Fig. 4a. The u-components change very little at
observation times: the corrections added to the forecast at observution
times 1lie 1in the slow-wave subspace, amnd therefore have smill
u-components, By contrast, the corrections to v and ¢ at observation
times, Figs. 4b,c, are often quite large at SF and NY. The
corrections at HA are much smaller because no Pbservations are made
there. Corrections at HA are due only to, and are made to a degree
consistent with, the correlation of the forecast error at HA with the
forecast error at observation stations inland.

To study the behavior of the estimation error for the KB filter
experiment, we show in Fig. 5 components of the expected rms
estimation error resulting from use of the KB filter. Figure 5a shows
the expected rms error over land, Fig. 5b over the ocean, and Fig. 5c
over the entire domain. The individual curves are labeled U, V, P and
E, for the expected error in u, v, ¢ and the total energy, averaged
over the indicated region. Thus, the U-curwe in Fig., 5a gives the
square root of the average of the first elgh”. u-cozjonents along the
diagonal of Pﬁ'a. The ordinate in each panel is scaled by vg for the
U- and V-curwes, by ¢4 for the P-curve, and by ZVS + ¢%/¢ for the
E-curve. Thus, the observational error level in each panel is 0.089
for the U~ and V-curwes, 0.080 for the P-curwe, and 0,088 for the
E-curve.

The errors over land, Fig. 5a, drop below the observational error

level immediately, at the first synoptic time. In fact, the error
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reduction over land at each synoptic time is dramatic, and results in
errors below the level of observational noise, The error reduction
over ocean at each synoptic time, Fig., 5b, is less pronounced but is
still significant: the KB filter 1is able to spread out the new
information from observations over land to adjacent ocean areas,

Also striking 4is the difference between Figs. 5a and 5b in the
error growth between synoptic times. The large increase of error over
land in betwéen synoptic times, shown in Fig, 5a, 1s due to the
combined effect of system nolse and advection of error from over the
data-sparse ocean. The much milder increase of error over the ocean in
between synoptic times, shown in Fig. 5b, 1is due to partial
cancellation of these two effects: the effect of system noise is still
the same, but relatively error-free information is being advected from
over the data~dense land.

Notice also that the curves shown in each of Figs. 5a,b,c quickly
settle into an asymptotically periodic pattern, with the synoptic
interval of 12 hours as the period. This behavior is typical of
time-independent models (¥,Q) with periodic observations (Hk;g), The
convergence occurs within about one day over land, and in about 5 days
over the ocean. In fact, the KB gain matrices used at observation
times tend rapidly to a constant gain matrix, K&B + KKB,

Expected rms errors for the experiment with the modified filter
are shown in Fig. 6. The urrors in v and ¢, over both land and ocean,
are nearly indistinguishable from those of the standard KB filter:
slowly evolving estimates are obtained at the expense of only a wvery
slight 1increase in estimation error. ©Errors in the u-component,

however, are significantly larger than in the case of the standard

el Y/ A
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filter. The u-component errors resulting from use of the nodifiqd
filter grow in time and, after 10 days, are about twice the size of
those resulting from the KB filter. The larger u-component errors are
due to the fact that the modified filter allows almost no observational
correction to be performed on the u-components: the u-coigponents must
remain small for the analysis vector to lie in the slow~wave subspace,
The u-components of the true state, on the other hand, are growing
because of the continual input of the fast component of the system
noise.

To visualize better the behavior of K&B in time and to study the

structure of KKB, ya plotted the influence functions of selected
observation stations. The influence functions of an observation
station show the weight given to an observation of u, v, or ¢ at that
station when updating points throughout the domain. The influence
functions at time k are obtained from appropriate columns of K&B.

The chosen observation stations were SF, SL (for Saint Louis) and
NY. There ¢ ¢ no influence functions for mid-ocean points, like HA,
since no observations are made there. Influence functions were plotted
at every synoptic time, i.e., every 24 time steps. It was clear that
convexgence to KEB occurred within about 5 days.

Figure 7 shows the 1influence funivtions for the selected
obgservation stations at the end of day 10. Figure 7a, marked (u=-u),
gives the influence of a u observation at the selected stations on u
corrections at every grid point 1in the domain. Figure 7b, marked
(u=v), gives the weight of a v observation at a station on the u
corrections at every grid point, and so on. The variables have been

scaled in the usual way, u and v by vq , and ¢ by ¢¢ «

B S S
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All the weighting coefficients involving u are rather small (Figs.
7a,b,¢c,d,8). Our choice of system noise covariance matrix Q, with the
4=to-1 ratio of Dy to D4 , entails relatively good predictions of u,
which have to be corrected only to a small extent by the observations.
The (u~u) coefficients (Fig. 7a) are the largest of the coefficients
involving u; they still do not exceed 0.125. The (u-u) influence
functiona are approximately equal for SF, SL and NY; they are positive
and symmetric about the ohgervation station. They are the only ones to
have both of the latter properties.

The (¢=¢) influence function centered at SL is the smallest one
shown 1in Fig. 7i. It 1is positive over land, becoming nearly zero at
SF and NY, and slightly negative out into the ocean, The symmetry and
relatively small peak of this function is due to its station, SL, being
located in the middle of a data-dense region: neighboring points also
have observation stations and advection plays but a small roles

The peaks of the (¢~ ) influence functions centered at NY and at
SF are considerably higher than the SL peak. This 1is due to the
absence of observations on the ocean side of these stations. In fact,
the peak of the SF function 1s slightly higher than the NY peak.
Moreover, the former is located one grid point west of SF, rather than

at SF {tself, while the NY peak 1s at NY. Bczth data density and

advection thus play a role.

It makes 8ense for the point upstream of SF to give even more
weight to SF information than SF itself: SF is closer to inland points
and their information is also weighted heavily. Due to the advection
of error, the forecast error at synoptic times for this ocean point is

considerably larger than that for the point downstream from NY,
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although they are equidistant from land. Hence, more weight 1is given
to adjacent land observations for the Pacific point than for the
At lantic point.
As in Fig., 74, the (v-v), (v-¢) and (¢=v) 4influence functions

(rigs. Te,f,h) all show strong inhomogeneity differencas between the

SF, SL and NY functions, as well as anisotropy differences to the west
and east of each station, The SL 4influence function 15 nearly
symmetric for (v-v), and it 1s nearly antisymmetric for (v-¢) and
(=v); the corresponding SF and NY influence functions do not have
these symmetry properties. We will see in the following chapter that
this differential treatment of observations located in the middle of a
data-dense reglon (SL) and observations on the border between
data-dense and data-sparse reglons (SF znd NY) is important for the
proper perfaormance of data assimilation schemes.

The SL influence functions at the first synoptic time (Fig. 8)
are either perfectly symmetric (u-u, u-v, v-u, v-v, and $~$), or
perfectly antisymmetric (u-$, v-¢, ¢-u, and ¢~v). Similarly, in each
panel of Fig. 8, the NY influence function is either the mirror image
or the inverted mirror image of the SF function.

Comparison of Fig. 8 with Fig. 7 allows us to distinguish
between the effect of inhomogeneous data density and the effect of
advection. Figure 8 shows the effect of data distribution only, since
at the first synoptic time no information has been advected yet from
previous data insertions. Figure 7 shows the combination of the two
effects.

Different data densities result in different influence functions

according to station location (Fig. 8): stations located in sharp
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gradients of observation availability, such as SF and NY, have more
influence than inland stetions (SL), and their influence out to sea is
also greater than their influence inland. It 1is advection, however,
which leads to the difference between the influence f&nctlonn of
stations on the West coast (SF) and East coast (NY). Ihé latter
difference was discussed in connection with Fig., 71, and is also clear
in Figs. 7e,f,h.

The corresponding results for the modified KB filter (not shown)
are very similar to those for the standard KB filter shown in Figs. 7
and 8. The main difference is that the (u=-u), (ﬁ-v) and (u-$) influence
functions are almost perfectly flat. The modified filter allows even
less correction to the u~components than does the standard filter: ‘the
estimates are forced to remin in the slow-wave subspace.

The KB gain matrix at day 10, a good approximation to the
asymptotic gain matrix Kf”, was used as a constant, time-=independent
gain matrix in another assimilation experiment. Estimation errors
after 1-2 days were practically indistihguishable from those obtained
when using the KB filter. Similarly, a run using the final gain matrix
of the modified filter gave results almost identical to those of the
modified filter {tself, There 1s therefore no need, 1in our
time-independent model (¥,Q;R), to compute a new gain matrix at every
synoptic time: approximate computation of the asymptotic gain hatrix
once and for all is sufficient for practical purposes. The asymptotic

KB filter, known as the Wiener filter, is analyzed more fully in Ghil

et al. (1981, Secs. 4.2, 4.3).
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CHAPTER SEVEN
COMPARISON WITH OPTIMAL INTERPOLATION

7.1. The thimal Interpolation Filter

We have already pointed out that the difference between optimal
interpolation (0I) and the KB filter is that OI is based on an assumed,
prescribed forecast error covariance matrix, rather than on the
covariance matrix P{ which results from assumption of a
stochastic-dynamic model (2.2). We denote the prescribed covariance
matrix by Sﬁ, and base our form lation of S£ upon the OI schemes used
at NMC (Bergmn, 1979; McPherson et al,, 1979) and at ECMWF (Lorenc,
1981).

We implement OI for our usual forecast model (4.7),

wf = vwd_) ; (7.1a)
as OI 1s an unbiased linear data assfmilation scheme, the OI update

equation can be written as
e+ KR - mab) (7.1b)

cf. Egs. (2.7). Optimal interpolation schemes are derived by
minimizing the analysis error variance at every grid point, assuming an
observational error covariance matrix R, and a forecast error
covariance matrix Sf. The OI gain matrix, K, = KEI, is therefore

identical to the KB gain matrix, with Pﬁ replaced by sf;

KQT = sful(u sful + r)™1 ; (7.2)
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cf, lq. (2-200)9
With,5§ as the forecast error covariance matrix and with Ky = Kﬁt.

it follows that the 01 analysis error covariance matrix Sg is given by
sp = (1 - XQTuy)sf ; (7.38)
cfs Eg. (2.21). We also define the diagonal matrix
D = diag SQ (7.3b)

of analysis error variances. Equations (7.1b,7.2,7.3b) are identical,
respectively, to Eqs. (2.5,2.12,2,13) in Bergman (1979), although we
use a more compact notation.

It remains to describe how the forecast error covariance matrix s§
is formulated in OI. Every covariance matrix S can be decomposed in
the form S = BY/2cBl/2 yhere B = diag S is a diagonal matrix of
variances and where C = B~1/258-1/2 14 a correlation mstrix. In OI it

is assumed that the forecast error correlations are time-independent,
sf = (of)!/2c(nf)}/2 4 (7.4a)

the correlation matrix C 18 constant and is a prescribed matrix in OIL,

The forecast error variances,

Df = diag sf , (7.4b)

are assumed to grow linearly in time, {i.e.,
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of =pf_ +D, (7.5)

where r 4is the length of the assimilation cycle, r = 24 time steps in
our @ﬁ-e. The time=independent diagonal metrix D 4s a prescribed
foredﬁut error growth rate matrix; cf. McPherson ét al, (1979, Sec.
2c.4). Equations (7.4,7.5) describe the evolution of sﬁ ; they can be
regarded ar an approximate version of Eq. (2.22b).

Except for choice of the matrices C and D, Eqs. (7.1-7.5) define
the implementation of OI for our shallow-water model (¥,H, ,Ry,w?,wd);
we take S§ = PJ. We refer to Eqs. (7.1-7.5; as the OI filter. For
experiments with the OI filter we also compute the true forecast and

analysis error covariance matrices,

pf =yep_vT+q, (7.6a)

P& = (I-K H, )PE (1-K m)T + KeRKE (7.6b)

with K = KQT; cf. Eqs. (2.10).

We define also an initialized OI filter, having gain matrix

KIOT - KOL, 7.7)

where N 1is the usual minimim-energy projection. In this case, Eq.

(7.3) 1s replaced by the general formula
S8 = (I-K, M )SE (1RO + KRk (7.8)

with K, = KKOI. For experiments with the initialized OI filter we also

compute the true error covariances (7.6), with K, = ngI.
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The standard assumption by which the correlation matrix C is
determined is that mass field (geopotential or temperature)
correlations are homogeneous, isotropic and Gaussian, with the
remaining correlations derived by assuming that forecast errors are
geostrophically related (Bergman, 1979, Sec. 3; Lorenc, 1981, Sec.

4b). For our model (3.1), the geostrophic relation is

uw0, v b/E, (7.9a,b)

and therefore the assumed forecast error correléttons, which define the

elements of C, are given hy

Ci% = exp [-(xi-xj)zls%] , (7.10a)
oYy = 11 - 2(xy—xy)%/sf) cf$ , (7.10b)
gy = V2 [xg=x4)/s0] c§$ , (7.10c)
oy = -cfy, (7.10d)

for lxi-le 5_L/2 on our periodic domain; we take for the correlation
distance sy = 1000 km, in agreement with the value used at NMC.

The five correlation functions not specified in Eqs, (7.10),
i.e., those involving u, are all zero due to the geostrophic assumption
(7.9a). 1In our version of OI, therefore, forecasts of u are not
changed at analysis times, nor are the v and ¢ analyses affected by
observations of u. This is not unreasonable for our model; we have
already seen that the same {s approximately true of the standard and
modified KB filters, as a result of the 4=-to-1 ratio of Dy to D4 in Eq.

(6.9b) and since the slow-wave subspace is quasigeostrophic.

——
M

——y




ol

-133-

In our first set of experiments, the diagonal forecast error
growth rate matrix D was chosen in the following way. We have already
seen that the KB gain matrix tends to a constant matrix, and that the
corresponding error covariance matrices Pﬁ" tend to an re-periodic
sequence, P{ta = P{;g. At the end of the KB filter run, k = 486 time
steps, we averaged the diagonal elements of P£ - Pﬁ_t over the entire
spatial domain. Thus, we found for the Ki filter the average l2-hour
growth rate for the variance of each of the three variables u, v, ¢ .
These averaged rates were then used as the diagonal elements of D for a
prelimirary run with the OI filter, The.assummd~grouth rates for this
first OI run, and for the runs we describe next, are therefore
independent of the longitude x, as 18 the <case with the OI scheme
described by McPherson et al. (1979, Sec. 2c.4).

Using Eqs. (7.6), we computed next the true growth rates
{diag(Pﬁ-Pﬁ_r): k is a miltiple of r} produced by the preliminary OI
run, and we averaged them over the spatial domain. These averaged
rates, although relatively constant after about 5 days, were somewhat
different from the originally assumed growth rates. In order to
produce a control run for OI, we made the following succession of
10~-day OI runs: the space-averaged true growth rates for each runm,
starting with the first run described already, were averaged in time
over the last 2 1/2 days and used as the assumed growth rates for the
next run. This procedure converged rapidly to our control OI run,
which we call run A,

Thus the true growth rates for run A; , averaged over days 7 1/2 -

10, agree with the prescribed growth rates D. This corresponds to the

SR
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assumed rates being specified by an "optimal verification" scheme. We
denote these growth rates by dg , d5 and dz,

Having determined the control run A;, we performed next a series
of OI runs A, , to study how the true error covariances P{" depend on
the assumed growth rates. Run A uses the elements ((qdu)z. (adv)zo
(ad¢)2) repeated along the diagonal of D. We used values of a ranging
from 0 to 2 in increments of 1/4.

In an analogous fashion, we determined an initialized OI filter
control run Bl (K = KnOI), using the ‘initialized KB run (K = KFKB) as
the starting point. We then performed the corre;ponding teries of runs
B

“.

7.2, Numerical Results

In Table 4 we summrize the results of the OI rums A, and B,. TFor
comparison, we also include the corresponding results of the run with
the KB filter, which we refer to as run Agy , and of the run with the
modified KB filter, which we refer to as run BKB ; these are the two
runs described in Chapter 6.

The table entries are the true expected rms analysis errors at
selected grid points after 10 days, i.e., they are the square roots of
selected diagonal elements of the analysis error covariance matrix.sto
produced by each run. The selected grid points are at Saint Louis (SL,
x = =-3x), Hawall (HA, x = 54x) and London (LN, x = 8x); LN is an
ocean location adjacent to the continent. The entries are scaled in
the usual way, u and v by vy, and ¢ by ¢ ; recall that with this

scaling the observational error levels gre 0.089 for u and v, and 0,080

for ¢. The uy, and upy entries are omitted because the u-errors are

[ ok
-



=135~
nearly constant over the spatial domain; the OI runs leave u unchanged
at analysis times, and the KB runs change u only slightly.

The minimum value in each column occurs for run Ayy , as expected:
the KB filter is optimal. The errors for run Byy, are only slightly
larger than those for run Agp , as we saw already in Chapter 6. Notice
that for runs Agy and Byy , vgy, < viy < Vya and ¢, C LN S dpa » 88 2
result of our conventional observing pattern.

In contrast to the relative performance of runs Agy and Byy , the
B, runs perform better than the A, runs. This is evident especially at
SL and LN; there is little difference at HA since there are no nearby
observations.

The effect of initialization is most dramatic for ug . The
4=to-1 ratio of Dy to D in our definition of Q, Egs. (6.9), forces
the true state gﬁ to always lie near the slow-wave subspace, and the
analysis vector in all B-runs always lies in the slow-wave subspace.
Since the slow-wave subspace has small u-components, the rms errors in
u must therefore always be small in the B-runs.

In contrast, for runs A, , ug; is large and increases with a. As
a increases, so do the assumed forecast error variances Df . Therefore
observational data are given more weight and the analyses drift further
and further from the slow-wave subspace.

For vya and ¢yp , there is little difference between the Ay and By
runs, and these errors are relatively insensitive to the size of a.
There are no nearby observations to correct forecasts at HA, so the
forecast error variances near HA are immaterial. However, the VHA ana
¢ya errors are significantly larger for the A, and B, runs than for the

ARB and Bygy runs. This is due to advection of error from grid points
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which have been updated by the observational data, to which slightly
incorrect weights have been assigned in the OI runs.

For ¢SL , notice that rung Ay and B, , a2 é-. give results quite
comparable to runs Ayy and Bgkg « On the other hand, the vgy errors are
wuch larger for the A, runs than for the Agy run, while the vg;, errors
are quite comparable for the B, and Byy runs. Figure 9 helps explain
why this 1is so.

Figures 9a,b show the assumed ¢~ and vv forecast error
correlation functions, Eqs. (7.10a,b), used in the 0TI runs. Figures
9c,d show the true forecast error correlation functions; deduced from
pf at 10 days, for run Ay, Figures 9e,f show the true forecast error
correlation functions at 10 days for run Bl « The short-dashed 1lines
indicate the correlation functions at SL, the long-dashed lines
correspond to HA, and the solid lines correspond to LN. The true
correlations are not homogeneous: the curves 1in Figs. 9c-e do not
superimpose.

The ¢~ correlations at SL are quite similar in fgs. 9c and 9e,
and not altogether different from the ¢—p correlation in Fig. 9a.
Thus the A, and B, runs are able to produce reasonably good analyses of
¢ at SL, provided sufficient weight, a.Z.; , 18 glven to the wealth of
observations available nearby. The v-v correlation at SL in Fig. 9d
is far from that in Fig. 9b, which was based on the geostrophic
assumption. Consequently, OI does not make adequate use of data
available nearby and, as seen in Table 4, the Vg, errors for the Au
runs are Jlarge. The v=v correlation at SL in Fig. 9f is much closer
to that in Fig. 9b; the corresponding Vgy, errors for the Bq runs are

mich improved.
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The situation 1s similar at LN. The portion of the solid curve
just to the right of center in Figs. 9d,f show that v at Liis in
truth positively correlated with v at nearby land locations, with a
large correlation coefficient. The curve in Fig. 9b shows that the OI
runs use instead a negative correlation coefficient. As a result, the
vy errors (Table 4), for large values of a, are actually larger than
the v, errors. In fact, the v analyses at LN turn out to be worse
than the v forecasts at LN, in all A  and B, runs.

As the curve in Fig. 9b poorly approximates the LN curves in both
Figs. 9d and 9f, we must ask why the vy results in Table 4 are better
for the B, runs than for the A; runms. The answer lies in what happens
between analysis times.

The analysis errors in the B, runs propagate at Rossby wave phase
speeds only. The maximum Rossby speed for our model ¥ , according to

Table 3, 1is

cg(3) =13.73 m/s = 0.68 Ax/12 hr.

Errors in the B, runs are therefore localized: new observational
information 1is inserted before error from the previous insertion can
travel one grid point.

Errors in the A, runs, on the other hand, can propagate also by

inertia-gravity waves, which according to Table 3 travel as fast as

¢y (1) =301.31 m/s = 14.9 Ax/12 hr.

Error from the poor vpy analysis in the A, runs therefore quickly

contaminates the forecasts over land. At the next analysis time, the
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Au runs then use the now large observed-minus-forccast residuals over
land to produce a degraded vyy analysis. This effect also explains a
portion of the large vg; errors for the A, rums.

Notice also that the curves in Figs. 9e,f drop to zero while
those in Figs. 9c,d do not: initialization localizes errors and
therefore "tightens" the correlation functions, The same is true of
the cross-correlations v-¢ and ¢-v (not shown). Phillips (1981) points
out that initialization has the somevhat paradoxical effect of forcing
all grid variables to be changed by the iusertion of observational data
at only one grid point. Our results show that there might be no need
to worry: initialization changes the mean fields in such a way that the
errors become more localized.

Our experimental results make 1t clear that using improper
correlation functions near boundaries separating data-dense and
data-sparse regions can lead to unduly large errors near those
boundaries, and that initialization is a partial cure for this boundary
effect. Another way to compensate for this effect 1s to use forecast
error growth rates which depend on data density. We saw already in
Chapter 6 that for an optimal filter, growth rates over data-sparse
regions are nmnaturally much smaller than growth rates over data-dense
regions (Figs. 5,6), due to advection of information.

Accordingly, we conducted two more series of experiments, AB.Y and
BB:Y » Runs AB.Y are identical to run Aj except that the growth rate
de is used over land and yd, is used over the ucean. In the same way,
runs Bﬁ,Y are similar to run Bj. We let y vary from O to 1, while we
let 8 vary from 1l to 2, both in increments of.% .

The runs AB.Y and Bg . all gave remarkably better results than the

por a7 St R s e
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A, and B, rups. Results of the best rums, A2,0 and Bs/4,1/4 » are
summrized in Table 5. The v analysis is greatly d{mproved in both

runs; run AZ,O also gives a substantial improvement for ugy, and vgy, .
The results of both runs compare favorably with those of the Bgg run.
We conclude that use of proper forecast error variance growth rates is
essential to the performance of OI.

The tuning procedure we have described for determining proper
growth rates 4is a mamal one: analysis error variances for different

runs were examined a posteriori, after which 1t was decided which

growth rates produce the best resulte. For the purposes of operational
NWP, a more systematic way of funing the growth rates would be to do so
adaptively; adaptive estimation was discussed, and references given, in
Sec. 2.6. Correlation functions, especially those near boundaries
separating data-dense and data-sparse regions, could also be determined
adaptively. Still, it might be better to approximate Eq. (2.22b) in a
more direct fashion than 1s ciirrently done 1in O0I, and to do so

adaptively.
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APPENDIX
PROOFS OF RESULTS IN CHAPTER 5

Before proving the lemmas of Section 5.2, we review some
elementary notions concerning subspaces. The span of a set of vectors
{%),%0,+00,%X} denoted by <x),X2,e¢0s,% >, 18 the set of all linear
combinations of the vectors. Let S ¢ {0} be a subspace of R", There

exists a sei of linearly independent vectors {X),xs,...,x;} such that

S = <§1"£2’...'§3> 3

any such set is called a basis for S, and every such set consists of
the same mmber of vectors. That number is called the dimension of S,
dim S = g > 0; dim S 0 4f S = {0},

If V is a symmetric mxn matrix which is positive definite on §,

a_gTV:_g > 0 for all nonzero x € S, then there exists a V-orthonorml basis

for S, 1.e., a basis {y),y5,+0.,95} consisting of vectors which satisfy

YIVij = 613, for 4,3 = Luuuys.

If {x1,X2,+++»%g} 1is any basis for S, then the Gram-Schmidt process,

1= % / VeV, (A.la)
gy = uy/ /ggv! s 3%2,000,8, (A.1b)
where
3=1

Wy =%y Zl (e1VEyy | (Aude)
i=

*
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prodices a V-orthonormal basis {y),yg,see,}g} for 8. An . I-~orthonormal

basis 35 veferred to simply as an orthonorml basis.

If S; 1s a wsubspace of S, we denote by Si the orthogonal
complement of S) in S, i.e., the set of all vectors in S which are

orthogonal to every vector in SI:

sf = {ges: y'z=0¢orallze Sy, A2y ¢

It is a fact that S& is a subspace of S and that

synsf=(0), S +sy=5; (As3n,b)

by the sum of two subspaces, S) + Sy , we mean the set of vectors of

the form z; + 2z, with z) € S}, zp € S9. Since

dim (S) + Sp) = dim S; + dim Sy ~ dim (53 N 8y)

for any two subspaces S;,5y, Eqe. (A.3) imply that 1if dim Sy =q > O
then dim S{ = g-q. A sum of complementary subspaces is said to be
divect: Eqs. (A.3a,b) together imply that in fact every vector 2% ¢ S
can be uniquely expressed in the form z = z, + zo where z) € S) and
z,¢ S .

For further reference see, for example, Nering (1970, especially

SeCS- 1.3’ lil‘, 4-14, 5‘1’ 504).

A.d. Proof of Lemm 1)

We give a constructive proof. The construction will be used in

the proof of Lemm 4, and serves as a model for the proof of Theorem 2.
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I£ S = {0}, thenll = 0 is a V-orthogonal projection onto S for all
V. We therefore assume S ¥ {0}, so that dim S = g > 0. U
Let S) =S N Ker V, with dim S) = q, and let Sﬁ be the orthogonal
complement of Sy in S, defined by Eq. (A.2); dim S{ = g~q. For now we
assume q > 0 and s=q > 0; we return later to the case in which q = 0 or
s=q = 0, We show that the required projection can be expressed asfgthe

sum of two projections, one onto S, and one onto Sﬁ.

First we show that

!TVX > 0 for all nonzero y € Si. (A.4)
We have
S+ N Ker V = (SN S}) N Ker V
= st N (SN Ker V)

=sins; = {0},

so Vy # 0 for all nonzero y € st. Factoring V as V = V{Vl y We
therefore have Viy # 0, so that y'Vy = (vipT(V;y) # 0, from which
(A4) follows since V is positive semidefinite.

It follows from (A.4) that there exists a V-orthonormal basis for

s,
S.l]: = <z.l’227""zs—q>, (A.Sa)
$1VEy = 6545 1,3 = Leeoysma. (A.5b)
We now define
s-q T
My = 1 wyi¥» (A.6)
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and show that Ny is a V-orthogonal projection onto ,S'i.
Range Ny CS}. If x ¢ R" then

Myx = ): (y Vx)xi € 9‘&

by Eqs. (A.6, A.Sa).
Range Ny 2 Si. We want to show that if y e Sf. then there is a

vector x ¢ RM such that Myx = y. In fact, x =y is such a vector,

because from Eq. (A.5a) we have
8=q
r- Xl oY
for scme scalars ay, whence Eqs. (A.6, A.5b) glve

Tyy = Z X aygi Ve

s=q 8-q
= 2 ): a4ysd
i=1 =1 Faty T

n% = Ny. From Eqs. (A.6, A.5b) we have

9 =q
ny = Z AVEN ). !3!3

-q  s=q
12 Y 2 Gijxjv‘nv-

(VHV)T il Vﬂv. Frm ch (A!G) we ‘\Bve

s=q ,
WIT = (3 VigyW)”

hE
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R N S
= I Viyyve vy,
inl

and the result follows since vl = vy,
Having shown that Mly is a V-orthogonal projection onto Sli. we now

let {2),2,+0+,2q} be an orthonormal basis for S, ,

Sl ] <§1,22’000,§'q>, (Ao7a>
212y = 8494 L3 = Levssa, (A.7b)
and we define
g T
My = } zgzf - (A.8)
i=]1

From the proof that Ny 4s a V-orthogonal projection onto Si, it is
clear that Il is an (I~) orthogonal projection onto Sj.

Defining further

m=Ty+ny, ' (A.9)

we show that M is a V-orthogonal projection onto S. We will make use of

the facts that

IEEj =0, 1 =1,00e98~q, J =1,e4.,q, (A.10a)
and

Vgi = » i= l,o.l,q ’ (A'l-Ob)

the former equality follows from the definition of S}, Eq. (A.2),
while the latter follows from the fact that S; = § N Ker V is a subset

of Ker V.
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Range 1 €S, If X ¢ R" then

Nx =Myx +Mpx e S§ +8;,

since Myx e S'& and Tyx € S; , and the result follawsﬁ since S‘% +8; =5,
Eq. (A.3b).

Range 1 2 S. Suppose W ¢ S. We show that lw = w. According to
Eq. (A.3b), there is a vector y ¢ S‘% and a vector z ¢ S; such that w =
Ytz. Now Ilyz = O by Eqs. (A.6, A.7a, A.10b), ‘and Myy = O by Egs.
(A.5a, A.8, A.10a). Therefore

w = (Ty +Np)(g +2) =NMyy + Nz .

But llyy = y according to the proof that Range iy 3Sjl'; similarly, Nz =
2, Therefore lw =y +z =w .

n2 = 1. Suppose x e R, and let w=Jx, Ten we S, since
Range I CS, and Nlw = w, accarding to the proof that Range D S.

Therefore

% = ny = w = Nx,
i.e., II2>_5 = lIx for all x € R", and therefore n2 =n.

(vm)T = wi. FromEgs. (A.8, A.10b), 1t follows that VI; = O,
Therefore VI = WIy , and the result follows since we already showed
that (VIiy)T = vy,

This concludes the proof in case q > 0 and s=q > 0. In summry,

starting from arbitrary bases for S; and S"l', one could use the
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Gram-Schmidt process (A.l) to construct the bases in Eqs. (A.5, A.7),
and then construct the projection N by means of Eqs. (A.6, A.8, A.9).
In case q = 0, i.e., S} = {0}, Eq, (A.3b) implies that Sﬁ =S and
dim Si =g-q~s8 ? 0, so that Ny in Eq. (A.6) is a V-orthogonal
projection onto S. Similarly, if s-q = O, then Ny in Eq. (A.8) is a

V-orthogonal projection onto S, for all V.

A.2. Proof of Lemm 2

Sufficiency. Let I and A be two V-orthogonal projections onto §,

and let A =11 -A. We show that 1f S N Ker V = {0}, then A = 0,
If xe R", then Axe S, so Eq. (5.2) implies that NIAx = Ax.

Since X is arbitrary, we have

A = A,
and similarly,
Al = T,
Therefore,
A = T =~A = Al -A = AT -1I),
and

VA = VACT - I).
We also have
vi = AT = ATv = @)l
= ATnTy = ATevm)T = ATvm ,

so that
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w = ATvicn - 1) =ATv(n2 -n) = o0,

and therefore Ax € Ker V for every x € R" But Ax =Qlx - Axe S for
every X e R, sincellx e S and Ax € S and § is a subspace. Therefore
Axe SN Ker V = {0}. Tat is, Ax = O for all x e R", whence A = O,
Necessity., Suppose that SN Ker V ¢ {0} and let N be a
V-orthogonal projection onto S. We construct a matrix A ¢ Nl which is

also a V-orthogonal projection onto S.

»

Let v e R™ be any nonzero vector such that ng « 0 for all we S,

i.ee, Vv £ Oand ye sl, the orthogonal complement of § in R®, There
are many such vectors v: letting dim S = s, Egs. (A.3) 4imply that
dim ! = n~s > 0, since S 1s a proper subspace of R".

Let ze S N Ker V with z £ 0. We claim that

A = H+E~T

is a V-orthogonal projection onto S. Obviously A # I, since both v and
Z are nonzero.

Range A cS. If x ¢ R", then

Ax = Tx + (3"%)z € S,

since llIx e S, z€ S5, and S is a subspace.

'S

Range A 2S. Letwe S, so that lw = w. We have also

since Vv ¢ Sl. Therefore

A =Ny + Pz =,
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1., AX = w has solution x = w forallwe S.

A2 =4, As in the proof that n2 = in the proof of Lemma 1,
Range A C S and Aw = w for all w € S together imply that AZ = A,
(VA)T = VA, We have

VA = VI + (Vz)yT = VN
since z ¢ Ker V, and the result follows since (VI )T = V.

AJd. Proof of Lemma 3

We show that the general solution of problem (5.5) is given by

x=Ny+z, (A.1la)

where N 1s any V-orthogonal projection onto S (such projections exist,

by Lemma 1), and where z is any vector such that

ze SN Ker V., (A.11b)

The lemma follows immediately from this result, for if S N Ker V = {0}
then z = 0 and, according to Lemma 2, Il is unique, while if SN Ker V ¢
{0} then neither z nor I is unique.

let I be a fixed V-orthogonal projection onto S, and define y =

Y(x) by

Y(x) = (x = y)V(x -y) .

We have
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Y(x) = [(x1y) + @y-y) 17V CGxe-ny) + Wy-y)]

- (§-nx)TV(§-Ilz) + (My-y)Tv(ny-y) + ;Z(E-I!I)Tv(nx-x).
The last term vanishes if x ¢ S, for then x = lx by Eq. (5.2), whence

(- TV(ny-y) = (x-ny)TVCny-y)

= -y TTV(n-1)y = 0 ;

the last equality follows from Eqs. (5.1b, 5.3) and the fact that V is

symmetric,

nTv(n-1) = (v)T-1) = wmm-1)

=2 -q) =0. (A.12)
Defining z = z(x) by

E L )‘(I' - n! ’ (Aol3)

we therefore have

Y(x) =2TVz +8 1f x¢ S,

where

g = (Iy - x)TV(Hx -3)

is independent of x. Now ETVg_ 2 0 since V is positive semidefinite, so

y(x) >8 4if x€ S.
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Therefore X is u solution of problem (5.5) if and only 1f

Y(x) =8 and xc S,

and this is the case if and only 1if

zVz =0 and z¢ S ; (A.14)

tnat the statements X ¢ S and z € S are equivalent follows from (A.13)

and the fact that S is a subspace.

The first condition in (A.l14) is equivalent to z ¢ Ker V, for {if
zVz = 0 then, factoring V as V= ViV, , we have (Vlg)T(Vlg) =0,
whence Viz = 0 and vz = V'fvlg = 0; obviously Vz = O implies ETVQ = 0.
Conditions (A.14) are therefore equivalent to (A.l1lb), so x is a
solution of problem (5.5) 1f and only if it 1is of the form (A.ll),

where 1 is any V-orthogonal projection onto S.

AJ4: Proof of Lemm 4

let s =dim S, and let C be an nxs matrix whose s columns are an

orthonormal basis for S,
Cm= [w ! ] "Tw - §
12 H2r 00 es¥igly WiHy 134°

The (1,_‘])‘:h element of the matrix CIC is g}:gj y and therefore

clec = 1., (A.15a)
We have also
T b T
cct = I wyws
i=1
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which, according to the proof of Lemm 1, is an orthogonal projection
onto S, Since there 1s only one such projection, we therefore have

ny = cct. (A.15b)
Now define

cy = v-1/2¢,
From Eqs. (5.7), we have
(v-1/2yTyy-1/2 . 1,
and therefore
chvey = (v=Y 2¢)Tyey=1 2¢)
CT[<V-1/2)TVV—1/2] c

= clc
- 1;
that is, the columns of CV are a V-orthonormal basis for S.
According to the proof of Lemma 1, and analogously with Egs.
(A.15), the matrix CVC'\I;‘V is therefore a V-orthogonal projection onto S.

There 1is only one such projection since V is positive definite, so

My = CyCyVe
But then
My = (v-1/2 c) w~l/2 )Ty
= yv1l/2¢ T (V-1/2)T v
= w2 Uy

since (V'l/z)T v = yl/2,

.
4% N B e St e e <2 eetans
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A5. Proof of Theorem 1

T™e proof is similar to that of Lemm 3. The uniqueness parc of
the theorem follows immadiately from Lemma 2. If A satisfies Eq.
(5.21), then L, = 0 according to Eq. (5.20), and Lemma 2 implies
uniquencss of the A-orthogonal projection, My =i ; K in Eq. (5.18)
is therefore uniquely determined. On the other hand, if A does not
satisfy Eq. (5.21), then Jl) and L , and therefore K and wf , are not
uniquely determined.

It therefore remains only to verify that.the general solution of
problem (5.17) is given by Eq. (5.18). We omit subscripts in the
remainder of the proof; an observation time k is assumed.

Let 1T be a fixed A-orthogonal projection mtrix onto R ; that such
a matrix exists is a consequence of Lemma 1., The constraint (5.17b)
gtates that each column of K must lie in R, so it follows from Eq.

(5.2) that the constraint is equivalent to requiving

K = K, (AulG)

Indicating the dependence of n upon K by writingn = n(K), we find a
simple formila for n(MK) from which, with Eq. (A.16), the general
solution (5.18) will follow.

From Eq. (2.16), we have

n(IK) = trace [A(K - KB)c(mk - BT + Az], (A7)

where, according to Eqs. (2.14b, 2,15b, 2.20a),

¢ =ueful 4+ R ,




ORIGINAL PAGE 13
OF POOR QUALITY

=158~
7z = pf - pEuTo-lypf ,

kKB w pfyTo-l,

We now show that Eq. (A.l7) can be written

n(nK) = trace A{N(K-KKB)]c[n(k-kKB)]T
+ trace Al (I-M)KKB) c[(1-1)KKBIT 4 trace AZ
We expand the first term in Eq. (A.17) as,

AGTE - ®KB) g1k ~ KKB)T

= A (K-KKB)~(T-1 )KKB] ¢ (11 (K~KKB)~( 111 )KKB]T

= AN (R-KKB) ] c(m(r-kK8)IT + A[(1-1)KKB] c[(1-n)KRKB)T

= A(T-1 )KKBg (k-kKBYTT = A (k-KKB)G(KKB)T(1-1)T. (A.19)

Now,

trace A(I-N)KKBG (R-KKBYIIT = trace nTA(T-11)KKBG(k-kKB)T

=0,

The first equality in (A.20a) follows from Eq. (2.1lec),

second follows from the fact that

nTA(I = 1) =0 3

cf. Eq. (A.12). Similarly, we have

trace AT(XK - XB) c(kKB)yT(1 - T = 0 ,

R S S L s T

(A.20a)

while the

(A.20b)
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Inserting Eq. (A.19) into Eq. (A.17), and using Eqs. (A.20, 2.11b),
yields Eq. (A.18).
The last two terms in Fq. (A.18) are independent of K,
Analogously to the argument following Eqs. (2.18, 2.19), it follows

that n(TK) 1s minimized with respect to K if and only if

AR - KKB) = 0, (A.21a)

where A has been factored as A = ATA;. If Eq. (A.2la) holds, then

ATk - KBy = 0, (A.21b)

On the other hand, 1f (A.21b) holds, then the first term oun the
right-hand side of Eq. (A.18) vanishes and n(IK) 1is minimized:
conditions (A.21a, A.21b) are equivalent. Therefore, a matrixK 1is a
solution of problem (5.17) 1f and only if K satisfies Eqs. (A.l6,

A021b), i-e., 1£f

IR = K ’ (AOZZ&)

ATK = ANKKB, (A.22b)

We seek solutions of Eqs. (A.22) of the form

K= kKB 4 1 (A.23)

where L is yet to be determined. Substituting Eq. (A.23) into Egs.

(A.22), and using Eq. (5.19b), we find that

i T R T R e
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IL=1L, (A.24a)
AL = 0, (A.24b)

Equation (A.24a) states that each column of L lies in R, and Eq.
J
(A.24b) states that each column of NIL = L lies in the kernel of A; that

is, Eqs. (A.24) are equivalent to

Range L C RN Ker A, (A.25)

Equations (A.22, A.25), with I being any A-orthogonal projection onto

R , therafore represent the general solution of problem (5.17).

A6, Proof of Lemma 5

If A is real then the submatrices Aj are real, and the formula

. M/2
Alw) = ) ehiMMMAj

j=M/2+1
immediately implies that the matrices K(w) satisfy Eqs. (5.33a,b).
Conversely, if the matrices K(m) satisfy Eqs. (5.33a,b), then the
inversion formla

M/2
Ay = 1 ) e=2miie/M A(w)

Mo p=a/241

immediately implies that the Aj are real, and hence that A is real.

If A is symmetric and real, {.e., A = AT = A*, then we have from

A = FAF® that
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AY = FAMF* = FAF* =R,

which, with Eq. (5.30), d4implies Eq. (5.33c). Conversely, if Eqs.
(5.33a,b,c) are satisfied, then AT = A*, as we have just shown, and

A* = 3 ; fromA = F*AF we therefore have

AT = A* = F*A*F = F*AF = A,

i.e., & is symmetric.
For positive semidefiniteness, it is clear from Eqs. (5.30, 5.32)

that the following statements are equivalent:

xTAx > 0, for all x ¢ R",
Tek} n
x*F AFx > 0, for all x ¢ R,
(F)}_‘)*AA(F:‘S) >0, for all x ¢ R",
*4 n
YAy 20, for all y of the formy =Fx, x e R,

1*((0 )’A(m)z(w) >0, for all complex 3-vectors y(w) ,

and for allw = -:;--i-l, seey -’;- .

That the conditions in the last two statements are equivalent follows
from the fact that if y = Fx and x ¢ R" is arbitrary, then y(w) is, for
each w, an arbitrary complex 3-vector; conversely, 1if the last
statement is true, then in particular it is true for arbitrary vectors
satisfying y(w) = ﬂ:;_). and y(M/2) = M’ in which case x = F*z is

an arbitrary real n=vector.
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A.7. Proof of Lemm 6

(5.39a) => (5.39b). Suppose there is an w, say w, , such that

Aww) roluw) = 0 ;

we show that this dimplies RN Ker A ¥ (0}. Suppose for now that

Wy #M/2. Then fromEqs. (5.33a,5.35a) we have also

.A("fd*) Eo('ﬂ)*) - (),
Define the n-vector w = F‘_‘w_ by

W(tua) = roltus) ,

W) =0 ifw by,

Then v # 0 and, according to Eq. (5.36), we have w e R . Clearly

A@) w@) = 0 for allw, and therefore

0 =AW = (FAF*)(Fw) = FAw ,

whence Aw = 0 since F is nonsingular. Therefore w is a nonzero wvector

in RN Ker A. If w, = M/2, the same résult obtains by setting

w(M/2) =ro(M/2) ,

ww) =0 if w ¥ M/2,
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(5.39b) => (5.39%). Suppose

Aw) row) KO

for all w. Since A*w) = A(w) by Eq. (5.33¢c), A(w) has a

factorization
Alw) =AY(w) Aj(w).
Bince A(w) rolw) # 0, we have A)(w) rolw) #0, so
56(“‘ YAG)rgWw) = [A)(w) go(w)l'* [Aj(w) gow)] # 0,
which, according to Eq. (5.33d), implies that
ro(w) Aw) golw) » 0.

(5.39c) => (5.39a). Suppose that RN Ker A # {0}; we show that

there is an w for which (5.39c) does not hold. let

we RN Ker A

with W # 0. Since we R, Eg. (5.36) implies that there is an w, say

Wy , such that }g(w*) =8 ro(wa) with 8 # 0. Since Ay = 0, we have

Aw = (FAF")(Fw) = FAw = 0.

Therefore

e a e G T RG L i i . adlins .
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AWa) golwa) = 7 Roy) G = 0,
whence

5?)(‘”*) Alwy) rolws) = 0.

A.8., Proof of Theorem 2

That there exists a unique A-orthogonal projecticn onto R follows
from Lemma 2, so we need only verify that N defined by Eqs. (5.41) 1is
indeed an A-orthogonal projection. This 1 is certainly block circulant

gsince 1t is defined by I1 = F*ﬁF, with i block=dingonal.

Rgnge RC R. let w e:Rn and let z = Iw ; we want to show that

ze R. We have

2 = Fz = Fly = (FNF*)(Fw) =iy ,

SO

Zw) = M) ww) =Bgw) gglw) ,
where, according to Eq. (5.41lc),
Bow) = ayleg(w) Alw) ww)l.

Now a, 1is real, according to Eqs. (5.3%, 5.41d), so from Eqs.

{(5.33a,b,5.35,5.37) it follows that

BO("W) = '80(0')) y W= 01,000, M/2 -1
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30(};—) - 80(;)-

According to Eq. (5.36), therefore, we have z ¢ R .

Rangel D R. Letw e R ; we show that ix = w has solution x

W, Since we R, Eq. (5.36) implies that

W) =Bgw) row)

for some scalars B(w), whence we have from Eqs. (5.4lc,d) that

) W) =a, Bow) row) £ow) Aw) gow)

= Bow) rolw) = wlw).
Therefore ﬁia' = 2}_ and
My = FMF)ER) = F¥iiw = 7% = v,
12 =n. It follows immediately from Eqs. (5.4lc,d) that
[Tw))? =MW,
so 1~ =M and
N2 = (F*iF)(FHir) = FYi2F = FHiF = 1.
_(_AII)T = All. FromEq. (5.41c) we have

(A @)]* = [a,Aw)rgIrg@Aw)]™

S
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 a,Awirg@rgW)ie) = Rw)iw);

the second equality follows since a, is real and, according to Eq.

(5.33¢c), A*w) =A(@). Terefore we have

It follows from Eqs. (5.33a,b,5.35,5.41c) that

ﬁ(-W) = ﬁ(m), w = 0,1.0.., M/2 -l

A M - M

so I is real; since A 1s also real we therefore have

(amT = (am*.
Then
(AT = (An)* = (F*AFFMiF)* = (F*ANF)*
= F*(A)*F = F*AliF = (F*AF)(F™iiF)

= All.

|
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w cg ey c]
1 7.51 ~255.77 308.26
2 14,14 -182,95 228,81
; 3 16.89 -166.88 209.99
3 4 18.12 -161.00 202.87
;17 5 18.76 ~158,22 199.46
ké 6 19.12 -156.70 197.58
E 7 19.35 -155,78 196.43
| 8 19.50 ~155.18 195.68

TABLE 1. Phase speeds of solutions of the continuous system, Egs.
(3.1,3.3), 1in meters per second. The phase speeds are glven by Eq.
(3.22a), and are presented here for the first eight wave numbers. The
speeds c; are the Rossby wave phase speeds, while c.j and c} are,
respectively, the phase  speeds of westward-propagating and

eastward-propagating laertia=-gravity waves.
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w o0 c-1 cl

1 7.53 =255,99 308,45
2 14.15 -183.01 228.87
3 16.89 ~166.90 210.01
i 18.13 -161.00 202 .88
5 18.76 -158.23 199.47
6 19.12 ~156.70 197.58
7 19.35 -155.78 196.43
8 19.50 -155.18 195.68

TABLE 2.

As in Table 1, but using the approximate formulas (3.25).
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w 0 -1 1

1 744 ~248.,92 301.31
2 13,12 -164.92 208.45
3 13.73 ~133.39 171.52
4 11.98 ~107.91 141,65
5 9.17 - 82.00 110.85
6 5.95 ~ 54,49 76.45
7 2.79 - 26,22 38.13
8 0.00 0.00 0.00

phase speeds are given by Eq.

solving the eigenvalue problem,

Eq.

(4.28) for the eigenfrequencies.

TABLE 3. As in Table 1, but for the discrete system, Eqs.
(4.34),

(4.27), and then solving Eq.

and are obtained by first

b d —

T T BN I 5 B et At s b
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RUN | ugy, | ver,  wa vy | és1

Agg | 031 | 070 311 214 | 045

Ag 127 | .302  .390 334 | .220

Az | #244 | 174 371 0358 | 070

A 153 | .163  .385  .412 | .059

Ayso | 167 | 165  .398  .457 | .062

Ay 184 | 172 410 .493 | .065

Bew | -074 | .092 317 .223 | .064 17

By | .075 | .265 .371 303 | .183  .283  .286
Bysp | +074 | 113 .364  .313 | .068  .263  .198
B 074 | .100  .381  .363 | .053  .267 .173
Byjp | .074 | 099  .394  ,394 | .051 ,275  .170
B, 074 | 100 404 .412 | 051  .284 174

TABLE 4. Summary of rms analysis errors at 10 days, for runs AKB ,

Ay » Bgg » and B, , fora = 0, 1/2, 1, 3/2, 2.

i e . i

[l e
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RUN Us, | vsL  YHA VLN | 451 4HA 4N
Axn 031 | 070 311 214 | 045 .210 117
Az.0 073 | .096  .374  .282 | 055  .259  .166
B 074 | 002 317 .223 | 064 217 127
Bs/4,1/4 | 074 | .098 369 .287 |-.052  .256  .165

TABLE 5. Summary of rms analysis errors at 10 days, for runs AKB

A2,0 » Bgs » and B5/4,1/4 -
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FIGURE CAPTIONS

Figure 1. An illustration of meteorological observations available
at or near 1200 GMT, January 9, 1979, The various observing systems,
as well as the error structures of data they provide, are described in
Section 1.2. This figure is reproduced from the preface of Bengtsson
et al, (198l), by permission of the publisher.

Figure 2. A schematic representation of three projections onto the
slow-wave subspace R . As discussed in Section 5.5, the projections
do not coincide because the fast-wave subspace G 1s not orthogonal to
the slow-wave subspace. The points labeled Myx , N;x , and Nlgx are,
respectively, the parallel projection, the orthogonal projection, and
the minimim-energy projection of a point X onto the slow-wave subspace.

Figure 3. Time history of the state estimates g{ at three
locations, for the experiment wusing the standard KB filter. The
selected locations are labeled SF (for San Francisco, x = =74x), NY
(for New York, x = 0 Ax), and HA (for Hawaii, x = 5 Ax). Figure 3a
shows the u-component of velocity, Figure 3b shows the v-component of
velocity, and Figure 3c shows the geopr*ntial ¢. Notice the slow
waves with a period of approximateiy 6 days, upon which are
superimposed smaller-amplitude fast waves.

Figure 4, Same as Figure 3, but for the experiment with the
modified KB filter. The fast waves have been completely eliminated and
the state estimates evolve slowly.

Figure 5. Components of the expected rms estimation error, for the
experiment with the standard KB filter. Figure 5a shows the expected
rms error over land, Figure 5b ower the ocean, and Figure 5¢ over the

entire domain. The d1ndividual curves are labeled U, V, P and E, for
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the expected rms error in u, v, ¢ and the total energy, avaraged over
the indicated region, The error at synoptic times decreases
immediately over land, and more gradually over the ocean. In betwesn
synoptic times, the error over land increases wmore sharply than the
error over the ocean, due to advection of error from over the
data-sparse ocean., Fach curve converges rapidly to a periodic
function.

Figare 6. Same as Figure 5, but for the experiment using the
modified KB filter. Estimation errors in this case are nearly
identical to those resulting from use of the standard KB filter, except
that the u-component errors now increase slightly with time., This is
due to the fact that, since the slow-wave subspace is quasigeostrophic,
the modified filter allows almost no observational correction to be
performed on the u=components.

Figure 7. Influence functions of selected observation stations at
10 days, or k = 480 time steps, for the experiment with the standard KB
filter. The influence functions of an observation station are obtained
from columns of K&B; they show the weight give to an observation of u,
v or ¢ at that station when updating points throughout the domain,
Grid points are indicated by tick marks on the horizontal axis; the
horizontal parallel 1ines and vertical dashed lines indicate the
observed regien, or land. The selected observation stations are SL
(for Saint Louis, x = =34x), SF and NY (see Figure 3). ‘The nine
panels, 7a-7i, give the influence of (a) u observations on u
corrections, (b) von u, (c) ¢ onu, (d) u onv, (e) vonv, (f) ¢ on
v, (g) uong¢, (h) vong, (1) ¢ on ¢. Particularities of the curves

are discussed in Sec. 6.2.
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Figure B, Same as Figure 7, but at the first synoptic time, k = 24
time steps. The influence functions here are much more symmetric than
those in Figure 7. Conparison of these two figures allows one ti
distinguieh between the effect of inhomogeneous data density and the
effect of advection of information, as discussed in the text.

Figure 9. Plots of ¢é-¢ and wv forecast error correlation
functions. Figures 9a,b show the correlation functions cﬁi-ﬁj and
C‘:I{Yi.‘*-j , respectively, which are prescribed in 0I, cf. Eqs.
(7.10a,b). These two plots are generated by evaluating Ci:i-o-j at the
grid points x3, § = -8,-7,...,7,8 ; Ci.,i-i.-j is homogeneous, or
independent of the base point % . Figures 9c,d show the true ¢-¢ and
wv forecast error correlation functions, respectively, computed €£rom

P£ at 10 days, for run A; . These correlation functions are drawn for

the base points SL (x! = -3 Ax), HA (x! = 54ax) and LN (x! = 8ax).
Figures 9e,f show the same correlation functions as Figures 9c,d, but
for the initialized run By . Comparison of the prescribed and true
correlation functions helps explain the results of the OI experiments

which are summarized in Table 4.
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