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METHODS OF SEQUENTIAL ESTIMATION FOR DETERMINING INITIAL DATA

IN NUMERICAL WEATHER PREDICTION

Stephen E. Cohn

Advisors: Michael Ghil and Eugene Isaacson

ABSTRACT

Numerical weather prediction (NWP.) is an initial-value problem for

a system of Nonlinear partial differential equations, in which initial

values are known incompletely and inaccurately. Observational data

available at the initial time must therefore be supplemented by data

available prior to the initial time, a problem known as meteorological

data assimilation.

A further complication in NWP is that solutio'as of the governing

equations evolve on two different time scales, a fast one and a slow

one, whereas fast scale motions in the atmosphere are not reliably

observed. This leads to the so-called initialization problem: initial

values must be constrained to result in a slowly evolving forecast.

The theory of estimation of stochastic-dynamic systems provides a

natural approach to such problems. For linear stochastic-dynamic

models, the Kalman-Bucy (KB)- sequential filter is the optimal data

assimilation method. We show that, for linear models, the optimal

combined data assimilation-initialization method is a modified version

of the KB filter. This modified KB filter combines the standard KB

filter with a projection onto the slow solution subspace.

The shallow-water equations are a simple system whose solutions

exhibit many features of large-scale atmospheric flow important in NWP.
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We implement the standard and modified KA filters for a lir+enrized

version of these equations, given a simple observational pattern. The

numerical results show that the modified filter produces a slowly

evolving forecast, at the expense of forecast errors only slightly

larger than those incurred by using the standard KB filter.

A statistical data assimilation method widely used at NWP centers

is known as optimal interpolation (0I). We implement 01 for the

shallow-water model, and we use the estimation-theoretic framework to

compare.: the performance of 01 with that of the standard and modified KB

filters.

Numerical results show that the simplifying assumptions involved

in 01 lead to relatively large errors near boundaries separating

data-dense and data-sparse regions, and that proper initialization is a

partial cure  for this boundary effect. We show also how estimation
Y

M

theory can be used to tune the free parameters involved in 01, in such

a way that the tuned scheme performs roughly as well as the modified KB

filter.

L J",
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CHAPTER ONE

INTRODUCTION

1.1. Description of the Problem and Outline of Results

One of the main reasons why we cannot tell whet the weather will

be tomotrrow is that we do not know what the gather is today. In other	 \'

words, numerical weather prediction (NWP) is an initial-value problem

for which initial data are not available in sufficient quantity or with

sufficient accuracy.

Numerical forecasts are now produced routinely by weather services

in many countries. The models used in NWP are discretized versions of

the partial differential equations which govern large-scale atmospheric

flow. The spatial domain of many models surrounds either the entire

globe or at least an entire hemisphere. Values of the atmospheric

variables must be specified over a regular three-dimensional mesh at

each initial forecast time.

Observational data, collected from a variety of ground-based,

airborne and space-borne observing systems, are distributed very

irregularly in space and time. At any single time, the data are too

sparse over most of the. globe to determine a complete set of initial

values. Observational, data Are also subject to significant random,

systematic and correlated errors.

Data available at the initial time of each forecast must therefore

by supplemented with information from previous observations. The

attempt to provide initial values for NWP models by use of all

available data is known as four-dimensional data assimilation. The

^	 w
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adaective ''four-dimensional" emphasizes that data distributed in both

time and space must be used.

The current data assimilation practice at NWP centers is to

linearly combine observations available at the initial time with a

forecast issued from previous observations. A new forecast is then

issued; and the process is repeated as further observations become

available: the forecast model assimilates the data. The problem of

four-dimensional data assimilation is essentially that of determining

the best way to combine forecast and observed values.

The peculiar dynamics of the earth's atmosphere present a further

difficulty in the determination of initial values. Namely, NWP is a

problem with two time scales, in which motion on the fast time scale is

not reliably observed4

f The system of nonlinear partial differential equations which

governs *,he atmosphere's dynamics admits two types of solutions;

rapidly evolving solutions, which in the earth's atmosphere consist

mostly of inertia-gravity , waves, and slowly evolving solutions,

consisting mostly of Rossby waves. In the earth's atmosphere, the

fast-scale motions occur mainly on small spatial scales which are

resolved neither by the observational network not by global NWP models.

Fortunately, the fast-scale components of motion typically carry much

less energy than the slow-scale components. On spatial scales which

NWP models are designed to resolve, the slow motions are the

significant; ones.

initial data for NWP models must be chosen accordingly: the data

mist be constrained to result in a slowly evolving forecast.

k	 Improperly chosen initial data lead to spurious fast waves which appear
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as large, transient errors in the forecast of every P*teoroiosical

variables forecasts of vertical motion, and therefore precipitation

forecasts, are particularly affected by the spacious waves.

The process of A justing initial data so that a slowly evolving

forecast ensues is known as initialization. Customarily, a data

assimilation method provides "first g%ess" initial data, which are then

adjusted by application of an initialization scheme.

The estimation theory of stochastic -dynamic systems provides a

natural framework for studying the data assimilation-initialization

problem. In the approach of estimations theory, the evolution of the

atmosphere is aesumed to differ from that of a given NWP model by

random increments; the random increments are meant to account for

modeling errors. Thus, the "true" atmospheric state is governed by a

stochastic-dynamic model. Observations are treated similarly: they are

noisy "output" of the stochastic-dynamic atmospheric model.

In the context of estimation theory, the data assimilation problem

is that of estimating the "true" state, given the unperturbed,

imperfect NWP model, and given inaccurate, incomplete observations of

the "true" state. The initialization problem is that of constraining

the state estimates, or forecast, to evolve slowly.

In this dissertation, we apply estimation theory to study the data

assimilation-initialization problem, in two ways. First, we formulate

a combined data assimilation-initialization method which is

statistically optimal for linear stochastic-dynamic models. Second, by

means of numerical, experiments with a simple linear model, we compare

this method with the method of "optimal interpolation" which is widely

used at NWP centers.
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For linear stochastic-dynamic models, the discrete Kalman-IlucZ

KB) filter of estimation theory is the statistically optimal data

assimilation methods The KB filter is optimal in that it

s :msultaneously minimizes all quadratic measures of the estimation

error, i.e., all quadratic funct;ion&XA of the difference between the

estimmmatei state and the true state. Like data assimilation methods in

operational use at NWP centers, the, KB filter proces sea data

sequentially% observations are discarded once they have been proce.sued,

so that past observations are used on17 in the form of a forecast

issued from them. The optimality and sequential nature of the KB

filter has led to its successful use in a wide variety of engineering

problems.

The KB filter does not automatically provide slowly evolving state

estimates, however, and therefore it is not directly applicable to NWP.

To find a combined data assimilation-initialization algorithm, we solve

a constrained minimization problem. Namely, we require that a

quadratic functional of the estimation error be minimized, subject to

the constraint that the ensuing state estimates will evolve slowly.

The solution turns out to be a modified form of the standard KB

filter. It is given by multiplying the usual KB gain matrix, which

specifies the linear combination of forecast and observed values, by a
k

matrix which projects onto the set of data which lead to slowly

evolving forecasts. That is, the KE gain matrix is multiplied by a

projection matrix onto the model's slow—wave subspace. The projection

matrix depends on the choice of error functional, and thus a tradeoff

is involved in constraining the estimates to evolve slowly: the

modified filter depends on the choice of error functional, whereas the
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standard KB filter does not. When using the modified KB filter, one

must choose the error functional to be minimized.

The modified KB filter is equivalent to combining the standard ICS

filter with the method of variational linear normal mode initialization-

which is used at NWP centers. In this initialization method, the first

guess estimate provided by a d"a assimilation scheme is projected onto

the slow-wave subspace, in such a way as to minimize a quadratic

functional of the difference between the firstug ems and the

Initialized estimate. Inasmuch as the ;first guess in our case is

provided by the KB filter, the modified filter minimizes also a

functional of the difference between the true state and the initialized

estimate. This property is important in deciding upon an appropriate

error functional to be minimized.

A simple model whose solutions exhibit many features of

large-scale atmospheric flow, including the two time-scale behavior, is

the one governed by the shallow-water equations. We implement the

standard and modified filters for a linear, one-dimensional version of

the shallow-water equations. We use a simplified observing pattern

based on the conventional meteorological observing network.

One of the advantages of the estimation- theoretic framework is

that it provides a way of assessing the performance of data

assimilation schemes: the estimation error variances evolve in a known

way. 'We make use of this fact to compare the performance of the

standard and modified filters in our shallow-water model. The results

show that the modified filter does indeed produce slowly evolving

estimates, and at the expense of estimation errors only slightly 1&rger

thLn those of the standard KB filter.
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Our numerical experimonts oleo demonstrate that the two filters
s

auto*A ticolly determine observational weights in accordance with local

data density and with Cite amount of information •dvected between

data-denso and data-sparse regions, In particular, the filters are

able to discern between data-sparse regions located upstream and

downstream from a data-dense region.
	 j

For our second application of estimation theory, we implement a

version of -optimal  interpolation (OI) for our shallow-water model.

This data assimilation method is in use at a number of NWP centers and

is under development at several others. Optimal interpolation is based

on a number of assumptions concerning forecast error correlations and

the evolution of forecast error variances.

We use the estimation-theoretic framework to assess the

performance of 01 in our model, and we compare the performance of 01

with that of the standard and modified KB filters. Our numerical

results suggest that the simplifying statistical assumptions involved

in 01 lead to relatively large errors gear boundaries separating

data-dense and data-sparse regions. We show that proper initialisation

is a partial cure for this boundary effect , in that initialization

helps keep estimation errors localized.

A number of free parameters, such as forecast error variance

growth rates over different regions, are specified in 01 schemes. We

show that, by monitoring the= size of estimation errors, these

parameters may be adjusted, or tuned. The results show that, when the

growth rates are properiy tuned, the performance of an initialized

version of 01 is roughly comparable to that of the modified KB filtere
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The tuning is a way of allowing the 01 scheme to wke some use of

f

advected infot-ma tion.

We hope that our results, both theoretical and numerical, lead to

a better understanding of the interaction between initialization and

four-dimensional data assimilation.

In Section 1.2, we review several aspects of NWP mode-Is and

meteorological observing systeias, in order to acquaint the reader with

some of the practical considerations involved. in numerical weather

prediction. We also discuss the general formulation of data

assimilation methods and we discuss normal mode initialization methods

in some detail.

In Chapter 2, we review the relevant aspects of estimation theory.

We show, in particular, how estimation theory can be used to assess the

performance of data assimilation schemes. A simple derivation of the

KB filter is presented also.

In Chapter 3, we introduce the linearized shallow-water equations,

and we formulate and discuss their slow-wave subspace. The discrete

version of the shallow-water equations upon which our numerical

experiments are based Is given in Chapter 4, where we also define the

slow-wave subspace of the discrete shallow-water model. The modified

filter will depend upon the slow--wave subspace of the discrete model,

rather than upon that of the original differential equations.

Our main theoretical results appear in Chapter 5. lifter

preliminary remarks in Section 5.1 and a review of projection matrices
I

in Section 5.2, the modified KB filter is presented in Section 5.3; it

is given by Theorem 1. An efficient method for computing the projection

matrix upon which the modified filter depends is given by Theorem 2 of

L
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Section 5.4. We describe a variety of choices for the error

functionalp and the corresponding projection matrices, in Section S.S.

The description and results of our numerical experiments with the

stancnard and modified KH filters are given In Chapter 6; the Ol

experiments are described in Chapter 7. A preliminary version of the

experiments in Chapter 6 was reported in Ghil et 1. (1981). The

results in Chapter 7 are summarized in Cohn et al. (1981).

Theorems 1 and 2 of Chapter 5, and also the lemmas of Sections 5.2

and 5.4, art proven in the Appendix.

1.2. Background on Numerical Weather Prediction

Most forecast models used in NWP are discretized versions of the

so-called primitive equations, which are the Eulerian hydrodynamical

equations modified by the hydrostatic assumption. Finite difference

and specttral methods are used most often for the discretizati6fi4 finite

element methods are used to a much lesser extent. The models are fully

three-d mensioaal, depending on a vertical coordinate and on two

horizontal coordinates. Global, hemispherical and limited -arta models

are all in use. See Haltiner and Williams (1980) for a full treatment

of numerical modeling in NWP.

The highest resolution global and hemispherical models have

105-106 degrees of freedom -- a large number even by present

computational. standards. Stillo this resolution corresponds to a

horizontal mesh spacing of 100-200 km, which is not adequate for local

prediction. Local forecasts are carried out by use of limited-area

fine-mesh models and by subJectve ^•.a °°-^-«	 T" -^. ^-_°^-°"

t
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forecasts	 are	 based	 upon	 forecasts	 provided	 by	 global,	 (or

hemispherical) models.

Errors	 are incurred at each step of the prediction process.	 Some

error is made at the local level.	 The global models are another source.

of	 error,	 primarily	 due	 to	 d scretization and improper modeling of

physical processes. 	 Finally, there is error in	 the	 determination	 of

global inI.tial values.

Initial	 error	 is	 important,	 especially	 because	 the resulting

forecast error grows rapidly.	 This growth	 is	 a	 consequence	 of	 the

atmosphere's	 nonlinear	 dynamics, and is not an'artifact of the model,

In stable linear systems, the effect of an initial 	 perturbation	 tends

to	 zero	 with	 time.	 The	 atmosphere	 is	 nonlinear	 and has locally

unstable	 modes.	 Perturbations	 at	 small	 scales	 of	 motion	 are

nonlinearly	 fed	 into	 the larger scales and eventually grow enough to

completely contaminate a forecast. 	 The atmosphere	 is	 in	 this	 sense

Ii
unpredictable.

Three	 approaches	 have	 been	 used to determine the rate at which

predictability of large-scale atmospheric flow is lost. 	 Lorenz (1969x)

examined	 a	 five-year	 observational	 data	 set	 for	 atmospheric

"analogues", or pairs of similar states, and studied 	 their	 divergence

in	 time.	 In the second approach (Charney et al., 1966; William-Ron and}

Kasahara, 1971),	 one	 studies	 instead	 the	 divergence	 of	 pairs	 of

numerical forecasts issuing from slightly different initial states. 	 In

the third approach (Leith and	 Kraichnan,	 1972;	 Lorenz,	 1969b),	 the
}

transfer	 of	 error	 between	 different	 scales	 of	 motion, based on a

presumed	 atmospheric	 energy	 spectrum,	 is	 calculated	 by	 means	 of

_f
statistical theories of turbulence.
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The three approaches give the same quantitative results. For

scales of motion resolved by current NW models, two atmospheric states

differing initially by s^ small amount diverge exponentially at first,

with an rms error-doubling time of about 2-3 days. Errors level off in

about 2-3 weeks, after wh1c% time the two states become statistically

uncorrelated.

Errors in initial states are due to the incompleteness and

inaccuracy of data provided by the global observing network.. Here we

briefly describe the observing systems and the error structure of the

data they provide. For a more complete discussion we refer to

Bengtsson (1975) and Fleming et Al. ( 1979a,b).

The largest number of observations made at a single time each day

are made at the so-called synoptic times, 0000 and 1200 hours Greenwich

Mean Time (GMT); the synoptic times are chosen as initial forecast

times. Synoptic data are provided by the conventional observing

network of surface stations and radiosondes. In Figure 1, in the

panels marked "surface", "pilots" and "temps", we show the distribution

of conventional observations available at 1200 GMT on January 9, 1979.

The uneven spatial distribution of conventional data is clear;

observations are concentrated over the continents, especially those of

the Northern Hemisphere.

A number of additional observations, mostly surface observations,

are provided by the conventional network at the subsynoptic tines, 0600

and 1800 C14T. A much larger number of observations, exceeding by now

that given by the conventional network, are made in an essentially

time-continuous manner by polar-orbiting satellites, geostatioytary

satellites and other nonconventional observing systems (remaining

h

a



panels in Fig. 1). Satillite observations greatly Amprove upon the

spatial coverage of conventional observations, but their usefulness in

providing initial data is limited by the fact that satellite coverage

of the globe is incomplete at any one times

Each observing system has its own particular error

charactoristics. The conventional network provides point values of

pressure, temperaturep horizontal velocity and humidity. These fields

are highly variable, and hence point measurements are not

representative of volumo averagesp as they should be for numerical

models. Although instrumental errors are relatively small, the total

observational errors of conventional data can be quite large.

Observational errors from nonconventional measurements are often

even larger. Geostationary satellites ("satwind" in Fig. 1), for

examplev provide sequential cloud images from which horizontal wind

velocities are deduced. Velocity errors in this case are largeg

primarily because of difficulty in determining the vertical location of

the clouds being tracked.

Observational errors are also correlated in a number of ways.

Errors from radiosonde measurements are spatially correlated $ as the

sondes rise through the atmosphere. PoI8^oorbiting satellites

( I'satems" in Fig. 1) measure radiances at different wavelengths, from

which vertical temperature profiles are deduced. The errors in a given

profile are vertically correlated; profile errors are also horizontally

correlated along the satellite track. Sequences of measurements from,

any single instrument are also likely to have temporally correlated

errors*
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The inaccuracy and incompleteness of observational data available

at any single time gives risQ, to the necessity of four-dimensional data

assimilation. Babe (1978, 1981) has studied some theoretical aspects

of data assimilation for general first-order linear hyperbolic systems.

He gives conditions under which solutions of such equations are

uniquely determined by nonstandard data, i.e., by data other than

complete initial data. for the method of direct insertion of

nonstandard data during an integration, he shows how the rate of

convergence toward the solution depends on the frequency with which

data are available for insertiono In a similar theoretical study,

Talagrand (1977, 1981) has examined the convergence of direct insertion

methods based on both forward and forward-backward integration, for

linearized versions of the shallow-water equations and of the primitive

equations. Both studies assume perfect observations.

Direct insertion, or replacement of forecast values with observed

values, is not desirable in practice, because of observational error

and forecast error. 'Rather, an appropriate combination of observed and

forecast values is sought. The usual procedure is as follows.

At a given time when observations are available, differences are

formed between the observed and forecast values, after an interpolation

between grid points and observation locations. Thus, if w o is the

hector of observations, if wf is the vector of forecast values at all

the grid points, and if H is a matrix which interpolates from grid

points to observation locations, then the observed -ninus-forecast

residual is given by w0-Hwf . Once the residual vector has been

determined, it is multiplied by a matrix K of weighting coefficients,

and then added back to the forecast vector. The result,

€	 I

a
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wa w t K(wo - Hwf ),	 (1.1)wr	 n	 r	 IW

is known as the analysis vector, since it represents an "analysis" of

the available observations. The forecast then proceeds, using the

analysis vector as initial data, and the entire process is repeated

when new observations become. available. Thus, the schemes are

sequential, in that observations are discarded once they have been

processed.

The central problem of four-dimensional data assimilation is to

determine an appropriate choice for the matrix K, as thi3 matrix

characterizes an assimilation scheme. This matrix is known in

estimaton theory as a gain matrix. In global NW, gain matrices are

very large, on the order of 106 x 105 , so that almost all elements must

be zero in order to leave a tractable computational problem. In actual

practice, data assimilation is always carried out locally, so that gain

matrices are block diagonal and have rather small bandwidths.

Until very recently, most assimilation methods used relatively

little statistical information. The most popular such method, known as

the successive correction method, was developed by Bergthorsson and

D68s(1955) and by Cressman (1959). In this method, weights assigned to

observational data surrounding a grid point are functions of radial

distance only; scans of the data over successively smaller radii, from

each grid point are employedv so that a smoothly varying analysis field

results. A complete review of assimilation methods, ineluding the

successive correction method, appears in Gustaysson (1981).
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We have already seen that the error structurOl of satellito

observations is suite different than that of conventional observations.

Thus, as noncon,ventional, satellite -based observations becam

available, it was realised that nonstatistical procedures would no

longer suffice.

Statistical assimilation was first suggested by Eliassen (1954)

and by Gandin (1963). The statistical schemes in current use are known

as "optimal interpolation" methods. In these methods, the gain matrix

is based upon a presumed forecast error covariance mc4 trix and its

presumed evolution in time. Current formulations of OI are

nultivariate, in that forecast error correlations between different

atmospheric variables are prescribed (Rutherford, 1973, 1976;

Schlatter, 1975; Schlatter et al., 1976). Statistical assumptions

based on the atmosphere's approximate dynamics are involved in

specifying the correlations.

In Chapter 2 we will see t ;,%t, like OI, the KB filter is a

statistical, sequential data assimilatibn method. The difference is

that the KB ,filter is based upon the correct evolution of the forecast

error covariance matrix, which is known by virtue of a

stochastic-dynamic atmospheric model.

We describe in Chapter 7 the statistical assumptions made in 01*

Our implementation of 01 will be based on that at the U. S National

Meteorological Center (NMC; Bergman, 1979; McPherson et al., 1979) and

at the European Centre for Medium Range Weather Forecasts (ECMWF;

Lorenc, 1981) .

In actual practice, all data assimilation methods are

intermittent, rather than continuous. That is, observational data are

—^A.f
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grouped in intervals centered at the synoptic times, and sometimes at

the subsynoptic times also, and data are assimilated only at those

times. Assimilation is performed ntermittently for two reasons.

First;, intermittent assimilation is more compatible with data-handling

procedures such as cross-checkIng for gross errors. Second,

intermittent assimilation allows some time for the dispersion and

dissipation of transient fast waves induced by each assimilation.

Still, it is necessary to combine data assimilation with some form

of initialization. The initialization methods which have dominated

both research and practice in recent years, are the normal mode

initialization methods. We describe them briefly here; see Daley

(1981) for a complete review of these methods. For a review of other

initialization methods, see Bengtsson (1975).

Normal mode initialization is based on writing the unforced

forecast equations in phase space, as

Y - i A Ix + r1(x*4)	 (1.2a)

Z - i A 2z + r2(.00 ;	 (1.2b)

X(t) and z(L) are, the slow and fast mode expansion coefficients,

respectively; tt,e Aj are constant, diagonal matrices, and the r are

nonlinear terms which depend on both slow and fast mode coefficients.

'Tile eigenfrequencies A, are generally small compared to the

eigenfrequencies A 2 , and the lonlinear terms are generally small

..	 compared to the linear terms.

Linear normal mode initialization was suggested by Dickinson and

Williamson (1972); it was tested with a shallow-water equations model

i

i
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by Williamson (1976), and with a primitive equations model by

Williamson and Dickinson (1976). In this method, the "first guess'O

analysis vector provided by data assimilation is adjusted by setting to

zero its fast components, while leaving its slow components unchanged.

Thus, if x'(0) and za (0) are the modal coefficients of the analysis

vector at time t	 09 say, then the modal coefficients of the

"corrected", initialized vector from which the forecast proceeds are

given by

xc(0) . XI (0) r	 !C(0) . 0 .
	

(1.3a,b)

Were Eqs.	 (1.2) linear, the fast oscillations would thereby be

eliminated for all time; z(t) r 0 if z(0) - 0 and r2 0. The equations

are not linear, however, and the nonlinear terms excite fast modes

during the forecast. Indeed, at the initial time we have

z - r2QaOO) r	 (1.4)

whereby 1(0) # 0, since Xa(0) # 0 generally.

Nonlinear normal, mode initialization was introduced by Machenhauer

(1977), and independently by Baer (1977) and Baer and Tribbia (1977).

'this method attempts to eliminate the nonlinear excitation of fast

modes by adjusting the initial vector so that

z(0) - 0 .	 (1.5)

That is, the fast waves are required to be stationary at the initial

time. 1h a slow coefficients are not changed,
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xc(0) n xa (0)	 (1.ba)

To satisfy Eq. (1.5), the fast coefficients Xa(0) are discarded$ and

replaced by

Zc(0) " i A2 1r2(Yc(0) P!' (0)) i

a small, balancing fast component is introduced. In the Machenhauer

formulation, the nonlinear equation (1.6b) is solved approximately, by

one or two steps of functional iteration. The Baer-Tribbia method is

slightly different, and is based on a careful nondimensionali.zation

With respect to the tRa time scales involved.

An extension of the nonlinear mchemefl, known as variational

nonlinear normal mode initialization, has been developed by Daley

(1978). In this method, the fast coefficients are still required to

satisfy Eq. (1.6b), but the slow coefficients are now altered also, to

reflect the relative accuracy of different atmospheric variables

provided by the assimilation scheme. Thus, a discrete version of an

error functional

n ' f [qu(uc-ua ) 2 + qv (vc-va ) 2 + q,(Oc-¢a)2) dA	 (1.7)
A

is minimized, subject to Eq. (1.6b) as a constraint. Here us and va

denote velocity components of the analysis vector, and ^a denotes the

geopotential, while the minimization is with respect, to corrected

values uc , vc , f c ; the integration is carried out over the entire

atmosphere. The prescribed weighting factors qu , qv , of may vary in

space and time; they reflect data density and accuracy. The weights

r 1

x



are taken to be large over data-dense regions, for example, so ;hat

most of the correction is over regions of sparse coverage where the

analysis vector is not likely to be very accurate. The variational

approach can also be applied, of course, to the linear initialization

scheme.

The slow manifold concept of Leith (1980) has provided a framework

for	 understanding	 the behavior of normal mode initialization methods.

The slow manifold approximates the set of slowly evolving solutions 	 of ,.
1

the	 forecast equations; nonlinear normal mode initialization is viewed

as projection	 onto	 the	 slow	 manifold.	 The	 nonvariational	 method

corresponds	 to	 one	 type of projection.	 In the variational approach,

the type of projection depends upot 'tte weighting functions 	 qu +	 qv }

q^

The	 Rossby	 manifold	 is	 the	 set	 of	 solutions of the forecast

equations having z _ p, linear normal mode initialization is projection

onto the Rossby manifold.	 For linear models, such as the shallow-water

equations model we	 will	 work	 with,	 the	 Rossby	 manifold	 and	 slow

manifold	 coincide.	 For linear models, the slow, Rossby manifold is in

fact a subspace, i.e., linear combinations of slow solutions	 are	 also

slow solutions.

`	 We	 will	 see in Chapter 5 that the modified KB filter corresponds

to combining the standard KB filter with variational linear normal mode
fir

initialization.	 That	 is, the standard KB filter can be viewed as the

Underlying assimilation scheme, With 	 the	 KB	 analysis	 vectors	 being

 onto	 the	 slow-wave	 subs	 ce;.projected	 pa	 Essentially,	 we	 prove ^-

rigorously that this is the best that can be done for linear models.

ej

l

I
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For the modified U filter, one 'most still choose the variational

weights which define the type of projection. W'a will show that, in

addition to mia+imizing the functional (17), the modified filter also

minimises the expected value of

a

n' • f t'qu (uc-ut )2 + gv(vc-vt )2 + q,(#c-#t)21 dA ,	 (1.8)
A

where ,, ut , v4, +t are components of the "true" atmospheric stag

governed by a stochastic-dynamic model; n' is a functional of the

actual error of the initialized state. In our numerical experiments,

we therefore minimize the expected value of the total energy of the

error, i.e., we choose constant weights q u , qv , q^ . The theory,

however, is developed for the most general quadratic error functional.

a
a

r

i
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CHAPTER TWO

ESTIMATION THEORY AND METEOROLOGICAL DATA ASSIMILATION

In this chapter, we review some of the aspects of estimation

theory which apply to the problem of assimilating meteorological

observations. The theory is presented only for the case of

discrete-time, linear systems. Jarwinski (1970) rigorously treats bath

nonlinear and linear estimation theory, and Davis (1977) gives an

elegant account of the lin(a4v case. An elementary treatment is

available in Gelb (1974).

2.1. The Stochastic-Dynamic Models

Zit the application of estimation theory to data assimilation, the

atmosphere is assumed to be governe,r, by a stochastic-dynamic model

which is a randomly perturbed version of a given NWP model. The 'random

perturbation is meant to aco;int for the discrepancy between the

evolution of the actual atmosphere and the evolution described by the

given forecast modek. The observation process is represented by a

second stochastic-dynamic model: the observations are considered to be

noisy "output" of the stochastic-dynamic atmospheric model. The

assumptions on which the stochastic-dynamic models are based lead to a

statistically optimal assimilation scheme, and to a method for

assessing the performance of alternative schemes. The

stochastic-dynamic models are described in this section, and their

ramifications are discussed in subsequent sections.

L'
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We present only a simple special case of the theory: the given

forecast model is linear, and hence does not represent an actual NWP

model. The forecast model is expressed symbolically as

wk ` 'f k-1 wk-1 r	 (2.1)

for values of the discrete time k - 1 1 2 9 3,... . The vector wk has

dimension n and the dynamics matrix 'Y k_ 1 is nxn, where n is the number

of degrees of freedom of the model: n is as large as 10 6 for actual NWP

models.	 Interpreting Eq.	 (2.1) as a finite-difference model, the

components of wk approximate at time k the values of the atmospheric

variables at each grid point; Tk_1 consists of finite-difference

coefficients and advances the forecast from time k=1 to time k. Forcing

terms are omitted from Eq. (2.1) for simplicity.

The model (2.1) is linear: T does not depend on w„ The linearity'

assumptior, leads to substantial simplification of the theory reviewed

in this chapter and extended in Chapter 5. Linearity does notobscure

the main phenomenon of interest: linearized NWP models have solutions

which ti:alve on two time scales.

Given the forecast model (2.1), it is assumed that the true

atmospheric state evolves according to the stochastic-dynamic model

wk = '`k-lwk-1 + bk_1 .	 (2.2a)

The superscript t denotes that the state vector wk t7, an n-vector of

the true, but unknown, values of the atmospheric variables. The random

perturbation, or aXstem noise, is the n-vector bk_ 1 . In general, it is

supposed to account for dynamical and physical processes improperly
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modeled by the forecast equations (2.1), as well as for truncation

	

errors due to discretization. Since the dynamics of Iq• (2.2e) are
	

C, 1

linear, we will want the noise to account in particular for the

nonlinear effect of anpredietabilityi.

The sequence (bt k - 0,1,2,...) is assumed to he a white noise

sequence with mean zero and known covariance matrix Qks

Ebk- 0,	 E(bk)(bR)T " Qkdki, • 	 (2.2kc)

ThP operato.; E indicates the expected value, or ensemble average, the

superscript T denotes the vector or matrix transpose, and the symbol

akt is the Kronecker delta, akk . 0 if k f R and dkX - 1 if k7 L. The

mean-zero assumption (2.2b) is made for convenience, and is not

essential to the theory.

Having described the state model, Eqs. (2.2), we now describe the

observation model. Suppose that a vector of observations wk is

available at a given time k. It is assumed that the observations can be

modeled by the equation

wk - Hkwk + 6k.	 (2.3a)

The dimension p of the observation vector wk is the number of

measurements available at time k: p - p(k). The observation matrix Hk

is a nonrandom pxn matrix, and the observation noise bk is a random

p-vector. Typically p « n.

The elements of the observation vector are the raw observational

data themselves. We merely assume that they are related to the true

atmospheric state, and hence to Eq. 	 (2.2a), by Eq.	 (2.3a).	 The

F

r -
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observation model is assumed to be linear: Rk does not depend on wk.

In other words, 'Eq.	 (2,14) models noisy observations of linear

combinations of elements of the state vector.

The linear combinations correspond to the fact that the

observation matrix ^ust interpolate from variables defined at grid

points ( the elements of wk) to vari ables defined at observation

locations (the elements of wk). The two sets of variables need not

represent the same meteorological fields. For example, part of the

observation matrix could contain linear regression coefficients for

convelting between temperature components of w t and satellite-measuredZk

radiantes in wk.

The random vector - models observational error, which includes

both instrumental error and the sampling error inherent in point

measurements of fields with considerable spatial variability. The

observational noise is assumed to be white, with mean zero and known

covariance matrix Rk:

Ebk	 0•	 E(bo )(bo )T
 Rkdki ,	 (2.3b,c)

and is assumed to be uncorrelated with the state noise:

E( bk ) (bt )T . 0 •	 (2.3d)

Assumptions similar to (2.3b,c,d) are also .implicit in the data

assimilation schemes in use at NMC (Bergman, 1979) and at ECMWF
L`

(Lorene, 1981).
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The stochastic-dynamic models (2.2, 2.3) express the basic

assumptions involved in our application of estimation .theory to NWP.

Next, we introduce the class of data assimilation methods to be

considered. and then we discuss the implications of the models for the

data assimilation problem.

2.2. Unbiased Linear Data Assimilation Methods

Suppose that at some time k-1, observational data wk_1 have been

used to provide an estimate wk_ 1 of the true atmospheric state wk-1•

The superscript a is used for the estimate because the estimate is

known in meteorological practice as the analysis vector: it represents

an "analysis" of the observations available at time k-1. The analysis

vector is assumed to be unbiased, i.e.,

E(wk-1 _ wt
	 (2.4) - 0.	 (2.4)

Like the state vector, the analysis vector has dimension n.

The purpose of a data assimilation scheme is to combine the

estimate wk_ 1 with new observations wk which become available at time
u

k, to produce a new estimate wk We consider only unbiased, linear

assimilation methods: a new unbiased estimate is sought as a linear

combination of the old estimate and the new observations, i.e.,

E(wk - wk) . 0 	 (2.5)

wk ' Lk-lurk-1 + Kkwk`	 (2`6)

I

II
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The matrices Lk- 1 and Kk are nonrandom and have dimensions nxn and nxp,

respectively.

The asaumptione inherent in the stochastic-dynamic models actgally

deterimaine L;,-1 , and allow En.	 (2.6) to be written in a more

intuitively appealing way. Substituting Eq. (2.6) into Eq. 	 (2.5)0

and using Eqs. (2.2a,b), (2.3a,b) and (2.4), one finds that

0 - E(^ - wk ) - [Lk-1 - (I - KkHk)Tk-1)Ewk-1•

Since Ewk_ i f 0 generally, it must be that

Lk-1 - (I - KkHk)yk-1

so that Eq. (2.6) becomes

r	 j

!!k- ^` k-lWk-1 + Kk(wk - HkTk- lWk-1)•	
1

Now Tk-lwk-1 is just a one-step prediction from time k-1 to time

k, cf. Eq. (2.1). Defining the forecast vector wk,

'Yk-1Wk-1 '	 (2.7a)

d

we therefore have

wk - wk + Kk (wk - Hkwk) ;	 (2.7b)

w
cf. Eq. ( 1.1)	 The forecast and analysis vectors, given by Eqs.

(2.7a,b), are both estimates of the atmospheric state. The forecast is

u
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a firstguess; the analysis is presumably a better estimate since it

incorporates the new observational information.

Eqs.	 (2.7) represent the general form of all linear, unbiased

data assimilation schemes. With Eq.(2.7a) replaced by a fully

nonlinear NWP model, all statistical assimilation schemes used at NWP

centers can be written in the form (2.7); see, for example, Gustaysson

(1981).

The general form of the scheme (2.7) states that the analysis

vector is the sum of the forecast vector and a linear combination of

the elements of the observed-minus-forecast residual wk - NkWf The

gain matrix Kk specifies the linear combination, and therefore

characterizes the assimilation method. We take the dynamics matrix V k

and the observing pattern Hk to be given, and focus attention on how to

specify the gain matrix.

If there are no observations available at some time k, then the

second term on the right-hand side of Eq. (2.6) is not present;

equivalently, Kk - 06 In this case, Eqs. (2.7) become

Wk - `Vk-lWk-1 ► 	 (2.$a)

wk • wk ;	 (2.8b)

i.e., the forecast simply proceeds when there are no data to be

assimilated.

In particular, Eqs. (2.8) hold for all k > N, where N is the most
t

recent time at which observations are available. The assimilation

scheme is provided an unbiased initial estimate w8 , data are
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assimilated at times k w 1,...,N, and then a forecast is issued, using

ZN as initial data. We are concerned primarily with the case k C N.

2.3. Assessing the Performance of Data Assimilation Methods

One of the main advantages of assuming the stochastic-dynamic

models (2.2) and (2.3) is that they lead to a method for assessing the

performance of data assimilation methods of the form (2.7). That is,

for any choice of gain matrix sequence {Kk ; k	 1,2,3,...}, it can be

determined br" well the corresponding estimates {wk,	 k n 1,2,3,...}

represent the true states {wk ; k	 1,'2,3,...}.

To show how this is so, we introduce the estimation error

covariance matrices. These are the forecast error covariance matrices,

defined by

	

Pk C 
E (wk - -k)(Ek - wk)T ,	 (2.9a)

and the analysis error covariance matrices, defined by

Pk ' E(wk - w )(kwk - w)

	

k T .	 (2.9b)

The forecast and analysis error variances, which are the primary

measures of an assimilation scheme's performance, are located along the

main diagonals of Pk and Pk, respectively.

From Eqs.	 (2.2) and (2.7a), it follows that P8 isis advanced by

one time step to Pk according to

Pk Tk-1Pk-1Tk-1 + Qk-1
	

(2.1Oa)
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while Eqs. (2.3) and (2.7b) imply that Pk is found from Pkb y the

formula

Pk - (I - KkHk)Pk( l - KkHk)T + KkRkKk.
	

(2.1Ob)

The estimation error variances and covariances can therefore actually

be computed, provided that P4 is known. Eqs. (2.10) will be used

repeatedly in our numerical experiments, to compare the performance of

data assimilation, schemes based on a variety of choices of the gain

matrix sequence.

The terms in Eqs. (2.10) have a simple intuitive interpretation.

The first term on the right-hand side of Eq. (2.10a) determines how

estimation errors are advected between data-dense and data-sparse

regions from one time step to the next. The numerical experiments

reported in Chapters 6 and 7 indicate that the effect of advectiun of

information is important in data assimilation. The second term in Eq.

(2.10a) is due to the presence of system noise, and results in a

tendency of linear growth of estimation error variance. 	 ##
	 i

The first term on the right-hand side of Eq. (2.10b) determines

the extent to which new observational information improves the

forecast, and the second term indicates the deterioration due to

observational error. For a data assimilation scheme to perform

properly, its gain matrices Kk must be suc^N that the error reduction

given by the first term dominates the error growth given by the second

term.

a

1

fi
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The simple form of Eqs. (2.10) is due primarily to the assumed

linearity of the stochastic-dynamic models. For nonlinear models,

equations like (2.10) still hold but are more complicated (Jazwinski,

1970, Sec. 6.4); the right-hand sides depend on higher-order moments

of the estimation errors.

Still, the computational task involved in advancing Eqs. (2.10)

exactly is laborious; matrix-matrix operations must be performed at

every time step, regardless of how often observations are assimilated.

For this reason, our numerical experiments will be performed with a

simple model involving only n 48 state variables.

2.4. Derivation of the Kalman-Bucy Filter

Eqs. (2.10) give the estimation error variances corresponding to

any choice of the sequence of gain matrices. Hence, a sequence which

minimizes the variances can be determined. The assimilation method

based on the minimizing sequence is called the Kalman or Kalman-Bucy_

(KB) filter, after Kalman (1960) and Kalman and Bucy (1961), who first

formulated it for processes governed by linear systems of ordinary

differential equations.

Before 4!2riving the KB filter, we review some facts from linear

algebra. All vectors and matrices in the following discussion are

real.

A square matrix A is symmetric if AT - A. An mkm matrix A is

positive definite if it is symmetric and if xTAx > 0 for all nonzero

m-vectors x. If A is positive definite, then A is nonsingular, i.e.,

A- 1 exists. Every positive definite matrix A can be factored

(nonuniquely) as A A1A1 , where Al is nonsingular.
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An mxm matrix A is positive semidefiniten^ if it is symmetric and if

xTAE > 0 for all m-vectors x. Every positive semidefinite matrix A can

be factored (nonuniqueXy) as A a Ai^1> where A l may be singular.

A covariance matrix A is a matrix -of the form A - 'ExxT , where y is

a random m-vectuv with EZ • 0. All covariance matrices are symmetric

and positive semidefinite. If every nontrivial linear combination of
M

the elements of Y has positive variance, i.e. , if E(	 xiyi) 2 > 0 f or
i1

all nonzero m-vectors x, then A . EXX T is actually positive definite.

The trace of a square matrix A is the sum of its diagonal

elements. The trace operator has the properties

trace AT	trace A;	 (2.11a)

trace (A+B) = trace A + trace B 	 (2.11b)	 1

trace AB	 . trace BA ,	 (2.11c)	 u i

trace xXT	 xTx ,	 (2.11d)

trace BBT 	> 0,	 (2.11e)

a
trace BBT	0 if and only if B - o f	(2.11f)

for all mxm matrices A,B, and for all m-vectors x x.

We now give an elementary derivation of the KB filter, based on

minimizing a quadratic functional of the analysis error. Let A be an

arbitrary nonrandom positive semidefinite nxn matrix, and let

nk E [ (wk -)T A(wk - wk) l •	 (2.12)

i
The functional Ylk is a general measure of the analysis error. The

d
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functional could represent the total expectei

analysis et,ror, for examploo in which case A would be a: diagonal matrix

with appropriate weights for the mass and wind fields along its

diagonal.	 Weighting matrices of interest are usually positive

definite, but we allow A to be positive sejaidefinite to include the

possibility that one might not be concerned with the error in one or

more meteorological fields at one or more grid points.

Eq. (2.12) will now be rewritten to make the dependence of nk

upon K  explicit, and then n k will be minimized with respect to Kk.

First, notice that

Tj = E{ trace[ A(e = wt ) (Ea a wt.)T] I	 (2.13a)

trace A.Pa ;	 (2.13b)

the first equality follows from property (2.11d), while the second

follows +£ran the fact that the expectation and trace operators commute,

from the nonrandomness of A, and from the definition of pa . The

subscript k has been dropped in Eqs. (2.13), and will be omitted

throughout the derivation. It is implicit that k is a time at which

observations are available, for otherwise K k . 0; cf. Eqs. (2.8).

To find a suitable expression for pa to be inserted into Eq.

(2.13b), we expand the products in Eq. (210b), to get

pa = KCKT KHpf pfHTKT + pf ,
	 (2.14x)

where
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C . HPfHT +R.
	

(2.14b)

The matrix C is symmetric, since Pf and R are covariance matrices.

We assumes that all nontrivial Linear combinations of the elements

of the observational noise bo have nonzero variance, Leo, no linear

combination of the measurements is "exact". The observational, error

covariance matrix R is therefore posit l(e definite; it follows that C

is also positive definite, and hence nonsingular... Consequently,, one

can complete the square in K in Eq. (2.14x), to get

pa - (K - pfRTC-1 )C(K - pfHTC-1 )T + Z,	 (2.15a)

where

Z pf PfHTC-1HPf .	 (2.15b)

Notice that Z is independent of K.

Finally, substituting Eq. (2.15a) into Eq. (2.13b), we have

n - trace CA(K - PfHTC-1 )C(K - pfHTC- 1 )T + AZ].	 ( 2.16)

Factoring A and C as A - AlA 1 , C - C1C1, and using properties

(2.11b 0 c), Eq. (2.16) becomes

in	 trace BBT + trace AZ ,	 (2.17a)

where

3
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A - Al(K - pfHTC-1 )01.
	 (2.'17b)

Since AZ does not depend on K. and due to properties (2.11a,f) o it

follows from the representation (2.17) that n is minimised with respect

to K itf and only if E w 0, i.e., 2ff

Al(K - PfHTC-1 )O3 • 0.	 (2.18)

Therefore 0 a gain matri x which minimizes n it given by

K PfHTC- 1 .	 (2.19)

Moreover, the minimizing gain matrix is unique if the weighting

matrix A, which was assumed to be only positive semidefinite, is

actually positive definite. If A AIA I is positive definite, Chen Al

is nonsingular; C . C 101 is already known to be positive definite, so

C1 is nonsingular. Premultiplying Eq. (2.18) by A1 1 and

postmultiplying by C1 1 yields Eq. (2.19); i.e., 0A minimizing gain

matrix is unique.
	 -a

The gain matrix given by Eq. (2.19) is the Kalman or Kalman-Bucy

(KB) amain  matrix, which we denote by 'KB . Using Eq. (2.14b) in Eq.

(2.19), the KB gain matrix is given for each observation time k by

K^B - P^HT(HkP^HT + Rk )-1 .	 (2.20a)

We have simply

K	 0
	

(2.20b)
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if there are no observations at time k.

Requiring nk to be minimized successively, at each time k

1,2 0 3,..., results in the XB gain matrix sequence (q B s k - 1,2,3, ...

that Kalman or Kalman-Bucy filter is the corresponding data assimilation

method. SinceKkf' depends upon Pk, the estimation error covariance

matrices (2.10) must be computed during the assimilation. When Kk •

KK8 , however, it follows readily from Egs.(2.15, 2.19) that the general

formula (2.10b) simplifies to

Pa - (I - K^BHO Pk' * 	 1	 (2.21)

Eqs. (2.7 0 2.10a, 2.20, 2.21) constitute the Kaltman filtering

algorithm for discrete-time, linear systems. 	 We recapitulate the

equations here for convenience:

I..

Wk • '^k-M-1 (2.22a)

plc ' Vk-1 P C-1^` k-1 + 4{c- 1 (2.22b)

KKa PkHk(HkpkHj + Rk) -1 r (2.22c)

Pa (I - KVHOPk (2.22d)

L wk + K $ (wk " Hkk), (2.22e)

fork = 1,2,3,..., given w0 and Pp. In the absence of observations at

time k, Eq. (2.22c) is replaced by KV . 0, and Eqs. (2.22d,e)

simplify accordingly.

Notice that Eqs. (2.22b,c,d) do not depend on the estimates

provided by Eqs. (2.22a,e). This is a consequence of the linearity of

the stochastic-dynamic models. Given P8 and the dynamics Tk, the gain
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matrix sequence depends only on the observing patterns and noise

covariance matrices. If these are known in advance, then the gain

matrix sequence can be computed before the assimilation begins.

i
r

2.5. q-ptimality Properties of the Kalman-Bucy Filter

We now discuss some of the optimality properties of the KB filter.

Notice, first of all, that KKB is actually independent of the weighting

matrix A which defines n: A does not appearq explicitly or implicitly,

in Eq. (2.20x). In other words, KKB simultaneously minimizes all

positive semidefinte quadratic functionals of the analysis error, and

uniquely minimizes all positive definite quadratic functionals of the

analysis error.

Suppose in particular that A - e jeT where e j is the jth column of

the nxn identity matrix. 'Then, according to definition (2.12), n is

xsC the variance of the ,jth component of the analysis error.

Consequently, since j is ivrbitrary, KKB minimizes the analysis error

variance of each meteorological variable at each grid point. The KB

filter is a minimum-variance estimator.

Suppose we fix a time k - R. It was shover. in Sec. 2.4 that

requiring nk to be minimized, in turn, for each time k

results in the KB gain matrix sequence {KkB : k - 1,2,...,R}.	 Suppose

that instead we wish to minimize only nX , without regard for the values

Of n k at the previous times k - 1,2,..,,k-1. In other words, nR is to

be minimized with respect to the entire sequence K1,Kl,...,KR. The

result is still Kk - KCB , k - 1,2,...,R. 'Ihut is, the KB filter is

time-optimal: the mini

m

mum value of n R , for each fixed 1,- is attained by

using the KB gain matrix sequence.

E.
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A slightly more general statement of this fact is the following.

Assimilation schemes of the form (2.7) are seggential, or recursive:

the only observations upon which the current analysis vector wk

explicitly depends are the current observations wk, so thRt

observations may be discarded as soot as they are processed. Suppose

that we consider a more general crass of assimilation schemes, in which

each analysis vector is explicitly a linear combination of all

available data:

k

wk - Lk,O w0 + J^ Lk,J t0	k lo 1,2,3,..,	 (2.23)

It can be shown (e.g., Jazwinski, 1970, Sec. 7.3), that in fact the KB

filter is optimal among assimilation schemes of this more general

class: with wk given by Eq. (2.23), minimizing nk either for all k or

for a fixed k still results in the KB filtering algorithm.

This wider optimality is due to assumptions (2.2c,2.3c,d) that the

system noise and observational noise are uncorrelated in time. If the

system noise and observational noise are also assumed to be Gaussian,

it is known (e.g., Jazwinski, 1970, Sec. 	 5.2) that the optimal

nonlinear assimilation scheme, i.e., one in which wk might depend

nonlinearl y on all past and present observational data, is still the KB

filter.

2.6. Further Remarks on Estimation Theory

By applying the theory outlined in Secs.	 2.1-2.4 to a simple

model T based on the linearized shallow-water equations, we will see in

Chapters 6 and 7 that much can be learned about the properties of data
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assimilation schemes in a meteorologically familiar, but somewhat

idealized setting. The method of Sec. 2.3 provides a way to determine

how well any scheme of the form (2.7) performs, and for comparison we

have an "optimal," scheme, namely the KB filter. For completeness, we

now discuss some extensions of the rudimentary theory we have outlined,

which might lead to practical assimilation schemes for global WP.

First, notice that the sequential nature of the Kalman-Bucy filter

is made possible by the fact that the forecast error covariance matrix

Pk is known at each time k. All observational information available

prior to time k is embodied in the forecast vp;tor wk and the

covariance matrix pk , so that the only additional information needed

at time k is the current observational. information (w ,Kk ,Fk), cf.
Eqs. (2.22c,e). That Pk is known is a consequence of the fact that

the system noise covariance matrix Qk was assumed to be known, cf.

Eqs.	 (2.2c, 2.22b).	 A rg , iori knowledge of Qk is, however, not

essential.: Qk, can be determined adaptively, i.e., during the

assimilation process itself (Belanger, 1974; Ohap and Stubberud, 1976;

Chin, 1979; Maine and Iliff, 1981). The observational noise covariance

matrix Rk , as well as the means of the observational and system noise,

can also be determined adaptively:

For a realistic NWP model., the corresponding stochastic-dynamic

model. (22a) would be nonlinear. Estimation theory still leads to an

optimal, assimilation method in this case (e.g., Jazwinski, 1970, Ch.

6). However, as the right-hand sues of the equations corresponding to

(2.10) would depend on all the higher-order moments of the estimation

error, approximations would be required to make the algorithm finite.
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Many approximate nonlinear filters have been formulated

(Jazwinski, 1970, Ch. 9, and references therein). A particularly

simple nonlinear filter, often used in engl^neeri,ng applications, is the

extended Kalman filter (EKF; Jazwtaski, 1970, Sec. 8.3; Gelb, 1974,

Ch. 6). The EKE is essentially the usual linear KB filter, with the

nonlinear dynamics being linearized about each successive state

estimate. Discussion of the applicability of the EKF to numerical

weather prediction appears in Ghi.l et al. (1981, Sec. 5).

Even for linear stochastic-dynamic models, the XB filter presents

a formidable computational task. The matrix-matrix operations in Eq.

(2.22b) must be performed at every time step; Eqs. (2.22c,d) are

needed only when observations are available. Assimilation schemes in

current use require only matrix-vector operations (2.8) in between

observation times. There are, however, a variety of ways	 to

reformulate Eqs. (2.22) for computational efficiency (Bierman, 1977;

'Paige and Saunders, 1977). In particular, the matrix inversion in Eq.

(2.22c) can be avoided.

Still, for global NWP, it would. probably be necessary to calculate

Eq. (2.22b) in an efficient approximate form. Many approximate forms

are possible. In fact, the "optimal interpolation" (01) methods in

operational use at NWP centers can be regarded as being ba8( 4,3 on suc1)

an approximation. In Chapter 7, we describe the approximate version of

Eq. (2.22b) upon which 0I is based, and we implement Ot for our

dynamical mDdel If.	 The method of Sec. 2.3 is used to determine the

effect of the approximations involved in OI.

At
is	 A
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In summary, the framework of estimation theory is well-suited to

study the problems of meteorological data assimilation, and we have

Indicated how the theory outlined in Sees. 2.1-2.4 sight lead to

practical assimilation algorith^s for global PWP.

Our purpose here is to develop the theory in a different

,direction, i.e., to account for the initialization aspect of data

assimilation. We show in Chapter 5 that for dynamical models having

two time scales, requiring the state estimates to evolve slowly leads

to a modified version of the KB filter. First, in Chapter 3 0 we

describe the linearized shallow-water equations and their slow

solutions, and then in Chapter 4 we describe the slow solutions of a

corresponding discrete model To
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CHAPTER THREE

SLOW SOLUTIONS OF THE LINEAR SHALLOW-MATER EQUATIONS

The shallow-water equations govern the motion of a thin layer of

incompressible, inviscid fluid over a given surface. The shallow-water

equations over a rotating sphere give a simplified description of the

dynamics of the earth's atmosphere, and solutions of the equations

exhibit many important properties of large-scale atmospheric flow

(e.g., Pedlosky, 1979, Ch. 3). In particular, the equations possess

both slowly evolving solutions and rapidly evolving solutions.

In this chapter we describe the slow-wave subspace of a linear,

spatially one-dimensional version of the shallow—water equations. The

slow-wave subspace is the set of all initial data which lead only to

slowly evolving solutions of the linearized equations.

3.1. The Equations

The linear, spatially one-dimensional shallow-water equations,

written in cartesian coordinates for a plane tangent to the earth at

latitude 0 0, are given by

ut + UuX + 4X	 fv - 0 ,	 (3.1a)

vt + Uvx	 + fu - 0 ,	 ("3.1 b)

Ot + U¢ X + muX fUv - 0	 (3.1c)

The coordinate x points eastward, in the zonal direction, along the.

circle of latitude A - 0 0 , while y points northward, in the meridional

direction; u and v are velocity components in the x and y directions,
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respectively. The geopotential + ' gh measures the deviation of the

height H+h of the free surface from its equilibrium value H; • - gH is

constant and g is the acceleration due to gravity. The constant U is

the mean zonal velocity and f - 2n sin 0 0 is the Coriolis parameter,

With 0 the angular velocity of the earth. The subscripts x and t

denote differentiation with respect to x and the time t; all quantities

are independent of y.

These equations are derived from the full, nonlinear shallow-water

equations on a tangent plane,

ut + uux + vuy + Ox f  - 0 ,	 (3.2a)

vt + uvx + vvy + ¢y + f u - 0 ,	 (3.2b)

4t + UOX + v¢y + O(ux+ vy) - 0 , 	 (3.20

by linearization around the solution u - U, v - 0, - 0(y) satisfying

fU' Oy - const. the quantities (u,v,^) in Eqs. (3.1) are

perturbation quantities, or departures from the equilibrium values

(U,0,0), while in Eqs. (3.2) they denote the total amplitudes. The

derivation of Eqs. (3.1) from Eqs. ( 3.2) is based on the assumption

that the perturbation quantities do not depend on y.

The parameters f, U and s in. Eqs. (3.1) will be chosen to

correspond to midlatitude flow, e0 Z 450N. An important feature of

large-scale midlatitude atmospheric dynamics is the approximate balance

which exists between the pressure-gradient force and the Coriolis force

(e.g., Holton, 1972, Sec. 2.4). Atmospheric stat-2s in which these two

forces are exactly balanced are called geogtrophic,. In the nonlinear

system (3.2), the pressure-gradient terms are Ox and +y , and the

E

k "^

a

1

a

i
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Coriolis terms are -fv and fu ; geostrophic states of this system are

those for which u = - + y/f and v = + x/f. Notice that the solution

about which Eqs. (3.2) were linearized is geostrophic.

Since x is the coordinate along a circle of latitude, the

app,ropr,ate boundary conditions for Eqs. (3.1) are periodic u(x+2L,t)

u(x,t), and similarly for v and ^, where ZL is the earth's

circumference at latitude A U. For reasons described in Sec. 6.1, we

seek only two-periodic solutions of the equations. We therefore impose

the boundary condition

where w(x,t) = (u(x,t),v(x,t),O(x,t)]T, and we solve the system

(3.1,3.3) in the spatial domain -L/2 < x < L/2.

Corresponding to latitude 9 0Z 451N, we take f = 10-4 sec-1 and L =

14000 km for our system (3.1,3.3). The mean zonal current is taken to

be U = 20 ms -1 , which is typical ft^r mid-tropospheric flow at this

latitude, while 0 = 3x10 4m2s-2 , which corresponds to an equivalent

depth of H Z 3 km for a homogeneous atmosphere.

The initial-value problem for the hyperbolic system (3.1), with

boundary condition (3.3), is well-posed (e.g., Courant and Hilbert,

1962, Sec. 5.6) . That is, for arbitrary initial data w(x, 0) which

satisfy the boundary condition and have continuous first derivatives,

there exists a unique solution w(x,t) of Eqs. (3.1,3.3) and the

solution .depends continuously on the initial data. If the initial data

are j times differentiable, then all jt h order partial derivatives of

the solution exist.

1
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Since the equations are linear and have constant coefficients $ the

solution corresponding to any legitimate choice of initial data can be

exprecoed as a Fourier series. We shall do so-, and then use the result

to determine the slow-wave subspace. Slowly evolving at" pheric

states are approximately geostrophic, or quasi geostrophic (e.g., Leith,

1980). We will see that slowly evolving solutions of our linear system

are also quasigeostrophic.

3.2. Fourier Series

First, we review some of the properties of Fourier series; f^r

further reference see, e.g., Churchill (1969). Let a(x) be a vector or

scalar function defined for x e [- L 0L1, which is continuous theres and

which satisfies fi(-L/2) . g (L/2). the Fourier coefficients &(g) of

B(x) exist and are defined by

L/2
-L/2 a i^x %(x) dx,	 (3.4a)

for ^ ranging over the discrete values

_(w) = L w,	 w	 0,±1,±2,...;	 (3.4b)

is the spatial frequency and w is the wave number. Henceforth it is

understood that the variable ^ takes on only the discrete values

defined in Eq. (3.4b).

If ii(x) is real, it follows immediately from Eq. (3.4a) that

r
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for all C, where the overbar denotes complex conjugation. 	 In

particular,

&(0) is real	 (3.5b)

i(0) is just the Average value of S(x).

If J(x) is also differentiable on [-L/2,L/2], then the Fourier

series representation of & converges pointwise to Z on [-L/2,L/2).

That is,

J(x)	 ei9x " (g 1, (3.6)

for all x e [-L/2,L/2], where Ag(ti) is given by Eq.	 (3.4a).	 The symbol

Ig indicates summation over the discrete 	 values	 of	 9	 given	 by
	

Eq -

Oe4b)e

If,	 in addition * the second derivative Jxx exists on [-L L ], and

if	 ax(-L/2) -	 &,(L/2),	 then	 the series	 obtained	 by	 termwise D

differentiation of	 the	 series	 iyi Eq.	 (3.6) converges pointwise on

[-L/2,L/2]	 to &x .	 That is,

$x (x)	 eigx ^ X(09 (3.7a)

for all x e L
where

(3.7b)

'At



A

j(x,t)	 eUx 
w(4 , t ) r

E

(3.8)

-4s-

3.3. Solution of the initial-Value Problem

Let L be the set of real 3-vectors 4(x) which are

twice-differentiable on [-L/2 ,L/2) and which satisfy $(- ) - g(L) and

Ax(-T) gx(i). We consider for Eqs. (3.1) only those initial data

which lie in !«

Suppose initial data w(x,0) c L are given. 	 According to the

well-posedness discussion in Sec. 3.1, a corresponding unique solution

w(x,t) exists, and w(x,t) c L for each t > 0. Egs.(3.4-3.7) therefore

apply to w►(x,t), from which it follows that

I

for all x e [ ,L), where, corresponding to Eqs. 	 (3.1), the Fourier

coefficients w(g,t) satisfy the ordinary differential equation

	

a
W 

w(g,t) - iGQ) w(C,t),	 (3.9a)

for all g , and GQ) is given by

	

EU	 if	 9

	

GQ - - -if	 tU	 0	 (:3.9b)

	

^e	 1. fu	 CU

To express the solution w(x,t) in terms of the Fourier

coefficients (CO)w, of the initial data, it remains to solve Egs.(3.9)

and substitute the result into Eq. (3.8). The solution of Eqs. (3.9)

is simply
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W( ,t) - eiGQ)t W(C 00)	 (3.10)

see, for example, Coddington and Levinson (1955, Sec,. 3oO .

Equation (3.10) can be expressed more conveniently by expanding

w(C,0) in terms of the eigenve °tors of G(4). LAt Ai (C ), i - -1 0 0 0 1 0 be

the eigenvalues of G(C), with corresponding eigenvectors st{C);

G(C )It Q) - X j,Q) StQ),	 (3.11x)

for t	 00 ± 10 and for all t.	 The matrix eiG(C )t has the same

eigenvectors, but with eigenvalues eiXX(C)t;

eiG(C)t	 ix
^^,(C) - e t

(C )t
	 (3.11b)

for R - O f±1, for all C, and for all t 2 0.

It will be shown in Sec. 3.5 that the three eigenvalues Xt(C)

corresponding to each C are real and distinct. Given that the

eigenvalues are distinct, it follows that each triplet of eigenvectors

is a linearly independent set. Each Fourier coefficient w(9,0)

therefore has a unique expansion in terms of the eigenvectors:

Lf(C . 0) - at (C ) O,t (C	 (3.12a)t

for some scalars at (C), where the summation runs over the values it
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7t follows from Eqs. (3.11b, 3.12x) that Eq. 	 (3.10) can be

written

w(c ,t) '	 a^,() q^() eia^,()t.	 (3.12b)
t

;substituting this result into Eq.	 (3.8) yields the Fourier series

solution of the initial value problem for the system (3.193.3):

w(x,t) -	 OX(O 
CWO e

i(CX+4 Q)t).	
(3.13)

^f

The solution is a superposition of 1p ane waves (t og., John, 1978, Sec.

5.2d).

3.4. The Slow-Wave Subspace

From Eq.	 ( 3.13) it is clear that the eigenval.ues X R (^) are also

the eigenfrequencies of the solutions of Eqs.	 (3.1,3.3); i.e., they

are the rates at which waves of spatial frequency & can evolve. For

given I and C, eigenfrequency a R (^) is present in the solution if, and

only if, the coefficient a .,Q	 0 in Eq. (3.13). The quantities

ML (O are the defining coefficients in expansion (3.12a): frequency

xg(^) is present in the solution if, and only if, the Fourier

coefficient w(E0) of the initial data has a component along the

eigenvector qiO•

As previously noted, it will be shown that, for each E, the

eigenfrequencies a t (^) are real and distinct. It will also be shown

that one eigenfrequency, say X OQ ), in fact has magnitude much smaller

than the magnitudes of the other two:
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I X O(01 0 141(4

for each C. Actually, because of tha reality condition (3.5a), this

need be verified only for	 > 0: according to Eq, (3.9b), G(-C)

-r(C ), which implies that ai (-o - 44 Q), so that I lA (-^) I	 la f ( )1 •

Slow solutions of system (3.1 0 3.3) are those in which only the low

frequencies AO(C) are present. The preceding discussion makes it clear

that for a solution to evolve slowly, it is necessary and sufficient

that the initial data w(x,0) lie in the slow-gave subspace R c , which is

given by

Re . (w(x) c L: w(t ) - a0( ) %0	 for all

	

for some scalars a 0(g )) .	 (3.15)

The slow-wave subspace is the set of all initial data in L which lead

to slowly evolving, Rossby wave solutions of the continuous, or

differential, equations.

It follows from the linearity of Eqs. (3.4a,3.6) that all linear

combinations of vectors from R. lie in R., so R. is in fact a subspace

of L. Furthermore, R c is an invariant subspace of the solution operator

of the system (3.1,3.3): it follow^s from Eq. (3.13) that w(x,t) c Rc

for all t > 0 if w(x,0) a Rc.

3.5. The Eigenfrequencies and Phase Speeds

Exact and approximate formulas for the eigenfrequencies ai (O will.

now be determined,, in order to show that the eigenfrequencies are real

and distinct, and in order to verify their relationship (3.14). The

1

4i	 ^
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slows-wave eigenvectors 1 0(x) will be determined afterwards, to make the

definition (3,15) of the slow-wave subspace more explicit.

The eigenfrequencies are the eigenvalues of GQ ), which is given

by Eq. (3.9b). Setting the determinant of Al - G equal to zero gives

(A4t o )3 	(t4 + f 1 )(A .KU) + f 2CU - 0 .	 (3.16)

	Equation (3.16) is the dispersion relation for the system (3.1,30'-J),
	 i

relating the temporal frequencies X to the spatial frequencies.

For C - 0, the roots of Eq. (3.16) are

a 0(0) . 0 ,	 xi-I(0) - *f.
	 0.17a)

Oscillations with frequency f - 2P sin 0, known as inertial

oscillations, are quite rapid outside the tropics. 	 The period of

inertial oscillations at 0 - 0 00 i.e., for f	 10-4sec-1 , is 2n /f Z 17.5

hr. Pure inertial oscillations are rare in the atmosphere (Dutton,

1976, Sec. 9.3). The root ao - 0 is the slow-wave eigenfrequency for

0.

The eigenvectors corresponding to the eigenvalues X j (0) are

10(0 ) ° (0,0,1)T , 2+1(0) _ (1,±i,U) T 0	 (317b)

Since w(O,t) is the average value of w(x,t), the expression for SO(0)

means that all slow solutions of the system (3.1,3.3 ) 0 as well as the

corresponding initial data w(x,0) c R c , must have u and v components

with average value zero. 	 Equations (3.17) correspond to the

spatially-independent solutions



1 - M

13
;k

-50-

u(t)	 u0cos ft + v0sin ft,	 (3.16a)

v(t) - v0cos ft - u0sin ft,	 (3.18b)

(t) 00 + U(-u0 + u0cus ft + vOsin. f t) ,	 (3.18c)

which arise from constant initial data (u0,v0,^0).

For ^ > 00 it is natural to express the roots of Eq.	 (3.16) as

base seeds.	 Referring to Eq. (3.13), the phase speeds c i Q) ale

related to the eigenfrequencies by

ci 	 (3.19)

relationship (3.14) will be demonstrated in the equivalent form

IC0(01 « (C±1(01-	 (3.20)

The roots of the cubic equation

Y 3 - ay + b - 0	 (3.21x)

are given by

}

yQ -	 3 a cos [(R'^`1) .	 cos-1^-	 ^ 2) ].	 (3.21b)
a

The roots of . (3.16), expressed as phase speeds, are therefore

given by
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cjt (O - U - Y (E) cos [ (A+1) w - . co^'1 (-e (E) )^ .	 (3.22a)

where

1 (	
+ f 2)1/2,	 (3.22b)

e(O	 f2cu(^20 + f 2 ) -3/2 .	 (3.22c)

The eigenf requencies are real since C20 + f2 > 0.

Equation (3.22a) can be approximated in such a way as to make the

magnitudes of the phase speeds more transT3arent. The dimensionless

quantity a (C) is small, and approaches zero quadratically as C + tm.

For the choice of parameters f, U, 0 and L given in Sec. 3.1, eQ(w))

-, 0.115 for wave number w - 1, e - 0.074 for w	 2, e - 0.043 for w

3, and e - 0.007 for w - 8. Since

Cos- ' (-C ) - .'ff + e + 0(e3),

a good approximation to cR is given by

	

cR(t) = U -YQ) cos [(k+1) 27r	 7r 	 e(^)] •	(3.23)

Expanding the cosine to first order in a Taylor series about (R+l) 2n

a gives
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COQ) = U 'j Y(O C (O.

c± Q) z U ±'Y Y(O +a Y(O E (O

substituting Eqs. (3.22b,c) into Eqs. (3.24) gives

COW z U - f 2U
C2m+f2

c±, Q) z U	 2+ 1 f 
2U

7 t 4+f 2

For the aforementioned choice of parameters f, U, 0, L, and for

the first eight wave numbers, the exact values of the phase speeds,

Eqs.	 (3.22), are presented in Table 1. The corresponding approximate

phase speeds, Eqs. (3.25), are presented in Table 2. Comparison of the

tables indicates excellent agreement between the approximate and exact

values, and both tables verify the separation of phase speeds (3.20).

Individual wave components of slow solutions of the differential

equations have the relatively small phase speeds cU (^) and are called

slow waves, or Rossby waves. They are an important feature of

midlatitude atmospheric dynamics. The slow waves retrogress: as

indicated by Eq. (3.25a), their propagation relative to the mean

current U is westward. The slow wave phase speeds are comparable to U,

and increase monotonically toward U as the wave number increases.
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The fast waves, with the large phase speeds c±,Q ), are known as

inertia-gravity waves since they are the usual gravity waves of

shallow-water theory, for which c*1 w U f 34, modified by the presence

of the Coriolis force.	 The speed of the inertia-gravity waves is

dominated by the second term in Eq. (3.25b); waves with speed c1

propagate toward the east and waves with speed c_ 1 propagate toward the

west. The inertia-gravity wave phase speeds decrease monotonically in

magnitude, toward JU ± 3@ 1, as the wave number increases.

As explained in Sec. 1.2, Rossby waves and inertia-gravity waves

are both present in slow solutions of the fully nonlinear,

primitive-equation models actually used in NWP a small inertia-gravity

wave component maintains the quasigeostrophic equilibrium. Slow

solutions of our linear shallow-water equations model, produced by

initial data in the slow-wave subspace Rc , consist entirely of Rossby

waves.

3.6. Approximate Slow Initial Data

Having determined the slow-wave eigenvalues )L OW, the slow-wave

eigenvectors 20(g), upon which the definition (3.15) of the slow-wave

subspace depends, are obtained by solving Eq. (3.11a) with x . 0. It

is found that

S0(^)
iE. [V (^ ),  f2 ^' e + pT^ T,	

(3.26a)

for each E , where
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N ( ^ • f
2

2 Y (E) cos [ 2w - cos-1 ('E (g) )] O	 (3.26b)

and Y Q ), c (^ ) are given by Eqs. (3.22b,c).

Introducing the same approximations into Eq. 	 (3.26b) as those

that lead to Eqs. (3.24) results in

U ()	 t 2 .	 (3.27)
20+f2

whence Eq. ( 3.26a) becomes

2
^0() z [	 E U	

, 
i	

1] T .	 (3.28)

Eq.	 (3.28) is exact for 	 0: it reduces to the expression for S0(0)

in Eq. (3.17b).

If W-(x,0) e R c , then u(x,0) and v(x,0) are determined by ^(x,0).

Eq.	 (3.28), with Eqs.	 (3.6,3.7,3.15), implies that if ^(x,0) is

specified arbitrarily,

$(x , 0) _ a0(E) eicx ,	 (3.29a)

then approximate formulas for u(x,0) and v(x,0) such that w(x,t)

evolves slowly are

2
u(x , 0) -	

U 
a0(^) eix,	 (3.29b)

E2s+f2
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v(x,0) Z	 "aow 
a 'Cx ^ I #x(x,0).	 (3.29c)

Formulas (3.29b,c) are exact to first order in the small parameter

C(C).

Geostrophic states of our linear system (3.1) are those for which

u s 0,	 V*#x/f;
	

(3.30a,b)

}	 the u-component of a geostrophic state is zero since there is no

pressure-gradient term to balance the Coriolis term in Eq. (3.1b).

Equivalently to Eqs. (MO), the Fourier components of a geostrophic

state are

w(^) _ [0 0 g/f, IT	 (3.31)

Comparing Eq.	 (3.31) with Eq.	 (3.26a), it follows that slowly

evolving states of our linear system are not geostrophic.

However, comparing Eqs. (3.30) with Eqs. (3.29b,c), we see that

slowly evolving states are quasigeostrophic. For the v-components,

Eqs. (3.29c,3.30b), this is readily apparent. As for the

u-components, a numerical calculation shows that C 24 is the dominant.

term in the denominator of Eq. (3.29b), except for wave number w - 1,

for which ^ 20 and f2 are roughly equal. It follows that u(x,0) and

O(x,0) - a 0(0), given by Eqs. (3.29b a) respectively, are

approximately proportional, with constant of proportionality U/0. The

amplitude 0 0 of the perturbation geopotential ¢(x,0) is typically
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smaller than the mean geopotential height ♦ by an order of eagnitude.

The amplitude uO of u(x,0),

u0 Z U If 	 ap(0 ) i < U* #0 r

is therefore smaller than the mean zonal current U by at least an order

of magnitude: slowly evolving solutions have small u-components.

Hence, slowly evolving solutions are quasigeostrophic.

The u-component of solutions of the linear system (3.1) is

special. Its magnitude in our assimilation experiments will provide

one convenient check of the proximity of state estimates to the

slow-wave subspace.
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CHAPTER DOUR

SLOW SOLUTIONS OF DISCRETE_ LINEAR SHALLOW-WATER EQUATIONS

We introduce now the discretization `f of the linear shallow-water

equations which will be used later In the assimilation experiments;

here we `ormulate the discrete model's slow-wave subspace R . The

discrete slow-wave subspace is defined directly in terms of f, rather

than in terms of the original differential equations or their slow-wave

subspace R c . In particular, R will have the property of being an

Invariant subspace of T , and this property will be important in our

formulation of the modified KB filter.

4.1. The Discrete Equations

To discretize the differential equations, we use the Richtmyer

two-step formulation of the Lax-Wendroff scheme (Richtmyer and Morton,

1967, Sec. 12.7 and 13.4). 	 Reasons for the suitability of this

particular scheme to discretization of the linear shallow-water

equations appear in Ghil et al. (1981, Sec. 3.2). The scheme is

second-order accurate in time and space, and fourth-order dissipative

in the sense of Kreiss (Richtmyer and Morton, 1967, Sec. 5.4).

The finite-difference grid

tk - kAt, k - 00 1,2,..., (4.1a)

x j - JAx, j . - M+1, - M +2, ...	 3, (4.1b)
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Ax - L/M ,	 (4.1c)

and the number of grid points M is assumed to be even. The 3-vector

(4.1d)

will approximate the exact solution w(JAx,kAt).

Rewriting the original system (3.1) in matrix notation,

wt w Cwx + Bw ,	 (4.2a)

where

U 0 1

C 0 -	 0 U	 0	 ,	 (4.2b)

0 0 U

0 —f 0

B . -	 f	 p	 0	 ,	 (4.2c)

0 -fu 0

the difference scheme is vritten, fork 1,2,3,. 	 as

wk 4-1 + (At) wtl^-1/2

WCc-1 + Ax Cl`.:'ic±1^2 ' wCc-1f2^ +—^ BCC-1J2 + -r-1^ ^,	 (4.3a)



where

^ _	 ii
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for J	 (M/2)+19...,M/2, where the intermediate valuer are

given by

wrj 1, j . w j/ 2+ It wtIrl/2

(I + At B)(wT<-1+ W-1 ) +At C(Ek'-1 - 4-1)-	 (4.3b)

for j - M/20...,M/2 ; the scheme is closed by defining

	

^k 42 jl	
wk

/i+ 1 . wk (
2+1

0
	 (4.3c,d)

which corresponds to the periodic boundary condition (3.3).

By combining Eqs. (4.3a,b), the scheme may be rewritten as

ii
	 1

	

 I	 Ti ^k 	 (4.4a)
S.-1

for 3	 (M/2)+10...,M/2, and k - 1,2,3,..., where

	

w-M/12 wk/2	 M/2+1	 M[2+1
-k-	 k-1	 ^k-1	 wk-	 ,	 (4.4b,c)

and the 3x3 matrices `Y R_ are given by

TO
	 a2C2 + t B(I+ AtB)r

	 (4. 5a)

'^ 1 -±7c+-c2 + Q  (CB + BC) +mss(+mss),	 (4. 5b)
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a * x̂ . (45c)

K -

Finally, to write the difference scheme in the notation of Chapter

2 9 we introduce the composite vector

wk	 (wk C2+1 )T ► (wk /2+?.)T,...,(wV/2)T]T ;	 (4.6)

wk is an n-vector, with n - 3M, which is composed of M 3-vecto,J-

Equations (4.4) can then be written as

U - T 1!k-1 ► 	 (4.7a)

where Y is the MOM block-circulant matrix with 30 blocks (Davis,

19790 Sec. 5 . 6) denoted by

I	 circ [TOP ` 1 ,0,...,0,T- 1 1	 (4.7b)

the individual blocks T0,Tfj are given by Eqs. (4.5).

A MOM block -circulant matrix with 3x3 blocks is a matrix that,

when partitioned regularly into 'M2 3x3 blocks, has M arbitrary blocks

across its first row, with each of the succeeding M-1 rows obtained by

circularly shifting the previous row one block to the right. It is

denoted by listing the blocks which appear across the first row, as in

Eq. (4.7b).

Thus, our dynamics matrix T has only three nonzero blocks in each

row.	 In fact, T is almost block-tridiagonal: the only nonzero blocks

away from the diagonal area in the upper right and lower left corners of

L
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It Mh ah contain the blocks I -1 and 11 , respectively, as a result of

the periodic boundary conditions. The matrix is independent of the

time Mt. unlike the general dynamics matrix of Chapter 2.

Equations (4.7), with the submatrices 1 0 , V:1 given by Eqs.

(4.5), constitute the discrete "forecast model" upon which the

assimilation experiments of Chapters 6 and 7 will be based. The

remainder of this chapter is devoted to formulation of the discrete

model's slow-wave subspace. The development parallels that of Chapter

3: the discrete Fourier transform is introduced first, then wk is

written in terms of the Fourier coefficients of ,arbitrary initial data

wC , and finally the slow-wave subspace is defined.

4.2. The Discrete Fourier Transform

M M-vector u is now denoted by

U ' [u(-	 T +1) ,...v u( )) i
	 (4.8a)

	

for consistency with Sec.	 3.2, spatial indices appear as arguments

instead of as superscripts. The discrete Fourier transform of u is the

M-vector

u	 {u(-	 #Y) ,..., u(7)1 T .	 (4.8b)

whose components u(w) are defined by

U (W) _	 e-2nijw/M U(J)	 (4.9a)
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for w	 ( M/2)+10...OM/2. If u(w) is given by 7.q. (4.9e), then u(j)

can be recovered by the inversion formula

u(j) - .	 Q2,rijw/M u(w)o	 (4.9b)
W

for J - -(M/2)+1, ..,M%2: In Eqs.	 (4.9) and in the sequel, the

symbolsym	 Jj and 1. always refer to summation over the index set
Y

{- 

M +1 0 000 0 M .	 Formulas (4.9) are discrete analogues of Eqs•

(3.4,3.6).

Equations (4.9) can be written more compactly in matrix notation.

The MxM Fourier matrix FM (e.g., Davis, 1979, Sec. 2.5) is the matrix y
1'	 1

whose (i,m) th element is

	

( FM )iOm ...K exp (-2tri(p- y)(q- Z) /MJ .	 (4.10)

The Fourier matrix is symmetric and unitar y, i.e.,

F	 F	 F*	 ,	 (4.11a,b)M	 M •	 FM1M' 

where the asterisk indicates the complex conjugate transpose. From

definitions (4.8, 4.10), it ,follows directly that Eq. (4.9a) can be

written as

A

s - FM 2 ,	 (4.12a)

while Eq. (4.11b) then implies that Eq. (4.9b) becomes

3

1

3
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u ., FM ».	 (4.12b)

For an n-vector w, composed of M 3-vectors,

w	 [wT(- M +1),...,wT(M,)T, 	 (4.13a)

.^	
I

where

W(j) 
_ [ u( j), v(j), +(3) ) T ,	 (4.13b)

the Fourier transform is defined consistently with Eqs. (4.9). That

A
is, w is the n-vector

w	 [wT(-	 +1) 9 000 9wT( ))T,	 (4.14a)

whose component 3-vectors

are given by

w(40 . ^ I e-2ni ►► /M W(J) ► 	 (4.15a)

for w - -(M/2)+1, .. ,M/2. The inversion formula is

f:
	

I	 a



which, with Eq. (4.19b), implies that Eq. (4.15b) becomes
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for J - (M/2)+It...,M/2*

In order to write Eqs. (4.15) in matrix natation, we define the

nxn permutation matrix V as that matrix which reorders the elements of

w, Eqs. (4.13), accor4ing to

vw - [2T , ZT , iTITO	 (4.16)

'a

where the M-vector u is defined in Eq. (4.8a), and v and j are defined

similarly; V is real and unitary, so that

VT V* = V- 1 .	 (4.17)

It follows from Eqs. (4.11,4.17) that the nxn matrix F, defined

by

FM 0 0

F- V-1	 0 FM 0	 V,

0 0 FM

is symmetric and unitary,

FT - F	 F* M F-1 .;

(4.18)

(4.19a,b)

Equations (4.12a,4.16,4.18) imply that Eq. (4.15a) can be written as

w = Fw 9	 (4.20a)
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V . F*w:	 (4.20b)-

The n-vectors w and w given by Egs.(4.20) constitute a discrete Fourier

transform pair.

A

4.3. Solution of the Initial-Value Problem

The iterates wk of the finite-difference scheme (4.7) can now be-

expressed in terms of the Fourier components of arbitrary initial data

YO . It follows from Eqs. ( 4.20) that Eq. (4.7a) is eeiuivalent to

A	 A A

wk T wk-1	 (4.21)

A
where the nx n matrix T is given by

- FTF* .	 (4.22)

Due tr:w the block-circulant structure of T, the matrix I is

block-diagonal:	 the matrix F block-diagonalizes	 all	 3Mx3M

block-circulant matrices having 3x3 blocks (Davis, 1979, Thm. 5.6.4).

The matrix T has M U3 blocks, denoted by T (w ), along its main

diagonal, and zeros elsewhere. It is denoted by

^ +1),4' (- T +2),096 9  '^ (	 (4.23)) ] r 

and the individual blocks are given by

1 
e 2n i jw /M y(w)	 j

J.-1
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for w	 (M/2)+1,...,M/2; the matrices T j are defined by Eqs.	 (4,5).

G
}	 The matrix " (w) is called the symbol, or amplification matrix, of the

difference scheme (e.g., Isaacson and Keller, 1966 0 Sec. 9,5).

I

	

	 Since 4' is block-diagonal, the n-vector equation (4.21) decouples

into M 3-vector equations. The decoupled equations are written, in the

notation of Eqs. (4.14), as

C	 .;

UN
T(w) wk-l(w),	 (4.25)

4.

for w	 - +1,..., ; therefore, by repeated application of T(w),

	

wk(w) Y'K(w) WOW	 (4.26)

Eqs. (4.25,4.26) correspond to the fact that, for constant-coefficient

k'	 linear difference (or differential) equations, waves with different

k	 wave nmbers evolve separately.

Equation (4.26), like its continuous counterpart (3.10), is

simplified by an appropriate eige erector expansion. Let 6,W be the

eigenvalues of T (w ), with corresponding eigenvectors r t (w )
i

T(w) Eg(w)	 6 i (w) EX (w),	 (4.27)

t

`	 for R	 0,± L. the eigenvalues are generally complex, and we write them
F

i	 to polar form, as

iv R (w)O t
*^	 $R(w) . pt (w e	 ,	 (4.28)

Y

i

I

i	 i	 tti

3
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where p i (w) and v i, (w) are real: The matrix Tk(w ) in gq • (4.26) has

the same eigenvectors as i(w), but with eigenvalues 6k(w)s

T k(w) ri(w) • 6k(W) ri(w).	 (4.24)

It will be shown in Sec. 4.4 that the triplet of eigenvectors

corresponding to each w is a linearly independent set. Nance, the

Fourier transform of the initial data can be expanded as

yo(w) _ Si(w) LE W,,	 (4.30)
R	 ,

for some scalars S i (w). From Eqs. (4.28-4.30) it follows that Eq.

(4.26) can be written as

	

k	 iVg(w)tk	 (4.31)wk(w)	 OR(w) r jt(w) Pt(w ) e	 •
R

Finally, using Eq. (4.31) in the inversion formula (4.15b), it follows

that wk(J) can be written as

(^) ' -1 1 1 SR(w) Li (w) PR(w ) exp{tC4(w)x(j) + VX (w)tk 1 1 , (4.32)
W R

where t(w) = 2rrw /M6 x and x( j) - jAx.

Equation (4.32) is the Fourier series solution of 	 the

initial-value problem for the discrete system (47). The quantities

fR R ,rR ,vR ) in Eq. (4.32) have counterparts (ai ,gjt,X j ) in the solution

	(3.13) of the continuous equations.	 The factors P t (w) are due to

discretization.

i
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4.4. The Eigenfrequencies and Phase Speeds

According to Eq. (4.32), the eigenfrequencies associated with the

difference scheme are the quantities v i (w). We now show that they

separate naturally into low and high frequencies, like the

eigenfrequencies of the differential equations, and then we define the

discrete slow-wave subspace.

To classify the eigenfrequencies, the eigenvalues di (w) were

computed nLinerically, cf. 	 Eqs.	 ( 4.27 4 . 24,4.5), after which the

eigenfrequencies were obtained by use of Eq. 	 (4.28). As in the

asstiilation Experiments of Chapters 6 and 7, the values M - 16, At

30 min., were used in the eigenvalue computation.

The eigenfrequencies corresponding to w 0 are

v 0(0) - 0 ,	 v± 1 (0) - + 1.0053 f ,	 (4.3)

in close agreement with the corresponding result ( 3.17a) for the

continuous system.

For wave numbers w - 1,2,...8, the phase speeds

ci (w) - ^- 
vi(w)	

(4.34)

are presented in Table 3. Comparison with Tables 1 and 2 shows that the

phase speeds associated with the difference scheme are good

approximatL qs to those of the differential equations only for the

smallest one or two wave numbers. This behavior is typical of

dissipative difference schemes, such as the Richtmyer scheme, although

the discrepancy beween discrete and continuous phase speeds is somewhat
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exaggerated by our relatively coarse mesh: Ax - LJ16 - 875 km., which

is much larger than mesh spacings typically used in NWP. The

discrepancy is an indication of the difference between the discrete and

continuous slow-wave subspaces.

Except for w - 8, the table does show that the phase speeds, and

hence the eigenfrequencies, are w.11-separated:

IV0(w )I « Iv±1WI,	 (4.35)

for w	 1, ... ,7. The same is true for w - 1, ... ,-7, since Eq. (4.24)

implies T (-w) - AT (w ), whence 6 R (-w ) - Tg (w) and IvR (-w ) - Iv g (w) I .

For w - M/2 - 8, all phase speeds and eigenfrequencies are zero:

waves with the highest spatial frequency are stationary. All three of

these waves could be associated with the discrete slow-wave subspace,

but we select only one, as follows. According to Eqs. (4.5,4.24),

T(M/2) is given by

T(j) -To- Y'1 -T-1 -I - 2a2 C2
	

(4.36)

where C is given by Eq. (4.2b). Since the eigenvalues of C are U, U

3T, the eigenvalues of T'(M/2) are given by

6 0(M) - 1 - 2v 2U2 9 	(4.37a)

d±1(7) - 1 - 2c 2 (U ± 3 ) 2 ;	 ( 4.37b0c)

the eigenvalues 6
0 .+1(M/2) are distinct, although the corresponding



frequencies v0,t 1 (M/2) are all zero. Due to the appearance of the

factors U and U i VF in Eqs. (4.37), and according to the discussion

following Eqs. (3.25) 0 it is appropriate to refer to 6 0(M/2) as the

Rossby eigenvalue for wave number M/2.

,According to Eqs. (4.33,4.37) and Table 3, the eigenvalues di(w)

	

are distinct for each w.	 the corresponding eigenvectors rt (w) are

therefore. linearly independent, and expansion (4.30) is valid.

4.5. The Discrete Slow-Wave Subspace

It has been shown that the eigenfrequencies v R (w), defined in Eq.

(4.28) by the eigenvalues S X (w), can be classified into Rossby

frequencies v 0(w) and inertia-gravity frequencies v+ 1 (w), for each

possible wave number w. 1h a corresponding Rossby eigenvectors r0(w)

and inertia-gravity eigenvectors 1+1(w) are defined by Eq. (4.27).

According to Eqs. (4.30,4.32), if the initial vector wo has

Fourier components solely along the Rossby eigenvectors, then the

corresponding solution wk of the difference scheme (4.7) evolves

slowly, with frequencies v o(w). 1h at is, analogously to the definition

(3.15) of the continuous slow-wave subspace, the discrete slow-wave

subspace is the set R. given by

R _ w e Rn ; w(w) - B 0(w) r0 (w) f or some

scalars 0 0(w) and for all w s	+1, ...,	 } , ( 4.38)

where Rn denotes the set of real n-vectors.
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We give two further definitions of R . equivalent to (4.38).

Introducing the n-vector

	11,1 - [Q,,... 10,d(w),0,...,QIT,	 (4.39)

where there are 3(w+ M -1) zeros on the left and 3(M - w) zeros on the

right, an equivalent definition is

R - f w c Rn : w	 00(w)2w for some scalars s p(w )}	 (4.40)

UI

definition (4.14a) has been used. 	 It follows from the Fourier

transform pair (4.20) that another equivalent definition is

R	 f w e Rn : w 18 p(w )F*sw for some scalars 8 ON) 	 ( 4.41)

W

Definition (4.41) makes it clear that R is a subspace of Rn. That is,

R is a nonempty subset of Rn , and

	

a 1x1 + a2x2 e R if Xl e R and x2 e R ,	 ( 4.42)

for all real scalars a102- In fact, R is an M - n/3-dimensional

subspace of Rn.

The n-vector F* .,,w represents a pure wave of wave number w. It is

also, for each w, an eigenvector of T with eigenvalue de(w):

	

TF
*
2W - F*iFF*2W ,	 from (4.19b,4.22)

M F*'Ysw 	,	 from (4.19b)

	

- 6 0(w)F*sw, 	from (4.23,4.27,4.39). 	 (4.43)
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According to definition (4.41), R is thecr:fore an invariant subspace

of T:

	

Tx e R if X c R.	 (4.44)

This fact also follows immediately from Eqs. (4.,30 0 4.32): if the

initial data w4 c R, then wk c R for all k.

Analogously to Eq. (4.38), the discrete fast-wave subepace G

consisting of nem a- ravit waves, is defined as

	

G ' { a Rn: W(w) 	 0-1(w) j-1(W) + 01(w)
	 E1(W)

	

f or some scalars 0± 1 (w) aid for all w 	 +1, ... ,	 );(4.45)

G is a 2M-dimensional invariant subspace of T. Taken together, R and G

span all of Rn.
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CHAPTER FIVE

ESTIMATION THEORY AND INITIALIZATION

5.1. Introduction

Although the Kalman-Bucy filter possesses many optimality

properties, it lacks one property of primary importance in numerical

weather prediction. Namely, there is no guarantee that the state

estimates produced by the KB filter evolve slowly: the KB filter does

not solve the initialization problem. In this chapter we introduce a

filter, or data assimilation scheme, which, automatically produces

slowly evolving state estimates and which retains much of 	 the

optimality of the KB filter. The filter consists of a simple

modification to the usual KB gain matrices. We now summarize the

results concerning the modified KH filter.

The standard KB filter was derived in Chapter 2 by solving an

unconstrained minimization prois)lem: the quadratic error functional

n k - E[(wk - wt)T A(wk - wk)]

was minimized, in turn, at each time k w 1 0 2,3,...	 The modified KB

filter is derived by solving a constrained minimization problem: again

n k is minimised with respect to the gain matrix Kk , but now subject to

the constraint that

Range Kk C R,

i.e., that each column of Kk lies in the discrete slow-wave subspace.

As a result of the fact that the discrete slow-wave subspace is an
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Invariant subspace of I, and provided wt e R, we will see that

satisfaction of this constraint is necessary and sufficient for the

state estimates to evolve slowly.

It was spoon in Chapter 2 that the K9 filter minimizes nk for all

choices of the positive semidefinite weighting matrix A. Constraining

the state estimates to evolve slowly results in a trade-off: the

modified f ilter depends on the choice of A. When using the modified

filter, one resist actually choose the error functional to be minimized.

Provided the class of weighting matrices A is suitably restricted,

the constrained minimization problem has a unique solution, and the

modified KA filter is uniquely determined. It• is given by multiplying

the usual KB gain matrices by a projection matrix 11 which depends on A,,

R - R(A) ; n is the A-orthogonal projection matrix onto R , and will be

defined below. We denote the modified filter's gain matrices byKkKB

KJKB . I[ K^ .

The modified filter corresponds to following the standard KB filter

with linear normal mode initialization at each observation time.

Linear normal mode initialization, in its nonvariational form,

consists of setting to zero all fast components of the analysis vector,

while leaving the slow components unchanged, cf. Kqs. (1.3). For the

modified filter, this i.; accomplished by taking II to be the projection

onto R along the fast-wave subspace G . We refer to this projection as

the parallel projection. 	 This projection is A-orthogonal for an

appropriate choice of the weighting matrix A.

Other choices of A correspond to performing variational linear

kv _ 	 ._
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normal mode initialization., the fast components are still met to zero,

but the slow components are altered also, cf. Eqs. (1.7,1.6)# one

such choice is A . I, in which case R is the usual orthogonal

Pro ection onto R As a result of the fact that the slow-wave subspace

R is not orthogonal to the fast-wave subspace G , we will see that the

orthogonal projection is not the sans" as the parallnl projection, so

that the corresponding filters produce different resu U s. This is the

general situation: it is not particular to the continuous model (3.1)

or to its discretization (4.7). 	 Cases in which G	 and R	 are

orthogonal are very special.

The choice A a I is not appropriate for our model, since it

corresponds to minimizing a sum of squares of dimensionally

inconsistent quantities.	 We introduce therefore an additional

projection, the minimum-energy projection, in which A is chosen as the

diagonal matrix which makes nk the expected energy of the analysis

error.

After relevant material on projections is discussed in Sec.	 5.2,

the modified filter is formulated in Sec. 5.3. It is shown in Sec.

5.4 how to efficiently compute A-orthogona l projections onto R , for

general classes of weighting matrices A. ht: parallel, orthogonal, and

minimum-energy projections are discussed" in Sec. 5.5.

Some of the results of this chapter are stated as lemmas and

theorems. These are all proven, in the Appendix.

5.2. Projection Matrices
r

Let S be a subspace of Rn. That is, S is a nonempty subset of

Rn and
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aixi + 02x2 c S if xi C S and x2 s S ,

for all real scalars a1,02. Notice that S must contain at least the

zero vector.

An wn matrix n is called a projection matrix onto S, or simply a

projection, if it has the properties

Range n • S	 (5.1a)

H 2 . n ;	 (5.1b)

the range of a matrix is the set of linear combinations of its columns,

Le. ,

Range 9 w {x; x n n x for some x e Rn} .

If li is a projection onto S and x = nx, we refer to the vector x as a

projection of y. onto S

A subspace has a simple characterization in terms of projections

onto it. Suppose H is a projection matrix onto S. If x is a vector

in S, theen

X . IIx ,	 for some X e R" s by Eq. (5,1a)

1T`	 , by Eq. (5.1b)

t[x	 since nx x

i.e., x -11x. On the other hands if x e Rn and x	 tax, then Eq.
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(5.1a) implies that x e S . 'fiat too if H is a projection onto $, we
can wr'4te

S	 {x a Rn : Rx. x) .	 (5.2)— M

Equation (5.2) states that a projection matrix acts on its range

like the identity matrix, To completely characterize a projection

matrix, it remains to spec$,ty how it acts on the rest of Rn. One way

to do so is as follows.

Let V be a fixed, but arbitrary, positive semidefinite nxn matrix.

the kernel, or null space, of V is the set of its null vectors,

Ker V - { x E Rn: Vx - 01 .

Since V is positive semidefinite, rather than positive definite, Ker V

may contain vectors other than the zero vector.

Two vectorsxl,x2 a Rn are said to be orthogonal if Yix2 ` 0.

More 8enerally, if XTVY2 - 0, then the vectors are said to be

V-orthogonal. In particular, xl and X2 are V-orthogonal if xl a Ker V

or X2 c Ker V.

Suppose one can find a projection matrix n which, in addition to

satisfying Eqs. (5.1), satisfies

(VII )T = VJI	 (5.3)

e o

i

A

a

r

r

i

It follows that, if x is any vector in R n, then

f

i

xTV(y_HX)	 0
	 i

'a
7



for all x c S	 That is, the vector XJJX, which is the vectorK

difference between y acd its projection onto S , is V-orthogonal to

every vector x c S	 Udeedo from Eq. (5.2) we. have IIx - x, whence

xTV(X-Iix)	 (gx)TV(X_11.Y)

xT()T(x_flx)w

JV11(x-tIy')

- 0 f

the last two equalities follow from Eqs. (5.3,5.1b), respectively.

A projection matrix onto S is there_f_org called V-0orthogonal if,

in addition to satisfying Eqs. (5.1), it satisfies Eq. (5.3), in the

special case in which V is actually positive definite, it is well-known

that Eqs. (5.1,5,3) define a unique matrix II (e.g., Halmos, 1958, Sec.:

75), i.e., Eq.	 (5.3) serves to characterize the projection matrix

(5.1). For reasons which will soon be m%de clear, we allow V to Ise

semidefinite. One can still find a V-orthpgonal projection matrix onto 	 3

S in this case, and there is a simple necessary and sufficient

condition under which the projection matrix is determined uniquely.

Lemma 1.	 Let S be a subspace of Rn and let V be a positive

semidefinite nxn matrix. Then there exists a V-orthogonal projection

matrix onto S.

If S c { 0} or if S - Rn , it is clear that there exists exactly one

V-orthogonal projection matrix onto S, regardless of the choice of V.
i

T the former case it follows from Eq. (5.1a) that It	 0, while in the
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latter case R I since E must act like the identity on its range,

which in this case is all of Rn ; in both cases Eqs. (5.1 ,,5.3) are	 n

satisfied. We therefore state the uniqueness criterion only for rp oiler

subspaces S , i.e., for subspaces of Rn other than (0) and Rn itself.

4

Lemma 2. 'Let S be a proper subspace of Rn and let V be a positive
y

semidefinite rixn matrix. There exists a unique V- orthogonal projection

matrix onto S if and only if
t

S n Ker V {0).	 lS.4)

The symbol n indicates set intersection. Lemma 2 states that

s, for exactly one matrix R to exist which satisfies Eqs. (5.1, 5.3); it
is necessary and sufficient that S and the kernel of V have only the

zero vector in common.

The uniqueness condition (5.4) is satisfied, in particular, if V

is actually positive definite, for then V is nonsingular and Ker V

{O), The I-orthogonal projection matrix onto S, known simply as the

orthogonal projection onto S, is therefore unique.
F

We have already seen that if H is a V-orthogonal projection matrix
3

onto S and if x e Rn , then the vector x-H is V-orthogonal to 'every

vector in S. The following lomma states that, provided the uniqueness

condition (5.4) is satisfied, there is a vector in S which is

If closest" to x, and in fact the "closest" vector is Tix. i
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Lemma3., 1#et S be a proper subspace of Rn , let V be a positive,

semidefinite nxn matrix, and let en arbitrary vector Y e Rn be given.

There exists a unique solution x of the problem

minimize (x y)T V(E - X) 	 (5.5a)

subject to x e S ,	 (5A5b)

if and only if S and V are such that Eq. (5.4) is satisfied, in which

case the solution is

x- nY P	
(5.6)

where n is the unique V-orthogonal projection onto S.

Suppose now that V is actually positive definite. In this case,

there is a simple formula for the :-orthogonal projection onto S 9 in

terms of the (I-) orthogonal projection onto S and in terms of the

square root of V.

For every positive definite matrix V, there is a unique positive

definite matrix B such that 1$ 2 - V. This matrix is called the
	 I

(positive) square root +5f V, and we denote it by V 1/2 . The inverse

(positive) square root of V, defined by

V-1/2 _ (0/2)-1,

Is also positive definite.	 {

The square root of V can be constructed as follows. 	 Since V is	 F"t

symmetric, V can be diagonalized by an orthogonal matrix U,
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V as UDUT	UTU - UUT - X.	 (5.7a,b)

Here U is an nxn matrix whose columns are the normalized eigenvectors	 r

of V, and U is a diagonal matrix whose diagonal elements A i are the

eigenvalues of V X i > 0 since V is positive definite. The square root
of V is then given by	

t

VI/2 - U D1/2UT	 (5.7c)

where A 1/2 is the diagonal matrix whose diagonal elements +3Xi , are

the positive square roots of the eigenvalues of V. We have also

V-1/2 ,. U D-1/ 2UT ,	 (5.7d)

where D-1/2 .= (D1/2)"1.

Lemma 4. Let S be a subspace of R n and let V be a positive

definite nxn matrix. Denote by IT V the V-orthogonal projection onto S

and denote by A, the orthogonal projection onto S . Then

It  - V 1/2 n T V1/20	 (5.8)

Lemma 4 has a simple generalization. Applying the lemma to

another positive definite matrix W, we have

nW _ W-1/2 IIl W1/2



or

nI . W1/2 11W W
-1/2 

r

which, upon substitution into Eq. (5.8), gives

nV 
0 V-1/2  W1/2 nW W-1/2 V 1/2 .	 (5.9)

Thus, two projections based on positive definite matrices can always be

expressed in terms of one another.

In case V is positive definite, then

(x,x) V = xTVx , for x,x t Rn,
i

3

defines an inner product on Rn , with corresponding norm 1xIV

}I

N xl V'( x,x)V - JVx , for x e Rn

1 xI V > 0 and I xn V - 0 if and only if x . 0. Equation (5.3) is

equivalent to requiring a matrix n to be symmetric with respect to this

inner product, i.e.,

(x,IIx) V	(Ilx,x)V for all x,x c Rn

which is the usual way of defining orthogonality of projection matrices

on inner product spaces (e.g., Halmos, 1958, Sec. 75)

For positive semidefinite matrices V, I xI V' _ 0 does not Imply x

0, i.e., I • I V is only a seminorm on Rn. However, we note that the

t•.	 _ 3
F
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uniqueness condition (5.4) is necessary and sufficient for 1 . 11V to

define a norm on the subspace S ; see the proof of Lemma 1 in the

Appendix;.

Lemons 1 and 2 will be important in the derivation of the modified

Kalman-Busy filter. The arbitrary subspace S of the present section

will be taken to be the slow-wave subspace R , and the matrix V will be

the weighting matrix A of the error functional n• r
The uniqueness condition of Lemw 2 will turn out to be the

condition for uniqueness of the modified KB filter, i.e., the class of

positive semidefinite matrices A satisfying

R n KerA={01

will be the appropriate class of weighting matrices. We saw in Seca

2.4 that positive definiteness of A is the condition for uniqueness of

the standard KB filter; positive definiteness :-f A is not necessary for

uniqueness of the modified KB filter. However, the modified filter

will dtpend on A, regardless of whether A is positive definite. Some

natural weighting matrices, both semidefinite and definite, will be

considered in Sec. 5.5.

Lemma 3 serves as a prototype for Theorem 1 of Sec. 5.3, from

which the modified filter follows, and it gives the modified filter an

interpretaticr:t in terms of normal mode initialization. Lemma 4 will be

used in Sec. 5.4 to describe une way, among others-, of computing the

modified filter.
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5.3. The Modified Kalman-Bucy Filter

We begin by formulating a_ - __--

condition under which an assimilation scheme for out discrete model Y

Eqs.	 (4-. 7) 0 will yield slowly evolving state estimates. As usual, we

consider only assimilation schemes which are linear and unbiased.

According to Eqs. (2.7,2.8), these schemes are of the form

wk ^'YWk-1 ,	 (5.10a)

wk wk + Kkwk 	 (S.IOb)

for times k when observations are available; when no observations are

available, Eq. (5.10b) is replaced by

wk = wk	 (5.10c)

The notation

Wk ' wk ` Hkwk
	

(5.11)

for the observed-minus-forecast residual, has been introduced in Eq.

(S.IOb). The true states, wk , and the observations,! wk , are assumed

to be given by stochastic -dynamic models (2.2,2.3), with T k = V given

by Eq. (4.7b).

The state estimates in Eqs. ( 5.10) will be said to evolve slowly

if they always lie in the discrete slow-wave subspace, i.e., if

wk e R and wk c R for k-1 , 2,3,... .	 (5.12)

1
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An immediate consequence of the fact that R is an invariant subspace of

o Fq s. (4.42 0 4.44) 0 is that (5.12) is satisfied if and only if

i

E	 woe R	 (5.13a)

and

Kkwk e R at each observation time k.	 (5.13b)

Condition (5.13a) says that the assimilation must start from an

initialized state, while (5.13b) is a condition on the "correction"

vectors in Eq. (5.10b).

To see that conditions (5.13) imply (5.12), notice that if

e R , then wk e R since R is invariant under T ; if k is not an

observation time then we have wk - wk e R , while if k is an observation

time and Kkwk e R then we still havee R , since R is a subspace.

Upon continuing the cycle, the implication is clear. On the other

hand, if wk e R at some observation time k but Kkwk d R, then wa d R

since R is a subspace. Thus, (5.12) and (5.13) are equivalent.

Conditions	 (5.13)	 are necessary and sufficient for the

assimilation scheme to yield slowly evolving estimates for a particular

realization of the state end observation processes, Eqs. (2.2a,293a).

For the scheme to yield slowly evolving estimates for all realizations

of the state and observation processes, it is necessary and sufficient

that
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Range Kk C R at each observation time k .	 (5.14b)

To see that this is the case, recall from Sec. 2.2 that the gain

m trices Kk are supposed to be nonrandom, i.e., they are supposed to be

independent of ndividua' realizations of the state and observation

processes. The residual wr is a random vector and, unless restrictions

are placed on the system noise and observational noise, wk can take on

any value in Rn. Therefore condition (5.14b), which says that Kkx e R

for all x e Rn , is just the statement that (5.13b) should hold for all

realizations. In other words, the set of gain matrices which satisfy

(5.14b) is the set of gain matrices which are independent of wk and

which satisfy (5,13b)-.

If the initial estimate satisfies (5.14a) and if the gain matrices

satisfy (5.14b), then the state estimates evolve slowly in Metween

observation times, as well as after the final observation time k N. 	 {

That slow evolution is possible depends crucially, as we have seen, on	 j

the fact that R is an invariant subspace of IF, rah is is why we work

directly with the discrete slow-wave subspace R. Any other discrete

approximation to the continuous slow-wave subspace R c will not have	 j
i

the property of being invariant under T.
i

The Kalman-Bucy filter generally does not yield slowly evolving	 ?

state estimates, unless it is assumed that the true state evolves	 ?

slowly,	 1

wk c R * for k- 0,1,2,...	 (5.15x)
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If (5.14a) is satisfied, then (515a) is equivalent to requiring the

initial estima tion error and the system noise to lie in R ,

J-w c R and bk E R for k^Q,i,2,... ; 	 (5.15b)

cf. Eq. (2.2a). If (5.15b) holds, then it :follows from Eqs.

(2.22b,c,d) and the definitions of the initial estimation error

covariance and the system noise covariance, Eqs. (2.9b,2.2c), that the

KB gain matrices satisfy (5.14b): the state estimates evolve slowly.

See also Petersen (1973) for a similar result.

We do not assume conditions (5.15x) or (5.15b) to hold:.

atmospheric states generally do have fast components. Instead, we seek

an alternative to the KB filter, by imposing condition (5.14b) as an

explicit constraint on the minimization of the usual error functional

n k ,

n k . K[(wk-wk)T A(wk-wk ) ]	 (S.lb)

A is a fixed, but arbitrary, nonrandom positive semidefinite nxn

matrix. 'That is, we seek gain matrices K k which

minimize nk with respect to	 Kk , (5.17x)

subject to Range. Kk C R , (517b)

at each successive observation time k; we already knows -that Kk M 0 if

there are no observations at time k. Notice the similarity between

problem (5.17) and problem (5.5) of Lemma 3. The solutions, and

conditions for their uniqueness, are also similar.
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Theorem 1. All solutions of problem (5.17) are 8iven by

Kk - n k KkB +Lk ,	 (5.18)

where nk is any A-orthogonal projection matrix onto R, i.e., any matrix

such that

Ra nge II - R ,	 (5.19a)

R 2 . n	 (5.19b)

(AII )T - AII 	 (5.19x)

and where Lk is any nxp matrix such that

Range Lk C R n Ker A ;	 (5.20)

KKB is the usual Kalman-Bucy gain matrix, Eq. (2.20x). 'There exists a

unique solution of problem (5.17) if and only if the weighting matrix A

is such that

RnKerA	 (0) ;	 (5.21)

in case Eq.	 (5.21) holds, there exists exactly one A-orthogonal

projection matrix onto R , denoted by R, and the unique solution of

problem (5.17) is

Kk - KJK Is n KkB	 (5.22)

3



The proo .t of Theores 1 0 which appears in trot appendIx, :ollows

easily from Lemmas 1 and 2 and from our derivation of the Ks filter in

Sec. 2, 4.

Thtoreon 1 states that the constrained minimization problem (5.17)

uniquely determines a gain matrix sequence if and only if the error

functional is based on a Weighting matrix A which satisfies R f, ^ Ker A

{0), in which case, the gain matrices are obtained by multiplying the

usual KB gain matrices by the A-orthogonal projection onto R . The

uniqueness condition is not very restrictive. For example, weighting

matrices of interest are usually positive dnfiniteo rather than merely

positive semidefinite;	 if A is positive definite, then it is

nonsingular and Ker -A f 01 , so that R n Ker A a ( 01 automatically.

Essentially, weighting matrices satisfying the uniqueness condition are

the appropriate ones for consideration. We discuss some of them,

including some singular ones, in Sec. 5.5.

Suppose, therefore, that A satisfies the uniqueness condition, Eq.

(5.21). According to 'Eqs. (5.22,2.20), the resulting gain matrices

are given by

K KB . H pfHT (HkpkHk + Rk)'" 1	 (5.23a)

at observation times k, where R in the unique A-orthogonal projection

onto R, and

KIIKB . 0	 (5.23b)

in the absence of observations at time k. We refer to the corresponding
ti
9

4

i	 j
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data assimilation schema as the modified Kalman-nucy filter. To

summarise, it .is given in full by

rk '" T-1 r	 (5.24a)

Pk IFPk- IT + Qk-1 	 (5.24b)

Kk • Kj" ,	 (5.24c)

Pk (x-»KkHk )4(I-KkHk)T + KkR KT	(5.244)

wk ' wk + Kk(wk _ Hkwk)r 	 (5.24e)

for k o 1 0 2 0 3,...; cf. the standard KB filter, Eqs.	 (2.22).	 Note

that the general formula (2.10b) is used for the analysis error

covariance matrix Pk.

The modified KB filter results in slowly evolving state estimates

provided initialization is performed at the start of the assimilation,

Eq. (5.14a). The filter is optimal in the sense that slow evolution

is achieved simultaneously with the successive minimization of the

error functionals r1 k . Unlike the standard KB filter, however, the

modified filter depends on the error functional's weighting matrix A,

cf. Eqs. (519c,5.8). One must therefore choose the error ffinctional

to be minimized.

Lemma 3 offers a simple interpretation of the modified filter.

Equation (524e) can be written

wk . wk + 11 NB (wk - Hkwk ) .

If wa e R and the modified filter has been used up to time k, then

wk e R	 Therefore wk	 , wk, cf. Eq. (5.2), and we have
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t

wk . n [ + lf(wk - Hkd )] nxk	 (5.25)

here xk is the analysis vector that would be produced by using the KB

filter at time k, cf. Eq. (2.22e). Thus, wk is the A-orthogonal

projection of xk onto R,

In fact, according to Lemma 3 and Eq. (5.25), wa is that vector

in R which is closest to the KB analysis vector xk , in the sense that

(tka- .k)T A(wk - xk)	 ( 5.26)

is minimized. In other words, the modified KB filter is equivalent tc

following computation of the KB analysis vector with variational normal

mode initialization; Yk is an "objectivE analysis" and wk is the

"initialized" version of xk , as wk e R and (5.26) is minimum.

Equation (5.24d), as compared with Eq. (2.22d), determines the effect

on the analysis error of combining initialization and assimilation.

Theorem 1 shows that (5.26) is not the only functional being

minimized by use of the modified KB filter. The functional n k of the

difference between the analysis vector wk and the true state wk is also

being minimized. This stronger result obtains, in essence, because the

assimilation part of our initialization-assimilation scheme is the

standard KB filter.

To conclude this seen ion, we point out that although Theorem 1 is

stated for our discrete model T and its slow-wave subspace R, the

theorem is actually quite general. The proof of Theorem 1, and the

discussion leading to the statement of the theorem, depends only on the

fact that R is a proper invariant subspace of T ; the actualdefinition
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of R is iamaterial. In particular, the theorem horde for other

discrete models V and their slow-wave subspaces. In Seneral, the

theorem shows how to estimate the state of a stochadtic-dynamic system,

given noisy observations, in case the state estimates are confined to

an invariant subspace of the system's dynamics..

In the trivial case R - Rn , Eq. (5.17b) presents no constraint

and, as one would expect, the modified filter redu;es to the stane4ard

KB filter.	 To see this we can still use the first part of Theorem 1,

since only the uniqueness part of the proof depends on the fact that R

is a pr9per subspace of Rn .	 ,

If R Rn then, regardless of the choice of A, there is exactly

one A-orthogonal projection onto R , namely II - I see the discussion

following Lemma 1. Equations (5.18,5.20) therefore become

Kk • KkB t Lk 	(5.27x)

Range Lk C Ker A.	 (5.27b)

This gives the unique formula Kk w Kk , the KB gain matrix, if and only

if Ker A . (01, i.e., iff A is positive definite. Positive

definiteness of A was the condition already found to be necessary and

sufficient for uniqueness of the KB filter; see the discussion

following Eq. (2.19). In fact, the general solution of Eq. (2.18) is

given by Eqs. (5.27).

5.4. Computation of Projections onto the Slow-Wave Subspace

In order to actually carry out computation of the modified KS

filter, one must be able to calculate the A-orthogonal projection

i!

.
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matrix 11, or at least to compute J1w for arbitrary vectors w c Rn . Thea

main result of this seftion i Theorem 2, Sivas a formula for efficient

computat .'on of H in case the weighting matrix A is block circulant. We

show that in thin case, the fast Fourier transform OFT) can be u(,ad to

compute Hw in only O(n log n) arithmetic operations. After discussing

this case, we apply Lemma G to the more general case, in which A is not

necessarily block circulant.

Suppose that in the error Functional

n - E j (wa-wt )T A(ws-wt))

the weights are Homogeneous in space, i.e., the weights applied to

variables situated around a given grid point are the same as the

weights applied to the variables identically situated around each of

the remaining grid points. Since our domain is periodic, and due to

the ordering (4.6) of the components of the vectors w a and wt , this

means that the weighting matrix A is block circulant with 3x3 blocks,

A - eirc[Ap,Ai,...,AM/2+A-M/2+1,..,,A_i); 	 OOH)

cf.	 Eq.	 (4.7b).	 That is, with A partitioned regularly into M2 3X3

blocks, the 30 submatrices A 00 A1,.4.,	 A_	 ...,A_AM/2^ M/2+1^	 1 appear in

order across the first row of A, and each of the remaining M-1 rows is

obtained by circularly shifting the previous row one block to the

right.

The submatrix A i (A_j ) gives the weights applied to the variables

u v,o at the grid point located J intervals to the right (left) of a

given grid point • In case one applies only local weights, which is

^.
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typical in practice, one has A i a 0 for j 0 0 and A would be

block-diagonal, with the matrix Any repeated along the main diagonal of

A.

In the sequel, whenever we refer to a matrix as being block

circulant, it is implicit that the blocks are 30 and that the matrix

is nx n • 3U314, since those are the only block circulant matrices with

which we will be concerned.

Our results are based on the fact that if A is block circulaot,

then the Fourier matrix F defined in Eq. (4,18) block-diagonalizes As

and vice-versa. That is, if A is of the form (5.28) then, defining

A . FAF
	

(5.29)

A diag [A(- M +l), A(- +2), sees A( > ,	 (5.30)

where the 3x3 matrices A(w) are Riven by

M/2	 2nijw/M	 M	 MA(w)	 ^	 e	 A^	 w . _.2,+1, sees 	 (5.31)
+1

On the other hand, given any 3x3 matrices A(w), and defining

A F*AF,	 (5.32)

where A is given by E,q . (5.30) , then A is block circulant. For proof,

see Davis (1979, Theorem 5.6.0.

The nxn matrix A therefore defines 3x3 matrices A(w), and

vice-versa; it will be most convenient to work with the 3x3 matrices.

Recall that A its supposed to be real. ,, symmetric,, and positive
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semidefinite. We first translate these conditions into restrictions on

w Cw ).

Lemma5. If the block circulant matrix A in Eq. (5.28) is real,
	 I

symmetric, and positive semidefinite, then the matrices 1(w) in Eq.

(5.31) satisfy

^(-w)	 A(w), for w * 0,1,...,	 -1 r

A(j) ' A(j),

A*(w) " A(w) i for w- 
Z 

+1, ...,

y*,A (w )y +1 , for w	 -	 +1, ... ,

and for all complex 3-vectors x.

(5.33a)

(5.33b)

(5.33c)

(5.33d)

Conversely, given any 30 matrices A(w) which satisfy Eqs. (5 . 33), the

block cisculant matrix thereby defined in Eqs. (5.30, 5.32) is real,

symmetrie and positive semidefinite.

Equations (5.33a , b) express the condition that A is real; they are

similar to Eqs. (3 .5). The conditions that A is symmetric and

positive semide finite are expressed by Eqs. ( 5.33c,d) o these equations

state that kw) must be Hermitian positive semidefinite.

We would now like to translate the condition for uniqueness of the

modified KB filter,

1L _
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into an equivalent condition on the matrices A(w). To do so, we will

have to be somewhat more specific about the vectors ro(w) which define

the slow-wave subspace in Eq. (4638),

Recall, that the vectors r0 (w) are eigenvectors of I (w )^
,S

(4.27).	 Since the submstrices Y j which define (w) in Eq 	 (4.24) are

real, it follows that

(-w	 11(w), for w	 b,l,..., 
M	 ,	 ( 5.34a)-1

(^	 ±(M .	 (5.34b)

Since the eigenvalues 6 0(0) and 6 0 (M are real, Eqs. (4.2804.33 0 4.37)0

it follows from Eqs. (5.34) that the eigenvectors can be Chosen in

such a way that

r0 ( -w) - rp(w) , for w . 0,1, , .. , .M2. -1,	 (5.35x)

r0 (m • r0 (m	(5.35b)

it r0 (0) and r 0 ( M. are real and that, for the

r0(-w) is the complex conjugate. of ro(w). We

that the eigenvectors are scaled i •n any

the slow-wave subspace can now be replaced by

That is, we can assume th!

remaining eigenvectors,

do not assume, however,

k -	 particular way.

Definition (4.38) of
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^lr,

R	 {w a Cn: ►̂(W) - p 0 (w)r0(w ) for all w	 +1,..., ,

where 0 0 (w) are any scalars such that 6 A(-w) 00(w)

and 00(i) -0 04  ,	 (5.36)

where Cn' denotes the set of complex n-vectors; Eqs. (4.15) imply that

a complex n-vector w is real, if and only if

m
i'

W('-.►► )	 w(w), for w . 0,1, 9.0,	 it	 (5.37a)

w() = w('M)9	 (537b)

whence, by Eqs • ( 5.35), a vector w defined by

W(W ) • O O(w) JO (w)	 (5.38)

is real iff the scalars $ 0(w) satisfy the conditions in Eq. ( 5.36).

Lemma 6.	 Suppose the block circulant matrix A in Eq. (5.28) is

real, symmetric, and positive semidefinite, and define matrices A(w) by

Eq. (5.31). Then the following three statements are equivalent:

R n Ker A M	 (5.39a)

A(w) to(w) 	 0 , for w = — +1 1 9969	 0	 (5.39b)

rp(w)A(w)EO (w) > 0 , for w	
T +1

0 . 6 ., 7 .	 (5.39c)

9

a

'	 a
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Condition (5.39c) simply states that in addition to being

Hermitian positive semidefinite, Eqs. (5.33c,d), 1(w) mat be positive
F

definite on the space spanned ;by the slow-wave eigenvectors r 0 (w), we

are now ready to state the main result concerning computation of It.

1
{

Theorem 2. Suppose the block circulant matrix A in Eq. (5.28) is

real, symmetric, and positive semidefinite, and define matrices A(W) by j

Eq. (5.31). Suppose further that

R n Ker A . { 0) ,	 ( 5.40)
ai

so that there exists a uniqu6 A-orthogonal projection matrix onto R

denoted by n. then 11 is block circulant and is given by
i

R	 F* n F ,	 (5.41a)

where

n = diag H. 	 M +1), n(- M +2), ..., it(M-)^,	 (5.41b)

(uM) a^ r0 (w) rp(W) A(w) , 	 (5.41c)

aw s [rp(w) A(w) EO W] -1 .	 (5.41d) i

i
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Notice that, according to Lemmas 5 and 6, the hypotheses of

Theorem 2 can be replacer! by Eqn.	 (5.3)) and either of Eqs.

(5.39b,c). 'ibis will be important in the next eaction, where we define

projections directly in terms of prescribed matrices 1(w), rather than

in terms of the corresponding matrix A. Notice also that Lemma d

guarantees that the scaling constants a. in Eq. 	 (5.41d) are

well-defined.

Theorem 2 gives an efficient method for computing 11w for any w c

Rn. First, one finds Fw, i.e., the discrete Fourier transform of each

of the three M-vectors of which w is composed. This can be done in

only Q(n log n) arithmetic operations, by use of the FFr algorithm

(e.g., Brigham. 1974).	 Next, one multiplies the resulting 3-rector

Fourier components w(w) by II \^ ► ), to find JIFw	 this takes only 0(n)

operations.	 Finally, one finds nw • F*HFw by performing three. inverse

FFTs, taking an additional Q(n log n) operations. 	 To carry out the

second step, of course, one must have already computed the slow-wave

rigenvectors ro(w) an d the matrices A( ); this computation need only be

done once and for all.

In our discussion of variational normal mode initialization in

Sec. 1.2, we saw that different weights are usually specified over

regions of different data densities. In this case A is not block

circulant, but we still have recourse to Lemma 4. To compute 11w in this

case, according to Eq. (5.8), one computes A1J2w , then 11,A 1/2w, then

A-1/211,A1/2w aw. The second step is carried out according to Theorem

2. H I is the projection matrix corresponding to the trivially block

circulant matrix I. Computation of A1/2 and A`1/2 is usually simple

also, because one is usually interested in local weighting, in which
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case A is block-diagonal With 30 blocks, or seven diagonal, as in the

case of functionalc (1.7, 1.8). At Worst, therefore, one would have to

compute square roots of 7,c3 matrices. In the usual care, in which A is

diagonal, only scalar square roots are required.

5.5. Choice of the Weighting, Matrix

We have seen that the modified KB filter depends, through the

A-orthogonal projection matrix 11, upon the weighting matrix A chosen

for the error functional. We now describe several choices of A and

,discuss the projections to which they lead, ` namely, the parallel

projection, the orthogonal projection and the minimum-energy

projection. The latter projection is the one chosen for the numerical

experiments described in the following two chapters.

First we introduce some assumptions and notation. Recall that the

slai-wave subspace R is defined in Eq.	 (5.36) in terms of the

eigenvectors r0(w) of Y (w ), Eq.	 (4.27), and that the fast-wave

subspace G is defined in Eq. (4.45) in terms of the remaining

ei8envectors E+ 1 (0- We assume that the eigenvectors have been chosen

in such a way that

r^(-w) M r j(w) : w	 4,1,..., M -1 0	 (5.42a)

r^	 rj(M),	 (5.42b)

f or j . 0 ,i 1; we already saw that this is pos sible for j - 0 and, for

the same reasons, such a choice is possible for J ±1. For simplicity

we now assume that also
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"^(w)(w) , ,	 -.^.+i ► ..., 3" 
► 1 . 0 ►*1,	 (5.43)

i.e., that all the eigenvectors have been norsalized.

Equatiot, (4.27) can be written as

T(w) . R (w) D(W) R' 1 (w), (5.44x)

where R(W) is the 30 matrix whose columns are the eigenvectore ►

R(m) - It- ,(w), 10(w ) N1(w)),	 (5.44b)

and where D(w) is the diagonal matrix of eigenvalues,

D(w) - diag 16
- 1 (w) , 6 0(w ), 61(w)).	 (5.44c)

We denote by R (w) the rags of R`" 1(w)

t*1(w)

R- 1 (W )	 1*(w)	 0	 (5.45)

E1(w)

Clearly we have

kj (-W) L J(w) ► W 0,1,..., -1 ,	 (5.46a)

L i (M	 - j (^),	 (5.46b)
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for J -	 since, for example, !q . (5.42a) is equivalent to R(-w )

RR(w), and therefore R"- '(-W) I. R'l(w).

The t j (w) are left eigenvector• of f (w ), i.e.,

xj(w} ' (u^)	 b J (w) 1..i(w) r	 (5. 47)

which follows upon prenultiplying Eq. (5.44a) by R7 1 (w). Notice also

that the equation R(w)R7 1 (w) I can be wr itten as

-1(w )*1(w ) +MO(w) Lp(w) + r l(w)(w) 	 (5.48a)

and that

Ri(w) r^(w) * d id	 (5.48b)

which f oll.ows f tom R -1 (w)R(w) - I.

Before discussing the projections mentioned at the beginning of

this section, we point out that the correspondence between "legitimate"

weighting me trices A, i.e. , those satisfying R n Ker A - { 0) , and

A-orthogonal projections onto R is not one-to-one; rather, it is

many-to-one. For example, if H is the unique A-orthogonal projection

onto R for some block circulant matrix A satisfying R n Ker A 	 { 01,

then H is also the unique A'-orthogonal projection, where

A' (W  . A (w) +'Y_1(WU _ 1(W)L..1 (w) +Y1(w)R1(w)L1 (w ) ,	 (5.49)

for any real scalars y± l(w). It is clear from Eqs. (5.46,5.48b) that

if A(w) satisfies conditions (5.33,5.39c) of Lemmas 5 and 6, then so

does A' (w ), while from Eq. (5.48b) we also have
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1L'(w) A' (w	 rp A(w) r..

from which Theorem 2 implies that the projections corresponding to A(w)

and A' (w) are identical.

It is similarly verified that another such squiveleat waiShtin$

matrix to A", There

A l (w) - A(w) + I - r0(w)rp(w) /EO(w)»0(w),	 (5,30a)

or simply

O(W) - A(w) + 1 rp(w) rp(w),	 (5.50b)

in light of the scaling assumption (5.43). Although the modified KB

filter is chosen to minimize a certain functional n(A) of the analysis

error, it will also mixni,mize, for example, r, (A') and n(A").

The parallel projection. For the parallel projection it is most

natural to define the projection matrix first, and then to deterwine a

weighting matrix A from which it can be obtained.

By the parallel projection we mean the projection onto R ,along the

fast-wave subspace G . That is, the parallel projection matrix is that

matrix nN such that for each x r, R'l , w	 RIx has the same slow

components as x, and no fast components: the projection is parallel to

the G --"axis". In other words, the parallel projection is the one

which corresponds to the nonvariational formulation of normal mode

initialization. A two-dimensional interpretation of the parallel

projection is given in Fig. 2.
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A precise definition of the parallel projection is as follows.

Since R and C together span all of R n , it is clear from Eqs.

(4.45,5.36 0 5.42) that the Fourier components of every x c Rn can be

written in the form

1

X(W)	 O j (w) 1j(W)
^...1

for some scalars O j(w) satisfying

O j(-W) . s j(w)r w	 0,1,...,	 -1 ,	 (5.51b)

O jy • O j ("	 (5.51c)

for j - 0,±1.	 The parallel projection matrix is that matrix Rl for

which the Fourier components of w H I Lt are given by

A

	

(w) - Sp(w) r Q (w)	 (5.52)

the slow components of x are unaltered and the fast components are set

to zero.

The parallel projection matrix is defined implicitly by Eqs.

(5.51,5.52). Clearly there is at most one such matrix, for we have

defined how 1,t acts on all of PP. It is also clear that Range III a R

and that R a (II N x) H I x f or every x e Rn , so that such a matrix must

indeed be a projection matrix onto R .

Now define N3 matrices A(w) by

A(w) . 10(w ) jp(w ) w	 (5.53a)
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and define the corresponding block circultnt astr x 	 r
d

A r `̂AF  `	 (5.53b)

where

A diag [A(- M #1), A(- +2) ,,. , A(j)1 • 	 (5. 53e)

It is clear from Eqs+ (5.46) that A(w) satisfies conditions (5.33a,b)

of Lodma 5; satisfaction of conditions (5.33c,d) is obvious. The block

circulant matrix A is therefore real, symmetric and positive

semidefinite. Notice that A is not positive definite; it has rank M

n/3 since, for each w, the rank of A(w) is one. However, it follows

from Eq. ( 5.48b) that
r

rp(w)A(w)r0(w	 1>0,

i

whereby Lemma 6 implies that R ft Ker A {0} . There exists, therefore,

a unique A-orthogonal projection matrix onto R ; we show that it is in

fact the parallel projection matrix.

With A(w) given by Eq. 	 (5.53a), and using Eq.	 (5.48b), it

follows from Theorem 2 that the A-orthogonal projection matrix is that
3

block circulant matrix R for which
1

n A(w) - EOW 10(w)•	 (5.53d)

Letting w - RAE with x e e, we have	 j
1

w . FRO (Fn AF* ) (1''x)	
IIAx

i

kL- . a_.
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so that, with X(w) given by Eq s . (5.51".,  we have	
POOR QUALITY

W(W) - II A(W) x(W)

1
0j(W) r0(W) !Q(W) »j(W)

j'-1
n 00(w) r0(W) i

the last equality follows from Eq.	 (5.48b).	 Comparing this result

with Eq. (5.52), it is clear that Eq. (5.53d) does give the parallel

projection matrix, i.e., II A - ill

To summarize, the parallel projection matrix It 	 is a block

circulant matrix; it is defined by setting

X

A

o (W) - L0(W) R *(W)	 (5.54)

The parallel projection matrix is A-orthogonal for A given by Eqs.

(5.53a-c).

The orthogonal projection. The orthogonal projection matrix is

the one corresponding to the choice A . I. In Sec. 5.2, the orthogonal

projection matrix was denoted by II I ; we now denote it by IIl , in

contradistinction with the parallel projection matrix R,

If A - I, then we can write

A = circ [I,0,.9.,0)

whence, by Eqs. (5.28, 5.31) , A(w) - I for all w. According to Theorem

2, the orthogonal projection matrix IIl is therefore block circulant,

and is defined by setting

`r

a
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11.L(W) . rp(w) OWL
	

(5.55)

as the scale factor aW 0 X by assumption (5.43).

It was shown in Sec. 5.2 that for every I e Rn , the vector x

111x, which is the vector between x and its orthogonal projection onto

R, is orthogonal to every w e R, i.a. ,

wT (xatlx) - 0 for all w e R, x e Rn.N M

Equivalently, for all w and for J . 0,±1, we have

rap(W)[Ej(W) - 1Il (W) 1j (W) 	 0

which follows from Eqs. (5.43,5.55). The orthogonal projection in two

dimensions is illustrated in Fig. 2.

The orthogonal projection is not appropriate for our discrete

system (4.7). With A - I in the error functional (5,16) 0 we see that

the modified filter based on the orthogonal projection would minimize a

dimensionally inconsistent sum of squares, i.e., squares of the

velocity components (m/s) and of the geopotential (m2/s2).

Comparison of the parallel and orthogonal projections.	 Having

defined the parallel and orthogonal projections, we wish to make it

clear that these two projections are not the same, n,	 lil , and to

clarify why this is the case.

Since the Fourier matrix F is nonsingular, it is clear that 1 N =

IIl if and only if il l (w) - 11.1 (w) f or all w. According to definitions

(5.54,5.55), the latter equality holds if and only if

I
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L0(w) * to(w) for all W.	 (5,56x)

	

Notice that if Eq.	 (5.56a) is satisfied, 'then there is no

conflict 'between the mA trix A(w) - !o(w)Zoo(w) which we used to obtain

the parallel projection and the matrix A(w) I which generates the

orthogonal projection. From Eq. (5.50b) it follows that the parallel

projection is also A"-orthogonal, where

A"(w) "Ro(w)&p(w) +I - ro(w)rp(w) .

and if Eq. (5.56x) is sa tisfied, then A"(w)	 T.

Now, from Eq. (5.45), we have

	

RO (w)	 (R 1 (w)J * eo

where eo is the vector (0,1,0) T ;therefore Eq. (5.56x) is equivalent

to

	

ro (w)	 (R 1 (w) ] * eo , f ,, k all w ,

or

R*(w)ro(w) . to , for all w ,

or

1(w )to(w)	 0 , for all w ,	 (5.56b)

since we already assumed r^(w)ro()	 1, Eq. (5.43) . By definition of

the fast-wave and slow-wave subspaces, Eq. (5.56b) is equivalent to

h

L
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	 r

!Tx p for all x e G, x e R	 (5.56c)

1

Thus, the parallel and orthogonal projections are identical if and only

if the fast-wave subspace is orthogonal to the slow-wave subspace.

This statement should also be clear from the geometrical interpretation

of the Jparallel and orthogonal projections indicated in Fig. 2. -

The axes in Figure 2 are drawn obliquely because the eigenvectors

of our discrete model do not satisfy Eq. (5.56b): the fast-wave and

slow-wave subspaces are not orthogonal. Primitive-equation models

linearized about a state with nonzero mean flow also have nonorthogonal

fast-wave and slow-wave subspaces (Kasahara, 1981).

This nonorthogonality is not an artifact of discretization.

Rather,	 it is	 a property of	 the differential equations.

Nonorthogonalty of the fast-wave and slow-Wave subspaces of the

shallow-water equations (3.1) is due to the asymmetric form of the

equations and to the appearance of the term (-fUv) in Eq.	 (3.1c).

This term arises because the solution about which Fqs. (3.2) were

linearized has 0 y 0 0, i.e., a free surface with nonzero slope in the

meridional direction.

With the term (-fUv) removed from Eq. (3.1c), the change of

variables

u+ 3mu , v t 30 v , ^ + ^	 (5.57)

in Eqs. (3.1) results in the symmetrized shallow-water equationso

I \	 1

t
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ut + Uux + 39 Ix f  - 0 ,	 (5.58a)

vt + Uvx	+ fu - 0 ,	 (5.58b)

+ t + U+x + VW ux	
M 0	 (5.58c)

IN

cf. Kreiss and Oliger (1973, Ch. 7). For this system, corresponding

to Eq. (3.9b) we have

^u if vi

Gs(0 - -if	 EU	 0

Evo	 0	 &U

Since G s (4) is Hermitian, i.e.,

GS(^ ) - Gs(^ )

Its eigenvectors are orthogonal, and therefore the slow-wave and

fast-wave subspaces of the continuous system (5.58) are orthogonal.

Since G s (^) is Hermitian, it is also normal, i.e.,

GS (C )Gs Q` G. (^ )GS Q •

A matrix has a complete set of orthogonal eigenvectors if and only if

It is normal. The matrix G(5) given by Eq. (3.9b) is not nor-m-.1 0 and

the slow-wave and fast-wave subspaces of the original system (3.1) are

not orthogonal. 	 a

As a consequence, the slow -wave and fast-wave subspaces of the

discrete model (4.7) are not orthogonal: the symbol TA (w) given by Eq.

e

f

e
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(4.24) is not a normal matrix and its eigenvectotrs do "not satisfy Eq.

(5.56b). The Richtmyer two-y,tep scheme for the modified system (5.58)

does have a normal symbols and therefore has orthogonal slow-Wave and

fast-wave subspaces.

We hope to have 'illustrated by means of this example that

continuous models having orthogonal fast-wave and slow -weave subspaces

are special: the equations must be written in symmetric form and must

have been linearized about a epecialty chosen state. Orthogonality may

or may not carry over to a corresponding discrete version of the model;

one must still check to see if the discrete model's symbol is normal.

The minimum-energy projection. For the numerical, experiments, we

choose the modified filter to minimize a physical quantity, namely, the

expected energy of the analysis error. The energy of solutions of tqs.

(3.1) is proportional to

L/2

d (u2 + v2 + 2/C!) dx .

-L/2

We choose A to be the diagonal matrix with the elements (1,1,1/0)

repeated along its diagonal; the corresponding error functional n

represents the expected energy of the analysis error, and we refer to

the corresponding projection as the minimum-energy projection. The

minimum-energy projection, denoted by TI E , is distinct from the

parallel and orthogonal projections, and is depicted in Fig. 2.

The minimum-energy projection_ was computed by the method of

Theorem 2. The weighting matrix A is block circulant,

A	 circ [A0 ,0,006 001 ►
	

(5.59aI

i
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where

AO- diag (1,1,1/!) ,	 (5.59b)

wher►ce, from Eq. (5.311),

A(w) - diag (1,1,1/0)	 (5.59c)

According to Theorem 2, therefore, the minimum- energy projection matrix

is the block circulant matrix ;RE for which

IIp(w)	 aw r0(w) EO(w) diag(1,1,1/0) ,	 (5.60a)

where

aw - [ r* (w) d ag(1,1,1 /,t) rp(w )] -1 .	 (5.60b)

L -
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i

CHAPTER SIX

EXPERIMENTS WITH THE STANDARD AND MODIFIED KALMAN-'BUOY FILTERS

Numerical experiments With the standard and modified KB filters

will now be described. The results show that the modified filter

produces slowly evolving state estimates, at the expense of estimation

errors only slightly larger than those resulting from use of the

standard KB filter. Results show also how each filter utilizes the

information advected between data-dense and data-sparse regions. The

importance of proper use of advected information will be further

demonstrated in Chapter 1.

6.1	 Observing Pattern, Noise Cova riances and Initial Data

We complete the description of our implementation of the standard

and modified KB filters, EEq;s.	 (2.22 0 3.24),	 by	 choosing an

observational pattern Ilk , noise covariances Rk and Qk , and initial

data w0 and P10 ; the dynamics matrix T and projection matrix 11	 HE

have already been described.

To recapitulate, the projection matrix is given by Eqs. (5.60):

by the symbol 11 we now always mean the minimum-energy projection BE

The dynamics matrix T is given by Eq. (4.1b) the parameters f, U,

and L are given following Eq. (3.3), and the mesh parameters are M

16 grid points and At - 30 min., as mentioned in Section 4.4.

Discretization with 16 grid points leaves a computational problem of

easily manageable size. The corresponding choice of At - 30 min. is

near the stability limit of the difference scheme, and results in r

24 time steps per synoptic period. An experiment using 32 grid points,
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for a spatial resolution oloser to that of oRerational WP models, gave

results quite sinil&L to the comparable experiment with 16 points.

We study an observing pattern corresponding to the conventional

meteorological upper-a Fr network., all quantities (u,v t^) are observed

over "land", at synoptic times, and there are no observations over the

"ocean". "fie distribution of land and ocean at latitude 6 . 8 0 , where

the earth' s circumference is 2L, is simplified to be 2-periodic, so

that half of each interval of length L is covered by ocean (Pacific or

Atlantic), aM half by land (North America or Eurasia). For this

reason we consider only 2-periodic solutions of'Egs.	 (3.1), and our

computational domain is of length L ; ef. Eq. (3.3).

We consider the left half of the computational domain to be

covered by land, and the right half to be covered by ocean. For

simplicity we take the observing stations to be located precisely at

grid points. The observation matrix is therefore

Hk ., (1 0)	 (6.1a)

when k is a multiple of r - 24 time steps, and

Hk *0
	

(6.1 b)

otherwise; observations are available at synoptic times only, i.e.,

every twelve hours.

For a single wave number w, initial data for the continuous system

(3.1) which lead only to slow waves are given approximately, according

to Eqs. (3.29) 0 by



; (x, 0) - +o sin gx ,	 (6.20

2
v(X, 0) .	 sin Ex	 (6.2b)

iYO

v(x 0 0)cos 9x ,	 ( 6 .2c)

where t _ 2orw/L • We choose initial data A corresponding to a single

Rossby wave with wave number w - 2, Le., - 4K /L, and amplitude +0 -

2.5 x 103 n, 2/S 2 .	 The latter is in accordance with a typical

ridge -to-trough difference of 500 m in 4',he height of the 500 millibar

pressure surface (palmen and Newton, 1969, Sec. 6.6). It follows that

^ 0 /4, - 1/12, which partially justifies th:^ linearization of Eqs.

(392)s

It follows also that the amplitude of v(x,0),

v 0 go0 Z	 1.122U,	 (6.3)

is roughly equal to U, a realistic value. Note, however, that the

amplitude of u(x,0),

uQ

	

	 e 24
0 Z 0.059 U ,	 (6.4)

C4+f2

is relatively small. This is in agreement with the results of Section
4

3.6; due to the absence in Eq. (3.1b) of a pressure-gradient term to

balance the Coriolis term, the continuous and discrete slaw-wave
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subspaces have rather small u-components . The u-comp-on 	 is special

and its behavior during an assimilation will provide one convenient

check of the departure of estimates from the slow-wave subspace.

Initial data for experiments with both the standard and modified

filters were obtained by evaluating w(x + (M/2 - 1)6x, 0), given by

Eqs. (6.2), at the grid points x	 jix, j xa -M12+1,..,,M/2. Denoting

the result by w0, we then set

Wt 0 It w6 ,	 (6.5)

in accordance with Eq. (5.14x). The difference between A and wS is

indicative of the difference between the discrete and continuous
1

slow-wave subspaces, and of the degree of approximation in Eq. (3.23).

We found a small but significant difference between we and wf . In
a

particular, the amplitudes of the u-, v-, and 0-components of wa are	 I,
{

0.993 u0 , 1.016 v0 and 0.960 00

i
As we have already pointed out following Eqs. (2.22, 6.14), the 3

gain matrices of the standard and modified KB filters are independent

of the state estimates. In particular, the gain matrices are

independent of w . 1hus the choice of w8 is made primarily for i
orientation purposes, and similar results will obtain for any initial

estimate satisfying Eq. (5.14a).	 j

	

The observations, made twice per day over the eight grid points	 a

Located on "land", 0 < 0, are assumed to have errors uncorrelated in

space, as well as in time. That is, we take the observation error

covariance matrix Rk to be diagonal. The observation error variances,

or diagonal elements of Rk 0 are taken to be constant in time: Rk a R

1
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const, when k is a multiple of 24 time steps. The variances are also

constant in space, and their values are based on data from McPherson at

1. (1979, Table 2).

The standard deviation of conventional temperature observations

used there is 100. '.[his can be converted, based on the cuetomary

hydrostatic assumption, to a 500 millibar level geopotential error of

approximately 200 m2/s 2 . This value corresponds to an error of about

0- 1 00. A corresponding 14 ^ error in the wind components, relative to

vo , is roughly 2 m/s ; this is slightly larger than the value of 1.5

m/s used by McPherson at al. (1979). We take the standard deviation

in observations of f to be 200 m2 /s2 , an3 that in observations of u and

v to be 2 m/s. Relative errors in all observations are thus about 10%.

The initial error covariance matrtr_l is taken to have the form

Pp - n nl H T + (z n) p2 (I - 11)T 0	 (6.6)

which results fro g" the assumption that the slow-wave and fast-wave

components of the initial error are uncorrel.ateds

d - d - nYl + (1-R)Y2 9	 (6.7a)

where

Rxi%j
	 D2
 a'ij	 (6.1b)

This assumption is made for convenience, and because of lack of

information on the cross-correlations of the two types of errors; it

can, of course, be easily removed.

I a
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Denoting by D the diagonal matrix with the elements (v09v0,#0)

repeated on the diagona 1, we take

D 1 - 0.4 D ,	 D2 0 0.1 D .	 (6.8)

Thus the initial error covariances are uniform over the entire domain

and the initial error variances are much lamer than the observational

error variances. Most of the initial error lies in the discrete

slow-wave subspace; the true initial state w0 has only a small fast

component, (H-1)X2 . This uniform distribution of initial error will

make it easy to visualize the reduction of error resulting from the

first synoptic observation.

The form chosen for the system noise covariance matrix Qk is

similar to that of pa. We take Qk to be constant, Qk - Q, with

Q n D 2 H T + (I-n)D2 (I-II )T,
	 (6.9a)

where

D3=yD,	 D4-0.25Y D.
	 (69b)

The parameter y is chosen on the basis of atmospheric predictability

studies, cf. Sec. 1.2 and the discussion following Eq. (2.2a), as

fellows.

Suppose that {wk) and {wk) are two realizations of our

stochastic-dynamic model, Eqs. (2.2, 4.7b, 6.9), starting from

identical initial states, w0 -0 The covariance matrix

7(k	E(wk - wk )(wk - wk) T	 (6.10)
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evolves according to

Xk 	y Xk-1 VT + 2 Q ,	 (6.11s)

X0 M 0 ;	 (6.11b)

cf. 2q. (2.10a). The expected energy of the difference between the

two realizations is Ek,

Ek - E(wk wk)T A(wk - wk) ,	 (6.12)

where A is the energy-weighting matrix given by Eqs. (5.59a,b). We

have

Ek • trace AX
	

(6.1.3a)

Eo . 0
	

(6.13b)

cf. Eqs. (2.12,2.13).

The correlation matrix of the two realisations is given by

Ck	 E(d) (wk )T

and evolves according to

Ck	 Y Ck-1 YT •

The correlation matrix starts from a nonzero value and tends to zero as

k + w, as a result of the dissipation of the dynamics matrix T.

For our stochastic- -dynamic model to have the same predictability

as the atmosphere, we would like the two realizations, Perfectly

correlated at the initial time, to become nearly uncorrelated,

L..,
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P *'

after a finiterp edietability time p of about two to three weeks. if

Cp • 0 exactly, then we would have

7Cp E(wp)(wp)T + E(wp)(^p)T

and

Ep - E(wp)T A(,!;) + E(wp )T A(wp).
^I

That is, Ek would grow from zero at time zero to an amount at time p

equal to twice the expected energy E 2 of either wp or wp

Ep . 2 E* .	 (6.15)

Of course Eq. (6.15) would be true of functionals other than the

energy. For simplicity we base the choice of Q on only one free

parameter, Q - Q(y), so that the growth of only one functional can be

prescribed.

We regard the energy E* as a "typical" energy, as system (2.2a) is

not conservative. We take the typical energy to be that of -aZO

E* trace A(wp)(^?p)T 	 (6.160

.,	 with 4 given by Eq. (6.5). our assimilation experiments are run for

10 days, i . e., for N' - 480 time steps. We determine y, and hence Q(y

by specifying a parameter a close to one and requiring

i
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y2 . Za 2E(6.16b)

Thus,, for convenience we specify the amount of lose of predictability

over the length of an assimilation run.

We set a	 0.7, and found y - 0.028. This wee easily done by

trial and error: according to Eqs. (2.10a, 6.11, 6.13)0

EN 2 trace A N ,	 (6.16c)

where PN is the estimation error covariance at the end of a run with

zero initial error and no observations. Thus, we computed EN in Eq.

(6.16c) for various choices of y, until Eq. (6.16b) was satisfied.

The choice of a - 0.7 corresponds to a 70% rms loss of

predictability at time k - N. This value of a, rather than a value

closer to one, was chosen because N < p: Ek continues to grow after

time N and Ck continues to decay. The leveling-off time of Ek , and

the decay time of Ck , is much longer than N and is a function only of

the amount of dissipation in the dynamics matrix T ; cf. Eq. (6.14b).

To complete the description of our assimilation experiments, we

note that the observations wk in Eqs. 	 (2.22e, 5.24e) were obtained

from an actual realization of the stochastic-dynamic system (2.2, 2.3).

That is, we generated independent random vectors {w0,bk,bk} having the

prescribed covariances, P^ for w0-wO, Q for bk, and R for bk, and

accordingly obtained random vectors wok 	 Eq. (2.3a).

I
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6.2. Numerical Results

In Figure 3 we show at selected grid points the time histories of

the estimates 1-k,-; k . 0,1,2,...,N) produced by the KB filte,.;

u -components of the estimates are shown in Fig. 3a, v-components in

Fig. 3b, and ¢ -components in Fig. 3c. We show a point on the West

coast of the continent, labeled SF (for San Francisco), one on the East

coast, labeled NY (for New York), and one in the middle of the ocean,

labeled HA (for Hawaii). Note that "Tokyo" 	 "'New York" by

periodicity. The ordinates in Figs.	 3a,b are scaled by vd , Eq.

(6.?1) i and the ordinate in Fig. 3c is scaled by + 0 .

On each curve, small,-amplitude fast oscillations are superimposed

on a smooth, slowly varying wave pattern. The fast oscillations are

caused by the introduction of noisy observations of the true state; the

true state has a fast component due to that of the system noise and

that of the initial utate w8. The fast oscillations are especially

apparent in the u-components, Fig. 3a; recall from Sec. 3.6 and from

the discussion following Eq. (6.4) that u-components are very

sensitive to departures f ram the slow-wave subspace. Notice in Figs.

3b,c the underlying periodicity of about 6 days. This is in agreemer;t

with the phase speed co(2) shown in Table 3,

co(2)	 13.12 m/s Z	
L
53aya yI2.3 

one-half of the 2-wave we are estimating passes through the L-domain in

just over 6 days.

For the assimilation run with the modified filter, the results

corresponding to Fig. 3 are shown in Fig. 4. The time histories of
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j

the estimates in this case are perfectly smooth, apart from the jumps

due to observational insertions: the estimates evolve entirely in the

slow-wave subspace. The 6-day periodicity is now evident even in the

u-components, Fig. 4a. The u-components change very little at

observation tittles: the corrections added to the forecast at observation

times lie in the slow-wave subspace, and therefore have small

u-components. By contrast, the corrections to v and + at observation

times, Figs. 4b,c, are often quite lame at SF and NY.	 The

corrections at HA are much smaller because no observations are made

there.	 Corrections at HA are due only to, and are made to a degree

consistent with, the correlation of the forecast error at HA with the

forecast error at observation stations inland.

To study the behavior of the estimation error for the KB filter

experiment, we show in Fig.	 5 components of the expected rms

estimation error res^ilting from use of the KB filter. Figure 5a shows

the expected rms error over land, Fig. 5b over the ocean, and Fig. 5c

over the entire domain. The individual curves are labeled U, V, P and

E, for the expected error in u, v, ^ and the total energy, averaged

over the indicated region. Thus, the U-curve in Fig. 5a gives the

square root of the average of the first eigh''. u-cos:Notients along the

diagonal of Pk+ a . The ordinate in each panel is scaled by v0 for the

U- and V-curves, by ^0 for the P-curve, and by 2v8 + $6/0 for the

E-curve.	 'thus, the observational error level in each panel is 0.089

for the U- and V-curves:, 0.080 for the P-curve, and 0.088 for the

E-curve.

The errors over land, Fig. 5a, drop below the observational error

level immediately, at the first synoptic time.	 In fact, the error

k'.

s

1



1111,	 FR I

-124

reduction over land at each synoptic time is drarastic, and resull,s in

errors below the level of observational noise. The error reduction

over ocean at each synoptic time, Fig. 5b, is less pronounced but is

still significant: the KB filter is able to spread out the new

information from observations over land to adjacent ocean areas.

Also striking is the difference between: Figs. 5a and 5b in the

error growth between synoptic times. The ;urge increase of error over

land in between synoptic times, shown in Fig, 5a, is due to the

combined effect of system noise and advection of error from over the

data-sparse ocean. The much milder increase of error over the ocean in

between synoptic times, shown in Fig. 	 5b, is due to partial

cancellation of these two effects: the effect of system noise is still

the same, but relatively error-free information is being advected from

over the data-dense land.

Notice also that the curves shown in each of Figs. 5a,b,c quickly

settle into an asymptotically periodic pattern, with the synoptic

interval of 12 hours as the period. This behavior is typical of

time-independent models (`{! ,Q) with periodic observations (Hk,R). The

convergence occurs within about one day over land, and in about 5 days

over the ocean. In fact, the KB gain matrices used at observation

times tend rapidly to a constant gain matrix, Ki B + W —

Expected rms errors for the experiment with the modified filter

are shown in Fig. 6. The errors in v and ^, over both land and oceano

are nearly indistinguishable from those of the standard KB filter:

slowly evolving estimates are obtained at the expense of only a very

slight increase in estimation error. Errors in the u-component,

however, are significantly larger than in the case of the standard
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filter. The u-component errors resulting from use of the modified

filter grow in time and, after 10 days, are about twice the size of

those resulting from the KB filter. The larger u-component errors are

due to the fact that the modified filter allows almost no observational

correction to be performed on the u-components: the u-components must

remain small for the analysis vector to lie in the slow-wave subspace.

The u-components of the true state, on the other hand, are growing

because of the continual input of the fast component of the system

noise.

To visualize better the behavior of KkB in time and to study the

structure of KKB we plotted the influence functions of selected

observation stations. The influence functions of an observation

station show the weight given to an observation of u, v, or ^ at that

station when updating points throughout the domain. The influence

functions at time k are obtained from appropriate columns of Kk$.

The chosen observation stations were SF, SL (for Saint Louis) and

NY.	 'There 0 .e no influence functions for mid-ocean points, like HA,

since no observations are made there. Influence functions were plotted

at every synoptic time, i.e., every 24 time steps. It was clear that

convergence to K" occurred within about S days.

Figure 7 shows the influence functions for the selected

observation stations at the end of day 10 Figure 7a, marked (u-u),

gives the influence of a u observation at the selected stations on u

corrections at every grid point in the domain. Figure 7b, marked

(u -v), gives the weight of a v observation at a station on the u

corrections at every grid point, and so on. The variables have been

scaled in the usual way, a and v by v 0 , and 0 by +0
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All the weighting coe;f ficients involving Aare rather small (Figs.

7a,b ► csd ,g). Our choice of system noise covariance matrix Q, With the

4-to-1 ratio of DS to D4 , entails relatively good predictions of u,

which have to be corrected only to a small extent 'by the observations_..

The (u-u) coefficients (Fig. 1a) are the largest of the coefficients

involving u; they still do not exceed 0.125. The (u-u) influence

functions are approximately equal for SF, SL and NY they are positive

and symmetric about the observation station. They are the only ones to

have both of the latter properties.

The	 influence function centered at SL is the smallest one

shown in Fig. 71. It is positive over land, becoming nearly zero at

SF and NY, and slightly negative out into the ocean. The symmetry and

relatively small peak of this function is due to its station, SL, being

located in the middle of a data-dense region: neighboring points also

have observation stations and advection plays but a small role.

The peaks of the (0-0) influence functions centered at NY and at

SF are considerably higher than the SL peak. This is due to the

absence of observations on the ocean side of these stations. In fact,

the peak of the SF function is slightly higher than the NY peak.

Moreover, the former is located one grid point west of SF, rather than

at SF itself, while the NY peak is at NY. Bolh data density and

advection thus play a role.

It makes sense for the point upstream of SF to give even more

weight to SF information than SF itself: SF is closer to inland point's

and their information is also weighted heavily. Due to the advection

of error, the forecast error at synoptic times for this ocean point is

considerably larger than that for the point downstream from NY,



L.

-127-

although they are equidistant from land. Hence, more weight is given

to adjacent land observations for the Pacific point than for the

Atlantic point.

As in Fig. 71, the (v-v), (v-+) and (t-v) influence functions

(Figs. 7e,f,10 all show strong inhomogeneity differences between the

SF, SL and NY functions, as well as anisotropy differences to the west

and east of each station. The SL influence function is nearly

symmetric for (v-v), and it is nearly antisymmetric for (v-*) and

(+-v); the corresponding SF and NY influence functions do not have

these symmetry properties. We will see in the following chapter that

this differential treatment of observations located in the middle of a

data-dense region (SL) and observations on the border between

data-dense and data-sparse regions (SF mid NY) is important for the

proper performance of data assimilation schemes.

The SL influence functions at the first synoptic time (Fig.	 8)

are either perfectly symmetric (u-u, u-v, v-u, v-v, and or

perfectly antisymmetric (u-, , v-^, ^-u, and f-v). Similarly, in each

panel of Fig. 8, the NY influence function is either the mirror image

or the inverted mirror image of the SF function.

Comparison of Fig. 8 with Fig.	 7 allows us to distinguish

between the effect of inhomogeneous data density and the effect of

advection. Figure 8 shows the effect of data distribution only, since

at the first synoptic time no information has been adverted yet from

previous data insertions. Figure 7 shows the combination of the two

effects.

Different data densities result in different influence functions

according to station location (Fig. 	 8)s stations located in sharp

L_
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gradients of observation availability, such as SF and NY, have more

Influence than inland stations (SL), and their influence out to sera is

also greater than their influence inland. It is advection, however,

which leads to the difference between the influence functions of

stations on the West coast (SF) and Nast coast (NY). The latter

difference was discussed in connection with Fig. 71, and is also clear

in Figs. 7e,f,h.

The corresponding results for the modified KB filter (not shown)

are very similar to those for the standard K8 filter shown in Figs.

and 8. The main difference is that the (u-u), (u-v) and (u-*) ' dnfluence

functions are almost perfectly flat. The modified filter allows even

less correction to the u-components than does the standard filter: the

estimates are forced to remain in the slow-wave subspace.

The KB gain matrix at day 10, a good approximation to the

asymptotic gain matrix KK B , was used as a constant, time-independent

gain matrix in another assimilation experiment. Estimation errors

after 1-2 days were practically indistinguishable from those obtained

when using the KB filter. Similarly, a run using the final gain matrix

of the modified filter gave results almost identical, to those of the

modified filter itself.	 There is therefore no need, in our
3

time-independent model ( IF Q j R), to compute a new gain matrix at every

synoptic time: approximate computation of the asymptotic ;gain matrix

once and for all is sufficient for practical purposes. The asymptotic

KB filter, known as the Wiener filter, is analyzed more fully in Ghil

et al. (1981, Secs. 4.2, 4.3).
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CHAPTER SEWN

COMPARISON WITH OPTIMAL INTERPOLATION

7.1. The Optimal Interpolation Filter

We have already pointed out that the difference between optimal

interpolation (0I) and the Kg filter is that OI is based on on assumed,

prescribed forecast error covariance matrix, rather than on the

covariance matrix Pk which results from assumption of a

stochastic-dynwdc model (2.2). We denote the prescribed covariance

matrix by 4, and base our fomlat on of Sk upon the OI schemes used

at NMC (Bergm n, 1979 • McPherson et al 1979) and at E 	 Lorene

1980. i

We implement UI for our usual forecast model (4.7), ii
wf ' P`;'k_1 	 (7.1a)

as 01 is an unbiased linear data assimilation scheme, the OI update

equation can be written as

wk - wk + N(wk - Hkw^) ,	 (7.1b)

a

cf. Eqs. (2.7). Optimal interpolation schemes are derived by

minimizing the analysis error variance at every grid point, assuming an

observational error covariance matrix Rk and a forecast error r

covariance matrix Sk. The OI gain matrix, Kk KkI , is therefore
{

identical to the KB gain matrix, with P f replaced by Sf:

KkI = SkHT(HkSkHT + Rk )-1	 (7.2)
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cf. Eq. (2.20a).

With S^ as the forecast error covariance matrix and with Kk - Kk='^

it follows that the 01 analysis error covariance matrix St is given by

Sk " (I - KOIHk)Sf 	 (7.3a)

cf. Etj . (2.21). We also define the diagonal matrix

ding Sk
	

(7.3b)

of analysis error variances. 'Equations (7.1b,7.2,7.3b) are identical,

respectively, to Eqs. ( 2.5,2.12 , 2.13) in Bergman (1979), although we

use a more compact notation.

It remains to describe how the forecast error covariance matrix S

is formulated in OI. Every covariance matrix S can be decomposed in

the form S - B1/2CB1/2 where B .. diag S is a diagonal, matrix of

variances and where C - B -1/2SB-1/2 is a correlation matrix. In 01 it

is assumed that the forecast error correlations are time-independent,

s f (Df ) 1/2C (DW /2	 (7.4a)

the correlation matrix C is constant and is a prescribed matrix in.01.

The forecast error variances,

Df + diag Sf	 (7.4b)

are assumed to grow linearly in time, i.e.,
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k • Dk.r + D	 (7.5)

where r is the length of the assimilation eyele t r n 24 tim ste ps in

our 0Ase. The time-independent diagonal matrix D is a prescribed

forecast error growth rate matrix; cf. McPherson a al. (1979 0 See.

2c.4). Equations (7+4 0 7. 5) describe the evolution of S^ ; they can be

regarded ar an spproxnste version of Eq. (2.22b).

Except for choice of the matrices C and 1) 0 Eqs. (7 . 1-7.5) define

othe implementation of 01 for our shallow-water model (T pHkAkrwk,wV
E

we take 68 - P8. We refer to Hq , s. (7.1-7.5) as the 01 filter. For

experiments with the 01 filter we also compute the true forecast and

analysis error covariance matrices,

pf . ypk_ 1,fx + Q r	 (7.6a)

Pk - (I-KkHk )pk(I-KkHk )T + Kk kKk 	 (7.6b)

01• f. E s.	 2.10with Kk Kk , c	 q	 (	 )

We define also an initialized 01 f ilter 0 having gain matrix

rjtOl	 II KkZ 	(7.7)

where H is the usual minimum-energy projection. In this case 0 Eq.

(7.3) is replaced by the general formula

Sk • ( I-KkHk)S f (I-KkHk)T + Kk.Rk,Kk ,	 (7.8)

with Kk • KP.pi . For experiments with the initialized 01 filter we also

compute the true error covarances (7.6), with K k • KEQI.
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The standard assumption by which the correlation matrix C is

determined is that mane field (geopotential or temperature)

correlations are homogeneous, Isotropic and Gaussian, with the

reea ning correlations derived by assuming thet forecast errors are

geostrophi,cally related (Bergman, 1979, Sec. 3; Lorene, 1981, Sec.

4b). For our model. (3.1), the geostrophic relation is

u-0,	 v - +x/f ,
	 (7.9aob)

and therefore the assumed forecast error correlations, which define the

elements of C, are given by

CtO - e 'xp [-(xi-x j ) 2/s 2 l	 (7.10a)

Cif - [1 - 2(x i-x) 2 /8 22 1 C	 ,	 (7.10b)

Ct - 4 [(xi-xj)/s 0 J Cto ,	 (7.10c)

CVO, - - CtV ,	 (7.10d)

r:^	 1

for (xi-x j j < L/2 on our periodic domain; we take for the correlaticr

distatice s0 - 1000 km, in agreement with the value used at NMC.

The five correlation functions not specified in Eqs.	 (7610),

i.e., those involving u, are all zero due to the geostrophic assumption

(7.9a). In our version of 01, therefore, forecasts of u are not

changed at analysis times, nor are the w and § analyses affected by

observations of u. This is not unreasonable for our model; we have

already seen that the same is approximately true of the standard and

modified KB filters, as a result of the 4-to-1 ratio of D 3 to D4 in Eq.

(6.9b) and since the slow-wave subspace is quasigeostrophic.

L
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In our first set of experiments, the diagonal forecast error

growth rate matrix D was chosen in the following way, We have already

seen that the KB gain matrix tends to a constant matrix, and, that the

corresponding error covariance matrices Pfo l tend to an r-periodic

sequence, pf a - Pk:a . At the end of the KB filter run, k - 406 time

steps, we averaged the diagonal elements of Pf - Pk_r over the entire

spatial domain. Thus, we found for the 04 filter the average 12-hour

growth rate for the variance of each of the three variables u, v, ^ .

These averaged rates were then used as the diagonal elements of D for a

preliminary run with the OL filter. The assumg d growth rates for this

first 01 run, and for the runs we describe nett, are therefore

independent of the longitude x, as is the rase with the 01 scheme

described by McPherson et al. (1979, Sec. 2c.4).

Using Eqs.	 (7 . 6), we computed next the true growth rates

{diag(Pk-pa 	k is a multiple of r) produced by the preliminary 01

run, and we averaged them over the spatial domain. These averaged

rates, although relatively constant after about 5 days, were somewhat

different from the originally assumed growth rates. In order to

produce a control run for 01, we made the following succession of

10-day 0I runs: the space-averaged true growth rates for each run,

starting with the first run described already, were averaged in time,

over the last 2 1/2 days and used as the assumed growth rates for the

next run. This procedure converged rapidly to our control 01 run,

which we call run Al,

Thus the true growth rates for run A l , averaged over days 7 1/2

10, agree with the prescribed growth rates D. This corresponds to the

E
i
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assumed rates being specified by an "optimal verification" scheme. We

denote these growth rates by du 0 dv and d^.	 ¢

Having determined the control run Al, we performed next a series

of 01 runs A. , to study how the true error covariances P^ Pa depend on	 w

the assumed growth rates. Run a uses the elements ((adu)2, (adv)2,

(aad# ) 2 ) repeated along the diagonal, of A. We used values of a ranging

from 0 to 2 in increments of 1/4.

In an analogous fashion, we determ,ned an initialized 01 filter

control. run B 1 (K . 0 01), using the initialized KB run (K - KnKB ) as	 ;.
 L

the starting point. We then performed the corresponding series of runs

BO .

e

7.2.	 Numerical Results

In Table 4 we summarize the results of the 01 runs A« and Ba .	 For

I	 comparison, we also include the corresponding results of the 	 run	 with

the	 KB	 filter, which we refer to as run AKB , and of the run with the
R ^

modified KB filter, which we refer to as run BKB ; these	 are	 the	 two

runs described in Chapter 6.
R

The	 table	 entries	 are	 the true expected rms analysis errors at

selected grid points after 10 days, i.e., they are the square roots_ of

selected diagonal elements of the analysis error covariance matrix P80

produced by each run. 	 The selected grid points are at Saint Louis (SL,

x	 -	 -36x),	 Hawaii	 (HA,	 x - Sdx) and London (LN, x - 8&x); LN is an

ocean location adjacent to the continent.	 M e entries	 are	 scaled	 in

the	 usual	 way,	 u	 and	 v by v0 , and »t by f 0 ; recall that with this

scaling the observational error levels sire 0.089 for u and v, and 0.080

for	 TheuRA and uLN entries are omitted because the u-errors are

i
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nearly constant over the spatial domain; the OI runs leave u unchanged

at analysis tines, and the KB runs change u only slightly.

The minimum value in each column occurs for run AKB , as expected:

the KB filter is optimal. The errors for run BKB are only slightly

larger than those for run AKB , as we saw already in Chapter 6. Notice

that for runs 'AKB and gKB , vSL < vLN < vHA and +SL < +LN < +KA , as a

result of our conventional observing pattern.

In contrast to the relative performance of runs AKB and B KB , the

B. runs perform better than the Aa runs. This is evident especially at

SL and LN; there is little difference at HA since there are no nearby

observations.

The effect of initialization is most dramatic for uSL , The

4-to-1 ratio of D3 to D4 in our definition of Q, Eqs. (6.9), forces

the true state wt to always lie near the slow-wave subs pace, and the

analysis vector in all B-runs always lies in the slow-wave subspace.

Since the slow-wave subspace has small u-components, the rms errors in

u must therefore always be small in the B-runs.

In contrast, for runs A. , u SL is large and increases with a. As

a increases, so do the assumed forecast error variances D f . Therefore

observational data are given more weight and the analyses drift further

and further from the slow-wave subspace.

For vHA and ^ HA , there is little difference between the AU and B.

runs, and these errors are relatively insensitive to the size of a.

There are no nearby observations to correct forecasts at HA, so the

forecast error variances near HA are immaterial. However, the vHA and

+HA errors are significantly larger for the A. and Ba runs than for the

AKB and BKB runs. This is due to advection of error from grid points

1	 I
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which have been updated by the observational data, to which slightly

incorrect weights have been assigned in the 01 rune.

For +SL , notice that rune A,a and Bu > ^ , give results quite, a 

comparable to runs An and BKB On the other hand, the vSL errors are

much larger for the A. runs than for the ABM run, while the vSL errors

are quite comparable for the Ba and BKM runs. Figure 9 helps explain

why this is so.

Figures	 9a ,b show the assumed +-4 and v-v forecast error

correlation functions ► Fq s. (7.10a,b), used in the 01 runs. 	 Figures

9c,d show the true forecast error correlation functions, deduced from

^a

	

	 Pk at 10 days, for run A 1 . 'Figures 9e,f show the true forecast error

correlation functions at 10 days for run B 1 . The short-dashed lines

indicate the correlation functions at SL, the loitg-clashed lines

correspond to HA, and the solid lines correspond to LN. The true

E
correlations are not homogeneous: the curves in Figs. 	 9c-e do not

superimpose.

The	 correlations at SL are quite similar in 2igs. 9c and 9e,

and not altogether different from the ^-^ correlation in Fig. 9a.

Thus the A. and Bu suns are able to produce reasonably good analyses of

at SL, provided sufficient wei&ht ► a >	 , is given to the wo-alth of

observations available nearby. The v-v correlation at SL in Fig. 9d

is far from that in Fig.	 9b, which was based on the geostro phic

assumption_	 Consequently, 01 does not make adequate Lase of data

available nearby and, as seen in Table 4, the vSL errors for the A.

runs are large. The v-v correlation at SL in Fig. 9f is much closer

to that in Fig. 9b; the corresponding vSL errors for the B. runs are

much improved.
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The situation is similar at LN. The portion of the solid curve

just to the right of center in Figs. 9d,f show that v at L`►,`,,s in

truth positively correlated with v at nearby land locations, with a

large correlation coefficient. The curve in Fig. 9b shows that the 01

runs use instead a negative correlation coefficient. As a result, the

vLN errors (Ta.ble 4), for large values of a, are actually larger than

the vHA errors. In fact, the v analyses at LN turn out to be worse

than the v forecasts at LN, in all A. and E a runs.

As the curve in Fig. 9b poorly approximates the LN curves in both

Figs. 9d and 9f, we must ask why the vLN results in Table 4 are better

for the B. runs than for the A. runs. The answer lies in what happens

between analysis times.

The analysis errors in the B. runs propagate at Rossby wave phase

speeds only. The maximum Rossby speed for our model T , according to

Table 3, is

c0(3) - 13.73 m/s - 0.68 Ax/12 hr.

Errors in the B. runs are therefore localized: new observational

information is inserted before error from the previous insertion can

travel one grid point.

Errors in the Aa runs, on the other hand, can propagate also by

inertia-gravity waves, which according to Table 3 travel as fast as

c l (l)	 301.31 m/s	 14.9 Ax/12 hr..

E
K

Error from the poor vLN analysis in the A. runs therefore quickly

contaminates the forecasts over land. At the next analysis time, the

Y

a

E

{

{

a

{



-138-

A. runs then use the now large observed-minus-for^icast residuals over

land to rraduce a degraded vLN analysis. This effect also explains a

portion of the large vSL errors f ou the Act runs.

Notice also that the curves in Figs. 	 9e,f drop to zero while

those in Figs.	 9c,d do not: initialization localizes errors and

therefore "tightens" the correlation functions. The same is true of

the cross-correlations v-* and ^-v (not shown). Phillips (1981) points

out that initialization has the somewhat paradoxical effect of forcing

all grid variables to be changed by the tasertiQn of observational data

at only one grid point. Our results show that there might be no need

to worry: initialization changes the mean fields in such a way that the

errors become more localized.

Our experimental results make it clear that using improper

correlation functions near boundaries separating data-dense and

data-sparse regions can lead to unduly large errors near those

boundaries, and that initialization is a partial cure for this boundary

effect. Another way to compensate for this effect is to use forecast

error growth rates which depend on data density. We saw already in

Chapter 6 that for an optimal filter, growth rates over data-sparse

regions are naturally much smaller than growth rates over data-dense

regions (Figs. 5,6), due to advection of information.

Accordingly, we conducted two more series of experiments, A0 
.Y and

BODY 0 Runs A$ Y are identical to run A l except that the growth rate

Odv is used over land and Ydv is used over the icean. In the same way,

runs 
Bo,Y 

are similar to run B l . We let Y vary from 0 to 1, while we

let $ vary from 1 to 2, both in increments of

The runs Aa ,Y and BS .Y all gave remarkably better results than the

1
v a
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A. and B. runs. Results of the best runs, A2,0 and B5/4,1/4 , are

summarized in 'Fable 5. The vLN analysis is greatly improved, in both

rune; run A2,0 also gives a substantial improvement for uSL and vSL

T;ie results of both runs compare favorably with those of the BKB run.

We conclude that use of proper forecast error variance growth rates is

essential to the performance of 01.

The tuni<<g procedure we have described for determining proper

growth rates is a manual one: analysis error variances for different

runs were examined a posteriori, after which it was decided which

growth rates produce the best results. For the purposes of operational

NWP, a more systematic way of tuning the growth rates would be to do so

adaptively; adaptive estimation was discussed, and references given, in

Sec. 2.6. Correlation functions, especially those near boundaries

separating data-dense and data-sparse regions, could also be determined

adaptively. Still, it might be better to approximate Eq. (2.22b) in a

more direct fashion than is ci ►rrently done in 01, and to do so

adaptively.
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APPENDIX

PROOFS OF RESULTS IN CHAPTER 5

Before proving the lemmas of Section 5.2, we review some

elementary motions concerning subspaces• The span of a set of vectors

{x11x20 ...,xry , denoted by {Mi,x2, •..,xr>, is the set of all linear

combinations of the vectors. Let S f (0) be a subspace of kn . There

exists a seL of linearly independent vectors (x l ,x2 ,. o .,xs) such that

S m <x11x20 .-..xe>

any such set is called a basis for S, and every such set consists of

the same number of vectors. That number is called the dimension of S,

dim S	 s> d; dim S F 0 if S n (0).

If V is a symmetric nxn matrix which is positive definite on S,

xTVx > 0 for all nonzero x e S, then there exists a V-orthonormal basis

for S, i.e., a basis (xl,x2, ... ,X,) consisting of vectors which satisfy

xiV.j - d i j , for i,j	 1, ...,s.

If (xi,x2,...,xs) is any basis for S, then the Gram-Schmidtrp ocess,

xl xl 4XTM,	 (A.la)

- wj / w^vw,n2,...,s,	 (A.lb)

where

J-1
!!J - xj - I (yiVxj)Xi

i=l

(A.Ic)
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produces a V-orthonorr l basis Qld2r •• •.Ye} for $ An I-orthonormal

basis to referred to simply as an. orthonormdl basis.

If S 1 is a subspace of S, we denote by Sj the orthogonal

complement of S 1 in S, i.e. , the set of all vectors in S which are

orthogonal to every vector in S 1 .	 s

l	 T$ 1 .{1 6 S. 1/z-0forallIe5 ^.	 (A.2) i

It is a fact that Si is a subspace of S and that

S 1 n Sj (0) ,	 S1 + Si . S	 ;	 (A 3a,b)

by	 the	 am of two subspaces, S 1 + S2 , we mean the set of vectors of

the :form N 1 + z 2 with zl a S 1 , z2 a S 2 .	 Since

dim (S 1 + S 2 ) . dim S 1 + dim S2 - dim (S i r) S2)

for any two subspaces S 1 ,S 2 , Eqs. ( A.3) imply that if dim S 1 - q ^ 0

then dim SL - s-q.	 A sum of complementary subspaces is said to be

direct: Eqs. (A .3a,b) together imply that in fact every vector ' c S

can be uniquely expressed in the form z - zl + z2 where E l c S 1 and

E2 a Si .

For further reference see, for example, Nering (1970, especially

Secs. 1.3 0 1.4, 4.4, 5.1, 5.4).

A.I. Proof of 'Lemma 1

We give a constructive proof. The construction will be used in

the proof of Lemma 4, and serves as a model for the proof of Theorem 2.
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if S - ( 0) , then n - 0 is a V-orthogonal projection onto S for all

V. We therefore assume S f {U), so that dim S s > 0.

let S l S n Ker V, with dim S 1 - q, and let 51 be the orthogonal

complement of S l in S, defined by Eq. (A.2); dim S1 s-q. For now we

assume q > U and s-q > 0; we return 'later to the case in which q - 0 or

s-q - 0. We show that the required projection can be expressed as "the

sum of two projections, one onto S l and one onto Si.

First we show that

TV;v > 0 for all nonzero y c Si.	 (A.4)

We have

Sin KerV - (s n q)n Ker V

- sl n (S n Ker V)

-sin sl-{0),

so VZ ^ 0 for all nonzero x e Si. Factoring V as V = VTV l , we

therefore have Vlx 0, so that TVY 	 (Vlx)T(VlY)	 U, from which

(A.4) follows since V is positive semidefinite.

It follows from (A.4) that there exists a V-orthonormal basis for

Si,

Si : <Y1+Y21.00,ys_q>,

.iVYj - d ij + i, 3

We now define
s-q

R V - I YixiV +
Jul

(A.5a)

(A.5b)

'I

i

(A.6)

ir
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and show that R V is a V-orthogont► l projection onto Si.

Range 1I V C Si. If x c Rn then

s-q

HVx .	(YTVx)xi c SJ
^l

by Eqs. (A.6, A.5a) .

Range HV ,J S^. we want to show thst if x c Si , then there is a

vector x c Rn such that 11 V 0 X. In fact, x x is such a vector'

bncaose from Eq. (iA.5a) we have
a

s-q

Y	 a jxj
i

for some scalars a j , whence Eqs. (A.(i, A.5b) give

s-q s-q
11 
V - I^ I aJxix^Vxj

s-q s-qE	 , 	
aJx a

i j " x,
J.1

i

j

H2 = I V. From Eqs- (A.6, A.5b) we have

s-q	
s—qy

R V	

i 1 x

ixiV ^^ x jx V

a	 al

s q xi 
s	 a ijx V TIV

jai

6	 r,.
(VII V)T 	VII V . Pr om Eq. (A.6) we have

F

F	 sq
(VTII V)T	VTx xV)

^l

s^
F

J
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s-q

VTxijrV . VTHV
iR 1

and the result follows since V T _ V.

Having shown that n V is a V-orthogonal projection onto Si, we now

let (-z1 , z2,...,zq) be an orthonormal basis for S1

S 1 . <z1,4 2 ,... 1zq? 0 	(A.7a)

4

	

	 ziz j = d i j , iJ	 1 9 ... ► q r	 (A.7b)

and we define
q

II I =	 zizi 	 (A*8)
i=1

From the proof that n V is a V-orthogonal projection onto S#, it is

clear that n I is an (I-) orthogonal projection onto S1.

Defining further

	

1 = H V + R, ,	 (A.9)

we show that n is a V-orthogonal projection onto S. We will make use of

the facts that

	

Yiz j	0 , i	 1,.... "q^ j = 1,...,q,	 (A.10a)

and

	

Vzi	 0	 i	 1,9..,q	 (A.10b)

the former equality follows from the definition of S1, Eq. (A.2),

while the latter follows from the fact that S 1 S n Ker V is a subset
zb

of Ker V.
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Range II C S. If x c Rn then-

IN -n Vx+1< Ix E S1 +S1

since II Vx e S1 and 11 13S c S 1 , and the result follows- since S1 + S 1 - S,

Eq. (A.3b).

Range II S. Suppose yr a S. We show that IIw . w.	 According to

Eq. (A.3b), there is a vector y s S1 and a vector z e S 1 such that w

x+z. Now IIVz - 0 by Eqs. (A.6, A.7a, A.10b), and II Ix - 0 by Eqs.

(A.5a, A.8, A.10a). 'Therefore

IIw - (IIV + III)(,+z) - II Vx+11 Iz .

But 11 Vx - x according to the proof that Range RV :D Si; similarly, 11	 =

z. Therefore IIw - Y + z - ww

11 2 - H. Suppose x e Rn , and let w - nx.	 Then w e S, since

Range 11 C S, and IIw	 w, according to the proof that Range 11 :) S.

Therefore
9

112x = IIw w w a IIx

i.e. , 11 2x = IIx for all x e Rn , and therefore H  = II.

(VII )T _ V11. From Eqs. (A .8, A.10b), it follows that VIi I - 0.

Therefore VII - W V , and the result follows since we already showed

that (VH V ) T - VHV.

This concludes the proof in case q > 0 and s-q > 0. In summary,

starting from arbitrary bases for S 1 and Si, one could use the
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Gram-Schmidt process (A.l) to construct the bases in Eqs. (A5 0 A.7)9

and then construct the projection 11 by means of Eqs. (A.6, A.8, A.9).

In case q - 0, i.e. , S 1 	{0), Eq	 (A.3b) implies that Si - 
S and

dim Si = s -q A s ? 0, so that IIV in Eq.	 (A.6) is a V-orthogonal

projection onto S. Similarly, if s-q - 0, then RI in Eq. (A.8) is a

V-orthogonal projection onto S, for all V.

A.2. Proof of Lemma 2

Sufficiency. Let 11 and A be two V-orthogonal projections onto S,

and let A -H -A. We show that if S n Ker V -{O),  then A - 0.

U x c R°, then Ax a S, so Eq.	 (5.2) implies that IIAx - Ax.

Since x is arbitrary, we have

nA - A ,

and similarly,

AII - R.

lberefore,

A	 AII	 A	 A (II

and

VA = VA (H - I).

r

We also have

6	 VA = (VA )T - ATV - (nA )TV

T T	 T Vn T - A TVttnnv	 n( >	 ,

t
so that

F
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ve	 ATVs (1I - I) - ATV(H 2 - R - 0

and therefore Ax c Ker V for every x e Rn .	 But Ax - HIS	 -	 Ax c S	 for

every	 a Rn ,	 since J1x c S and Ax c S and S is a subspace.	 Therefore

Ax e S n Ker V = { 0) .	 That is, Ax - 0 f or all x c Rn , whence A - 0. a

Necessity.	 Suppose	 that	 S n Ker V	 A	 (0) and	 let	 n	 be	 a i

V-orthogonal	 projection	 onto	 S. We construct a matrix A 0 11 which is

also a V-orthogonal projection. onto S.

Let v c Rn be any nonzero vector such that xTw - 0 for all	 w c S,

i.e.,	 v	 #	 0 and v c Sl , the orthogonal complement of S in Rn .	 There

are -many such vectors v; letting did: S =	 s,	 Eqs. (A.3)	 imply	 that

dim Sl - n-ys > 0,	 since S is a rp oper subspace of Rn.

Let z c S n Ker V with z f 0. We claim thatN A

f

N M

jJ

is	 a V-orthogonal projection onto S. Obviously A H, since both v and

? are nonzero.

Range A C S.	 If x e Rn , then

Ax = 11  + (vTx)z a S,

since IIx a S, z e S, and S is a subspace.
I

y	 i

Range A	 S.	 Let w e S, so that nw = w.	 We have also	 vTw	 0,

since v c S-L .	 Therefore
3

Aw = 11w + ( ►Tw)z = w
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i.e. , Ax - w has solution x . w for all w e S.

A 2 _^ A.	 As in the proof that J12 - R in the proof of Lemma 1,

Range A C S and Aw . w for all w c S together imply that A2 A.

(VA )T . VA * We have

VA - V!I + (Vz )vT - VH

since z e Ker V, and the result follows since (VII ) T - W,.

A.3. Proof of Lemma 3

We show that the general solution of problem (5.5) is given by

x - RX + z ,	 (A.11a)

where lT is any V-orthogonal projection onto S (such projections exist,

by Lemma 1), and where z is any vector such that

z c S n Ker T.	 (A.11b)

The lemma follows immediately from this result, for if S n Ker V = (0)

then z - 0 and, according to Lemma 2, H is unique, while if S n Ker V

(0) then neither z nor n is unique.

Let II be a fixed V-orthogonal projection onto S, and define y

Y (x) by

Y (x)	 (3S 	 x) .

We have
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y(x) _ ((x-ffy) + (IIx-X) )TVA (x-IIy) + (ny_y) )

(x-f[x)TV(x-1Iy) + (Rx-x)TV(ttx-yr) + 2(x-I^x )TV(1[x-y► ).

The last term vanishes if x e S, for then x Rx by Eq. (5.2), whence

(:E_11 
,)TV(T[x-x) _ (J[x-ny)TV(ny-x)

_ (x-y) TH TV( g -I)x • 0

the last equality follows from Eqs. ( 5.1b, 5 .3) and the fact that V is

symmetric,,

nTV(n-z) _ (Vn)T (n-r) - Vn(n-z)

`. (,[ Z - 11) : 0 .	 (A.12)

Defining z = S(x) by

z = X - IIy ,	 (A.13)	

IA
we therefore have

y(x) =jVz,+0 if x  S,

where

(nx - X)TV(nx - y)	 ;	 1

is independent of x. Now zT Vz > 0 since V is positive semidefinite, so

a	
1

Y(X) B if x e S.

1
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Therefore x is a solution of problem (5

Y(x) - B And

and this is the case if and only if

ZTVz _ 0 and

tnat the statements x fe S and z c S are equivalent follows from (A.13)'

and the fact that S is a subspace.

The first condition in (A.14) is equivalent to z e Ker V, for if

zTVz - 0 then, factoring V as V - VTV I , we have (V I E)T (V lz) 0,

whence V lz =- C+ and Vz VTVlz F_ 	 obviously Vz - 0 implies zTVz - 0.

Conditions (A.14) are therefore equivalent to (A.11b), so x is a i
solution of problem (5.5) if and only if it is of the form (A.11),

where n is any V-orthogonal projection onto S.

L

A.4,, Proof of Lemm3 4

Let s	 dim S, and let C be an nxs matrix whose s columns are an

orthonormal basis for S,
i

C	 w

	

[wl,w2,...,waj,	 iw3	 dij. 1

I
The (,j) th element of the matrix CTC is wiwj , and therefore

CTC	 I	 (A.15a)
i

We have also
s

CCT
i-1
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which _, according to the proof of Lemma I t is an orthogonal projection

onto S. Since there is only one such projection, we therefore have

H, CCT .	 (A,15b)

Now define

CV - V-1/2C.

From Eqs. (5.7), we have

(V-1/2)TVV-1/2 . It

and therefore

cV V (v-1/2c)TV(v'1/ZC)

= CT [(V
- 1/2 )TVV- 1 /2 ] C

CTC

that is, the columns of CV are a V-orthonormal basis for S.

According to the proof of Lemma I t and analogously with Eqs.

(A.15),, the matrix CVCyV is therefore a V-orthogonal projection onto S.

There is only one such projection since V is positive definite, so

11V10CVC^V*

`_

But then

since (V-1/2)T V V1/2.

nV _ (V-1/2 C ) (V-1/2 C )T V

- V-1/2 C CT (V-1/2)T V

V-1/2 nz (V- 1/2 )T V

V-1/2 
n z V

1/2 0 i

1i
4

i
1

I
t
	 Y

SCI
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(A.17)

A.5. Proof of Theorem 1

The proof is similar to tivjt of Lemma 3. The uniqueness part of

the theorem follows imme=diately from lemma 2. if A satisfies Eq.

(5.21), then Lk . 0 according to Eq. (5.20), and Lemma 2 implies

uniqueness of the A-orthogonal projection, Hk • C	 Kk in Eq.	 (5.18)

is therefore uniquely determined. On the other hand, if A does not

satisfy Eq. (5.21), then Hk and 1'k , and therefore KK and wk ,are rot,

uniquely determined.

It therefore remains only to verify that the general solution of

problem (5.17) is given by Eq. (5.18). We omit subscripts in the

remainder of the proof, an observation time k is assumed.

Let 11 be a fixed A-orthogonal projection mcatriw onto R ; that such

a matrix exists is a consequence of 'Lemma 1. The constraint (5.17b)

states that each column of K must lie in R, so it follows from Eq .

(5.2) that the constraint is equivalent to requiring

nK _ K.	 (A.16)

Indicating the dependence of n upon K by writing n - n (K), we find a

simple formula for n (11K) from which, with Eq. (A.16), the general

solution (5.18) will follow.

From Eq. (2.16),  we have

n(RK) - trace [A(RK )6B )C(RK - KKb )T + AZI;,

where, according to Eqs. (2.14b, 2.15b, 2.20a)

C - HPf HT + R ,
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Z . p f - p fHTC-1Hpf

KKB - PfHTC-1.

We now show that Eq. (A.17) can be written

01K) . trace A[n(K-KKB)]C[R(K-KKB)]T

+ trace A[(I-n)KKB I C[(I-n)KKB ) T + trace Az

2,

(A.18)

We expand the first term in Eq. (A.17) as,

A(nK KKS ) C(nK KKS)'T

A[n(K-eB )-(I-H)KKB j C[n(K-KKB)-(1-n)KKBjT

A[n(K-KKB )I C[n(K-K"))T + A{(I-n )KKB I C [ (1-11 )KKB I T

- A(1-H)KKBC(K-KKB )TH T - An(K-KKB )C(KKB )T (I-n)T . (A.19)

Now,

trace A(I n)KKBC(K-KKB ) Tn T trace TiTA(1-n)KKBC(K-KKB )T

0 .	 (A.20a)

The first equality in (A20a) follows from Eq. 	 (2.11c), while the

second follows from the fact that

ITTA(I - H) - 0

a
i

1
i r

(A.20b)

cf. . Eq. (A.12) . Similarly, we have

trace An (K - KKB ) C(KKB ) T(I - II)T = 0 .
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TI`. R K ,

Alt K = ARK".•

(A.22a)

(A.2 2b)

Inserting Eq. (A.19) into Eq. (A.17), and using Eqs. (A.20, 2.11b),

yields Eq. (A,18).

The lest two terms in Eq. (A.18) are independent of K.

Analogously to the argument following Eqs. (2 . 18, 2.19) 0 it follows

that n (RK) is minimized with respect to K if and only if

A 1 (K - Kr B ) - 0,	 (A.2 1a)

where A has been factored as A A'A 1 . If Eq. (A.21a) holds, then

AH (K - KKb) . 0 .	 (A.21b)

On the other hand, if (A.21b) holds, then the first term oa the

right-hand side of Eq. (A.18) vani.shns and n(RK) is minimized:

conditions (A 2 a, A.21b) are equivalent. Therefore, a matrix K is a

solution of problem (5.17) if and only if K satisfies Eqs. (A.16,

A.21b), i.e., iff

We seek solutions of Eqs. (A.22) of the form
4
i
Y

K = RKKB + L ,	 (A.23)

where L iset to be determined. Substituting E . 	 My	 S q	 (A.23) into Eqs.

(A.22), and using Eq. (5.19b), we find that

.1	
^



Equation (A.24a) states that each column of L lies in R , and Eq•

(A.24b) states that each column of HL . L lies in the kernel of A; that

is, Eqs. (A.24) are equivalent to

Range L c R n Ker A.	 (A.25)

Equations (A.23, A.25), with TI being any A-orthogonal projection onto

R , therefore represent the general solution of problem (5.17).

A.6. Proof of Lemma 5

If A is real then the submatrices Aj are real, and the formula

M/2	
e2nilw/M AA (w) ^	 ^	 ^

J=-M/2+1

immediately implies that the matrices A(w) satisfy lEgs. 	 (5.33a,b).
i

Conversely, if the matrices A(w) satisfy Eqs. (5.33a,b), then the

inversion formula

M/2
A s M

	

	 I	
e-2niw/M A(w)

w--M/2+1

immediately implies that the A3 are real, and hence that A is real.

If A is symmetric and real, i.e., A = AT A* , then we have from

A = FAe that

i 
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A* F0F* - FAF* = A

which, with Eq.	 (5.30), implies Eq. (5.33c). Conversely, if Eqs.'

(5.33a,b,c) are satisfied, then AT _ A* , as we have just shown, and

A* = A ; from A = F *AF we therefore have

AT = A* - F*A*F = F *AF . At

i.e. , r is symmetric.

For positive semidefiniteness, it is clear from Eqs. (5.30, 5.32)

that the following statements are equivalent

xTAX > 0,	 for all x c Rn,
•

xTF*

A

AN > 0	 for all x c Rn,

(Fx)*A(Fx)> Q ,	 for all x c Rn,

x*Ax > 0 ,	 for all Y of-the form Y - Fx, x c Rn,

x*(w)A(w)Y(w) > 0, for all complex 3-vectors x(w)

and for all w _ M+1, ..., 
M .

that the conditions in the last two statements are equivalent follows

from the fact that if 	 = Fx and x e Rn is arbitrary, then y(w) is, for

each w, an arbitrary complex 3-vector; con yersely, if the last

statement is true, then in particular it is true for arbitrary vectors

satisfying x(-w) _ Y(w ) arld x(^d /2) _ , (M. /'2), in which case x = F* is

an arbitrary real n-vector.

i
-. 9

t

f

a
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A .7 . Proof of Lemma 6

(5.39a) 0 (5.39b). Suppose there is an w, say w * , such that

A(w *) ra(w *) - 0

we show that this	 implies	 R n Ker A	 # { 0) . Suppose for now that

w * # M/2. Then from Eqs.	 (5 . 33a,5.35a) we have also

A(-w *) r 0 (-w * ) = 0 .

A
Define the n-vector w Fw by

w(±w*) = !0(±w*)

W(W) .0 ifw0t w*

Then w j 0 and, according to Eq. (5.36), we have w e R	 Clearly

A(w) w (w) - 0 f or all w, and therefore

0 -A_ - (FAF* ) (Fw) . FAw

whence Aw = 0 since F is nonsingular. Therefore w is a nonzero vector

in R n Ker A. If w * - M/2, the same r(^!sixlt obtains by setting

w(M/2)	 r0(M/2)
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(5.39b) 0 (5.39c). Suppose

A(w) r0 (w) f 0 \I
for all w.	 Since A*(w)	 A- (w  by Eq.	 (5.33c), A(w ) has a

factorization

A(w) - A(w) Al(i

Since A(w) r0 (w) A 0, we have A 1 (w) r0(w)

rp(w )A(w)r0(w) = [A l (w) r0(w) l*

which, according to Eq. (5.33d), implies

r,*p(w) A(w) 1:0(w)

0, so

(A Z (u)) r0(w)I # 0,

that

0

1

(5.39c)	 =>,r(,5.39a). Suppose	 that R n Ker A 0 {0); we show that

there is an w fog: which (5.39c) does not hold.	 let

wcR r)	KerA

With w	 0. Since w c R ,, Eq.	 (5.36) implies that there is an 	 w,	 say

w*	 swb that w(w :*) _ 6 r0(w*) with 0. Since Aw	 0, we have

4

Aw _ (FAF* ) (Fw) FAw	 0.

` Therefore
ij

}
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A(W *) Ep(w *) " 
0 

A!wo

whence

rQ(w*) A(W*) rpl

A,8. Proof of Theorem 2

That there exists a unique A-orthogund.L PLUJUcLiUll UIMU IN i.vi.LUWCX

from Lemma 2, so we need only verify that H defined by Eqs. (5.41) is

indeed an A-orthogonal projection. This 11 is certainly block circulant

since it is defined by R - F *HF, with 11 block-dii3gonal.

Range 11 C R . Let w e in and let z - 11w ; we want to show that

z c R . We have

z = Fz w FIIw - (FIIF * ) (Fw) - nw

so

E(W) = II(w) w(w) - 0 0(w) rp(w)

where, according to Eq. (5.41c),

00(w) - aw [rp(w) A(w) w(w)l•	
3

t

Now aw is real, according to Eqs.	 (5.33c, 5.41d), so from Eqs.

(5.33a,b,5.35,5.37) it follows that

Sp(-w)	 Rp(w)	 w a 0,1..., M/2 - 1
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According to Eq. (5.36), therefore, we have z c R .

Range II :) R . Let w e R ; we show that 1Ix - w has solution x

W. Since w c R , Eq. (5.36) implies that

0 0 (w) ro(w)

for some scalars 0 0(w), whence we have from Eqs. (5.41c,d) that

II(w) w(w) = % 6,0(w) ro(w) =p(w ) A(w} rq(w)

0 0(w) r O (w) a W(w)

Therefore Rw - w and

IIw = (F 11F) (F*w) - F *Iiw - b" *w - W,

11 2 = II. It follows immediately from Eqs. (5.41c,d) that

[^(w) ) 2 = TI(w)

A-	 A
so ll -11 and

w{W) =

112 = (F*^F)(F*^F) = F *^ 2F = F *IIF a H.

(ATI)T = Ali. From Eq. (5.41c) we have

[ A(w )n (w )] *	 [awA(w)L0(W )r*(W )A(W )] *



the second equality follows since a w is real and, according to Eq.

A
(5.33c), V (w) - A(w). 'therefore we have

Y	 A A	 A A
(An )^ - Ali

It follows from Eqs. (5.33a,b,5.35,5.41c) that

n(-w)	 t[(w), w	 0,1,..., M/2 -1

so H is real; since A is also real we therefore have
i

A

(An )T = (An)*.
1 

1h en

(ATI)T = (Ali)* _ (F*AFF*n̂F)* _ (F*XfiF)*

= F * (AR̂) *F = F *AIIF - (F' AF)(F HF)

= An
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W Co c-1 el

1 7.51 -255.77 306.26

2 14.14 -182.95 228.81

3 16.89 -166.88 209.99

4 18.12 -161.00 202.87

5 18.76 -158.22 199.46

6 19.12 -156.70 197.58

7 19.35 -155.78 196.43

8 19.50 -155.18 195.68

TABLE 1. Phase speeds of solutions of the continuous system, Eqs.

(3.1,3.3), in meters per second. The phase speeds are given by Eq.

(3.22a), and are presented here for the first eight wave numbers. 	 The

speeds co are the Rossby wave phase speeds, while c-1 and cl are,

respectively, the phase speeds of westward-propagating and

eastward-propagating inertia-gravity waves.
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w CO
C-1 cl

1 7.53 -255.99 308.45

2 14.15 -183.01 228.67

3 16.89 -166.90 210.01

4 18.13 -161.00 202.88

5 18.76 -158.2;3 199.47

6 19.12 -156.70 197.58

7 19.35 -155.78 196.43

8 1	 19.50 1	 -155.18 1	 195.68

TABLE 2. As in Table 1, but using the approximate formulas (3.25).
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w CO c-1 c1

1 7.44 -248.92 301.31

2 13.12 -164.92 208.45

3 13.73 -133.39 17:1.52

4 11.98 -107.91 14;1.65

5 9.17 - 82.00 110.85

6 5.95 - 54.49 76.45

7 2.79 - 26.2.2 38.13

8 0.00 0.00 0.00

TABLE 3. As in Table 1, but for the discrete system, Eqs. (4.7). The

phase speeds are given by Eq.	 (4.34), and are obtained by first

solving the eigenvalue problem, Eq.	 (4.27), and then solving Eq.

(4.28) For the eigen£regvencies.
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RUN uSL °SL °NA VLN #SL 4HA #LN

An ,031 .070 .311 .214 .045 .210 .117

AO .127 .302 .390 .334 .220 .297 .313

A 1 / 2 .144 .174 .371 .358 .070
oo
261 .194

A l .153 .163 .305 .412 .059 .262 .180

A3/ 2 .167 .165 .398 .457 .062 .272 .201

A2 .184 .172 .410 .493 .065 .285 .235

BKB .074 .092 .317 .223 .064 .217 .127

BO .075 .265 .371 .303 .183 .283 .286

B 1 / 2 .074 .113 .364 .313 .068 .263 .198

B1 .074 .100 .381 .363 .053 .267 .173

B3/2 •074 .099 .394 .394 .051 .275 .170

B 2 .074 .100 .404 .412 .051 .284 .174

TABLE 4. Summary of rms analysis errors at 10 days, for runs AKB

Aa , BKB , and Ba , for a = 0, 1/2, 1, 3/2, 2.
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RUN uS'L VSL VHA N'LN 4 sL 4 HA 4LN

AKB .031 .070 .311 .214 .045 .210 .117

A2,0 .073 .096 .374 .282 .055 .259 .166

SK .074 .092 .317 .223 .064 .217 .127

B5/4,1/4 •074 .098 .369 .287 • .052 .256 .165

TABLE 5. Summary of rms analysis errors at 10 days, for runs Ay

A2 0 0 r % , and B5/4,1/4

r

i
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FIGUR

Figure 1. M illustration of meteorological observations available

at or near 1200 CMT, January 9, 1979. The various observing systems p

as well as the error structures of data they provide, are described in

Section 1.2. This figure is reproduced from the preface of Dengteson

et call. (1981), by permission of the publisher.

Figure 2. A schematic representation of three projections onto the

slow-wave subspace R . As discussed in Section 5.5, the projections

do not coincide because the fast-wave subspace G is not orthogonal to

the slow-wave subspace. The points labeled Rg x , tl lx ,, and R Ex are,

respectively, the parallel projection, the orthogonal projection, and

the minimum-energy projection of a point x onto the slow-wave subspace.

Figure 3. Time history of the state estimates wk at three

locations, for the experiment using the standard KB filter. The

selected locations are labeled SF (for San Francisco, x -7&x), NY

(for New York, x - 0 Ax), and HA (for Hawaii, x . 5 Ax). Figure 3a

shows the u-component of velocity, Figure 3b shown the v-component of

velocity, and Figure 3c shows the geopr"^.ntial f. 	 Notice the slow

waves with a period of approximately 6 days, upon which are

superimposed smaller-amplitude fast waves.

Figure 4. Same as Figure 3, but for the experiment with the

modified KB filter. The fast waves have been completely eliminated and

the state estimates evolve slowly.

Figure 5. Components of the expected rms estimation error, for the

experiment with the standard KB filter. Figure 5a shows the expected

rms error over land, Figure 5b over the ocean, and Figure Sc over the

entire domain. The individual curves are labeled U, V, P and E, for

t
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the expected rms error in u, v, # and the total energy, averaged over

the indicated region,	 The error at synoptic time decreases

immediately over land, and more gradually over the ocean. In between

synoptic times, the error over land` increases more sharply than the

error over the ocean, due to advection of error from over the
	 rt

data-sparse ocean. Each curve converges rapidly to a periodic

function.

Figure 6. Same as Figure S, but for the experiment using the

modified KB filter. Estimation errors in this case are nearly

identical to those resulting from use of the standard KB filter, except

that the u-component errors now increase slightly with time. This is

due to the fact that, since the slow-wave subspace is quasigeostrophic,

the modified filter allows almost no observational correction to be

performed on the u-components.

Figure 7. Influence functions of selected observation stations at

10 days, or k - 480 time steps, for the experiment with the standard. KB

filter. The influence functions of an observation station are obtained

from columns of Kk ; they show the weight give to an observation of u,

v or 0 at that station when updating points throughout the domain.

Grid points are indicated by tick narks on the horizontal axis; the

horizontal parallel lines and vertical dashed lines indicate the

observed reg:.^n, or ]and.

(for Saint Louis, x - -3Qx),

panels,	 7a-7i, give the

corrections, (b) v on u, (c)

V, (g) u on 0, (h) v on 0,

are discussed in Sec. 6.2.

The selected observation stations are SL

SF and NY (see Figure 3). The nine

influence of (a) u observations on u

on u, (d) u on v, (e) v on v, (f) 	 on

() f on fe Particularities of the curves
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Figure 8. Same as Figure 7, but at the first synoptic time, k - 24

time	 steps.	 The influence functions here are such more symmetric than

those in Figure 7. Comparison 	 of	 these	 two	 figores	 allows	 one	 to {

distinguish	 between	 the	 Effect of inhomogeneous data density and the

p

effect of xdvection of information, as discussed in the text.

Figure	 9.	 Plots	 of	 ^-*	 and	 vry	forecast	 error	 correlation

functions.	 Figures	 9a,b	 show	 the	 correlation functionsCtt i+j and

Ci,3.+j r	 respectivO.1,	 which	 are	 prescribed	 in	 01,	 cf.	 Eqs.

(7.10a,b).	 These	 two plots are generated by evaluating Ci,i+j at the

grid	 points	 x J ,	 -8 ,-7,8001,7,8 ;	
Ci,i+j
	 is	 homogeneous,	 or

independent	 of the base point xi ,	 Figures 9c,d show the true ^-^ and

%-v forecast error correlation functions, respectively, 	 computed	 from

Pf 	at 10 days, for run A l .	 These correlation functions are drawn for

the base points SL (xi	 3 Ax), HA (xi - 5 Ax) and	 LN	 (xi	 -	 8 Ax).
a

Figures	 9e , f	 show the same correlation functions as Figures 9c,d, but

for the initialized run A l .	 Comparison of	 the	 prescribed	 and	 true 7,

correlation	 functions	 helps explain the results of the 01 experiments

which are summarized in Table 4.
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Abbreviations usedt

Alreps Standard wind observations from aircraft

Asdars, Aids High quality wind observations frus aircraft
i

' buoys Surface pressure observations from drifting buoys s

COWA Constant level balloons

Drops Radiosondn dropped from aircraft

pilots Wind missurements from ascending balloons i
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