General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Planetary Research Center, Lowell Observatory, Flaqstaff. Arizona 86002

A. Klemola

Board of studies in Astronomy and Astrophysics, lick observatory, University of California at Santa Cruz, Santa Cruz, Cailfornia 95064
R. C. Elliott, W. G. Smethells, and P. M. Price

Casey Observatory, Department of Physics and Astronomy, University of Wisconsin-Eau Claire, Eau Claire, wisconsin 54701

> C. P. Mckay and C. Steele

Sommers-bausch Observatory. Department of Astro-Geophysics, University of Colorado, Boulder, Colorado 80309

```
E. Everhart and E. M. Everhart
```

Chamberif joservatory, Department of physics, University of Denver. Denver, Colorajo 80208

Abstract

The 7 October 1981 occultation of SAO 187124 by 88 Thisbe was observed at tweive sites. The occultation observations, together with information about the asteroid's liunt curve, gives a mean diameter for risise of $232 \pm 10 \mathrm{kn}$. This value is 10 oercent larger than the oreviously published radiometric diameter of risbe.

Introduction

On 7 October 1981, the asteroid 88 Thisbe occulted SAO 187124, a 9tn-magnitude star in sagittarius. ris occultation, originally oredicted by taylor (1981), was observed in the United states at iwelve sites between Wisconsin and Utan. In this paper we discuss the observations and derive the dianeter of Thisbe.

Observations

Taylor's (1981) orediction of the 7 octooer occultation, basey solely on the catalog position of the star and the publishes eoheneris of Thisbe, gave a ground
track talling across western Canada. However, olates taker on 27 september 1981 with the $0.5-m$ Carneqie double Astrograph on Mt. Hamilton yielded a more southerly track stretening from southern California to the Great Lakes (see Fig. 1a). An additional blate taken with the same telescode on 4 October 1981 gave a similar ground track (Fig. $1 b$), as did plates taken with the $1.55=m$ Astrometric Reflector at the flagtaff station of the U. S. Naval Observatory on 6 October 1981 (Flg. 1c). The plates from Mt. Hamilton were measured relative to a reference frame defined by stars chosen from the perth 70 catalof. The USNO olates were measures relative to a network of falnter stars whose dositions were determined from the Mt. Hamilton olates. It is evident from inspection of fig. 1 that the three predicted ground tracks aree to within aporoximately one-nalf the wisth of the track. The corresponding uncertainty in the preficted geocentric angular separation of the star and asteroid at closest approach is only 0.07 aresec.

At the time of the occultation. Thisbe was exoected to nave a visual majnitude of 11.8 , while SAO 187124 is nearly three mainitudes brignter. consequently, the

Abstract

change in brightness of the merges starasteroid image at immersion and emersion would be large, making this occultation easily detectable y visual observers. Assuming a diameter for rhisbe of 214 km sis given in the TRIAD file (Bowell, Genrels, and zellner 1979), the maximun duration of the occultation was expected to be 9.9 seconds. Thisbe's shadow would move along the ground track from west to east.

The occultation of sAO 187124 was observed at th: first twelve sites listed in Table I. The coordinates and altituses of the sites are given in colunns 3. 4. and 5. The observed times of immersion and emersion are notes in columns 6 and 7 along with the observers estimates of the uncertainty in the absolute timing in column 8. Nanes of the observers are given in the footnotes to the tase. The observations at circleville, Utan: otter Creek Reservoir, Utan: and Eau claire, wisconsin, were nase photoelectrically. All otrers were visual.

Telescopes used for these observations ranged fron the $0.6-m$ reflector at sommers-bausen observatory eo relatively snall oortable instrunents. The onotoelectric
observations from circieville and otter Creek Reservoir were made with $0.35-m$ Celestron telescopes esperially equipod for use at remote sites. Figure 2 snows a tracing of the occultation light curve recorded with one Of these systems near otter Creek Reservoir. In adifion to the real-time strio chart disolay shown in Fig. 2, the data are recorded on magnetic tape for later digitization at nign time resolution. The times listed in table for Otter Creek and Circleville were determined from the digital data. The ohotoelectric observations at Eau Claire were also made with a 0.35-m Celestron telescooe. Pulse counting electronics giving 50 m sec integrations with 0.5 m sec dead tine between integrations were usej.

Analysis

The basic method of analysis employed in this oaper has been discussed in detail by wasserman et ad. (1979) and Millis and Elliot (1979). In essence, each observes time of immersion or emersion defines a doint on the limb of the asteroid. The asteroid's apoarent limb profile is then reoresentej by a circle or, if the data warrant, an elliose fitted by least squares to all the observational
points. In this way the effective diameter of the face of the asteroid seen at the time of the occultation can be derives. The occultation result can then be combined with information about the asterold's brightness variation with rotation and aspect to give the best possible estimate of its overall mean dianeter.

We have plotted in fia. 3 the chorss across risise which one derives if the observed times of immersion and emersion in table 1 are taken at face value. The solid lines rearesent photoelectric observations; the visual observations are indicatej by dashed lines. Note that all the visually determined chords are displaced westward relative to the onotoelectric chords. nisplacements in this direction imply that the visual observers reoorted tines which were systenatically late relative to the photoelectric tines, as would be expected if response tine corrections were not made or were underestimated.
while the observed times of immersion and emersion redorted by a visual observer are subject to sianifizant systematic error, the elapsed interval between the two times--that is to say, the duration of the occultation-is
determined much nore accurately. Therefore, the visual chords in fig. 3 are likely to have very nearly the correct lengths, but they are disolaced laterally ci.e.. In tine) from their proder positions. Consequentiy, in our least-squares solution for the best-fitting circular limb orofile of Thisbe, we have included the response times of individual visual observers as free parameters. This zooroach has the effect of allowing the visual choris to silde oarallel to the photoelectric chords. Other free parameters in the solutions are the asteroid's dianeter and corrections to the right ascension and decilnation of Thisbe. We have arbitrarily assumed that all positional error is in rnisbe's eonemeris. The resulting solution is illustrated in Fig. 4. All observations were given equal weiant in the solutions. The best-fitting circular limb frofile has a flaneter of $221.8 \pm 1.4 \mathrm{~km}$. while the resulting corrections to riatht ascension and decilnation are -0.051 ± 0.00003 sec and -0.799 ± 0.0013 arcsec, resoectively. The diagonal line across the bottom of the figure indicates the constraint placed on the solution by photoelectric observations at Erwin Fick observatory near Boone, Iowa, which showed no occultation (Beavers 1981). Other neaztive photoelectric observations were recoried
somewhat further south of the track at Lowell observatory and Braeside Observatory in Flaqstaff, Arizona, and at the Mt. Wllson Observatory (see rable I). To our knowlejye, no observations, either photoelectric or visual, were vide north of the track.

The response time corrections deternined for each of the visual observers from the least-squares solution are listed in column 9 of rable 1 . They range from fust over 2 seconss at Chamberiln Joservatory, where clock error nay have been a problem, to slightly less than 0.3 sec at Sommers-Bausch Observatory, where WWV tine signals and the observers resoonses were recorded simultaneously on an oscilloaraphic recorter. Ignorina these two extreme cases and renoving the personal equation corrections alresdy adplies to the Cheyenne and Cambridge observations, we obtain a mean response time of 1.1 seconds. while. this value is larger than one might have expectes, it is less than that deternined from visual observations of the occultation of $A G+0^{\circ} 1022$ DY Juno (Millis et al. 1981).

The last two columns of rable contain the rajial residuals (observej ninus conouted radius) for tne
solution shown in figure 4 . These volues yield an rms residual der degree of freedom of 3.5 km , similar to the results obtaines for other well-observed stellar occultations by asteroids (wasserman et al. 1979; Miliss et al. 1981).

The actual occultation track as determined from our analysis is shown in fig. 5. Sites where the occuitation was successfully observed are marked by filled circles; barred circles denote sites where photoelectric observations show that no occultation occurred. The predicted tracks shown in fig. 1 depart from the aetual track by no more than one-half the width of the track.

Discussion

Our analysis of the occultation onservations nas qiven a value of $221.8 \pm 14 \mathrm{kn}$ for the diameter of that face of thisbe seen at tie time of the occultation. The quoted standard error, however, reflects only the formal uncertainty in fitting a circle through the shifted gata points. The true uncertainty in the diameter is iarjer because of the effects of errors in the observed durations
and because the true limb proflde may depart from a circle.

The magnitude of the errors in the observed durations can be evaluated by comoring results from odservers near the same chord. For the visual observers one finss in these instances a peak-to-oeak scatter of about ± 0.25 sec, giving a mean chord length which is accurate to detter than 2 percent. the photoelectric chords nave significantiy less uncertainty. Consequently, we estinate that the observational errors can be fully allowef for by increasina the quoted formal uncertainty by no more =nan a factor of two.

The more serious source of error, and one that is difflcult to evaluate preciselv, is the dossibility that the true limb profile departs markedy from a cir=le. Observational coverage of Thisbe's seuthern hemisohere was quite limited during the 7 october occultation. Obviously, the existence of larae limb irreaularities in that reaion cannot be ruled out. we do note that in the region well covered by the observations (see fig. 4), limb irreaularities have scales of only a few kiloneters
comparable to those seen on other well-observed large asteroids (Wasserman ef ad. 1979\% mililset al. 19'3i).

Another possiollity to be considered is that the 11 mb profile may be elliotical rather than circular. We nave not oresented afit of an elifose to the tata because, in our opinion, the data do not have sufficient coverage of the asteroid to distinguish meaninqfuliy between an elliose and a circle. If one does fit an elliose, nowever, the observations from Cheyenne and cambridge near the northern ejge of the track and the negative result from Erwin fick observatory constrain the effective diameter $(\sqrt{a b})$ of the ellipse to fall within 3 percent of the diameter derived from the circular solution.

As has been mentioned earifer, the jiameter derived fron the occultation pertains only to the feee of rilsbe seen at the time of the occultation. In order to derive an overall mean jiameter, one must assess the variation in the asteroid's aoparent crossesection with rotation . .ls aspect by inspection of the object's light curve. In the case of Tnisbe, the available data are limited. Scnooer. Scaltriti, and zapplie (1979) from observations on four
nignts in 1977 found the brightness of thisbe to vary with a perios of 6.0422 and a full amplitude of 0.19 nag. photometry by $3 . \quad W$. Young at Table Mountain observatory on 23 Jctober 1981 is consistent with these values. although a full cycle of the light curve was not covered (Harris i981). Young's observations. combined with the period measured by schober, scaltiti, and zapola, indicate that the 7 Dctober occultation occurred near the time of minimum lignt and. therefore. mininum crossesectional area. At maximum briontness. assuning a light curve amolitude of 0.19 mat. one would expect the effective diameter of Thisbe to be approximately 9 deraent larger than the value determined from the oceultation. The mean diameter will be near the average of these two. Accordinaly, we adodt $232 \pm 10 \mathrm{~km}$ as the occultation diameter of rnisbe where the error nas been estinated conservatively to allow for the various sourees of uncertainty discussed above. This value for Thisoés diameter is 10 percent larger than the radionetric diameter auoted by Morrison and Zellner (1979).

No secondary occultations attributable to possiole satellites of rissbe were reported durina the 7 octoser

1981 event.
we thant the staff of the Flagstaft station of the U. S. Naval observatory fur taking plates used in refining the predictions for this occultation. The lick observatory astrograph Dlates were taken by E. Harlan. D. Dunham kindiy provised an accurate eohemeris for Thisbe and transmittes visual timings by several menters of the International secultation timing Association (IDTA). We thank s. Schultz, L. Allies, and J. Fox for permission to use their unpublished observations. Tnis researen was supported at Lowell observatory by NASA jrant NSG-7603 and at Lick Observatory by NSF Grant AST 79-09098. The Lowell computing facility, used in tais work, was obtalied with generous grants from the Digital Equidment cordoration and the National Seience founjation and with further helo from Mrs. R. L. Putnam, the Perkin Fund, the National Aeronautics and space Administration, and the U. S. Naval Observatory.

REFERENCES

Reavers, W. I. (1981). Private communication. Bowell, E., Gehrels, t., anj Zellner, B. (1979). In Asterofis, edited by T. Gehrels CUniversity of Arizona Press, Tucson), D. 1108.

```
Harris, A. W. (1981). Private communication.
```

Millis, R. L.. and Elliot, J. L. (1979). In Asteroijs.
edited by T. Genrels cuniversity of Arizoni press,
Tucson), 0. 98.
Millis, R. L., شassernan, L. H.. Bowell, E., franz,
O. G.. white, N. M.. Lockwood, G. W.. Nye, R..
bertram, R., Klemola, A., Dunnam, E.. Saron, R. L.,
Elliot, J. L., Harris, A., Young, J. W., Faulkner,
J., Stanton, R., Reitsera, H. J., Hundard, W. B..
Zellner, B., Lebofsky, L., Cruikshank, D. P.. Macknis,
L. S., Recklin, E. E., Morrison, D.. Lonsdaie, C. J.,
Kunkle, T. D., Lee, T., Gatley, I.. A'Hearn, M. F..
Dupuy, D. L., Nolthenius, R., Ford, H., Mckenna, D.,
Dlacova, Z., $40 r n e, k ., S a n d m a n n, W_{\text {. }}$ Tavlor, G. E.,
and Tucker, R. (1981). Astron. J. 86, 306.
morrison, D., and $\mathbf{~ e l l i n e r , ~ B . ~ (1 9 7 9) . ~ I n ~ A s t e r o i d s . ~}$
efitef by r. Jenrels (ilniversity of Arizona press,
Tucson), p. 1090.

```
Scnober, H. J., Scaltriti, F., and Zapoàla, V. (1979).
    Astron. Astrophys. Suppl. 36. 1.
Taylor, G. (1981). Handbook of the British Astronomical
    Association. D. 26.
wassernan, L. H., Millis, R. L., Franz, O. G., Bowell,
    E., white, N. M.. Gicles, H. L.. Martin, L. J.,
    Elliot, J. L., Dunhan, E., Mink, D., Baron, R.,
    Honeycutt, R. K., Hensen, A. A., Kedhart, J. E.,
    A"Hearn, M. F., Reitsena, H. J., Radick, R., and
    Taylor, G. E. (1979). Astron. J. &4, 259.
```

TABLE I. Observations of the 7 October 1981 Occultation of SAO 187124 by 88 Thisbe.

No.	Location	Longi tude	Latitude	Altitude (meters)	Immersion	Emersion	Absolute timing uncertainty (sec)	Shift	$\underset{(\mathrm{km})}{\text { Residuals }}$	
									Immersion	Emersion
1	Cheyenne, ijY	$6^{\mathrm{h}} 59^{\mathrm{m}} 40^{\text {s. }} 9$	$41^{\circ} 12^{\prime} 24^{\prime \prime}$	1980	$2^{\mathrm{h}} 01^{\mathrm{m}} 44.9$	$2^{h_{01}} 01^{m_{5}}{ }^{s} .8$		-0.99	1.3	1.3
2	Cambridge, MN	61234.06	453301.6	286	20217.7	20225.6	0.2	-0.89	-0.8	-0.8
3	Minneapolis, MN	61257.04	445840	260	20218	20227.5		-1.27	-1.3	-1.3
4	St. Paul, MN	61240.51	$44 \quad 5611.1$	289	20217.5	20227.5		-0.74	2.3	2.3
5*	Circleville, UT	72905.67	$\begin{array}{lllll}38 & 10 & 07.8\end{array}$	1853	20116.94	20127.30	0.02	-	4.1	0.9
6*	Otter Creek, UT	72808.55	381046.2	2146	20117.88	20128.24	0.02	-	3.4	0.2
7	Greely, CO	65849.1	402419	1460	20146	20156	0.5	-1.60	-1.9	-1.9
8	Mankato, MN	61559.3	440828.0	302	20216.2	20226.6		-0.81	0.7	0.7
9	Sommers-Bausch Observatory	70102.93	400013.0	1648	20142.85	20153.19		-0.29	-0.4	-0.4
10	Golden, CO	70130.0	395230.0	2725	20143.3	20153.2		-0.80	-5.4	-5.4
11*	Eau Claire, WI	60559.84	444744.4	268	20221.91	20232.36	0.1	-	-2.4	+4.0
12	Chamberlin Obs.	70144.9	392538	2678	20144.5	20155.0	1.0	-2.13	2.4	2.4
13	Erwin Fick Obs.	61545.8	420020.0	332	No Occulta	tion				
14	Mt. Wilson Obs.	75214.3	341259.5	1742	No Occulta	tion				
15	Braeside Obs.	72639.6	351240.5	2207	No Occulta	tion				
16	Lowell Obs.	72608.6	350548.6	2200	No Occulta	tion				

ORICINAL PAGE IS
 OF POOR QUALITY

*Photoretric observations Quoted time include personal P. Maley, R. Peterson. Quoted times include personal equation correction of 0.3 sec . See IAU Circular No. 3652 . . Fox. Quoted times include personal equation correction of 0.5 sec .

*Photometric observations

FIGURE CAPTIONS

Figure 1. The predicted ground track of the 7 october 1981 occultation of SAD 187124 by 88 Thisbe based on (a) plates taken at Lick Observatory on 27 September 1981, (b) a plate taken at Lick on 4 Dctober 1981, and (c) plates taken at the flagstaff Station of the U. S. Naval Dbservatory on 6 Detober 1981.

Figure 2. The light curve of the 7 October 1981 occultation of SAO 187124 by 88 Thisbe observed near otter Creek Reservoir in central utah.

Figure 3. Chorss across Thisbe, uncorrected for the response times of visual observers. Solid lines represent photoelectric observations; dashed lines are chords derived from visual observations. rable I lists the observing sites corresponding to the chords, beqinaing with the northernmost chord.

Fiqure 4. A circular limb profile fitted by least squares to the occultation observations. This solution yielis a diameter for the face of inisbe seen at the time of the occultation of $221.8 \pm 1.4 \mathrm{~km}$. The response tires of
visual observers were included as free oarameters in the
least-s auares solution. The diagonal line near the bottom
of the figure represents the constraint placef on the
solution by negative observations at Erwin rick
observatory.
Fiqure 5. The actual ground track of the 7 October 1981
occultation as deterninet from the least-squares solution
shown in fiqure 4 . Fillej circles denote sites where the
occultation was observej. The other symbols indizate
sites where onotoelectric observations showej no
occultation.

Figure 1.

ORIGINRL PRGE IS OF POOR QUALITY

