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RECENT APPLICATIONS OF THE TRANSONIC WING ANALYSIS COMPUTER CODE TWING

N. R. Subramanian,* Terry L. Holst and Scott D. Thomast

Ames Research Center

• SUMMARY

This report presents an evaluation of the transonic-wing-analysis computer code

- TWING. TWING utilizes a fully implicit approximate factorization iteration scheme to

solve thefull potential equation in conservative form. A numerical elliptic-solver

grid-generation scheme is used to generate the required finite-difference mesh.

Several wing configurations have been analyzed, and the limits of applicability of

the code have been evaluated. Comparisons of computed results have been made with

available experimental data. Results indicate that the code is robust, accurate (when

significant viscous effects are not present), and efficient. TWING generally pro-

duces solutions an order of magnitude faster than other conservative full potential

codes using successive-line overrelaxation. The present method is applicable to a

wide range of isolated wing configurations including high-aspect-ratio transport wings

and low-aspect-ratio, high-sweep, fighter configurations.

I. INTRODUCTION

Recently, computers have had an increasing role in the aerodynamic design of
aircraft for transonic flight. The computation of three-dimensional transonic flows

about wings in many senses has become a routine affair. However, currently available

methods still are unable to accurately and efficiently predict transonic character-

istics of wings with large variations in aspect ratio, Mach number, angle of attack,

sweep, taper ratio, etc.

During recent years, inviscid transonic flow computations have been obtained

using two formulations: (I) the transonic small disturbance (TSD) formulation and

(2) the full potential (FP) formulation. The TSD formulation is valid for isentropic,
irrotational flows involving thin bodies at small angles of attack and for transonic

conditions. Flow-tangency boundary conditions are imposed on mean geometrical sur-

faces, for example, wing "slits" or fuselage "boxes." Thus, simplified grids can be

used, usually involving sheared, stretched Cartesian coordinates. This is the primary

- reason why the TSD formulation was introduced before the FP formulation and why more

complete geometrical configurations have been solved via the TSD approach.

. • The worst problem associated with the TSD formulation occurs at the wing leading

edge where the stagnation region generally causes the small disturbance assumption to

break down. However, this formulation yields results which are generally better than

expected. Indeed, good correlations with experiment have been obtained for a wide

variety of applications. Example applications using the TSD formulation can be found

in references i-5. Although the TSD formulation is capable of computing flows for

relatively sophisticated geometries, the FP formulation is generally desired when an

accurate solution near the wing leading edge is required.

*Senior NRC Associate.

tResearch Scientist, Informatics General Corporation, Palo Alto, California.



The FP formulation is valid for isentropie, irrotational flows ranging from

incompressible to transonic conditions. The flow-tangency boundary condition is pre-

scribed in an exact manner (relative to the TSD approach) at the geometry surface.
Thus a more complex mapping procedure is required with this approach. Example appli-

cations using the FP formulation can be found in references 6-10. In addition, a

survey of computational transonic methods in which the TSD and FP formulations are

compared and contrasted is presented in reference ii.

Recently, a large number of researchers have investigated various ways of improv- ,

ing solution convergence. This research direction has been largely necessitated by

the slow rate of convergence associated with the standard relaxation algorithm,

successive-line overrelaxation (SLOR). Some of the new algorithms investigated
include multigrid (refs. 12-16), the strongly implicit procedure (SIP) (ref. 17), and

various approximate factorization schemes (refs. 18-23).

In this study, the TWING computer code (transonic wing analysis) has been used

to calculate the flow field around a variety of isolated wing geometries. The intent

of this report is to provide a quantitative evaluation of this code with respect to

reliability and accuracy in solving transonic-wing flow fields. This code uses the

AF2 fully implicit approximate factorization scheme to solve the FP equation in con-

servative form (ref. 24). Supersonic regions of flow are stabilized in the spatial-

differencing scheme by using an upwind bias in the density evaluation (refs. 19, 25,

and 26). This causes the spatial differencing scheme to be first-order accurate in

supersonic regions and second-order accurate in subsonic regions.

Variations in wing aspect ratio, taper ratio, sweep, twist, and airfoil cross

section have all been investigated in the present study. General details of the TWING

solution algorithm are discussed first, followed by detailed grid and flow-solver

results. Correlations with experimental results are included for most of the cases

presented.

II. NUMERICAL ALGORITHM

Governing Equations

The three-dimensional full-potential equation written in strong conservation-law

form is given by

(O_x)x + (0_y)y + (0_z)z = 0 (la)

[ _ 2 2 ] _/_-_ -0 : i Y i I_(Ixy+ i + ly + i_) (ib)

The density 0 and velocity components _x, _ , and _z, are nondimensionalized by the I-

stagnation density 0s and the critical soundYspeed a,, respectively; x, y, and z
are Cartesian coordinates in the streamwise, spanwise, and vertical directions,

respectively, and y is the ratio of specific heats.

_quation (I) is trans£ormed _rom the physical domain (Cartesian coordinates) to

the computational domain by using a general independent variable transformation.
This transformation (see fig. I), indicated by



%

= |

n q (x,y,z) I (2)
_(x,y,z)

maintains the strong conservation-law form of equation (i) (see ref. 27). The full-

- potential equation written in the computational domain (_ - n - _ coordinate system)

is given by

] zly-1= [1 -7 - 1 (Udp_+ + (3b)
P -y+ I v(Fn wdp_

where

U = A1d__ + A_b + Asqb_

V = A_b_ + A2_b_ + A6_b_ (4a)

W = AsdP_ + A6dpq + A3_b_

2 2 + 2
Az = _x + _y _z

2+ 2+ 2
A2 = _x qy _z

2 2 + 2
A3 = _x + _y _z

(4b)

A4 = _xnx + _yny + _zqz

As = _x_x + _y_y + _z_z

A 6 = qx_x + _y_y + _z_z

and

J = _xny_z + _znx_y + _ynz_ x

- _zny_x - _ynx_ z - _x_z_y
(5)

= i/(x_y z_ + x_y_z + x y_z_

- x_y_z n - xnY_Z _ - x_ynz _)



Note that this formulation for the FP equation is more general than the formulation

of reference 24. The simplification that all _ = constant surfaces coincide with

y = constant planes has been removed. Thus, completely general orientations of the

- _ - _ mesh can be supported with the present formulation. For more discussion

on the details of this transformation procedure see reference 24.

Grid Generation °

The grid generation scheme used in the present three-dimensional formulation is

a simple extension of the two-dimensional scheme presented in reference 28. The i

finite-difference mesh is generated using a standard two-dimensional algorithm. This

requires solution of two Laplace equations in each spanwise plane used as a defining

station. These equations are transformed to the computational domain and solved

using a fast approximate-factorization relaxation algorithm (ref. 28).

This establishes values for x and z in each spanwise plane used as a defining

station. Coordinate values (x and z) for computational planes between the defining

stations are obtained via linear interpolation. For the case of a wing with no

taper or section variation, only two defining stations are required, one at the root

and one outboard of the tip in the wing-extension region. The root station is user-

specified, but the wing-extension station is always chosen as a flat plate. In addi-

tion, wing taper, twist, thickness, and sweep variations can be specified at each

defining station.

The coordinate values in the spanwise direction (y values) are computed from a

stretching formula, that in its simplest form gives equal spacing over the wing with

relatively rapid stretching beyond the tip. The x and z values generated for the

first station outboard of the tip are used for each wing extension station. Then a

smoothing step for the two y = constant planes on either side of the tip is imple-

mented to remove grid discontinuities, which may arise in the transition from an air-

foil of positive thickness to one of zero thickness. An example grid generated using

the procedure just discussed will be presented in the section on computed results.

Spatial Differencing

A finite-difference approximation for equation (3) suitable for both subsonic

and supersonic flow regions is given by

_ (PU/J)i+I/2 ,j,k + _ (_V/J)i ,j+i/z ,k + _ (0W/J)i ,j,k+l/2 = 0 (6)

operators _(), _(), and _( ) are first-order-accurate, backward-
where the

difference operators in the 6, _, and _ directions, respectively. The density

coefficients _ and _ are defined by •

0i+I/2,j,k = [(I - _)0]i+i/2,j, k + _i+i/z,j,kOi+r+i/2,j, k I (7)_i,j+i/2,k = [(i - _)0]i,j+i/z,k + _i,j+i/2,kPi,j+s+i/2, k



where

r = +-i when Ui+i/2,j, k X 0 I
(8)

s = +I when - J!Vi,'+l'2,k ><0

o and

max[(M_,j, k - I)C,0] for Ui+i/2,j, k > 0

• = (9)

_i+I/2,j,k max[( i+l,j,k Ui+I/2,j,k
M2 - I)C,0] for < 0

The quantity Mi,j,k is the local Mach number, C is a user-specified constant
(usually between 1.0 and 2.0); and the quantities U, V, and W are the contravariant

velocity components computed using standard, second-order-accurate finite-difference

formulas. The density 0 is computed from the second-order-accurate discretized

version of equation (3b) and is stored at half points in the finite-difference mesh

(i.e., at i+i/2,j,k). Values needed at i,j+i/2,k or i,j,k+I/2 are obtained using

simple four-element averages.

The spatial differencing scheme given by equations (6-9) is centrally differ-
enced and second-order accurate in subsonic regions. In supersonic regions, the dif-

ferencing is a combination of (I) the second-order-accurate central differencing used

in subsonic regions and (2) the first-order-accurate upwind differencing resulting

from the upwind evaluation of the density coefficients (5 and _). In the present

formulation upwind evaluations of the density have been used along only the i and j

indices (wraparound and spanwise directions, respectively). Thus the fully rotated
form of the spatial difference scheme has not been used. This has not adversely
affected convergence for any of the cases presented herein. However, other cases

involving large regions of supersonic flow at the wing trailing edge may require the

fully rotated difference scheme with all three values of density in equation (6)

biased in the upwind direction.

AF2 Iteration Scheme

The AF2 fully implicit iteration scheme used in the present study can be

expressed in a three-step format given by

Step i:

(_ I _nAj_) n n n (10a)- _ gi,j = e_L_i,j,k + eAk+Ifi,j,k+1

Step 2:

(A - 8_ _ _i_Ai_fl = n (10b)
k + e ,j,k gi,j

Step 3"

n = fn (lOc)
(e + _)Ci, j,k i,j,k



where the n superscript is an iteration index; = is an acceleration parameter;n

L_i,j,k is the nth iteration residual (defined by eq. (6)); _ is a relaxation
_actor, equal to 1.8 for all cases presented; gi,j is an intermediate result stored

at each grid point in a given k plane; and f_,j,k is an intermediate result stored

at each point in the flnlte-dlfference mesh. The Ai, Aj, and Ak, coefficients are
defined by

Ai ~A n= (p i/J)i_i/2,j,k

A. - n
3 (PA2/J)i,J-I/2, k (ii) |

n

(PAs/J)i,j,k-i/2

and the density coefficients 9 and _ are defined by equation (7).

The quantity _ appearing in equation (I0) can be considered as At-I. The best

choice for _ is to use a sequence of values. The small values are particularly

effective for reducing the low-frequency errors, and the large values are particularly
effective for reducing the hlgh-frequency errors. The _ sequence given in refer-

ence 19 has been used for the computations presented herein.

A _t-type term has been added inside the brackets of step 2 (see eq. (iOb)).
This term is necessary to provide time-like damping to the iteration scheme. The

parameter 8_ is user-specifled and usually ranges between 0.05 and 0.3. Larger
values are generally required for cases with larger regions of supersonic flow.

In step i, the g array is obtained by solving a tridiagonal matrix equation for

each _ = constant line in the kth plane. In step 2, the f array is obtained from

g by solving a tridiagonal matrix equation for each n = constant line, again for

just the kth plane. Next, step I is used to obtain the g array for the k- i

plane, and then step 2 is used to obtain the f array for the k- i plane, etc.
This process continues until all values of f in the three-dimensional mesh are

established. Then, by using step 3, the correction array is obtained from the f

array by solving a simple bidlagonal matrix equation for each _ line in the entire

flnite-difference mesh. Other aspects of the present spatial differencing and itera-
tion schemes are discussed in more detail in reference 24.

Bbund_ Conditions

_ ,YTHewing-surfacehoundsar_!,condi_i0_,in,_the body-fittedcoordinatesystem is

" O* • : =_ 0W (12) '-
." ,j,NK.I/Z i,j,NK-I/2

Where NK is the wing surface. A similarreflectionconditionis used for the sym-
metry_piane(y = 0), Along the'free streamand outer boundariesthe initial free-
streamdistribution:of' _ is fixed for nonliftingconditions. For liftingwings the
outer boundaryis updatedby the usual compressiblevortex solutionwith circulation
Fj. A user-speclfiedrelaxationparameter(RGAM)is used to control the circulation
build up. Details describing the circulation algorithm can be found in reference 24.
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III. COMPUTED RESULTS

In this section several results computed from the TWING computer code are pre-

sented. In each case the solution procedure started with the numerical generation of

the finite-dlfference mesh. An example grid is shown in figures 2-9 for the Wing C

geometry obtained from reference 29 (configuration 4 in table i). The x/c, y/c,

" and z/c Cartesian coordinates used in these figures are based on an origin at the

wing-rootmidchord and are normalizedby root chord c. This grid contains
127×27x20= 68,580 points (wraparound,spanwise,and near-normaldlrections,respec-

' tively),and is typicalof the grids used for the resultspresentedherein. Note

" that with this grid 127x17 = 2159 points are used to define the wing surface geometry.

This configuration is a high-sweep (ALE = 45°), high-taper (TR = 0.3) wing with 8° of
twist. The amount of taper and twist is apparent from figures 2, 3, and 4 which show

blowups of the root, tip, and wing extension airfoil sections plotted to the same

scale. Note the efficiency with which the "O mesh" topology clusters points around

the airfoil-section geometry regardless of its position in the span (root or tip).

For this particular grid a special clustering procedure has been used to cluster grid

points at the wing leading edges. This is especially useful for wings with sharp

leading edges. Figures 5 and 6 show additional detail about the wing root section

leading and trailing edges, respectively. The wing planform including the surrounding

mesh is shown in figure 7, and the grid in the _ = constant plane corresponding to

the wing half-chord position (i.e., the wing on edge) is shown in figure B. Apparent

in these views is the wing-tip grid topology and the stretching rates used above and

below the wing as well as outboard of the wing tip. Finally, figure 9 contains a

perspective view of the three-dimensional grid which consists of the symmetry plane,

wing surface and vortex-sheet grid distributions. This view very much represents the

view of the wing mounted in the wind tunnel (except for the vortex sheet) and presents

a good picture of the overall grid topology.

The first case presented consists of a large aspect ratio wing (AR = 40) with

zero sweep. The airfoil section (Korn airfoil, see ref. 30) is constant in the span-

wise direction. The freestream Mach number is 0.75 and the angle of attack is 0.115 °.

This case is basically two dimensional in nature (everywhere except at the tip) and,

thus, is compared with the two-dimensional hodograph result of reference 30 in fig-
ure I0. The agreement for this transonic "shock free" case is quite good. The TWING

code produces a small shock at the aft sonic line which is similar to other results

produced for this sensitive problem (ref. 31).

The next case involves a subcritical calculation (M_ = 0.7, _ = 4°) about a
moderately swept, tapered wing without twist (see conf. i in table i). A comparison
of wing surface pressures with experiment (ref. 32) is shown in figure ii. The com-
putational angle of attack was set so as to approximately match the experimental value
of lift rather than the experimental value of the angle of attack. This is primarily
required to simulate viscous effects which are not modeled in the inviscid TWING
formulation. Overall the agreement between the experiment and the computational
result is excellent.

The next case involves the "Wing A" geometry of reference 29 (see also ref. 33).

Characteristics of this high-taper, low-sweep wing are presented in table i (conf. 2).

A comparison of wing surface pressures with experiment is shown in figure 12 for

measured experimental conditions of M_ = 0.818, e = 2.9 °. Corrections to the experi-
mental Mach number and angle of attack of -0.02 and -2.3 = were required in the present

computation (i.e., M_,co m = 0.798, and ecom = 0"6°) to produce good correlation with
the experimental pressure distributions. The wind tunnel wall-interference study



conducted in reference 29 produced similar, but smaller corrections for this set of

conditions (AM = -0.005 and As = -1.4°). The angle of attack correction of refer-

ence 29 was determined from the FLO 22 computer code (ref. 34) by varying the compu-

tational angle of attack until the computed upper and lower surface pressures in the

wing leading edge region matched experiment. Then the difference between the experi-

mental and computational angles of attack was taken as the desired angle of attack
correction As. After As was obtained, the Mach number correction (AM) was deter-

mined by using the Bailey-Ballhaus TSD computer code (ref. 35). Experimentally mea- •
sured wind-tunnel-wall pressures were imposed as boundary conditions on the outer

boundary of the computational domain (set to model the wind-tunnel wall position).

Next, free-air solutions were computed with variations in the Mach number to produce
a "best match" free-air solution with the wind tunnel solution. The difference in

Mach number (if sufficiently small) between the wind tunnel wall case and the "best
match" free air case was taken to be AM.

This wind tunnel correction procedure seems to be a good one as it includes
nonlinear, three-dimensional effects, but could suffer from numerical uncertainties

arising from viscous modeling as well as other numerical errors, for example, noncon-
servative differencing, mesh effects, etc. It should be noted that the corrections

determined in reference 29 for the Wing A geometry, as well as other geometries to be

discussed shortly, produced good agreement for comparisons between FL022 and experi-

ment, but not good agreement between other computer codes and experiment. The
probable reason is that this correction procedure removes two types of errors:
(i) wind-tunnel wall interference errors and (2) numerical errors associated with each

computer code. This suggests that separate corrections tailored to each individual

computer code may be required.

In the present case the increased angle of attack correction (As = -2.3 °) is

probably the result of viscous effects but the discrepancy between the Mach number

corrections is puzzling. At any rate, with the appropriate corrections, the present
results are in good agreement everywhere except near the base of each shock outboard

of the wing root where obvious shock/boundary layer interactions affect the local

pressure distribution. The last pressure distribution at y/c = 0.95 is in only
fair agreement with experiment and probably suffers from numerical modeling inade-
quacies at the tip.

The moderate sweep case presented in reference 29 (Wing B) is discussed next.

See table i for specific characteristics of this geometry (conf. 3). Pressure coeffi-

cient comparisons with experiment are presented for Wing B at M_ = 0.9, and
= 3.9 ° (experimental conditions) in figure 13. The AM and As corrections used in

the TWING results were -0.02 and -1.7 °. The corresponding AM and As corrections

computed in reference 29 were -0.005 and -I.0 °. Overall, the agreement between

experiment and TWING is good at every span station. The aft shock position near the

root is about 5-10% too far downstream, but moves into good agreement outboard of
the midchord position.

The last configuration presented from reference 29 is a high-sweep, low-aspect-

ratio wing --Wing C. The characteristics of this geometry are presented in table i

(conf. 4) and have already been displayed in figures 2-9 where several views of a

sample grid about this configuration are presented. Three flow conditions for Wing C

are considered in the present study: a weakly supercritical case, M_ = 0,7,
= 4.949°; a moderately supercritical case, M_ = 0.85, _ = 5.9 ° (design condition);

and a strongly supercrltical case M_ = 0.9, e = 4.914 °. Pressure distribution com-

parisons between the present computed results and experiment are shown for the first

case in figure 14. For this case the experimental Mach number was matched and the

8



angle of attack correction was -0.55 °. Except for a slight overprediction of the

minimum pressure at the leadlng-edge upper surface the overall agreement'is excellent.

The second Wing C result is compared with experiment in figure 15. The Mach

number and angle of attack corrections for this case are AM = -0.02 and As = -0.9 °.

The agreement for this case is quite good everywhere except at the tip where the need
of viscous corrections is apparent. Of particular note in this calculation is the

o ability of the TWING code to predict the oblique shock which exists at both the third

(y/c = 0.5) and fourth (y/c = 0.7) span stations. The differencing scheme in this

region is entirely first-order accurate and yet little shock smearing is exhibited.

- The final Wing C calculation (M_ = 0.9, _ = 4.914 _) is compared with experiment

in figure 16. For this case the numerically determined Mach number correction of
reference 29 was AM = -0.01, and the corresponding AM used in TWING was -0.02.

Overall, the agreement between these results is good. Viscous effects p_obably cause

the discrepancy in shock strength and position at the tip station (y/c = 0.9).

The experimental and computational spanwise load distributions for the three

Wing C cases just presented are compared in figure 17. The agreement is best for the

lower Mach number case and worsens somewhat for higher Mach numbers. This is probably

due to the larger angle-of-attack corrections required for the higher Mach number
cases to match the pressure distributions in a reasonable way. Nevertheless, the

agreement is good in each case.

A convergence history for the last Wing C calculation is shown in figure 18.

Both the lift and the number of supersonic points (NSP) plotted versus iteration num-

ber n, and computer time in seconds on the CRAY-IS computer are displayed. The lift

and NSP levels are essentially established in about 20 iterations. After about
40 iterations the lift and NSP levels stabilize and the solution is essentially con-

verged. More interesting is the amount of computer time required to establish the

solution. The entire convergence history shown in figure 18 required only about

25 sec of computer time and the crudely converged solution (40 iterations) required
about 13 sec. Solutions obtained with codes using the SLOR algorithm, similar

meshes, and the same computer would require at least an order of magnitude more com-

puter time to achieve a similar level of convergence.

The small amount of computer time required per iteration, which is just as impor-
tant as the small number of iterations required for a solution, is caused by several

factors. The first is the high speed of the CRAY-IS computer. Second, the small

number of operations packed into the fully implicit AF2 iteration scheme represents

a minimum burden to any computer. Last, and most important, the way in which the

-_ operations of the AF2 iteration scheme lend themselves to efficient vector processing

greatly speeds the computational processing rate within the TWING computer code.

Other algorithms, such as SLOR, would not be so efficiently vectorized because of

inherently recursive operations.

To obtain an idea of the effects of the angle of attack (Ae) and Mach number (AM)

corrections discussed earlier, several pertinent results are shown in figure 19. The

pressure coefficient distributions at two span stations for configuration 4 (n ~ 0.30

and 0.70) are compared with experiment for several conditions: (I) the uncorrected

experimental conditions (M_ = 0.85, _ = 5.9°), (2) the corrected experimental condi-
tions using the corrections cited in reference 29 (M= = 0.845, e = 5.0°), and (3) the

corrected experimental conditions using the present corrections (M= = 0.83, _ = 5.0°).

As seen from figure 19 the angle of attack correction is more important than the Mach
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number correction. The conditions citedin reference 29 yield a reasonable solution

in the present case, primarily because both angle,of-attack corrections are the same.

The next two numerical/experimental correlations are for the ATFI (Advanced

Technology Fighter Integration) configuration obtained from General Dynamlcs-Fort
Worth (R. Cox, private communication, 1982). Details of this configuration are given

in table I (conf. 5). This geometry is a high-sweep, low-aspect-ratio wing with an

unusually small taper ratio (TR = 0.177). Such a TR places heavy demands on the

numerical scheme because of the highly sheared mesh which results. Two flow condi-

tions are consideredfor this configuration: (i)M= = 0.6, _ = 3.99° and
(2)M_ = 0.9, _ = 4.01°. Pressure coefficientcomparisonsfor the first case are
presented in figure 20. Excellent agreement with experiment is obtained for this

subcritical case everywhere except at the tip (y/c = 0.897) where the tip missile

used in the experiment was not modeled in the numerical simulation. The sharp-

leading edge expansion predicted in the numerical result on the upper surface actually

extends beyond the plotted results shown in figure 20 to a peak value of Cp ~ -2.7.
It has been truncated to provide a more accurate scale for the rest of the Cp dis-

tribution shown at each spanwise station. Repeated refinements of the mesh in the

leading edge region indicate that the peak is numerically correct and indeed, a

similar peak, although much smaller in extent, is exhibited at several span stations

in the experiment. It is anticipated that viscous effects and/or pressure tap aver-

aging effects are responsible for the mismatch betweenthe peak levels.

The last ATFI solution considered is an extremely difficult case consisting of a

freestream Mach number of 0.9 and 4° angle of attack. A comparison between numerical

and experimental results is shown in figure 21. Except for expected discrepancies at

the shocks, trailing edge, and tip (because of the absence of the experimentally

mounted tip missile) the agreement is remarkably good. The leading edge expansion/

shock and the aft shock details are accurately predicted at each span station away

from the tip.

Figures 22 and 23 present the results of an interesting study to determine the

ability of TWING to handle both positive and negative sweep. The shock sonic line has

been plotted in each figure on a normalized planform of the wing. This configuration

consisted of a parallelogram NACA 0012 wing (i.e., TR = 1.0) at M_ = 0.8, e = 3°

The aspect ratio was six. Figure 22 shows results for positive, or aft, sweep

(sweep = 0°, 20°, 30 °, 50 °, and 60°), and figure 23 shows results for negative, or

forward, sweep (sweep = 0°, -20 °, -30 °, -50 °, -60 °, and -70°). A case involving

+70 ° of sweep was also obtained, but because it was entirely subcritical, no result

at A = 70° appears in figure 22. As expected, the shock position moves forward and

decreases in strength for increasing sweep (either positive or negative). For all
cases the shock approaches the symmetry plane wall (2y/b = O) in a normal fashion

(i.e., in the physical domain), as it must to satisfy inviscid tangent-flow boundary

conditions. This causes the variation in position of the shock/symmetry-plane inter-

section as shown in figures 22 and 23.

Of particular interest in these calculations is the robustness displayed by the

TWING code. The TWING grid mapping becomes singular as the sweep angle approaches
90 °. In addition, cross-derivative terms in the transformed FP equation grow as

the sweep increases. Since these cross-derivative terms are not represented in an

implicit fashion in the AF2 iteration scheme, instability might be expected to develop

for even moderate levels of sweep. However, as indicated by the present results very

large values of sweep (-70° _ A _ 70°) can be accommodated by the TWING computer code
in a stable fashion.
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A summary of computer times obtained from the TWING computer code for a range of

computed examples is shown in table 2. The convergence for each of these cases is

generally nonoptimal. The iteration number corresponds to the number of iterations

required to reduce the initial maximum residual by two orders of magnitude. Computa-

tion times based on this measure of convergence range from 28 sec to 67 sec. Essen-

tially converged results are obtained when the llft is bounded by a 2% band about the

final value of llft. This level of convergence yields computational times ranging

from 13 sec to 43 sec. The grid generation time is also displayed and ranges from

1.3 sec (three defining stations) to 3.0 sec (five defining stations).

These computational times are generally an order of magnitude smaller than other

conservative full potential codes using SLOR on the same computer (see ref. 24 for a

comparison between FLO28 and TWING). In addition, the advantage of vectorization, as

provided by the CRAY-IS vector computer, produces over an order of magnitude improve-

ment in computational speed for TWING relative to the slower CDC 7600 computer (see

ref. 36 for more discussion on this point).

IV. CONCLUSIONS

The TWING three-dimensional transonic full-potential computer program has been

evaluated using a wide range of test examples. Calculated pressure distributions have

been compared with experiment for most of the cases presented. The major conclusions

of this study are as follows:

(I) Good correlation with experimental pressure distributions have been obtained

in generally all cases when viscous effects were not important (that is, when strong

shocks and the associated shock/boundary layer interaction effects are not present).

(2) The TWING computer program has proven to be computationally efficient (even

without optimizing each individual run for minimum run time) and robust (no conver-

gence problems were encountered for the cases presented herein).

(3) The TWING computer program has proven to be geometrically general for

isolated-wing calculations in that a wide range of geometries has been run including

high-aspect-ratio, low-taper transport-type configurations and low-aspect-ratio, high-

taper fighter-type configurations.

(4) Viscous effects need to be introduced to model shock/boundary-layer inter-

actions, decambering and displacement thickness effects, and trailing-edge separation
and wake effects.
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TABLE 1.- SELECTED WING GEOMETRY PARAMETERS 

Configura- Configura- Configura- Configura- Configura- 
tion 1 tion 2 tion 3 tion 4 tion 5 
(ref. 32) (ref. 29) (ref. 29) (ref. 29) a 

Aspect ratio 6.0 8.0 3.8 2.6 - 3.8 
(A) 

Taper ratio .5 .4 .4 .3 .I77 . (TR) 

Leading edge 37.25 27 35 45 40 
sweep (ALE) 

Root angle of 0 2.76 2.50 2.38 0 
attack 
Or - deg 

Tip angle of 0 -2.04 -4.00 -5.79 3.0 
attack 
et - deg 

Root thickness- .12 .12 .06 .07 .04 
to-chord ratio 
(tic), 

Tip thickness- .12 .I2 .06 .ll .04 
to-chord ratio 
(t/c), 

R .  Cox, private communication, 1982. 

TABLE 2.- WING CONVERGENCE TIMES ON THE CRAY-IS COMPUTER (NONOPTIMAL 
CONVERGENCE), ALL TIMES ARE FOR A 127x27~20 (68580) MESH WITH 
127x17 (2159) SURFACE MESH POINTS 

CPU time CPU time for 98% 
Wing YO "w, Number of CPU development of lift, grid 

deg generation, iterations sec sec 
sec 

Configuration 
2 0.798 0.6 1.3 164 51.8 31.0 
3 .88 2.2 1.3 170 54.9 12.9 
4 . 7  4.4 1.4 90 27.6 17.2 
4 .83 5.0 1.4 9 9 30.9 18.1 
4 .88 3.8 1.4 8 3 28.9 14.3 
5 .6 3.5 3.0 102 31.3 18.7 
5 .9 3.0 3.0 196 66.8 43.0 



WlNG EXTENSION FR EESTREAM
SIDEWALL BOUNDARY

OUTER BOUNDARY
/

SYMMETRY PLANE
BOUNDARY

WING
-VORTEX SHEET

z

a) x
FREESTREAM

OUTER BOUNDARY SIDEWALL BOUNDARY

(_"= _'min) (r/= _?max)
77

LOWER VORTEX SHEET \

(_ = _max)

I

SYMMETRY
PLANE

BOUNDARY WINGEXTENSION

(7= 77min) (_.= _.max) ,,

WING SURFACE _" UPPERVORTEX SHEET "

(_"= _'max) (_= _min)

b)

Figure I.- Schematic of general (x,y,z) +-+ (_,n,_) transformation: a) physical
domain, b) computational domain.

16



.6

v

.4

.2

z/c
0

-.2

-.4

• d

-.6 -.4 -.2 0 .2 .4 .6
x/c

Flgure 2.- Numerically generated finite-difference mesh about configuration 4

(ref. 29), root station (127x20 grid points).
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Figure 3.- Numerically generated finite-difference mesh about configuration 4
(ref. 29), tip station (127x20 grid points).
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Figure 4.- Numerically generated finite-difference mesh about configuration 4
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Figure 6.- Root station trailing edge close up about configuration 4 (ref. 29).
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Figure 9.- Perspective view of the grid about configuration 4, 127x27x20 grid points,
(only every fourth point plotted in the wraparound direction).
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Figure I0.- Pressure coefficientcomparison(airfoil75-06-12,ref. 30,
M= = 0.75, e = 0.115°).
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Figure 13.- Comparison of pressure coefficient distributions, experiment taken from

Hinson and Burdges (ref. 29), configuration 3, ALE = 35 °, TR = 0.4, A_ = 3.8.
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Figure 18.- Convergence characteristics of TWING, configuration 4, M= = 0.88, = = 3.8°.
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coefficient distribution, experiment taken from reference 29, configuration 4,

ALE = 45°' TR = 0.3, _R = 2.6.
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Figure 21.- Comparisonof pressure coefficientdistributions,experimenttaken from

R. Cox (privatecommunication,1982),configuration5, _E = 40°' TR = 0.177,
A% = 3.3, M_ = 0.9,
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Figure 22.- Variation of shock sonic line with sweep, aft sweep (NACA 0012 airfoil
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and efficient. TWING generally produces solutions an order of magnitude

faster than other conservative full potential codes using successive-line

overrelaxation. The present method is applicable to a wide range of

isolated wing configurations including high-aspect-ratio transport wings

and low-aspect-ratio, high-sweep, fighter configurations.
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