A Ground-Simulator Investigation of Helicopter Longitudinal Flying Qualities for Instrument Approach

J. V. Lebacqz, R. D. Forrest,. and R. M. Gerdes

LIBRAM COPY

SFP 161982

LIBRARY, NASA
HAMPTON, VIRGINIA

N/SA

National Aeronautics and
Space Administration
computerized tunctions weremeeded rowomprete the procedure: approxintle analysis with the established input variables; optimization of an objective functions and refined analysis for design verification.

ENTER:

11 RN/WASA-TM-84225
DISPLAV 09/2/1
82U33398* ISSUE 24 PAGE 3393 CATEGORY 8 RPT퓨: NASA-TM-84225 A-8983 UAS 1.15:84225 82/09/00 91 PAGES UNCLASSIFIED DOCUMENT
UTTL: A ground-simulator investigation of helicopter longitudinal flying qualities for instrument approach
PUTH: A/LEBACOZ; U. V.; B/FORREST, R. D.; C/GERDES, R. M. PAA: B/GAP, Moffett Field, ralif.)
CORP: National Aeronautics and Space Administration. Ames Research Center; Moffett Field, Calif. pVAIL. NTIS SAR: HC A0S/MF AOL
MAUS: *FLIGHT CHARACTERISTICS/*FLIGHT SIMULATORS/*GROUND BASED CONTROL/* HELICOPTER PERFORMAMCE/*IUSTRUMENT APPROACH/*LOMCITUOTNAL STABILITY
MINS: / DVMAMIC STABILITY/ MICROWHV EQUIPMENT/ STATIC STABILITY
ABA: Author
ABS: A ground-simulation experiment was conducted to investigate the direct and interactive influences of several longitudinal static and dynamic stability parameters on helicopter flying qualities during terminal-area operations in instrument conditions. Variations that were examined included five levels of static control-position gradients ranging from

A Ground-Simulator Investigation of Helicopter Longitudinal Flying Qualities for Instrument Approach

J. V. Lebacqz, Ames Research Center, Moffett Field, California R. D. Forrest, Federal Aviation Administration
Ames Research Center, Moffett Field, California
R. M. Gerdes, Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration

Ames Research Center

Moffett Field, California 94035

A GROUND-SIMULATOR INVESTIGATION OF HELICOPTER
LONGITUDINAL FLYING QUALITIES FOR INSTRUMENT APPROACHES
J. V. Lebacqz, R. D. Forrest, and R. M. Gerdes

Ames Research Center

SUMMARY

A ground-simulation experiment was conducted to investigate the direct and interactive influences of several longitudinal static and dynamic stability parameters on helicopter flying qualities during terminal-area operations in instrument conditions. Variations that were examined included five levels of static controlposition gradients ranging from stable to unstable; two levels of dynamic stability for the long-period oscillation; two levels of the steady-state pitch-speed gradient; two levels of angle-of-attack stability and pitch-rate damping; and two levels of stability and control augmentation. These variations were examined initially in calm air and then in simulated light-to-moderate turbulence and wind shear. Five pilots performed a total of 223 evaluations of these parameters for a representative microwave landing system precision approach task conducted in a dual-pilot crewloading situation. Pilot ratings indicated (1) that the system is clearly adequate for the IMC approach in calm air for neutral and slightly unstable static controlposition gradients but that adding turbulence causes a significant degradation in system performance; (2) that high angle-of-attack stability has an adverse effect because of pitch-to-rate of descent coupling; and (3) that the steady-state pitchspeed gradient has a minimal influence.

INTRODUCTION

The increase in civil helicopter operations during the past decade has led to greater emphasis on providing a more fundamental understanding of the aeromechanics and flight-control requirements of helicopters in the flight regimes of interest. One such regime is all-weather operations, and in particular terminal-area operations in instrument meteorological conditions (IMC). As a part of their continuing efforts to provide design and airworthiness information for helicopter IMC flight, the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) instituted in 1978 a joint program of analyses, ground simulation, and flight experiments at Ames Research Center. This program is directed at the following two general goals:

1. Provide analyses and experimental data to support or amplify the Airworthiness Criteria for Helicopter Instrument Flight (ref. 1), which are the final proposed appendices to FAR Parts 27 and 29, respectively (refs. 2,3).
2. Provide analyses and experimental data to determine the flying-qualities, flight-control, and display aspects required for a good helicopter IMC capability, and to relate these aspects to design parameters of the helicopter.

The first four experiments that were conducted in this joint NASA/FAA program are described in references $4-7$. In the first two ground simulation experiments, the influences of neutral versus stable static control gradients and the requirements for various levels of stability and control augmentation systems (SCAS) were examined for a nonprecision very-high-frequency omnidirectional range (VOR) instrument approach task, assuming a dual-pilot crew-loading situation (no auxiliary tasks) and raw-data displays without flight directors. Cooper-Harper pilot ratings (CHPRs) indicated (1) a need for some level of SCAS above the bare airframe to ensure a level of adequate performance with tolerable workload. (CHPR < 6.5) (ref. 4), (2) a requirement for attitude augmentation in pitch and roll to obtain a level of satisfactory (CHPR < 3.5) (refs. 4,5), and (3) that neutral longitudinal and lateral static stabilities were acceptable (ref. 5). In the third ground simulation experiment, the influences of flight-director display assistance and the effects of representative single-pilot auxiliary tasks on the suitability of the static stabilities and SCAS concepts considered in the first two experiments were examined in relation to precision MLS instrument approaches (ref. 6). The Cooper-Harper pilot ratings indicated, among other things, that the hypothesized trade-off between control complexity and display sophistication for equivalent levels of acceptability was evident only for combinations rated as satisfactory (CHPR < 3.5) ; little average improvement for control systems rated as only adequate (CHPR < 6.5) was provided by changing the display from raw-data-only to three-axis flight directors. As in the first two experiments, pitch- and roll-attitude augmentation were required for ratings of satisfactory and, for the single-pilot case, were effectively required for ratings better than marginally adequate (CHPR < 5.5).

The fourth experiment was conducted, using the variable-stability UH-1H V/STOLAND helicopter, to verify in flight some of the results of the first three ground-simulation experiments (ref. 7). Neutral and stable longitudinal static stability, rate-damping and attitude-command SCAS implementation, and raw-data and three-axis flight directors were examined for a precision MLS approach task with a dual-pilot crew-loading situation. The results of this experiment corroborated the conclusions from the ground experiments for these variables: (1) rate-damping augmentation provided an adequate but unsatisfactory system, (2) neutral longitudinal static stability provided a degraded but still adequate (with rate-damping augmentation) system, (3) attitude augmentation in pitch and roll was required to achieve a satisfactory system, and (4) three-axis flight directors provided little average improvement for the rate-damping system and a small but noticeable improvement with attitude augmentation (ref. 7).

As is indicated by this summary, the major thrust of the first four experiments was to examine the interactive influences of static stability, SCAS type, flightdirector displays, and crew loading. This focus was determined to some extent by the initial version of the IFR criteria (ref. 8), as well as industry questions concerning them and proposed alternatives (ref. 9). During the 2 years between the time the experiment reported in reference 4 was conducted and the time the experiment described in this report was conducted, the criteria set forth in reference 8 were modified and used as the proposed instrument flight rules (IFR) appendix given in reference 1. The general goal of this present experiment was to provide data in support of the final versions of the criteria on static and dynamic stability, thereby bringing to a conclusion this initial sequence of experiments.

To place the parameters selected for investigation in context, the IFR Appendix criteria dealing with static and dynamic stability from reference 1 are sumarized in table 1 for normal- and transport-category rotorcraft. The category definitions are
(1) normal--9 passenger seats or fewer and less than 6,000 1 b ; (2) transport B--9 passenger seats or fewer, over $6,000 \mathrm{lb}$ (with some additional restrictions if over $20,000 \mathrm{lb}$); and (3) transport $\mathrm{A}-10$ passenger seats or more, all weights. No differentiation between transport categories A and B is made for the static and dynamic criteria, nor is any distinction made between dual-pilot and single-pilot crew loadings for transport-category helicopters.

Three points are worth noting about these criteria. First, they are intended to assure minimum safety. It is tacitly understood that an aircraft could be certified for IFR if one of these criteria is barely met, but it is unlikely that certification would be granted if several criteria were only marginally satisfied. Second, no distinction among longitudinal, lateral, and directional characteristics is made for dynamic stability, nor is any effort made to limit interaxis coupling or to prescribe desirable rapidity of response. In addition, the requirement for a positive longi:tudinal static-force gradient effectively precludes an unstable aperiodic root longitudinally for most realizable situations; as a result, the dynamic criteria relating to aperiodic roots appear to be overridden by the static criteria for longitudinal motions. Third, the criteria do not address any SCAS or display requirements as a function of crew loading in terms of their influences on the flying qualities, nor is the influence of turbulence explicitly discussed, as it was in the reference 8 proposal.

For this experiment, some aspects of these criteria that were not directly addressed in the previous experiments were selected for examination. Because of the importance of glide-slope and airspeed control in terminal-area maneuvers, only longitudinal variations were considered. The intent was to have the parameters overlap those of the previous experiments in some cases so that collectively the experiments would constitute a data set pertinent to the applicability of these criteria for constant-speed helicopter IFR terminal-area operations. On this basis, the primary variables selected for investigation were

1. Longitudinal static stability, as measured by cockpit control-position gradient with speed, with variations from stable to unstable yielding unstable aperiodic responses
2. Longitudinal long-term ($P>10 \mathrm{sec}$) oscillations ranging from damped to unstab1e
3. Longitudinal steady-state pitch-attitude-to-speed gradient ranging from nearly neutral to highly stable
4. Longitudinal short-term pitch-attitude and angle-of-attack responses to cyclic and collective inputs
5. Longitudinal stability and control-system implementation rate and attitude command
6. Level of turbulence: none and light-to-moderate

Cooper-Harper pilot ratings were obtained from five pilots for several values of each parameter during the performance of a precision $60-\mathrm{knot}$ IFR approach task, with and without simulated turbulence. The Vertical Motion Simulator (VMS) at Ames Research Center was used in conjunction with a generic nine-degree-of-freedom helicopter mathematical model to implement and examine the experimental configuration.

The remainder of this report is organized as follows. The design and conduct of the experiment to address the variables outlined above are described in the next two sections. Flying qualities results are then presented and discussed, followed by conclusions and recommendations.

The authors wish to express their appreciation to Mr. G. W. Hall, Ames Research Center, and Lt. Col. R. K. Merrill, U.S. Army, who served as evaluation pilots. In addition, the authors wish particularly to express their gratitude to Mr. P. L. G. Harper of the Civil Aviation Authority, England, and Mr. Dennis Tuck of the Federal Aviation Administration, Southwest Region, who also served as evaluation pilots; their professionalism and interest greatly enhanced many aspects of the experiment.

DESIGN OF EXPERIMENT

Mathematical Model

The basic mathematical model used to simulate the flight dynamics of the helicopters investigated in this experiment was the same nine-degree-of-freedom model that was used in the previous ground simulator studies (refs. 4-6). The model explicitly includes the three-degrees-of-freedom tip-path-plane dynamic equations for the main rotor (ref. 10) and the six-degree-of-freedom rigid-body equations. The main-rotor model includes several major rotor system design parameters, such as flapping-hinge restraint, flapping-hinge offset, blade lock number, and pitch-flap coupling. Simulation of different rotor systems (e.g., hingeless, articulated, and teetering) may be accomplished by appropriate combinations of those design parameters.

The model is structured to permit full state feedback to any of the four controllers (longitudinal and lateral cyclic, collective stick, and directional pedals) plus control interconnects and gearings. All feedback and control gains may be programmed as functions of flight parameters, such as airspeed. This structure permits the construction of typical SCAS networks; it may also be used as a responsefeedback variable-stability system to modify the basic characteristics of the simulated helicopters.

In the previous experiments, the rotor design and helicopter geometric parameters of the mathematical model were selected and tuned to simulate stability and control characteristics similar to those of the UH-1H, OH-6A, and BO-105 aircraft, which use teetering-, articulated-, and hingeless-rotor systems, respectively (refs. 4,5). For this experiment, only the generic teetering-rotor aircraft model was used, as in the reference 6 experiment, to reduce the scope of the study to a manageable level. Because the intent of the experiment was to focus upon variations in the longitudinal degrees of freedom, a lateral-directional SCAS consisting of a highgain rate-command-attitude-hold roll channel plus yaw-rate damping and enhanced directional weathercock stiffness was implemented for all.configurations.

Experimental Configurations

For convenience in discussing the experimental configurations, they have been broken into three groups: (1) high-rate-damping, low-drag-damping; (2) high-ratedamping, high-drag-damping; and (3) low-rate-damping, low-drag-damping.

Group 1: High rate-damping, low drag-damping configurations-In the high ratedamping, low drag-damping group a fairly high level of pitch-rate damping ($\tau_{p}=0.33$ sec) was incorporated to be consistent with the rate SCAS systems investigated in the experiment of reference 6; this pitch-rate SCAS was held constant for the configurations in this group. The variations in longitudinal dynamics and statics that were considered in this group were achieved by feedback of aircraft states to the longitudinal cyclic. Accordingly, the inherent steady-state speed-to-pitch-attitude relationship (with collective fixed) of the simulation model was unchanged by these variations. For the basic model, the steady-state attitude-to-speed gradient is very low (about $0.03^{\circ} / \mathrm{knot}$), which considerably aggravates the difficulty of controlling speed. This characteristic was constant for all these configurations.

Four major types of variations were considered in this group (table 2 and Appendix A) and may be summarized as follows:

1. Static control-position stability: Variations in the static controlposition stability were achieved by feedback of airspeed to longitudinal cyclic. Five levels were considered: two stable (~ 1.0 in. $/ 15$ knot and $\sim 0.5 \mathrm{in} . / 15 \mathrm{knot}$), one neutral ($\sim 0.0 \mathrm{in} . / 15 \mathrm{knot}$) and two unstable (unstable aperiodic roots) giving times-to-double-amplitude of $\sim 10.0 \mathrm{sec}$ and $\sim 5.0 \mathrm{sec}$.
2. Angle-of-attack stability: Each of the five levels of static controlposition stability defined in (1) was examined with two levels of angle-of-attack stability: zero, and a fairly-high stable value to give a "short-period" frequency of about $2.5 \mathrm{rad} / \mathrm{sec}$ with a damping ratio of about 0.8 . These variations were achieved with feedback of the angle of attack to longitudinal cyclic. As can be seen in table 2, unlike the case with fixed-wing aircraft, the angle-of-attack stability variations had a negligible effect on the static control-position gradients for the stable and neutral gradient cases; to maintain the aperiodic instability at the same level, however, somewhat more unstable gradients were required for the two unstable cases.
3. Long-term dynamic stability: The two stable levels of static controlposition stability with both levels of angle-of-attack stability were examined with two levels of damping of the phugoid or long-term oscillation: stable ($5 \doteq 0.10$), and unstable (time-to-double-amplitude of -15.0 sec). These variations were achieved by feedback of rate-of-change of longitudinal speed (i) to the longitudinal cyclic. As is evident in table 2, this variation had a negligible effect on the phugoid frequency and a minor effect on the short-term damping.
4. Pitch-attitude augmentation: The five levels of static control-position stability in combination with zero angle-of-attack stability were considered with the pitch-rate SCAS only and also with an attitude-command SCAS. This latter stabilization system was achieved by feedback of pitch attitude to the longitudinal cyclic in addition to the pitch-rate feedback of the rate SCAS; for consistency with the experiment reported in reference 7 , the level of stabilization was selected to provide an undamped natural frequency of about $1.5 \mathrm{rad} / \mathrm{sec}$; it was constant for each of the five attitude-stabilized configurations. As shown in table 2, this stabilization augments the static control-position gradients of the baseline configurations and modifies the short-term dynamics.

The variations in this group were selected for the following reasons. With regard to the static control-position stability variations, the neutral and lower stable levels correspond to those considered for a hingeless-rotor helicopter in the
experiment of reference 5; the higher stable level was added to provide a more clearly perceptible level of static stability (the resultant phugoid frequency $(\sim 0.34 \mathrm{rad} / \mathrm{sec})$ is still low enough to remain well separated from the short-term response dynamics). The unstable level with a $10-\mathrm{sec}$ time-to-double-amplitude aperiodic root was selected to meet barely the normal-category, dual-pilot criteria; the $6-\sec$ root level exceeds the criteria but is consistent with earlier examinations of permissible levels of static instability for transport aircraft (ref. 11).

The 'zero angle-of-attack stability case is effectively equivalent to the hingeless-rotor configurations examined in the previous experiments; the stable value was considered to ascertain any beneficial influences of a more "airplane-like" short-term response, as well as any deleterious influences of the pitch-to-rate-ofdescent coupling it introduced. Figure 1 illustrates this coupling for responses to a step l-in. collective input; as can be seen, the stable value of M_{w} increases the peak pitch-attitude response by a factor of 5 and the velocity change by a factor of 15 , thereby eliminating the uncoupled appearance of the $M_{w}=0$ responses. Because the achievement of a stable control-position gradient with velocity stability (M_{u}) in a helicopter tends to increase the frequency of the long-term roots while decreasing their damping, an unstable phugoid was examined that met the normal-category dual-pilot criteria but did not meet the transport-category criteria; an "unnatural" feedback of \dot{u} was used to vary the stability of this oscillation so that equivalent levels of instability for different frequencies could be examined (see Appendix B for description of \dot{u} feedback). Finally, even though the difference between a longitudinal rate-damping SCAS and pitch-attitude-command SCAS had been examined in the previous experiments (refs. 4-6), it was repeated here both for consistency among the experiments and to examine the influence of an effectively neutral stick gradient, even with attitude augmentation, which arose when the most unstable static configuration was attitude augmented.

Group 2: High rate-damping, high drag-damping configurations-In the high rate-damping, high drag-damping configurations (table 3 and Appendix A), the same variations in static control-position gradient (excluding the more stable value), angle-of-attack stability, and pitch-attitude augmentation were considered for an aircraft with a much higher steady-state pitch-attitude-to-speed gradient. The intent was to determine if the low attitude-speed gradient of the baseline configurations exacerbated the speed-control problems occasioned by neutral or unstable stick gradients, as was suggested in reference 6. This variation was implemented by including an additional drag force that varied linearly with velocity to add $\Delta \mathrm{X}_{\mathrm{u}}=-0.1 \mathrm{sec}^{-1}$ to the baseline configuration ($X_{u} \doteq-0.03 \mathrm{sec}^{-1}$). As a result of this addition, the steady-state, collective-fixed attitude-speed gradient was increased from $0.03^{\circ} / \mathrm{knot}$ to about $0.33^{\circ} / \mathrm{knot}$ for this group of configurations. A concomitant change in the power-required curve resulted from this implementation: The same torque was required at 60 knots as with the low-gradient baseline configurations, but an increase of about 12% was required for 80 knots with the modified high gradient; only a 2 percent increase was required with the baseline configurations.

Group 3: Low rate-damping, low drag-damping configurations-The low ratedamping, low drag-damping configuration (table 4 and Appendix A) again included the same variations in static control-position stability, angle-of-attack stability, and long-term dynamic stability with the baseline low steady-state attitude-speed relationship, but with no pitch attitude and with reduced pitch-rate feedback. The intent here was to consider in effect an SCAS failure (in the feedback loops) of the configurations of the first group (high rate-damping, low drag-damping); in
particular, for example, the longitudinal-control sensitivity was not reduced to be consistent with the reduced pitch-rate damping. The reduced rate feedback yielded an augmented M_{q} of $-1.0 \mathrm{sec}^{-1}$ at 60 knots, which is onily slightly above the unaugmented model value; an augmented value of $M_{q}=-3.0 \mathrm{sec}^{-1}$ was used in the first two configuration groups. It is important to note that these configurations were designed such that the resulting changes in the short-term dynamics still meet the IFR criteria given in table 1 (primarily because the criteria do not specifically require a given rapidity or sensitivity for the short-term responses).

Turbulence Model

Turbulence was included as an experimental variable in addition to the stability and control variations of the 43 configurations outlined above (19 in group 1, 10 in group 2, and 14 in group 3). The purpose was to determine the influence of atmospheric disturbances on the suitability of those stability and control characteristics for IFR operations. The wind model was identical to that of reference 6, and consisted of a $10-\mathrm{knot}$ crosswind which sheared in direction from 49° right to 49° left and back to 30° left over a range of $1,200 \mathrm{ft}$, starting from a range-to-go of $6,600 \mathrm{ft}$; the intent of this shear was to impose a lateral tracking perturbation in the middle of the approach to distract attention from the longitudinal tasks. Three independent Gaussian gusts (u, v, w) were generated through Dryden spectral filters and added to the wind, with break frequencies of about $0.1 \mathrm{rad} / \mathrm{sec}$ for u and v and a range from $0.06 \mathrm{rad} / \mathrm{sec}$ to $0.17 \mathrm{rad} / \mathrm{sec}$ for w, depending on altitude. The intensities used in the previous experiments (refs. 5,6) were again implemented: $\sigma_{u}=\sigma_{v}$ $=3.0 \mathrm{ft} / \mathrm{sec}$, and $\sigma_{\mathrm{w}}=1.5 \mathrm{ft} / \mathrm{sec}$; in addition a higher level with intensities 1.5 times greater was available. A more complete description of this turbulence model is given in references 5 and 12.

CONDUCT OF EXPERIMENT

The Vertical Motion Simulator (VMS) ground-based simulation facility at Ames Research Center was used for this experiment (fig. 2). It includes a complex movable structure that provides six-degrees-of-freedom motion, including vertical travel of $\pm 30 \mathrm{ft}$ to enhance simulation fidelity of longitudinal motions. A visual scene from a terrain board is presented through the cab window on a color television monitor with a collimating lens. In this experiment, the approaches were made to a model of an offshore oil rig, with simulated fog obscuring the visual scene down to an altitude of 350 ft above ground level (AGL); partial clearing began thereafter, followed by re-fogging at the decision height of 300 ft AGL, thus forcing a missed approach.

The flight instruments, arranged in a standard " T " for this experiment, were conventional with the exception of the attitude indicator, which was a 5 -in. unit incorporating heading (through longitudinal lines on the ball), as well as pitchroll information. Turn-rate-slip information was presented on a separate instrument. The controls consisted of cyclic stick, collective stick, and directional pedals, with force-feel characteristics provided by programmable electrohydraulic units; table 5 lists the control throws and gradient and friction forces used for all the configurations. Force trimming could be accomplished either by a momentary switch on the cyclic, which simultaneously released the forces on both cyclic axes and the
pedals, or by single-axis rate "beeper" trimmers, which were located on the cyclic stick for the cyclic and on the collective stick for the pedals.

Evaluation Task and Procedure

For this experiment, the simulated aircraft was defined to be a transportcategory dual-pilot helicopter, performing terminal-area operations in instrument conditions. The specific tasks to be accomplished for each configuration were as follows:

1. Practice MLS approaches in visual conditions
2. Dual-pilot IMC approach and missed approach
3. Second IMC approach as above, assign Cooper-Harper pilot rating (ref. 13), and make comments in response to a comment card

The approach elements consisted of MLS azimuth capture at 80 knots and approximately $1,200 \mathrm{ft} \mathrm{AGL}$, a deceleration to 60 knots, capture of a 6° glide slope and tracking at 60 knots, and, following the re-fogging at the decision height of 300 ft AGL, execution of a missed-approach maneuver consisting of a standard-rate turn and a 1,000ft/min climb.

During the first half of the experiment, all of the configurations were evaluated for these tasks in no turbulence; most of the configurations were then evaluated in the lower level of turbulence, and a few at the higher level. Neither the order of the configurations nor any previous ratings assigned was known to the pilots.

Scope

Five pilots participated in this experiment: two from NASA, and one each from the FAA, the Army, and the Civil Aviation Authority of the United Kingdom. A total of 223 evaluations were conducted: 138 in no turbulence, 74 in the lighter turbulence level, and 11 in the heavier turbulence level.

PILOT RATING RESULTS

Because of the volume of the data, experimental results are discussed here primarily in terms of averaged pilot ratings. This averaging is done in the interest of simplifying the discussion and highlighting major trends. It is recognized, however, that the Cooper-Harper scale is ordinal rather than interval (ref. 13), and that caution must be exercised when a large spread of ratings is averaged; in this experiment, a total spread of ± 1 CHPR was rarely exceeded for a given configuration among the five pilots. The actual ratings as assigned are given in tables 6 through 11.

Influence of Long-Term Dynamics

Consider initially the influences of longitudinal control-position gradient and the concomitant variation in long-term dynamics. The data for configurations with high pitch-rate damping and low drag damping (group 1) are shown in figure 3 as

Cooper-Harper pilot ratings versus the inverse of time-to-half-or-double amplitude of the long-term oscillation. In no turbulence, very little change in average rating with control-position stability is evident except for the most unstable level (that which yields the $6-s e c$ time-to-double aperiodic root), at which point a degradation of CHPR >1 occurs. These results extend those of reference 5 - in which no significant difference between a neutral gradient and a $0.5-i n / 15$ knot gradient was found to include both a higher level of stability ($-1.0 \mathrm{in} . / 15 \mathrm{knot}$) and a low level of instability ($\mathrm{T}_{2}=10 \mathrm{sec}$).

Pilot comments indicated equivalent types of difficulty in maintaining trim speed for the neutral and mildy unstable gradients, but noted that, because of good pitch dynamics and the absence of coupling from other inputs, compensation for this deficiency was not too difficult. With the higher level of instability ($\mathrm{T}_{2}=6 \mathrm{sec}$), however, it was noted that speed control required considerable attention to pitch attitude, with any upsets from other inputs (such as the power change and bank-angle change for the missed approach) contributing to speed changes in excess of 10 knots. As in the previous experiments, the neutral and stable gradients were rated on average in the clearly adequate category, but not as satisfactory without improvement; attention to pitch attitude was required for some of the pilots, even with the stable gradient.

The influence of turbulence on the ratings for these configurations is also shown in figure 3. As can be seen, the effect of turbulence was minimal with the highest static gradient, but turbulence degraded the ratings increasingly as the static gradient decreased to neutral and unstable. The turbulence inputs, therefore, clearly show the benefit of static control-position stability (provided by M_{u} in the absence of pitch-attitude or angle-of-attack stability), with speed control in particular degrading in turbulence for the neutral and unstable configurations; the average rating of 5.3 for the neutral static configuration in turbulence is consistent with the results presented in references 5 and 6 (CHPR $=5.8$ and 5.5 , respectively, without the rate-command-attitude-hold lateral SCAS).

A different effect of the long-term dynamics was also considered by artificially destabilizing the phugoid root oscillations for the two levels of stable static-control-position gradient; in both cases, the instability corresponds to a time-to-double-amplitude of about 15 sec . Figures 4 and 5 show the influences of the change from stable ($5 \doteq 0.10$) to unstable $\left(\mathrm{T}_{2}=15 \mathrm{sec}\right)$ long-term oscillations on the timehistory responses to longitudinal cyclic inputs (fig. 4) and collective inputs (fig. 5). Note that for the time duration shown for this configuration, the major difference is about 1.5 times as much longitudinal velocity response for either input with the unstable oscillation. For comparison, the responses to step inputs in both controls for a configuration with an unstable aperiodic response $\left(T_{2}=10 \mathrm{sec}\right.$, unstable gradient) are given in figure 6, where it can be seen that the velocity responses are similar in magnitude to those with an unstable oscillation over the time region of interest.

The pilot ratings assigned to the unstable oscillation cases (with $M_{W}=0$) are shown in figure 7. Also shown in figure 7 is the plotting of the pilot ratings for the same static gradients (from fig. 3) but with stable oscillations, plus the ratings for the unstable gradient yielding a long-term unstable aperiodic response with a time-to-double amplitude of 10 sec . For these configurations with no turbulence, the average rating was about 0.5 units worse than with the damped long-term oscillation; three of the five pilots indicated difficulty in maintaining speed within the desired bounds, although the comments from the other two are similar to
their comments for the damped oscillation. The degrading influence of the unstable long-term oscillation was more apparent in turbulence, however, with a change in rating of over one unit compared with that of the stable cases; the pilots noted considerable difficulties in both speed and glide-slope steady-state tracking for these configurations in turbulence. Although the average ratings still fall in the adequate category, it is possible that the unstable gradient or unstable long-term dynamic configurations may not produce a sufficient margin from the CHPR $=6.5$ boundary in turbulence, and that such characteristics may not be acceptable for certification.

A final variation involving long-term and steady-state characteristics was the introduction of artificially high drag damping, X_{u}. As was discussed, this change increased the steady-state collective-fixed attitude-speed gradient to about $0.33^{\circ} / \mathrm{knot}$; this gradient was $0.03^{\circ} / \mathrm{knot}$ for the baseline case. A concomitant change occurs in d / dV, going from $-0.05^{\circ} / \mathrm{knot}$ for the baseline cases to $-0.34^{\circ} / \mathrm{knot}$ for the high drag cases, thereby producing operation well on the front side of the powerrequired curve. The change in drag damping does not, however, modify the controlposition gradient with speed (unless pitch-attitude augmentation is added), so that this steady-state characteristic is the same as the baseline configurations with equivalent values of M_{u}. The pilot ratings for the high-drag cases ($M_{w}=0$, high pitch-rate damping) are plotted in figure 8 and compared with the baseline low-drag data. As can be seen, little change in average rating is evident for the neutral or stable gradients, with a small improvement for the unstable gradient.

The pilot comments for these configurations demonstrate mixed reactions and difficulties. One of the pilots consistently rated the high-drag configurations as better than the low-drag ones, because small speed changes caused fairly significant rate-of-climb changes as a result of the increased stable $\mathrm{d} \gamma / \mathrm{dV}$; hence rate of climb could be well controlled using pitch attitude. However, the other pilots noted that the requirement for large power changes with speed was a detriment, particularly since the power was still the primary controller for rate-of-descent. As a result, the required changes for speed led to apparent speed-and-rate-of-descent coupling, thereby negating any advantages of more precise speed control. Consequently, in general the average ratings for the equivalent high-drag and low-drag configurations were about the same, both in no turbulence and in light turbulence.

One final note about the data in figure 8: the unstable cases shown have an unstable aperiodic root with a time-to-double amplitude of 10 sec , but the actual control-position gradient is more unstable than that of the corresponding low-drag configurations because of the influence of drag-damping on the low-frequency roots. The pilot ratings are approximately equivalent to those of the low-drag, $10-\mathrm{sec}$ instability configurations, indicating that it is the magnitude of this root and not the resulting control-position gradient that has the major influence on the pilot ratings.

Influence of Short-Term Dynamics

As was discussed in the experimental design section, other variations that were considered in this experiment were aimed at modifying primarily the short-term response characteristics, either independently or in combination with modified longterm characteristics. Consider initially the influences of adding a significant level of angle-of-attack stability. As noted above, the angle-of-attack stability had only a minor influence on the control-position gradient but did introduce a
well-damped "airplane-like" short-period mode. It was hypothesized that this characteristic might improve the vernier control of rate-of-descent with pitch attitude for short-term changes. Pilot comments indicated, however, that for all these configurations the angle-of-attack stability coupled through pitch attitude to large inadvertent speed changes when large changes in rate-of-descent were made with the collective; the greatest difficulty was experienced during the transition to the missed approach.

These characteristics are illustrated in figure 9 - for the configurations with the highest stable-control-position gradient - as sketches of the Bode asymptotes for pitch-attitude response to longitudinal cyclic and collective, respectively. As can be seen, a considerable amplification of the pitch response to collective (about a factor of 3 at $1 \mathrm{rad} / \mathrm{sec}$) is introduced by the angle-of-attack stability over a wide frequency range ($0.1<\omega<3.0$) ; it is this amplification that causes the concomitant speed variations for collective inputs. The "insidious" nature of this coupling should be noted, because any high-frequency coupling of collective pitch was elimi- i nated with control cross-gearings.

The pilot ratings for some of the configurations with $M_{w}=-0.025$ are shown in figure 10 for configurations with low drag damping and high pitch-rate damping; similar trends were observed with either high drag damping or low pitch-rate damping (see table 6). As in the $M_{w}=0$ cases, little influence of control-position gradient (or time-to-half-or-double amplitude) is evident until the most unstable case ($\mathrm{T}_{2}=6$); the ratings assigned to the $\mathrm{M}_{\mathrm{W}}=-0.025$ cases were between 0.5 and 1.5 units worse (higher number) than the $M_{w}=0$ cases. Only three of these configurations with the high angle-of-attack stability were considered in turbulence. As shown in figure 10, the neutral- and unstable-gradient cases were considered inadequate for the task. Pilot comments for these configurations note considerable pitchcontrol problems coupling into poor performance of both airspeed and glide-slope tracking. Finally, one rating was obtained for a $M_{w}=-0.025$ case with an unstable long-term oscillation (most stable control-position gradient, configuration LO6u). It indicates a considerable degradation compared with the damped-oscillation case; pilot comments indicate difficulty in controlling glide-slope as a major problem. Figure 11 shows the reason for this degradation: the unstable phugoid in combination with $M_{w}=-0.025$ led to about 50% more speed excitation through the first one-fourth phugoid cycle than did the stable phugoid (refer to fig. 1(b)).

Influence of Stability and Control Augmentation System

A final variation, which affected both short-term and long-term characteristics, was the level of stability and control augmentation. All of the cases discussed so far had a baseline SCAS consisting of a high level of pitch-rate augmentation $\left(M_{q} \doteq-3.0 \mathrm{sec}^{-1}\right)$. Two variations were considered, one with low-pitch-rate damping ($M_{q} \doteq-1.0$), approximately the inherent value of the helicopter model), and one with pitch-attitude stabilization added to the high pitch-rate damping. Several of the pilot ratings are given in figure 12 to indicate trends; all of the data are provided in tables 6-11.

Consider initially the low pitch-rate damping cases. As was noted in the discussion of the experimental design, these configurations may be considered to represent an SCAS failure of pitch-rate and attitude characteristics, but with the stable-gradient (and stable long-term oscillation) configurations still meeting the static and dynamic criteria of reference 1. As shown in figure 12, the ratings in smooth air for these configurations range from adequate (CHPR $\doteq 5.5$) with stable
statics to marginally inadequate for the neutral and unstable static cases; in turbulence the ratings range from marginally adequate ($C H P R=6.2$ or 6.3) to clearly inadequate. The pilot comments uniformly noted the match of pitch sensitivity to pitch damping as being much too high, which when coupled with the poor pitch predictability led to extensive pilot compensation being required to perform the tasks. These two short-term characteristics (overly sensitive, poor predictability) overshadowed to a large extent the variations in the static characteristics. The important point from a certification aspect, of course, is that the criteria as written were met by these configurations because neither control sensitivity nor short-term response predictability characteristics are specifically required.

Finally, the use of pitch-attitude augmentation around the baseline aircraft was required to obtain ratings in the clearly satisfactory category (fig. 12). This result is consistent with those obtained in all the previous experiments in this program (refs. 4-7). Pilot comments note both good short-term response and long-term stability, with the ability to fly a portion of the approach "hands-off" in smooth air. Although one of the baseline aircraft configurations was sufficiently statically unstable that the stick gradient remained unstable (positive) even after applying the attitude stabilization, it was still rated as satisfactory; again a minimal influence of the amount of stick-position stability on the pilot ratings is evident for the other configurations.

A significant degradation in average rating was exhibited for the pitch-attitude stabilized configurations in turbulence, with the ratings generally indicating a marginally satisfactory to marginally unsatisfactory suitability for the task in turbulence. The range of ratings is consistent with the dual-pilot results of reference 7 (average $C H P R=4.0$); the pilot comments indicate that the wind shear in azimuth plus the turbulence degraded the lateral tracking performance noticeably for the configurations. Further, it is possible that the rate-command-attitude-hold lateral control system, in conjunction with an attitude-command longitudinal control system, led to harmony problems; an exploratory look at changing the lateral system also to attitude command improved one pilot's ratings from $4-1 / 2$ to 3 in turbulence. Although the baseline rate-damping configuration with the most stable control gradient is not significantly worse than the best of the attitude-stabilized configurations, the attitude-stabilized results still confirm the conclusions from the previous experiments that this type of SCAS is in effect required to obtain ratings of satisfactory.

CONCLUSIONS

This piloted-simulator experiment was conducted to investigate the influence of several longitudinal stability and control parameters on helicopter flying qualities for terminal-area operations in instrument meteorological conditions. Simulated test configurations were evaluated for a precision microwave landing system approach with 6° glide slope to an offshore oil rig both in smooth air and in simulated light turbulence and variable crosswind. The baseline helicopter model was representative of a medium-weight, teetering-rotor helicopter, with parameter variations of interest being achieved through use of a simulated programable fly-by-wire control system.

Based on the characteristics of the baseline helicopter and the implementation of the parameter variations, the following conclusions may be drawn from the results of this experiment.

1. Considering the static-gradient influences with no angle-of-attack or pitch-attitude stability and without turbulence, very little influence of position gradient was evident among the values investigated except for the most unstable. The rating range of $3-1 / 2$ to $4-1 / 2$ for the neutral and $0.5-i n . / k n o t$ configurations in smooth air is consistent with ratings assigned to equivalent configurations in previous experiments; it was shown to exist both for a more stable case (~ 1.0 in./15 knots) and a slightly unstable case (time-to-double-amplitude of 10 sec for the aperiodic root). In light turbulence, a clear trend of degrading suitability with reduced control-position gradient was shown by the pilot ratings, with the most stable case being effectively unchanged from the smooth-air results; however, an average rating degradation of about 1.0 was shown for the neutral and slightly ". unstable gradients. Nevertheless, the slightly unstable (10-sec time-to-doubleamplitude), neutral, and stable cases were still rated on average as adequate in light turbulence. The ratings assigned the neutral and $0.5-i n . / 15-k n o t$ configurations in light turbulence were consistent with ratings given similar configurations in previous experiments. The exclusion of neutral or slightly unstable gradients by the IFR criteria was not supported by the results of this or the previous experiments, if Cooper-Harper ratings indicating adequate performance are the basis for acceptability.
2. The unstable gradient with a 10-sec time-to-double-amplitude aperiodic root was rated as clearly adequate in smooth air (average ratings $=4.0$) and adequate in light turbulence (average rating $=5.5$). The unstable gradient with a 6-sec time-to-double-amplitude aperiodic root was adequate in smooth air (average rating $=5.5$) but marginally inadequate in light turbulence (average rating $=6.2$). These results support the IFR criteria for dual-pilot conditions in terms of allowable aperiodic roots, although the unstable control-position gradients that led to the aperiodic roots would not be permitted by the criteria.
3. For the stable-gradient cases, unstable long-term oscillations with a time-to-double-amplitude of 15 sec led to a degradation in pilot ratings of about 1.0 in light turbulence when compared with stable long-term oscillations. The ratings were about the same as those assigned to the slightly unstable gradient case - that is, in the adequate category. It is not possible on the basis of these results to verify the validity of the dual-pilot, normal-category criteria boundary on unstable oscillations (time-to-double-amplitude of greater than 10 sec), but the level investigated here, which does meet the criteria, was found to be adequate.
4. Pitch-attitude augmentation was required to achieve average ratings of satisfactory for the IMC task. No significant influence of control-position gradient was evident on the ratings except the most unstable level. Light turbulence caused significant degradation in average ratings for the pitch-attitude-augmented configurations: from clearly satisfactory in no turbulence to marginally unsatisfactory in turbulence. The range of ratings is consistent with ratings given equivalent configurations in previous experiments as is the conclusion regarding the necessity of pitch-attitude augmentation to achieve a satisfactory capability.
5. The addition of angle-of-attack stability had an insignificant effect on static control-position stability, and the level used in this experiment introduced undesirable coupling of pitch attitude to rate-of-climb. The net result was a degradation in pilot rating of 0.5 to 1.0 unit in smooth air; the degradation rates higher in light turbulence. As a result, the neutral and slightly unstable-gradient cases received ratings of inadequate.
6. With a stable control-position gradient, configurations with the higher level of pitch rate-damping ($0.33-\mathrm{sec}$ pitch-attitude response-time constant) and no angle-of-attack or pitch-attitude stability were rated as marginally unsatisfactory; the lower level of pitch damping, used to simulate an SCAS failure (response-time constant of 1.0 sec with a corresponding increase in pitch rate for unit control deflection by a factor of about 3) was used to simulate operation with an SCAS failure and resulted in average rating degradations of about 2.0. Configurations with the lower level of pitch-rate damping were rated marginally inadequate to inadequate in light turbulence.
7. The addition of artificial drag damping had mixed effects: speed control with pitch attitude was improved, but speed-power coupling increased also. No net change in pilot rating resulted.

Details regarding the evaluation configurations are given in Tables 12 and 13. The stability and control derivatives of the configurations are given in firstorder form in table 12 for a 60-knot, level-flight condition. The elements of the matrices include the body-axes stability/control derivatives, plus lumped gravitational/kinematic terms; in addition, the influence of \dot{u} feedback is included as modified values of these parameters in the manner described in appendix B.

Table 13 summarizes the longitudinal eigenvalues and transfer-function numerators of the evaluation configurations. The notation used to indicate the values of the poles and zeroes is:
$\Delta(S)$ characteristic equation N_{j}^{i} transfer-function numerator of i response to j input

$$
K(S+1 / \tau)\left(S^{2}+2 \zeta w S+w^{2}\right) \Rightarrow K(1 / \tau)(\zeta ; w)
$$

INFLUENCE OF $\dot{\mathrm{u}}$ FEEDBACK

Consider the longitudinal linearized equations of motion in a stability-axis system for longitudinal cyclic inputs:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{u} \\
\dot{\mathrm{w}} \\
\dot{\mathrm{q}} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
\mathrm{x}_{\mathrm{u}} & \mathrm{X}_{\mathrm{w}} & \mathrm{x}_{q} & -\mathrm{g} \cos \theta_{o} \\
z_{u} & z_{\mathrm{w}} & +\mathrm{u}_{0}+z_{q} & -\mathrm{g} \sin \theta_{o} \\
M_{u} & \mathrm{M}_{\mathrm{w}} & \mathrm{M}_{\mathrm{q}} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{u} \\
\mathrm{w} \\
\mathrm{q} \\
\theta
\end{array}\right]+\left[\begin{array}{c}
\mathrm{x}_{\delta_{E S}} \\
z_{\delta_{E S}} \\
M_{\delta_{E S}} \\
0
\end{array}\right] \delta_{E S}
$$

Now let \dot{u} be fed back through the longitudinal cyclic:

$$
\delta_{E S}=k_{\dot{u}} \dot{u}+\delta_{E S_{c}}
$$

Then:

$$
\left[\begin{array}{cccc}
1-x_{\delta_{E S}} k_{\dot{u}} & 0 & 0 & 0 \\
-z_{\delta_{E S}} k_{\dot{u}} & 1 & 0 & 0 \\
-M_{\delta_{E S}} k_{\dot{u}} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\dot{u} \\
\dot{w} \\
\dot{q} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
x_{u} & x_{w} & x_{q} & -g \cos \theta_{0} \\
z_{u} & z_{w} & u_{o}+z_{q} & -g \sin \theta_{0} \\
M_{u} & M_{w} & M_{q} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
u \\
w \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
x_{\delta_{E S}} \\
z_{\delta_{E S}} \\
M_{\delta_{E S}} \\
0
\end{array}\right]
$$

To write this equation in "conventional" first-order state-variable form, we multiply through by

$$
\left[\begin{array}{cccc}
1-x_{\delta_{E S}} k_{\dot{u}} & 0 & 0 & 0 \\
-z_{\delta_{E S}} k_{\dot{u}} & 1 & 0 & 0 \\
-M_{\delta E S} k_{u} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
\frac{1}{1-x_{\delta_{E S} k_{\dot{u}}}} & 0 & 0 & 0 \\
\frac{z_{\delta E S} k_{\dot{u}}}{1-x_{\delta_{E S} k_{\dot{u}}}} & 1 & 0 & 0 \\
\frac{M_{\delta E S} k_{\dot{u}}}{1-x_{\delta E S} k_{\dot{u}}} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The resulting equation is

$$
\left[\begin{array}{c}
\dot{u} \\
\dot{w} \\
\dot{q} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
\bar{x}_{u} & \bar{x}_{\mathrm{w}} & \bar{x}_{q} & -\bar{g} \cos \theta_{o} \\
\hat{z}_{u} & \hat{z}_{w} & u_{o}+\hat{z}_{q} & -\mathrm{g} \cos \theta_{o}+\hat{z}_{o} \\
\hat{\mathrm{M}}_{\mathrm{u}} & \hat{\mathrm{~m}}_{\mathrm{w}} & \hat{\mathrm{M}}_{\mathrm{q}} & \hat{\mathrm{M}}_{\theta} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{u} \\
\mathrm{w} \\
\mathrm{q} \\
\theta
\end{array}\right]+\left[\begin{array}{c}
\overline{\mathrm{x}}_{\delta_{E S}} \\
\hat{z}_{\delta_{E S}} \\
\hat{\mathrm{M}}_{\delta_{E S}} \\
0
\end{array}\right] \delta_{E S_{c}}
$$

where

$$
\begin{aligned}
& \bar{X}_{i}=\frac{x_{i}}{1-X_{\delta_{E S}} k_{u}} \\
& \hat{z}_{i}=z_{i}+z_{\delta_{E S}} k_{u} \cdot \bar{x}_{i} \\
& \hat{M}_{i}=M_{i}+M_{\delta_{E S}} k_{u} \bar{x}_{i}
\end{aligned}
$$

As can be seen from this equation, the influence of the \dot{u} feedback is to modify all of the terms in the state and control matrices. Note in particular the addition of a "pitch-attitude-stability" from \hat{M}_{θ}, as well as the modified values for M_{u} and M_{w}. For this reason, the aircraft characteristics given in appendix A show all derivatives to be different for the stable and unstable long-term oscillation cases.

It is important to recognize that although all of the individual derivatives are effectively modified by using this type of feedback, the way they are changed relative to each other has different influences on the resulting characteristics than would individual changes. As a primary example, since the feedback in question is of u, there should be no change in the steady-state gradient of stick position with velocity; individual feedbacks of u, w, or θ all change this gradient, however, and so it is the ratios as determined by the equations above that are important. In particular, it is straightforward to show that

$$
\begin{aligned}
& \left.\frac{u}{\delta_{E S}}\right|_{S S}=\left|\begin{array}{lll}
\bar{x}_{\delta_{E S}} & \bar{X}_{w} & -\bar{g} \\
\hat{z}_{\delta_{E S}} & \hat{z}_{W} & \hat{z}_{\theta} \\
\hat{M}_{\delta E S} & \hat{\mathrm{M}}_{\mathrm{w}} & \hat{\mathrm{M}}_{\theta}
\end{array}\right| \\
& \left|\begin{array}{lll}
\bar{x}_{w} & \bar{X}_{w} & -\bar{g} \\
\hat{\mathrm{z}}_{\mathrm{u}} & \hat{\mathrm{z}}_{\mathrm{w}} & \hat{\mathrm{z}}_{\theta} \\
\hat{\mathrm{M}}_{\mathrm{u}} & \hat{\mathrm{M}}_{\mathrm{w}} & \hat{M}_{\theta}
\end{array}\right| \\
& \text { (for } \theta_{0}=0 \text {) }
\end{aligned}
$$

$$
=\frac{\left|\begin{array}{llr}
\mathrm{x}_{\delta_{E S}} & \mathrm{x}_{\mathrm{w}} & -\mathrm{g} \\
\mathrm{z}_{\delta_{E S}} & \mathrm{z}_{\mathrm{W}} & 0 \\
\mathrm{M}_{\delta_{\mathrm{ES}}} & \mathrm{M}_{\mathrm{w}} & 0
\end{array}\right|}{\left|\begin{array}{llr}
\mathrm{x}_{\mathrm{u}} & x_{\mathrm{w}} & -\mathrm{g} \\
\mathrm{z}_{u} & z_{\mathrm{w}} & 0 \\
\mathrm{M}_{\mathrm{u}} & M_{\mathrm{w}} & 0
\end{array}\right|} \quad \text {, no influence of } \dot{u} \text { feedback }
$$

For the range of \dot{u} feedback considered in this experiment, the primary influence was therefore on the damping of the long-term roots, with a minor influence on the frequency and damping of the short-term roots. As an initial approximation to the effect, consider a hovering cubic with feedback having yielded an effective M_{u} :

$$
\left[\begin{array}{cc}
s-X_{u} & g \\
-s M_{\dot{u}}-M_{u} & s\left(s-M_{q}\right)
\end{array}\right]=\left[\begin{array}{l}
u \\
\theta
\end{array}\right]=\left[\begin{array}{l}
0 \\
M_{\delta}
\end{array}\right] \delta
$$

The characteristic equation is

$$
s^{3}+\left(-M_{q}-X_{u}\right) s^{2}+\left(M_{q} X_{u}+g M_{u}\right) s+g M_{u}=0
$$

Then the Bairstow approximation is

$$
\lambda^{2}=\frac{g M_{u}}{M_{q}+X_{u}}
$$

therefore,

$$
\left(-M_{q}-X_{u}\right) s^{2}+\left(M_{q} X_{u}+\frac{M_{u} g}{M_{q}+X_{u}}+g M_{u}\right) s+g M_{u}=0
$$

As can be seen, the influence of m_{u} is to change the "phugoid" damping term by

$$
\Delta\left(2 \zeta_{\mathrm{ph}} \omega_{\mathrm{ph}}\right)=\frac{\mathrm{gM} \mathrm{u}_{\dot{u}}}{-\mathrm{M}_{\mathrm{q}}-\mathrm{X}_{\mathrm{u}}} \doteq \frac{\mathrm{gM} \dot{\mathrm{u}}^{-}}{-\mathrm{M}_{\mathrm{q}}}
$$

To the level of accuracy of the approximation, therefore, the feedback has no influence on the undamped natural frequency of the oscillating roots in the cubic. This expression was used to estimate the levels of feedback required, following which computer studies using the full longitudinal equations were conducted to select the exact levels.

1. Rotorcraft Regulatory Review Program Notice No. 1; Proposed Rulemaking. Federal Register, Vol. 45, No. 245, 18 Dec. 1980.
2. Federal Aviation Regulation Part 27 - Airworthiness Standards: Normal Category Rotorcraft. Federal Aviation Administration, Feb. 1965.
3. Federal Aviation Regulation Part 29 - Airworthiness Standards: Transport Category Rotorcraft. Federal Aviation Administration, Feb. 1965.
4. Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M., Alderete, T. S., and Gee, D. R.: Piloted Simulator Investigation of Helicopter Control Systems Effects on Handling Qualities during Instrument Flight. Paper No. 79-26, 35 th Annual National Forum of the American Helicopter Society. Washington, D.C., May 1979.
5. Lebacqz, J. V., and Forrest, R. D.: A Piloted Simulator Investigation of Static Stability and Stability/Control Augmentation Effects on Helicopter Handling Qualities for Instrument Approach. Paper No. 80-30, 36th Annual National Forum of the American Helicopter Society, Washington, D.C., May 1980.
6. Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.; and Merrill, R. K.: Investigatioñ of Control, Display, and Crew-Loading Requirements for Helicopter Instrument Approach. AIAA Paper No. 81-1820, Albuquerque, N.M., Aug. 1981.
7. Lebacqz, J. V.; Weber, J. M.; and Corliss, L. D.: A Flight Investigation of Static Stability, Control Augmentation, and Flight Director Influences on Helicopter IFR Handling Qualities. Paper No. 8l-25, 37 th Annual National Forum of the American Helicopter Society, New Orleans, La., May 1981.
8. Airworthiness Criteria for Helicopter Instrument Flight. Federal Aviation Administration draft, 15 Dec. 1978.
9. Airworthiness Criteria for Helicopter Instrument Flight. Helicopter Association of America revision to FAA proposals 151, 413, submitted at FAA Rotorcraft Regulatory Review Program, New Orleans, La., 10-14 Dec. 1979.
10. Chen, R. T. N.: A Simplified Rotor System Mathematical Model for Piloted Flight Dynamics Simulation. NASA TM-78575, 1979.
11. Snyder, C. T.; Fry, E. B.; Drinkwater, F. J. III; Forrest, R. D.; Scott, B. C.; and Benefield, T. D.: Motion Simulator Study of Longitudinal Stability Requirements for Large Delta Wing Transport Airplanes during Approach and Landing with Stability Augmentation Systems Failed. NASA TM X-62,200, 1972.
12. Aiken, E. W.: A Mathematical Representation of an Advanced Helicopter for Piloted Simulator Investigations of Control System and Display Variations. USAAVRADCOM TM80-A-Z-2, Apr. 1980.
13. Cooper, G. E.; and Harper, R. P., Jr.: The Use of Pilot Rating in the Evaluation of Aircraft Handing Qualities. NASA TN D-5153, 1969.

TABLE 1.- SUMMARY OF STATIC AND DYNAMIC CRITERIA FROM REFERENCE 1

Characteristic	$\begin{gathered} \text { Normal } \\ \text { (single pilot) } \end{gathered}$	Normal (dual pilot)	Transport (single and dual)
1. Trim	1. All forces trim to zero	1. Same	1. Same
2. Static longitudinal	2. Demonstrate positive force stability ± 20 knots from trim for climb, cruise, slow cruise, descent, approach	2. Demonstrate positive force stability ± 20 knots from trim for cruise, approach	2. Same as "Normal single pilot"
3. Static lateral/ directional	3. Stable directional control position; no negative dihedral apparent through force or position	3. Same	3. Same
4. Dynamic stability (all axes)	4. - Period $P<5 \mathrm{sec}$: damp to $1 / 2$ amplitude in < 1 cycle - Period 5 < P < 10 : damp to $1 / 2$ amplitude in <2 cycles - Period $10<\mathrm{P}<20$: damped - Period P > 20 or aperiodic: double amplitude > 20 sec	4. - Period $P<5 \mathrm{sec}$: damp to $1 / 2$ ampli- tude in <2 cycles - Period $5<\mathrm{P}<10$: damped - Period P > 10 or aperiodic: double amplitude > 10 sec	4. Same as "Normal single pilot"

TABLE 2.- EXPERIMENTAL CONFIGURATIONS: GROUP 1

Group 1s: Low $X_{u}, M_{q}=-3.0$, Stable oscillations SS: Control position gradient, in/15 kt $(\lambda): s+\lambda[\zeta ; \omega]:\left(s^{2}+2 \zeta \omega s+\omega^{2}\right)$			
	$M_{W}=0, M_{\theta}=0$	$M_{W}=-0.025, M_{\theta}=0$	$M_{W}=0, M_{\theta}=2.25$
$\begin{gathered} \text { Stable } \\ 2 \end{gathered}$	$\begin{aligned} & \text { L01S } \\ & \begin{array}{l} (2.92)(1.33)[0.10 ; 0.34] \\ \quad \text { SS }=-1.03 \end{array} \end{aligned}$	$\begin{aligned} & \text { L06S } \\ & {[0.79 ; 2.46][0.10 ; 0.27]} \\ & \quad S S=-1.05 \end{aligned}$	$\begin{aligned} & \text { Ll1 } \\ & (1.91)(1.50(0.78)(0.22) \\ & \quad \mathrm{SS}=-1.08 \end{aligned}$
$\begin{gathered} \text { Stable } \\ i \end{gathered}$	$\begin{aligned} & \text { LO2S } \\ & \begin{array}{l} (2.95)(1.33)[0.10 ; 0.24] \\ \quad \text { SS }=-0.53 \end{array} \end{aligned}$	$\begin{aligned} & \text { L07S } \\ & {[0.79 ; 2.47][0.11 ; 0.20]} \\ & \quad \mathrm{SS}=-0.55 \end{aligned}$	$\begin{aligned} & \mathrm{L} 12 . \\ & (1.72(1.59)(0.98)(0.10) \\ & \mathrm{SS}=-0.58 \end{aligned}$
Neutral	$\begin{aligned} & \text { L03 } \\ & \begin{array}{l} (3.00)(1.33)[0.17 ; 0.057] \\ \quad S S=-0.03 \end{array} \end{aligned}$	$\begin{aligned} & \text { L08 } \\ & {[0.79 ; 2.49][0.13 ; 0.057]} \\ & \quad \mathrm{SS}=-0.05 \end{aligned}$	$\begin{aligned} & \text { L13 } \\ & {[0.99 ; 1.61](1.14)(0.011)} \\ & S S=-0.08 \end{aligned}$
$\begin{gathered} \text { Unstable } \\ 1 \end{gathered}$	$\begin{aligned} & \text { LO4 } \\ & \begin{array}{l} (3.01)(1.33)(0.07) \\ (-0.062) \\ \quad \text { SS }=+0.03 \end{array} \end{aligned}$	$\begin{aligned} & \text { L09 } \\ & {\left[\begin{array}{l} {[0.79 ; 2.49](0.069)} \\ (-0.061) \\ S S=+0.053 \end{array}\right.} \end{aligned}$	$\begin{aligned} & \text { L14 } \\ & {[0.99 ; 1.61](1.16)(0.0014)} \\ & \quad \mathrm{SS}=-0.01 \end{aligned}$
$\begin{gathered} \text { Unstable } \\ 2 \end{gathered}$	$\begin{aligned} & \text { L05 } \\ & \begin{array}{l} (3.01)(1.33)(0.12) \\ (-0.11) \\ \quad \text { SS }=+0.125 \end{array} \end{aligned}$	$\begin{aligned} & \text { L10 } \\ & {\left[\begin{array}{l} {[0.79 ; 2.49](0.096)} \\ (-0.10) \\ \quad S S=0.138 \end{array}\right.} \end{aligned}$	$\begin{aligned} & \text { L15 } \\ & {[0.99 ; 1.61](1.19)(-0.016)} \\ & \quad S S=0.092 \end{aligned}$
Group 1U: Low $\mathrm{Xu}, \mathrm{Mq}=-3.0$, unstable oscillations			
$\begin{gathered} \text { Stable } \\ 2 \end{gathered}$	$\begin{aligned} & \text { LOIU } \\ & \begin{array}{c} \sigma=0.043 \\ (3.24)(1.35)[-0.13 ; 0.34] \\ \text { SS }=-1.03 \end{array} \end{aligned}$	$\left.\begin{array}{cc} \text { L06U } & \sigma=0.046 \\ {[0.84 ; 2.61][-0.17 ;} & 0.28] \\ \text { SS }=-1.05 \end{array} \right\rvert\,$	
$\underset{1}{\text { Stable }}$	$\begin{aligned} & \text { L02U } \\ & \quad \sigma=0.050 \\ & (3.25)(1.35)[-0.21 ; 0.24) \\ & \text { SS }=-0.53 \end{aligned}$	$\begin{aligned} & \text { LO7U } \\ & {\left[\begin{array}{l} \sigma=0.048 \\ {[0.83 ; 2.60](-0.24 ; 0.20]} \\ S S=-0.55 \end{array}\right.} \end{aligned}$	

TABLE 3.- EXPERIMENTAL CONFIGURATIONS: GROUP 2

Group 2: High $\mathrm{X}_{\mathrm{u}}, \mathrm{M}_{\mathrm{q}}=-3$			
	$M_{W}=0, M_{\theta}=0$	$M_{W}=-0.25, M_{\theta}=0$	$M_{W}=0, M_{\theta}=-2.25$
$\left\|\begin{array}{l} \text { Stable } \\ \text { gradient } \end{array}\right\|$	$\begin{aligned} & \text { L16 } \\ & \begin{array}{l} (3.05)(1.34)[0.20 ; 0.24] \\ \quad \text { SS }=-0.53 \end{array} \end{aligned}$	$\begin{aligned} & \text { L20 } \\ & {[0.80 ; 2.49][0.29 ; 0.196]} \\ & \quad S S=-0.55 \end{aligned}$	$\begin{aligned} & \mathrm{L} 24 \\ & (1.75)(1.57)(0.96)(0.22) \\ & \quad \mathrm{SS}=-1.23 \end{aligned}$
Neutral gradient	$\begin{aligned} & \text { L17 } \\ & \begin{array}{l} (3.02)(1.33)[0.94 ; 0.06] \\ \quad \text { SS }=-0.03 \end{array} \end{aligned}$	$\begin{aligned} & \text { L21 } \\ & {[0.79 ; 2.49][0.89 ; 0.04]} \\ & \quad \mathrm{SS}=-0.04 \end{aligned}$	$\begin{aligned} & \mathrm{L} 25 \\ & {[0.99 ; 1.62](1.14)(0.12)} \\ & \quad \mathrm{SS}=-0.73 \end{aligned}$
$\left\|\begin{array}{c} \text { Unstable } \\ 2 \end{array}\right\|$	$\begin{aligned} & \text { L18 } \\ & \begin{array}{l} (3.01)(1.33)(0.19) \\ (-0.075) \\ \quad \mathrm{SS}=+0.125 \end{array} \end{aligned}$	$\begin{aligned} & \text { L22 } \\ & {\left[\begin{array}{l} {[0.79 ; 2.49](0.17)} \\ (-0.063) \\ S S \end{array}\right)} \\ & \quad 0.145 \end{aligned}$	$\begin{aligned} & \text { L26 } \\ & {[0.99 ; 1.61](1.20)(0.085)} \\ & \quad S S=-0.55 \end{aligned}$
$\left\lvert\, \begin{gathered} \text { Unstable } \\ 3 \end{gathered}\right.$	$\begin{aligned} & \mathrm{L} 19 \\ & \begin{array}{l} (3.01)(1.33)(0.18) \\ (-0.066) \\ \quad \mathrm{SS}=+0.10 \end{array} \end{aligned}$		

TABLE 4.- EXPERIMENTAL CONFIGURATIONS: GROUP 3

Group 3S: Low $\mathrm{X}_{\mathrm{u}}, \mathrm{M}_{\mathrm{q}}=-1.0$ stable oscillations		
	$\mathrm{M}_{\mathrm{w}}=0$	$M_{W}=-0.025$
$\begin{gathered} \text { Stable } \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{L} 28 \mathrm{~S} \\ & \begin{array}{l} (0.96)(1.31)[0.10 ; 0.59] \\ \quad \mathrm{SS}=-1.03 \end{array} \end{aligned}$	$\begin{aligned} & \text { L33S. } \\ & {[0.51 ; 1.89][0.10 ; 0.36]} \end{aligned}$
$\begin{gathered} \text { Stable } \\ 1 \end{gathered}$	$\begin{aligned} & \text { L29S } \\ & \begin{array}{l} (0.98)(1.30)[0.099 ; 0.43] \\ \quad \text { SS }=-0.53 \end{array} \end{aligned}$	$\begin{aligned} & \text { L34S } \\ & {[0.50 ; 1.90][0.13 ; 0.26]} \\ & \quad \text { SS }=-0.53 \end{aligned}$
Neutral	$\begin{aligned} & \text { L30 } \\ & (1.09)(1.25)[0.009 ; 0.098) \end{aligned}$	$\begin{aligned} & \text { L35 } \\ & {[0.51 ; 1.92][-0.0041 ; 0.075]} \end{aligned}$
	L31	L36
$\begin{gathered} \text { Unstable } \\ 1 \end{gathered}$	(1.07) (1.26) (0.063) (-0.063)	[0.51;1.92] (0.073) (-0.069)
	L32.	L37
$\begin{gathered} \text { Unstable } \\ 3 \end{gathered}$	$(1.05)(1.27)(0.12)(-0.11)$	[0.51;1.92] (0.10) (-0.11)
Group 3U: Low $\mathrm{X}_{\mathrm{u}}, \mathrm{M}_{\mathrm{q}}=-1.0$, unstable oscillations		
$\begin{gathered} \text { Stable } \\ 2 \end{gathered}$	L28U $\begin{aligned} & \sigma=0.047 \\ & (1.25)(1.25)[-0.086 ; 0.54] \\ & \text { SS }=-1.03 \end{aligned}$	$\begin{aligned} & \text { L33U } \quad \sigma=0.050 \\ & {[0.55 ; 1.91][-0.14 ; 0.37]} \end{aligned}$
$\begin{gathered} \text { Stable } \\ 1 \end{gathered}$	$\begin{aligned} & \text { L29U } \\ & \qquad \sigma=0.045 \\ & (1.23)(1.23)[-0.11 ; 0.40] \end{aligned}$	$\begin{aligned} & \text { L34U } \quad \sigma=0.045 \\ & {[0.54 ; 1.92][-0.17 ; 0.26]} \end{aligned}$

TABLE 5.- COCKPIT CONTROLLER CHARACTERISTICS

Characteristic	Pitch	Roll	Yaw	Collective
Maximum throw, in	± 5.6	± 5.5	± 3.2	10
Gradient, lb/in	0.5	0.5	3.0	0
Breakout, lb	1.0	1.0	3.0	0
Hysteresis, Ib	0.75	0.75	1.6	2^{a}

[^0]TABLE 6.- PILOT EVALUATION DATA: GROUP 1, LO1-L15 NO TURBULENCE

Note: ($\mathrm{I}-\mathrm{j} / \mathrm{k}$) = pilot identification and date; Lll+designates attitude command in roll.

TABLE 7.- PILOT EVALUATION DATA: GROUP 2, L16-L26, NO TURBULENCE

Note: Pilot identification in parentheses.

TABLE 8.- PILOT EVALUATION DATA: GROUP 3, L28-L37, NO TURBULENCE

Note: Pilot identification in parentheses.

TABLE 9.- PILOT EVALUATION DATA: GROUP 1, LO1-L15, TURBULENCE

L01S		L01U	L06S	L06U	L11	
$\begin{array}{ll} 5 & \\ 3 & \\ 6 & \mathrm{HVY} \\ 3 & \\ 4 & 1 / 2 \\ 3 & 1 / 2 \end{array}$	$\begin{aligned} & (\mathrm{P}-12 / 9) \\ & (\mathrm{T}-12 / 11) \\ & (\mathrm{T}-12 / 11) \\ & (\mathrm{G}-12 / 16) \\ & (\mathrm{H}-12 / 16) \\ & (\mathrm{M}-12 / 18) \end{aligned}$	$\begin{array}{\|lll} 5 & 1 / 2 & (\mathrm{P}-12 / 16) \\ 4 & (\mathrm{G}-12 / 17) \\ 6 & (\mathrm{H}-12 / 19) \end{array}$			$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & (\mathrm{H}-12 / 15 \\ & (\mathrm{M}-12 / 18 \\ & (\mathrm{M}-12 / 19 \\ & (\mathrm{P}-12 / 9) \\ & (\mathrm{T}-12 / 10 \\ & (\mathrm{T}-12 / 11 \\ & \mathrm{T}-12 / 11 \\ & (\mathrm{G}-12 / 11 \\ & (\mathrm{P}-12 / 11 \\ & \mathrm{L} 11+ \\ & (\mathrm{P}-12 / 11 \\ & (\mathrm{P}-12 / 11 \end{aligned}$
L02S		L02U	L07S			L12
$\left.\begin{array}{ll} 5 & (\mathrm{P}-12 / 9) \\ 2 & 1 / 2 \\ 4 & (\mathrm{~T}-12 / 10) \\ 6 & (\mathrm{G}-12 / 11) \\ 4 & (\mathrm{H}-12 / 15) \\ 5 & (\mathrm{M}-12 / 18) \\ 5 & \mathrm{HVY} \\ \hline \end{array} \mathrm{M}-12 / 19\right)$		6 $(\mathrm{P}-12 / 9)$ 3 $(\mathrm{~T}-12 / 10)$ 5 $1 / 2$ $(\mathrm{G}-12 / 11)$ 5 $1 / 2$ $(\mathrm{H}-12 / 15)$ 6 $1 / 2$ $(\mathrm{M}-12 / 18)$ 7 HVY $(\mathrm{M}-12 / 19)$	$\begin{array}{ll} 5 & 1 / \mathrm{G}-12 / 16) \\ 5 & (\mathrm{H}-12 / 19) \end{array}$		$31 / 2$ (G-12/15)	
		L03	L08	L13		
		$\left\lvert\, \begin{array}{lll} 5 & 1 / 2 & (\mathrm{P}-12 / 9) \\ 4 & & (\mathrm{~T}-12 / 10) \\ 5 & 1 / 2 & (\mathrm{G}-12 / 15) \\ 6 & 1 / 2 & (\mathrm{M}-12 / 18) \\ 5 & & (\mathrm{H}-12 / 19) \end{array}\right.$	7 (6-12/16)	$\begin{array}{lll} 4 & 1 / 2 & (\mathrm{P}-12 / 10) \\ 3 & 1 / 2 & (\mathrm{G}-12 / 15) \\ 4 & (\mathrm{H}-12 / 19) \end{array}$		
		L04	L09	L14		
		$\left.\begin{array}{ll} 6 & (\mathrm{P}-12 / 9) \\ 4 & (\mathrm{~T}-12 / 10) \\ 6 & (\mathrm{H}-12 / 15) \\ 5 & 1 / 2 \\ 6 & (\mathrm{G}-12 / 15) \\ 6 & (\mathrm{M}-12 / 18) \\ 6 & \mathrm{HVY} \\ \hline \end{array} \mathrm{M}-12 / 19\right)$	7.5 (6-12/16)	$31 / 2(6-12 / 16)$		
		L05	L10	L15		
		$$		$\begin{array}{ccc} 5 & & (\mathrm{P}-12 / 9) \\ 3 & & (\mathrm{G}-12 / 16) \\ 4 & 1 / 2 & (\mathrm{M}-12 / 18 \\ 5 & \mathrm{HVY} & (\mathrm{M}-12 / 19) \end{array}$		

Notes: Pilot identification in parentheses; HVY indicates higher level of turbulence.
table 10.- pilot evaluation data: l16-L26, turbulence
$\left.\begin{array}{|ll|l|c|}\hline & \text { L16 } & \text { L20 } & \text { L24 } \\ \hline 5 & (\mathrm{P}-12 / 10) \\ 5 & (\mathrm{G}-12 / 17)\end{array}\right)$

Note: Pilot identification in parentheses.

TABLE 11.- PILOT EVALUATION DATA: GROUP 3, L28-L37, TURBULENCE

TABLE 12.- STABILITY AND CONTROL DERIVATIVES: 60 KNOT LEVEL FLIGHT

TABLE 12．－CONTINUED

CONFIGURATION LOIS

F MATRIX IS

	u	W	0	THETA	v	P	PHI	R	
	－．64496E－81	． $135608 \mathrm{E}-01$	． 10941 E ¢2	－．30820E 02	．64101E－03	－．85968E 00	． $16266 \mathrm{E}-81$	． 10927 E ¢1	
	－．17534E 80	－．13223E 81	．13802E 03	．26213E 91	－．24859E－01	－．28163E 01	－． 31319 ED	－． 18312 E 08	
	．10457E－g1	．12397E－03	－．29379E 81	－．25548E 0 Of	．28150E－014	． 13653 E 日0	． $37817 \mathrm{E}-83$	．14851E－01	
	． 28808 E 80	． 000008 E ¢8	．1080日E 81	． 00000600	． 08000 O	． 00000 D	．00000日 00	－doname aø	
	－． $21922 \mathrm{E}-81$	－． $38746 \mathrm{E}-\varnothing 2$	－．13613E 80	．14703E 00	－．11060E 08	－．11838E 02	． 22269 E g2	－．97527E 02	
	－． $79926 \mathrm{E}-02$	－． $40381 \mathrm{E}-82$	－． $14625 \mathrm{E}-81$	． $21314 \mathrm{E}-81$	－． $21.079 \mathrm{E}-81$	－． 10040 E 02	－．62585E 01	．50958E 00	
	． 9 gagae ag	． 00000 E	． 00000 E OD	． 000 O	．$\square 0000 \mathrm{E}$	．10000E 01	． 00000 D D0	． $38939 \mathrm{E}-01$	
$\underset{\sim}{\omega}$	． $108042 \mathrm{E}-81$	－．47935E－ø2	．14936E 08	－．13768E 90	． $47337 \mathrm{E}-81$	－．15085E 01	－．82859E $\varnothing \varnothing$	－．35301E 01	
	G MATRIX IS								
	delta e	delta C	delta a	DELTA P					
	－．18311E 01	． 50757 E 00	－．27203E－02	． $28323 \mathrm{E}-01$					
	－．52352E 81	－．98408E 01	． $52384 \mathrm{E}-61$	－． $59187 \mathrm{E}-02$					
	． 34523 E g0	． $12282 \mathrm{E}-81$	－．63578E－g4	－． $32120 \mathrm{E}-02$					
	． 00000 E の0	－ 00000 E のø		．00800E 00					
	－． 19868 E D ${ }^{\text {d }}$	－． $84863 \mathrm{E}-01$.16555 El	－． 11830 E 日1					
	－．28801E－81	－． $39429 \mathrm{E}-01$	．10459E 81	－． 29985 E 90					
		． 00000808	．．00000E OD	．ø000日E $0 \varnothing$					
	．18604E 80	． $39106 \mathrm{E}-81$	． 13846 E 80	．86585E 88					

TABLE 12．－CONTINUED

CONFIGURATION LO2S

F MATRIX IS
Q
THETA
V
P
PHI
R

－．37915E－81	． $13789 \mathrm{E}-01$	．11125E 02	－．31336E 02
－．99561E－01	－．13216E 01	． 13855 E 83	．11464E 81
．54537E－D2．	．81210E－84	－．29724E 11	－．15822E $0 \varnothing$
．$¢ 00.50 \mathrm{E}$ の＂	． 00000 E	．180日øE ø1	． ．
－．20322E－81	－：38520E－02	－．11625E 08	． $91060 \mathrm{E}-01$
－．63929E－82	－．40362E－82	－．11731E－D1	．13202E－81
． 0 ¢gane 0	．A0000E 00		．0000日E ø0
．11530E－01	－．48176E－82	．13077E 日も	－．85264E－ه1
G MATRIX IS			
delta e	delta C	delta a	DELTA P
－． 18618 El ¢	． 51599 E 00	－． 27467 E －02	． $28759 \mathrm{E}-01$
－．53228E 81	－．98174E 01	． $52252 \mathrm{E}-81$	－．44031E－82
． 35101 ED	．10699E－81	－．58278E－Ø4	－．32998E－02
．D000日E DD	．$\quad 00000 \mathrm{E}$ 日ø		． 00000 E 00
－．20201E 00	－．83924E－81	． 16555 E 91	－．11829E 01
－．29289E－81	－．39284E－01	．10458E 91	－．29984E 80
． 00000 E øø	． ．0øø日E øб		．00000E 80
．18916E 00	． $38244 \mathrm{E}-81$	．13846E 98	．86579E 00

```
TABLE 12.- CONTINUED
CONFIGURATION LO2U
```

 MATRIX IS
 | U | W | 0 | THETA | v | P | PHI | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －．48966E－81 | ．14898E－81 | ．12020E 82 | －．33858E 62 | ． $70418 \mathrm{E}-83$ | －．94441E 80 | ． $17984 \mathrm{E}-81$ | ．12002E 01 |
| －． 18828 E 日8 | －．13185E 81 | ．14110E 83 | －．68623E 81 | －． $24773 E-01$ | －．30586E 81 | －．30879E 80 | ． 12472 E 00 |
| ． $60888 \mathrm{E}-02$ | －．12797E－83 | －．31412E O1 | ． 31716 E 60 | ．16646E－064 | ． 15252 E O® | ． $76977 \mathrm{E}-04$ | －．54396E－ø2 |
| ． 8 ¢0．0日E 90 | | ． 10080 El | ． 08008880 | ． 10.0 ®0E 80 | －．000¢E D0 | －øøø日®E のø | |
| －． $20653 \mathrm{E}-81$ | －． $37316 \mathrm{E}-82$ | －．19127E－81 | －． 18253 E の0 | －． 11059 E 81 | －．11847E 82 | ． 22269 E 82 | －．97516E 02 |
| －．64408E－02 | －． 48187 E －92 | ． $23506 \mathrm{E}-82$ | －． $26464 \mathrm{E}-81$ | －． $21876 \mathrm{E}-81$ | －． 10042 E （2） | －．62585E 91 | ．51128E 90 |
| ．88000E 80 | | ． .0 ¢0¢бE 98 | | | ．10ヵø日E 01 | ．$\varnothing \varnothing \varnothing \varnothing \varnothing E$ øø | ． $38939 \mathrm{E}-01$ |
| ．11848E－01 | －．49303E－02 | ． $39830 \mathrm{E}-81$ | ．17891E 90 | ．47332E－01 | －．14999E 81 | －．82875E 00 | －．35410E O1 |
| G MATRIX IS | | | | | | | |
| DELTA E | delta c | delta A | delta P | | | | |
| －． 28116 El 81 | ． 55751 E 90 | －． $29677 \mathrm{E}-82$ | ． $31073 \mathrm{E}-01$ | | | | |
| －． 57511 El | －． 96987 El | ． $51628 \mathrm{E}-\varnothing 1$ | ． $22127 \mathrm{E}-82$ | | | | |
| ． 37925 E 00 | ． $28717 \mathrm{E}-82$ | －． 16610 E －04 | －．37361E－62 | | | | |
| ． 988080880 | ． 80808 E 88 | ． 0 ¢0¢0E 日ø | ． $0 \varnothing \varnothing \varnothing \varnothing E$ gø | | | | |
| －． 21827 E 80 | －． $79419 \mathrm{E}-01$ | ． 16555 El | －．11827E 81 | | | | －． |
| －． $31645 \mathrm{E}-81$ | －． $38631 \mathrm{E}-61$ | ．18458E 01 | －．29980E D® | | | | |
| ． 880.80868 | ． 0 ¢0ø日E ø0 | ．．ロロロロ日E ロロ | | | | | |
| ． 28438 E ¢8 | ． $34626 \mathrm{E}-81$ | ．13848E 88 | ．86556E 08 | | | | |

TABLE 12.- CONTINUED

CONFIGURATION LO3

F MATRIX IS

CONFIGURATION LO4

U	W	0	THETA	v	P	PHI	R
－．66998E－82	． $14162 \mathrm{E}-81$	．11422E 82	－．32176E 82	．41763E－83	－．89744E 68	． $16913 \mathrm{E}-81$	．11488E 81
－． $10660 \mathrm{E}-01$	－． 13206 E 81	．13948E 03	－．12529E 91	－． $24763 \mathrm{E}-81$	－． 29235 E ®1	－．31115E 68	－． $45763 \mathrm{E}-81$
－．42173E－83	．18753E－84	－．30286E 01	． 000008 ¢0	． $51804 \mathrm{E}-84$	． 14364 E D8	． $25548 \mathrm{E}-83$	． $57942 \mathrm{E}-02$
	－．ロロロロE ロ®	．10øøøE 01	－DD日EDE 80		．$¢$－		． 0 ．0．80E D\％
－． $18388 \mathrm{E}-61$	－． $38879 \mathrm{E}-02$	－．83975E－01	． 00.000800	－．10046E 08	－． 11842 E 82	．22269E 02	－．97522E 02
－． $45683 \mathrm{E}-02$	－． $40274 \mathrm{E}-82$	－．78856E－02		－．18509E－81	－． 100418182	－．62586E 61	． 51836 E 80
	－．		－ 00000 E ¢0	． 0 ¢000E DD	．10008E 01	． $0 \varnothing \square 08 \mathrm{E}$－ 0	． $38939 \mathrm{E}-01$
．13187E－61	－．48539E－82	． $10047 \mathrm{E}^{\circ} 80$	－．80．8DE 80	． $39913 \mathrm{E}-81$	－．15947E 81	－．82866E $0 \varnothing$	－．35358E D1
G MATRIX IS							
delta e	delta C	DELTA A	DELTA P				
－． 19117 E ®1	． 52984 E 日0	－． $28104 \mathrm{E}-02$	． $29568 \mathrm{E}-01$				
－．54653E 01	－．977．70E 1 1	． $52042 \mathrm{E}-81$	－． $23584 \mathrm{E}-62$	：：			
． 36041 E 80	． $80835 \mathrm{E}-02$	－． 46439 E －04	－． $34468 \mathrm{E}-62$	\cdots			
． 80800 E －00		－ 00808 E ¢0					
－． 20739 E 日 0	－． $82439 \mathrm{E}-01$	． 16555 E 81	－．11828E 81				
－． $30856 \mathrm{E}-01$	－． $39878 \mathrm{E}-81$	．18458E81	－．29983E 88				
．$\varnothing 0806 \mathrm{E}$ ¢ 0							
$.19422 E 80$	． $36834 \mathrm{E}-91$	．13847E 80	．86572E 08		－		

TABLE 12.- CONTINUED

CONFIGURATION LO5

CONFIGURATION LOGS

TABLE 12．－CONTINUED

CONFIGURATION L06U

F MATRIX IS
U
1
0
$12524 E$
02

G MATRIX IS

DELTA E	DELTA C
－．209608E 81	．58091E 00
－．59920E 81	－．96310E 01
． $39516{ }^{\text {d }}$ O	－． $15468 \mathrm{E}-02$
．\quad dranoe go	． 0 ¢000E ø0
－．22743E DD	－．76879E－01
－．32980E－D1	－．38270E－01
．00000E 00	．ø0めø®E øø
．21294E 68	． $31633 \mathrm{E}-01$

$-.31029 E-02 \quad .32376 E-\varnothing 1$
$.59363 E-\not \subset 2$
$.95024 E-\varnothing 5 \quad-.39817 E-\varnothing 2$

$16555 E ~ \varnothing 1 ~-.11825 E ~ \varnothing 1 ~$
.10458 O O－．2997BE Ø日 ． 00000 E OD ． 00000 E O .13850 E 月の ．86543E Ø0

THETA
$.18605 E-01$ －． 30647 E 0． －． $63506 \mathrm{E}-04$
 $.22269 \mathrm{E} \quad 02$
－． 62585 E1
． .00000 日 0 $-.82882 E 00$

$.12585 E 101$ $.26855 E 81$
.261 －． $14929 \mathrm{E}-01$ ． 50 OのOE OD $-.97510 E 102$ $.51206 E$ 0． $.38939 \mathrm{E}-81$ －． 35461 E

TABLE 12.- CONTINUED

CONFIGURATION LO7S

F MATRIX IS

TABLE 12．－CONTINUED

CONFIGURATION LO7U

U	W	0	THETA	V	P	PHI	R
－．42506E－01	．16109E 00	．12471E 02	－．35131E 02	． $73494 \mathrm{E}-83$	－．97996E $\varnothing \varnothing$	． $18516 \mathrm{E}-01$	． 12456 E 81
－． 11269 E 日0	－．98174E 80	．1424日E 83	－．97007E 81	－． $24682 \mathrm{E}-01$	－．31602E 01	－．30688E 08	． 25358 E ¢ ${ }^{\text {d }}$
． $63191 \mathrm{E-82}$	－．27651E－01	－． 32264 El	．55710E D8	． $10550 \mathrm{E}-84$	． 15920 D 0	－．45374E－04	－． $13968 \mathrm{E}-\infty 1$
．00000E D0		． 10006 El		－DDEDEE OD	．$\varnothing \varnothing \varnothing \varnothing \varnothing E$ Øø		－．13968E－01
－．20816E－51	． $61184 \mathrm{E}-02$	．29851E－01	－． 32060 E 㕲	－． 11059 E ¢	－．11851E 82	．22269E 02	－．00001E 02
－．64640E－02	． $38383 \mathrm{E}-82$	． $94137 \mathrm{E}-62$	－． $46466 \mathrm{E}-81$	－． $21076 \mathrm{E}-01$	－．10042E 02		． .51198 E 0
－ 1 Dgabe 90		． ¢øøø日E वø	． 00000680.0	． 08000 E －8	．1000øE 01	－\varnothing－øøøE Øø	． $38939 \mathrm{E}-\varnothing 1$
．11994E－81	－．11627E－83	－．61139E－82	． 30022 E 80	． 47330 E －81	$-14963 \mathrm{El}$	－．82882E $0 \varnothing$	－．35456E 01
G MATRIX IS							
delta E	delta C	delta a	DELTA P				
－．20872E 01	． 57863 E O8	－． $31007 \mathrm{E}-82$	． $32284 \mathrm{E}-\infty 1$				
－． 59671 El	－．96377E 81	． $51139 \mathrm{E}-81$	． 54049 E －02				
． 39351 E g8	－． $11130 \mathrm{E}-82$	． $88192 \mathrm{E}-05$	－． $39588 \mathrm{E}-82$				
．00000日E 00	． 80000 E ¢0	－ 80800808	． 0 ¢000E 00				
－． 22645 E g	－． $77142 \mathrm{E}-81$	． 16555 El	－．11826E 61				
－． $32821 \mathrm{E}-81$	－． $38296 \mathrm{E}-81$	． 10459 El	－． 29979 E Ø				－\cdot
． 0 gøg日E 90		－Dø0日0E DO					
． 21286 E 00	． $31984 \mathrm{E}-01$	．13850E øD	． 86546 E OD				

TABLE 12.- CONTINUED

CONFIGURATION LO8

F MATRIX IS

	u	H	0	THETA	v	p	PHI	R	
	-. $108438 \mathrm{E}-81$.14610E 80	. 11310882	-.31860E 82	.66068E-83	-.88868E 98	. $16792 \mathrm{E}-81$. 11294 El	
	-.21307E-ø1	-.94456E 0 ¢	.139ø8E 83	-.34942E $\varnothing \varnothing$	-. $24813 \mathrm{E}-81$	-. 28981 El	-.31145E 08	-.77969E-81	
	.28231E-93	-. 24825E-81	-.30074E 01	-.59579E-81	.24365E-84	.14198E 80	.27810E-03	. $79155 \mathrm{E}-92$	
	. 2 ¢øøøE $8 \varnothing$.10000E 81	-.0めD日E Ø0					
	-. 18616 E - 1.	. $44928 \mathrm{E}-82$	-. $96106 \mathrm{E}-81$. $34286 \mathrm{E}-81$:	-. 110608808	-.11841E 02	.22269E 82	-.97523E 82	
	-. $47762 \mathrm{E}-62$. $36828 \mathrm{E}-02$	-.88223E-02	. $49694 \mathrm{E}-02$	-. $21079 \mathrm{E}-81$	-.10041E 82	-.62585E 91	.51017E D®	
			. 80808 E 80	. 0.8060808	- ¢apmoe वf	.10000E 81		. $38939 \mathrm{E}-81$	
N	. $12922 \mathrm{E}-81$. $14.068 \mathrm{E}-82$.11188E 88	-.32187E-81	. $47336 \mathrm{E}-81$	-. 15056 El	-.82864E 10	-.35338E 81	
	G MATRIX IS								
	delta e	delta C	DELTA A	DELTA P					
	-. 18929 El 81	. $52464 E$ D0	-. 27828E-02	. 29288E-01	$\therefore \text { : }$		-		
	-.54117E 81	-.979172E 01	. $51964 \mathrm{E}-81$	-. $31889 \mathrm{E}-82$					
	. 35687 ED	. $90598 \mathrm{E}-02$	-.49163E-04	-. $33921 \mathrm{E}-82$					
				. 800808808					
	-.20537E 80	-.82995E-D1	. 16555 E ¢1	-. 11829 El					
	-. $29766 \mathrm{E}-81$	-.39151E-81	. 10458881	-.29983E 00					
				. 010808 E ¢0					
	.19232E 00	. $37372 \mathrm{E}-81$. 13847 E D	.86575E 00					

CONFIGURATION LO9

F MATRIX IS

TABLE 12．－CONTINUED

CONFIGURATION LIO

F MATRIX IS

	u	W	0	THETA	v	P	PHI	R	
	．11792E－84	． 14754 E 80	． 11422 E 82	－． 32176 E 82	． $41862 \mathrm{E}-83$	－．89745E 88	．16970E－81	． 11488 El 01	
	． $84902 \mathrm{E}-82$	－． 94043 E 88	． 139408 E 83	－．12529E 01	－． $24779 \mathrm{E}-81$	－．29245E 81	－． 31115 E 80	－． $45943 \mathrm{E}-81$	
	－． $16854 \mathrm{E}-82$	－． $25097 \mathrm{E}-81$	－．30286E 01	－ 000080 OD	． $51781 \mathrm{E}-84$	．14365E 00	． $24618 \mathrm{E}-03$	． $57828 \mathrm{E}-02$	
		－ 00000 E g0	－18®®日E 81	－ 0 D日g0e 80	． 1 ¢0¢0日E 80	． 0 Døø日E 80	．$¢ 8080880$		
	－．17959E－历1	． $46495 \mathrm{E}-82$	－． $83968 \mathrm{E}-81$		－． 18046 E ¢8	－． 11842 E 62	．22269E 02	－．97522E 82	
	－． $41728 \mathrm{E}-\mathrm{y2}$	－．36253E－02	－． $78753 \mathrm{E}-02$		－． $18588 \mathrm{E}-81$	－． 10841 E 62	－．62585E 81	． 51033 E 08	
	．					．10000E 11	． 08080808	． $38939 \mathrm{E}-81$	
\ddagger	$.13416 \mathrm{E}-81$	．12587E－02	． 10848880	．$¢ \square \varnothing \square \varnothing \mathrm{ED}$	． $39915 \mathrm{E}-81$	－．15047E 81	－．82865E 80	－．3535日E 81	
	G MATRIX IS								
	DELTA E	DELTA C	delta A	DELTA P					
		． 52983 E 88	－．28202E－82		： 3				
	－． 54653 E 81	－．97768E 81	． $51885 \mathrm{E}-81$	－．23584E－02	\ldots				
	． 360841280	． $808855 \mathrm{E}-02$	－．43959E－04	－． $34466 \mathrm{E}-62$				－	
				． 80808 E					
	－． 20741 E 00	－． $82412 \mathrm{E}-81$	．16555E 01	－．11828E 61					
	－． $38063 \mathrm{E}-81$	－． $39867 \mathrm{E}-81$	． 10458881	－． 29982 E ¢0					
	． 08080888		－ 08080 E 80	－ 0 の日月0E $0 \varnothing$					
	．19422E 00	． $36823 \mathrm{E}-61$	．13848E 88	．86570E 08		！			

TABLE 12.- CONTINUED

CONFIGURATION L11

F MATRIX IS

CONFIGURATION L12

TABLE 12.- CONTINUED

CONFIGURATION L13

TABLE 12.- CONTINUED

CONFIGURATION L14

-FMATHIX-15

TABLE 12.- CONTINUED

CONFIGURATION L15

CONFIGURATION L16

TABLE 12．－CONTINUED

CONFIGURATION L17

	U	W	0	THETA	v	P	PHI	R	
G	－． 11052 E 00	． $14162 \mathrm{E}-01$	． 11422 E 82	－．32176E 02	．67411E－03	－．89750E هø	． $16958 \mathrm{E}-01$	．11410E 01	
	－． $21509 \mathrm{E}-81$	－．13207E 01	．13940E 03	－．12528E 01	－． $24779 \mathrm{E}-81$	－．29244E 81	－． 316958 E －${ }^{\text {－}}$	$.11410 E-81$ $-.46664 E-01 ~$	
	． 30151 E －03	． $11114 \mathrm{E}-01$	－． 30286881		． $21979 \mathrm{E}-84$	．14358E 80	． $24851 \mathrm{E}-03$	． $58897 \mathrm{E}-82$	
	．0008DE 00	． 00808 E 日月	． 10808 El	．$\varnothing \varnothing 008 \mathrm{CO}$	．\varnothing ¢DEE gø				
	－． $18615 \mathrm{E}-81$	－．38081E－02	－． $83874 \mathrm{E}-01$	． 00000 E OD	－． 11060 E ø	－． 11842 E （2）	.22269 E D2	.0000600 $-.97522 E 82$	
	－． $47753 \mathrm{E}-82$	－． $40281 \mathrm{E}-82$	－．70564E－02	－D¢agre 0	－． $21079 \mathrm{E}-1$	－．10041E 02	－． 62535 E 81	－．51034E 08	
	－dijsigae 0a	． 00808 E ¢0	． .08008 E 80			．1øøロロE 01	．$\varnothing \varnothing \varnothing \varnothing \square E$ ø®	． $38936 \mathrm{E}-\varnothing 1$	
	．12922E－81	－． $48552 \mathrm{E}-82$	．10841E 00	． 00000880	． $47334 \mathrm{E}-01$	－．15047E 01	－．82866E DO	－．35350E O1	
	G MATRIX IS								
	delta e	delta C	delta A	DELTA P					
	－． 19116 E 91	． 52986 E ¢0	－． $76058 \mathrm{E}-62$	．29686E－01					
	－．54652E 01	－．97773E 01	． $52356 \mathrm{E}-81$	－． $22012 \mathrm{E}-\not 22$					
	． 368408808	． $80780 \mathrm{E}-82$	．51060E－83	－． 34520 － 02					
	． 28900 E 80	． 00000 E OD	． 00008 ED					．．．	
	－． 20746 E 日月	－． $82425 \mathrm{E}-01$	． 18464 El	－．11829E 81				\cdots	
	－． $30051 \mathrm{E}-81$	－． $39091 \mathrm{E}-01$	． 10942 El	－．29984E 00					
	． 000006800	． 00000 E －8	． .00000 E ¢						
	． 19424 E 80	． $36831 \mathrm{E}-01$	$-.12835 \mathrm{E}-82$	．86575E 8 g					

CONFIGURATION L18

	u	w	0	THETA	v	P	PHI	R	
	－．10188E 00	．14162E－81	．11422E 02	－．32176E 82	．67411E－03	－．89750E DJ	． $16958 \mathrm{E}-01$	．11410E 01	
	． $31288 \mathrm{E}-82$	－．13207E 01	．13940E 83	－． 12528 E ¢1	－． $24779 \mathrm{E}-01$	－． 29244 El	－． 31133 E 80	－． $46664 \mathrm{E}-81$	
	－．13251E－62	． $111114 \mathrm{E}-84$	－． 30286 E ¢1	－ 00000 D の0	． $21979 \mathrm{E}-04$	． 14358 BE D8	． $24851 \mathrm{E}-03$	． $58097 \mathrm{E}-02$	
			．1080日E 01	－ه0000E D0		． 0 ¢8®ロE 88		． 00008 E ø0	
	－．18068E－81	－．38081E－02	－． $83874 \mathrm{E}-01$	－ 00000 O	－． 11060 E 0	－． 11842 E 82	． 22269 E ¢2	－．97522E 02	
	－． $42800 \mathrm{E}-02$	－．40281E－02	－． $70564 \mathrm{E}-02$		－． $21079 \mathrm{E}-01$	－．10041E 02	－． 62585 E O1	． 51034 E OD	
				－ 000008 DO				． $38936 \mathrm{E}-01$	
N	． $13318 \mathrm{E}-81$	－．48552E－ø2	． 10041 ED	． 000080808	． $47334 \mathrm{E}-81$	－．15047E 81	－．82866E 90	－．35350E 01	
	G MATRIX IS								
	delta e	delta c	delta A	DELTA P					
	－． 19116 El	． 52986 E 08	－．76058EE－02	． $29686 \mathrm{E}-01$					
	－． 54652 E E1	－．97773E 01	． $52356 \mathrm{E}-81$	－．22ヵ12E－ø2	：				
	． 360400 ED	． 807808082	． 51060 E － 03	－． 3452 2E－ 02					
	．ODDD日E هø	－00000 の®	－．0ヵøøøE 0¢	－\varnothing ¢øø日E Øø					
	－． 207408008	－． $82425 \mathrm{E}-01$	． 18464 E O1	－．11829E 01					
	－． $30051 \mathrm{E}-81$	－．39071E－01	－10942E 01	－．29984E 80					
	． $0 \varnothing \square \varnothing \varnothing$ øø			．0000日E 00					
	．19424E 00	． $36831 \mathrm{E}-01$	－．12835E－82	．86575E $0 \varnothing$					

TABLE 12．－CONTINUED

CONFIGURATION L19

	u	H	0	THETA	v	P	PHI	R	
	－． 183608 Eg	． $14162 \mathrm{E}-61$	．11422E 02	－． 32176 E 82	．67411E－03	－．89750E ه0	．16958E－01	．11410E 01	
	－．18238E－02	－．13287E 81	．13940E 83	－．12528E 01	－． $24779 \mathrm{E}-01$	－．29244E 01	－．31133E 09	－．46664E－®1	
	－．18008E－82	． $11114 \mathrm{E}-04$	－． 30286 E ¢1		． $21979 \mathrm{E}-04$	．14358E $\varnothing 0$	． $24851 \mathrm{E}-93$	． $.58097 \mathrm{E}-02$	
	．00000E 日0	－．ロロロロøE øD	．10080¢ 01	． 80008 E 80	－$\varnothing \varnothing \varnothing \varnothing \varnothing$ のø		－aøøø日E ø0	－Øøøø日E Øø	
	－． $18180 \mathrm{E}-81$	－．38081E－02	－． $83874 \mathrm{E}-81$	．00000E 80	－． 110608 DD	－．11842E 62	． 22269 E ¢2	－．97522E O2	
	－．43809E－62	－． $40281 \mathrm{E}-82$	－． $780564 \mathrm{E}-82$	． 00008 E D8	－． $21079 \mathrm{E}-81$	－． 10041 E ¢2	－．62585E 01	． 51034 E ¢	
	． 0 ¢0006 80		． 00000 E øర	．00000E $0 \boxed{ }$		．10000E 01		． $38936 \mathrm{E}-$ D1	
$\underset{\omega}{\sim}$	． $13238 \mathrm{E}-81$	－．48552E－ø2	．10041E 00	．ø日øロロE Øロ	． $47334 \mathrm{E}-01$	－．15047E 01	－．82866E 88	－．35350E 01	
	G MATRIX IS								
	DELTA E	delta c	delta a	delta p					
	－． 19116 El	． 52986 E 60	－．76058E－02	．29686E－ø1					
	－． 54652 El	－．97773E 01	． $52356 \mathrm{E}-01$	－． $22812 \mathrm{E}-82$					
	． 360408808	． $88780 \mathrm{E}-02$	． $51860 \mathrm{E}-03$	－． $34520 \mathrm{E}-82$					
	． 00080 E 日0	． 00608 ED		． 10008 D D					
	－． 20740 E 日g	－．82425E－ 01	．18464E 81	－．11829E 81				\cdots	
	－． 30051 E －61	－． $39871 \mathrm{E}-61$	． 10942 El	－． 29984 E ¢					
	．00000E D0		． 08080 E 日g						
	．19424E 80	． $36831 \mathrm{E}-81$	－． $12835 \mathrm{E}-82$	． 86575 E 80					

TABLE 12.- CONTINUED

CONFIGURATION L20

F MATRIX IS

TABLE 12．－CONTINUED

CONFIGURATION L21

	U	W	0	THETA	V	P	PHI	R	
	－． 11052 ED	． 14755 E \＄${ }^{\text {d }}$	．11422E 02	－．32176E 62	．67411E－03	－．89750E DD	． $16958 \mathrm{E}-81$	．11410E 01	
	－． $21509 \mathrm{E}-01$	－．94050E 80	． 13940681	－． 12528 E ¢1	－． $24779 \mathrm{E}-01$	－． 29244 E 61	－．31133E 08	－． $46664 \mathrm{E}-01$	
	．39151E－83	－．25098E－01	－．30286E 81		． $21979 \mathrm{E}-04$	．14358E $0 \varnothing$	． 24851 E －03	． $58097 \mathrm{E}-82$	
	．00．JTDE 00	．D D0000E 00	．10の日日E 01		－ $0 \varnothing \varnothing \sigma$ のø	． 0 －000E DD			
	－． $18615 \mathrm{E}-01$	． $46505 \mathrm{E}-02$	－．83874E－81	－\varnothing－	－．11060E 00	－．11842E 82	． 22269 E 82	－．97522E 02	
	－． $47753 \mathrm{E}-02$	． $36259 \mathrm{E}-02$	－． $70564 \mathrm{E}-02$	． 00000 E ¢	－． $21079 \mathrm{E}-01$	－．10041E 82	－． 62585 E 01	． 51034 E O0	
	．D日D日ge 00	$\text { . } \varnothing \varnothing \varnothing \varnothing \varnothing E ~ Ø \varnothing ~$	－00000E D0		． 00000 E ¢0	．10080E 01	． 000800808	． $38936 \mathrm{E}-81$	
u	；12922E－81	． $12588 \mathrm{E}-02$	．10041E 08	－．øøøøE øø	． $47334 \mathrm{E}-01$	－．15047E 81	$-.82866 \mathrm{E} 80$	－．35350E 01	
	G MATRIX is								
	DELTA E	DELTA C	DELTA A	DELTA P			．		
	$-.19116 E 01$	．52986E 00	－． $75058 \mathrm{E}-82$	． $29686 \mathrm{E}-01$					
	$-.54652 \mathrm{E} \text { 日i }$	$-.97773 E 01$	$.52356 E-01$	$-.22 \varnothing 12 E-\not 2$					
	$.36940 E$ DD	． $80780 \mathrm{E}-02$	$.5106 .0 \mathrm{E}-\varnothing 3$	－． 34520 E －02					
	－日8000日E 80								
	－． 20748 E O0	－．82425E－01	$.18464 \mathrm{E} \quad 91$	$\begin{array}{r} -11829 E \\ \hline \end{array}$				\cdots	
	$-.38051 E-81$	－． $39071 \mathrm{E}-81$	．16942E 10	$\begin{array}{r} -29984 E ~ 0 \varnothing \\ \hline \end{array}$				，	
			.08080 E $-.12835 \mathrm{E}-82$						
	． 19424 E 80	． $36831 \mathrm{E}-61$	－．12835E－ø2	．86575E 00					

TABLE 12.- CONTINUED

CONFIGURATION L22

F MATRIX IS

TABLE 12.- CONTINUED

CONFIGURATION L24

TABLE 12．－CONTINUED

CONFIGURATION L25

F MATRIX IS

U	W	0	THETA
－． 11052 E 0	． $14162 \mathrm{E}-81$	．11422E 82	－．20175E 82
－． $215898-81$	－．13207E 01	．13948E 03	．32954E 62
． $30151 \mathrm{E}-83$	． $11114 \mathrm{E}-01$	－．30286E 01	－．22591E 01
． 8 ¢0gde 00	． 00000880	．10000E 01	．0000日E व0
－． $18615 \mathrm{E}-01$	－．38081E－02	－． $83874 \mathrm{E}-01$	．76119E 08
－． $47753 \mathrm{E}-02$	－． $40281 \mathrm{E}-82$	－． $78564 \mathrm{E}-02$	．68874E 00
． .80800800			． 00000 O
．12922E－81	－．48552E－72	． 10041 E 88	． 55008 EDS
G HATRIX IS			
delta e	delta c	delta a	DELTA P
－－．19116E 01	． 52986 E 08	－． $760558 \mathrm{E}-02$	． $29686 \mathrm{E}-01$
－．54652E 01	－．97773E 81	． $52356 \mathrm{E}-81$	－．22012E－02
． 36040 ED 00	． $808780 \mathrm{E}-02$	．51060E－83	－．34520E－02
． 88008 E －80	． 90000 E －00		
－．20740E 00	－．82425E－81	．18464E 01	－．11829E 01
－． $30851 \mathrm{E}-61$	－． $39871 \mathrm{E}-81$	． 10942 El	－．29984E 00
． 800008000	．00000E 00	－．000日®e on	．øøøø日E øø
．19424E 00	． $36831 \mathrm{E}-81$	－． $12835 \mathrm{E}-02$	． 86575 E 0

TABLE 12．－CONTINUED

CONFIGURATION L26

F MATRIX IS
U
－．99953E－ø1
．85688E－®2
．．16880E－02
． 0 ． 0 DDDE $0 \varnothing$
$-.17946 \mathrm{E}-81$
$-.41691 E-82$
 .00000 E
$.13406 \mathrm{E}-\varnothing 1$
$.14162 E-\varnothing 1$
$. .13207 E-\varnothing 1$
$.11114 E-\varnothing 4$
.$\varnothing 0 \varnothing 00 E ~$
$-.38081 E-02$
$-.40281 E-\varnothing 2$
. $.00 \varnothing \varnothing \varnothing E ~$
$-.48552 E-\varnothing 2$
$.11422 E 62$
$.13946 E \varnothing 3$
$-.30286 E \varnothing 1$
$.10 \varnothing \varnothing 0 E \varnothing 1$
$-.83874 E-\varnothing 1$
$-.7 \varnothing 564 E-\varnothing 2$
$.0 \varnothing 9 \varnothing \varnothing E \varnothing \varnothing$
$.1 \varnothing \varnothing 41 E-\varnothing \varnothing$

DELTA A

－．28175E 82
． 32954 E （ ${ }^{\text {d }}$
－． $22591 E \varnothing 1$
． 0.0088 ED
． 76119 E D
． 68874 E － 0.
．
． 55088 E ¢

$-.89750 E$
$-.29244 E$
$-14358 E$
$.0 \varnothing 0$
$.0 \varnothing 00 E$
$-.11842 E$
$-.10041 E$
$.10000 E$
$-.15047 E$
-1
$.11410 E 01$ $-.46664 \mathrm{E}-01$ $.58097 E-82$ － 00000 O 0
－．97522E 02 51834E 0 S 38936E－g1 $.38936 E-G 1$
$-.35350 E G 1$
$.29686 E-01$
－．19116E 01
$-.54652 \mathrm{E} .01$
$.36040 E$ O历
00000E 00
$-.20740 E$ DO
$-.30051 E-01$
． 00000 D D0
$.19424 E$ D®
$.52986 E ~ 00$
$.97773 E \varnothing 1$
$.80780 E-\varnothing 2$
$.00000 E \varnothing \varnothing$
$.82425 E-\varnothing 1$
$-.39071 E-\varnothing 1$
$.00000 E \varnothing \varnothing$
$.36831 E-\varnothing 1$
$-.76058 E-02$
$.52356 E-81$
$.51060 E-\varnothing 3$
$.00000 E 00$
$.18464 E 01$
$.16942 E 61$
$.00000 E 00$
$-.12835 E-02$
$-22012 E-82$
$-.34520 E-82$
． $0 \varnothing 000 \mathrm{DED}$
$-.11829 E$ ס1
$-.29984 E 80$ －00000E 00 ．86575E 808

PHI

． $16958 \mathrm{E}-101$	
31133	0.0
24851	－-83
．000¢50	80
22269 E	¢
． 62585 E	
Фø0毋历E	¢
2866E	

． $08000 \mathrm{D} ~ 00$
-.82866 E － 0

R

G MATRIX is

DELTA E DELTA C

THETA
V

$.67411 \mathrm{E}-03$ $21979 E-04$ 11060 O 0
 $-.21079 E-01$ 00000E 00 $47334 \mathrm{E}-01$

TABLE 12.- CONTINUED

CONFIGU̇RATION L28S

F MATRIX IS

TABLE 12．－CONTINUED

CONFIGURATION L28U

F MATRIX IS
U W

G MATRIX IS
delta e
$-.18688 E$
$-.53430 E \not D 1$
$.35233 E$ 68
． 00000 E の
－．20276E DD
－．29390E－ 01
－0日の日日E 00
$\begin{array}{r}.00000 \mathrm{E} \\ .18987 \mathrm{E} \\ \hline\end{array}$

DELTA C
DELTA A
DELTA P
$.0 \varnothing \varnothing \varnothing \varnothing E ~$
$.38043 E-\varnothing 1$
a
．72368E 00 $.10891 E 63$ $.10147 E 101$ $.1 \varnothing \varnothing \varnothing \varnothing E ~ \varnothing 1$ -.76272 E の －． $62018 \mathrm{E} \varnothing$ －． 62018 E の $.00 .810 E$
$-.38778 E 0$

THETA
$-.31455 E \not 22$ ． 80683 E 80 $-.13582 \mathrm{ED}$ ．Øロロ毋毋E ØD $.78164 \mathrm{E}-81$ $.11330 E-\varnothing 1$.0000 .0 ED $-.73193 \mathrm{E}-\not 01$
．51794E 08 －．98110E 01 $.10323 \mathrm{E}-81$
 $-.83683 \mathrm{E}-\varnothing 1$
－．39236E－ 01
$-.27667 E-02$
52066E－01
$.52524 E-\varnothing 4$
．$\varnothing \varnothing \varnothing \varnothing \varnothing E ~ \varnothing \varnothing ~$
$.16555 E$ O1
.10458 E ®
－ $0 \varnothing \varnothing \varnothing E ~ \varnothing \varnothing ~$ $.13847 E 80$
$.28878 \mathrm{E}-61$
$-.40921 E-02$
－．33205E－82

$-.11829 E 81$
－． $29983 E$ 010
．DOD0日E D0
． 86578 g 有
－
$.65133 \mathrm{E}-83$
$-.24837 E-81$ $.25942 \mathrm{E}-84$ － $0 \varnothing \varnothing \varnothing E ~ \varnothing \varnothing ~$ $-.11060 E 80$ $-21079 E-81$ ．$\varnothing 0008 E$ D0 $.47337 E-\varnothing 1$

PHI
R
－． 87736 E 日
-.28663 E б1
$.13987 E \not 00$
－ØøøøロE ロø
-.11840 E 02
－． 10041 E 0
．1ヵDD日E ロ1
-.15067 E 01
$.16568 \mathrm{E}-81$
$-.31242 \mathrm{EDO}$
$.32134 E-\varnothing 3$ －00800E 00
． $22269 \mathrm{E} \quad 82$
$-.62585 E 81$ ．OOODOE DO
－．82862E $\varnothing \varnothing$
.11152 E 81 $-11987 E$ O1 $.10612 \mathrm{E}-01$ ．DD日D日E 00
－．97525E 02
$.50992 E 00$ $.38939 E-81$ $-.35324 \mathrm{E} 81$

CONFIGURATION L29S

F MATRIX IS

	U	W	0	THETA	v	P	PHI	R	
	－． $37431 \mathrm{E}-81$	． $13609 \mathrm{E}-01$	．71171E 08	－． 38934 E 82	．63866E－03	－．86282E 00	． $16358 \mathrm{E}-81$	． 18968 El	
	－．98249E－81	－． 13222 El	．19888E 83	． 22959 El	－． $24868 \mathrm{E}-81$	－．28247E 01	－．31321E 00	－．17248E 00	
	．53632E－82	．11526E－83	－．10124E 0_{1}	－．23402E $0 ¢$	．28141E－014	．13713E 00	． $36322 \mathrm{E}-83$	． $14.093 E-01$	
	． 00808 E g	． 0 ．008日E D0	．1ه0ø日E 01	． 0 ¢00日E 00	． 08008 ED	． 0 ¢0．0日E 00	．00000E 0¢	． 000808 D	
	－．28278E－81	－． $38698 \mathrm{E}-02$	－．76402E 80	．13467E $0 \varnothing$	－．11060E $0 \varnothing$	－． 11838 E 02	． 22269 E ¢2	－．97527E 62	
	－．63853E－82	－． $48387 \mathrm{E}-82$	－．62036E $0 \varnothing$	． $19521 \mathrm{E}-01$	－．21079E－81	－．10040E 02	－．62585E 01	．50964E 00	
	． 0 g8g．ge 9 g	． 0 ¢øø日E $0 \varnothing$	． 0 gagae 刀\％			．1080日E 01	． 0 －080］ 00	． $38939 \mathrm{E}-81$	
N	． $11481 \mathrm{E}-81$	－．48009E－82	－．38656E $8 \varnothing$	－．12611E 00	．47336E－01	－．15082E 01	－．82859E øø	－．35305E 81	
	G MATRIX is								
	delta e	DELTA C	DELTA A	delta p					
	－．18379E 81	． 50938 E ¢0	－．27209E－ø2	．28398E－81					
	－．52545E 81	－．98362E 01	． $52197 \mathrm{E}-81$	－． $54581 \mathrm{E}-82$					
	． 34650 E g	． $11947 \mathrm{E}-61$	－．61161E－84	－． $32385 \mathrm{E}-82$					
	． 80800 E 90	－00000E D0		． 0 D000E 08				\ldots	
	－． 19940 E 80	－． $84614 \mathrm{E}-01$.16555 El	－．11829E 81				．．．．	
	－．28984E－01	－． $39376 \mathrm{E}-81$	． 10458 E 81	－．29984E 88					
	． ¢0980E 90	． 9 gabae ax		． 00000 E ¢0					
	． 18672 E g	． $38910 \mathrm{E}-61$	．13846E 80	．86583E 08					

```
TABLE 12.- CONTINUED
```

CONFIGURATION L29U

F MATRIX IS

	U	W	a	THETA	v	P	PHI	R	
	－．38778E－61	． $14.099 \mathrm{E}-01$	．73731E 日の	－．32047E 82	．66163E－ด3	－． 89385 E ¢0	．16947E－01	．11362E 91	
	－．10210E 00	－．13208E 01	．10895E 03	－．88524E $\varnothing \varnothing$	－．24802E－ø1	－． 29135 El	－．31152E $0 \varnothing$	－． $59698 \mathrm{E}-\infty 1$	
	． $56170 \mathrm{E}-02$	． $22974 \mathrm{E}-\varnothing 4$	－．10172E 01	－． $24244 \mathrm{E}-81$	．23810E－084	．14298E 00	． $25229 \mathrm{E}-03$	． $66550 \mathrm{E}-02$	
		． 0 －øø日E $0 \varnothing$	．190ø日E 01			．$\varnothing \varnothing \varnothing \varnothing$ のø	．\varnothing ¢øøE DO		
	－． $20416 \mathrm{E}-81$	－． $38167 \mathrm{E}-82$	－．76124E 90	． $13952 \mathrm{E}-81$	－．11060E 日®	－．11842E 82	． 22269 E ¢2	－． 97523 E ø2	
	－．64065E－02	－． $40318 \mathrm{E}-02$	－．61996E 00	． $20223 \mathrm{E}-02$	－． $21879 \mathrm{E}-81$	－．10041E 82	－．62585E 01	． 51026 E O	
	．ØDDD日E øø	．\varnothing ¢øø日E 毋ø	－ 0 のapde øの		－\varnothing－${ }^{\text {d }}$	．10000E 01	． 00000 E 日0	． $38939 \mathrm{E}-01$	
$\stackrel{9}{3}$	．11618E－81	－．48506E－02	－．38916E－80	－． $13064 \mathrm{E}-81$	． $47334 \mathrm{E}-81$	－．15050E 01	－．82865E 00	－．35345E 01	
	G MATRIX IS								
	delta e	delta c	delta A	DELTA P					
	－．19049E 01	． 52770600	－．28188E－02	．29411E－01					
	－． 54435 E1	－．97838E 01	． $51917 \mathrm{E}-\varnothing 1$	－． $25386 \mathrm{E}-\varnothing 2$					
	$\therefore .35896 \mathrm{E}$ ¢ 0	． $84926 E-82$	－． 42710 E －04	－． $342388 \mathrm{E}-82$	：				
		． 0 －00øøE $8 \varnothing$		． 00008 C					
	－． 28657 E ¢ 8	－． $82627 \mathrm{E}-\varnothing 1$.16555 E ¢1	－．11828E 81					
	－． $29944 \mathrm{E}-01$	－． $39088 \mathrm{E}-01$	． 10458 E 81	－．29983E $\varnothing \varnothing$					
	．\square ¢gø日E Дø								
	．19343E 80	． $37848 \mathrm{E}-81$	．13847E 00	．86573E 00					

CONFIGURATION L30

TABLE 12．－CONTINUED

CONFIGURATION L31

F MATRIX IS

	u	W	0	THETA	v	P	PHI	R	
	－．81365E－02	． $14165 \mathrm{E}-01$	． 74030 E OD	－．32176E 02	．67018E－03	－．89745E $0 \varnothing 8$	． $17026 \mathrm{E}-81$	． 11407 E 91	
	－． $14654 \mathrm{E}-81$	－． 132.06 E 01	．10896E 03	－． 12529 El	－． $24858 \mathrm{E}-\varnothing 1$	－． 29242 E 81	－． 31133 E Ø才	－． $45763 \mathrm{E}-01$	
	－．15201E－ø3	．10482E－g4	－． $10178 \mathrm{E}^{61}$	．000080 00	．23129E－014	．14367E 08	． $23714 \mathrm{E}-03$	． $57955 \mathrm{E}-62$	
			．100ø日E 01	．000．0E D0	． ．	．ס0000E 08			
	－． $18479 \mathrm{E}-\varnothing 1$	－．38131E－82	－．76096E 00		－．11060E 00	－．11842E 62	． 22269 E ¢2	－．97522E 02	
	－． $46421 \mathrm{E}-82$	－． $40320 \mathrm{E}-02$	－．61994E 80	．00000E 00	－． $21079 \mathrm{E}-81$	－．10041E 02	－．62585E 81	． 51033 E 00	
		． 0 ¢ø日日E øø	．वapdoe ¢0	． 000008080		．1ø0．0． 01	．\varnothing－øø日E øø	． $38939 \mathrm{E}-01$	
9	． $13.643 \mathrm{E}-01$	－．4857®E－®2	－．38948E 88		．47335E－81	－．15047E 01	－．82865E 00	－．35350E 01	
	G MATRIX IS								
	delta e	delta C	DELTA A	DELTA P					
	－．19117E 01	． 52981 E ¢ ${ }^{\text {d }}$	－．28399E－02	． $29529 \mathrm{E}-81$					
	－．54652E 01	－．97720E 01	． $51885 \mathrm{E}-01$	－． $22012 \mathrm{E}-02$					
	． 36941 EDO	． 80859 E －02	－．38323E－84	－． 34450 E －Ø2					
	．$¢ \varnothing \varnothing \varnothing \varnothing E$ øø	． 00000 E øø							
	－． 20743 E ¢	－．82436E－01	． 16555 E ¢ 1	－． 11828 El					
	－． $30079 \mathrm{E}-81$	－．39079E－01	． 10458 El	－． 29983 E ¢					
	．\varnothing－DDEE 00	－ 00000 E のD		．00008E 00					
	．19422E 80	． $36825 \mathrm{E}-01$	．13847E 08	．86571E 08					

TABLE 12.- CONTINUED

CONFIGURATION L32

F MATRIX IS

TABLE 12.- CONTINUED

CONFIGURATION L33S

F MATRIX IS


```
TABLE 12.- CONTINUED
```

CONFIGURATION L33U

TABLE 12．－CONTINUED

CONFIGURATION L34S

F MATRIX IS

	U	W	0	THETA	v	P	PHI	R	
	－． $38166 \mathrm{E}-81$	．14464E $0 \varnothing$	． 72571 E 00	－．31542E 62	．65217E－63	－．87979E $0 \varnothing$	． $16647 \mathrm{E}-01$	．11182E 01	
	－． 10027 E 00	－．94869E $0 \varnothing$	．18892E 83	． 55722 E D	－．24911E－01	－． 28738 E ®1	－． 31229 E ¢ ${ }^{\text {d }}$	－． 10993 E ¢0	
	． $55010 \mathrm{E}-82$	－．24550E－81	－．10150E 01	－．11937E 08	． $26521 \mathrm{E}-04$	．14034E 08	． $38763 \mathrm{E}-83$	． $10837 \mathrm{E}-1$	
		－ 0 ¢0øøE 90	． 10000 E 01	－DD®日DE D®	－\varnothing－	． 00008 D	． 0 DDD日E 00	． 00000 E OD	
	－．2035＠E－＠1	．43327E－82	－．76251E $0 \varnothing$	． $68679 \mathrm{E}-01$	－．1106日E 00	－． 11840 E 62	．22269E 62	－．97525E 02	
	－．63974E－02	． $35786 \mathrm{E}-02$	－．62015E 00	． 99506 E －02	－． $21077 \mathrm{E}-01$	－． 10041 E 02	－．62585E 01	． 50999 ED	
	．DODD日E 00		． 06080 E 日®	－øøøø叩E øø	． 0 －0000E 0¢	．10000E 01	． 000080 E 日0	． $38939 \mathrm{E}-01$	
¢	．11555E－01	．15540E－02	－．38798E 00	－．64321E－D1	． $47337 \mathrm{E}-81$	－．15064E 61	－．82861E 10	－．35327E 01	
	G MATRIX IS								
	delta E	DELTA C	delta a	DELTA P			．		
	－．18741E 01	． 51937 E ¢0	－． $27744 \mathrm{E}-82$	． $28958 \mathrm{E}-\not \chi_{1}$					
	－． 53578 El ¢1	－．98968E 01	． $52201 \mathrm{E}-01$	－． $38629 \mathrm{E}-02$					
	． 35332 E 80	． $10054 \mathrm{E}-81$	－．51527E－04	－．33357E－82					
	． 08008 D ס0	． 00000 D D0						．．．	
	－． 20329 E O0	－．83555E－01	． 16555 El	－．11829E 01					
	－． $29453 \mathrm{E}-01$	－． $39231 \mathrm{E}-81$	． 10458 El	－．29984E 08					
	－Dogade ad		－ 00000 E の0	． .80808 E ¢0					
	．19039E 00	． $37899 \mathrm{E}-81$	． 13846 E 88	．86578E 80					

```
TABLE 12.- CONTINUED -
```

CONFIGURATION L34U

F MATRIX IS

CONFIGURATION L35

TABLE 12.- CONTINUED

CONFIGURATION L36

F MATRIX is

TABLE 12.- CONCLUDED

CONFIGURATION L37

TABLE 13.- LONGITUDINAL EIGENVALUES AND TRANSFER FUNCTION NUMERATORS

	L01S	L03
$\Delta(\mathrm{S})$	(2.93)(1.34) (0.10;0.34)	(3.00) (1.34) (0.16;0.056)
$N_{\delta \text { ES }}^{\text {u }}$	-1.8(0.15;2.46)(1.41)	-1.9(0.15;2.46)(1.41)
$\mathrm{N}_{\delta \text { ES }}^{\mathrm{W}}$	-5.2(-6.17) (0;0.06)	-5.4(-6.17) (0.036;0.039)
$\mathrm{N}_{\delta \text { ES }}{ }^{\text {d }}$	0.34 (1.32) (0.009)	0.36(1.32) (0.0085)
$\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$	$0.5(3.24)(1.15)(-0.17)$	0.53(3.24)(1.15)(-0.17)
$N_{\delta C}^{\mathrm{W}}$	-9.84(2.80) (0.07;0.35)	-9.78(2.90)(0.11;0.069)
$\mathrm{N}_{\delta}^{\text {¢ }} \mathrm{C}$	$0.012(1.51)(0.50)$	0.008(0.025) (1.52)
	L01U	L04
$\Delta(S)$	(3.24) (1.35) (-0.13;0.34)	(3.02)(1.34)(0.74) (-0.63)
$\mathrm{N}_{\delta \text { ES }}^{\text {u }}$	-1.99(0.15;2.45)(1.41)	
$\mathrm{N}_{\delta \text { ES }}^{\mathrm{W}}$	$-5.7(-6.17)(0.073 ; 0.053)$	
$N_{\delta E S}$	0.37(1.32)(0.045)	As per L03
$\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$	0.55 (3.20)(1.13) (-0.17)	
$\mathrm{N}_{\delta}^{\mathrm{W}} \mathrm{C}$	-9.84(3.26)(-0.16;0.34)	0.53(3.23)(1.14)(-0.17)
$\mathrm{N}_{\delta \mathrm{C}}^{\ominus}$	$0.012(0.61)(1.5)$	$0.008(1.53)(-0.017)$
	L02S	L05
Δ (S)	(2.96)(1.34)(0.10;0.24)	(3.01) (1.34) (0.13) (-0.11)
$\mathrm{N}_{\delta E S}^{\mathrm{u}}$	-1.86(0.15;2.46)(1.41)	
$\mathrm{N}_{\delta \text { ES }}^{W}$	-5.3(-6.17)(0.0092;0.052)	As per L03
$\mathrm{N}_{\delta E S}^{\theta}$	0.35(1.32) (0.0087)	As per L03
$\mathrm{N}_{\delta}^{\mathrm{L}} \mathrm{C}$	$0.52(3.24)(1.15)(-0.17)$	
$N_{\delta}^{\text {W }} \mathrm{C}$	-9.84(2.84)(0.077;0.25)	0.53(3.23)(1.14)(-0.17)
$\mathrm{N}_{\delta \mathrm{C}}{ }^{\text {c }}$	0.012(1.50) (0.26)	0.008(1.51) (-0.072)
	LO2U	L06S
Δ (S)	(3.26)(1.35) (-0.21;0.24)	$(0.79 ; 2.50)(0.10 ; 0.27)$
$\mathrm{N}_{\delta E S}^{\mathrm{u}}$	-2.01(0.15;2.46)(1.41)	-1.86(0.15;2.43)(1.32)
$\mathrm{N}_{\delta \mathrm{SES}}^{\mathrm{W}}$	-0.58(-6.17) (0.016;0.050)	-5.3(-6.17)(-0.029;0.075)
$\mathrm{N}_{\delta \text { ES }}$	0.38(1.32) (0.0088)	0.35(1.31) (0.0099)
$\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$	$0.56(3.24)(1.15)(-0.17)$	0.52(-1.71) (0.54;2.99)
$\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$	-9.7(3.26)(-0.26;0.24)	-9.82(2.89(0.03;0.34)
$\mathrm{N}_{\delta \mathrm{C}}{ }^{\text {c }}$	$0.029(0.55)(4.77)$	0.011(23.11) (0.035)

	L06U	L09
$\Delta(S)$ $\mathrm{N}_{\delta \mathrm{ES}}^{\mathrm{u}}$ $\mathrm{N}_{\delta \mathrm{ES}}^{\mathrm{W}}$ ${ }^{\mathrm{N}}{ }_{\delta \mathrm{ES}}^{\ominus}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{L}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$ $N_{\delta C}^{\theta}$	$\begin{aligned} & (0.83 ; 2.60)(-0.17 ; 0.28) \\ & -2.1(0.15 ; 2.43)(1.31) \\ & -6.0(-6.17)(0.34 ; 0.012) \\ & 0.40(1.30)(0.0082) \\ & 0.58(-1.71)(0.54 ; 2.99) \\ & -9.63(3.55)(-0.29 ; 0.33) \\ & -0.0015(-173.0)(0.038) \end{aligned}$	$\begin{aligned} & (0.79 ; 2.52)(0.066)(-0.063) \\ & \{\text { As per L08 } \\ & -9.78(2.92)(0.098)(-0.086) \\ & 0.008(30.3)(0.0076) \end{aligned}$
	L07S	L10
$\begin{aligned} & \Delta(S) \\ & N_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.79 ; 2.51)(0.11 ; 0.20) \\ & -1.87(0.15 ; 2.43)(1.31) \\ & -5.3(-6.17)(0.017 ; 0.050) \\ & 0.35(1.30)(0.0088) \\ & 0.52(-1.71)(0.54 ; 2.99) \\ & -9.81(2.86)(0.06 ; 0.25) \\ & 0.01(23.76)(0.023) \end{aligned}$	$\begin{aligned} & (0.79 ; 2.52)(0.10)(-0.10) \\ & \{\text { As per L08 } \\ & -9.78(2.92)(0.15)(-0.13) \\ & 0.008(30.3)(0.0053) \end{aligned}$
	L07U	L11
$\begin{aligned} & \Delta(S) \\ & N_{\delta E S}^{\mathrm{u}} \\ & N_{\delta E S}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & N_{\delta \mathrm{C}}^{\mathrm{U}} \mathrm{C} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.82 ; 2.60)(-0.24 ; 0.20) \\ & -2.1(0.15 ; 2.43)(1.31) \\ & -6.0(0.051 ; 0.039)(6.17) \\ & 0.39(1.30)(0.0085) \\ & 0.58(-1.71)(0.54 ; 2.99) \\ & -9.64(3.47)(-0.36 ; 0.24) \\ & -0.077(236.0)(0.024) \end{aligned}$	$\begin{aligned} & (1.97)(1.50)(0.22)(0.72) \\ & -1.91(0.15 ; 2.43)(1.42) \\ & -5.5(-6.17)(0.018 ; 0.076) \\ & 0.36(1.33)(0.0098) \\ & 0.53(2.05)(1.62)(0.63) \\ & -9.78(1.96)(0.22)(0.76) \\ & 0.008(1.89)(0.56) \end{aligned}$
	L08	L12
$\begin{aligned} & \Delta(S) \\ & N_{\delta E S}^{\mathrm{u}} \\ & \mathbb{N}_{\delta \mathrm{ES}}^{\mathrm{W}} \\ & \mathbb{N}_{\delta \mathrm{ES}}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{U}}^{\mathrm{U}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.79 ; 2.52)(0.15 ; 0.057) \\ & -1.9(0.15 ; 2.43)(1.31) \\ & -5.4(-6.17)(0.066 ; 0.031) \\ & 0.36(1.30)(0.0083) \\ & 0.52(-1.71)(0.54 ; 2.99) \\ & -9.79(2.88)(0.18 ; 0.070) \\ & 0.009(27.0)(0.010) \end{aligned}$	$\begin{aligned} & (1.83)(1.55)(0.84)(0.10) \\ & \{\text { As per L11 } \\ & -9.78(1.74)(1.13)(0.11) \\ & 0.008(1.70)(0.35) \end{aligned}$

TABLE 13.- CONTINUED

	L13	L17
$\begin{aligned} & \Delta(S) \\ & \mathrm{N}_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{w}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (1.64)(1.64)(1.06)(0.013) \\ & \{\text { As per L11 } \\ & -9.78(1.48)(1.48)(0.015) \\ & 0.008(1.55)(0.026) \end{aligned}$	$\begin{aligned} & (3.02)(0.97 ; 0.056)(1.34) \\ & \{\text { As per L16 } \\ & -9.78(2.93)(0.87 ; 0.061) \\ & 0.008(1.55)(0.13) \end{aligned}$
	L14	L18
$\Delta(S)$ $\mathrm{N}_{\delta \mathrm{ES}}^{\mathrm{u}}$ $N_{\delta E S}^{W}$ $\mathrm{N}_{\delta E S}^{\ominus}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\theta}$	$\begin{aligned} & (1.64)(1.64)(1.08)(0.0028) \\ & \{\text { As per L11 } \\ & -9.78(1.50)(1.50)(0.0059) \\ & 0.008(1.53)(-0.017) \end{aligned}$	$\begin{aligned} & (3.01)(0.19)(1.34)(-0.075) \\ & \{\text { As per L16 } \\ & -9.78(2.91)(0.19)(-0.074) \\ & 0.008(1.51)(0.031) \end{aligned}$
	L15	L19
$\Delta(S)$ $\mathrm{N}_{\delta \mathrm{ES}}^{\mathrm{u}}$ $\mathrm{N}_{\delta E S}^{\mathrm{W}}$ $\mathrm{N}_{\delta E S}^{\theta}$ $\mathrm{N}_{\mathrm{S}}^{\mathrm{L}} \mathrm{C}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\theta}$	$\begin{aligned} & (1.63)(1.63)(1.12)(-0.015) \\ & \{\text { As per L11 } \\ & -9.78(1.52)(1.52)(-0.011) \\ & 0.008(1.50)(-0.094) \end{aligned}$	$\begin{aligned} & (3.01)(1.34)(0.17)(-0.062) \\ & \{\text { As per L16 } \\ & -9.78(2.92)(0.18)(-0.061) \\ & 0.008(1.52)(0.051) \end{aligned}$
	L16	L20
Δ (S)	(3.06) (0.19;0.24) (1.34)	(0.79;2.53) (0.29;0.20)
$\mathrm{N}_{\delta \text { ES }}^{\mathrm{u}}$	-1.91(0.15;2.46)(1.41)	-1.91(1.31)(0.15;2.43)
$\mathrm{N}_{\delta \text { ESS }}^{\mathrm{W}}$	-5.47(-6.17) (0.082) (0.019)	-5.47(-6.17(0.11)(-0.0043)
$\mathrm{N}_{\delta \text { ESS }}^{\text {e }}$	0.36(1.32)(0.11)	0.36(1.30)(0.11)
$\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$	0.53(3.24)(1.15)(-0.17)	0.53(-1.71) (0.54;2.99)
$\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$	-9.78(2.99)(0.17;0.25)	-9.78(2.99)(0.16;0.25)
$\mathrm{N}_{\delta \mathrm{C}}^{\ominus}$	0.008(1.71) (0.49)	0.008(30.77)(0.12)

TABLE 13.- CONTINUED

	L21	L26
$\begin{aligned} & \Delta(S) \\ & \mathbb{N}_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{w}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & N_{\delta C}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.79 ; 2.53)(0.053)(0.053) \\ & \{\text { As per L20 } \\ & -9.78(2.93)(0.79 ; 0.66) \\ & 0.008(30.4)(0.11) \end{aligned}$	$\begin{aligned} & (1.63)(1.63)(1.12)(0.082) \\ & \{\text { As per L16 } \\ & -9.78(1.50)(1.50)(0.082) \\ & 0.008(1.50)(0.0087) \end{aligned}$
	L22	L28S
$\begin{aligned} & \Delta(S) \\ & N_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.79 ; 2.53)(0.17)(-0.064) \\ & \{\text { As per L20 } \\ & -9.78(2.91)(0.20)(-0.088) \\ & 0.008(30.3)(0.11) \end{aligned}$	$\begin{aligned} & (1.30)(1.03(0.10 ; 0.59) \\ & -1.78(0.18 ; 2.46)(1.40) \\ & -5.1(-6.17)(0.003 ; 0.060) \\ & 0.34(1.32(0.009) \\ & 0.49(3.94)(0.95 ; 1.32) \\ & -9.88(0.032 ; 0.61)(0.88) \\ & 0.015(1.39)(0.36) \end{aligned}$
	L24	L28U
Δ (S) $\mathrm{N}_{\delta E S}^{\mathrm{u}}$ $\mathrm{N}_{\delta \mathrm{E}}^{\mathrm{W}}$ $N_{\delta E S}^{\theta}$ $N_{\delta C}^{\mathrm{L}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\theta}$	$\begin{aligned} & (1.84)(1.53)(0.22)(0.79) \\ & \int_{0.53(2.04)(1.64)(0.63)} \text { As per L16 } \\ & -9.78(1.78)(1.02)(0.22) \\ & 0.008(1.71)(0.49) \end{aligned}$	$\begin{aligned} & (1.27)(1.27)(-0.086 ; 0.54) \\ & -1.87(0.18 ; 2.46)(1.41) \\ & -5.3(-6.17)(-0.018 ; 0.069) \\ & 0.35(1.32)(0.0096) \\ & 0.52(0.39)(0.95 ; 1.31) \\ & -9.81(1.15)(-0.14 ; 0.55) \\ & 0.01(1.64)(0.53) \end{aligned}$
	L25	L29S
$\begin{aligned} & \Delta(\mathrm{S}) \\ & \mathrm{N}_{\delta \mathrm{ESS}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{ES}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{ES}}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{w}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (1.64)(1.64)(1.06)(0.11) \\ & \{\text { As per L24 } \\ & -9.78(0.99 ; 1.47)(0.12) \\ & 0.008(1.55)(0.13) \end{aligned}$	$\begin{aligned} & (1.27)(1.07)(0.096 ; 0.42) \\ & -1.84(0.18 ; 2.46)(1.40) \\ & -5.3(-6.17)(0.023 ; 0.048) \\ & 0.35(1.32)(0.0088) \\ & 0.51(0.39)(0.95 ; 1.32) \\ & -9.84(0.037 ; 0.44)(0.88) \\ & 0.012(1.44)(0.23) \end{aligned}$

TABLE 13.- CONTINUED

	L29U	L33S
$\begin{aligned} & \Delta(S) \\ & \mathbb{N}_{\delta E S}^{\mathrm{u}} \\ & \mathbb{N}_{\delta \mathrm{ES}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (1.26)(1.26)(-0.11 ; 0.40) \\ & -1.90(1.41)(0.18 ; 2.46) \\ & -5.4(-6.17)(-0.012 ; 0.063) \\ & 0.36(1.32)(0.0093) \\ & 0.53(0.39)(0.95 ; 1.32) \\ & -9.78(1.12)(-0.16 ; 0.41) \\ & 0.0085(1.66)(0.33) \end{aligned}$	$\begin{aligned} & (0.52 ; 1.91)(0.098 ; 0.36) \\ & -1.89(0.18 ; 2.43)(1.32) \\ & -5.4(-6.17)(-0.0087 ; 0.065) \\ & 0.36(1.31)(0.0094) \\ & 0.52(-2.57)(0.39 ; 2.42) \\ & -9.80(1.19)(-0.17 ; 0.54) \\ & 0.0094(26.5)(0.036) \end{aligned}$
	L30	L33U
$\begin{aligned} & \Delta(S) \\ & N_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (1.21)(1.21)(0.11 ; 0.095) \\ & -1.91(0.17 ; 2.46)(1.42) \\ & -5.5(-6.17)(0.023 ; 0.043) \\ & 0.36(1.33)(0.0087) \\ & 0.53(0.39)(0.95 ; 1.31) \\ & -9.78(0.97)(-0.058 ; 0.12) \\ & 0.0081(1.55)(0.026) \end{aligned}$	$\begin{aligned} & (0.55 ; 1.93)(-0.14 ; 0.40) \\ & -2.04(0.18 ; 2.43)(1.32) \\ & -5.8(-6.18)(-0.020 ; 0.070) \\ & 0.38(1.31)(0.0097) \\ & 0.56(-2.57)(0.39 ; 2.42) \\ & -9.68(1.55)(-0.43 ; 0.50) \\ & 0.0016(166.0)(0.037) \end{aligned}$
	L31	L34S
$\begin{aligned} & \Delta(S) \\ & \mathbb{N}_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{w}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.079)(-0.064)(1.20)(1.20) \\ & \{\text { As per L30 } \\ & -9.78(0.96)(0.057)(-0.050) \\ & 0.0081(1.54)(-0.0005) \end{aligned}$	$\begin{aligned} & (0.51 ; 1.91)(0.13 ; 0.26) \\ & -1.87(0.18 ; 2.43)(1.32) \\ & -5.4(-6.18)(-0.018 ; 0.065) \\ & 0.35(1.31)(0.0094) \\ & 0.52(-2.57)(0.39 ; 2.42) \\ & -9.81(1.04)(-0.064 ; 0.42) \\ & 0.01(24.4)(0.023) \end{aligned}$
	L32	L34U
	$\begin{aligned} & (1.20(1.20)(0.13)(-0.11) \\ & \{\text { As per L30 } \\ & 0.53(0.39)(0.95 ; 1.32) \\ & 0.0081(1.53(-0.017) \end{aligned}$	$\begin{aligned} & (0.54 ; 1.94)(-0.17 ; 0.27) \\ & -2.0(0.18 ; 2.43)(1.32) \\ & -5.8(6.17)(-0.018 ; 0.065) \\ & 0.38(1.31)(0.0094) \\ & 0.56(-2.57)(0.39 ; 2.42) \\ & -9.70(1.40)(-0.44 ; 0.37) \\ & 0.003(90.0)(0.024) \end{aligned}$

TABLE 13.- CONCLUDED

	L35	
$\Delta(S)$ $N_{\delta E S}^{\mathrm{u}}$ $\mathrm{N}_{\delta \mathrm{E}}^{\mathrm{W}}$ ${ }^{\mathrm{N}}{ }_{\delta}^{\theta} \mathrm{ES}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\theta}$	$\begin{aligned} & (0.52 ; 1.93)(0.13 ; 0.075) \\ & -1.91(0.18 ; 2.43)(1.32) \\ & -5.5(-6.17)(-0.014 ; 0.059) \\ & 0.36(1.31)(0.0091) \\ & 0.53(-2.57)(0.39 ; 2.42) \\ & -9.78(0.99)(0.0013 ; 0.10) \\ & 0.0081(30.0)(0.010) \end{aligned}$	
	L36	
$\Delta(S)$ $\mathrm{N}_{\delta \mathrm{ES}}^{\mathrm{u}}$ $\mathrm{N}_{\delta E S}^{\mathrm{W}}$ $\mathrm{N}_{\delta E S}^{\theta}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}}$ $\mathrm{N}_{\delta \mathrm{C}}^{\mathrm{W}}$ $N_{\delta C}^{\theta}$	$\begin{aligned} & (0.52 ; 1.93)(0.012 ; 0.070) \\ & \{\text { As per L35 } \\ & -9.78(1.0)(0.045 ; 0.077) \\ & 0.0081(30.0)(0.01) \end{aligned}$	
	L37	
$\begin{aligned} & \Delta(S) \\ & \mathrm{N}_{\delta E S}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta E S}^{\mathrm{w}} \\ & \mathrm{~N}_{\delta E S}^{\theta} \\ & \mathrm{N}_{\delta \mathrm{C}}^{\mathrm{u}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\mathrm{W}} \\ & \mathrm{~N}_{\delta \mathrm{C}}^{\theta} \end{aligned}$	$\begin{aligned} & (0.51 ; 1.93)(0.10)(-0.11) \\ & \{\text { As per L35 } \\ & -9.78(9.17)(-0.17) \\ & 0.0081(30.0)(0.0068) \end{aligned}$	

(b) $M_{w}=-0.025$

Figure 1.- Stable-gradient responses to l-in. collective step.

Figure 2.- Motion Performance of VMS.

Figure 3.- Influence of static position gradient: high M_{q}, low drag damping, $M_{w}=0$.

Figure 4.- Responses to longitudinal cyclic step, $M_{W}=0$, configuration L02S.

Figure 5.- Responses to collective step, $M_{w}=0$, configuration LO2S.

(b) COLLECTIVE STEP.

Figure 6.- Responses to cyclic and collective steps, $M_{W}=0$, unstable aperiodic: configuration L04.

Figure 7.- Influence of long-term oscillation damping (high M_{q}, low drag damping, $\left.M_{w}=0\right)$.

- average, turbulence
- average, no turbulence
- © LOW X XATA FROM FIG. 3

Figure 8.- Influence of high drag damping ($M_{w}=0$, high M_{q}).

Figure 9.- Pitch attitude response to longitudinal cyclic and collective for $M_{w}=0$ and $M_{w}=-0.025$.

- $M_{w}=0$
$\begin{aligned} M_{w} & =-0.025, \text { NO TURBULENCE } \\ M_{w} & =-0.025, \text { TURBULENCE } \\ M_{w} & =-0.025, \text { UNSTABLE PHUGOID }\end{aligned}$
STABLE $\longleftarrow \mid \longrightarrow \quad$ UNSTABLE
STABLE GRADIENT

Figure 10.- Influence of $M_{W}=-0.025$ (low drag damping, high pitch-rate damping).

Figure 11.- Response to collective step, unstable phugoid, $M_{w}=-0.025$ (1ow drag damping, high pitch-rate damping).

- mOSt STABLE GRADIENT
- neutral gradient (except PITCH ATTITUDE SCAS)
- most unstable gradient

UNFLAGGED SYMBOLS - NO
TURBULENCE
FLAGGED SYMBOLS mODERATE TURBULENCE

Figure 12.- Influence of SCAS.

1. Report No. NASA TM-84225	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle A GROUND-SIMULATOR INVESTIGATION OF HELICOPTER LONGITUDINAL FLYING QUALITIES FOR INSTRUMENT APPROACH		5. Report Date September 1982
		6. Performing Organization Code
7. Author(s) J. V. Lebacqz, R. D. Forrest*, and R. M. Gerdes		8. Performing Organization Report No. A-8983
9. Performing Orgenization Name and Address NASA Ames Research Center Moffett Field, CA 94035 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		629
		11. Contract or Grant No.
		13. Type of Report and Period Covered Technical Memorandum
		14. Sponsoring Agency Cod
15. Supplementary Notes . *FAA, Ames Research Center, Moffett Field, CA 94035 Point of Contact: J. V. Lebacqz, Ames Research Center, VS 211-2, Vioffett Field, CA 94035. (415) 965-5272 or FTS 448-5272.		
16. Abstract A ground-simulation experiment was conducted to investigate the direct and interactive influences of several longitudinal static and dynamic stability parameters on helicopter flying qualities during terminal-area operations in instrument conditions. Variations that were examined included five levels of static control-position gradients ranging from stable to unstable; two levels of dynamic stability for the long-period oscillation; two levels of the steady-state pitch speed gradient; two levels of angle-of-attack stability and pitch-rate damping; and two levels of stability and control augmentation. These variations were examined initially in calm air and then in simulated light-to-moderate turbulence and wind shear. Five pilots performed a total of 223 evaluations of these parameters for a representative microwave landing system precision approach task conducted in a dual-pilot crew-loading situation. Pilot ratings'indicated (1) that the system is clearly adequate for the IMC approach in calm air for neutral and slightly unstable static controlposition gradients but that adding turbulence causes a significant degradation in system performance; (2) that high angle-of-attack stability has an adverse effect because of pitch-to-rate of descent coupling; and (3) that the steadystate pitch-speed gradient has a minimal influence.		
17. Key Words (Suggested by Author(s)) Helicopter Airworthiness criteria Instrument flight		$\text { ory - } 08$
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 22. Price* 91 A 05

$$
\begin{aligned}
& 4 \\
& \vdots \\
& \vdots \\
& 4
\end{aligned}
$$

[^0]: aAdjustable

