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ABSTRACT

Lifetime measurements with magnetically analyzed positron beams have

been made in condensed media with uniform and non-uniform properties. As

expected, the lifetime values with magnetically analyzed beams in uniform

targets are similar to those obtained with conventional positron sources.

However, the lifetime values with magnetically analyzed beams in targets which

have non-uniform properties vary with positron energy and are different from

the conventional positron source-derived lifetime values in these targets.

INTRODUCTION

Positron Annihilation Spectroscopy (PAS) is usually conducted with posi-

trons having a continuous energy spectrum. (I-3) This is quite satisfactory when

the medium properties of interest are uniform throughout the medium. Positrons

of all energies encounter the same kind of molecular environment and, hence,

undergo common decay processes. However, if the medium properties are spatially-
dependent, the positron annihilation characteristics will vary depending on

where the positrons come to rest. For example, if the defects in a material

are confined to the surface layers, (4) only those positrons which stop in the

surface regions will get trapped and exhibit damage-dependent decay. The posi-
trons which penetrate deeper will not be affected by the surface defects and

will exhibit normal positron decay features. The resultant lifetime spectrum
will be a mixture of the two types of annihilation spectra. Similarly, if the

moisture in an organic matrix is not uniformly distributed, the positron

annihilation characteristics will vary depending on where the positrons are

thermalized in it. Those positrons which stop in the drier regions of the

target will have different lifetimes from those which stop in the regions
where more moisture is present.(5, 6) The resultant lifetime spectrum will be
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quite complex, being a mixture of spectra characterized by different lifetimes.

Thus, positrons of appropriate, well-defined, energies are needed for studying

spatially-dependent properties of the test media. The only practical means,

currently feasible, for producing monoenergetic positron beams of various

energies is to magnetically analyze positrons emitted from appropriate radio-

active sources. In this paper, we describe an experimental procedure for

producing monoenergetic positron beams. These monoenergetic positron beams have
been used for investigating spatial dependence of moisture concentration in

selected target media. The results of these studies are presented in the
following sections.

EXPERIMENTAL PROCEDURE

Production of Monoenergetic Positron Beams

A specially prepared i0 mc Na22 source was used as the positron emitter.

A 0.39 cm diameter, 7.62 cm long stainless steel tube placed over the source

produced a well-collimated positron beam. This narrow, collimated, beam of

positrons entered an 8.84 cm radius circular magnetic analyzer and, after

bending through 90° , exited through a specially designed collimated port.

Figure 1 shows the experimental arrangement for producing magnetically analyzed

positron beams. Figures 2(a) and 2(b) show the source holder and the collimator

used in the entrance channel. Figure 2(c) shows the geometrical details of

the collimator through which the magnetically analzyed positrons had to pass
before arriving at the test target. The exit-channel collimator was covered

with a 0.25 cm thick carbon annular disc in order to minimize Bremsstrahlung _
production at it. Figure 3 and 4 show computed trajectories of the positron

beams through the magnetic analysis system at two different energies. (7)

One of the important considerations in using magnetically-analyzed

positron beams is the survival of the positrons in the magnetic analyzer.

This is not expected to be a problem if the analyzer box is pumped down to

10-5 torr. Another important factor in using magnetically-analyzed positron

beams for PAS is the time reference for positron lifetime measurement. If one

is to continue to use the 1.28 MeV gamma ray as the signal for the birth of the

Na22 positrons, it is essential that the transit time for their passages through

the analyzer be small and--more importantly--the spread in it be much less than

the resolution time of the lifetime measurement system. Computed values for
the transit times and the energy resolution of the magnetic analysis system for

two energies are given in Tables I and II. (7) It is apparent that the energy

resolution, &E/E, is quite satisfactory (< 10%) and the spread in the positron
transit time is much less than the system resolution of _450 picoseconds. Thus,

it may be expected that conventional PAS can be conducted successfully with

magnetically-analyzed positron beams derived from a Na22 source or similar

sources where the positron emission is followed by a prompt gamma emission. For

positron sources without associated gamma emission, it will be necessary to

generate a reference time marker before the positrons entered the test medium.

One technique for producing such a reference marker _vld entail the use of a
Cerenkov counter placed in front of the test target.
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Preparation of the Test Targets

Three different types of targets were used in the present study. A
2.54 cm diameter, 0.25 cm thick lucite disc which had been stored in a controlled

environment (relative humidity = 50%; temperature = 75°F) for several years

was used as the target with uniform moisture distribution in it. Two specially

designed assemblies served as targets with non-uniform properties: one of

them, made up of two dry, 2.54 cm diameter, 381 _m thick nylon-6 discs placed

back-to-back served as target assembly # 2. The other one, made up of one dry

2.54 cm diameter, 381 _m thick nylon-6 disc placed next to an identical disc

saturated with water served as target assembly # 3. The water-saturated disc

in target assembly # 3 was sealed in a 2.54 _m thick aluminized mylar to pre-

vent moisture loss during the positron lifetime measurement.

T_get assemblies 2 and 3 were designed for use with 250 keY positron
beams." " The thicknesses of the two discs comprising these two target

assemblies are such that 250 keV positrons pass through the first disc and

come to rest in the second. Thus, the 250 keV positrons will come to rest in

the dry disc in target assembly # 2 and water-saturated disc in target

assembly # 3.

EXPERIMENTAL RESULTS

• A conventional, fast-slow, constant fraction positron lifetime spectro-

meter, shown in figure 5, was used in the present study.(8) The spectrometer

had a full width at half maximum resolution of about 450 picoseconds. Each

full source spectrum was accumulated until it contained at least 106 counts

and was repeated several times to obtain average values of the lifetime for
the long-life component. The spectra with magnetically-analyzed beams were

accumulated until a statistical accuracy of at least i0 percent was achieved

in the short lifetime peak. All measurements were made at the room temperature

(75o). The lifetime spectra.were analyzed using a two-component exponential

least-squares fit program. (5)

Figures 6(a) and 6(b) show the lifetime spectra in lucite observed with

magnetically-analyzed 250 keV positron beams and the full Na22 positron

spectrum, respectively. Even though the statistical accuracy of the data

shown in figure 6(a) is rather poor, the measured values of the long-component
lifetimes indicated in these figures are in agreement with each other within

the accuracy of the measurements. Figures 7(a) and 7(b) illustrate the life-

time spectra observed with 250 keV positron beams striking target assembly # 2

and target assembly # 3, respectively. Again, the statistical accuracy of the

data shown in these figures is not very high, thus producing rather large

uncertainties in the long-component lifetime values.

(*)250 keV was selected as the test energy for the analyzed positron beams

_or reasons of workable beam intensity from a Na22 source. It is also

appropriate for investigating typical composite structural components
whose thickness is _762 _m.



Figures 8(a) and 8(b) show the positron lifetime spectra obtained with

the full Na22 positron spectrum in dry and water-saturated nylon-6 targets,

respectively. It is noted that the positron lifetime in target assembly # 2
(Fig. 7(a)) is in agreement with the value in dry nylon-6 target whereas the

lifetime in target assembly # 3 (Fig. 7(b)) is in agreement with the value

in wet nylon-6 target within the accuracy of the respective measurements.

CONCLUSIONS

The following general conclusions have been drawn on the basis of the

data presented in this report:

i. Positron annihilation spectroscopy can be conducted with magnetically-

analyzed positron beams using a conventional, fast-slow, constant fraction
positron lifetime spectrometer.

2. Magnetically-analyzed positron beams can be used to monitor non-

uniform properties of certain targets--such as non-uniform moisture distribu-

tion in molecular substances. This feature is especially useful in measuring
moisture profiles in polymeric materials.

However, a much stronger positron source (_ 25 mc) and longer data

recording times would be needed for improved statistical accuracy with
magnetically-analyzed positron beams.
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Table I. Summary of Critical Parameters for Positrons Arriving at

Target for Magnetic Field Set for 200 keV (Ref. 7)

_onvex source configuration; i000 positrons emitted at the sourc_

Target Diameter

Parameter
i cm 2.54 cm

Y = 9 cm
c

Eo+ (min), keV 175.83 154.91

E_+ (max), keV 230.75 263.40
Tp (min), ps 996.10 982.49

T (max), ps 1085.64 1118.87
No. of hits 68 174

Y = 12 cm
c

Eo+ (min), keV 187.34 165.20
E_+ (max), keV 218.70 247.30

Tp (min), ps 1143.53 1123.25

T (max), ps 1215.44 1241.45
No. of hits 44 140

Y = 16 cm
c

E + (min), keV 187.94 174.86

ES+ (max), keV 211.70 230.75

TB (min), ps 1350.55 1320.40

T (max), ps 1411.32 1436.76
No. of hits 38 103

Y = 20 cm
c

L

E + (min), keV 191.72 179.44

E + (max), keY 208.06 224.71
_ (min), ps 1549.43 1518.31
T (max), ps 1587.12 1610.38
No. of hits 28 77



Table II. Summary of Critical Parameters for Positrons Arriving at

Target for Magmetic Field Set for 300 keV (Ref. 7)

_onvex source configuration; I000 positrons emitted at the sourc_

Target Diameter
ParameL=_

i cm 2.54 cm

Y = 9 cm
c

E + (min), keV 272.96 235.58

E_+ (max), keV 347.05 398.60

T_ (min), ps 900.02 894.96

(max), ps 952.90 972.04
No. of hits 74 161

Y = 12 cm
c

E + (min), keV 277.95 250.92

E_+ (max), keV 328.33 365.64

_ (min), ps 1030.65 1025.05

T (max), ps 1081.73 1101.24
No. of hits 58 127

Y = 16 cm
c

E_+ (min), keV 285.76 262.36

E_+ (max), keV 317.88 347.05

Tp (min), ps 1210.39 1192.08
(max), ps 1253.52 1260.10

No. of hits 44 98

Y = 20 cm
c

E + (min), keV 288.78 272.24

• E_+ (max), keV 315.12 332.66
T_ (min), ps 1381.06 1367.96

(max), ps 1425.30 1433.93
No. of hits 31 84
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