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COMPUTATION OF TWO-DIMENSIONAL TURBULENT FLOW AT SUBSONIC

MACH NUMBERS OVER THICK TRAILING EDGES

Plus Drescher*

Ames Research Center

SUMMARY

An implicit time-marching finite difference method is used to predict two-

dimensional turbulent flow at a Reynolds number of 4.4xi05 and a Mach number of 0.574

over a shortened NACA 0012 airfoil with a trailing edge of 4.5% thickness and semi-

circular shape. The flow is found to be unsteady but periodic in the trailing-edge

region. Thus, lift and drag fluctuate at small amplitudes around mean values and at
distinct frequencies. While the overall features are in qualitative agreement with

the few experimental observations reported in the literature, the accuracy is limited
because of certain local shortcomings of the computation grid. Several recommenda-

tions on how to achieve improved predictions are given for future attempts.

i. INTRODUCTION AND BACKGROUND

Certain airfoils, helicopter blades, and modern turbine bladings often have trail-
ing edges of a finite thickness, usually amounting to a few percent of the chord

length. Typically, the flow is compressible and turbulent at high Reynolds numbers.
The calculation of the flow field is still an unsolved problem in the vicinity of the

trailing edge. This is due to the limited understanding of the quite complex flow

phenomena and to the lack of powerful adequate calculation tools previously available.

In contrast to many other flow problems where an approximate prediction consistent

with experimental observation is achieved on the basis of the Euler equations, the

problem of flow over a thick trailing edge cannot be even approximately solved by

means of inviscid theory. For subsonic flow, a stagnation point is predicted with an

unrealistic pressure peak whereas an infinite number of solutions are found for super-

sonic conditions. The fact that the Euler equations fail completely in predicting the

real flow behavior is probably one of the most striking (and challenging) features

of computation of flow over a thick trailing edge.

Therefore, a successful approach has to account for the viscous effects. Several

calculation models for base-reglon flow have been developed in the past. A detailed

survey on several of these boundary-layer-like approaches is given in references i

and 2. Since almost all are derived from the flow over a simple backward-facing step,

they are based on the assumptions that

• the separation point is known,

• the flow reattaches to a solid wall of inclination known a priori,

*Visiting scholar, Stanford University, Stanford, California/NASA Ames Research
Center, Moffett Field, California; Present address: Baden, Switzerland.



• the wake flow is steady, and

• the outer flow approaching the step is homogeneous.

A major deficiency is that the interaction between the viscous-dominated

boundary-layer and shear-layer flow, and the nearly inviscid outer flow is poorly

accounted for. In contrast, flow over the thick trailing edge of an airfoil or
turbine blade has the following featuresi

• There are two separation points which are unknown if the base is rounded.

• Two streams of different properties, e.g., Mach numbers, etc., merge behind

the trailing edge; the resulting flow direction is not known a priori.

• At high Reynolds numbers and subsonic Mach numbers, the flow is unsteady; the
wake is of the vortex-street-type.

• The outer flow approaching the trailing edge is not necessarily homogeneous.

• The viscous-domlnated flow near the body and in the near wake interacts

strongly with the nearly inviscid outer flow.

2. MOTIVATION AND DESCRIPTION OF PROBLEM

Several problems with strong viscous-inviscid interaction and unsteady effects

have been successfully treated by numerically solving the Reynolds-averaged Navier-

Stokes equations or a truncated version thereof (e.g., refs. 3-6). Therefore, the

question arises whether such methods can lead to an improved solution of the thick

trailing-edge problem. So far, a few attempts have been made, for example:

• Levy, Briley, and McDonald recently used an implicit technique to predict the
laminar flow over an ellipse at a Reynolds number of 103 and a Mach number of

0.2. Their solution shows steady flow with two standing vortices in the near
wake (ref. 7).

• Fanning and Mueller solved the vorticity transport equation and Poisson's

equation numerically and were thus able to predict the oscillating incompres-
sible laminar wake behind the square base of a flat plate (ref. 8).

• Waskiewicz, Shang, and Hankey recently published the solution for supersonic
turbulent flow over the square base of a wedge-flat plate-model (ref. 9).

They used MacCormack's fully explicit method (ref. i0).
i

To the author's knowledge, the problem perhaps most often encountered in practi-
cal application has not been tackled so far, namely subsonic compressible turbulent

flow at high Reynolds number over an airfoil with a trailing edge of finite thickness
and arbitrary shape. Therefore, the work described herein is dedicated to that

specific problem. As in references 7-9, the attempt is restricted to two-dimensional
flow. However, in contrast to references 8 and 9, it is not restricted to flat
plates and/or square bases.

The basic goal consists of efficiently achieving an improved prediction of the
unsteady subsonic flow field near a thick trailing edge by using a modern numerical



computation procedure. The specific problems connected with such a prediction should

lead to recommendations for future similar attempts and for practical engineering

applications. Furthermore, by studying the unsteady flow near the thick base of a

slender two-dimensional body by means of computer simulation, the author hopes to

provide additional information for a better understanding of the complex_flow
phenomena.

3. COMPUTATION METHOD

A large variety of computation methods based on the numerical solution of the

Reynolds-averaged Navier-Stokes equations or a truncated version thereof have been

developed in recent years. Steger's code (ref. 4) was found to be very powerful and

efficient in several applications (e.g., refs. 4-6,11). The use of curvilinear coor-

dinates allows their application to flow fields with arbitrary boundary contours as

they are encountered on thick round trailing edges.

Since the details of this computation method are given in several publications
(e.g., refs. 4 and ii), only its main features are described here. The governing

equations are the continuity equation, the Reynolds-averaged Navier-Stokes equations,

and the energy equation written in strong conservation-law form. From the Cartesian

coordinate system x,y, they are transformed onto the grid line coordinates _,R.

As shown in figure i, the transformation corresponds to a mapping of the physical

plane where _ and n appear as curvilinear, nonorthogonal coordinates, onto the com-

putational plane where they form a Cartesian coordinate system. It is important to

note that the wake centerline, including the last point of the airfoil at the trail-

ing edge (see fig. 2), are mapped twice if the flow field in the physical plane is cut

along the wake center line. As a consequence, the solution is computed twice for

these nodal points. As discussed in references 11 and 12, the grid spacing in the

streamwise direction used in the numerical computation of high Reynolds-number flow

usually does not allow resolution of the viscous derivatives in the streamwise direc-

tion even though the complete Navier-Stokes equations may be programmed. Conse-

quently, the viscous terms in _, which is the direction along the body, are neglected

and only those in _ are retained, as in conventional boundary-layer theory. How-

ever, in contrast to the latter, the R-momentum equation is retained. Thus, no

assumption is needed on the pressure variation across the viscous layer. This

so-called thin-layer approximation is therefore expected to be capable of accounting

extensively for the strong viscous-inviscid interaction near a trailing edge of

finite thickness. Unlike certain coupling procedures, this approach avoids the diffi-

culties rising from matching an inviscid solution with a viscous-layer solution.

Since a correct coupling might be quite difficult in unsteady flow, the application

of the thin-layer approach is very attractive here.

The thin layer model imposes two restrictions on the computation grid: (a) a

boundary-layer-like coordinate system must be used near the body and in the wake with
the n-direction (approximately) normal to the flow direction, and (b) the inter-

secting trailing-edge contour and wake center line have to be treated as a simple

continuous line (see fig. 2) and must be mapped onto the same line of constant N.

Therefore, that type of network has to be used which is usually referred to as a

c-grid, and which has the property that the t-direction coincides with the streamwise

direction near the body and in the wake.

The influence of turbulence is modeled using the two-layer algebraic eddy-

viscosity model developed by Baldwin and Lomax and described in detail in

3



reference 12. As discussed in section 5, detailed measurements are not available for

the unsteady near-wake flow. Therefore, one is forced to adopt a turbulence model

which was not developed specifically for that type of flow; however, it is adequate

for the region where the flow is attached to the airfoil surface. Since the Strouhal

number of vortex shedding from thick-trailing edges is of 0 (i0-l) and thus much

lower than the dimensionless mean frequency of the large-scale turbulent eddies which

is of 0 (I0), the use of a steady or quasi-steady turbulence model is justified.

If the same notation used in reference 4 is adopted here, the equations to be
solved can be written as

_t _ + _-_= R--e_-_

where the vectors q, E, F, and S are given in detail in reference 4. They are effi-

ciently obtained by means of the Beam-Warming delta-form approximate-factorization

algorithm (refs. 13 and 14). It is an implicit time-marching finite difference scheme

of second-order accuracy in space and of first- or second-order accuracy in time,

depending on the type of differencing used to advance the solution in time. The

results presented in section 6 are computed using the first-order time-accurate
scheme.

4. GRID GENERATION

Thompson, Thames, and Mastin have developed a practical method to generate grids

that vary smoothly and fit arbitrary boundary contours precisely (ref. 15). In its

simplest form, the grid in the physical plane is found by solving the two Laplace

equations

_2_ +--_2_ = 0

_x2 _y2

+ = 0

_x2 _yZ

which, for the actual solution are transformed onto the computational plane and solved

there by relaxation on the same grid that is used to solve the flow equations.

This method has the advantage that the user can select the location of the grid

points on the boundary contours (Dirichlet boundary conditions). Thus, clustering of

the boundary nodes can easily be adjusted to the actual problem which, in the present

case, requires a fine resolution of the trailing-edge contour. A major deficiency is

that the mesh spacing in H-direction near the body and in the wake is far too coarse
for viscous-flow computation. Therefore, Sorenson and Steger proposed to discard the

grid point distribution along the lines of constant _ and to recluster the nodes by

a simple monotonic stretching function, which moreover allows the minimum mesh spacing

at the surface to be specified by the user (ref. 16). According to reference 16,

constant minimum spacing is used along the body. It may be based on a simple estima-
tion of the boundary-layer thickness at the trailing edge by means of the well-known

Reynolds-number criterion. In an attempt to account for the variation of the

boundary-layer thickness along the surface, the minimum mesh spacing is continuously



reduced toward the front part of the airfoil. A similar modification is used in the
wake.

A further modification is needed because the lines of constant _ intersect the

surface on the rear portion of the airfoil at an angle well below 90 ° and thus violate
the condition of a boundary-layer-like coordinate system as imposed by the thin-layer

approximation. There are several ways to create a grid with lines of constant

normal to the wall; one way is to add inhomogeneous terms to the right-hand side of

the Laplace equations. Here, however, a much simpler procedure is used. It is

required that the nodes on the surface and the lines of constant _ in the outer
flow, which are well distributed, are retained. The basic idea consists of displac-

ing the grid points near the body along the lines of constant _. In the first step,

a straight line normal to the surface is drawn. As indicated in figure 3, its last

point is connected by another straight line with the first node kept unchanged in the

outer part. Smooth curvature is achieved by continuously cutting off the resulting

corners. Two quantities need to be specified: (a) the number of nodes which must

belong to the strictly normal direction of the new lines of constant _, and (b) the

number of grid points within which the transition to the outer part has to occur.

The new lines of constant _ look very similar to those that would result from the

use of a cubic spline function. In contrast to the latter, the procedure presented

here, which should be viewed as a simple engineering approach rather than a very

sophisticated solution, avoids any iteration.

5. CHOICE OF A TEST CASE

Experimental data on the unsteady near wake of two-dimensional slender bodies

with a trailing edge of finite thickness are very rare. A search in the literature

resulted in a very limited collection of Strouhal numbers for flat plates and symmet-
rical airfoils and is described in reference 17.

A common feature of almost all of the experiments is that no details are avail-

able except the Reynolds number, the Mach number, and the body shape. According to
reference 17, the frequency of vortex shedding can be strongly affected by the ratio

of boundary-layer displacement thickness to trailing-edge thickness. It is therefore

astonishing that most of the experimentalists do not give any information on the
boundary layer. Often, it is not even known whether the boundary layer is laminar

or turbulent. Therefore, we must abandon the attractive idea of confining the compu-

tation domain to the trailing-edge region and using measured boundary-layer profiles

as upstream boundary conditions.

Numerical computation methods give a detailed prediction of the flow quantities

at every grid point. To check these data reliably and to detect the weakness of a

method precisely, as well as to improve these data, detailed measurements are needed

in the entire region of interest. Due to the lack of such experimental data, it is
not possible to establish a test case which allows reliable checks on the numerical

prediction by comparing it against measurements. Therefore, the author prefers to
design a theoretical test case which allows several internal checks.

For reasons of symmetry, a NACA 0012 airfoil is chosen. Its rear portion is cut

off and replaced by a semicircular base with a radius of 2% of the original chord

length (see fig. 4). The requirement that the trailing-edge contour fits the airfoil

surface and its slope results in a new chord length of 87.3% of the original one.

Thus, the actual ratio of trailing-edge thickness to chord length amounts to 4.5%.



From the remarks just given, it follows that the entire flow field around the
airfoil must be calculated. The resolution of the trailing-edge region requires a

lot of grid points. The total number of grid points available is limited for obvious

reasons. Since the resolution of shocks would require a fine grid in these regions
and thus would reduce the number of nodes available at the base, the flow should

preferably be subsonic everywhere. However, effects of compressibility must not be

negligible. This is achieved at the free-stream Mach number of 0.574 used in the

computation. The free-stream Reynolds number amounts to 5x10 s and the boundary layer
is assumed to be turbulent over its entire length. Two different angles of attack
are selected: 0° and 2=. This choice allows several checks based on physical con-

siderations, as will be seen in the discussion of the results.

Since the governing equations are used in nondimensional form, it should be

noted that while the reference quantities are arbitrary, the Reynolds number is
defined in terms of these reference values. For convenience, the chord of the origi-

nal NACA 0012 airfoil is chosen as a reference length. The Reynolds number of 5x10 s

refers to that length. Its value based on the new chord is thus smaller by 12.7%,

that is, it amounts to 4.36xi05

6. RESULTS AND DISCUSSION

A grid with a total number of 77 x 34 nodal points is used. The grid section

near the body shown in figure 5 and the trailing-edge detail shown in figure 6 illus-
trate the modification of the grid generation procedure described in section 4.

Within the 12 nodes next to the body surface or wake center line, the lines of con-

stant _ are strictly normal to these contours. As is evident from figure 6, this is
not true for the semicircular base. There, the direction is based on a rough esti-

mation of the mean-flow direction expected. The minimum mesh spacing in the

n-direction increases from 0.125xi0 -3 at the leading edge up to 0.220xi0 -3 at the

trailing edge. A check of the predicted flow field just ahead of the base indicates

that 16 grid points are inside the boundary layer.

Figure 6 also shows that the lines of constant q do not curve smoothly as they
intersect the two lines of constant _ emanating from the last nodal point at the

trailing edge. This deficiency is likely to cause locally a certain loss of accuracy,
a fact which was underestimated when the grid was generated. Indeed, the most

crucial detail in creating an adequate network is the intersection of the wake center
line with the base contour. To achieve smooth curvature, one would have to accumulate

many grid points in that region and probably to introduce a cusp of almost vanishing

size. Another way to avoid the deficiency is by using a so-called O-grid where the
lines of constant q form closed loops around the airfoil. However, it must yet be

examined in that case whether the thin-layer approximation is still valid in the

trailing-edge region.

The first prediction was dedicated to symmetrical flow, that is, _ = 0°. The com-

putation was started using free-stream values at all grid points. Thus any artificial

asymmetry was avoided. The length of the time step was doubled after i00 and
200 steps and then kept constant. Already, after 400 time steps corresponding to

approximately 3-1/2 actual chord lengths traveled, a symmetrical oscillation of the
lift coefficient at a distinct frequency was observed. Since the amplitude and the

frequency were still increasing, the computation was continued. After they became

constant, several hundred additional time steps were made in order to assure that this

was not an intermediate stage but the final solution. This is illustrated in figure 7



where the lift coefficient CL and the pressure drag coefficient CD are shown

versus the number of actual chord lengths traveled. The analysis of the flow field
shows that the oscillations are due to the periodic motion upwards and downwards of

the separated flow at the base. This causes a slight alteration of the pressure dis-

tribution up to a certain distance ahead of the trailing edge. The appearance of

such fluctuations is in agreement with Summers and Page, who observed it in their

experiments with circular-arc airfoil sections with a blunt trailing edge (ref. 18).

Unfortunately, no pressure measurements were made which would allow a check of the

magnitude of the oscillations.

Since the airfoil is symmetrical and since the angle of attack is 0°, the lift

fluctuation must be symmetrical with a mean value equal to zero. Using the
definitions

CL = _ CL(t)dt

n

c--_ i
max = n E CLma x

n
-- 1

CLmi n = _ E CLmi n

where T is the length of a period and CLma x and CLmi n denote positive and negative
peak values, we obtain

CL = -0.893×I0 -s

C-_ - C_ = 0.910xlO -2
max

CL - CL . = 0.909xi0 -2
mln

The Strouhal number based on the trailing-edge thickness, d,

f × d
Str =--

U_

where f is the dimensional frequency, is found to be 0.070. If it is based on the

maximum thickness of the body, which is 13.7% due to shortening of the chord, its

value amounts to 0.24. Unlike the well-known case of a circular cylinder in cross-

flow, the Strouhal number of slender bodies with thick trailing edge is not dependent

only on the Reynolds number (ref. 17). There is strong evidence that the Strouhal

number is affected by the ratio of boundary-layer thickness to base height. It is

also likely to be affected by certain shape parameters, for example, maximum thickness

and tail angle. As mentioned previously, boundary-layer transition is assumed at the

leading edge and thus it is fairly thick at the trailing edge. Since a reliable well-

documented empirical correlation, such as the Strouhal number-Reynolds number rela-

tionship of the circular cylinder, is not available for airfoils, the correctness of

the predicted Strouhal number cannot be assessed.

According to figure 7, the pressure drag fluctuates at twice the frequency of the

lift. This feature is due to the symmetry of the body and the choice of _ = 0° and



can also be observed on circular cylinders (see ref. 19). It expresses that the flow

phenomena occurring in the upper part of the near wake later takes place in the lower

half of a CL-period. Essentially, these effects are the washing-in and washing-out

process of the separated flow and are connected with the alternating vortex shedding

from upper and lower detachment regions. A detailed analysis of the predicted near-

wake flow indicates that the time-dependent pressure distribution during the washing-

out motion differs from that during the washing-in motion. Since a substantial part

of the pressure drag is due to the thick trailing edge, the shape of the drag fluc-

tuation must be asymmetrical. However, two consecutive drag cycles corresponding to

two vortices shed from different but symmetrical separation points must be identical.

In the author's opinion, there are no physical reasons which contradict this explana-

tion. Moreover, there is another case of self-driven unsteady flow separation with

analogous features, namely transitory stall in diffusers. According to Kline (private

communication) the time dependent pressure distribution during the washing-out motion

of the separation bubble differs from the one during the washing-in process.

Consider the same airfoil at the same Mach and Reynolds number but at a certain

angle of attack which, however, is assumed to be small enough to prevent the separa-
tion from moving upstream. Beside the fact that the airfoil must have a certain mean

lift, at least the following alteration in the flow behavior can be predicted without

any calculations: (a) the drag has to fluctuate at the same frequency as the lift,

and (b) the Strouhal number changes only slightly. Therefore, a computation was made

for e = 2°. All other flow parameters and program parameters (e.g., the grid, the

time step-length, etc.) were kept unchanged. Furthermore, the computation was started
again using free-stream values in all nodal points.

Again, lift and drag fluctuations at a distinct frequency were observed after a

few hundred time steps. After constant frequency and amplitudes were achieved, the

computation of several hundred additional time steps did not change the prediction.

This, as well as the fact that the length of drag and lift cycles are identical, is

illustrated in figure 8. The Strouhal number based on the trailing-edge thickness
amounts to 0.069 whereas the one based on the maximum thickness is 0.237. The mean
lift coefficient CL is found to be 0.205. The values

C-_ - _ = 0.7929xi0 -2
max

C_ - C--L = 0.7931xi0 -2
min

suggest that the lift still fluctuates nearly symmetrically around its mean value.

Several remarks have to be made with respect to accuracy. In order to give
helpful suggestions for future attempts, this is done quite openly. Since the total

number of nodes was limited, the grid points used to resolve the base contour had to

be saved along the remaining part of the surface. This resulted in streamwise mesh

spacings which are somewhat coarse in the mid-chord region. The solution for the last

node at the trailing edge is computed twice independently. For example, a check on
the numerical values indicates that the static pressures always differ somewhat; in

the worst case, the difference is about 5%. This inaccuracy is mainly due to the

corner-like curvature of the line of constant n near that grid point.

Another unsatisfactory detail is illustrated in figures 9a, b, c, and d where

four large-scale plots of the instantaneous velocity vectors in the near wake are

shown for e = 0°. They are taken after approximately 1/12, 4/12, 7/12, and 10/12 of

a CL-period and imply that the velocity component in the x-direction is not computed
) i



correctly along the center line. This is likely at least partially due to the (too)

large streamwise spacing in the reverse-flow region. The fact that the shortcoming
is the worst at maximum and minimum lift (i.e., when the flow field is the most

asymmetrical) and that it disappears at zero lift (fig. i0) may suggest that the

boundary condition applied there is questionable. An extrapolation procedure from

above and below followed by averaging was used in the computation. Based on these

considerations, the accuracy of all the numerical values given above must be consid-

ered limited. In the author's opinion, the shortcoming of the grid near the intersec-

tion of base contour and wake center line has more negative impact than the boundary
condition.

In addition to the points given previously, some further recommendations for

future attempts can be derived from the previous discussion. A finer resolution of

the reverse-flow region is necessary. As a rule of thumb, its length may be assumed

to be roughly equal to the base height. The stretching in the q-direction should

preferably be reduced there (see fig. 6). The limited upstream influence of the

unsteady flow phenomena at the trailing edge suggests that the number of grid points
available in the near wake can be increased by confining the computation domain to the

rear part of the airfoil. The present results imply that the inflow plane could be

located in the mid-chord region with no adverse effects. Beside the application of

an improved procedure for the nodes on the near-wake center line, it may also be

useful to scrutinize the terms neglected in the thin-layer model. As mentioned by
several authors (e.g., in ref. 20), there is evidence that the normal stress terms in

the streamwise direction become significant near separation.

7. SUMMARY AND CONCLUSIONS

An implicit time-marching finite difference scheme was used to solve the thin-

layer equations for two-dimensional turbulent flow at a Reynolds number of 4.4xi0 s
and a Mach number of 0.574 over a modified NACA 0012 airfoil with a 4.5% thick round

trailing edge. The computation grid was generated using an existing automatic pro-

cedure. A simple modification was added to achieve strictly normal direction of the
radial grid lines near the body. Solutions were computed for e = 0° and 2° Due to

unsteady but periodic flow in the trailing-edge region, lift and drag fluctuate at

distinct frequencies around mean values. The amplitudes are small compared to the

mean values. The overall features of the numerical solution are in agreement with

the few experimental observations known from literature. The accuracy cannot be

assessed precisely due to the lack of detailed measurements. The accuracy is judged
to be limited because the streamwise grid lines do not curve smoothly near the inter-

section point of base contour and wake center line and because the number of computa-
tion stations in the streamwise direction is small in the near wake. The recommenda-

tions given on how to avoid these shortcomings and on how to improve some further

details should be useful in achieving more accurate predictions in future attempts.
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Figure 3.- Grid modification to ensure that the n-direction is normal to the
body surface.

Figure 4.- Geometry of test model.

i

13



-.7 I I I I I
-.2 0 .2 .4 .6 .8 1.0 1.2

xlCor
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Figure 6.- Grid detail in the base region.
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Figure 7.- L i f t  and drag  f l u c t u a t i o n s  v s  number of a c t u a l  chords t r a v e l e d ;  a = 0'. 
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Figure 8.- Lift and drag fluctuations vs number of actual chords traveled; a = 2'. 
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(a) After 4/50 of a CL-period.

(b) After 16/50 of a CL-period.

Figure 9.- Instantaneous velocity vectors in the base region.
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( c )  A f t e r  29/50 of  a CL-period. 

(d) A f t e r  41/50 o f  a CL-period. 

F i g u r e  9.- Concluded. 



(a) At the beginning of a CL-period.

(b) After half a CL-period.

Figure I0.- Instantaneous velocity vectors in the base region at zero lift.
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