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EMISSION, ABSORPTION AND POLARIZATION OF GYROSYNCNROTRON
RADIATION OF MILDLY RELATIVISTIC PARTICLES

ABSTRACT

In this paper, we present approximate analytic expressions for the

emissivity and absorption coefficient of synchrotron radiation of mildly

relativistic particles with an arbitrary energy spectrum and pitch angle

distribution. From these, we derive an expression for the degree of

polarization. To accomplish this, we use methods of integration developed in

a previous paper.

We tnen compare the analytic results with numerical results for both

thermal and non-thermal (power law) distributions of particles.



I. INTRODUCTION

The formulas fGr evaluation of emissivity and absorption coefficient of

synchrotron radiation in the ultra-relativistic (synchrotron) and non-

relativistic (cyclotron) limits have been known for decades.
1

'
2. In the

intermediate energy range, however, no simple formula exists for an arbitrary

distribution of particles. Calculations have been made of the absorption

coefficient of a thermal plasma3 '4, but these results are limited and not very

convenient for quantitative calculations. As s result, the usual practice has

been to use lengthy numerical calculations.5'7.

In general, the low harmonics of cyclotron radiation will be self-

absorbed, absorbed by the surrounding plasma, or suppressed by the Rasin-

Tsytovich effect. Consequently, we are interested only in radiation at the

higher harmonics, where the optical depth TV is less than or equal to 1.

In a recent paper  we presented simple approximate methods for evaluation

of the frequency spectrum and dependence on observation angle of the

synchrotron radiation at high harmonics from an (essentially) arbitrary

distribution of particles in a given magnetic field. In this paper, we shall

use the same methods to calculate the emissivity and absorption coefficient of

the extraordinary and ordinary modes of synchrotron radiation separately for

an arbitrary particle distribution. Also, we will derive the degree of

circular polarization from these expressions. (We will refer to the paper in

which these methods were developed as Paper I.)

In the next section we describe the general results and in Section III we

use them to find emissivity, absorption, and polarization of radiation from

particles with Maxwellian and power law energy distributions. Section IV

contains a final summary.
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II. GENERAL RESULTS

Consider particles with charge e, mass m e, and distribution f(u,Y) where

fdudy is the number density of particles in the energy intervals in the energy

interval (in units of m ec 2) from Y to Y + dy and with pitch angle cosine

between y and u + du. The emissivity and absorption coefficients for the

ordinary (+) and extraordinary (-) modes are7,

j (V 1 0)	 1
±	 2ne2vb	 V	 l

	

_ ----- . ---- --f

l

dY ditf (U,Y) vn+ (B ,Y,u,v)	 (1)
c vbain2®

 -1

IV 2 K+ (V ' 0) 1	 1 60)

where

1	 °°	 x JI (x .) 2
n+ =	 2 1	 a+(cosh-MiM( xm) - (1 - aucose) m m m- a(y) , (2)

a+ +1 m=1	 m

	

-0Y2 8 IM ,Y)	 Ocose-u	 1	 8f(u,Y)
w------ -- h___ + ----------- ------ -------	 (3)

f(N,Y) By
Y2	 YS2 ( 1-u2)1 /2 f(u,Y)	 all

mvb
y	 Y -V(1 - bcose), xm - WVb)Ssine(1 - 11 2)1/2 31  vb - e$/2mec . (4)

The quantities a + represent th,: ratio of the semi-major to the semi-

minor axis of the polarization ellipse for the ordinary and extraordinary

modes and, in general, are complicated functions of angle 8, v, ^, and the

plasma frequency Vp . However, when the frequency V >>'vp (consistent with

<1), these simplify to

a + = x/[1 + (1 + x2)1 / 21, x - -2vcose /(vbsin2 e)•	 (5)
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Since we are only dealing with the higher harmonics, m is large and we

can replace the sum in equation (2) with an integral. This integral can then

be done using the d- function. Also, since m is large, we can approximate

the Bessel's function as9.

J(m )	
(1_z2)_1/4Zm	 Z	 ze(l-z 2) 1/2	

(6)m b	 0
(21Tm) 1/2 	1+(1-z2)1/2

which is valid for m(1 - z 2)3/2 >> 1.

With this approximation the integration over the pitch angle is carried

out using the method of steepest descent. This gives excellent results as

long as the pitch angle distribution is not extremely anisotropic;

81nf(p,y)/Dp >> ulvb . (See paper I, eqs. 7 and 19). This also enables us to

drop the second term in the expression for w in equation (3) and amounts to a

substitution setting u - R cos8.

We also use the method of steepest descent for the integral over the

energy. Evidently, this is not as well justified as using steepest descent

for pitch angle, but it does give an excellent approximation for high

harmonics and particle distribution which fall rapidly with increasing energy.

(e.g. a power law fa ( y-1)- a or a thermal distribution fae (y-1)/kT.

Doing these integrations, we find for j + and K.

j +	 Cj(y o)
neC	

(v/v ) 1/2 Y (1-^ cos p)
1/4Y Z2m	 (t )X

u2K	 -^--	 b	 +	 p	 p max o	
CK( Ya)

(7)
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-2 = - 2 d21nC
Yo dY2 YD

d1nG
W (to , 0)

dlnY
(9)

f (6 cos 0, Y)
C	 d/d Y --- 0------
K	 SY2

C^	 f(a cose,Y)/Y (12)

1	 cot 2 0	 2a
Y	 ---- 1 + (s+ + 1) ---- - t- (1- 5 2 cos0.)

1/Z 
Ja+ + 1	 2

Yo	 Yo
(8)

t el/(l+t02)1/2
0

m = Yvv (1 + to2 ),	 Z^ 1 + (1+t 2)1/2

o b	 o

Note that all these expressions are evaluated at critical energy Yo (and

the corresponding So and to to Yoko sin 6). These are two l such critical

energies; one for emission and one for absorption. These are obtained from

the transcendental equation;

---- --------------------------------------------------------------------------1These critical values are the same for both modes since in our approximation

the parts of the expression which are different for each mode are slowly

varying functions of u and Y and do not affect the values of the critical

parameters uo 
= So cos0 and Yo .

t 2 (1 + t 2 ) -1/2 + (1 - 02CO926/t2)lnZmx a

-(vb/2v sin 20 )(dlnC/dy) = e/sin20
	 (11)

Here ana in equation (7) tLe function C 	 and CK are
related to the particle distribution f as

(10)
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In the expression (eq. 9) for •1 2 , the function W is a complicated

function of to and 9 . However, as shown in paper I, W can be

approximated by

W - 3/2 + 1/(Y2
0
	 (13)

This is an excellent approximation in the entire region where equatiova

(61 to (11) are valid.

Polarization. For a single particle, the synchrotron radiation can be

represented by the Stokes Parameters;

ni - n+ +n_ ,

nQ -[(I - a+ 2 Ml + a+ 2 )l (n+ - n) + 4 n+n_ cosd[a+/(1+a+2 ) 1,
(14)

nu - 2 F-1	 sind

nv - [2a+/(1+a+2)] (n+ - n_) - 2 1+ n_ cosd[(1-a+2)/(1+a+2)) ,

where T1+ and a+ are defined as before, and d is the phase difference

between the modes.

In the limit of large Faraday rotation (negligible absorption over a path

length in which the plane of polarization rotates by 20, we have the time

average values <cosd> - <sind> - 0 .

Thus n - 0 and
u

n - c ( n - n ),	 C	 1— 
a 
+ - ----1- -

Q	 1+	 -	 1	 1+ a
+	

0+ x2)1/2

(15)

2
a+	—X

nV - 2c (n	 n -),	 c2 -	 2 1/21+a+	2(1+x)

a .

E1
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From this we obtain the degree of polarization

(n 2 + 2)1)2	 In+ - n-I
P-------- -- ------

ni 	( 11+ + n_)

For a distribution of particle we integrate over the distribution as

before and find P - I j + - j_I /(j + + j_) which with the help of equation (7)

reduces to

[1 - 2xcos8(1 - 029co829)1 /2/Yosin201
P- -------------------------------------

(1 + x2) 1/2 (1 + 2 cot 
26/Y2 )

Equations (7) to (13) along with (17) give our results in their general

forms and are valid for all particle distributions which are not extremely

anisotropic. (The results for the extremely anisotropic situation are more

complicated and were described in Paper I. The modification obtaining the

emission ana absorption coefficients of the two modes separately and the

polarization is similar to the modification described above. We will not

present these results here because of their complexity and their limited

usefulness.)

Given a distribution function subject to these limitations, the first

step is evaluation of critical energies Yo from equation (11). Then

equations (6) to (10) and (12) and (13) evaluated at the appropriate Ya s

give the desired results. This is still a complicated procedure, especially

the solution of equation (11) for Y .
0

In the next section we shall show how this is simplified considerably for

the two most commonly used particle distributions. Before doing so we

(17)

6



consider the asymptotic limits of these equations.

Asymptotic limits. Let us consider first the case when angle 8 is

not too small (i.e. radiation away from the direction of the field). Then in

the two extreme limiting cases, equation (11) simplifies

D C << 1, Yo >> 1, SoY3 - 2/3C sin8 , W - 3/2;

(18)

C >> 1, Bo << 1, Yo t 1, O ty2 - 4/C , W - C /4.

The first case is realized at high frequencies and particle distributions

which are not extremely non-relativistic which is the case of interest here.

The seond case is valid for non-relativistic particles and at low frequencies

and has limited usefulness.

III. EMISSIVITY AND ABSORPTION COEFFICIENT OF TWO COMMONLY USED
PARTICLE DISTRIBUTIONS

The two particle distributions we use as examples are i) the distribution

from a thermal gas, i.e. a Maxwellian distribution in energy and isotropic

pitch angle distribution; and ii) the distribution with a power law spectrum

at high energies and with a slowly varying pitch angle distribution.

A. Thermal Spectrum

This is the type of particle distribution considered by Trubnikov3.

The distribution of particles at temperature kT (in units of m ec2) is

f(u, Y) - Ce (Y-1)/kT Y(Y2 - 1 ) 1/2 ,	 (19)

where for kT ' I

7



C w (a/2)[2w(kT)3)-k (1 - 15 kT/8 + ...) , 	 (20)

ana u is the number density of particles. From these and equation (12), it

is clear that kT K = C  = f /Y and that dlu K/dy • dlnC
j
/dy . Thus, it is

obvious from equation (11) that the critical YO is the same for both j t and

K + and, in fact, according to eq. (7), j+ = v 2 kTKt . We also find

dln(f/y) -1	 kTY
---	 1

d Y	 kT	 - Y2-1

-(Y2 + 1)

d2ln(f/Y) 
(Y? - 1)2

(21)

Using these equations we can calculate y  
and X from equations (11) and

(9) respectively. As shown in Paper I, these expressions can be considerably

simplified. We find that the following expressions

(2vkT/ub )(1 + 4.5 vkTsin29/vb ) -1/3 kT < 1
(y2

1 (4VkT/3vbsinO) 2/3 	kT a 1
(22)

X 2 = (2kT/y )(Yo - 1)/(3Yo - 1)	 kT ti 1	 =

have tae correct asymptotic limits in agreement with equations (18) and agree

with the exact results from equations (9) and (11) to within 30% for most

relevant ranges of angles, frequencies end temperatures and better than 10% in

the majority of the interesting cases.

The above equations and equations (7), (8), and (10) give a complete

description of the emissivity and absorption coefficient from a Haxwellian gas

aC all temperatures and frequencies. They are valid for kT < 1 because at

8



temperatures kT > 1 the use of the method of steepest descent for integration

over the energy becomes invalid. However, the existence of the extremely

relativistic thermal gas is in doubt ll . On Figure 1 we compare the total

absorption coefficient K - K+ + K_ obtained from these relationships with

numerical results from Lamb and Masters 5 . As evident, our analytic results

give excellent agreement to the detailed numerical results even at low

harmonics.

In the two limiting cases described in the previous section, these

equations are considerably simpler. The interesting case, e << 1 corresponds

to vkT/vb » 11 
Yo,
	 4vkT/3vbsin% so that

1] 1/3
w r-5 v

j + - 2kTK+ - (23/2zre2vb/3c)C(vkT/vb) exp ^-- --- (b 	Y+
b in6 vkT	 _

(23)

L	 Y+ - 1 + 2(sin6) 4/3 (2vb/4vkT)1/3
	 .

B. Power Law Energy Spectrum

Power law spectra are commonly used spectra in astrophysical problems and

in other problems when the tail of the Maxwellian distribution begins to

deviate from the exponential form. Usually power law spectra are defined with

a low energy cut-off. To avoid such discontinuities and the divergence of the

number of particles, ve assume a spectrum of the form

f(u.Y) - Cg(U)[1 + (Y - 1)/ ec)l
-a	

(24)

which converge at low energies;

+1

C - n(d - 1/c 
C ),
	 g(U)dp	 1	 (25)

-1

9
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From this and equation ( 12) we have C^ - f/Y and

d	 2Y2 - 1
C - C j ^..--- + --- z -- = c j (Y ) ml( Y)	 (26)K	 Y-1+Ec	 Y(Y -1)

In (24) EC plays the role of the low energy cutoff ( in units of me c2). For
i

energies  much greater than Cc the spectrum is a power law with index - d

bur it tends to a constant value at lower energies. The particles can be

classified as ultra-relativistic or non-relativistic if Ec >> 1 or c << 1.

We are interested primarily in cases with c sw 1.

For distributions which are not highly anisotropic ( i.e. ding(u)/du«

v /vb), we can carry out a calculation similar to that for a thermal gas. From 	 i

(24) and ( 26) we find

^dln^^ 
= 1 + --- dY
	

^	 Y2 d21nCi 
= 1 + -----

 aY:

2	
----

	

2	 (27)
d1nY	 Y-1+ E^	 dY	 (Y-1+ Ec

and

_dlnC K - dlnC - Y^ 2(Y)	 Y2d2lnCK - . y 2 d 2lnC3 + 0_(Y)0^- (Y)-^^(Y) (28)

dlnY	 dlnY	 01(Y)	 dY2	 dY2	 -	 02(Y)

where

d@ (Y)	 dt (Y)
(Y) - ---1--- ,	 (Y) - --? - .
2	

dY	
2	

dY

It turns out that for semi-relativistic particle energies, Cc t1 for v/vb

>> 1 we can use equation ( 18), and the values of 	 X and	 Yo obtained from

ff..

(29)

10
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(11) and (9) can be approximated as follows

1/(1 + d)	 for j +	
(30)0oYo	 b^ [4vi (3vsine) J

1/0 + a)	 for Kt

and

	

(1 + 6)-i12	 for 4
g	 31)

	

( 2 + 0-1/2	 for K 

	

These expressions are valid to within 30% for 1, CC Z 0.5, sine	 >

sines x e4 and V j V b . However, they are most accurate at high

frequencies v » Vb where Yo >> 1 and 00 ft 1. In this limit,

substitution of (30) and (31) into (7) gives

j+(v,e)
2 	 (3c2v (6+l)sin0 /4V)

(6-1)/2 
e- (

6+1)/2

07re Vbsine	 c b	 (32)
y ------ ---- Cc Wcose)Y+(9)

	

4c	 -	 6/ 2 - (a+2)/2 (a+2Z
V K^(v,e)	 (3ecvb(d+2)sin8/4v)	 a	 -e-- ^.

C

In this limit j+ - j_, K+ • K_, and their difference is of higher order

in YC)

2sine
Y+ (e)	 1 + -----	 (33).

Yo

These expressions have exactly the same dependence on Wvb and a as

the ultra-relativistic forms2.

For extremely non-relativistic particles, that is, for E  « 1 the above

11



expressions are valid as long as V N b d >> For the unlikely case of V/Vb6

<< 1, we find that Yo ow 1 and So as Vcc /V bd. Substitution of this in (7)

gives tae emissivity identical to that expected from a thermal gas if one

identifies cc A with the temperature kT .

When we substitute eqs. (28) to (31) into (7) and (19), (using 8 - 600,

d -4), we get the results forj+ , V 2K+ and P seen in Figures 2, 3, and 4.

These are shown in comparison with numerical results of Marsh and Dulk 8. Note

that in this comparison we have a distribution with a sharp cut-off point at

C - 0.02, so the approximations for Yo at V es V  are not as good as we

would like. Still, at high V/Vb we get Yo to within 5X in general.

The values for j+ and K+ are within 60% at high frequencies and the

approximation is better at higher V/Vb. The polarization looks better at

lower frequencies (although it still is better than 50Z even when P is small

and errors can be magnified). The results for the extraordinary mode are not

as good as those for the ordinary mode. (The percentage of error never

reaches 30% for either j t or K+ above V/Vb- 100* ). Also our results are

(nearly) systematically higher than the numerical results.

IV. SUMMARY

Using a simple metnod of integration developed previously, we have

derived expressions for the emissivity, absorption coefficient and

polarization of synchrotron radiation for an artitrary distribution of

particles.

Equations (7) to (13) and (17) give our results in their most general

form. And we find that equations (9) and (11) can be simplified considerably

as in equations (22), (30), and (31) for the thermal distribution and the

power law.

12



Our results do agree with previous analytic results, and they give good

approximations to detailed numerical results. Although our results were

derived for high harmonica, they give good agreement down to lower harmonics

{v a6vb for j *, v +w 10V b for Kt; for total j and K , however, the agreement

is good down to v ar 2Vb) 6

These results are limited to pitch angle distributions which are not

extremely anisotropic and energy spectra that decrease rapidly with

increasing energy. They also are only applicable for emissivities and

absorption coefficients away from magnetic field times. Examples of other

cases can be found in Paper 1.

A more detailed numerical comparison o ill be found in a subsequent paper

to be published in The Astroohysical Journal.
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FIGURE CAPTIONS

Figure 1. The total synchrotron absorption for a thermal source at 0 -v/2

for kT - 0.04 (20 keV electrons). Points are from analytic expressions; the

solid lines are numerical results of Lamb and Masters %.

Figure 2.	 Synchrotron emissivity of each mode divided by magnetic field and

total particle number. 	 Log Q. /hN) ve Lost (v/vb ),	 at 0	 - 600 ,	 d - 4.

The ordinary mode has been shiftod down by a factor of 10 for clarity. The

solid lines are numerical results of Dulk and Marsh. The We are our analytic

results. (The same will be true in Figures Sand 4.)

Figure 3. Self absorption of each mode, Log (We t /N) ve Log (V/ vb). The

low points at v/vl,	10 are due to the fact that we used a different

approximation for y 	 the first two points; one+ which is better at low

V/vb'

Figure 4. Dogre.e of Circular Polariastion vs Log (v/Vh).
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