General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

FINAL TECHNICAL REPORT
NASA GRANT NACW-54

```
(HASA-CR-169359) STRUCTU&E OF FIELD #82-34256
ROTATING DISTORBANCES IN dAaM FLASMA Final
Technical Report (Hiddlebury Coll., Vt.)
42 P HC A03/MF A01 CSCL 20I Unclas
G3/75 35401
```

STRUCTURE OF FIELD ROTATING DISTURBANCES IN WARM PLASMA

Principal Investigator:
Richard Wolfson
Department of Physics
Middlebury College
Middlebury, VT 05753

August 31, 1982

Comprehensive technical information on the methodology and results of this research is contained in the preprint "Field Rotating Disturbances in Warm Plasma", a copy of which is attached, and which is to be considered part of this final technical report. This manuscript has been submitted to the Journal of Fiuid Mechenics.

Q.'..l'. Molfson Dutartarant of physics
aljililebury inllege
Aidr! sbury, V'r 05753

$$
\text { Tulv, } 1982
$$

A:3:3RAR

A mostol in which tiermat wffects are simulated through use or a multibeam plasma lisitribution function j s ieveloperl and invoritigntar to scos if solytions which take an initially uniform magnotizer nlasma to a now unirorm state with a different fie? orientation ar: oncisihle. ino momentum conservation integrals aro councl to a!mit tuo elarsine of surh solutions, but only one class ex'ibiti anpronrinto anymutotic behavior. Fxtensive numeriga! inteorgtinns have failol to fomonstrate the existence of the los;ire? inlations.

ORIGINAL PAGE IS
 OF POOR QUALITY

1.J [NPRODIGPIOY

At present there exists no theory which describes the structure of large amplitude plasma disturbances in which the magnetic finlay is rneatel while plasma flow remains parallel to the field both far upstream anil far downstream from the disturbance. Jump enntitions appropriate to such structures are known from Mill theory, and include true rotational discontinuities in which only the field direction changes, intermediate waves in which pleama flow goes from super to sut-alfyenic and which anpoar nonevolutionary in mb d (Jeffrey and Taniuti, 1964), and mixed structures which occur in anisotropic Dlasmas and which exhibit characteristics of !orth shocks and rotational discontinuities (Hudson, dy 70).
'I nt with large amplitude disturbances having the desired upstream properties has hen carried out by Montgomery (ly59), Saffnan (1961), Kellog (1964), ant kakutani (1966), and special cases are summarized by ?ilman and krall (1971.). These authors used similar cold plasma models, and found solutions representing infinite wave trains as well as solitary waves in which plasma ant magnetic field parameters are identical on cither side of the iosturhance. In n cases were field rotating solitary waves Found, and it is relatively easy to show that such waves are not moseible in coll miasma. "he closest solutions to those desired are Staffman's "quag ishocks", in which an initially uniform plasma undergoes a disturbance after winch plasma and field parameters wander ergndicelly font certain mean values, but never approach the uniform monitions sought indre.

Interest in fiel.l rotating waves has been rekindled by the availability of magnetic field lata from spacecraft crossing both the terrestrial and fovian maqnetopauses. nuring times when the solar fifla is approximately antiparallel to the planetary field, the magnetopause rnsembles a layer through which plasma may flow ant across which the transverse maqnetic field is rotated. Many magnetic riold siqnatures are remarkably laminar and resemble in polarization and overall shape the solitons of Saffman and others, if somehow only half the soliton solution could be isolated. The available lata and their relation to current thonry have been suminarizer by Sonnerup (1977).

The nresent moper pursues a suggestion by Sonnerup that thormal orfects which might Dermit finld rotating layers could be intronuced into the theory by assuming a multibeam plasma distribution ranction. This work shows that the momentum conservation concitions, which lo not generally admit field rotating solutions in the coll plasma case, do admit two classes of such solutions ohen thermal effects are included. Asymptotic analysis shows that uniform solutions appropriate to the downstroan con'itions are capable of growth for one class iut not the nther.

2.0 BOUATION'之 NF FHF MIJTIBEAM TIEORY

「he analyois is performer for a one dimensional case in which all variatles are functions of z only. Assume the plasma to consist of N rindms of ions ani \quad single beam of electrons,
with the quasineutrality condition satisfied. The electrons are assumed to follow the magnetic field, while the electric force on the ions is neglecter?. Although these latter two assumptions can be relaxer, they in not appear to affect qualitatively the results obtained for the waves being sought here. Finally, there is assumed to be no currant in the 2 direction. The equations describing the system are then:

$$
\begin{align*}
& n_{k} V_{z K}=m_{\text {OK }} V_{z a K} \quad \text { CONTINUITY } \\
& \sum m_{n k} \frac{V_{\text {rok }}}{V_{z k}}=\min _{0} \frac{V_{i n}}{V_{z}} \text { pUASINEUTRALITY } \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \text { - } \tag{3}\\
& \text { Ampere's } \\
& \frac{d B_{y}}{d z}=-\frac{4 \pi e}{c}\left(\sum n_{o k} V_{x k} \frac{V_{z_{0 k}}}{V_{z k}}-n_{0} V_{x} \frac{V_{z_{0}}}{V_{z}}\right) \tag{4}\\
& B_{z} \text { : constant }
\end{align*}
$$

ORICNOR What is

OF POOR QUALITY

$$
\begin{align*}
& \frac{d V_{k}}{d z}=\frac{e}{14 c V_{z k}}\left(\underline{V}_{k} \times B_{n}\right) \quad \text { ION Motion } \tag{б}\\
& \frac{V_{x}}{B_{x}}=\frac{V_{y}^{\prime}}{B_{y}}=\frac{V_{z}}{B_{z}} \quad \text { ELECTRON MOTION } \tag{7}
\end{align*}
$$

(8)

Tern \underline{V} and n are the electron velocity and density, \underline{v}_{k} and n_{k} the velocity and density of the $k^{\text {th }}$ ion beam, M the inn mass, e the elementary charge, $\underline{3}$ the magnetic field, and c tide speed of light. quantities with the ;ubscript, represent values at some chosen initial point. All sums run from L to N, where N is the number of beams. Those equations are obvious generalizations of tan usual two fluid model. How over, they can be shown to follow rigorously from the viasov-laxwell equations in the case of a multibean distribution function when looping orbits (ie, negative values of y_{z}) are not permitted (Jonas 1977).

Introducing equations (7) and (8) into equation (3) gives

$$
\begin{equation*}
\frac{d B_{x}}{d z}=\stackrel{4 \pi e}{=} \sum n_{i k} V_{z o k}\left(\frac{V_{y k}}{V_{z k}}-\frac{B_{y}}{B_{z}}\right) . \tag{9}
\end{equation*}
$$

On the other hands, the x enmmonent of the ion motion equation may be written

$$
\frac{d V_{x k}}{l_{7}}=\frac{2 B_{z}}{M G}\left(\frac{V_{y k}}{V_{t k}}-\frac{B_{y}}{B_{z}}\right) .
$$

: \quad ultinlying this equation by \quad Th ok $\mathrm{V}_{\text {rok }}$ and summing over k gives $M \sum m_{\text {ok }} V_{z o k k} \frac{d V_{x k}}{d z}=\frac{e r_{z}}{c} \sum m_{o k} V_{z o k}\left(\frac{V_{y_{k k}}}{V_{z k}}-\frac{B_{y}}{B_{z}}\right) \cdot(10)$

Comparing equations (3) ant (10) allows an integral of the system to be written:

$$
M \sum N_{0 k} V_{7_{0 k}} V_{x k}-\frac{B_{7} B_{x}}{4 \pi}=P_{x} \quad \text { (II) }
$$

ORIGINAL PAGE IS
OF POOR QUALITY
where P_{X} is a constant of the motion. An identical procedure gives an integral associated with the y component:

$$
\begin{equation*}
M \sum n_{0 k} V_{7 j k} V_{y k}-\frac{B_{z} B_{y}}{4 \pi}=P_{y} \tag{12}
\end{equation*}
$$

This z component is handled in a similar but not identical manner, ie! ling:

$$
\begin{equation*}
M \sum m_{n k} V_{70 k} V_{z_{k}}+\frac{B^{2}}{s \pi}=P_{z} . \tag{13}
\end{equation*}
$$

Equations (11) - (13) state that the flux of momentum is constant.

The ion motion equation (6) and the momentum equations (ll) - (13) constitute $3: N+3$ equations in the $3 N+2$ unknowns B_{X}, B_{y}, and the $V_{k}{ }^{\circ} r_{\text {. One equation }}$ is redundant and can be used for checking
numerical results. In practice, equation (13) is best suited to this purnose.

Because the ions ferl only the magnetic force, their velocity magnitules remain constant. Thus N additional integrals can he formed expressing constancy of the terms $v_{x k}^{2}+v_{y k}^{2}+$ v_{zk}. Unior the $n \mathrm{n}$ loop condition there is no ambiguity in the sign of $V_{z k}$, so these integrals can be used to eliminate $V_{z k}$ altogether.
3.0 INIFORM FIETA SOLUTION

The large amplitite waves being sought would connect two reginns in which the flow and field are asymptotically uniform and alijned with each other. In the single beam case ($N=1$) the only way in which such uniformity can occur is with the single velocity vector parallel to the magnetic field. Then the Aerivatives in equation (5) vanish and the solution is truly uniform. In this single beam case it is easily seen that the momentum equations admit no large changes in field orientation excent for the snecial case $P_{x}=p_{y}=0$, where an exact field roversal apprars possible. In this case, however, all derivatives vanish identically and there can he no wave.

In the multibeam system, however, a situation in which inlividual lonam velocities are not parallel to the field may nevertheless proluce a net flow along a uniform field. In this case the velocity components perpendicular to the field represent a sort of guasicandmm distribution which simulates the effect of

ORIGINAL PFGE is
OF POOR QUALITY
a nonzero ion temperature. To quantify this situation, let all N hems have the same velocity magnitude, and let each velocity vector make the same angle with the field. Call the tangent of this angle γ^{\prime}, so that γ is the ratio of perpendicular to parallel velocity components. γ^{2} is thus a measure of the "temperature".

When $N=1$ a nonzero γ violates the uniformity condition, and in fast gives rise to the infinite wavetrains of Saffron (1961). When $N>1$, it is reasonable to look for solutions in which the N beams carry the same particle flux, have their velocity vectors spaced as regularly as possible about the field, and rotate about the field at the larmor frequency. With all beams carrying the same flux, the quantity $n_{n k} V_{\text {zoo }}$ appearing in equations (11) (13) is independent of k, so that in a uniform field region those equations tasks the forms:

$$
\begin{equation*}
\sum V_{X K}=\operatorname{CONSTANT} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\sum V_{Y K}=\operatorname{CONSTANT} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\sum 1 /_{7 k}=\operatorname{CONSTANT} \tag{16}
\end{equation*}
$$

Furthermore, with a uniform fief, the 2 component of equation (5) can be multiplied by $V_{z k}$, summed over k, and integrated to give:

$$
\begin{equation*}
\sum V_{t k}^{2}=\text { constant. } \tag{17}
\end{equation*}
$$

In the two loam case equations (16) and (17) constitute two equations in two unknowns, which require that $V_{7.1}=V_{22^{\circ}}$. This can only happen in a uniform field if the velocities lie exactly parallel? to the field, so the uniform field two beam solution collapses to the nne hear cold plasma case. With $N>2$ this constraint is lifted, so that $N=3$ is the simplest case in which a nontrivial! uniform field solution can exist.

Consider the particles of each beam to follow helical trajectories differing only in phase. It is necessary to write equations roar traipse trajectories as functions of z when the particios spiral about a field which does not lie along the z axis. The situation is shown in figure l. Only a single trajectory is shown, which passes through the origin. However, all
space is filled with trajectories of particles of this beam, and the trajectories are all in phase at given z, not at given distance from a plane pernendicular to the field. This situation is necessary because of the condition that the system be one dimensional, with all variables functions of 2 only. Any wavefronts existing in nonuniform field regions lie perpendicular to the z axis.

The trajectories can be described easily in a coordinate system x^{\prime}, y, z° in which z^{\prime} lies along B. In this system the trajectory of figure 1 is:

$$
\begin{equation*}
Y_{k}=R_{L} \cos \left(\omega t_{k}-\delta_{k}\right) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
x_{k}^{\prime}=R_{L} \sin \left(\omega t_{k}-\delta_{k}\right) \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
t_{k}^{\prime}=V_{11} t_{k} \tag{20}
\end{equation*}
$$

 frequency, V_{1} anil $V_{/ f}$ the velocity components perpendicular nat parallel to 11 , ant \int_{k} a phase angle for the $k^{\text {th }}$ beam. t_{k} is a time parameter proportional to the position of the guiding center along the field. Me cause the armor orbits are not perpendicular to the axis. $V_{a k}$ changes with orbital phase, and t_{*} is not a : ample fimetion of 2. Performing a rotation gives the onrameterizal trajectory in the x, y, z system:

$$
\begin{equation*}
Y_{k}=R_{l} \cos \left(\omega t_{k}-S_{k}\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
x_{k}=R_{l} \cos \theta \sin \left(\omega t_{k}-\rho_{k}\right)+V_{n} t_{k} \sin \theta \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
z_{k}=V_{n} t_{k} \cos \theta-R_{k} \sin \theta \sin \left(\omega T_{k}--_{k}\right) \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
V_{Y k}=-\gamma V_{11} \sin \left(\omega t_{k}-\rho_{K}\right) \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& V_{x i 1}=\gamma V_{11} \cos \theta \cos \left(\omega t_{k}-\delta_{k}\right)+V_{11} \sin \theta \\
& V_{z k}=V_{11} \cos \theta-\gamma V_{11} \sin \theta \cos \left(\omega t_{k}-\delta_{k}\right), \tag{26}
\end{align*}
$$

Where, again, $\gamma=V_{1} / V_{\|}$. Although these velocities were Arrived for particles whose guiding center passer through the origin, they woald doscrithe the entire velocity field as a fundlion of ? if the relation between t_{k} and z were known.
equation (23) provides the desired relation, but is unfortunately transcendental. Analytic progress can be made by assuming' $\gamma \ll 1$ an' expanding in powers of γ. Because the differences between v_{\perp} ind v involves terms of order γ^{2}, it is necessary th carry terms of this order if results differing from the coll miasma those are to be obtained. Since terms involving t_{k} in equations (24) - (26) are already multiplied by γ, it is on ?v necessary to solve equation (22) to first order in γ. To (d) so, define a time parameter $t=z /\left(V_{H} \cos \theta\right)$ which is strictly proportional to z and write $t_{k}=t+\Delta t_{k}$, where Δt_{k} is assumed ital combine to one. Then noting that $R_{L}=\gamma v / / / \omega$.
and letting $\beta=\tan \theta$, equation (23) hecomes

$$
\omega t_{k}=\omega t+\omega \Delta t_{k}-\gamma \beta \sin \left(\omega t-\delta_{k}+\omega \Delta t_{k}\right) .
$$

simplifuing anl rotaining only torms of order γ, this is

$$
\begin{equation*}
\omega \Delta t_{k}=\gamma \beta \sin \left(\omega t-\delta_{k}\right) . \tag{27}
\end{equation*}
$$

Inserting mquation (27) into equations (24) - (26) gives the velocity solutions to secomit orter in γ :

$$
\begin{align*}
& V_{y k}=-x V_{11} \sin \left(\omega t-\rho_{k}\right)\left\{1+\gamma \beta_{\Omega} \cos \left(\omega t-\rho_{k}\right)\right\} \tag{28}\\
& V_{x k}=V_{11} \sin \theta\left\{1+\frac{\gamma}{\beta} \cos \left(\omega t-\rho_{k}\right)-\gamma^{2} \sin ^{2}\left(\omega t-\rho_{k}\right)\right\}(29 \tag{29}\\
& V_{z k}=V_{11} \cos \theta\left\{1-\gamma_{1 s} \cos \left(\omega t-\rho_{k}\right)+\gamma^{2} \beta^{2} \sin ^{2}\left(\omega+-\rho_{k}\right)\right\}(30)
\end{align*}
$$

These are explicit functions of z because $t=z /\left(V_{11} \cos \theta\right)$. With uniform phasing $\left(\int_{k}=2 \pi k / n\right)$, it is straightforward to verify that, to terms of order $\gamma^{2} \beta^{2}$, these equations constitute a uniform fifili solution of equations (6), (11) - (13). The inclusion of β in the smallness parameter means the field angle cannot annonach ton closely to $\pi / 2$. In the process, the following useful results emerge:

$$
\begin{align*}
& n_{0 k} V_{\text {rok }}=\frac{n_{0}}{N} V_{11} \cos \theta, \tag{31}\\
& \sum V_{x k}=N V_{11} \sin \theta\left(1-\frac{1}{2} r^{2}\right), \\
& \Sigma V_{z k}=N V_{11} \cos \theta\left(1+\frac{1}{2} r^{2} \beta^{2}\right) .
\end{align*}
$$

$$
\cdot
$$

where $n_{n}=\sum n_{o k}$ is the total initial ion density.
Before proceeding, it is interesting to note that this solution is not oxictly uniform. There are small wiggles in the fiell, hut in the three heam thency they are alreary of higher order than γ^{2}. As V is increaset, comparison of equations (28) through (30) with numerical solution of the transcendental equation (23) shows that nonuniformities in the field drop off ranilly with increaring N. Also, the field vectors are not nqually anil rigidly spmed around the field, but wiggle back and forth in relation to nne anothor. This is necessary to keep the flux eonstant and along B as individual $V_{z k}{ }^{\circ}$ s, and hence densitiers viry.
t.u FIEm mopartow onjoremons

A nutioular uniform field arlution is determined completely 'y the purametars $\theta, V_{\|}, \gamma, n_{n}$, and B_{z}, of these n_{0}, being an initial conlition, anl lis are strictiy constant even through a nomunifurn region. The other thre might vary throughout a ronumiform region and emerge changed but again constant to =haracterise a differont uniform fiold solution. This possibility in joyorned in port hy the mquat inns:

$$
\begin{align*}
& M \sum m_{0 k} V_{\text {rok }} V_{x k}-\frac{B_{z} B_{x}}{4 \pi}=P_{x} \\
& M \sum m_{\text {ok }} V_{z o k} V_{\text {oik }}+\frac{B^{2}}{8 \pi}=P_{z} \tag{13}\\
& V_{11}^{2}\left(1+\gamma^{2}\right)=V^{2}, \tag{34}
\end{align*}
$$

ORIGiNAL PAGE IS OF POOR QUALITY
where V is the velocity magnitude, which is strictly constant. equations (ll) and (13) are the x and z momentum conservation equations and equation (34) expresses conservation of energy for the particles interacting only with the magnetic field. The y momentum equation is not included because it has already constrained any new uniform fields to lie in the $x-z$ plane.

Consider a uniform field solution characterized by the parameters $\theta_{0}, v_{\|} o^{\prime} \gamma_{o}$. When n_{0} and B_{z} are also specified, the constants in equations (11), (13), and (34) are determined. Are there then other sets $\left(\theta, v_{\text {na }}, \gamma\right)$, representing other uniform field solutions, which also satisfy equations (ll), (13), ant (34) with the constants determined from the initial uniform field solution? To find such sets, the sums which appear in equations (11) and (13) can be evaluated using equations (31) (33). Inserting these latter expressions into equations (11) and
(13), and evaluating the constants P_{x} and F_{z} from the initial parameter set results in the equations:

$$
\begin{aligned}
& M M_{0} V_{11_{0}} \cos \theta_{0} V_{11} \sin \theta\left(1-\frac{1}{2} \gamma^{2}\right)-\frac{B_{4} B_{x}}{4 \pi} \\
& \quad=M M_{0} V_{110}^{2} \cos \theta_{0} \sin \theta\left(1-\frac{1}{2} \gamma_{0}^{2}\right)-\frac{B_{t} B_{x_{0}}}{4 \pi} \\
& M M_{0} V_{11_{0}} \cos \theta_{0} V_{11} \cos \theta\left(1+\frac{1}{2} \gamma \beta^{2}\right)+\frac{B^{2}}{8 \pi} \\
& \quad=M M_{0} V_{11_{0}}^{2} \cos ^{2} \theta_{0}\left(1+\frac{i}{2} \gamma_{0}^{2} \beta_{0}^{2}\right)+\frac{B_{0}^{2}}{8 \pi} .
\end{aligned}
$$

Is ing equation (34) to eliminate $V / /$, there result two equations ia the two unknowns γ, θ (recall that $\beta=\tan \theta$):

$$
\begin{gather*}
M n_{0} V^{2} \cos \theta_{0}\left(1-\frac{1}{2} \gamma_{0}^{2}\right) \sin \theta\left(1-\gamma^{2}\right)-\frac{\beta B_{7}^{2}}{4 \pi} \tag{35}\\
=M{m_{0}}^{2} V^{2} \cos \theta_{0} \sin \theta_{0}\left(1-\frac{3}{2} \gamma_{0}^{2}\right)-\frac{\beta_{0} B_{7}^{2}}{4 \pi} \\
M M_{0} V^{2} \cos \theta_{0}\left(1-\frac{1}{2} \gamma_{0}^{2}\right) \cos \theta\left(1+\frac{1}{2} \gamma^{2} \beta^{2}-\frac{1}{2} \gamma^{2}\right)+\frac{\beta^{2} B_{7}^{2}}{8 \pi} \\
=M m_{0} V^{2} \cos ^{2} \theta_{0}\left(1+\frac{1}{2} \gamma_{0}^{2} \beta_{0}^{2}-\gamma_{0}^{2}\right)+\frac{\beta_{0}^{2} B_{7}^{2}}{8 \pi} \tag{36}
\end{gather*}
$$

These equations can be made dimensionless by defining a suitable ratio of kinetic to magnetic energy densities. Normally this would he the Alfvén number, given by:

$$
\begin{equation*}
m_{A}^{2}=\frac{4 \pi M M V_{\|}^{2}}{B^{2}}=\frac{4 \pi m M V^{2}}{B^{2}}\left(1-\gamma^{2}\right) \tag{37}
\end{equation*}
$$

but here it appears that a modified Alfoen number, given by:

$$
\begin{equation*}
m^{2}=\frac{4 \pi m M V^{2}\left(1-\frac{3}{2} \gamma^{2}\right)}{\beta^{2}} \tag{38}
\end{equation*}
$$

Delays a more fundamental role. 'When this number is close to unity the definition (38) can be shown to be a special case of Hudson"s (1970) modified Alfvén number appropriate to anisotropic plasmas, and untrue there conditions will be referred to as the Hudson number, m_{H}. The plasma under consideration is indeed
anisotropic, since the pressure, as determined by the quasirandom perpendicular velocity components of the N beams, is entirely perpeniticular to the magnetic field.

Equation (35) can be solver for γ^{2}, and by using the modified Alrvén number the two equations become:

$$
\begin{equation*}
r^{2}=\gamma_{0}^{2}+1+\frac{1}{m_{0}^{2}}\left(\frac{\sin \theta_{0}}{\sin \theta}-\frac{\cos \theta_{0}}{\cos \theta}\right)-\frac{\sin \theta_{0}}{\sin \theta} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\cos \theta}{\cos \theta_{0}}\left\{1+\gamma_{0}^{2}+\frac{1}{2} \gamma^{2}\left(\beta^{2}-1\right)\right\}+\frac{\beta^{2}}{2 m_{0}^{2}}=1+\frac{1}{2} \gamma^{2}\left(\beta_{0}^{2}+1\right)+\frac{\beta_{0}^{2}}{2 m_{0}^{2}}! \tag{40}
\end{equation*}
$$

Equation (39) can be inserted into equation (40) to give a single equation for θ. This can be solved numerically to reveal two classes of solutions, one in which the field undergoes a near reversal and the other in which the field angle changes only slightly. There is, of course, also the trivial solution $\theta=\theta_{0}$ 。 which corresponds to the soliton solutions of Saffman and others. More unierstaniling of the solutions can be obtained by approaching equations (39) and (40) analytically. Because the one loam theory admits an exact reversal $\left(\theta=-\theta_{0}\right)$ when $m_{A}^{2}=1$ $\left(m_{11}\right.$ and m_{A} are indistinguishable with one beam, since $\left.\gamma=0\right)$, it is reaconion? to look for solutions with m_{H}^{2} close to one and
which nearly reverse the field. Let $E=m_{H}^{2}-1$ and $\theta=-\left(\theta_{0}+\Delta\right)$. Putting those forms into equations (39) and (40)., and performing considerable algebra while retaining only first order terms in \mathcal{E} and Δ results in the near reversal solution:

$$
\begin{align*}
& \theta=-\left\{\theta_{0}+\frac{2 \in\left(1-\beta_{0}^{2}\right)}{\beta_{0}\left(1+\beta_{0}^{2}\right)}\right\} \tag{41}\\
& \gamma^{2}=\gamma_{0}^{2}+4 \in \sin ^{2} \theta_{0} \tag{42}
\end{align*}
$$

Thus the extra degree nf freedom afforded by nonzero temperature has allows field rotating solutions to satisfy the momentum conservation intoqrals for values of the Hurlson number other than unity. The solutions are shock-like in that the temperature rises across tho wave, as indicated by equation (42). With the initial lurlson number given by $m_{H 0}{ }^{2}=1+\mathcal{E}$, the lluason number in tho reversed field region can he evaluated from equations (38), (41), and (42), and is fount to he $m_{H}^{2}=l-\mathcal{E}$. Thus the luton numis goes from above unity to below. However, the Alfven number, given in this case by $m_{A}^{2}=m_{H}^{2}+\frac{1}{2} \gamma^{2}$, remains above unity. It is unclear how to classify these possibilities; they might ascribe intermeriats waves but if so their evolution-
ary character is unclear, since it is not known whether intermediate waves in anisotropic plasma are evolutionary (Hudson 1970).

The second class of solution can be analyzed when the Alfven number is close to $\sec ^{2} \theta$. In this case numerical work suggests only a small field rotation, so a solution of the form $\theta=0_{0}+\Delta$
is assumed. The analysis is complicated by the proximity of the trivial root $\theta=O_{0}$, hut eventually yields the solution, gond to terms of order γ^{2} :

$$
\begin{gather*}
\theta=\theta_{0}+\frac{2}{3}\left(\frac{\epsilon}{\beta_{0}}-\gamma^{2} \beta_{0}\right) \tag{43}\\
\gamma^{2}=\gamma_{0}^{2}, \tag{44}
\end{gather*}
$$

where now $E=m_{0}^{2} / \sec ^{2} \theta_{0}-1$. Equation (44) shows that this situation is possible even in the one beam case where Y is always zorn. Evaluation of the modified Alfvén number in the rotated field region gives

$$
\begin{equation*}
m^{2}=\sec ^{2} \theta_{0}\left(1+\frac{1}{3} \epsilon+\frac{2}{3} \gamma_{0}^{2} \beta_{0}^{2}\right) \tag{45}
\end{equation*}
$$

It is useful to compare the new Hudson number with the secant of the new field anglo. Introducing equation (43) into equation (45) gives the result

$$
\begin{equation*}
1 m^{2}-\left(1+\beta^{2}\right)=\left(1+\beta_{0}^{2}\right)\left(2 \gamma_{0}^{2} \beta_{0}^{2}-\epsilon\right) \tag{46}
\end{equation*}
$$

Thus a Hudson number initially lass than $\sec ^{2} \theta_{0}$ (ie, $\mathcal{E}<0$) becomes greater than $\sec ^{2} \theta$ in the rotated field region. In the analysis leading to both rotated field situations, it is assumed that

$$
\gamma_{0}^{2} \ll \beta \ll 1 / \gamma_{0}^{2}
$$

万. 0 ASYMPTOTe IC SOLUTIONS

In Staffman s coll plasma theory it is shown that solitary waves can exist only when the Alfven number, as defined in the present paper, satisfies the condition

$$
\begin{equation*}
1<m_{A}^{2}<\sec ^{2} \theta \tag{47}
\end{equation*}
$$

(Staffman 1961). Small perturbations of uniform field solutions outside this range are incapable of growth. Both field rotating possibilities in the multiheam warm plasma theory take the modified Alfuén number from a region of permissible Alfén numbers in staffman's theory to a region where asymptotic growth is not possible. However, the Alfuén number may remain within the permissible region. Staffman's results cannot be applied to the multibeam theory because the nonzero temperature and associated pressure anisotropy creates a distinction between the Alfuén anil modified Alfuén numbers. It is necessary to perform an asymptotic analysis of the multibeam theory to see whether the waves admitted by the momentum integrals can actually exist.

It is convenient to make the equations dimensionless through the -o llowing definitions:

$$
\begin{aligned}
& \underline{U}_{k}=\frac{V_{k}}{V_{110}} \\
& b=\frac{B}{B_{0}} \\
& \rho=\frac{e B_{0}}{M c V_{11}} z
\end{aligned}
$$

ORIGINA Fics L OF POOR QURBiiY

$$
\begin{aligned}
& m_{A}^{2}=\frac{4 \pi m_{0} M V_{110}^{2}}{\beta_{0}^{2}} \\
& n_{k}=\frac{n_{1 k}}{n_{0 k}}
\end{aligned}
$$

lere the subseript, refors to conlitions in a uniform field reqion. The infinition of b qives immediately $h_{z}=\cos \theta$ where θ is the initial angle hetween \underline{B} and the z axis. with these tefinitionre, rquations (11), (12), and (6) become:

$$
\begin{equation*}
\sum \eta_{o k} u_{z_{o k}} U_{x k}-\frac{b_{x} \cos \theta}{m_{A}^{2}}=\rho_{x} \tag{48}
\end{equation*}
$$

$$
\begin{align*}
& \sum \eta_{O_{K}} U_{z o k} U_{Y K}-\frac{b_{y} \cos \theta}{m_{A}^{2}}=0 \\
& \frac{d u_{k}}{d \rho}=\frac{1}{u_{z k}}\left(\underline{u}_{-k} \times \underline{b}\right), \tag{50}
\end{align*}
$$

where \mathcal{O}_{x} is a constant and the analogous y constant has been set to 0 so that the field lies initially in the $x-z$ plane. Let $\eta=$
 that initially the trams differ only in phase. Then equations (id) and (49) ©. in hr aslvil for the magnetic field components to give:

$$
\begin{equation*}
b_{x} \sin \theta+\frac{m_{A}^{2}}{\cos \theta} \eta \sum\left(u_{x j}-u_{x j_{0}}\right) \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
b_{y}=m_{\cos \theta}^{2} \eta \sum\left(U_{y}, U_{y_{j 0}}\right) \text {. } \tag{52}
\end{equation*}
$$

Introducing these forms into the x and y components of equation (jo) gives

$$
\begin{equation*}
\frac{d U_{x k}}{d \rho}=\frac{U_{y k k}}{U_{i k}} \cos \theta-\frac{m_{1}^{2}}{\cos \theta} \eta \sum\left(U_{y j}-U_{y j_{0}}\right) \tag{53}
\end{equation*}
$$

$$
\frac{d U_{Y K}}{d \rho}=-1 N \theta+\frac{m_{A}^{2}}{\cos \theta} \eta \sum\left(U_{x j}-U_{x j_{0}}\right)-\frac{U_{x k}}{U_{z K}} \cos \theta
$$

'To sen whether growth from the uniform field solution is possehie, let $\underline{u}_{k}=\underline{v}_{k}+\underline{w}_{k}$, where \underline{v}_{k} is uniform field solution. To first order in the $\underline{w}_{k} \cdot s$, equations (53) and (54) become

$$
\begin{align*}
& \frac{d w_{x k}}{d \rho}=\frac{\cos \theta}{U_{z k}}\left(w_{y k}-\frac{U_{y k}}{U_{z k}} w_{z k}\right)-\frac{m_{1}^{2}}{\cos \theta} \eta \sum w_{y j}, \tag{5'5}\\
& \frac{d w_{y k}}{d \rho}=\frac{m_{x}^{2}}{\cos \theta} \eta \sum w_{x k}-\frac{\cos \theta}{v_{z k}}\left(w_{x k}-\frac{w_{z k} U_{x k}}{u_{z k}}\right) . \tag{56}
\end{align*}
$$

Conservation of energy requires that $u_{x k}{ }^{2}+u_{y k}{ }^{2}+u_{z k}{ }^{2}$ remain constant, so that

$$
\begin{equation*}
U_{x_{k}} w_{x k}+U_{y k} w_{y k}+U_{z k} w_{z k}=0 . \tag{57}
\end{equation*}
$$

Assuming γ tn be small, dimensionless forms of the uniform field solution (equations (28) - (30)) can he used for the $\underline{v}_{k}{ }^{\circ}$ s. Introducing these into equations (55) - (57) and using equation (57) to eliminate w ak yields, after much algebra, the $2 N$ equations

$$
\begin{aligned}
& \frac{d w_{x k}}{d \rho}=w_{y k}-\frac{m_{A}^{2}}{N} \sum w_{y j}+\gamma \beta\left(w_{y k} \cos \alpha_{k}-\frac{\sin \alpha_{k}}{\cos \theta} w_{x k}\right) \\
& +\gamma^{2}\left[\left(\beta^{2} \cos 2 \alpha_{k}+\left(1+\beta^{2}\right) \sin ^{2} \alpha_{k}\right)\left(\mu_{k}-\frac{\sin 2 \alpha_{k}}{2 \cos \theta}\left(1+4 \beta^{2}\right) \omega_{x k}\right]_{+58)}\right.
\end{aligned}
$$

Here $\alpha_{k}=\int / \cos \theta-\int k^{\prime}$ where $\int / \cos \theta=\omega t$.
These linear homogeneous equations admit solutions of the form

$$
W_{k}=\bigcap_{k} e^{a s}
$$

where the exponential represents either a growth or oscillation common to all beams, and the \mathcal{Z}_{k} 's are individual and presumably small oscillations at the larmor frequency. When equation (60) is introduced into equations (58) and (59) there result

$$
\begin{align*}
& \frac{d g_{x k}}{d \rho}=g_{Y k}-a g_{x k}-\frac{m_{A}^{2}}{N} \leq g_{y j}+\gamma \beta\left(g_{y k} \cos \alpha_{k}-\frac{\sin \alpha_{k}}{\cos \theta} g_{x k}\right) \tag{61}\\
& +\gamma^{2}\left[\left\{\left[\beta^{2} \cos 2 \alpha_{k}+\left(1+\beta^{2}\right)\left(\frac{1-\cos 2 \alpha_{k}}{2}\right)\right\} g_{y k}-\frac{\sin \alpha_{k}}{2 \cos \theta}\left(1+\varphi_{\beta}^{2}\right) g_{x k}\right] \quad(61)\right. \\
& \begin{array}{l}
\frac{d}{} g_{y k} \\
d \rho
\end{array}=\frac{m_{A}^{2}}{N}\left\langle g_{x j}-\left(1+\beta^{2}\right) g_{x k}-a g_{y k}\right. \\
& \quad+\gamma \beta\left[\frac{\sin \alpha_{k} g_{y k}}{\cos \theta}-3 \cos \alpha_{k}\left(1+\beta^{2}\right) g_{x k}\right] \\
& +\gamma^{2}\left[\frac{\sin 2 \alpha_{k}}{2 \cos \theta}\left(1+4 \beta^{2}\right) g_{y k}-\left(1+\beta^{2}\right)\left\{3 \beta^{2} \cos 2 \alpha_{k}+\left(1+3 \beta^{2}\right)\left(\frac{1+\cos 2 \alpha_{k}}{2}\right)\right) g_{x}\right.
\end{align*}
$$

ORIGINAL FAGE is OF POOR QUALITY

The periodic wiggles represented by the \mathcal{I}_{k} 's can be described by a fourier series solution of the form

$$
\begin{equation*}
\eta_{k} \cdot{\underset{\sim}{m s}}_{B_{k}}+\sum_{m=1}^{\infty}\left({\underset{n}{n}}_{n} \sin m \alpha_{k}+B_{n} \cos n \alpha_{k}\right) . \tag{63}
\end{equation*}
$$

The growth or oscillatory nature of the overall solution can be determined by introducing equation (63) into equations (61) and (52), looking oily at the \int independent terms, and summing over k, which yields

$$
\begin{array}{ll}
m_{A}^{2} B_{y_{0}}=B_{y_{0}}\left\{1+\frac{1}{2} \partial^{2}\left(1+\beta^{2}\right)\right\}-a B_{x_{0}} & (c y) \\
m_{x}^{2} B_{x_{0}}=a B_{y_{0}}+\left(1+\beta^{2}\right){x_{x_{0}}}_{\left\{1+\gamma^{2}\left(1+\frac{3 \beta^{2}}{2}\right)\right\},},\left(6 s^{\prime}\right)
\end{array}
$$

original pate is OF POOR QUALITY

where $\underline{B}_{0}=\sum_{k} \underline{B}_{k o}$. ne of the B^{\prime} 's in these equations is an arbitrary scale factor, so that these are two equations in the two unknowns a and the ratio of the $\mathrm{B}^{\prime} \mathrm{s}$. Multiplying the first equation by $B_{y o}$, the second by $B_{x o}$ and adding gives

$$
\begin{align*}
& {\left[m_{A}^{2}-\left\{1+\frac{1}{2} \gamma^{2}\left(1+\beta^{2}\right)\right\}, B_{y_{0}}^{2}\right.} \\
& +\left[m_{A}^{2}-\left\{\left(1+\beta^{2}\right)\left(1+\gamma^{2}\left(1+\frac{3}{2} \beta^{2}\right)\right)\right\}\right] B_{x_{0}}^{2}=0 \tag{66}
\end{align*}
$$

Solving equation (6,4) for $B_{x n}$ and introducing the result into equation (66) gives

$$
\begin{aligned}
B_{y_{0}}^{2} & {\left[m_{A}^{2}-\left\{1+\frac{1}{2} \gamma^{2}\left(1+\beta^{2}\right)\right\}\right]\left[a^{2}+\left[m_{1}^{2}-\right.\right.} \\
& \left\{1+\frac{1}{2} \gamma\left(1+\beta^{2}\right)\right\}\left[\left[m_{1}^{2}-\left[\left\{\left(1+\beta^{2}\right)\left(1+\gamma^{2}\left(1+\frac{3}{2} \beta^{2}\right)\right)\right\}\right]=0\right.\right.
\end{aligned}
$$

The root $B_{y o}{ }^{2}=0$ is of no interest here because, even if it does permit growth, the average values of the field perturbations remain zero so that such growth would not permit solutions with different field orientations to be connected. The second root, given by

$$
\begin{equation*}
m_{A}^{2}-\left\{1+\frac{1}{2} \gamma^{2}\left(1+\beta^{2}\right)\right\}=0 \tag{68}
\end{equation*}
$$

requires that the Alfven number be close to but above unity. In this case the modified Alfvén number is the Hudson number and is given by $m_{H}^{2}=m_{A}^{2}\left(1-\frac{1}{2} \gamma^{2}\right)$, so that the Hudson number must remain above one, thus excluding the field rotating solution of equations (41) and (42). The third root of equation (67) occurs when

$$
\begin{align*}
a^{2}+ & {\left[m_{\Delta}^{2}-\left\{1+\frac{1}{2} \gamma^{2}\left(1+\beta^{2}\right)\right\}\right]\left[m_{A}^{2}-\right.} \tag{69}\\
\left(1+\beta^{2}\right) & \left.\left\{1+\gamma^{2}\left(1+\frac{3 \beta^{2}}{2}\right)\right\}\right]=0
\end{align*}
$$

Page 32

Growing solutions require $a^{2}>0$, so that

$$
\begin{equation*}
\left[m_{A}^{2}-\left\{i+\frac{1}{2} \gamma^{2}\left(1+\beta^{2}\right)^{2}\right]\right]\left[m_{A}^{2}-\left(1+\beta^{2}\right)\left\{1+\gamma^{2}\left(1+\frac{3 \beta^{2}}{2}\right)\right\}\right]<0 \tag{70}
\end{equation*}
$$

when $Y=0$ this collapses to staffman's condition $1<m_{A}^{2}<\left(1+\beta^{2}\right)$ (note that $1+\beta^{2}=\sec ^{2} \theta$). For the field reversing sollions of equations (41) ant (42), m remains close to unity, so that tho second torn in equation (70) is less than zero. Then a growing solution requires $m_{n}^{2}-\left(1+\frac{1}{2} \gamma^{2}\left(l+/ s^{2}\right)\right)>0$, which requires $m_{11}^{2}>1+\frac{-}{2} \gamma^{2} / s^{2}$. Thus the uniform field solution in the restated fin $i l$ region cannot grow, and the field rotating solutions ailmittel by the momentum conservation integrals do not exist.

The second class of solutions, described by equations (43) (46), involves an Alfuen number of order $\sec ^{2} \sigma=1+\beta^{2}$. Thus the first term in equation (70) is greater than zero, so that a growing solution requires

$$
\begin{equation*}
\operatorname{lm}_{1}^{2}-\left(1+s^{2}\right)<\gamma^{2}\left(123^{2}\right)\left(1+\frac{3}{2} s^{2}\right) \tag{71}
\end{equation*}
$$

Page 33

This condition must hold on either side of a nonuniform field --that is, for the values of $m_{A}{ }^{2}, \beta$, and γ found on the site in question. To examine the situation in the rotated region, equation (46) may be written in terms of m_{A}^{2} as

$$
\begin{equation*}
m_{A}^{2}-\left(1+\beta^{2}\right)=\left(1+\beta^{2}\right)\left(\frac{1}{2} \gamma^{2}-\theta+2 \gamma^{2} \beta^{2}\right) \tag{72}
\end{equation*}
$$

where use has been made of the fact that $\gamma^{2}=\gamma_{0}^{2}$ and that β and β_{0} are interchangeable to terms of order γ^{2} when they appear multiplied by γ^{2}. Using equation (72), the condition (71) becomes

$$
\begin{equation*}
E>\frac{1}{2} \gamma^{2} / \beta_{0}^{2} \tag{73}
\end{equation*}
$$

A second constraint is placed on \mathcal{E} when the initial uniform region is taken into account. The inequality (71) holds here as well, while tho definition $\epsilon=m_{0}{ }^{2} /\left(1+\beta_{0}{ }^{2}\right)-1$ leads to the expression:

$$
m_{A_{0}}^{2}-\left(1+\beta_{0}^{2}\right)=\left(1+\beta_{0}^{2}\right)\left(\frac{1}{2} \gamma_{0}^{2}+\epsilon\right)
$$

Using equation (74) in inequality (71) leads to the condition

$$
\begin{equation*}
\epsilon<\frac{3}{2} \gamma_{0}^{2} \beta_{0}^{2} . \tag{75}
\end{equation*}
$$

Comparison of inequalities (73) and (75) shows that growing solustons are possible in both the initial and rotated field regions provided

$$
\begin{equation*}
\frac{1}{2} \gamma_{0}^{2} \beta_{0}^{2}<\in<\frac{3}{2} \gamma_{0}^{2} s_{0}^{2} \tag{76}
\end{equation*}
$$

6.0 NJMF:RICAL 'NORK

Inequality (76) shows that in warm plasma $\left(\gamma^{2}>0\right)$ growing solutions are possible for moth uniform field solutions admitted by the momentum conservation equations. However, the conditions of momentum conservation and asymptotic growth do not quaranty that two different uniform field solutions corresponding to the same initial conditions are actually connected. In the warm plasma case the existence of such a connecting solution can be letermined only by numerical integration, since the analytic integrals of the system are not sufficient to specify B_{x} as a function of ${ }^{R} y$ as is possible with cold plasma.

Extonsive numerical integration of the equations for systems of threp to fifteen beams has confirmed the limitations on growth suggested by the asymptotic analysis. The resulting B_{x}, B_{y} hodograms resemble those of Saffman even in the extended modified Alfen number range given by inequality (76). Although the parameters $\partial^{\prime}{ }^{\prime} / \beta_{0}$, and m^{2} o have been varied extensively within apornpriate ranges, no solutions have heen found which take one uniform field solution into annther with different field angle. Instead, true soliton solutions occur which are qualitatively no different from those of Saffman and which take the initial uniform fielf solution back to itself. At the midpoint of the solitnn, the y component of the magnetic field vanishes but its rerivative is always a maximum. Furthermore, the x component at this point does not have the appropriate rotated value given by equation (4). Thus the warm plasma thenry appears incapable of
producing the desired solutions.

CONCLIISTON

The inclusion of thermal effects through use of a multibeam distribution function enriches and complicates the description of large ampliturle disturbances. The extra degree of freedom afforder by the inclusion of the temperature-like variable γ^{2} allows two classes of field rotating solutions to satisfy the momentum conservation integral:s of the system. However, only those snlutions associated with small changes in field angle appear capable of asymptotic growth on both sides of the disturhance, and even these have not been found after extensive numerical investigations. It is unclear whether the apparent nonexistence of field reversing disturbances is a peculiarity of the particular and somewhat artificial model used or rather a reflection of the impossibility of such fisturbances in collisionless plasma.
7.0 AEKNONLEDCMENTS

The alathor wishes to thank Dr. Bengt Sonnerup for many helpful discussions. This work was supported in part by NASA grant NAG'N-54 and in part by a grant from Research Corporation.

REFERENCES

Hurson, P.D. 1970, Planet. Space Sci., 1611.

Jeffrey, A. and Taniuti, A. 1964, Nonlinear Wave Propagation, Academic Press, New York.

Jones, R. 1977, "Nonlinear Whistler : Jave in Collisionless Plasman, unpublisher, Dartmouth College.

Kakutani, T. 1966, J. Phys. Snc. Japan, 21, 385.

Kellog, p.t. 1964, phys. Fluils, 1555.

Yontgomery, D. 1959, phys. Fluids, 2, 585.

Saffman, P.f. 1961, J. Flui.l Mech., 11, 552.

Sonnerup, i3. 1977. Magnetopase structure Lecture presented at ISEE Workshop, Space sciences Laboratory, UCLA, 12/10/77.

Tidman, D. and krall, N. 1971, Shock Naves in Collisionless Dlasmas, Niley, New York.

Figure Caption

Figure 1: A particle in a helical trajectory about the magnetic field. All space is assumed filled with such particles, whose orbits are in phase along the 2 axis, not along the field direction (z' axis).

ORIGNAL PAGE IS
OF POOR QUALITY

