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A mode]l in which thermal effects are simulated through use
of a maltibeam plasma distribution  function is developed and
investigatrel o see if solutions which take an initially uniform
magnetizel olasma to a new uniform state with a different field
orientation ar«a oogssibhle.  Mia momentum  conservation  inteqgrals
are foundd to admit tuo alacsee of surch solutions, but only one
class exXiihit s annronriate agsymptotic bhehavior. Fxtensive numer-
ica! inteagrationa have fatlel to demonstrate the existence of the
dogire? saluntions.
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1.3 INTRODDZTINN

At present there exists no theory which describes the
structure of large amplitule plasma dAisturbances in which the
magnaetic field is rocatel while plasma flow remains parallel to
the field both far upstream anl far downstream from the
disturbance. Jumn conditinns avprovriate to such structures are
known from MHD theory, and include true rotational
discontinuities in +hich only the field direction changes,
intermediate waves in which plasma flow qoes from super to
suh-al fyenic and thch anprar nonevolutionarv in MHD (Jeffrey and
Maniuti, 1964), and mixed structures which occur in anisotropic
nlasmas an.l which ¢xhihit characteristics of bhoth shocks and
rotational discontinuities ("udson, 1970).

“fInrk with large amplitude Jdisturbances having the Adesired
upstream  pronerties  has  bheen carried out by Montgomery (1Y59),
saffnan (l9ol), Kellog (1304), anid Xakutani (1966), and special
ciszes  are  summarized by Tidman and Krall (1971). These authors
used sivitar cold nlasma models, and found solutinns representing
infintte wave trains as well as soljitary waves in which plasma
anl magnetic finld parameters are identical on cither side of tge
dinsturhance. In nn cases were field rotating solitary waves
fFouna, and it is relatively easvy to show that such waves are not
nascible  in coll niasma. The closest solutions to those desired
are Saffman’s "quasishocks", in which an initiallv uniform plasma
uniiergoes o isturhance after wihich plasma and field parameters
wanider ergndica’lv about certain mean values, hut never approach

the uniform conditions sought here.,
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Interest in field rotating waves has bheen rekindled by the
availability of magnetic field -lata from spacecraft crossing both
the terrestrial and Jovian magnetopauses. During times when the
solar tie'd is approximately antiparallel to the planetary field,
the magnetopause resembles a layer through which plasma may flow
an1 acrnss which the transvers:e magnetic field is rotated. Many
maqgnetic finld signatures are remarkably laminar and resemble in
polarization an:l overall shape the solitons of Saffman and
others, if somevow only half the soliton solution could be
isnlated. "he Avai‘ablo data andl their relation to current
thenry have heen summar ized by Sonnarup (1977).

The oresent naper pursues a suggestion by Sonnerup that
thermal »fects which might vermit finld rotating layers could bhe
introduced into the theory by assuming a multibeam plasma
distribution fanction. This wnork shows that the momentum
conservation conditions, which 1o not generally admit field
rotating solutions in the coll nlasma case, do admit two classes
of such solutions when thermal effects are included. Asymptotic
anialvysis shows that uniform solutions appropriate to the
downstream con’itions are canable of qrowth for one class “ut nét

the other.,

2.3 POUATIONS AP PHE MUOLTIBEREAM THEORY

M™e analysis is performed “or a one dimensional case in
which a1l wvariahles are functions of z only. Assume the plasma

to, consist of N hoams of ions and 1 single beam of electrons,

L
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with the quasineutrality condition satisfied. ‘The electrong are
assumed to follow the magnetic field, while the electric force on
the ions is neglectel. Althouqgh these latter two assumptions can
be relaxed, they 1o not avpear to affect qualitatively the
recults ohtainel for the waves beinqg sought here. Finally, there
is assumed to he no current in the 2z direction. The equations

describing the svstem are then:

/ - CON
'/lk \/? K ”/[ok; VZOI( TINVITY (1)

| QUASI NEUTRA LTY
Vs K Va (2)

) ~— ‘/"(

ANPERE 'S

A Ky _dme Vv - LAw
e (; ”kv“ il “/ﬂovx Vh & (4)

@;{ T ZONSTANT R (S’)
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f(_:'i . £ (V, % é) [ON 170TI0N (6)
42 M U-EK -

.\/)( _ V,I V_? - |
- _r - _7 CLECTRON HOTION (7)
Ex E2

e e—

(8)
NO  CUppENT AUONE €

f’rf‘nk \/?o[( = /ﬂoV

20

lere V and n are the electron velocity and density, \_Ik and ny the

th

veloncity and Jdensity of the k ion heam, M the ion mass, e the

alementary charqe, 3 the maqnetic field, and c tlhie speed of
light. Nuantities with the subscript o r[epresent values at soée
chosen initial ooint. All sums run from 1 to N, where N is the
number  of bheams. These equations are obvious generalizations of
tae usual two fIniud model. However, thev can b»e shown to follow
rigorously from the Vlasov-"1axwell equations in the case of a

multibean distribution function when looping orhits (ie, neqative

values of Y,) ara not permitted (Jon~s 1977).
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Introducing equations (7) and (8) into equation (3) gives

A 2 V?I( K% . (9)

s I/
JSX LﬁT( f f’1<V1<()l< T Q

On the other hand, the X component of the ion motion equation may

he wyitten

é, Vx lc. e @

+J

Vik _ By

—

13 M < Vﬁ( Kz |-

Multinlying this equation hy Mok Voo and summing over k gives

S J _— .
M & 7ol V&f‘nk Xl Q\K% >/ﬂ0k- V;(O /L/.m ©y

———. | e————— -

. \ ) . ——
17? C \\V?lc Rz / -

(10)

~omparing equations (J) and (l10) allows an integral of the system

to he written:

/\/] Z/V‘ #0k. (/Xk - 5? @‘ - /O ﬂ/)

9 o
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where Px is a constant of the mnotion. An identical procedure

jives an integral associated with the y component:

; E Ry o
M 2/“40‘( #61e. V‘/k —%’ = @ . (12)

‘The z component is handled in a similar but not identical manner,

vielling:

E?
V] 5//1 V., + . (13)
Nl u 2 —_
?()l( p[(. - .? . .
hy
Fquations (11) - (13) state that the flux of momentum |is

constant.

The inn motion equation (6) and the momentum equations (11)

- (13) constitute 3N+3 equatinns in the 3N+2 unknowns B., B and

yl
the Vk‘q. One edquation is redundant and can be used for checking
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numerical results. In practice, equation (13) is best suited to
this purpose.
3ecause the ions feel only the maqgnetic force, their

velocity maqgnitudes remain constant. Thus N additional integrals

can he formed expressing constancy of the terms szk + szk
2

VT ok Undar the no loop condition there is no ambiquity in the

+

sign of V7P, so these inteqgrals can be used to eliminate Vzk

altogether.

3.0 UNIFNRM FIRLN SOLUTINN

The larqge amplitnde waves being sought would connect two
reqgions in which the flow and field are asymptotically uniform
ind alijgned with each other. 1In the single beam case (N=1l) the
only wav in which such uniformity can occur is with the single
velocity vector parallel to the magnetic field. Then the
Aerivatives in equation (5) vanish and the solution is truly
uniform. In this single becam case it is easily seen that the
momentum edquations admit no larqge changes in field orientatiqgn
excent fnr the snecial case Px = Py = 0, where an exact field
reversal anpears possible. In this case, however, all
Anrivatives vanish identically and there can be no wave.

In the multiheam system, however, a situation in which
inlividual beam velocities are not parallel to the field mav
nevartheless proiuce a net flow along a uniform field. In this
case the velocity components perpendicular to the field represent

a sort of gquasirandom distribution which simulates the effect of

= - - - R e ——— i TR
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a nonzero ion temperature. To quantify this situation, let all N

heams have the same velocity magnitude, and 1let each velocity
vector make the same angle with the field. Call the tangent of
this angle Y/, so that }( is the ratin of perpendicular to
parallel velncitvy comnonents. '1'2 is thus a measure of the
"tempaerature".

Wwhen N=1 a nonzero.K violates the uniformity condition, and
in fact gives rise to the infinite wavetrains of Saffman (1961).
Wwhen N>1, it is reasonable to 1ook for solutions in which the N
heams carrv the‘same particle -flux, have their velocity vectors
snaced as reqularly as nossible about the field, and rotate about
the field at the larmor frequency. With all beams carrying the
same flux, the quantity n_,V, . appearing in equations (1l1) =~
(13) is independent of k, so that in a uniform field region those

equationns taXe the forms:

Z Vx‘m = CONSTANT
(14)

Z\/\{k: CONSTANT (15)
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| - -
2“/;,( = CONSTANT (16)

Furthermore, with a uniform field, the z  component of equation

(5) can be multinlied by vzk' summed over k, and integrated to

2

S UV, = constanT.

114 (17)

In the two heam case equatinns (16) and (17) constitute two
equations in two unknowns, which require that vzl = sz. This
can only hapnen in a uniform field if the velocities lie exactly
narallel! to the field, so the uniform field two beam solution
collanses to the one bheam cold plasma case. Wwith N>2 this
constraint is lifted, so that N=3 is the simplest case in which.a
nontrivial uniform field solutinn can exist.

Cnneider the particles of each beam to follow helical
trajectories Jdiffering onlv in nhase. It is necessary to write
equations “or these trajectories as functions of 2 when the
particles spiral about a field which does not lie along the 2z
AXis. The sjtuatinn is shown in fiaqure 1. Only a single trajec-

torv is shown, which passes througqh the oriqgin. However, all
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space is filled with trajectorins of particles of this beam, and
the trajectories are all in phase at a given 2z, not at a given
Aistance from a plane permendicular to the field. This situation
is necessary hecause »f the condition that the system be cne
dimensional, with all variables functiovns of 2z only. Any wave-
fronts existing in nonuniform field regions lie perpendicular to

the z axis.

The trajectories can he described easily in a coordinate

- -

system x°, v, z° in wvhich z° lies along B. 1In this system the

trajectory of figqure 1 is:

L’/k: K <os (Cdt(“J‘kB

(18)

>(/</: RL SIN ,\/_&)T‘( ka

(19)

f/ (20)
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whero R, = Mevy  /eB is the larmor radius, &)= cR/Mc the larmor
frequency, VL and Vg, the velocity components perpendicular
and parallel to 3! and .fk a phase anqle for the kD neam. '*k is
a time parameter  proportional to the position of the guiding
center along the  field, Because the larmor orbits are not
perpendicular  to the 72 axis, Vzk changes with orhital phase, and

'k is not a simple function of 2. Performing a rotation qives

the narameterizod trajectory in the X, y, 2 system:

\,/(& % _Cos (\%«Jt( - flc\)

(21)
\' 2 () cos G SN (&)‘]L -\() + + swb
N ¢ c Vk/ Yy K (22)
— 2
. 7 ﬁ s O ~ 9( \YRERYNY, (&) 7: -Jo ) )
whevr o Q 1 the  angle bentween the  field and  the 2z axisa,

Nifterentaat ing ocquations (21) - (23 gives the velocities:
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-7 V// SN (&/7(‘,( ‘f/c)

—
la)
]

(24)
Vo s cos (@, - f,)+l/,,me N
l/? V C.OSG XV SING Cos(w ) 261

wvhere, aqain, )/ = V-L _/V” e Al though these velocities were
derived  for warticles whose quiding center passed through the
origin, they would describe the entire velocity field as a func-
tion of 2 if the relation between t, and z were known.

Squation  {(23) nrovides tho desired relation, but is
unfortunately transcendental. Analytic progress can bhe made by
assuming ¥ <<l and axpanling in powers of V. Because the

\ . 2 ., "
di fFference hotween V-L ind V invnlves terms of order Y » 1t 1is
necessary to carry torms of this order if results differing from
the @0l1 plasma theory are to be obtained. Since terms involving
ty in equations {(21) - (2H6) are alrealy multiplied by \(, it is
onlv necessary  to solve equation (22) to first order in.r . To
do so, define a time parameter t = z/(v” cos e)which is strictly
proportion;ﬂ to 2z and write ty = t+ Atk, where Atk is

ancume:l shall com- > eI i F =
me 1l commare to one Then noting that RL YV” /@)
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and letting (}- tan © , equation (23) becomes

caf‘ aﬂwacsTL ?ﬁS/N(wfffwaﬁ<)

Simnlifving anl retaining only terms of orderY, this is
= h//} SIN /&)\f-’ /;J (27)
N [ ]

Tnserting ~quation (27) into ecgquations (24) - (26) gqgives the

velocity solutions to second order in X:

Uy -2 Yy wet-£) § 1055 cost-£)]

(28)

M(/c: (4) SIN Q/(H/:% Ccos /Qf\fk)—}’zf/;uz(wﬁfk)/g(zg)

[/M -, (059(; [ ~¥s cos(fd‘-j;')\‘ Ef}zmz(wf-fk’)f‘ (34)
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These are explicit functions of z hecause t < ?/(V” s 6) -

With uniform phasing (Sk = 2Tk/n), it is straightforward to
verify that, to terms of order 'Yzfgz. these equatinns constitute
a uniform Ffieldl solution of equations (6), (l11) - (13). The
inclusion nf/g in the smallness parameter means the field angle
cannot anbronach tém closely to /2. 1In the process, the follow-

ing usreful results emerge:

. m
/V\ok \/%ok - -N—o \/” Cos e )

(31)

=V, = N sw 6 (1- 277

(32)

— __’_ LA
S Vp " N\/“cose(HlY/; > .

(33)
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where n_ = Zn()k is the total initial ion density.

Before proc2eding, it is interesting to note that this solu-
tion is not eaxactly unifarm. There are small wiqgles in the
fField, but in the three bheam theory they are already of higher
order than Y 2, as Y is increased, comparison of equations (28)
through (30) vith a numerical solution of the transcendental
equation (23) shows that nonuniformities in the field drop off
raniIly with increasing N. Also, the field vectors are not
~qually  and rigidly spaced around the field, but wiggle back and
forth in rolatinn‘tn me another. This is necessary to keep the
flux constant and along B as  individual Vzk‘s, and hence

densities, vary,

4.0 FIRLD ROPATION CONNTTIONS

Aparticular uniform field «olution is determined completely
oo the parameters f?, V” ,‘( ¢ Ny and Bz. Of these Nge heing
an initial condition, and B, are strictly constant even through a
nonunitform  region, The other three might vary throughout ,a
ronmmifarm region and  emerge changed bhut  again  constant to
“haracterize a different uniform field solution. 'This possibil-

ity 12 jJoverned in part by the equations:
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@
M fm"“ l/M\c\/i*lc = = PZ (13)
ST
A 1) 2
v (ﬂr) =V (34)
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where V. is the velocity magnitude, which is strictly constant.
Fquations (11) and (13) are the x and z momentum conservation
equations and equation (34) expresses conservation of energy for
the particles interacting only with the magnetic field. The y
momentum  eduation is not included because it has already
constrained any new uniform fields to lie in the x-2z plane.
Consider a unifoarm field solution characterized by the
varameters (—9 o V/.’ o' Yo' When Ny anqd Bz are also specified',
the constants in eguations (11), (13), and (34) are determined.
Are there then other sets (69, Vnar'x/)' representing other
uniform field solutions, which also satisfy equations (11), (13),
ani  (34) with the constants determined from the initial uniform
field solution? To find such sets, the sums which appear in

equations (l1) and (13) can be evaluated using equations (31) -

(33). Inserting these latter expressions into equations (ll) and

e
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(13), and eévaluating the constants l='x and P7 from the initial

parameter set results in the equations:

MMV, cos6,V, smg[(-!v) &T&
yi

= (I, V,/:Cojq’ W4 (I—;V‘,z) - By By,
g

Mm, V,,o @S$ 6, l/,, CuSO (I* 1Y/s’z)+£
¢ §T
_ 2, )
= M, V:I,‘ cos° 9, ({1 2)3?/%2)"

'

s ing 2equation (34) to eliminate V , there result two eguations

]
in the twn unknowns Y,G (recall that £= tan Q ) :

Mm,V (059(1-’( )S/Né(‘() KB(

(35)
= Mo U eos 6 s (/_23);)_ /5 B
v
Mmvicos6 (1 —)1, 05 6 (H 1)/5 f)+ /3&
2 877
_ 2 2 ( 7 2
z NMOV oS 60 /1‘(‘);/302‘):2)* /ﬁ? (}6)

2/ ’
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These equationns can be made Aimensionless by defining a
suitable ratio of kinetic to magnetic enerqgy densities. Normally

this would be the Alfvén number, given by:

-
—————e, -

. l/ 2 . 2
/MA2 . ‘_/VIM MY arm BV (/_71) (37)
62 BQ )

but here it apnears that a modified AlfvEn number, given by:

Mz ¢ (38)

plays a more fundamental role. 'Yhen this number 1is close to
unity the definition (38) can Y shown to be a special case of
Hudson”s (1970) modified AlfvAn number appropriate to anisotropic
plasmas, and under these conditions will be referred to as the

Hudson number, ™ The plasma unler consideration is indeed
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anisotropic, since the pressure, as determined by the quasirandom
perpendicular velocity components of the N heams, is éntirely
perpendicular to the magnetic field.
Equation (3%5) can be solvedl for rz, and by using the

e s . :
modified Alfvén number the two equations become:

SING,  COS6, SIN 6,

2 {
Y04

SING cos 9 SInD (39)
Cos 6 1 [yt Rt e 7 l
ot £ 5 i
co 6, 2m,’ T am

Fquation (39) can be inserted into equation (40) to give a single
equation for 9. This can be solved numerically to reveal two

claases of solutions, one in which the field wunderqoes a near

L
reversal and the other in which the field angle changes only

s1ightlv, There is, »f course, also the trivial solution @ = Oo,

which corresponds to the soliton solutions of Saffman and others.
More unrferstanding of the solutions can be obtained by

anproachingy equations (39) and (40) analytically. Because the

one beam theory admits an exact reversal (8 = - 90) when m 2 . 1

A
(m“ anAd m, are inlistinguishable with one beam, since }’= 0), it

i reasonanle to look for solutions with mnz clnse to one and
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2
H

Putting these forms intn equations (39) and (40).,, and

which nearly reverse the field. Let E = m

performing considerable algebhra while retaining only fitst order

terms in € anAd A results in the near reversal solution:

. _(6-1. Je("ﬂ:)
6 9 Vit (H/?oz) (41)

2 2 2
Y 2U o+ 4€esm O, . e

Thus the extra degree of freedom afforded by nonzero temverature
has allowed field rotating solutions to satisfy the momentum

conservation integrals for values of the Hudson number other than

unity. The solutions are shock-like in that the temperature

[

rises across the wave, as indicated hy equation (42). With the
)

initial ‘udson number given by Mo =1 +¢& , the Hudson number

in the reversed field region can he evaluated from equations
(38), (41), and (42), and is found to he mH2 =1 - 6 . Thus the
Huison aumber qoes from above unity to below. However, the
Alfven numher, given in this case by mA:Z = m“2 + 5':Y2, remains
above unity. It is unclear how to classify these possibilities;

they might lescrihe intermediate waves hut if so their evolution-

-1and @ = - (0°+A).
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arv character is unclear, since it is not known whether
intermediate waves in anisotropic plasma are evolutionary (Hudson
1970) .

The second class of solution can he analyzed when the Alfven
number 1is close to Secze. In this case numerical work suggests
only a small field rotation, so a solution of the form 9 = Oo + A

is assumed. The analysis is complicated by the proximity of

the trivial root 95 Oo' hut eventually yields the solution,

good to terms of order Y 2:

6760T§/§;_710 (43)

AR

y (44)

_ "
where now é = mo)'/sec“ 00 -1. BEquation (44) shows that this
situation is possible even in the one beam case where Y is always

zern, EBvaluation of the modified Alfven number in the rotated

field rejion gives
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1 2 l _2_ ?
/WY\ z S]?( €§O <fl t §- :? /(?

(45)

It is useful to compare the new Hudson number with the secant of
the new field angle. Introducing equation (43) into equation

(45) gives the result

SO (B () L

Thus a Hudson number initially less than sec2 00 (ie, € < 0)
hecomes qreater than sec2 8 in the rotated field region. In the

analysis leading to both rotated field situations, it is assumed

that 2 . [
Y <(/§<c/z
0 7
0
5.0 ASYMPTOTIC SOLUTIONS
In Saffman”s col.l plasma theory it is shown that solitary

waves can exist only when the Alfven number, as defined in the

present naper, satisfies the condition
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| ¢ WA;( se¢” O

(47)

(Saffman 1961). Small perturbations of uniform field solutions
outside this ranqge are incapabhle of growth. Both field rotating
possihilities in the multibeam warm plasma theory take the
modified AYfvén number from a region of permissible Alfvéh
numbhers in Saffman®s theorv to a region where asymptotic growth
is not possib!p; llowever, the Alfvén number may remain within
the permissible reqgion. Saffman®s results cannot be applied to
the multibeam theorv because the nonzero temperature and
associated pressure anisotropy creates a distinction hetween the
Alfvén and modified Alfvén numbhers. It is necessary to perform
an asymptotic analysis of the multibeam theory to see whether the
waves admitted by the momentum inteqrals can actually exist.

Tt is convenient to make the equations dimensionless through

the "0ollowing definitions:

Vi

- —

Vit
R

8
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*

4t M, M Vu
zg:l

Iy

0

k? nol(

Here the subsecript o refers to conditions in a

region.

The definition of b gqives immediately h7

is the initial anqle hetween B and the =z axis.

definition~, equations (11), (12), and (6] become:

< - by €8
( 7ok tolc Vxk /M‘z '/)x

uniform field

cos O where O

With these

(48)
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__;7(-)(( U?ok UY,( - _bY{O’S—Q = (49)
w2

'ﬂ ( !
.(._,_.._‘_"._’i - - (/ X !) (30)
0( ¢ ng(,,k m> )

where /)x te a constant and the analogous y constant has been set
to 0 s0 that the field lies inittially in the x-z plane, Let 7-
7ﬁkutn’i and 1equire this qunantity to he {ndependent of k, 8o
that  initially rthe beams differ only in phase. ‘Then equations

(18) and (49) can be solved for the magnetic field components to

/mz ‘>,
Z) SIN (_) 1 (‘o‘;'é 7 < (UXJ UKJ )

(51)
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Introducing these forms into the x and y components of equation

(20) gives

JUX‘I U‘{l( M
-...._-——-.( - 6 = ‘
0(f U,”L <os @se 7 g( on)

(53)

S 'VY‘J
J}“ - ~/U6 ‘(‘C;(ié 72—((/)(}“(//(].")—(/%(0S6.(54)

2k

To sen whethar growth from the uniform field solution 1is possi-
ble, let u =v,  + w , where v, is 3 uniform field solution. To

first order in the \_«ik's, equations (53) and (54) become

cpf VA Uik 7 cos

Aiog gty 51y — @0 (1 - WeUn

- < Xl i Xlc ————r0v

d¢ <so 2k Vee | oo
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. . 2 2 2 :
Conservation of enerqv requires that u + u + u remal
) 9 1 that u vk zk main

constant, so that

U, Uy Wy, 1 Ve Wy =0 .

4
« Xl (57)

Assuming Y to be small, Jdimensionless forms of the uniform

fiel1 solution (equations (28) - (30)) can he used for the vy's.
Introducing these into equations (55) - (57) and using equation
(57) to eliminate W,k Yields, after much algebra, the 2N

oquAations

SINK
cﬂka Wy ,”_ﬂ_ > w,' R7E (luﬂ( COSy ~ cofek Wk
o(f
SN 200,
+y /—(/g‘((,; 20, + (A )f""z"‘t)“‘lx , 016:( ‘f/?)kal
Siw ot Wi

J Whe ""44 gw /+/3 Wy, t I3 Iy - 5 (S o (' *ﬁl)ka]
N ©

{hy S 20 2"(1( (H ) lt/“)}rjﬂ CoS.ZO( *(“3[ (s “(kz XI(:} .

2 ¢co (6 (59)
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Here dk = (f/cos 8 - fk' where (r_/cos 0= 0 t. These linear

homogeneous equatinns admit solutions of the form

b} (60)

where the exponential renresents either a growth or oscillation

common to all beams, and the gk‘s are individual and presumably

small nscillations at the larmor frequency. When equation (60)

is introdnced into equations (58) and (59) there result
2
Qo - - M s, 4 Cosef = >k Gk
A gy g Sroom P (et gt 3

[‘(K cos 2 + (It >( wsm);ﬁm i (HY )3,,(:} (61)

2 2056

MZ I ¢
90 = 8 8 G = () Je e
4, N
+ 5/3[ ﬂi::';a“ ~ 3 (0§ X, (”/3)?“}

[+ (oS 2l
+ 1 S;uio(lc (Ht(/g (u/s)??ﬁ(us%("r(u/g)(
aash ((z)
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The periondic wiggles represented hy the Qk‘s can be described by

a fourier series solution of the form

o0
: @l<o+ Z/ ('dmg’“’”dKTL g”‘ (KMQIO'
Joo S Sy 7 e

(

The growth or oscillatory nature of the overall solution can be
determined by introducing equation (63) into equations (6l) and
(52), looking only at thn‘f indepenilent terms, and summing over

1 ]
K, which yields

MAZ Bﬂ,: 8{, { I ; 32({ +/3’) - A E’(o ((‘/)

w6y, 45 (s fro( K (e
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where B, = é-Bko. Nne nf the B°s in these equations is an
<

arbitrary scale factor, so that these are two equations in the

two unknowns a and the ratio of the B°s. Multiplying the first

equation by Byo' the second hy on and adding gives

IR
[M;’;“;) ([4,5)§;‘J 870

L 2

+ ] mi- (uﬁ)(ub?(h‘g/ﬁz)) B, -0 .

A

(66)

Solving equation (64) for an and introducing the result into

equation (66) qgives

K4 . ¢ Z.’
’3‘/: %5'5'*;7(%1)? [a f[M' -0

}/' ¢ :23:((*/37.);. [M‘l ’[{('*Bl)ﬂﬂz(“ zﬁl))§ (67)
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The root By02 =0 is of no interest here because, even if it does
permit qrowth, the average values of the field perturbations
remain zero so that such growth would not permit solutions with
different field orientations to be connected. The second root,

given hy

\
O

M\ﬂz_ [+ Z’Ib’z(u[gl)

(68)

’

requires that the Alfven number he close to but ahove unity. In
this case the modifieqd Alfvén number is the Hudson number and is
given oy mH2 = mA2 (1 - é X'z), so that the Hudson number must
remain above one, thus excluding the field rotating solution of
equations (41) and (42). The third root of equation (67) occurs

when

q’e | m)} I*J}(u/g j["" (69)
WMW
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Growing solutions require az > 0, so that

MAI_/(i+?',)2ﬂ+/,‘7/Z MAI_ //1'/@2)//")?(/1 fé,‘e) % 6 . (70)

, . o 2 ’/
When Y= 0 this C(?Hapses to Saffman”s condition 1 < my~ < (l-{ﬁ

{(note that 1 +/5‘ 2 sec2 @). For the field reversing solu-
tions of equations (41) and (42), m remains close to unity, so
that the second term in equation (70) is less than zero. Then a
growing solution requires 'nA2 - {1 + Z//Yz(l + /5 2)) > 0,which

”2 > 1 + ,,y 2/5‘ 2. Thus the uniform field solution in
2

requires m
the rotated field region cannot grow, and the field rotating
solutions admitted by the momentum conservation integrals do not

exist.

The second class of solutions, described by equations (43) -
(46) , involves an Alfven number of order sec26’ =1 +ﬁ 2. 'I‘hu§
the first term in equation (70) is gqreater than zero, so that a

growing solution requires

(71)

? ¢
] ) o).
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This condition must hold on either side of a nonuniform field

2
--that 1is, for the values of mA“,/} . and Y found on the side in

question. To examine the situation in the rotated region,

equation (46) may be written in terms of mA2 as

/mj- (u/gl.) 8 ((4%1) (z—/)‘ - € 427%1)) (72)

where use has been made of the fact that )’2 = ‘)/02 and that
/? and /@ o Aare interchangeahle to terms of order?{'z when they
appear multiplied by Y 2. Using equation (72), the condition

(71) becomes
/.2 2
& 2 -0k
Z o (73)

A second constraint is placed on € when the initial uniform
region is taken into account. The inequality (71) holds here as
well, while the definition €= m_2/(1 + R 2 -1 leads to the

expression:
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" () (R,

(74)

Using equation (74) in inequality (71) leads to the condition

0O -

<IN

Comparison of inequalities (73) and (75) shows that growing solu-
tions are oossible in hoth the initial and rotated field regions

provided

[V 340 2
gb:)/;a<€<g}0/fo .

(76)
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6.0 NUMERIZAL WORK

Inequality (76) shows that in warm plasma (']2 > 0) growing
solutions are possible for both uniform field solutions admitted
by the momentum conservation equations. However, the conditions
of momentum conservation and asymptotic qrowth do not quaranty
that two Aifferent uniform field solutions corresponding to the
same initial conditions are actually connected. In the warm
plasma case the existence of such a connecting solution can be
Jdatermined only .by numerical - integration, since the analytic
integrals nf the system are not sufficient to specify Bx as a
function of Ry as is possible with cold plasma.

Extensive numerical integration of the equations for systems
of three to fifteen beams has confirmed the limitatinns on growth
sugqgested by the asymptotic analysis. The resulting Bx' By
hodogqrams resemble those of Saffman even in the extended modified
Alfven numher range qiven by inequality (76). Although the
parameters /S , and m? o have been varied extensively within
aporonriate ranges, no solutions have bheen found which take one
uniform field solution into another with different field anglé.
Instead, true soliton solutions occur which are qualitatively no
Aifferent from those of Saffman and which take the initial
uniform field solution back to itself. At the midpoint of the
snliton, the y component of the magnetic field vanishes but its
derivative is always a maximum. Furthermore, the x component at
this point does not have the appropriate rotated value given by

ecquation (43). Thus the warm plasma theory appears incapable of
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producing the rdesired solutions.
CONCLIISTON

'The inclusion of thermal effects through use of a multiheam
distribution function enriches and complicates the description of
large amplitude rfisturbances. The extra degree of freedom
afforded by the 1inclusion of the temperature-like variable }(2
al lows two classes of field rotating solutions to satisfy the
momentum conserv;tion inteqgqral.s of the system. However, only
those snlutions associated with small changes in field angle
appear capable of asymptotic growth on both sides of the
disturbance, and even these have not heen found after extensive
numerical 1investigations. It is unclear whether the apparent
nonexistence of field reversing disturbances is a peculiarity of
the particular and somewhat artificial model used or rather a
reflection of the impossibility of such disturbances in colli-

sionless plasma.
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Figure Caption

Figure 1: A particle in a helical trajectory about the
magnetic field. All space is assumed filled with such particles,
whose orbits are in phase along the z axis, not along the field

direction (2z' axis).
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