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INTRODUCTION

It is known that polymeric matrix materials meet the structural requirements

for large space structures (Ref. 1), but the strength of these materials is adversely

affected by long term radiation exposure in space environment (Ref. 2) and questions

still remain regarding their long-term stability (Ref. 3). In order to facilitate

large structure feasibility and design studies, especially for a 30-year geostationary

mission, data on degradation of matrix materials subject to space environment must be

obtained.

Our research efforts have been directed towards several important areas: 1) com-

puter programming on energy deposition calculations for a model polymer in space

environment, 2) a feasibility study of space flight accelerated testing, and 3) theo-

retical study of interaction between charged particles and some compounds of interest.

In the following paragraphs brief descriptions of these areas are given and the results

are presented and discussed.

1. Computer Programming

Graphite epoxy composites have been suggested (Ref. 6) for space application due

to their desirable physical characteristics such as high stiffness and small thermal

distortion. In the present study, tetraglycidyl 4,4'-diamino diphenyl methane epoxy

cured with diamino diphenyl sulfone (Fig. 1) is chosen as a model compound (Ref. 3).

Fortran IV Programs have been developed to calculate some quantities of importance to

the study of this polymer when subject to electron and proton irradiation, an environ-

ment exist in space.

The stopping power and range of the composite depend on the energy of incident

particles. The program is capable of computing these values as a function of incident



particle energy and composition of the composite. Table I shows the calculated

results for a typical graphite epoxy composite (30% epoxy by volume) as an example.

Energy deposition coefficients for electrons and protons in target materials are of

course depending on incident particle energy. This dependency is shown in Figures 2

and 3. Fig. 4 compares the penetration depth of electrons and protons at various

incident energies as derived from Ref. 4 and 5. The unit of depth in g/cm2 can be

converted to cm by taking the density range of the composite to be 1.5 ~ 1.7 g/cm3

(Table 2). This range is calculated from the density of the epoxy being 1.3 g/cm3

(Ref. 3) and 1.6 ~ 1.9 g/cm3 for graphite fibers prepared by graphatizing either rayon

or polyacrylonitril fibers (Ref. 7).

Figure 5 shows an accumulated dose in the composite exposed to charged particle

environment in geosynchronous orbit for 30-year duration. The upper and lower limits

in this plotting show uncertainties of the environment involved. The shaded band shows

the difference in dose received by composite due to difference in geometry of the object,

i.e., a spherically shaped object receives a larger dose while the dose is less for a

semi-infinite material slab in the same environment. The program uses fluence spectrum

at the given altitude and inclination as input and computes dose received at various

depths. Figures 6 and 7 show, respectively, examples of electron and proton doses

received in the composite when it is placed in an orbit of 1,000 Km altitude and 30°

inclination. Environmental models AE4 and AE5 were used for fluence spectrum.

Some of these values and graphs will be used in subsequent discussions.



2. Accelerated Testing

Despite the enthusiasm for epoxy as the binder of graphite fibers in large space

structure applications, questions still remain regarding its long-term stability as

noted earlier. It is clear that more detail studying of degradation and testing under

a simulated condition must be conducted and results analyzed. Perhaps the most feasible

study for this purpose is through accelerated testing (Ref. 8,9).

Accelerated testing will likely take two forms: (1) ground based laboratory

testing, and (2) low earth orbit flight testing with an LDEF type vehicle. Although

ground testing is limited in its ability to simulate launch and space environment, it

has many advantages. Tests may be conducted rapidly and inexpensively with radiation

producing machine on the materials presently on market or on new ones as they become

available. Sophisticated instruments are available for analyzing, as the sample is

being irradiated, evolving gases, detecting and possibly identifying reactive species

such as excited molecules, ions and radicals produced in the bulk of the material.

This information is vital in developing a model in understanding the initial phase of

physical interaction between ionizing particles and composite materials, and in explaining

the subsequent chemical evolution. The value of this analytical model lies in its po-

tential use not only for basic understanding of radiation effects on polymeric materials,

but also for evaluating adequacy of accelerated testing, and for providing a better

basis in predicting useful life of a large space structure. On the other hand, in low

earth orbit flight testing, little or no such diagnostic test may be performed during

exposure, but the space and launch environment can be produced with fair accuracy for

geosynchronous mission. Retrieved samples from such a testing can be analyzed in the

laboratory and will certainly provide invaluable information on degradation of materials

in a near perfect environment.



A preliminary analysis has been conducted to determine a low earth orbit which

has such a radiation environment that in a rather short period of time, a sample

placed in this orbit could accumulate enough radiation dose equivalent to a 30-year

geosynchronous orbit. Further, such an orbit should be accessible to Shuttle/orbiter

for retrieving irradiated sample for detail analysis in a laboratory. The present

analysis has been limited to data from AE2, APS and AP6 environmental models in lieu

of more recent data (Ref. 10) which has not been available.

2-1. Calculation Methods

The model compound used in this study is as shown in Fig. 1. This compound is

used to bind graphite fibers in forming the composite. A typical composition of this

type of composite is 70% graphite and 30% epoxy by volume. The density range has been

calculated for the composite and is shown in Table 2.

The energy absorbed by the composite at a depth x due to incident particles with

fluence <j>(E) is

D(x) = <|>(E)dE (2-D

where £(E,X), the energy deposition coefficient, for normal incident particles on a

sheet of the material is shown in Figures 2 and 3. The significance of these figures

will be discussed later. The main objective of this study is to seek a low-earth orbit

whose dose would match that of geosynchronous orbit shown in Fig. 5 in a reasonably

short period of time.

The dose rate as a function of altitude for circular orbits as calculated in Ref. 10

is used. Figures 8 and 9 show, respectively, electron and proton dose rate in composite

material exposed in circular orbits at zero-inclination. The long-term average dose

rate for arbitrary orbits can be found by using the averaged exposure for circular orbit

data of the time varying altitude and averaging over one revolution (Ref. 11). The orbit
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equations are solved by evaluating the orbital angular momentum and integrating

the corresponding force equations. The average dose is
/•T

1

T
D[r(t)]dt (2-2)

where r and r are the orbit apogee and perigee, T is the orbital period, anda p
t is time.

2-2. Results

Calculations of dose received by the composite have been made by taking the

apogee at the peak of the inner electron radiation zone approximately at 270 Km

altitude, and increasing perigee from Shuttle - accessible altitudes until the perigee

reaches the peak of the inner electron belt when the orbit becomes circular. The

results for 2-year exposure are shown in Fig. 10. From this figure, it is clear that

the radiation dose received by the composite at the depth of 3 to 6 mils in the

geosynchronous environment for 30 years can be accumulated in two years or less when

it is placed in an elliptical equitorial orbit of 300 Km perigee by 2750 Km apogee.

In regard to proton radiation, the high surface doses cannot be achieved at the

peak altitudes of the inner electron belt. It would be necessary to increase the apogee

to 10,000 Km to sample the low energy proton as indicated by zero depth curve in Fig. 10.

Other factors affecting the dose rate such as the height of perigee and orbital

inclination are discussed in a publication (Ref. 12).



3. Theoretical Studying of the Model Compound

A compound, tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with

diamino diphenyl sulfone as shown in Fig. 1, is used as a model compound to further

study on radiation damage to polymeric composite materials. Unlike crystalline

materials where nuclear displacement plays an important role, damages received by

polymers due to charged particles are largely due to chemical evolution of excited

species produced in the initial phase of interaction. In complex molecules, such as

the polymeric system we are considering, energy thus received is usually shared by

many vibrational modes through intricate potential surface crossings which is intimately

related to molecular structure. A better understanding of energy deposition mechanism

and the formation of excited species, some of which are long lived due to lack of

mobility in solid state, are of utmost importance in understanding the final chemical

products observable in a laboratory.

3-1. Energy Deposition

Energy transferred by an energetic charge particle to a target is given by

Bethe equation:

dE = 4TrNzV ) f 2MV (3
dx Mv2 ^ n *n En

 v '

where N and e are number of particles in a unit volume and electric charge,

respectively, M and v are the mass and velocity of the charge particle, while z

is the atomic number of the target. The passing coulomb field from the particle

appears as a field of virtual photons is evidenced by the strong dependency of the

stopping power, dE/dx, on the optical dipole oscillator strengths fn and the cor-

responding excitation energy levels En of the target. Molecular geometry and

chemical bonding are intricately related to these quantities and they are related

to the mean excitation energy I:
oo

Z £n I = Y fn

n=l



Detailed calculation of excitation energies and oscillator strengths of polymers is

not feasible at present and a suitable approximation method will be very desirable.

Local plasma approximation (Ref. 12) is such a method whereby the molecule is replaced

by a space dependent plasma. With this approximation, the mean excitation energy I and

total number of electrons Z are related to the electron density p(r*) of the molecule

and the local plasma frequency w(r) as

Z £n (I) = f p("r) £n[yha)(̂ )] d3 "r (3.3)

where the local plasma frequency u(r) is

wfr) = [4Tre2p(f)/m]1/2 (3.4)

where e is the electron charge, m is the electron mass, and the parameter y taken

approximately as 1.2 (Ref. 13). Within the context of the Gordon-Kim electron gas

approximation, the mean excitation energies of several covalent molecules have been

calculated by applying the local plasma approximation (Ref. 14). These values compare

very favorably with the experimental -empirical values as can be seen in Table 3.

Bragg 's rule values are obtained from applying the Bragg 's rule to accurate atomic

values calculated by Dehmer, et al . The discrepancies between Bragg 's and experimental

values are clearly due to chemical bond effects.

Ionic bonding effects on the mean excitation energy were also studied via local

plamas model on LiF, LiH and HF molecules (Ref. 15). Again, following Gordon-Kim model

for electron density for these diatomic molecules the electron density at r is calculated:

Pp(̂ )= PA(+P) (r) + pB(-p) (r-$) (3.5)

where A^ **' and B^ • ' refer to the partially ionic states of A and B, the two

constituent atoms, R is the internuclear distance and p is the ionic fraction. The

electron density of a partial ionic atom A in equation (3.5) is

PA(±P) = (1-P) PA(r) + P PA ± (r) (3.6)



where P/\(r) ancj PA±(>") are the electron densities of atomic neutral and atomic ionic

states, respectively, of A. Appropriate atomic wave functions, nuclear distances and

ionic fractions are used to calculate the mean excitation energy I in Table 4. From

this table, it is seen that the main contribution to correction to the Bragg rule is

the adjustment from atomic neutral mean excitation energy to atomic ion mean excitation

energy.

3-2. Study of Bond Rupture Sites

The energy imparted by a passing charged particle excites a molecule into its

excited electronic, vibrational and rotational states. These lead to subsequent

production of stable excited species and fragments due to bond rupture. In -search

of empirical information which may provide a better basis for predicting fragmentation

formation of our model polymer, we examined electron-impact mass spectroscopic data on

molecules which have the same functional groups as does the model (Fig. 1).

Mass spectra of many molecules containing amino functional groups are obtained

(Ref. 16). It has been observed that among several functional groups, including

hydroxyl and amino groups, that are present as substituents in aliphatic compounds, the

amino group has the strongest influence on the site of bond scission and ionization due

to electron impact (Ref. 17,18). The extent of substitution on the amino group itself

appears to increase the influence of the amino group on its directive dissociative

ionization. The dominant bond scission in the presence of amino group is between a

and 3 carbon atoms in hydrocarbon chains, leading to the formation of immonium ions.

The presence of a hydroxyl group in an aliphatic compound appears to favor scission

of bond between a and 3 carbon atoms, although the influence is not so strong as

that of the amino group. When both the amino and the hydroxyl group are present in a

molecule, the amino group appears to form a more abundant fragment ion (immonium ion)

8



compared to oxonium ion from hydroxyl group. When a sulfonyl group is present in

a molecule, its mass spectrum shows ions formed by scission of C-S and S-0 bonds.

Based on the study of mass spectra of compounds containing functional groups

as appear in our model compound, we predicted the sites of possible major ionization

and bond scission in the model compound when subject to irradiation by high energy

electrons (Fig. 11). The transient species observed in pulse radiolysis experiments

conducted by JPL bore out these predictions.

3-3. Density Distribution of Excited Species

The energy lost when a moving charged particle is slowed down in matter gives

rise to a trail of excited and ionized atoms and/or molecules in the path of the

particle. Radiation of different types and energy will lose energy in matter at

different rates, and consequently will form tracks in condensed media that may be

densely or sparsely populated with active species. This difference in density of

active species produced in the media, leads to differences observed in the chemical

effect of different radiation.

A comparison has been made for logitudinal energy absorption for monoenergetic

protons and electrons penetrate into the epoxy and graphite epoxy composite (Figures

2 and 3). The energy deposition per unit volume is high for protons and results in

shorter penetration depth. On the other hand, electrons penetrate deeper into media

with declining peak values due to increased multiple scattering at larger depths.

The lateral dispersion of the energy deposit extends over two energy absorption

regions, the core and the penumbra. In the core, the energy transferred from a passing

charged particle to a material shows radial dependence that depends on the mechanism

of the coulombic interaction considered. One process involves the coulombic interaction

9



between the charged particle and the electron of one individual atom or molecule,

in which case the radial dependence of the energy transferred is given approximately

(Ref. 19a) by equation (3.7). Another process involves the collective longitudinal

excitation of valence electrons of the atoms or molecules in the condensed phase,

in which case the radial dependence is given approximately (Ref. 19b) by equation

(3.8) (for singly charged projectiles)

Pn ~ exp(-Enr/3hv), (3.7)

p(r) » exp(-2io r/v)/r2. (3.8)

Clearly, the highest energy transfers are restricted to small radial distances. Even

so the highest energy transfers result in energetic secondary electrons which generally

travel far from their sites of production and depositing their energy far from the

trajectory of the original passing particle forming a penumbra of energy deposit out-

side the core region. The core and penumbra of 100 KeV protons and electrons are

shown clearly in the graph (Fig. 12). The core region of the proton is limited to a

few atomic distances by the proton's low velocity, while the electron core to about 6 nm

according to equation (3.7). The proton-produced penumbra is limited by the secondary

electron mass to proton mass ratio, which limits the energy transferred to secondary

electrons. The electron produced penumbra extends far off the graph to the right. There

are great differences between the excitation densities achieved by the passage of the

two particles. Without doubt, rapid recombination will characterize the chemistry in

the proton's core region. A more detailed analysis is required to better define the

chemistry of these various regions of exposure.

At higher particle energy the same features are apparent in the track structure

but the radial distances are expanded (Fig. 13). The proton core region still appears

on the graph but the electron core extends to the right of the present graph. Qualita-

tively, we anticipate the proton core chemistry to be radically different from the

remainder of the exposed regions. The chemical change in any solid material will be

10



limited to a small cylindrical region around the individual particle trajectory.

Early in the exposure these cylindrical regions will not overlap and their evolution

develop independently of one another. Late in the exposure of highly irradiated

material the chemistry of later tracks will generally be altered by the prior change

of the material caused by a previous track.

Another important factor one should consider is the frequency of the passage of

charged particles through a given region. The accumulated 30-year dose for geostationary

orbit is shown in Figure 5. It is represented by exposure of ~ 1011 rad at « o.5 y

depths due to low energy protons and ~ 5 x 109 rad at ~ 50 y due to electrons. At

these values, each portion of material receives energy by the near passage of several

particles. Two effects could result from such multiple track exposure: (a) if suf-

ficiently close in time, then chemically active species of the two trajectories may

alter the chemical end product; (b) even if long times elapsed between the passage of

the two particles then the second passes through previously altered material. Of

interest is the number of traversals which overlap within a given time interval for an

accelerated test of the 30-year geostationary exposure.

The probability of overlap of two particle tracks within a time interval At is

shown for an accelerated test at 30-year geostationary exposure levels (Table 5). The

test is assumed completed in one day (24 hours). It is seen that the more active

chemical species (At ~ 1 ysec) will rarely be affected by such events. A small effect

is expected for the slow chemical processes (At ~1msec) in the penumbra region of the

electron exposure. Effects on long lived radicals (At = 1 sec) is likely in nearly all

regions. Most of the exposure is seen to take place in previously disturbed material

(At ~ 1 day). What is clear from these figures is that material changes result from

the combined effects of spatially compact individual particle tracks.

11



4. Conclusion

Our efforts have been directed toward the study of graphite epoxy composite

and its utilization in building a large space structure for future geosynchronous

missions. We have assisted in completing versatile computer programs which enabled

us in obtaining important information with regard to interaction between graphite

epoxy composite and charged particles which are present in the space environment. We

have considered accelerated testing of the composite by placing samples in low earth

orbits accessible to Shuttle/orbitor for subsequent retrieval. It is found that an

elliptical equitorial orbit of 300 Km perigee by 2750 Km apogee can accumulate, in two

years or less, enough radiation dose comparable to geosynchronous environment for

30 years.

In theoretical studies of radiation damage to epoxy materials, we have applied

local plasma model to calculate the mean excitation energy for both covalent and ionic

compounds. The mean excitation energy is an important quantity in calculating the

stopping power (and hence range) of charged particles in a medium and has been obtained

from experimental results. It is extremely encouraging to see good agreement between

local plasma model and experimental results. We also conducted an extensive literature

search on electron-impact mass spectroscopy of compounds which have functional groups

similar to those present in the model polymer. From this vast amount of information we

were able to identify possible sites of bond rupture in the model polymer and succeeded

in predicting formation of radicals observed in preliminary experiments conducted at

JPL and reported recently. Density distribution of excited species produced by charged

particles penetrating the media is studied. We considered both longitudinal and lateral

distributions of excited species by both electrons and protons. The probability of

overlapping of two tracks due to two charged particles within various time intervals is

calculated. Unlike gaseous media, reactive species produced in condensed media, in

general, are lacking in mobility, hence track effects are more important in condensed

media.

12



5. Future Work

We are planning to investigate the formation of anions due to electron impact

and study the effects of these ions in materials when placed in space environment.

Formation of ions due to proton impact and their role in degradation of materials

need to be investigated also. Further, the study of situation in which the polymer

is subject to simultaneous irradiation by both electrons and protons is needed.

Thermal effects on material subject to ionization radiation are not clear. Due

to lacking of mobility of polymer molecules, high LET will undoubtedly create high

temperature zones in the tracks. Possibilities of thermal decomposition of radicals

as an added mechanism for decomposition of irradiated acetone has been suggested (Ref.

20). Thermal effects may prove to be an important factor especially in accelerated

testing of the polymer.

With the success in applying local plasma model to some molecules, we intend to

apply this model to molecules of interest and to our model polymer with appropriate

approximation. The mechanism of transferring energy of excitation throughout the

polymer molecule is not clear. Molecular exciton theory has been applied and has met

some successes. The mechanisms of interaction between a molecule and a charged

particle, and subsequent energy transfer will elucidate the paths by which excited

species are formed.

A modeling of reaction will be attempted for excited species produced by

charged particle irradiation. It will be interesting to estimate the half-life

and reaction rates of these species in order to enhance our understanding of

pathways by which our model polymer degrades.
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TABLE 2

DENSITY OF GRAPHITE FIBERS, EPOXY AND COMPOSITE MATERIALS

WITH 70% GRAPHITE AND 30% EPOXY (BY VOLUME)

Graphite Fibers' ' Epox^r ' Composite

density,
g/cm3 1.6-1.9 1.32 1.5-1.7
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TABLE 3

MEAN EXCITATION ENERGY (eV) OF COVALENT COMPOUNDS

Present
Theory

Experimental-
Empirical

Bragg's
Rule

CH4

(CH2)X

C6H6

H2

graphite

44.7

55.0

60.6

18.9

76.1

42.8

53.4

61.4 ± 1.9

18.5 ± .5

78.5 ± 1.5

35.1

43.5

50.6

15.0

62.0
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TABLE 4

IONIC BOND PARAMETERS

(UNITS OF MEAN EXCITATION ENERGY ARE eV)

HF LiH LiF

I

Bragg

ionic Bragg

covalent

P

R,A

96.4

91.0

91.7

97.6

0.50

0.91

26.7

25.9

25.2

27.8

0.25

2.04

93.6

81.6

92.6

83.4

0.90

2.04
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TABLE 5

PROBABILITY OF OVERLAP OF TWO-PARTICLE TRACKS WITHIN TIME AT

(30-YEAR GEOSTATIONARY EXPOSURE ACCELERATED BY 10")

PROTON ELECTRON

1
1
1
1

AT

ysec

msec

sec

day

CORE

3 x

3 x

3 x

« 1

lo-11

1Q-8

io-5

PENUMBRA

3 x

3 x

3 x

« 1

10-8

IO"5

1o-2

5

5

5

CORE

x IO-7

x 10-"

x TO-1

« 1

PENUMBRA

2 x 10-

2 x 10-

£J 1

*^* T

5

2
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Fig. 5 - Dose in graphite epoxy composite material exposed in geostationary
orbit for 30 years.
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