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THE ELECTRON BUBBLE IN LIQUID HELIUM

P. H. Roberts
University of Newcastle upon Tyme,
Newcastle upon Tyne, NE1 7RU, England

ABSTRACT

The base condensate model of helium is used to examine the structure of
the electron bubble in heliuym. The solution obtained makes use of the fact
that the parameter (am/M)1/5 is small and m/M is negligible, where m is the
electron mass, M i3 the boson mass, £ is the electron~boscon scattering length,
and a 1s the healing length. It is shown that, to leading order, the radius
of the bubble is b = (mM2a2/mp,)L/5, when pe 1is the helium density. The
effects of (quantum) surface tension and of polarization are discussed, and
are shown to be small. Consideration is given to the effective mass and radius
of the bubble, and the ellipticity induced in it by slow motion is given. The
normal modes of pulsation of the bubble are found and the mobility of the ion
is computed. The theory is compared with experiment.

1. INTRODUCTION

It has become increasingly apparent over the past decade that the deli-
berately introduced impurity cam be a fruitful experimental probe of the struc-
ture and dynamics of helium II, the superfluid phase of helium. Of particular
interest is the negative fon which consists of an electyon that, through its
zero point motion, cagves out a soft bubble of about 16A in radius in the
surrounding helium (1A = 10~8cm.). The induced hydrodynamic mass of such a
large structure is greatly in excess of its physical mass, and it therefore
responds to applied forces as would a much more massive ion. The experimental
situation has been reviewed by Donnellyl, and more recently by Fetterl,

The negative ion provides an interesting and, as we shall see, a sensitive
testing ground for theories of helium II. We examine in this paper one parti-~
cularly simple model of helium near absolute zero, the bose condensate. The
approach is expounded by, for example, Gross3 and by Fetter and Walecka®. The
theory is so simple to apply that most of the properties.of the electron bubble
can be caleulated in an elementary way. We will present our arguments in a
hydrodynamic framework originally proposed by Madelungs. Since this may be
unfamiliar to the reader, it is developed in 52 for the simple single~particle
Schrddinger equation. It is generalized in §3 to the bose condensate. The two
theories are brought together in 54, where the theory of the electron bubble
is developed. The final section (§5) confronts the theory with experiment.

2. MADELUNG'S TRANSFORMATION
1t appears to hé.ve been Madeluhgs who first realized that Schrédinger's
equation could be cast into a fluid mechanical mold, by expressing the waye-

function, ¥(x,t), in terms of its amplitude, £(¥,t), and phase, ¢ (X, t). Consider
a particle of mass m in a field of fixed potential, w(¥), and therefore obeying

1AM3y/3¢ = -@2/2m) V2 wh. @
By writing ’
Y= £ exp (im$p/), (2)
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where £ and ¢ are real, we can divide (i) into

288+ £92 + 2% V4 = 0, - 3)
3 2, u_# ¥ _
+2 Vé) + o~ I "F 0. %)
When we introduce the (probabilistic) mass density, p, and current ?, by writing
o= mlp[2 = ne?, T= @/20) @V - W) = o¥p, )
and define a velocity, ;x), by their ratio
a=3/0=Ts, (6

we recognize that (3) and (4) are the continuity and momentum equations
governing the potential flow (6):

LaF. @) =0, ™

33+%32+_§+u-o, (8
where '

U= -(‘HZ/Zmz)VZpll 2/91/ 2. 9

There are three main differences from classical potential flow. First,
the total quantity of 'fluid’! is not only conserved by (7): it is fixed by

flvj2dx =1, or  J[pdx = m. (10)

Second, even if through the presence of walls (w=v) or otherwise the fluid
is confined to a certain multiply-connected domain,$&, ¥ must remain single-
. valued. It follows from (2) that, round any contour T in& not reducible to a
point by a continuous deformation, ¢ can change by a multiple of h/m only.
The circulation round I canmot freely take auy value: 1t is quantized by
the Bohr~Sommerfeld condition

gpadx = B, (om0, 21, #2.....). (1)
Third, a completely new term has appeared in the momentum equation (8),
namely up.
The term y is often called 'the quantum pressure'. This is a misnomer

for at least three reasons. First, its dimensionality is incorrect, and it
would be better regarded as a chemical potential per unit mass. Second, since

-1
du/3x, = -p “3g,./2x,, ' 12)
8 1 13

-2 a2 1/2
g w? P g, 40P

where

) (13)

a rival, and properly dimensioned, contender for the title of quantum pressure
exists as part of the unusual and complicated stress temsor (13). Third, the
word 'pressure' suggests a phenomenon that depends only on 'the local thermo-
dynamic state' (here fixed by p), and the presence of derivatives in (9), or
(13), shows that all neighboring points are involved in its definition. Despite
these objections, we follow the common usage.

As may be seen by setting ¥ = 0 in (9), the quantum pressuré is the

essential ingredient that distinguishes our subject from the classical
theory. The fluid dynamicist can gather experience of its effects



37

by translating some of the elementary situations of quantum theory into their
corresponding fluid mechanical statements.

"Hydrostatics' arises from the quantum mechanical bound states by writing
¢ = -Et, (14)

where E, the energy of the state, 1s a comstant. By (8) the quantum pressure
balances E-w everywhere. It is best to avoid the usual fluid mechanical prac-
tice of absorbing E into w, since some energy levels may be inaccessible. For
example, when (8) is writtem as

-@/2m) V£ = (E - w@IE, (15)

and it is supposed that w increases indefinitely with distance, r, from some
origin, 0, one family of solutions to (15) is found that increase with

r, 80 that the normalization integrals (10) do not converge. The condition
that only the normalizable solutions of the other family are used transforms
(15) into an eigenvalue problem that confines E to discrete levels. Of course
a continuum of eigenvalues exists when w is bounded above,

A vell-known application of (15), that is particularly relevant to the
bubble, is the potential well for which

wT, in £<b ('Region 1');
WII, in >b ("Region II');

where wy and wy (>w1) are constants. Writing
A2 = (20/4%) (B -wp), Ag?= (uMl)g - D), an

we see that, for wy < E < vy s (15) 1is obeyed by

w= (16)

£ = f1 2 AJp(Arr) Yo(8yX), 1o T 5 b; a8)
f=fy = AT [Ja(rb)/ke(yb)] T4(0,x), fmr2b;  (19)

where Jg(z) 1s the spherical Bessel function of the first kind, k,(z) is

the modified spherical Bessel function of the second kind, and Yp(8,%) is a
surface harmonic of integral degree, 2, in spherical coordinates (r, o, X).
The exclusion of the other spherical Bessel functions ensures that (10) can
be m§t for some choice of the comstant A. Continuity of f has been realized,
and VE is continous provided

Arbdg (Ab) /35 (Ath) = Agbke Ay b)/kg(Agb)e (20)

This dispersion relationship determines a discrete spectrum of admissible E.
It may be seen that, when &w = wy - wp is large compared with h2/mb2,
eigensolutions exist for which E - wp << wgp -~ E. For these, (19) takea the
approximate form '

fr # A expl=Ag (£ - b)] Y4(9,X), inT 2 b. (21)
The fluid is confined in region II to a boundary layer of thickness 1/Ay, or
ap =4 (mtw) Y2, (22)
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This phenomenon is often called 'healing', the layer itself a 'healing layer’,
and ay the 'healing lemgth'. To the fluid mechanicist, the abrupt increase &w
in w at ¥ = b can only be hydrostatically balanced by an equally abrupt increase
in quantum pressure. It is the nom-local character of quantum pressure that
causes the fluid to pass through the barrier at r = b and, when lower poten-
tials are available externally, permits it to seep out of region I.

In view of later developments, it is worth elaborating the situation
just described. First we allow the well to have any shape, defining n to be
a coordinate that measures distance from the discontinuity normally outwards
from I to II. Second, we allow wy and wir to vary, and suppose that the large
transition from wy up to Wy does not occur abruptly as in (16), but contin~-
uously over some distance, a, comparable with ap. Within this distance, there
is evidently no unique way of defining 'the' surface, S, of the well. We
note, however, that in the case of discontinuous w just considered, g (Arb)
is small, by (20). This suggests we should locate S on the surface of zero f7.

To elucidate the healing layer structure, we introduce a stretched
coordinate, £, and cast (15) into dimensionless form by writing

£ = nfa, £f = ax(%), (23)
q ~ a/ap, v = w1 + g(8)dw, (24)

where we suppose g is exponentially smell at the imner (§ = ~) edge of the
boundary layer, and is unity at the outer (£ = 4®) edge. It should be realized -
that x, wy, Mw and g will generally depend on posgition on S. To the first two
orders, however, this dependence only occurs parametrically in the solution,

and will therefore be suppressed. Writing .

x = x (E) + ax, (§) + ..., (25)
substituting into (15), and equating like powers of a, we obtain

&’ 148 - dg(orx, = o, (26

a%x, 148 - o%g(Orxy = - (0,7t + ¢, Vyax fat, 27

where Cjand C» are the principal radii of curvature of S at the point concerned.
Since fy1 is identically zero, the solutioms to (26) and (27) must obey

x, +0, X, 0, for &>+ (28)
Succesaful matching to the interior solution, f1, requires
x, v Qfy/t)gE, v -3 (G + 6T (E /o) 8, for & -l (29)

Explicit solutions can generally be obtained only by numerical means. They
obey integral conditioms which we will later find useful (54):

L (g_;‘;l) - x4, (30)
-2 4 - P22 x 4 '
2@ ) Gl Lax $ay, (1)

vhere the bar through the integral sign signifies that the convergent part of
the integral is takem. Despite appearances, this integral is negative.
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The integral relationships (30) and (31) may be interpreted in the light
of the Grant tensor (13). The terms on the left give the main parts of the
leap of gy, across the boundary layer; the terms on the right give the
corresponding integrated effects of the external force £2% balancing them.
The dominant term, given on the left of (30), arises from the 'pressure' of
the particle trying to escape the well. The next largest term, shown on the
left of (31), clearly has the form of a quantum surface stress, with

2akw » . dx..2
T, S F e EMTe . (32)
as coefficent of surface tension. It is easy to make an estimate of T . If
we take g to be a unit step function, we find from (26) that n

% - 3 z
'rm #-a Aw (Bf¥/3n)s. (33)

Passing from 'hydrostatics' to 'hydrodynamics' by abandoning (14), we
see from (8) that another type of healing phenonmenon will occur when u is
large. A particularly significant case occurs at a vortex line where, by (11),
u is of order nh/mif, at small distances, 6)', from the vortex axis. It follows
from (8) and (9) that p is of order 422 for § +0. The fact that o is zero on
the axis itself means that a closed vortex ring, or a vortex line terminating
on boundaries (w = =) will transform an otherwise simply-connected container
into a multiply-comnected domain,f%, so justifying a posteriori the application
of (11). Unlike the healing at a wall considered earlier, the depression
of p at the vortex axis occurs over distances comparable with the scale of the
container. The corresponding vortices in the condensate discussed in 53
héve cores confined to much smaller distances from their axes.

Before concluding this section we make one remark, obvious perhaps, but
relevant to 5{0’ When the particle i3 trapped in a potential well with moving
walls [w = w(x,t)], ¢ is necessarily noo~-zero and p is time-dependent. Never-
theless, provided the time-gscales over which w changes are large compared with
the reciprocal of the quantum frequency h/mbz, we can regard the fluid as
being in a quasi-hydrostatic state, ignore the time derivative in (1), and
treat t in w parametrically. In quantum language, the Born-Oppenheimer approx-
imation is said to apply.

3. THE CONDENSATE MODEL

We now consider an assembly of N idemntical particles (bosons) of mass M
in a potential field W(X). If the particles did not interact, the wavefunction
for the system could be written down as a symmetrized product of the N one-
particle wavefunctions, ¥(¥,t), obeying (11) with W and M replacing w and m.

It would be probably more convenient, however, to replace the normalization
condition (10) by

fl¥|%dE = N, or [pdX = puv, (34)

where v is the volume of the syatem and p. = MN/v. The resulting theory is
well-understood, and containg features that fruitfully represent helium near
absolute zero8. It may be seen from (18), however, that the ground state for,
say, the potential well (16) would be one in which all the particles would

be at the origin, with high probability. To eliminate this unphysical behavior,
the imperfect bose condemsate has been devised. A short-range repulsive
potential V(¥ ~ #¥°) is introduced in an ad hoc way, and to W the potential

NE - )| vE@) | 2a (35)
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is added which increases as the density of nearby bosons increases. The
simplest case arises when V is taken to be

V@E - X =V, §&x - 3. (36)
—Equation (1) is then replaced by
Mmav/se = -(m2/20)v2% + (v, |¥|ZHDy. an

A fuller and more satisfactory derivation of (37) may be found elsewhere3 4,
It is of some interest that non-linear Schrodinger equations of the form (37)
have been the subject of close scrutiny in recent years in non-quantal
contexts, particularly in theories of weak non-linear waves and stability9
The Madelung transformation

¥ = Fexp (iMO/h), (38)

follows the course of §2 with minor changes. Most signi‘ficant: is the
addition of a 'gas pressure',

P = (Vo/242)p2, 39)

which (multiplied by §14) should be included in the stress tensor (13).
Thus (8) is replaced by

kL3 v} W 2p -
at+2“ +M+p+” 0. (40)

The presence of the repulsion, V,, and its associated gas pressure
restores a number of physical effects absent in §2. The tendency towards
condensation is eliminated for all sufficiently large systems. To see
this, return to the hydrostatic theory of §2 and the potential well (16).
The spherically symmetric (2=0) ground state now obeys

2
&5+ 2L - Bewr-Zie P (41)

If NV, and AW are both large compared with h2/Mb2, (41) gives everywhere
except near the surface, S, of the well

P = Do = MFp2 = MN/v, (42)
the corresponding one-particle energy being given by
E-W = pVo/M, (43)

The fluid is spread out uniformly in the well.

Near S the derivatives of F become large, and the constant solution
(42) breaks down. We may follow the argument of §2. Introducing a new
healing length

a = #(20,7,)" 12, (44)
writing

£ =n/a, F=3X(5), W= W+ (puVo/M)G(E), (435)
where G({) is exponentially small for £+ ~ =, expanding X as

X&) = X,(8) + aX3(8) + ... , (46)

substituting into (15), and equating like powers of a, we cbtain
a2y /82 -~ [6(E) - 1 + (Ro/F1)2] X, = 0, 47
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a2%1/dg? - [G(E) - 1+ 3(X/PD?] &y = - (") + ¢, "hyax fag. (48)
Matching at the edges of the boundary layer requires
X* 0, X >0, >4 (49)

X>Fp, 5 >0, E>= e (50)

Again, explicit solutions generally require numerical integrations, though
ugeful integral relations may be established, for instance

1p2 . ®z2d6G;

2% lax e, (s1)
2k L1y 1® (d%0y2 - 1”2 x 48 ‘
z(cl + cz) ” (Zs—) dg oxlda de. (52)

Once more, the dominant contribution to the leap in stress across the healing
layer arises from the interior solution, although now it is the gas pressure
and not the quantum pressure that is mainly responsible. Again, the next
largest term can be interpreted as a quantum surface tension, with positive
coefficient

- ___9.°V r"’é_{e . 5
n o~ nlEe e (53)

As before, Ty may be estimated3 from a simple model of X . If we suppose
that C is a step function of infinite height (AW = 0), (26) may be solved
as X = Fp tanh (~£/72), and (53) gives

T, # 72 1% /3%, (54)

Pagsing again from 'hydrostatics' to 'hydrodynamics', we note that
" the gas pressure can supply the restoring force necessary for compressional
waves. Perturbing about the static solution (41), we readily fiad that
long wave+length sound propagates at the veldcity

c = /(dp/dp) = V(2p/p) = #t/Mav2. : (55)

At wavelengths of order a and smaller, the quantum pressure increases the
phase speed, decreases the group velocity, and introduces weak dispersionm.

Vortex lines may be studied as in §2. Unlike their classical counter-
parts, the cores of these vortices do not have sharply defined surfaces
separating regions of zero and non-zero vorticity. All the vorticity
they contain is concentrated as S-functions om their axes. Such a vortex,
if classical, would have infinite self-emergy. Here, however, the density
decreases over the characteristic distance a as the axis is appreached,
so ensuring a finite tension. The depletion of fluld in the core makes the
vortex resemble the classical hollow core model. The permanence of vortex
rings implied by the Kelvin-Helmholtz theorem makes them excellent candidates
for quasi-particle models, so reviving in a novel context the ideas under-
lying the vortex atoms proposed by Kelvin in the nineteenth century.

4. STRUCTURE OF THE NEGATIVE ION

It is poasible3’1°'12 to account with relative ease for many features
of the negative ion by combining the methods of §§2 and 3 above. We use
the theory of §1 to represent the electron, regarding w as the potential
created by the surrounding condensate; we apply the formalism of §2 to the
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exterior of the bubble, taking for W the potential of the electron. More
explicitly, we introduce the emergy,

IuE - ) lv@® [2]e@) | 2akaRe, (56)

representing the repulsion of an electrom at ¥ and a boson at ¥”. Taking
agdin the simplest case of a §~function interaction

UG - %) = U 8@ - X, (57
we then have - -

w@ = UG - 3 |v@E) |2k = U lv@ |3, (58)

WE) = JUE - )@ |2 = U [vE |2, (59)

By (10) and (58), Aw = Uopw/M 80 that by (22), (23) and (44), q2 = mUy/MV,.
Equations (1) and (37) become coupled:

1199/ 0t = -2/ 2m) V29 + U, |¥|2y, (60)
MY/ 3 = -A2/2072Y + (v, |¥]2 + v, |0]2)Y. (61)
As in 52, we define the electromic surface, S, of the bubble by the zero of V.
The key to a simple 'h&drostacic' solution of (60) ‘and (61) lies in the
fact, which we can verify a posteriori, that the radius, b, of the bubble
is large compared with a and ay,, so that the boundary layer methods of §§2
and 3 can be used with minor emendations. We must not forget however that,
since the roles of interior and exterior of the bubble have been exchanged

for the condensate, the sign of & in §3 must be reversed. The mainstream
value of F, denoted in §3 by F; is now written Fg.

To leading order, we set g(f) = XOZIFS and G(E) - (aZU /17'52‘7‘,)::02 in
(26) and (47), as (58) and (59) require. The integral relations (30) and
(51) may then be combined to give
2 o, 2_V,
L - - -—-n [%07%,217,, (62)
where we have appealed to (28) and (50). ’.l'o the next order, the forms of
g and G require :ecnnsiderationlz. In place of (27) and (48) we have
d2x1/dE2 - (q/F5)%(Xp2xy + 2xo%oX1) = ~(C ") + Cyl)axg/dE,  (63)
d42X;/4E2 - (3Xy2/Fg? = L)Xy ~ (a2Uo/Fg2Vo) (xo2K] + 2XoXo%;) =
= -(c1~1 + cy-1)dx,/de. (64)

The integral consequences (31) and (52) are modified accordingly, and the
result (62) is altered to

a 3£ 2 _ Yo o2,.,d .1, 2 + Io (Ty?
TG " - 28G +g) t—z +3 @, 6

which now includes the effects of interfacial tension.

The jump conditions (62) or (65) across the boundary layer suffice to
match the maingtream electron solution to the mainstream condensate solution.
Applied to the electron bubble, we have by (18)

f = A(sin Ayx)/Mr, (66)



43

qhowinizthat_ Atb = w, By (10) the solution is normalized to the first two
ordersi? in a/b, 1f A2 = n/2b3. By (10) and (11) we obtain

2
nfa 1/5_8M2a » 1 2,1 2
b= ) So f.[m(a%-’éﬁ) + M(%) 1 d&. (67
It is not at once clear whether b will be decreased by the positive surface
tension (53) of the condensate or increased by the negative surface tension
f32) of the electron. _If we use estimates (33) and (54) however, we see that
TmllTu is of order q"l and, since experiments indicate (§5) that g <1, it
appears that the bubble radius should be larger than (™2a2/mpe)l/5.

Direct numerical integrationalz of xy and X;, and evaluation of the integral
seen in (67), suggest that the difference is of the order of a.

The effects of polarization induced by the electron in the surrounding
helium can be included by addingl? to (56) the term
~(@e2/8m Ay 12 e@) |2 [F - 2| ket (68)

where G is the polarizability of the helium and e is the electronmic charge.
This has the effgct of contracting the bubble by order dMe2al/4nfiZb3. A
. detailed theoryl? shows that the reduction is of order a/3 in the practically

. interesting cases.

Further complications arise when the dynamics of the bubble are considered,
although the time-scales of interest are usually large enough compared with
the electronic frequencies to justify the neglect of 3¢/3t in (60); see §2.
To evaluate the effective hydrodynamic mass, we consider the bubble in steady
motion U, at small Mach numbers !=0/c. The electronic radius, b, of the
bubble is increased by about 5M2% because of the pressure forces associated
with the flow of condensate over its surface. It is also made slightly oblate,
with an ellipticity close to J"Lz/ 2. 1Ignoring this effect, it is found that the
dipolar back-flow created by the ion coincides with that of a hard sphere
whose radius, be, is less than the electronic radius, b, by one to two
healing lengths:

be = b - (aM/pa)En X 2 (B)4E. (69)
It is this radius, rather than b, that determines the induced mass of the ion.

Further details of the calculations gutlined above may be found in the
paper by Roberts and Grant already cited!?, We conclude this section by
breaking new ground. We consider the ogcillations of the bubble, their impli-
_ cations for phonon-ion collisions, and the mobility of negative ions at low
temperatures., We again adopt the boundary layer methods deecribed above but,
of course, retain the term 3¥/3t in (6l), so introducing a velocity potential,
¢, in the condensate. We retain only the dominant part of the boundary layer
structure, excluding both surface tension and polarization effects. We write,

f-f°+aaf‘, Fsro-i-aa?‘, % » ad”, (70)
where the suffix o stands for the steady solution obtained earlier, and the
terms in a represent time-dependent perturbations.,where 0 < a << 1.

It is readily seen -from (7) and (40) that 9° and F~ both obey the acoustic
wave equation

320°/3t2 = c2v20°, (1)
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We could, by following Celli, Cohen and Zuckermanls, examine solutions in the
form of outgoing waves. The eigenfrequencies would be complex, because of
the reduction in oscillation amplitude at a point fixed in space as the
energy of surface motion is radiated to infinity. The corresponding eigen-
function must tend to infinity with r since, the more distant a wave is,

the earlier it must have left the surface, and the greater the amplitude

of surface oscillation must then have been. We will not consider solutions
of this type below. We will confine our attention to the scattering problem
in which an incoming plane wave travelling in the z-direction

Sfyc = emliCz=we)], B (72)

where k and w = ck are real, is scattered by the bubble into a set of outgoing
waves, We first ﬁim to calculate the scattering amplitude, hy(k), of the
Lth partial wave .

1 _ kbyg(kb) + Roy,°(kb)
Be *TH1qy @ = bf, (kb) + Ked g~ (Rb)° (73
where y;(z) is the spherical Bessel function of the second kind and Ky is

the spring constant of the bubble for this mode. We then use by to compute
the differential cross-section'® of the bubble

ok, = k2| £ (28 + by R, (cose) |2, (74)
and hence the momentum~transfer cross-sectionl?

Op(k) = f/0(k,0) (1 ~ cosO)sinodedy. (75)
From this we finally evaluate the mobility, u,, of the iom fromu

e 2z L0000 BB, 76)
wheze

n(k) = [exp@ck/KT) - 1 173, N

is the density of phonons (in ﬁ—space) at: temperature T. Here K is
Boltzmann's constant.

To determine the spring constants, K;, we have to match solutions of
(71) across the boundary layer on S°, the deformed electronic surface, to
the quasi~-static solutions (18) of the electron mainstream. We first consider
the case 2 2 1. The fact that

b= Agd (Arr) + cad”3p(Agr) Ye(0,%), (78)
implies that S° has the equation

r = b(0,%,t) = bo + aab”(t)¥y(0,%), (79)
where (using Agb, = )

b*/bo = 3g(m) A”/A,. (80)

We will continue to refer the boundary layer structure to the unperturbed
position, S,, of the electronic surface, and not to 5°. We introduce x*, X~*
and n“*, the boundary layer forms of £, F” and ¢”, and expand these in
ascending powers-of a .
x= a'lxs +x3°+ ..., X' = a'lxo‘ +X37 4+ cey nTE anl‘ +oeey

(81)
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where the coefficients shown depend on t and § = (r =~ by)/a and parametrically
on © and X. We substitute these into the boundary layer forms of (60) and (61)
which, in the Madelung framework, give to the first two orders

%2/ 362 - (qfFg)2(Xg2x” + 2xy%oX") = -(2a/b) %"/ 3E, (82)

a%7/28% - (3%,/FG? - 1)X” - (a2Up/Fs2V,) (%2K” + grox”) =
= =(2a/b) 3"/ 3§ + (M/Fg2V5)Xo0n"/3t, (83)

X,92n°/362 + 2(dX,/dE)3n"/3E = =(2a/b)X,9n"/3E - 2a23X"/3t.  (84)

It seems clear from (84) that xozano‘/ 3¢ 1s independent of § and, since
there is no net condensate flow through the boundary layer at any point, that
constant must be zero. Thus ng takes throughout the boundary layer the main-
stream value °S of 9, evaluated on S.. The right~hand side of (83) does not
contribute to leading order in a, an3 (82) and (83) may be solved to give

% = CxldE,  Ko” = TdKo/dE, (85)

where i i3 independent of §. These forms represent a net displacement of the
equilibrium boundary layer from S, to S°, without change of form; we conclude
that ¢ = -b"Y,,

In proceeding to the next order we note that, since the velocity of
sound (55) is of order 1/a, the time derivatives in (83) and (84) now
contribute. In fact, excluding again a net flux of condansate through the
boundary layer, (84) shows that 3ny~°/93Z takes the value ~a 23z/at throughout,
and in particular on the outer edge (£ = =) of the boundary layer. It
follows that

adb/dt = (39°/9r)g, (86)

an, equation with an obvious interpretation. The equations (82) and (83)
again admit an integral, namely

\ 2 ang” , a2 dxq 9x1” -4 %
2U,Fg ‘—8'%_ = '52 [’dE —515— ™ a_g.’z‘n.]
87)

On taking the limit & - +», and using (18) to evaluate the con:ributions from
the lower limits, we find

39g°/3t = cZReab”/bg, (88)
where

{ 5/2, if =0
Ke '{ (89)

-2 + “jz.l(")/jg("). if L 21,

The numerical values of Ky for the first 20 values of 2 are given in table I. That
of K, was obtained from an analysis too similar in spirit to the one just
described to be repeated here. It may be noted that Kj is zero, representing

the fact that the bubble is neutrally stable to a uniform displacement.

Equations (86) and (88) are applied on S,, and provide the boundary conditions

to which solutions of (71) must be subjected.

We developed a program for an Hewlett-Packard 9820 A desk computer to
evaluate Op(k) and Me from an arbitrary set of the spring constants. The
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results were tested with the values (K, = 0.234z ;3 K1 = 05 Ko = 0.45045;

Ky = 0, n>2) used by Baym, Barrera and Pethick™", and good agreement was

obtained. The programme was then used to generate the results showm in

Figures 1 and 2. The effect of truncating serfes(74) at £ = 2 and ¢ =19 .
are shown in both cases. The prominent peak in op(k) seen in Figure 1 is

due to a d~wave resonance (2 * 2), A new minor peak is added every time g

is incremented by 1. The curve appears to approach its geometrical valuelS

(oq/4mb o2 + 1/2) with an oscillation of amplitude (kby)~2/3 and period 2-1/3,

In Figure 2, we see ueT3 plotted in units of Ly, a8 a function of T measured in

units of T, where

To = fic/boK, Lo = 3weiZc3/2b K. (50)
TABLE 1
Spring Constants
Y 2.500000000 10 11.56327795
1 0.000000000 11 12.59928101
2 2,289868134 12 13.62973970
3 3.771253431 13 14.65585350
4 5.032253885 14 15.67849696
5 6.198547165 15 16.69832328
6 7.314641577 16 17.71583055
7 8.400646541 17 18.73140537
8 9.467085072 18 19.74535255
9 10.520037400 19 - 20.75791573

5. EXPERIMENTAL COMPARISONS

The condensate model of helium II is essentially a theory having only one
disposable parameter, namely the pseudo-potential, V , or equivalently the -
healing length, a. It is natural to seek to choose ®his so that theory and
observation are in optimum accord. Clearly a choice of a made to fit one
physical phemomenon well is likely to conflict with others, and an overall
consistency with the experimental facts is not to be anticipated. One notes
particularly that, since the condensate is a gas obeying the equation of state
(39), we should not expect the theory to perform well at the vapor pressure.

One can obtain an estimate of V_ = 4wdﬂzln from measurements of the atomic
diameter, d, by a-particle scatter experiments. Values of d of about 257
have been found. If p_ is 0.145 g/cm3, the healing length would be 0.82 A,
leading to too small a velocity of sound. One popular procedure has been to
extract a from accurate experimental determinations of the relation between the
velocity and energy of circular vortex rings. This had led to estimates of
a % 1.28 X, giving much too small a value of c. The reliability of the approach
can, however, be questioned. One would have expected a to decrease with
increasing pressure, but the reverse seems to be truelf, It is now believedl?
that the core of a superfluid vortex is the seat of excitations (normal fluid),
and that the surface of a vortex core marks the distance from the axis at which
the Landau critical veloeity is reached, rather than a quantum healing distance;
such a belief is consistent with the increase of a with pe.
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Perhaps the most satisfactory way of estimating a is through the velocity
of sound (55). To give an example, if we take c = 238 m/s, we obtain a & 0.47 &
and £or pe * 0.145 g/em® we find that Vo # 1.7 10~37 g cmi/s2, a value
admittedly three times larger than the scattering experiments suggest, and -
moreover one which will alter as ¢ and p, change through applied pressure.
Nevertheless, by using ¢ to determine a, we cbtain a coefficlent of surface
tension, Ty, from estimate (54) of 0.37 g/82, which 1s in good agreement with
the experimental value of 0.34 g/s? at low temperatures.

Turning to the bubble, we see that, in the first approximation, the theory
does not require a kanowledge of the pseudo-potential, U,, either for its equi-
librium structure or for its oscillation spectrum. The radius, (1M2a2/mp.)1/5,
predicted by the first approximation is somewhat small, 11.8 1 using the values
quoted above. Since ¢ and pe increase with increasing pressure, p, this radius
decreases with increasing pressure, although somewhat more slowly than experi-
ments indicate. The bubble radius 1s increased when the effects of surface
tension are added. Unfortumately, Grant and Robertsl2 did not examine values
of a as small as 0.47 X, so that the value of the integral appearing in (67)
is not knowm. Using our earlier estimates, however, it appears that b will be
increased to about 13.3 A by surface tension effects. Table 2 gives u,T° for
a few values of T for both the 2 = 2 and the £ = 19 truncations, and for values
of b of 11.8 &, 13.3 £ and 16.0 3. At the £ = 2 level of truncatiom, there is
a clear temdency for ueT3d to approach a limiting value, of about 36 cn?k3Vs in
the case of the 16 4 bubble, as T increases. The explanation of this behavior
was provided by Baym, Barrera and Pethickl® in terms of the shape of the d-wave
resonance of Fig. 1. Not surprisingly in view of the very different form of
oy obtained at 2 = 19 truncation, the constancy of ueT3 is not as marked at
this level. Navertheless, the values shown for £ = 19 in Table 1 are not ridi-
culously far from the experimental valuel® of about 32.5 cm?K3Vs in the range
of T in which Baym, Barrera and Pethick measured the success of the work.

When we take the theory of the bubble to the second approximation, a new
disposable parameter enters, namely the psuedo-potential, Uy, or equivalently
q = a/ay, a relation we can also write as q2 = mUp/MV,. Roughly speaking q,
as the ratio of the two healing lengths, measures the relative penetration of
the condensate wavefunction into tha cavity to the penetration of the electrom
wavefunction into the condensate. If q wera zero, it would be legitimate to
treat the condensate as an abrupt edge and only congider the electronic boundary
layer of §2. At first sight it might appear that, since qz is proportional to
n/M % 1,37 1074 it would be admissible to follow Celli, Cohen and Zuckermanl3
in taking this view. The indications are, however, that U,/V, is large.
Scattering experiments give an electron~helium scattering length, A, of about
0.60 4, implying that U, = 2rMf¢/m is about 4.6 10~35 g cm?/s2. Taken with
the experimental value of 5.7 10~38 g em5/a2 for V,, we obtain Uy/V, * 810
and q ®* 0.33. It would be interesting to see whether the effect of restoring.
q to the Celli-Cohen~Zuckerman theory would have serious repercussions. The
indications are that it would not.

The neglect of q in the condensate theory described here would eliminate
the condensate surface tension, Ty, and transform the interfacial boundary
layer into the structure considered in §2. The associated negative surface
tension; I, would tend to expand the bubble, an effect confirmed by the cal-
culations of Grant and Robertsl2. All influences of interfacial temsion are,
however, of second order in the condensate theory. In the approach of Celli,
Cohen and Zuckeman13, the interfacial temnsiom, o, i3 a first order effect.
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These authors regarded ¢ as a disposable parameter that could be legitimately
chosen to fit the observed bubble radius at the applied pressure of interest.
It is easy to verify that the interfacial tension they require is positive
and, particularly at higher pressures, several times larger than the conden-
gate surface tension, &I, considered earlier. It may be wondered why, with
this sign difference, the bubble radii they obtain are, being in perfect
agreement with experiment, larger than those obtained from the condensate.
The answer is to be found in (39). The condensate is a gas and, to obtain
agreement with the observed helium demsities, it is necessary to choose a
large V,, leading to pressures (39) of the order of 40 atmospheres. In com-
trast, the Celli, Cohen and Zuckerman theory treats the heliim as a classical
compressible fluid, not containing the pressure (39), and to avoid large
bubble radii at the vapor pressure, a positive interfacial tension is needed.
As we have stated above, we regard (39) as an artificial construct of the
theory, not to be identified with the applied pressure, and base our comparison
with experiment on density and velocity of sound data.

As Schwarzl3 observes, if the spring constants were regarded as disposable
parameters, there would be no difficulty in reproducing any ion mobility data
precisely. It appears that even the added flexibility given to the theory by
the ad hoc interfacial tension, ¢, already permits an excellent account of the
mobilities. Schwarzl3 has shown that, for their spring constants, the constancy
of ueT3 in the range of T of interest is not lost when the truncation level is
increased as it is in ours. In comparing our theory with theirs, one must be
perplexed by the substantial difference in the spring constants and in the shape
of the mobility curve (labelled '% = 19' in Fig. 2). He must wonder if, in the
disappointing form of that curve on the present theory, and in the sensitivity

" of the mobility itself to the healing length [as evinced by the c-dependence
of (90)], the condensate theory has not met its most severe test to date. He
may also speculate on the physical basis of the ad hoc interfacial temsion re~
quired by the other approach to survive its trial by experiment, and also
whether the effects of roton-ion collisions at the higher temperatures have
been underestimated.

TABLE 2
Ion Mobilities, ue
. ('1‘ in degrees K, T3 in units of ¢n?R3Vs)
2 = 2 Truncation o % = 19 Truncation
bo=11.8 i bo=13.3 A be=16.0 A be=11.8 A bo=13.3 i bo=16.0 1
T 1ueT3 T eI T  uel? T 4T3 T I3 T uel3
0.34 229, '0.37 117. 0.31 97.0 . 0.32 265. 0.33 158. 0.35 70.5
0.41 131. 0.45 77.2 0.43 51.8° 0.37 178. 0.42 84.9 0.39 59.0
0.51 86.7 0.52 62.3 0.53 41.7 0.48 95.3 0.46 71.0 0.43 49.0
0.58 70.0 0.56 56.9 0.58 39.5 0.52 79.7 0.52 59.0 0.50 40.0
0.63 63.9 0.64 50.2 - 0.65 37.6— 0.58 66.2 0,57 51i.1 0.59 33.1
0.72 56.3 0.70 47.5 0.73 36.6 0.64 57.3 0.71 39.8 0.70 28.1
Q.78 53.4 0.78 45.2 0.78 36.5 0.80 44.7 0.85 33.8 0.83 24.6
0.98 459.5 0.94 43.9 0.95 37.4 1.010 36.0 1.01 29.6 1.02 21.0
1.18 49.7 1.15 45.0 1.16 39.9 1.13 30.1 1.13 26.8 1.14 19.4



49

ACKNOWLEDGEMENT

I am extremely grateful to Professor Russell J. Donnelly for his criticism
of this work, and particularly for his contributions to §5. The work described
was supported by the Air Force Office of Scientific Research under grant APF-
AFOSR~71~1999 and by the Mational Science Foundation under grant NSF GH 35898.

REFERENCES

1. R. J. Domnelly, "Experimental Superfluidity,” Chicago University Press,
Chicago (1967).

2. A. L. Fetter, "The Physics of Liquid and Solid Helium," ed. K. H.
Bennemann and J. B. Ketterson, Wiley, New York (1975).

3. E. P. Gross, "Quantum Fluids," ed. D. F. Brewer, North Holland, Amster-
dam (1966).

4, A. L. Fetter and J. D. Walecka, "Quantum Theory of Many Particle Sys-
tems," McGraw Hill, New York (1971).

5. E. Madelung, 2. fur Phys. 40, 322 (1927).

6. J. Grant, Ph.D. Thesis, University of Newcastle (1972).

7. J. Grant, J. Phys. A, 6, L151 (1973).

8. S. Putterman, "Superfluld Hydrodynamics," North Holland, Amsterdam
(1974).

9. L. M. Hocking and K. Stewartson, Mathematika 18, 219 (1971).

10. R. C. Clark, Phys. Lett. 16, 42 (1965).

11. R, C. Clark, "Superfluid Helium," ed. J. F. Allen, North Holland,
Amsterdam (1966).

12. J. Grant and P. H. Roberts, J. Phys. A., 7, 260 (1974).

13. V. Celli, M. H. Cohen and M. J. Zuckerman, Phys. Rev. 173, 253 (1968).

14, G. Baym, R. E. Barrera and C. J. Pethick, Phys. Rev. Lett. 22, 20 (1969).

15. N. F. Mott and H. S. W. Massey, "The Theory of Atomic Collisions
Third Edition, Clarendon Press, Oxford (1965). ~—~

16. M. Steingart and W. I. Glabersom, Phys. Rev. A., 3, 985 (1972).

17. W.. I. Glaberson, J. Low Temp. Phys. 4, 289 (1969).

18. K.W. Schwarz and R. W. Stark, Phys. Rev. Lett. 21, 967 (1968).

19. K. W. Schwarz, Phys. Rev. A., 6, 1958 (1972).



50

Fig. 1. The momentum-transfer cross~-
section, o.,, as a function of wavenumber, k.
The effects of truncating (74) at £ = 2 and
2 = 19 are shown.
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Fig. 2, The mobility, u,, as a function of
temperature, T. The function ueI3 1s shown
in units of L, as a function of T in units
of Ty, where Lg and T, are defined by (90).
The effects of truncating (74) at £ = 2 and
% = 19 are shown.
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