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THE ELECTRON BUBBLE IN LIQUID HELIUM 

P. H. Roberts 
University of Newcastle upon Tyne, 
Newcastle upw Tym, HEl 7RU, England 

ABSTRACT 

The base condensate model of helium is used t o  examine the structure of 
the electron bubble i n  helium. The solution obtained makes use of the f ac t  
that the parameter ( a ~ d $ M ) l / ~  is Smau. and m/M is negligible, where m is the 
electron maes, M is the boson mass, I i s  the electnm-boson scattering length, 
and a is the healing len  th. It is shown that, t o  leading order, the radiua 

effects  of (quantum) surface tension and of polarization are discussed, and 
are shown to be small. 
of the bubble, and the e l l i p t i c i t y  induced in it by slow motion is given. The 
normal modes of pulsation of the bubble a re  found and the mobility of the ion 
is computed. 

1. INTRODUCTION 

of the bubble is b * ( I ~ M  9 a2/111~~)1/5, when pe is the helium density. The 

Consideration is given t o  the effect ive mass and radius 

The theory is compared with experiment. 

It hae becoma increasingly apparent over the p a s t  decade that the deli- 
berataly introduced impurity can be a f r u i t f u l  experimental probe of the struc- 
w e  and dynamics of helium 11, the superfzuid phase of helium. 
interest is the negative ion which consists of an electron that, through its 
zero point Protion, caFes out a so f t  bubble of about 16A in  radius in the 
surrounding helium (lA - lW8cm.). The induced hydrodynamic mass of such a 
large structure is greatly in excess of its physical mass, and it therefore 
responds to applied forces a s  would a much more massive ion. 
s i tuat ion has been reviewed by Dormell$, and more recently by Fetter2. 

Of partfcular 

The experimental 

The negative ion provides an interesting and, as we shall see, a sensi t ive 
tes t ing ground for  theories of helium 11. W e  examine i n  th i s  paper one parti- 
cularly simple model of helium near absolute zero, the bose condensate. 
approach is expounded by, for  example, Gross3 and by Fetter and Walecka'. The 
theary is so simple to apply that  most of the properties.of the electron bubble 
can be  ca lada ted  in an elementary way. 
hydrodynamic framework originally proposed by Madelungs. 
unfaslliar to  the reader, it is developed in §2 for  the simple single-particle 
SchrMinger equation. 
theories are brought together in §4, where the theory of the electron bubble 
is developed. 

2. MADELUNG'S TRANSFOBMBTfON 

The 

W e  w i l l  present our arguments in a 
Since t h i s  may be 

It ia generalized in 03 t o  the bose densa te .  The two 

The final section (95) confronts the theory with experiment. 

5 It appears to  have been Madelung who f i r s t  realized that Schrldinger's 
equation c+d be cast into a f lu id  mechanical mold, by expressing the wave- 
function, Jl(x, t), in terms of its amplitude, f @, t ) ,  and phase, 9 d, t). 
a par t ic le  of mass m i n  a f i e ld  of fixed potential, wm, and therefore obeying 

By writing 

Consider 

(1) 

Jl ' f  exp (wm, (2) 

i aa$ /a t  = -(a2/2m) v 2 ~  w. 
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where f and 4 are real, we a n  divide (1) into 

+ 
When we introduce the (probabilistic) ma88 density, P, and current j ,  by writing 

P - mlsi2 = mf2, T = (BIX)(.J,*~J, - - 8 4 ,  ( 5 )  
and define a velocity, 2, by their ra t io  

d =  TIP - $4. 
we recognize that (3) and (4) are the continuity and momentum equations 
governing the potential flow ( 6 ) :  

2 4.3 ' (Pit) - 0 ,  a t  
+ + 2 +E + p = 0, a t  m 

where 

There are three main differences from classical  potential flow. Firs t ,  
it is fixed by the to t a l  quantity of 'fluid! fs not only conserved by (7): 

Z I J , ~ ~ & =  1, or /P&= m. (10) 
Second, even i f  through the presence of w a l l s  (w-) or  otherwise the f luid 
is confined to  a certain multiply-connected domain,s, J, must remain single- 

. valued. 
point by a continuouc, deformation, 4 can change by a multiple of hlm only. 
The circulation round r cannot f reely take any value: it is quantized by 
the Bohr-Sommerfeld condition 

It follows from (2) that, round any contour I' i n a n o t  reducible t o  a 

"u*dx + + = - * (n-0, kl, t2  .....). (11) m '  
Third, a completely new tew has appeared in the moutentusn equation (81, 

This is a misnomer 
for  at  least three reasons. F i r s t ,  its dimensionality is incorrect, and it 
would be bet ter  regarded as a chemical potential per uni t  mass. 

whereG8 

-Y p- 
The term p is often called 'the quantum pressure'. 

Second, since 

(12) 
-1 - -P hij /af j*  

a r ival ,  and properly dimensioned, contender fo r  the title of quantum pressure 
exists as  par t  of the unusual and complicated stress tensor (13). Third, the 
word 'pressure' suggests a phenomenon that depends only on 'the loca l  therm- 
dynamic state' (here fixed by p), and the presence of derivatives in ( 9 ) .  or  
(u), shows that all neighboring points a re  involved i n  its definition. 
these objections, w e  follow .the common usage. 

essential ingredient tha t  distinguishes our subject from the classical 
theory. 

Despite 

As may be seen by set t ing = 0 i n  (91, the quantum pressure is the 

The f lu id  dynamicist can gat& experience of its effects  
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by trarrelating some of the el%mentazy situations of quantum theory into the i r  
C O ~ e S p O p d i n s  f lu id  m ~ h a n i c a l  SUtemcPtS. 

'Hydrostatics' ariaae from the quantum mechanical bound stat- by writing 

9 -Et, (14) 
where E, the energy of tba state, is a conatant. 
balances JZ-w everywhere. 
tice of absorbing E into w, since soma energy levels may be inaccessible. 
example, when ( 8 )  is written as 

and it is supposed that w increases indefini te ly  with distance, r, from some 
origin, 0, one family of solutions to  (15) is found that increase with 
r. so that the normalization integrals (10) do not converge. 
that only the normalizable solutions of the other family are  used transforms 
(15) into an eigenvalue problem that confines E to  discrete levels. 
a continuum of eigenvalues esists when w is bounded above. 

A well-known a p p b a t i o n  of (151, that is particularly relevant to the 

By ( 8 )  the quantum pressure 
It is best t o  avoid the  usual f lu id  mechanical prac- 

For 

-($/2m) V 2 f  [E - w(z)]f, (IS> 

The condition 

Of course 

bubble, is the potential wall for  which 

wfiara y and q (aT) are conatants. Writing 
a12 - (ZIB/& (E - Y), A= 2 - (2m/.n2i(wE - E), (17) 

w e  see that, for  WI c E < wn , (15) is obeyed by 

f - f I  s Ajp(AIr) Yp,(%x), in r ,< b; (18) 

f = f, E Alr~(Anr) [ ja (~c~b) /k~(x ,b> l  Yp(Q,x), in r 2 b; (19) 

where ja(z) is the spherical Bessel function of the f i r s t  kind, kp(z) is 
the modified spherical Bessel function of the second kind, and YQ(@,x) is a 
surface harmonic of integral  degree, 2, in spherical coordinates (r, 8,  x). 
ThQ exclusion of the other spherical Bessel functions ensures that  (10) can 

be and 3 f is continow prwided 

(20) 
This dispersion relationship determines a discrete  spectntm of admissible E. 
It map be seen that ,  when Aw s WE - 'g is large compared with h2/mb2, 
eigenaolutions exiat  for  which E - y ** yr - E. For tbase. (19) takes the 
approximate form . 

The f lu id  is confined in region I1 t o  a boundary layer of thickness 1 / X = ,  o r  

t for  mute choice of the constant A. C o n t i n u i t y  of f has been realized, 

I+ j &'(aIb) /j p, (Afb) bk$'(I, b) /40, b) 

fp f A expt-ax (r - b ) l  Yg(e,x), in r 2 b. (21) 

(22) 
+-t ( W W )  -112 . 
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This phenomLnon is often called 'healing' , the layer i t s e l f  a ' 
and %' the 'healing length'. 
in w at  r - b can only be hydrostatically balanced by an 
in quantum pressure. 
causes the f lu id  t o  pass through the barr ier  at  r - b d, 
rials are available externally, p e r d t s  it to seep out of reg- I. 

j u s t  described. F i r s t  we allow the w e l l  t o  have any shape, defining n t o  be 
a coordinate that  measures distance from the disconriwity normallp outwards 
from I to  11. Second, we allow y and q t o  vary, and suppose that tha large 
t ransi t ion from WI up to  does not occur abruptly ae in (16) , but contin- 
uously over some distance, a, comparable with a,,,. Within t h i s  distance, there 
is evidently no unique way of defining 'the' surface, S, of the w e l l .  
note, however, that  in the Case of discontinuous w j u s t  cansidered, jg(AIb) 
is small, by (20). 

To elucidate the healing layer structure, we introduce a stretched 
coordinate, E, and cast (U) into dimensionless form by writing 

To the  f lu id  me 

It is the noploca l  character of qu 

In view of later developments, it is worth elaborating the s i tuat ion 

We 

This suggests we should locate S on the surface of zero f I .  

E - n/a, f - ax(E), (23) . 
9 - ai%, w * W I  + g(E)Aws (24) . 

where we suppose g is exponentially small a t  the iuner ( E  - 0") edge- o f  the 
boundary layer, and is unity a t  the outer (E - -W) edge. 
that X ,  WI, AW and g w i l l  generally depend on position on S. 
orders, however, this dependence only occurs parametrically in  the solutlon, 
and wiU. therefore be suppressed. 

(25) 

It should be realized 
To the f i r s t  two 

Writing 
x - xo(E)  + a+) + ...a 

d xo/dE2 - q g(E)x, - 0, 

substituting into (U), and equating like powers of a, we obtain 

(26) . 

(27) 

2 2 

d2x,/dE2 - q 2 g(E)% - -(CL1 + C;l)dxo/dE, 

where Cland C2 are the principal r ad i i  of curvature of S a t  the point concerned. 
Since f n  is identically zero, the solutione to (26) and (27) must obey 

Successful matching to  the interfor .solut iw,  fI, requires 
xo + 0, 5 + 0, fo r  E ++*. (28) 

Explicit solutions can generally be obtained only by numerical means. 
obey integral  conditions which we will later find useful (14): 

They 

where the bar through the integral sign signifies that the convergent par t  of 
the integral  is taken. Despite appearances, this integral  is negative. 
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The integral  relationships (30) and (31) may be interpreted in the l i gh t  
of the Grant tensor (13). The terms on the l e f t  give the main p a r t s  of the 
leap of urn across the boundary layer; 
cotresponding integrated effects  of the external force f e w  balancing them. 
The dominant term, given on the left of (30), arises from the 'pressure' of 
the pa r t i c l e  trying to  escape the w e l l .  
l e f t  of (311, clearly has the form of a quantum surface stress, with 

the terms on the r ight  give the 

The next largest  tern, shown on the-- 

(32) 
If  

ZaAw d+2dr 

a s  coefficent of surface tension. 
we take g to  be a unit  step function, we find from (26) that 

Tm 7 '-(a dc 
It is easy t o  make an estimate of Tm. 

Passing from 'hydrostatics' t o  'hydrodynamics' by abandoning (141, w e  
see from (8) that another type of healing phenomenon w i l l  occur when u is 
large. A particularly significant case o5curs a t  a vortex l i n e  where, by (ll), 
u is of order nhld, a t  small distances, w ,  from the vortex axis. It follows 
from (8) and (9) that  p is of order G2n for  +O. The fact  that P is zero on 
the axis i t s e l f  means that  a closed vortex ring, or  a vortex l i n e  terminating 
on boundaries (w = * ) , w i l l  transform an o t h e d s e  simply-connected container 
into a multiply-connected domain,$&, so justifying a posteriori  the application 
of (ll). 
of p at the vortex axis occurs over distances comparable with the scale of the 
container. 
&e cores confined t o  rmrch sms5ler distances from their  axes. 

Ualika the healing at  a w a l l  considered earlier, the depression 

The corresponding vortices in the condensate discussed in  03 

Before concludhg t h i s  section M make one remark, obvious perhaps, but 
rel8vant to  3. 
w a l l s  [w = w(x,t)], 4 is necessarily non-zero and p is tima-dependent. Never- 
theless, provided the tima-scales over which w changes are large compared with 
the reciprocal of the quantum frequency h/mb2, w e  can regard the fluid as 
being in a quasi-hydrostatic state, ignore the time derivative in (l), and 
treat t in w parametrically. 
imation is said to  apply. 

3. THEcoNDwsATEmDEL 

When the particle is trapped in a potential w e l l  with moving 

In quantum language, the Born-Oppenheimer approx- 

We now consider an assembly of N identical  particles (bosons) of mass M 
in a potential  f i e l d  W O .  
for  the system could be written down ae a symmetrized product of the N one- 
par t i c l e  wavefunctions, Y@,t),  obeying (11) wlth W and M replacing w and m. 
It d d  be probably more comadent ,  however, to replace the normalization 
condiffon (10) by 

where v is the volume'of the system and Po. = MN/v. 
VaU--UOderstood, and contains features that  f ru i t fu l ly  represent helium near 
absolute zeroa. 
say, the potential  well (16) would be we in  which a l l  the particles would 
be a t  the origin, with high probability. 
the imperfect bose condensate has been devised. 
potential  V(5k - 2') is introduced in an ad hoc way, and to  W the  potential 

If the par t ic les  did not interact, the wavefunction 

/ 1 ~ 1 % €  - N, o r  rp& = P-V, (34 )  
The resulting theory is 

It may be seen from (U) ,  however, that the ground state for,  

To eliminate this unphysical behavior, 
A short-range repulsive 

svd - P) 12&* (35 1 
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is added which increases as the density of nearby bosons increases. 
simplest case arises when V lis taken to  be 

The 

V ( 2  - 2) = vo S(;: - 2). (36) 

(37) 

V q i z a t i o n  (1) is then replaced by 
maT/at = - (M/~M)v~Y + (v0Iur~2cw)lu. 

A fu l l e r  and more satisfactory derivation o f  (37) may be found elsewhere3r4. 
It is of some interest  that non-linear Schddinger equations of the form (37) 
have been the subject of close scrutiny in recent years i n  non-quantal 
contexts, particularly in theories of weak non-linear waves and. stabil i tyg.  
The Madelung transformation 

follows the course of 92 with minor changes. 
addition of a 'gas pressure', 

'P = Fexp(IM(P/ii), (38) 
Most significant is the 

P = (V,/U32>P2, (39 1 
which (multiplied by 653) should be included in the stress tensor (13). 
Thus (8) is replaced by 

acp 
a t  P 
- +  3 3 + $ + + p = 0. 

The presence of the repulsion. Vo, and its associated gas pressure 

To see 
restores a number of physical effects  absent in 92. 
condensation i s  eliminated for  a l l  sufficiently large systems. 
this ,  return t o  the hydrostatic theory of 02 and the potential  w e l l  (16). 
The spherically symmetric (t.=O) ground state now obeys 

The tendency towards 

(41) d2F + 2 g  I @E-W)F-S  2M F3. drZ r dr 
I f  Mvo and AW are both large compared with h2/Mb2, (41) gives everywhere 
except near the surface, S, of the w e l l  

P - P e  = EIFr2 = m/v,  (42) 
the corresponding one-particle energy being given by 

The f luid is spread out uniformly in the w e l l .  
E - WI p,V,/M. (43) 

N e a r  S the derivatives of P become large, and the constant solution 
W e  may follow the argument of 92. Introducing a new (42) breaks dawn. 

healing length 

writing 

w h e r e  G(5) is exponentially small for  F - e. - d i n g  X as 

substituting into (U), and equating like powers of a, w e  obtain 

a = *(2p,~~)-1/2, (44 1 

E = n/a, F = X ( E ) .  W = WI + (p,Vo/M)G(€), (45) 

Xt€)  = X0(€) + q ( E )  + ... * (46) 

(47) d2%/dE2 - [G(E) - 1 + (%/FI)~]  Xo = 0. 
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d2X1/dG2 - [G(S) - 1 + ~ ( % / F I ) ~ ]  XI .. (C1-l + C,".l)dXO/d& (48) 
Hatching at  the edges of the boundary layer  requixes 

Xo"0, 3 ' 0 ,  E + + * ;  (49) 

Xo+ PI, 3 + 0 ,  4 + a- (50) 
Again, expl ic i t  solutions generally require numerical integrations, though 
useful integral  re la t ions may be established, for  fnstance 

(52) -2(- ' +- e2 de = 2Xo%Td5. dG 
'1 '2 - de 

h c e  more, the dOminan+ contribution t o  the leap Fn stress across the healing 
layer arises from the in te r ior  solution, although now it is the gas pressure 
and not the quantum pressure that  is mainly responsible. 
largest  term can be interpreted as a quantum surface tension, w i t h  positive 
coefficient 

Again, the next 

% - 2 a ( p )  (3)2 dE . (53 1 

% # 42 &p.J3M2ao (54) 

-O dE 
As before, TM may be estimated3 from a simple model of X . 
that 0 is a step function of infinite height (AW - *), ($6) may be solved 
aa X, = PI tanh (-€/J2), and (53) gives 

I f  we suppose 

Pass ing  again f r o m  'hydrostatics' t o  'hydrodynamics', we note that 
the gaar pressure can supply the restoring force necessary for  commprassional 
waves, 
long wavelength sound propagates a t  the v d b c i t y  

Perturbing about the static solution (41), we readfly find that 

c - J(dp/dp) * J(2plp) *U/MaJ2. (55) 
A t  wavelengths of order a and smaller, the quantum pressure increases the 
phase speed, decreases the group velocity, and introduces weak dispersion. 

parts, the cores of these vortices do not have sharply defined surfaces 
separating regions of zero and mu-zero vorticity. 
they contain is concentrated a s  6-functions on the i r  axes. Such a -ex, 
if classical, would have infinite sdf-energp. Here, howaver, the density 
decraases over the characteristic distance a aa the axis is approached, 
80 ensuring a f i n i t e  tendon. 
arrter resemble the classical  hollow core model. The pernumeslee of vortex 
rings implied by the Kelvin-Helmholtz theorem malcas them - d e n t  candidatea 
fo r  quasi-particle models, so revipfng in a novel context the idem under- 
1- the vortex atom proposed by Kelvin fn the nineteenth century. 

Qortex lines may bestudied as in 52. Unlike the i r  classical counter- 

All the v o r t k i t y  

The depletion of f lu id  in the core makes the 

4. STRlJCTUlU OF TBE NEGATIVE ION 

It is p o ~ s i b l e ~ r ~ * ~ ~  to account with re la t ive  ease for  many features 
of the negative ion by combining the methods of §§2 and 3 above. 
the theory of 9 1  t o  represent the electron, regarding w as the potential 
created by the surrounding condensate; 

We use 

w e  apply the formalism of 02 to  the 
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exterior of the bubble, taking for  W the potential of the electron. Hore 
explicitly, we introduce the energy, 

rm(d - P) ism {21Y@*) l2&'* 

representing the repulsion of an electron at  % and a boson at fL. 
ag&b the simplest case of a 6-function interaction 

(56) 

Taking 

U(iE - 2') U06(5€ - P ) ,  (57) 

W b ' )  - ru(2 - PI) I$& 1% - UolJI(x'L) 12. 

we then have+ 
w(x) - ma- P)IYd')I2& = UolY(~)12. (58) 

(59) 
,By (10) and (581, bw = UopdM so that by (22), (23) aad (443, q2 
Equations (1) and (37) become coupled: 

a&lO/Wo. 

As in 02, we define the electronic surface, S, of the bubble by the zero of JI. 

The key to  a sinple 'hydrostatic' solution of (60) and (61) lies in the 
fact, which we can verify a posteriori, that  the radius, b, of the bubble 
is large compared with a and +, so that the boundary layer methods of 002 
and 3 can be wed with minor emendations. 
since the roles of in te r ior  and exterior of the bubble have been exchanged 
for  the condensate, the sign of E in 83 must be reversed. 
value o f  F, denoted i n  03 by FI ie now written Fs. 

(26) and (47), as (58) and (59 )  require. 
(51) may then be combined to  give 

We must not forget however that, 

The meinstream 

To leading order, we set g ( E )  = q2/Fs2  and G ( E )  = (a% /Fs2Vo)~2 i n  
The integral  relations (30) and 

where we have appealed to  (28) and (50). 
g and G require reconsiderationL2. 

To the next order, the forms of 
In place of (27) and (48) we have 

d&i/dE2 - (q/FS)2(&2q + 2x&X1) = -(C1-' + Cl')%/dE, 
d2X1/dE2 - ( S 2 / F s 2  - 11x1 - (a2Uo/Fs2Vo)(x,,2X~ + &,x,,xl) - (63) 

-(Cl-1 + Cz-l)-/d€. (64) 
The integral consequences (31) and (52) are modified accordingly, and the 
result (62) is altered to  

which now includes the effects  of interfacial tension. 

The jump conditions (62) or  (65) across the boundary layer suffice to  
match the mainstream electron solution to  the mainstream condensate solution. 
Applied t o  the electron bubble, w e  have by (18) 

f A(sin ~ ~ r ) / ~ ~ r ,  (66) 
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paooSin that  XIb * 1. 
ordersh in alb, if A2 = a12b3. By (10) and (11) M obtain 

By (10) the solution is normalized t o  the f i r s t  two 

It i s  not at  once clear whether b wu3, be decreased by the positive surfaca 
taneion (53) of the cOlideOsate o r  increased by the negative surface tension 

If we use estimates ( 3 3 )  and (54)  howaver, we see tha t  
j'&,]lQ is of order 4-l ad, since experiments indicate (85) t h a t  < 1, it 
appears that the bubble radius should be larger  than (Q42a2/mPcdllg. 
Direct numrrici~ integration& of x, ami G, and evaluation of the integral 
se*n in (67), suggest that the difference is of the order of a. 

helium can be included by adding12 to  (56) the term 
-(&2/8n)W$(3 I2fY('(it0) I21x' - ?1"4&ddx'#, 

w h e r e  8 i a  the polar izabi l i ty  of the helium and e is the electronic charge. 
This has the eff ct of contracting the bubble by order &e2a2/4M2b3. 

32) of the electron. 

The effects of polarization induced by the electron in the surrounding 

(68) 

A 
detailed t h e o d  fii showa that the reduction is of order a/3 in the practically 

: interest ing cases. 

Further complications arise when the dynamics of the bubble are coxmidered, 
although the Uma-scales of interest are uettaffy large enough compared wirh 
tha electronic frequencfae t o  ju s t i fy  the neJect of WIat in (60); see 12. 
To evduate the effect ive hydrodynamic maas, we consider the bubble in steady 
wttton U, at small Mach awnbers&U/c, 
bubble is increased by about 5.@-X because of the pressure forces associated 
with the flow of condensate over its surface. 
W l t h a n a U i p t i c i t y  close t o  #/2. 
dipolar b a c k - f h  created by the ion coincides with t h a t  of a hard sphere 
whose radius, be, is less than the electronic radius, b, by one to  two 
healing lengths: 

It ia t h i s  radius, rather than b. that determines the induced mass of the ion. 

paper by Roberts and G r a n t  Slready ci ted 
breaking new ground, W e  coneidet the  oacilJ.atiom of the bubble, their impli- 

temperatures, W e  again adopt tha boundary layer mathods described above but, 
of course, re ta in  the term alr/at in  (61), so introducing a velocity potential, 
9, in the condensate. W e  retain only the dominant par t  of the boundary layer  
structure, excluding both surface tension and polarization effects. W e  wife, 

f = fo + oaf', P = Po + M', CP 1) uOL, (70) 
where the suffix o stands for  the steady soluffon obtained earliar, and t he  
t e r n  in u represent t ime-depdent  perturbations,where 0 

The electronic radius, b, of the 

It is also made s l ight ly  oblate, 
Ignoring this effect, i t  is found that  the 

be * b (aWPm)~Eo2(E)d€* (69) 

Further de ta i l s  of the calculatioasLyt.LAned above may bo found in the 

. cations for  phonon-ion collisions, and the mobility of nagatim baa a t  l o w  

. We conclude th i s  section by 

a << 1. 

It is readily seen from (7) and (40) that  9' and F' both obey the acouatic 
wave equation 

a2o'/at2 = c202v. (71) 
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We could, by following C e l l i ,  Cohen and Zuckermanl3, examine solutions in the 
form of outgoing waves. 
the reduction in osci l la t ion amplitude at a point fixed in space as the 
erubrgy of surface motion is radiated t o  infinity. 
function must tend t o  inf in i ty  with r since, the more dis tant  a wave is, 
the earlier it must have left the surface, and the greater the amplitude 
of surface osci l la t ion numt then have been. W e  wSU. not consider solutions 
of this type below. We w i l l  confine our attention t o  the scattering problem 
in which an incoming plane wave travelling in thez-direct ion 

S& = exp[i(kz-wt)l, (72) 
where k and w - ck are raal, is scattered by the bubble into a set of outgoing 
waves. 

The eigenfrequenciea would be complex, because of 

The corresponding eigen- 

W e  f i r s t  im t o  calculate the scattering amplitude, ha&), of the 
8th pa r t i a l  wave l3 

where y g ( z )  is the spherical Bessel function of the second kind and Ka is 
the  spring constant of the bubb e fo r  this mode. 
the different ia l  cross-section1‘ of the bubble 

W e  then use ha. t o  compute 

u(k,@) = k-’ (2% + I)hfi(k)P,(cose) 12, I as0 
and hence the momentum-transfer c r o e s ~ e c t i o n ~ ~  

(74) 

where 

is the density of phonons (in &-space) at  temperature T. 
B o l t ~ u n ‘ S  constant. 

n(k) = [exp(*k/$T) - 1 I-’, (77) 
H e r e  K is 

To determine the spring constants, IC&, w e  have to  match solutions of 
(71) across the boundary layer on Sa, the deformed electronic surface, t o  
the quasi-static solutions (18) of the electron mainstream. W e  f i r s t  consider 
the case i? 2 I. The f ac t  that 

JI = &jo(XIr) + aaA’ji?(XIr) Ye(%x). (78) 

(79) 

b’fbo = jg(n) A’/&. (80) 

We introduce x L ,  X’ 

implies that  S’ haa the equation 

where’(using XIbo = n) 
r = b(B,X,t) I bo + aab’(t)Pg(~,x), 

W e  w i l l  continue t o  refer the boundary layer structure ‘to the unperturbed 
position, So, of the electronic surface, and not to  S’. 
and r) ’, the boundary layer forms of fC,  F’ and 4’, and expand these in 
ascending powers -of a 

XI= a-14 + + ..., X’ = a-fG0 + XI’ + ..., n a= no# + an; +..., 
(81) 
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where the coefficients shown depend on t 1 Y  
on 0 and x. W e  subst i tute  these into the 61) 
which, in the Welung  framework, give to  

~z iCaF2- -cp tP~)2 (&2X0 + 2X&X’) - -( 
a2xvae2 - ( 3 ~ $ 2 / ~ ~ 2  - i )x*  - (a2Uo/Fs2 

%a2tc/a$ + 2(d&,/de) an*/aE = -(2a/b)x$an’/ae - za2ax’/at. 

there is no net ctnulensate flow through the boundary layer a t  any point, thst  
constant must !e zero. Thus ?t takes throughout the boundary layer the -in- 
stream value % o f  9, evaluated 00 s The right-hand s ide of (83) does not 
contribute to  leading order i n  a, ad’(82) and (83) may be solved to  give 

where 5 is independent of E. 
equilibrium boundary layer from So t o  S’. without change of form; 
tha t  C = - b ^ P p  

sound (55) is of order 1/a, the t i m e  derivatives in (83) and (84) now 
contribute. 
bormdory layer, (84) s h m  tha t  anr-iae takes the value - d a d a t  throughout, 
and fa part icular  01) the outer edge (E - 0) of the boundary layer. 
follaprcl that 

aab’/at - (a9’/ar)s, (86) 

= - (wb)ax*/ae + wps2vo)%an*/ats (83) 

(84) 
It seema clear from (84) that X$2an,,*/aC ia independent of E and, since 

%* * Gd%/de, %’ 5%/dSs (85) 
These forma represent a net displacement of the 

we conclude 

In proceeding to  the next order w e  note that, since the velocity of 

In fact ,  excluding again a net  flux of condensate through the 

It 

an, equation with an obvious interpretation. The equations (82) and (83) 
again admit an integral, namely 

On taking the l i m i t  -5 + *, and using (18) t o  evaluate the cowtributions from 
the lower limits, we find 

aQS’/at = c2Kaab’/bo, 
where 

s/2, if bo; 
1-9. + qLp)/ ja(% if a 1 1. 

Kp, -I 
The numerical values of Kp, fo r  the f i r s t  20 vdues 
of & was obtained from an analysis too similar in 

of are given in table  I. That 
s p i r i t  t o  the one j u s t  

described to be repeated here. 
the fac t  that the bubble ia neutrally s table  t o  a uniform displacement. 
Equations (86) and (88) are applied on So, and provide the boundary conditions 
to  which solutions of (71) must be subjected. 

W e  developed a program for  an Eewlett-Packard 9820 A desk computer to  

It may be  noted that K1 is zero. representing 

evaha te  UT&) and !le from an arbi t rary set of the spring constants. The 
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results were tested with the values(g, = 0.234 K2 - 0.45045; 
I$, - 0, n>2) used by Bap, Barrera and Pethickit: and good agreement was 
obtained. The programme was thea used to generate the results shown in 

are shown in both cases. 
due to a d-wave resonance ,(a - 2). 
is incremented by 1. The curve appears to approach its 
( a ~ / 4 n b ~ ~  + 112) with an oscillation of amplitude (kb0)-913 and period T1f3. 
In Figure 2, me see bT3 plotted in units of LO,as a function of T measured in 
units of To where 

91 = 0; 

Figures 1 and 2. The effect of truncating series (741 at a = 2 and 2 - 1 0  
The prominent paafr-s-iT(k) seen in Figure 1 is 

A new minor peak is added every time a 
eometrical value15 

TABLE1 
Spring' Constants 

a K a  
0 2.500000000 
1 0.000000000 
2 2.289868134 
3 3.771253431 
4 5.032253885 
5 6.198547165 
6 7.314641577 
7 8.400646541 
a 9.467085072 
9 10.520037400 

a 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

4 
ll.56327795 
12.59928101 
13.62973970 
14.65585350 
15.67849696 
16.69832328 
17.71583055 
18.73140537 
19.74535255 
20.75791573 

5. ExFmnmTu coMPARIsoMs 
The condensate model of helium 11 is essentially a theory having only one 

disposable parameter, namely the pseudo-potential, V , or equivalently the 
healing length, a. 
observation are in optimum accord. 
physical phemomwon well is likely to conflict with others, and an overall 
consistency with the experfmental facts is not to be anticipated. 
particularly that, since the condensate is a gas obeying the equation of state 
(391, we should not expect the theory to perform well at the vapor pressure. 

diameter, d, by a-particle scatterd experiments. 
have been found. 
leading to too small a velocity of sound. 
extract a from accurate experimental determinations of the relation between the 
velocity and energy of circular 
a 4 1.28 1, giving much too small a value of c. 
CBP, however, be questioned. 
increasing pressure, but the reverse seem to be true16. 
that the core of a superfluid vortes is the seat of excitations (normal fluid), 
and that the surface of a vortex core marks the distance from the axis at which 
the Landau critical velocity is reached, rather than a quantum healing distance; 
such a belief is consistent with the increase of a with pro. 

It is natural to seek to choose ?his so that theory and 
Clearly a choice of a =de to fit one 

One notes 

One can obtain an estimate of V - 4 n d / U  from measurements of the atomic 
the healing length would be 0.82 A, 
One popular procedure has been to 

Values of d of about 2,7 & 
If p, is 0.145 g/cm3, 

vortex rings. This had led to estimates of 
The reliability of the approach 

One would have expected a to decrease with 
It is now believed17 
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Perhaps the mast sat isfactory way of 
of Bound (55). To #ve an example, i f  we 
and f o r  0- = 0.145 g / d  we find tha t  
admittedly three timss larger  than the  sca 
mareover oow which w i l l  alter as c and pe 
Neverthdless, by using c t o  determinr a, we obtain a c o d f i c i e n t  of surface 
tension, TM, from estimate (54) of 0.37 g/a2, which is in  good agreement d t h  
the experhental  value of 0.34 g/s2 a t  lov tamperatures. 

Tptning to the bubble, we SMB that, in the f i r s t  approximation, the theory 
docs not require a knowledge of the ps.udepo 
Ubrlum stzucture o r  fo r  its oscf l la r ian  sp radius, (rr~2a2/mp,)l/5, 
predicted by the f i r s t  approxipaation i s  uomewhat srprll, ll.8 f usins the d u e s  
quoted above. Since c and P- increase with increasing pressure, p, this radius 
decreases with increasing pressure, although sonrewhat more slowly than axper%- 
mepts indicate. The bubble radius is increased when the  e f fec ts  of surface 
tension are added. 
of a as amall as  0.47 f ,  so that  the value of the integral  appearing i n  (67) 
is not known. 

a few values of T for  both the 9. = 2 and the a = 19 truncations, and for  values 
of b of 11.8 f ,  13,3 f and 16.0 A t  the a 2 level of truncation, there is 
IO clear tendaxicy for  UeT3 to  approach a limiting valufb, of about 36 cm2K3Vs in 
the case of the 16 f bubble, aa T increases. The axplanation of thia behavlor 
was pmvided by Baym, Earrera and PethfClcl4 in term of the shape of the d-wave 
m601p(ULce, of Fig. l.. 

ob--d at  11 = 19 -tion, the ~ ~ t a p c y  of ~ e T 3  is not 
this lewd. Nwertheless, the values shown f a t  9. - 19 in Table 1 ate not r idi-  
culously fap from the experimantal value18 of about 32.5 dK3Vs in  the range 
of T in which Baym, Barrera and Pethick measured the success of the work. 

When wa taka the theory of the bubble to  the second approximation, a new 
disposable parameter enters, namely the psuedo-potential, Uo, or  equivalently 
q - a/%, a re lat ion we can also write a s  q2 = mUo/Mpo. 
as  the r a t io  of the two healing lengths, measures the relative penetration of 
the condensate wave%unctioa into the cavity to the penetration of the electron 
wave€unction into the condensate. 
treat the  condensate as an abrupt edge and only consider the electronic boundarp 
layer of 02. A t  first s ight  it might appear that, since q2 is proportional t o  
d M  ? L 3 7  10-4 it would be admissible t o  follow C e l l i ,  a h e n  and ZucrCermanl3 
in talring thia view. 
S c a t t a r i n g  experiments give an electron-helium scattering l e T h ,  X, of about 
0.60 f ,  implying that 0, - 2nka2/m is about 4.6 10-35 g d / s  . 
the experinmnta& valua of 5.7 
and q $ 0.33. It Muld be interesting to  see whather the ef fec t  of r e s t o r b g  
q to the Celli-Cohen-Zuckemnan theory would have serious repercussione. 
indications are tha t  it d d  not. 

e thraugh applied pressure. 

, Uo, either for  its equi- 

Unfortunately, Grant and Roberts12 did not examine values 

Using ouroearl ier  estimates, however; it appears that b w 1 be 
increased to about 13.3 A by surface tension effects. Table 2 gives UeT 3l f o r  

Not surprisingly in view of the very different form of 
-ked 8t 

Roughly speaking q, 

If q were zero, it would be legitimate t o  

The indications are, hammer, that  Uo/Vo is large. 

Taken with 
g &/a2 fo r  Vo, we obtain Uo/Vo i; 810 

The 

The neglect of q in the condensate theory described here would e3,fiminate 
the condensate surface tension, %, and t ransfow the in te r fac ia l  boundary 
layer into the s t ructure  considered in 02. 
tension, 2i,,, would tend t o  expand the bubble, an effect  confirmed by the cal- 
culations of G r a n t  and RobertslZ. Au influences of in te r fac ia l  tension are, 
however, of second order i n  the condensate theory. In the approach of Celli, 
Cohen and Zuckerman13, the interfacial tension, u, is a f i r s t  order effect. 

The associated negative surface 
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These authors regarded u as a disposable parameter tha t  could be legitimately 
chosen to  f i t  the observed bubble radius at the applied pressure of interest. 
It is easy t o  verify that the interfacial tension they require is positive 
and, particularly at higher pressures, several timas larger than the conden- 
sate surface tension, 

agreement with experiment, larger  than those obtained from the copdensate. 
The answer is to  be found in (39). The condensate is a gas and, t o  obtain 
agreement with the observed helium densities, it is necessary to  choose a 
large VOs leading to  pressures (39) of the order of 40 aapospheres. 
trast, the Calli, &hen and Z u c b  theory treats the helium as a claesical 
compressible f luid,  not containing the pressure (391, and to  avoid large 
bubble r ad i i  at the vapor pressure, a positive in te r fac ia l  tension is needed. 
As we have stated above, we regard (39) as an artificial construct of the 
theory, not t o  be identified with the applied pressure, and base our comparison 
with experiment on density and velocity of sound data. 

A s  Schwarzl5 observes, if the spring constants were regarded as disposable 

, considered earlier. It may be wondered why, w&th 
this sign difference, 3 e bubble radii they obtain are, being tn perfect 

In con- 

parameters, there would be no di f f icu l ty  in reproducing any ion mobility data 
precisely. It appears that  even the added f lex ib i l i ty  given t o  the theory by 
the ad hoc interfacial  tension, us already permits an excellent account of the 
mobilities. Schwarzl5 has shown that, for  their spring constants, the constancy 
of we$ in the range of T of in te res t  is not l o s t  when the--truncation level is 
increased as it is in ours. In comparing our theory with theirs ,  one must be 
perplexed by the substantial difference in the spring constants and i n  the shape 
of the mobility curve (labelled ' 8  = 19' in Pig. 2). 
disappointing form of that  curve on the present theory, and in the sensi t ivi ty  
of the mobility i t s e l f  t o  the healing length [as evinced by the e-dependence 
of (9011, the condensate theory has not m e t  its most severe test t o  date. 
may also speculate on the physical basis of the ad hoc interfacial  tension re- 
quired by the other approach to  survive its trial by experiment, and also 
whether the effects  of roton-ion collisions at  the higher temperatures have 
been underestimated. 

Be must wonder i f , i n  the 

Be 

TAB= 2 
Ion Mobilities, we 

(T in degrees IC, veT3 in unirs of tm2K3Vs3' 
R - 2 Truncagion 8 = 19 Truncagion 

.bomll.8 1 bo-U.3 A bo"16.0 b p l l . 8  A b0=13.3 A b0=16.0 d 
0.34 229. '0.37 l l7 .  0.31 97.0 0.32 265. 0.33 158. 0.35 70.5 

T ~ e T 3  T veT3 T veT3 T veT3 T ueT3 T ~ e T 3  

0.41 131. 0.45 77.2 0.43 51.8' 0.37 178. 0.42 84.9 0.39 59.0 
0.51 86.7 0.52 62.3 0.53 41.7 0.48 95.3 0.46 71.0 0.43 49.0 
0.58 70.0 0.56 56.9 Om58 39.5 0.52 79.7 0.52 59.0 0.50 40.0 
0.63 63.9 0.64 50.2 - Oe.65 37.6- 0.58 66.2 0.57 51.1 0.59 33.1 
0.72 56.3 0.70 47.5 0.73 36.6 0.64 57.3 0.71 39.8 0.70 28.1 
0.78 53.4 0.78 45.2 0.78 36.5 0.80 44.7 0.85 33.8 0.83 24.6 
0.98 49.5 0-94 43.9 0.95 37.4 1.01 36.0 1.01 29.6 1.02 21.0 
1.18 49.7 1.15 45.0 1.16 39.9 1.13 30.1 1-13 26.8 1.14 19.4 
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Fig. 1. Thc momentum-transfer cross- 
section, aT, as a function of wavenumber, k. 
The effects of truncating (74) at f. = 2 and 
8 - 19 are shown. 
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Fig. 2. The mobility, vas as a function of 
temperature, T. The function veT3 i a  shown 
in units of L, as a function of T in units 
of To, where and To are defined by (90).  
The effects  of truncating (74) at  L = 2 and 
L = 19 are shown. 

10 T/ lo , 2.0 


