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THE ROTATING, CHARGED OR GRAVITATING LIQUID DROP,
AND PROBLEMS IN NUCLEAR PHYSICS AND ASTRONOMY

W. J. Swiatecki
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

ABSTRACT

A survey is presented of the equilibrium configurations of a rotating
charged or gravitating liquid mass in a way that unifies the treatment of
idealized rotating heavenly bodies, rotating drops in a weightless environ-
ment, and ideallized rotating nueclei. A number of applications, especially
to nuclear physics, is deseribed.

I. INTRODUCTION

Figure 1 is a photograph of the planet Jupiier. The slightly flat-
tened appearance is caused by rotation.

Figure 2 is a glass droplet from the lunar s0il returned by the
Apollo 11 mission (length about 1 mm). Presumably it was ejected from a
meteorite impact on the moon as 2 molten, rotating blob, which solidified
in flight. ‘

Figure 3 is a picture of a series of sketches made by Niels Bohr on
November 7, 1950 (his 65th birthday), during a conversation on the liquid
drop theory of nuclesr fissiog. On the right is a sequence of shapes of
a fissioning nuecleus of Np23 s calculated in 1968 by J. R. Nix using that
theory. (Ref. 1)

These figures illustrate three fields in which the theory of rotating,
charged or gravitating masses has found an application: astronomy, hydro-
dynamics in a weightless environment and nuclear physics.

Historically the theory of rotating homogenecus masses as idealized
representations of planets, stars and nebulae goes back to Newton's
investigations on the figure of the earth. In the past two and a half
centuries the theory has been developed by many illustrious mathematicians,
among them Maclaurin, Jacobi, Riemann, Poincaré, Liapunov, Jeans, Darwin,
Cartan, Appell, and Lyttelton. In the last decade the subject was taken
up anew by S. Chandrasekhar and N. Lebovitz and brought to a rare degree
of perfection in Chandrasekhar's monumental work on "Ellipsoidal Figures
of Equilibrium." (Ref. 2)

The theory of a rotating liquid mass endowed with a surface tension
but no gravitational forces was stimulated by Plateau's experiments 100
years ago with globes of oil suspended in a liquid of the same density.
The experiments were discussed in connection with Laplace's nebular hypo-
thesis of the origin of the solar system. An account of the earlier
investigations is given in Appell's "Mécanique Rationnelie®. (Ref. 3,
Vol. 4, Ch, IX)

The theory of rotating liquid masses with a surface tension and a
-upiferm electric charge arose in nuclear physics in connection with the
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study of nuclei endowed with large angular momenta., The major part of the
binding energy of a nucleus is well represented by the model of a uniformly
charged liquid drop with a surface tension, and the addition of a rotational
energy to the conventicnal volume, surface, and electrostatic energies of

the liquid drop model constitutes an interesting generalization. ~A-number— ——
of authors, among them Pik-Pichak, Beringer and Knox, Hickes, Sperber,

Carlson and Pau Lu, Cohen, Plasil and Swiatecki, Chandrasekhar, Rosenkilde,
Mollenauer and Wheeler have addressed themselves to this problem in the

past 15 years. (See list of references in Ref. 4.)

It was soon reallized that the astronomical problem, Plateau'’s problem
and the nuclear prcblem are formally special cases of a single mathematical
structure. They can in fact be discussed in a unified way by varying
continuously a single parameter in the equations, the parameter being the
relative intensity of the inverse~-distance {gravitational or electrostatic)
energy. In this way a problem or irresistible scope presents itself: to
discuss in a unified manmer the equilibrium shapes of rotating masses repre-
senting at one extreme idealized atomic nuclei, at the other idealized
heavenly bodies, and covering in between engineering applications in weight-
less space laboratories. In this talk I would like to give you a survey of
the problem from this unified point of view,

2. STATEMENT OF THE PROBLEM .

et me first state the idealized mathematical problem precisely. We
consider a given volume of an incompressible fluid with a sharp boundary
{which may or mey not be simply commected--it may be in two or more pieces).
The fluid may be gravitating and/or uniformly charged, it is endowed with a
surface tension, and is rotating with a given angular momentum about its
center of mass. The question is: what are the shapes of gyrostatic equilib-
rium of the fluid, i.e., shapes in which the only motion of all fluid ele-
ments is a uniform rotation with a common angular veloecity?

The way one answers such a problem in gyrostatics is by writing down
an effective potential energy and making it stationary with respect to all
infinitesimal variations of the fluid boundary. This effective potential
energy E 1s the ordinary potential energy augmented by a rotational energy.
Thus in our case

' E = Eq+E +E . _ (1)
Here Es is the surface energy, equal to the surface area of the configura-
tion in“question times the surface energy coefficient vy:

ES = yédo‘ .

The quantity E. is the inverse-distance energy, the sum of inter-
actions between pairs of volume eiements d‘rl and d'rz interacting accord-
ing to an inverse-distance potential:
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Here Pe is the uniform density of electric charge, p 1s the mass
density and § is the constant of grayitation. (In most cases of practical
interest one of the two quantities Dez, Gp? is negligible compared to the
other.)

The rotational energy is the square of the angular momentum L divided
by twice the moment of inertia of the configuration in question:

B, Lz/prjfr_det. (12)

Here r, 1s the perpendicular distance of the volume element dr from the
axis of" rotation (passing through the center of mass of the whole _system). -

For a spherical configuration with radius R these energies reduce to
20 - 4nR? y

(0) . 3 /(R 1
EI ‘?(Q‘GMz)ﬁt

(0) _ 1 I
E = 3
R 5

%mz

where Q is the total charge and M the total mass of the system. The
above energies provide convenient units in which to express the three
quantities Eg, Ep, Ep, and we may .then rewrite the effective potential
energy in a dfmensionfess way that is eipecially suited for a unified
discussion of the problem. Picking Ego as the unit for the effective
potential energy we mey write

£0) KO :
€ = e = 0+ % ¢>+ER ® (2)
"%UT s Egﬂ'l Egﬁ"," R

Here &4, a function of the shape of the configuration in question, is
the surface e:&rgy in units of the surface energy of the spherical shape.
{ Thus QS( sphere) = 1,) Similarly ¢. is the inverse-distance energy in
units of its value for the sphere, ané ¢, 1is the rotaticnal energy, given
by Eq. (12), in units of what it would be for a sphere.
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This way of writing the energy brings out the faet that since there
are three energies in the problem (surface, inverse distance, rotational)
there are two dimensionless ratios, which may be taken as the parameters of
the unified theory, 1Ihese ratios are often denoted by x and ¥, and defined
as follows:

x = (Charée) ~ G(Mass) (3a)
Qlume uriace irension Loe
) 2
y = R - 2 ( ar Momentum)
v "(TT)'E 13 (Volume Ss dius ){Surface Tension Coeff.) °
S \

(3)

The parameter y is a measure of the square of the angular momentum,
and thus of the size of the disruptive centrifugal forces compared to the
cohesive surface tension forces. When GM2 1is negligible the parameter x
reduces to the conventional -'flssility parameter' of nuclear physies, a
measure of the disruptive electrostatic forces compared to the surface
tension forces.

The dimensionless effective potential energy now reads

e = ¢S(Shape) + + 2% ¢I(Shape) *+ ¥ o, (Shape) . (4)

The ¢'s are dimensionless functions of the shape only, For example,
for spheroidal shapes specified by semi-axes a,c (where ¢ 1 along the
axis of symmetry) one find ollowing formulae in terms of the eccen~
tricity e (equal to 1 - ac/e<):

- -1

¥ = %‘G’ez)lm 1+—Sin_e " (5a)
e(l - ez)

op = %(1-3)1/3%1:1%—-}-;- (5b)

o = %-(1 ~e2) 23 (5. e2) (5¢)

For configurations specified by several shape parameters the ¢&'s are func-
tions of several variables. In any case the important thing is that the
d's can be calculated and tabulated once and for all, independently of the
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particular physical system that is being investigated. Imagine that such a
tabulation of the ¢'s has been carried out. Then to find the configura-
tions of gyrostatic equilibrium for a given system we first caleulate the
values of x and y that specify that system (using Egs. 3a, 3b), insert
these in Eq. (4), and vary the shape until € 1s stationary, For a different
system we will have another pair of x,y values. To cover all possible
systems we would vary both x and ¥y in the full range from == to +=

-and file dway the results in a two-parameter {iling cabinet illustrated in
Fig. 4. This figure brings cut the relations to one another of various physi-
cal systems. To orlent ourselves: ¥y = 0 means no rotation, so along the
positive x-axis we have the domain of nonrotating idealized nuclei, from
light to heavy with inecreasing x. For negative x we have gravitating
globes. The classic case of astronomical masses for which surface tension

is negligible corresponds to X + —w, indicated on the left. Plateaus
rotating globes, with no charge and negligible gravitation, correspond to

the positive y-axis. Rotating nuelei and rotating gravitating masses with
surface tension fill the upper half-plane.

What about negative values of y? At first this sounds silly (a
negative centrifugal force--an imaginary angular momentum?). In fact, how-
ever, systems with negative y-values are quite possible. Thus the negative
y-axis corresponds to @ bubble in a rotating container filled with a llquid.
The bubble is an object With negative intertial mass relative to the surround-
ing liquid, and experiences a negative centrifugal force which, instead of
flattening the bubble tends to elongate it along the axis of rotation.
(Similarly a bubble in a container %:z.= lled with gravitating matter belongs in
the lower right-hand quadrant and a bubble in rotating, uniformly charged
nuclear matter belongs in the lower left-hand quadrant.)

So now we have a filing system in which results on idealized stars
and planets, weightless globes, idealized nuclei and bubbles may be dis-
played in a unified way. Let us remind ourselves what it is that we will be
displaying in the filing cabinet. Take a rotating system with a given
value of X,y. You might think at first that there will be just one entry,
the equilibrium shape of that system. In fact there will be several entries
because a given system with a given angular momentum has, in general, many
configurations of equilibrium. Thus the effective potential energy for a
given system, plotted as a function of, say, two shape degrees of freedom,
might look something like Fig. 5. This shows a metastable minimum A, as
well as an absolute minimum C, separated by a saddle-point B. Off to the
side there is a mountain top D. All such points A, B, ¢, D are equilibrium
shapes, although only some are stable whilst others are unstable, with
different degrees of instability. Some of the unstable shapes are .of great
interest--for example a saddle-point shape of the type B 1is of crucial
importance in the theory of nuclear fission and must be calculated in order
to estimate fission barrier heights and sponteneous fission lifetimes of
nuclei in situations of practical relevance.

Here let me make an important qualification of the words stable and
unstable. In Fig. 5 one would be tempted to call A .and B stable and
C and D unstable configurations of equilibrium. For truly static, non-
rotating systems (y = 0) that is indeed the case and that's all there is to
it. But for gyrostatic systems it i1s not sc, and it is possible-~sometimes—-
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to have a system oscillating around a mountain top with bounded oscillations--
rather than sliding down. This is an effect of coriolis _! gyroscopie) forees,
which are not contained in the effective potential energy E: the effective
potential energy does not have in it the information about the full dynamical
problem. This makes it obviously extremely dangerous to jump to conclusions
about the stability or instability of the dynamlcal motion on the basis of
the appearance of the effective potential energy landscape. There is,
however, a mitigating circumstance which partly restores to the effective
potential energy its role as a guide to the stability or instability of
equilibrium points. Thus if there are dissipative effects present in the
system (friction, viscosity), then, if one waiis lo% eno% so that these
-effects can assert themselves, saddles moun opS W , after all,
behave in an unstable way, as one would have expected to begin with. This

- kind of instability, which requires that you wait long enough for dissipation
to assert itself, is called secular instability.

In what follows when I say 'unstable' I shall always mean 'secularly
unstable’.

. Coming back to our x-y f£iling cabinet we see that the full problem
_of discussing the shapes of gyrostatic equilibrium of rotating masses consists
of calculating all the important shapes, stable and unstable, for a given pair
of x,y values, and then tracing out the behavior of these shapes as funce

tions of x and y in the full x-y plane.

How much of this complete picture is known today? I will try to give
you an impression of that in my talk, but let me say at once that the problem
has been only partly explored, and there remains a beautiful project for
mathematicians, physicists and astronomers to work on.

Let me first give you a bare-bones summary of what happens in wvarious
regions of the x-y plane, and then let me {ill in some of the details.

3. SUMMARY OF STABILITY REGIONS

By plecing together old results in the three familisr regions in the
x+<y plane (astronomical masses, Plateau globes, nonrotating nuclei) and
adding calculations and estimates in the other portions, one arrives at the
following picture, summarized in Fig. 6. .

For small amounts of rotation the originelly spherical drop is flattened
by .the centrifugal force into an oblate spheroid, independently of the value
of x, i.e., independently of whether we discuss a gravitating liquid mass
with or without surface tension, or a charged nuclear droplet. For finite
values of y the equilibrium configurations are no longer exact spherolds
and we shall refer to these shapes as pseudospheroids or Hiskes shapes. In
the astronomical limit of zero surface tension the oblate shapes of equilib-
rium do happen to be exact spheroids: +they are the Maclawrin spheroids. The
spheroids or pseudosphercids continue to flatten with increasing rotation and
they remain stable until a certain critical value of y, denoted by ¥y, which
is a function of x. (Fig. 6) At this point the pseudospheroids become
secularly unstable and a qualitative change takes place. The nature of the

change depends on whether x is below or above a certain critical value X,
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which is today not yet determined exactly, but appears ‘to be in the neighbor-
hood of x, = 0,81, This corresponds to heavy nuclel towards the end of the
periodic table,

I x> X, the flat pseudospheroids become secularly unstable towards
disintegration, by way of a triaxial deformation.

If x < x,, and this includes the rest of the pericdic table as well as
uncharged droplets, molten asterolds and astronomical gravitating masses, the -
flat pseudospheroid becomes secularly unstable towards conversion into a
nonaxially symmetric configuration of equilibrium, which branches off the
pseudospheroids at the eritical value y;. This new configuration has the
symmetry of an ellipsoid with three unequal axes and rotates about its
shortest axis. The other two axes are at first almost equal (when ¥y
exceeds the critical value by an infinitesimal amount and the equilibrium
eonfiguration is almost axially symmetric). Later these two axes become
rapidly unequal, one of them becoming longer and longer as y increases,
and the other tending to approximate equality with the shortest axis about
which the rotation is taking place. The general appearance of these con-
figurations is that of flattened cylinders with rounded ends and a scmewhat
elliptic cross section. In the astronomical limit of large negative x
these configurations are exect ellipsoids (the Jacobi ellipsoids): otherwise
the +tips of the figure are more rounded. For certain values of x (in the
neighborhood of 0) there is even a suggestion of a dumb-bell or hourglass
shape. We shall refer to these configurations as pseudo-ellipsoids, or as
Beringer-Knox sheapes.

As the angular momentum is inereased beyond the first critical value
¥y the pseudo-ellipsoids which exist for x < x, become more and more
elongated under the influence of the centrifugal force until a second eriti-
cal value of y is reached, denoted by Yyr1- At this value of y the family
of triaxial pseudo-ellipsoids comes to an end by way of loss of equilibrium -
towards a reflection symmetric disintegration mode. If x 1is greater than
a second critical value of x, denoted by xg,0 (and equal to about -0.4),
the pseudo-ellipsoids are stable shapes up to the critical value yri, when
they cease to exist. If, however, X < Xea, the pseudo-ellipsoids lose
stability ageinst a reflection asymmetric disintegration mode along the:
critical curve denoted by yryrr in Fig. 6. This occurs before the dis-
appearance of the pseudo-ellipsoids at yyr, S0 that in the case of x < x o
the pseudo-~ellipsoids exist but are unstable against asymmetry in the regign
between yrpr and JyiI.

We may summarize the situation as follows: A sufficient amount of
rotation will always disintegrate a fluid mess, be it gravitating or charged.
The ¢ritical amount of rotation is, naturally, a decreasing function of x,
being given by the curve yy(x) for 0.8l $x <1, by yrr(x) for
-0.4 ¢ x £ 0.81 and by yrn(x) fop -m <x < 0.4,

The disintegration occurs by way of a logs of stability against a
triaxial mode in the first case, by way of a loss of equilibrium against a
and Dy T 1o

reflection symmetric mode in the second case, way o 85 of stabilit
against a reflection asymmetric mode in the third case. Note the ai tinction
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between loss of gtabllity and loss of equilibrium, Loas of stablility in a
family of equilibrium shapes means that for a parameter (e.g., ¥) in
excesg of a critical value an equilibrium shepe exists but has changed from
——gtable—tounstable,17e., the second derivative of the energy has changed
sign. Loss of equilibrium means that the family of equilibrium shapes has
ceased to exist: with the parameter in excess of the eritical value the
condition for equilibrium, &E = 0, cannot be satisfled, i.e,, the condition
of the vanishing of the first derivative of the energy has no (real) solu-
tions. As noted before, when we say "unstable™ we mean "secularly unstable®.

Finally a note about the astronomlical limit x = -m, or L =0, The
situation is similar to the case of -» < x< x,, in that lncressing
angular momentum leads to a loss of stability against a reflection asymmetric
mode. Nevertheless the case of zero surface tension (x~1 = 0) 1s a speecial
cagse, different from the case of a finite surface tension, however small,
in that for x~1 = 0 the Jacobi ellipsoids are shapes of equilibrium for
any value of y, even exceeding yyr. In this (astronomical) case yry does
not mark the end of the ellipsoids {a loss of equilibrium) but merely a
loss of stability against a reflection symmetric disintegration mode. More
about this later.

Now let me amplify this summary by discussing more fully various
regions in the x-y diagram.

4. NONROTATING NUCIEI, y =0, x>0

Let me start with the simplest example, the case of a nonrotating
idealized nueleus. If one is asked what are the configurations of equilib-
rium of a nonrotating, uniformly charged drop, the obvious answer is: a
sphere. A sphere is a shape of equilibrium for any amount of charge on the
drop, i.e., forany value of x. This isn't the complete answer, however,
since n equal spherical fragments dispersed to infinity are also equilib-
rium configurations. It follows that in the many-dimensional configuration
space of the gystem there will be many potential energy hollows, one for
each n. (You may verify trivially from the definitions of &g and o
that for n equal fragments at infinity ¢g = nl/3, o1 = n-2§3 so ’che
energy of the nth potential energy hollow is given by

e = 2/3e22n?3

This simple equation tells interesting things about the relative
depths of the hollows. For example one learns the important fact that the
sbsolute minimum (the lowest hollow) for any given x 1is the one corres-
ponding to approximstely n = 4x.

The realization that the potential-energy landscape has many hollows
leads to an important discovery. Thus it is a simple topoclogical require-
ment that if you have several hollows in a landscape then there must be
saddle-point passes between them. The simplest case is a one-dimensional
landsecape: if a continuous curve has two minima there must be a maximume-a
barrier--between them. (Essentially Rolle's theorem.) For example let us
focus attention on a sequence of deformations leading from a single charged
spherical drop to two equal fragments at infininte separation. Figure 7
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indicates how the two minima must be separated by a maximum, corresponding
to the so-called Bohr-Wheeler saddle-point shape for nuclear fissiocn. To
be specific, -the configuration of a lead nucleus at the Bohr-Wheeler saddle
point is a somewhai necked-in cylinder with rounded ends--a little 1like an
hour-glass figure with two equal bulbs, The energy of this shape is a mexi-
mum with respect to the division coordinate, but a minimum with respect to
other shape coordinates (e.g., an asymmetry coordinate, which changes the
relative sizes of the two bulbs of the hour-glass figure),. Figure 7 illus=-
trates further that even though the saddle shape is stable with respect to
small changes in the relative sizes of the bulbs, a sufficlently large
asymmetry makes the energy decrease again, after passage over & mountain
top. The mountain-top configurstion of a nucleus-wan asymmetric hour-glass
figure with unequal bulbs-~is called the Businaro-Gallone shape and is of
importance for the question of "fission asymmetry"--i.e., whether an ideal-
ized nucleus would divide into equal or unequal pieces. Thus a central
problem in the early years of the theory of nuclear fission was, first, the
tracing out of the Bohr-Wheeler saddle-point shape (and the associated
barrier height) as a function of the fissility parameter x and, second,
the tracing out of the Businaro~Gallone mountain tops. Many authors have
contributed to the solution of this problem. Figure 8 shows some calcula-
tions of saddle-point shapes from Ref. 5. The .shapes range from tangent
spheres for x = 0, through hour-glass figures, to spheroids and finally a
sphere at x = 1. As x tends to 1 and the saddle shape approaches the
sphere the height of the potential energy barrier against fission decreases
and finelly vanishes at x = 1. This is illustrated in Fig, 9, taken from
Ref. 1. You may veryify by using Eags. (5a) and (5b), expanded to the
leading power of the eccentricity, that the loss of stability of a charged
gphere does indeed oceur at x = 1. With a 1little more trouble, by expanding
to the next power in e , you may also calculagg )from these expressions that

the barrier height for fission, in units of Ex“/, is given by
Barrier 98 ( 3
= 1 - x)° + higher powers of (1 - x) . (6)
g0 1

When 1 .- x is not small this formula is not applicable and numerical
methods have to be resorted to in order to calculate the barrier heights in
their dependence on x. Numerical methods, using digital computers, were
also necesgsary to trace out the behavior of the Businaro-Gallcone mountain
tops, and to establish the important result that they exist only if =x is
greater than 0.396. (A consequence of this is that the Bohr-Wheeler
saddle shapes are stable against reflection asymmetric deformations for
x > 0.396 and unstable for x < 0.396.)

It would be too cumbersome for me to display all these symmeiric and
asymretric shapes in detail, so let me show you & condensed summary of the
behavior of the Bohr-Wheeler and Businaro-Gallone equilibrium shapes as
functions of x.

Figure 10 shows just the major and minor semi-axes, essentially the
tip-to-center-of-mass distance and the neck radius of these elongated

figures. In the upper part of the figure you see the major semlaxis
of the Bohr-Wheeler shape as it increases at first with increasing x and

then, rather suddenly, begins to decrease around x = 2/3, finally tending
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to 1 {(the sphere) at x = 1, The Businavo-Gallone shapes, being reflec-
tion asymmetric, have two unequal tip distances, indicated by the dashed:
eurve which branches off (bifurcates from) the solid curve at x = 0,396,
The lower part of the figure shows the behavior of the neck radius,

Through such numerical studies the properties of the Bohr-Wheeler
shapes are now known adequately., But the story of the Businaro-Gallone dumb-
bells is not completely cleared up even today, It is only relatively
recently that one realized that they probably disappear again for x
greater than about 0.8, so we have the peculiar result that a charged drop
possesses a Businaro-Callone asymmetric shape of {unstable) equilibrium only
if its fissility parameter is between sbout 0.4 and 0.8 (in round numbers).

Let me now glve you a few examples of the relevance of this theory of
the equilibrium shapes of an idealized charged liquid drop to nuclear
physies. To begin with, Fig. 11 illustrates how the sum of a volume energy,
a surface energy and an electrostatic energy of the stable spherical equilib-
rium configuration of an idealized liquid drop reproduces the prineipal
features of the nuclear binding energies. (The quantity plotted in Fig. 11
is the "mass decrement”, closely related to the nuclear binding energy.) The
curve is a liquid drop model fit to the experimental data. The deviations,
up to ~ 12 MeV, are caused by nuclear "shell effects", which set a limit to
the applicability of the liquid drop model. The total binding energy of a
heavy nucleus is almost 2000 MeV, so on a gross scale the fit is satisfactory.
On a finer scale one has to worry about the shell-effect deviations. This
is illustrated in the lower part of Fig. 12, where the deviations from the
liquid-drop model fit to nuclear masses are shown for some heavy nuclei.

The largest deviation is at the "doubly megie" nucleus P'bzos, where the
shells at N =126 end Z = 82 give an additional binding of some 12 MeV.

The upper part of Fig., 12 compares the experimental and calculated
masses for the same set of nuclei, but when their shapes are the deformed
Bohr-Wheeler configurations instead of the near-spherical ground states.

As expected (from the theory of shell effects) the deformation seems to have
destroyed the extra shell-effect binding, and the liquid drop theory now
reproduces the masses to within a couple of MeV. The increase of the
saddle-point masses with decreasing x 1s essentially that predicted by the
barrier formula, Eq. (6).

It is from such fits to nuclear ground state and saddle-point masses
that one estimates that the surface energy coefficient of nuclei is about
1 MeV/fm? or, equivalently, that the surface energy of a nucleus with mass
mmber A is about (18 MeV)A2/3. Knowing this fact we may calculate the
fissility parameter of a nucleus with mass number A and charge Ze as
follows:

(Ze )2 (the electrostatic energy of a uniformly chaz;ged
R sphere- of radius R)

(0)

Ego) = 18 223 wev.
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Remembering that R = 1,2 A% fm and 2 = 1.44 MeV fm (1 fm = 10722 cm)
we £ind )
X = _E_Im ™ %--Z;- in round numbers,
Zg

As we saw, the barrier against nuclear fissiog vanishes at x = 1,.which we
can now translate into the statement that (2</A) € 50 for stability )
against fission. This is a most fundamental prediction of the liquid drop
theory of nuelei, for it provides an interpretation of the termination of

the periocdic system of chemical elements somewhere in the vicinity of atomic
number 100. The basic reason why there are only some 100 elements found

in nature is that (even after stabllity against alpha and beta decay has been
assured) the intensity of electrification for heavier nuclei begins to
violate the liquid drop stability ecriterion x < 1.

I have given you only a few specific examples of the application of
.the liquid drop theory to.nuclei. To get a broader perspective let me say
that in the last 10 years we have learned how to calculate the potential
energies of nuclei, in their dependence on N, Z and the nuclear shape, with
an accuracy of sbout 1 in 1000. This has been possible in virtue of a two-
part approach, where shell corrections of about 10 MeV are added to a smooth
background of hundreds of MeV. This smooth background, an indispensable
part of the nuclear energy, is provided by the model of a charged liquid
drop. .

5. ROTATING NUCLEI AND THE PLATEAU CASE, x> 0, y>0Q

If an uncharged globe with surface tension is rotated;-it flattems
at first into an oblate pseudospheroid which, with increasing angular momen-
tum (inecreasing y), eventually goes over into a torus. (See Fig. 13.)
Well before this happens, at the critical value y; equal to 0.2829, the
cblate shape becomes secularly unstable towards conversion into a triaxial
pseudo-ellipsoid rotating about its shortest axis, amalogous to the Jacobl
ellipscid. In contrast to the Jacobi ellipsoids, the family of pseudo-
ellipsoids comes to an end at the critical value ¥y, equal approximately
to 0.785 for x = 0. (See Fig. 6.) For uniformly charged (nuclear) drops
the critical values y7 and yyp decrease with x. Figure 14 gives some
details of the case x = 0.3, cofresponding to nuclei in the general
vicinity of atomic numbers Z = 35. The major semiaxis Rmu/R for the
pseudo-spheroidal (Hiskes) shapes increases gradually with y. At y = 0.18
the pseudo-ellipsoidal (Beringer-Knox) shapes bifurcate. The curve for the
semimajor axis of this family continues to increase with y up to the
eriticel turning point yry, where it goes arcund a bend. Afier the bend
the curve describes the semimajor axis of the triaxial saddle-point shape
(the Pik~Pichak saddle) for fission. This shape is the generalization to -
the case with angular momentum of the hour-glass Bohr<Wheeler saddle, The

= 0 member of this family of Pik-Pichak saddles is in fact & Rohr-Wheeler
shape.

Figure 15 gives an indication of the actual appearance of these shapes
For example, in the upper right-~hand part the sphere labeled H (for Hiskes)



63

i3 the equilibrium shape and the hour-glass figure PP (for Pik-Pichak) is
the saddle-point shape for y = 0. At y = 0.16 +the Hiskes shape hag flat-
tened intc a pseudo-spheroid and the neck of the Pik-Pichak shape has thick-
ened. At y 0,24 the stable ground state i1s now a Beringer-Knox psuedo-
ellipsoid. For ¥y = 0,4 the Beringer-Knox shape shows gome necking and is
about to coalesce with the Pik-Plchak saddle shape. All the Beringer-Knox
shapes and all the Pik-Pichak shapes (except the cnme for y = 0) are slightly
gidimal& In the figure only tne mean section of these triaxial shapes is
ndicated.

A practical application of these calculaticns i1z the prediction of
the existence of "super~deformed" nuclei, elongated into cylinder-like
shapes with a ratioc of axes of about 2:1 by the centrifugal forces arising
from the collision of two nueclei. As an example the bombardment of a Si
target with Ar ions of about 170 MeV energy might lead in a fraetion of
the collisions to super-deformed compound nuclei.

The discovery of such nuclei, stretched out by the centrifugal force
into triaxlal shapes, so closely analogous to the classic Jacobi ellipsoids,
would be an exciting event. So far insufficient effort has been devoted
to the identification of such nuclei and they have not been seen experi-

mentally.

6. ASTRONOMICAL LIMIT x + -», y >0

Let me now review the left-hand edge of our filing cabinet: the
clagsic problem of a rotating gravitating mass (without surface tension).

First a small change in notation.- Since there is now no surface
energy the ratic of E to the gravitational energy of a sphere is a
natural parameter. Thus we introduce

) EéO) E1(=.O) (0) 1y
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This parameter is a measure of the disruptive centrifugal force
compared to the gravitational cohesion. (It is half the tangent of the
angle to a point x,y in the x - y plane, messured clockw'ise from the
negative x-axis.)

As you know a gravitating mess with small angular momentum (small %)
assumes the shape of an oblate spheroid {the Maclaurin spheroid). Such
a spheroid remains a shape of equilibrium for all values of t, flattening
more and more towards a thin disec as t tends to infinity. In 1834 Jacobi
made the startling discovery that if the angular momentum exceeds a certain
eritical value (t > 0.192) a triaxial ellipsoid is also a configuration
of equilibrium, and in fact secular stability passes from the Maclaurin
to the Jacobi shapes. . Towards the end of the last century Poincaré showed
that as one moves along the Jacobl sequence of ellipscids, other distinect
families of equilibrium shapes bifurcate at definite values of the angular
momentum., The first such crossing occurs at ¢ = 0.316. For wvalues of +
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less than 0,316 there exist, in addition to the Maclaurin and Jacobl
ellipsoide, also reflection-asymmetric ("pear-shaped") figures of equilibrium,
At % = 0,486 another crossing occurs, this time by a reflection symmetric
family. For + » 0,486 +these shapes have the appearance of a Jacobl
ellipsoid modified by a necking or waist in the middle, and for +t < 0.486
they look like a Jacobi ellipsoid with a bulge in the middle and two neckings
on either side. (One might give Paul Appell's name to this family.)

Further such crossings at t = 0.903, 1.161, etc. correspond to higher
ellipscidal harmonic ripples on the basic Jacobl figure. (I have called
them Humbert and Orlov families, respectively, after two mathematicians who
contributed to locating their bifurcation points).

Figure 16 summarizes ihe behavior of these families in the usual way
by plotting the semi-major axis as a funetion of t. Also shown in Flg. 16
is a further family of equlilibrium shapes, the system of two equal fragments
rotating about their common center of mass (Darwin's binary "star” system).
In this configuration of equilibrium each half has to a good approximation
the shape of a triaxial ellipscid. The length of the whole figure goes to
infinity with incressing angular momentum. With decressing angular momentum
the two "stars" aspproach each other and, finally, as the centrifugal force
becomes tod weak to support the increasing gravitational atiraction, the
family of Darwin's binaries comes to an end around t = 0.484. Combining
some of Jeans' early speculations with our own more recent studies, I have
sketched in (as a dashed curve) the probable fate of this family. After
bending out at t = 0.484 it probably bends back again at t = 0.65
(this value is not known accurately), to join the dumb-bell-like Appell
family of shapes! We anticipete a similar connection between the Orlov
family and a three-star family (a system of three colinear fragments with
reflection symmetiry roteting about the common center of mass ).

The most important feature of Fig. 16 is the eritieal value t = 0.316,
where the Poincaré pears bifurcate. Its physical significance is that :
beyond this value the Jacobi ellipsoids are unstable and any additional
angular momentum would make them disintegrate. A lot has been written in the
past 100 years about the question what a Jacobi shape would disintegrate
into, and the question remains unanswered. There are two aspects of the
problem that have not been stressed, as far as I know, but which seem -
obvious when you exploit the snalogy of this problem to the phenomenon of
nuclear fission. The first is that the Poincaré pears are saddle-point
shapes in the same sense that the Bohr-Wheeler dumb-bells are sEﬂEEe—point
shapes, i.e., they both determine the barrier inst disintegration for a
system that has not yet reached the 1imit of sta%:.' Tity (which l%ﬁt is given
by x =1 in the nuclear case and t = 0.316 in the gravitating case).
From this point of view it is strange that the Poincaré pears have received

‘8o little attention once it was found they were unstable. In the nuclear
case, you will remember, the tracing out of the unstable Bohr-Wheeler
saddles was the outstanding problem of fission theory. By contrast, in the
gravitational case, we still don't kmow what happens to the Poincaré pears
as t 1s decreased below 0.316! This is a fascinating riddle. It seems
rather certain that for t = 0 +the Poincaré peers no longer exist, so
where and how did they disappear? ’
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The second neglected aapeet of the question how the Jacobl ellipsoids
might disintegrate is what lles beyond the Polncaré saddle-point pass?  In
particular, what is the absolute minimum in the effective potential energy

towards which the disintegrating Jacobi~ellipscid~—Is presumably drawn after
overcoming the saddle pass in the barrier against disintegration? In the
nuclear case the absoclute minimum in the energy is n equal fragments at
infinity, the optimum value of n depending on the value of x (approxi-
mately nogt = 4x). In the gravitational case it does not seem ever to have
been stated clearly what the absolute minimum in the effective potential
corresponds to. The answer is pathological but instructive. Thus in order
to reduce E in Eq., (1) to itz lowest possible value (in the case of
negative x) one should divide the total mass into one large spherical part
and one very small part (a "satellite"), and place the small part so far
away that, despite 1ts smallness, the moment of inertia of the whole figure
is very large. By making the size of the satellite tend to zero but its
distance tend to infinity sufficiently rapidly one can make the moment of
inertia tend to infinity, and thus make the rotational energy vanish. One
thus arrives at a configuration whose gravitational and surface energies
are no greater than those of a single sphere, but whose rotational energy
has been reduced to zero by the artifice of making the satellite carry all
the angular momentum at a vanishingly small rate of rotation.

This simple cbservation, that the absolute minimum in the effective
potential corresponds to a very asymmetric configuration of a small satellite
at infinity, may be the basic reason why the Jacobi ellipsoid becomes
unstable with respect to an asymmetric (pear-shaped) deformation. This
asymmetry, which makes one tIp of the ellipsoid more pointed (and the other
less) may be an expression of the underlying urge of the rotating figure to
emit a small satellite and send it off to infinity. This speculation also
suggests a solution to the riddle of what happens to the Poincaré pear as
+ i3 decreased below 0.316. My guess is that as the tip of the Pear
becomes more elongated with decreasing t it eventually reaches out to the
"neutral point" in the potential isurrounding the pear (the neutral point in
the sum of the gravitational and centrifugal potentials). Such neutral
points are always outside the surface of a Maclaurin or Jacobi ellipsoid,
but for the Pear there is no reason why the elongating tip should not touch
the neutral point. Physically this means that at the tip the centrifugal
force has overcome the gravitational attraoction and matter begins to stream
out from it. (4n analogous sireaming occurs when a dielectric drop is put
between the plates of a condenser, and the electric field increased. The
drop stretches at first into an elongated pseudospheroid, but at a ¢ritical
field the tips sharpen up and begin to emit a stream of droplets. See
also Ref. 6.)

A further thought which is suggested by these considerations is that,
in general, the configurstion of an infinitesimal satellite placed at the
neutral point (or the lowest neutral point, if there are several) i.e., a
gatellite in synchronous orbit around the central body, is a configuration of
equilibrium whose formal significance is that of a saddle-point pass that
must be overcome when converting a given rotating configuration of equilib-
rium into the absolute minimum configuration of a sphere and a satellite at
infinity. Thus, in addition to all the families of equilibrium mentioned
so far, there is a matching set of "Ghost Families"”, identical %o the
basic set but with an infinitesimal satellite (or satellites) in a synchro-
nous orbit. ‘
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Figure 17 is an att to summarize these speculetions, The maximum
radius vector (tip-distance) of the Ghost Families is the radius of the
synchronous orbit and thus the Meclaurin and Jacobli CGhosts are shewn as

-~ ——daghed-curves-sbove the conventional famillies, In the case of the Poincaré
pear the elongating tip meets its Ghost in a typlcal limiting point (when
the tip touches the synchronous satellite), with the result that no Poincaré
pears exist below some critical value of %, yet to be determined. Similar
turning points probably mark the limits, on the left, of the Appell,

Humbert and Orlov families as their tips touch the relevani neutral points,

7. THE LIMIT x* + 0. THE BROKEN SYMMETRY HYPOTHESIS

A puzzle arose in tyying to fit together the case of large negative x
and the astronomical case of x™1 = 0. Thus for large but finite negative
x values our calculations indicated that the rotating triaxial Berimger-
Knox pseudo-ellipsoids come to an end at a finite value of the angular
momentum, given by I110 which corresponds to a limiting t of about
0.6-0.7. But in the @stronomical case the Jacocbl ellipsoids are known to
continue on to_infinite values of +. What then happens between 1
small, and x~1 gero s, 1.e., what is the difference between the case of a
finite surface energy, however small, and no surface energy? I think the
answer is as sketched in Fig. 18. In the case of no surface energy the
Jacobi and Appell families cross (at t = 0.486), as discussed in Sec. 5.
When the surface energy is switched on the crossing is, I believe, broken,
and the Jacobi-like shapes continue on to become the Appell symmetric dumb-
bells, whereas the double-waisted Appell figures merge into what used to be
the Jacobl shapes beyond the crossing. Formally such a breaking of the
crossing between families of solutions is well-known, for example in atomic
or nuclear.spectroscopy. Crossings (of eigenvalues) are in fact the excep-.
tion rather than the rule and are only possible if special symmetries are
satisfied. I believe the analogy carries through to the present situation.
(In both cases the formal problem is the diagonalization of a secular
determinant.) It is only because of the special symmetry (in = generalied
sense) of the pure inverse-distence problem (whieh also results in pure
ellipsoids being exact solutions) that a crossing between two families like
the Appell and Jacobl shapes is possible. The addition of the slightest
amount of surface energy breaks this symmetry end the families no longer
cross. From this point of view the astronomical case, which had been
studied for centuries, is an atypical situation, and a study of the case
with surface tension is important, among other things, in restoring the
proper perspective on the general problem.

With the above hypothesis it is possible to conmnect the case with
surface tension with the astronomical case in a way indicated in Fig. 19.
The continuation to minus infinity of the eritical curve ¥ I(x) in Fig. 6,
where the Beringer-Knox shapes bend back into the Pik-Pi shapes (see
Fig. 14) corresponds to the critical value +t = 0.65, where the Appell shapes
bend down to become the Darwin-Jeans shapes. (Fig. 16) The second bend
in Fig. 16 at 1 = 0.484, where the Darwin-Jeans shapes become the Darwin
bineries, may be traced to finite values of x and is indicated as the
eritical curve v in Fig. 6.
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The continuation to minus infinity of the dashed part of the curve
yrrr{x) in Fig, 6, where the Beringer-Knex shapes lose stahility against
asymmetry, correspands to the critical value + = Q,316, where the Jacobl -
shapes loge stability against a pear-shaped deformation, According to our
broken symmetry hypothesis there ig no eritical curve for finite values of
x corresponding to the crossing at + = 0,486 of the Jacobl and Appell
familles., On the other hand, one ia led to the prediction (quite umexpected
unleas cne is aware of the astronomical limit) that in the case of finite
(negative) x there must exist further families of equilibrium shapes
beyond the limlting angular momentum Yrr. These families would correspond
to the astronomical Jacobi family and 133 bifurcations, but with the cross=-
ings at even harmonic bifurcations (Appell, Orlov ete,) broken according to
the scheme of Fig. 18. The fate of these families as the surface tension
increases is completely unknown.

8. LOOSE ENDS

I have already mentioned several questions and puzzles that have not
been answered satisfactorily. I should also say that many of the results
I quoted are only approximate and in some cases quite uncertain. In addi-
tion there is a whole list of familles of equilibrium shapes that I have
not even mentioned, some of which have been studled to a limited extent.
Lot me make a partial list:

1. Equilibrium shapes for y < O.

2. Equilibrium shapes in the form of spherical harmonic distoritions
of a sphere, which cross the spherical family as x 4increased beyond 1.
(These crossingsare like the infinitely meny Poincarg crossings of the Jacobi
ellipsoids. )

3. Families of multiply-necked cylinders which for y =0, x+0
tend to strings of equal spheres in contact. Branchings from these families
that occur as x increases.

4e Families which for y =0, x+ 0 +tend to other arrangements of
equal spheres (triangular, tetrahedral, ete.).

5. Thick-walled spherical shells {nuclear bubbles); a pair of such
configurations appears when x exceeds 2.0216.

6. Unequal spherical fragments at infinity.

The list could be extended indefinitely.

CONCLUSICN

I hope that I have succeeded in giving you an impression of the rich~
ness of the problem defined so innocently as the search for equilibrium
shapes of a rotating mass. Even in the nuclear case with no rotation one is
drawn by stages from thinking of a single sphere as the solution, to the
inclusion of many equal fragments at infinity as formal solutions, and then
through topological arguments to the realization that there must also be
dumb-bells with equal or unequal bulbs and many other families as well.

With rotation included the mathematical structure acquires baroque ramifica-

tiona. One of the Joys of disentangling this structure has been the unifica-
tion of the astronomical, hydrostatic and nuclear problems, and the insights

gained by confronting the different fields.
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let me end hy stressing that the problem of the equilibrium configura-
tions of a rotating drop or bubble with Inverse-distance interactlons
defines a besutiful mathematical structure which has been only partially
explored, Even gross quelitative questions remain unsanswered, and there is
a serious lack of quantitative results,
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Pigiire 2. A solidified glass droplet, about 1 mm in length, from the lunar soil.



70

NNCEE

""""W:W (w150 - \i?' M
iy sougod (oder. wodesig) .

FPigure 3. Sketches made by Niels Bohr during a conversation en the liquid drop
hﬂyy of nuclear fissien and (on the right) shapes of a fiasioning
nucleus calculated by J. R. Nix according to that model.
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Fig. 4. Various physical systenms
arranged according to the x and y
parameters specifying the intensi-
ties of inverse-distance and rota-
tional energies relative to the
surface energy.
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Figure 5.

A schematic potential energy surface illustrating a metastable hollow 4,
the absolute minimum C, a saddle-point B and a mountain tep D.
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Figure 8. Nuclear saddle-point shapes in their dependence on th‘ fissilicy
parameter Xx. -
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Figure 9. The deformation energy of three heavy nuclei with fissility parameters,
0.6, 0.8, and 1.0. At x = 1.0 the fission barrier vanishes.
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Fig. 12. The lower part
shows the deviations of
the ground state masses
of heavy nuclei from a
liquid drop model fit.
The upper part compares
the experimental and
calculated masses for
the same nuclei deformed
iato their saddle-point

Ground ~state masees

configurations.
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Fig. 13. Axially sym-
metric equilibrium shapes
for uncharged (Plateau)
globes as function of

the rotational parameter
y. (The axis of sym-
metry is vertical.)
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Fig. 14, Major semi-axis for Hiskes oblate shapes, Beringer-Knox triaxial
shapes, and Pik-Pichak saddles as functions of y, for x = 0.3.
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Fig. 15. Ground states (heavier lines) and saddle shapes (lighter lines) for x = 0
and x = 0.3 and various values of y. 1In all figures H refers to "Hiskes", Bk to
“"Beringer-Knox" and PP to "Pik-Pichak". Hiskes shapes have axial symmetry about the
axis of rotation (vertical axis). The Beringer-Knox and Pik-Pichak shapes shown have
approximate symmetry about the horizontal axis and only a mean transverse section is

displayed for these shapes. (For x = 0, y = 0 the saddle shape is two spheres in
contact.) :
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