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DUALITY BETWEEN SURFACE COUPLED INTERFACIAL WAVES FOR
ELECTRICALLY CHARGED AND SELF-GRAVITATING DROPS
Markus Zahn
Department of Electrical Engineering
University of Florida
Gainesville, Florida 32611

I. Introduction

Many investigations of electro-fluid mechanical interactions consider only
surface electrical forces, such as is the case of an interface supporting a
surface charge distribution or of an interface between different dielectrics
[1], [2]. Por these cases, complications resulting from nonuniform equilibrium
electric field intensities and interfacial curvature occur only for non-planar
systems. In contrast, recent work has investigated electrohydrodynamic coupling
of perfectly insulating fluids supporting volume space charge distributions
[3], [4]. Such analysis is appropriate if the fluid is highly insulating and
the dynamics of interest occur over time scales which are short compared with
those required for initially injected charges to accumulate appreciably at a
fluid surface. For this case, the volume space charge imposes a nonuniform
electric field distribution even in planar geometry, which must be taken into
account when the interfaces move as the interfacial equilibrium electric fields
which act on the interfaces also change.

This work examined the propagation and instability characteristics of

- small signal electro-fluid mechanical space charge and polarization waves
for electrohydrodynamic configurations similar to those of the classic fluid

~ problems of the Rayleigh-Taylor instability for superposed charged planar
layers, and of interfacial capillary oscillations of charged liquid cylinders
(or jets) and charged spherical drops [5]. A systematic approach was developed.
to handle multi-interfacial systems of incompressible, inviscid, and perfectly
insulating fluids in planar, cylindrical, and spherical geometry through the
use of a general set of relations for perturbation field and flow variables
on the perturbed surfaces of fluid layers having constant properties [3].
Although the methods developed are valid for any geometry, we limit ourselves
here to systems initially in spherical equilibrium.

The analysis showed that the electi'ohydrodynamic coupling for uniformly
charged layers could be represented as a purely surface coupled interactiom,
even though volume Coulomb forces are present. The pertinent electrical
equation necessary in this development is Poisson's equation relating the
electrical potential ¢ to the charge density q and permittivity € (assumed
constant)

V2¢ = :% €3]

The electrohydrodynamic coupling occurs through the Coulomb force density
T = —qV0 (2)
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The methodical approach developed can be used for any system whose force density
is curl free within a homogenecus layer (q = constant) with the resulting
coupling occurring through the interfaces as the force density can then be
lumped with the hydrodynamic pressure.

This work will also use this duality with the directly analogous equations
to (1) and (2) for self-gravitating systems

T = -pWV 03]

where V is the gravitational potential, p is the mass densi!:y and G is the
universal gravitational constant (G = 6.67 x 10-11 nr-m2/kg2), to deduce the
dynamics and instability characteristics of spherical self~gravitating
geometries [6]. It is a simple matter to obtain results for self-gravitating

systems for those electrohydrodynamic problems already solved by waking the
simple substitutions

¢+ q*o.e*-ﬁ-&- (5

However, an important distinction batween self-gravitating and electrohydro=
dynamic systems remains. Whereas the charge density cam be either positive or
negative, the mass density is always positive. Thus there is always a force of
attraction between masses, while because of the minus sign difference in
Eqs. (1) and (3), like charges repel and opposite charges attract. Because of
the absence of "negative mass" there are no gravitational analogs to polarization
effects due to differences in permittivity or electrical shielding due to the
presence of electrical conductors. The gravitational constant G is independent
of material properties. Thus with the differences between electrical and
gravitational systems in mind, we can immediately write down the solutions to
those gravitational problems analogous to already solved electrohydrodynamic
problems using the conversions of Eq. (5).

In this work, we will derive the general electrohydrodynamic "prototype"
relations for a spherical shell and then derive and contrast the dispersion
characteariastics of perfectly conducting and pexfectly insulating charged drops.
Using duality we will then immediately write down the analogous solutions for
self-gravitating drops.
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IX. Equations of Motion

1. General Development

No matter the geometry, the general equations of motion for an incompressible,
inviscid, -and perfectly insulating charged fluid with mass density p, velocity
¥, pressure p, charge density q, permittivity €, and electric field E are

Conservation of momentum -
.4 sgE-LF -
Pt =aE-5E - BV (6)
Conservation of mass =

%-o;v.v-o %)

Maxwell's equations =

VxE=0 ;= -V A8)
. Gauss's Law: Y+ (cE) = q ; %EE- 0 9)
Conservation. of Charge: %;_: =0 (10)

In the prototype layer, examples of which are shown in Fig. (1), the liquid
is homogeneous such that the equilibrium properties of mass density p,, charge
density qp, and dielectric constant £€), are constant. Then all quantities are
assumed to have small perturbations from the equilibrium. Subject to the
constraint of a homogeneous medium the equilibrium variables must obey the
time independent form of (6)-(10) and must satisfy the boundary conditions
between regions.

Because the fluid layer is homogeneous the charge density, mass density,
and permittivity remain constant in spite of the fluid motion. This is to be
expected, because any transport of material into a given region leads to a
transport of material which has the sawe properties as that previously occupying
the given region. This statement only applies to those portions of the fluid
not swept out by interfacial motions. If a point of interest is adjacent to
an interface, an excursion of the interface could result in an abrupt change of
properties. However, if surface deflections are considered at a given instant,
all properties everywhere between interfaces are uniform.

Denoting perturbation variables with primes, we take the divergence
of the linearized form of (6), to yield the set of perturbation equations

Vo' =0

Vz'u”-o;‘n"-p'-l-qu)'

(1)

Thus regardless of the geometry, the problem reduces to solutions of
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Laplace's equation, both for the perturbation potential and for the modified
pressure ',

2. Generalized Relations For a Spherical Prototype Layer

We consider the lower prototype layer shown in Fig. (1) with the under-
standing that the picture is a cross section of a spherical shell. In
equilibrium the uniformly charged fluid extends over the range B < r £ a.

We denote all variables at the immer interface with a superscript B and all

variables at the outer interface with a superscript a. The radial perturbation
displacement's are £B and £%, When these displacements are zero the equilibrium
distributions are i

P, +q AQO = constant

-q r2 ' constant constant (12)
6. = A 4 1, 2
0 GeA r
- q,r constant
E = [—3£— 5 _T..].z]'fr
=TA T

All perturbation variables are assumed of the form
= Raﬂ(r)P:(cos Pexpjlut ~m8] 5 m>0, >0, m<a (13)

where Pﬁ(cns ) are lLegendre functions depending on the azimuthal angle .
Substituting into Eq, (11) yields

R(r) = A.r” + A Fat+D (14)

1 2

where Al and Az are conatants to be determined from the boundary conditions

28
9.(8) = uf

(15)
Gr(a.) - jw?
From Eq. (6) we know, that the perturbation velocity is relating to #(r) as
Qr(r) -~ 1 4% (16)
jue, dr

. 8o that the interfacial displacements are related to the parameters A, and A,
as
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& m® " ~@+ D@D s
- __lz. an
oL - -
B 4 ettt ceeng @A,

For the purposes of our analysis, inverse relations are needed. Once Al
and A, are determined in terms of and &P, substitution into Eq. (14)
yields the relationship between the interfacial modified pressures and the
interfacial displacements as

(e F(a,8) 6(x,8)] [E*
- (18)
2(8) (8,0 PGB, | £
where
¢ "o <1>n—’—‘1'—
2 B4
F(x’y) - _zn_n___x_n_&_"'__l_ (wsz)
Ky - (>
672"

-{2n + 1)3'2

(19)

.

6(x,y) = = — (w70
~ am+1) [(';') x-(%) Y]

Note that the analysis implicitly assumes the interfacial displacements
to be small as Eqs. (15) and (16) were evaluated at the equilibrium positions-
(@, 8) rather than at the interfaces themselves (a + £%, 8 + 53) . Fortunately,
because the velocity itself is a perturbation, the difference between evaluating
it at the interface or at the equilibrium position is second order in the
perturbation amplitudes. This illustrates the general approach used in linearized
surface deformation problems. The boundary condition at the moving interface
is replaced by ome at the equilibrium position of the boundary, thus greatly
simplifying the analysis.

The analysis is still not complete for as the interfaces deform, in addition
to perturbing all variables, the equilibrium quantities acting on the interfaces
also change. Thus to compute the total first order change in all variables
evaluated at the interface, linear changes of equilibrium quantities must be
included. For example, the total linear changes in the pressures are:

dp g

P o= b +a;—‘

(r = a) 20)
dp &

8 . -0 B .

% =5 +
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Similarly for the potentials .

& & - $(w - 2%
~Q " 0
¢ = d(x) +t5

(r=a)

. " (21)
N b & = 3(p) - 28
# -3+ 2

(r =8
Using these definitions we have

8% =R - g8 +£%,E"

(22)
8% = 2(B) - 4,88 + 2%, E°

£,8% = ¢ é‘(a)+eiz2 e
Ar Ar A dr

23

+8
dE 13
B ac 2 =2
€ e, SA er(B) + EA =

A
r=8

Then using Eqs. (20) - (22) we obtain the generalized mechanical relations
evaluated at the interfaces

8% [F(e.® e(a, | [E* 8
- -q, (26)
2l et rg)| |28 #1

where F and G are given in Eq. (19)

. Similar operations are performed in the solutions of Laplace's equation
for the perturbation potential $(r) to yield the electrical relations at the
interfaces .

e 80 B(0,8) Cla,B) | |$* + 2%
=% 8.8
e esw  mew| [+
_ (25)
dE
-9
dr
+ £ r =0
A .
dE, g8
dr
r=f
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n n+1l
a® + @+
B(x,y) = "y ey
Yy o &
[(x) 7= @ x]
2o+ D&
o 3
o2 x
[(x) y - (’;) x]

The general relations of (24) and (25) greatly simplify in various limits.
As the inner radius goes to zero (B + 0), so that the shell becomes a drop,
the terminal relations reduce to '

where

(26)

C(x,y) = -

2 o) a
AaapraE -QA$

lim n 27
B0 o 0L s 20 )
ey = —spn @ +Eg°‘)+aAd_EQ g

[+3 dr
r=0

As the outer radius becomes very large, (0 + ), the terminal relatioms
become

8-t B -q
(n + 1
lim ’ (28)
er® 8 8 . BB 28
eAer-eA(n+1) (o +EE)+€AE?Q g
B dr
r=f

Equations (24) and (25) are useful because they relate the interfacial
variables of pressure, displacement, electrical potential and electrical
displacement, which appear in interfacial boundary conditions. The boundary
conditions for all cases include mass and electric potential continuity, the
second condition being equivalent to the continuity of the tangential component
of electric field, as well as an interfacial force balance. For perfectly
conducting interfaces, the perturbation potential must be zero but the surface
charge imposes a surface force density. Because there are no electric flelds
inside the perfectly conducting fluids, there are no polarization effects.

In contrast, perfectly insulating fluids with volume charge have nonzero
interfacial potential and although free charge can make no contribution to an
interfacial surface force demsity, there is a surface polarization force if
the permittivity of the fluid and its surroundings differ. For non-perfect
conductors (including perfect insulators) no surface charge can be allowed on
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any interface for an inviscid analysis to be meaningful, as electrical shear
stresses would accompany such a surface charge density, and our model would

then necessarily have to include viscosity (or some other mechanism) to balance
this shear stress [7], [8]. This requires the normal component of electric
displacement to be continuous across an interface for non-perfect conductors.

An inviscid formulation is allowed only if the interface has no surface charge
or if the interface is perfectly conducting, as then the electric field terminates
perpendicular to the interface, resulting in no electrical shear force. However,
the same systematic techniques have been applied to a viscous prototype layer

in planar geometry so that these limitations may be removed [9]. In general,
congidering viscous fluids greatly increases the mathematical complexity

of the analysis but yet has no effect on the conditions for instability [10].
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III. Stability and Dynamics of Charged Spherical Drops

The modes of oscillation and instability of charged, initially spherical
drops are obtained for small perturbations by using the generalized relatioms
of (24) and (25). Rayleigh's limit determines the maximum amount of charge
distributed around the surface of an igsolated perfectly conducting drop for
it to be stable [11]. The isolated uniformly charged, perfectly insulating
drop has historical significance through the liquid drop model for fissiom
of the nucleus proposed by Bohr and Wheeler [12]. In this section we wish
to generalize both these classic problems by immersing. the charged spherical
drops within a uniformly charged region. Figure 2 describes the geometry with
the understanding that the picture is the cross section of a spherical system.

In spherical geometry, all perturbations due to small signai interfacial
motions are assumed of the form

£ =Re gexp[j(mt—me)]P:(cos YY) s m>0,n>0, m<n (29

For spherical' drops we only need to know these relations im the two limits
where the ioner radius tends to zero, B -+ 0, and when the outer radius gets
very large, a + «, which are described by Egs. (27) and {(28).

1. Perfectly Conducting Drop With Surface Charge Within a Uniformly
Charged Region

We first comsider a configuration similar to that in Fig. (2) with a
perfectly conducting spherical drop of radius R, mass density p, and surface
tension ¥ with uniformly distributed surface charge density 0. Immersed within
a perfectly insulating charged fluid of infinite extent with charge density
a4, and mass density Pye The equilibrium electric field distribution is

o & qy(r - B/ >R (30)
E = 5 + .
T
ezr 382
so that
E. =0, E .S_ ___dEZ--.Zf_f.q-q_z 2D
1 * 2 T, ' dr E.R
2 2 2
r=R

Because the drop is perfectly conducting there are no electric fields inside
(El = 0). The perturbation interfacial boundary conditions are

61-2255,%-4_,250 2

B, - f, +€2E2er2 -fy \(n - 1)(n+2)E=0
R2
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From Eqs. (27) and (28) we obtain

~ 2 =
Py =P RE/n

f5= ~p21321!§7rn‘+‘IT - (33)

€48 , = €8, (n + DE/R + ¢, ﬂ g
dr
r=R

gubatitution of Eq. (33) into Eq. (32) yields the dispersion equation as

w2R3 Py Py =(a-1){n+2) - UJZER - 1+q,R (34)
PONNNENNG, S S — =
Y (n + 1) €5 O

We see that the self-field term proportional to U% due to the interaction
of the surface charge with its own field is always destabilizing, while the
impoged field term proportional to q,Js¢ due to the interaction of the space
charge 1 with the field due to Og c@n be stabilizing if q, and o are of
.opposite”sign. If Gf = O, there is no electromechanical coupling.

We examine (34) in Rayleigh's limit where there is no space charge in the
outer region (qz = 0), so that Eq. (34) can be written as

w2R P1 Py =(n-1fa+2- a%R (35)
< N TEFD 7

We see that the n = 0 mode is not allowed if pj # O due to the incompressibility
of the drop, and that the n = 1 mode is neutrally stable. As o. is increased, 2
the first mode to become unstable is n = 2 with critical total charge QT(QT = 47R o'f)

1/2
Q, = 8mR(e,YR) (36)

However if the drop has negligible density so that p, = 0, which is the
cagse of a bubble within an infinite fluid with surface chdarge on the bubble
fluid interface then the n = o solution is allowed. In the absence of electrical
forces, surface tension makes this case unstable by acting to collapse the
bubble. However, with surface charge present, Coulombic repulsion could stabilize
the gystem if

2
afklezv >2 (3D

For finite 995 the n = 1 mode will be stable only if 9,0, < 0.
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2. Perfectly Insulating Drop with Volume Charge Within a Uniformly
Charged Region

We now consider a perfectly insulating spherical drop supporting a constant
volume charge distribution within a uniformly charged regiom, as in Fig. (2).
We include the possibility of having a point charge of value Q at r = o, and
give the drop a dielectric constant different. from the surrounding region to
include polarization forces.

The equilibrium electric field distribution is -

Q uT
2+-—-—— r <R
4me, r 3e
E = 1 1
r 3 (38)
Q (q; = 9)R™ q,r
2+ 3 ¥ e r> R
énezr 3szr 322

which yields for the interfacial fields and field gradients

Q q,R dE -Q q
B e g+t ; 2L . . i
4weln 381 dr Zﬂela 381
r=R
(39)
Q q,R dE -Q 2q, 4q ‘
EZ-. 2+—]-'—-;—2- - 3+-—l+_—2. P
fwszk 322 dr Znsza 322 €y
r=R
The interfacial boundary conditions result in the relations
E]--EZEE’¢1-¢ZE¢
€181 = 88, (40
ﬁl’ﬁz*szﬁzerz‘elﬁlen‘('j_ (m=-D@+2DE=0
R2
From the general relations of Eqs. (27) and (28) we obtain
g, =0 szgln -4q.%
1 1 1
(41

ﬁz - ‘Dzwzﬁg/(n + l) - q2$
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€8, = ~(en/R@ +EE) +¢; &y g
dr
' r=R
(42)

ezerz = sz(n +1) (¢ + EZE) + €y dEz 3
R dr
r=R

Substitution of Eqs. (41) and (42) into Eq. (40) yields the formidable
dispersion relation

(mznj(pl L py ) =@-1+2

\VY/e (@+1

e @ - R [a - qy - (2ar DEE/R] (4D
vie, + (g4 + €]

* (g, - el)RZ E, )€, (@ + 1) + q,n - ﬁ[Z[ez + (¢, + €n] +n(a + (e, - eliﬂ
7[&2 + (el + az)n] €, R

In. Eq. (43), the last term on the right represents the polarization surface
force due to the diffarence in permittivities and the fields from the space
and point charges. The other electric term represents Coulomb forces acting
even in the absence of a polarization. For simplicity, we examine Eq. (43) in
various limits.

BOHR LIMIT (sl =€, zeg, q, = 0, Q =0).

In the liquid drop model of fission of the nucleus, Bohr and Wheeler
congidered an isolated uniformly charged spherical drop under surface tension
f12]. Sufficient charging of the drop results in instability, which in the
context of the nucleus amounts to anuclear fission. Under these conditions
Eq. (43) can be reduced to

wzk’)(pl ’ Py \ = (n - 1) [(2n + L@ +2) - 2q§k3] (44)
Y& TeFy @mED e
The n = o mode is not allowed for finite py due to the drop incompressibility.

The n = 1 mode is neutrally stable, while the first mode to become unstable as
ql is increased occurs for n = 2 with total charge QT(QT = lm'R3q1/ 3)

qp = 8mr(seyr/6) /2 (45)
We see from Eq. (45) compared to Eq. (36) that a perfectly conducting drop
could support slightly more total charge before becoming unstable than the



perfectly insulating drop.
NO POLARIZATION EFFECIS (€, -'ez g¢€)
There are no polarization forces if the dielectric constants of the two

regions are the same. Generalizing the Bohr limit by allowing finite 9, and
Q simplifies Eq. (43) to

2
m-p—l-+ Py ‘_Y__(n—l)(n+2)+(ql-q2)
n (n+ 1) 3 : €(2n + 1)

R
(46)
) )(ql Q)
-(q - a5 +—3
17 2\3 T3
——— .

The second term on the right of Eq. (46) is a self-field term and is
always stabilizing while the last term is an imposed field term and can be
either stabilizing or destabilizing depending on the relative charge polarities.
A sufficient condition for stability is f.or the last term in (46) to be negative.

NEUTRAL DROP (q14m3/3 +Q =0)

* 1f the total charge within the spherical drop is zero, the equilibrium
interfacial electric field is also zero. Under this condition even if the
permittivities of the two regions are different, there would be no polarization
effects as the interfacial electric field is zero. However, due to the electric
field gradient, there is still an electromechanical coupling so that Eq. (46)
is still appropriate with the last term being zero. This system is stabilized
by the space charge. In fact, for the case of a bubble where 01 =-0 the
destabilizing nature of surface tension for the n = o mode can be opposed so
that the system becomes stable if the difference of charge densities are of
sufficient magnitude such that

(q; - ap? 2 2ev/8° )
UNIFORM SPACE CHARGE DENSITY THROUGHOUT (ql = qz)
The interplay of the polarizability and the space charge is demonstrated
by considering a case in which the respective space charges are equal (q_l = qz).

Then the second term on the right of Eq. (43) drope out. If the relative
permittivities were also equal, there would be no electromechanical effect.
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IV. Gravitational Stability of Spherical Drops

For the space charge analysis, the mass density only comtributed through
inertial terms. For the self-gravitating counterpart, the mass density will
also contribute via the force law of Eq. (4). We now consider the gravitational
analog to Fig. 2 where a fluid sphere with mass density t.'::L is immersed within
an infinite medium of mass density p;. A point mass M is"at the origin r = 0.
The equilibrium gravitational field in the negative radial direction at the
interface 1is .

M5 4G R (48)

g +
R2 3

We can use the results obtained for a perfectly insulating drop with
volume charge within a uniformly charged reglon by using the dual relations
of Eq. (5), substituted into Eq. (43) with el =€, to obtain the self-gravitating
dispersion relation : s ’

2
_‘3_1_ . P, . 3'_ (n =1 +2) --'mccpl - pz)
“Ya " @+ D 2 “(2n + 1)

(49)

- Py M
+ 41G(p; - PN 3" +E§

KELVIN'S MODES

Relvin first considered this problem in the limit, M= 0, o, = 0, and
, Y =0 [13]. Then Eq. (49) describes the oscillation frequencies” of an inviscid
liquid globe under its own gravitational field.

w? - §nGo,n(a = 1) (50)
(2o + 1)

HOLLOW DROP

In the other extreme, a spherical void (M =0, P} = 0) within a large
medium is always unstable for n = 0 and n = 1 as the right hand side of Eq. (49)
is always negative and thus unstable. Unlike the space charge dual, self-
gravitating forces can never stabilize a spherical bubble.
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V. Concluding Remarks

Because the perturbation electrical and gravitational force was curl free
within a homogeneous layer, the broad class of interactions involving liquids
with discrete stratifications in mass density, charge density, and permittivity
are representable as surface coupled interactions. The transfer relations derived
are useful since they relate interfacial variables that appear in the boundary
conditions. The techniques developed here may also be used for other perturbation
volume forces which are curl free within a homogeneous layer, or for surface
forces which only act at an interface. Any system which is described by Poisson's
equation and a Coulomb force law can be immediately solved using similar dual
relations as in Eq. (5).

Since the fluids are modeled as inviscid, force equilibrium at the
interface required only a normal stress balance. No eleectrical shear stresses
are allowed because of the absence of viscous shear forces to oppose the
electrical forces. A more general analysis which would allow electrical shear
forces must include viscosity. Then the mechanical terminal relations must
include relations between the shear and normal forces and the shear and normal
interfacial displacements. Force equilibrium at the interface requires both a
normal and shear stress balance. This results in the mechanical transfer
relations becoming 4 x 4 matrices, rather than the simpler 2 x 2 matrices
considered here, greatly increasing the algebraic complexity.
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Fig., 1 Prototype layers of incompressible, inviscid, perfectly
insulating fluids, supporting uniformly distributed charge
densities, (a) planar geometry, (b) cylindrical or spherical

geometry.

Surface Tension y

Fig. 2. Cross section of an initially spherical drop of radius R
with charge density q;» mass density p, and permittivity o
placed within an infinite medium with E:'harge density q,,
mass density p, and permittivity e,. A point charge (6 =3)
isat r = Q.



