L=
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by NASA Technical Reports Server
—

PROGRAM COMPLEXITY AND SOFTWARE ERRORS:
- A FRONT END FOR RELIABILITY

Dr. Bill Curtis
' Software Management Research
nE Information Systems Programs
w General Electric Company
Arlington, Virginia

Error analysis and software complexity have received increased attention in software engineering
research over the past several years. The study of software errors has been necessitated by the
emphasis on software reliability. Models such as the one presented by John Musa in this volume
statistically model such phenomena as the mean-time-between-failures or the probability of a

 failure within a given unit of time. As John indicates, one of the parameters required as input to
this model is the number of errors existing in the software.

There are several ways to estimate the number of errors in a piece of software. One is the actuarial
approach which assumes there are so many errors in a given number of lines of code. A number
frequently passed about is one error per one hundred lines. This approach assumes that all soft-
ware is created equal and ignores the advances that have been made during recent years in analyzing
software characteristics. An alternative approach recognizes these gains in relating software char-
acteristics to such factors as the error-proneness of a section of code or the difficulty which will

be -experienced in maintaining the code. The purpose of this paper is to review recent research on
software complexity metrics to determine whether knowing something about software character-
istics improves .our ability to predict the number of errors it contains or the amount of effort re-
quired to maintain it. :

If we can validate the use of software metrics for predicting the number of errors in software and
the difficulty experienced in correcting them, then such metrics will prove a valuable addition to
both quality assurance and management information systems. During the design phase, metric
values can be estimated from relevant design information to predict problems which will be ex-
perienced during coding. Values computed on the actual code can be used in predicting testing
results, number of delivered bugs, and ease of maintenance. Although a large number of metrics
have been presented in the literature, two seem to have received the most attention in empirical
research. I will focus on these two metrics in the remainder of this paper.

Thomas McCabe (1976) developed a complexity measure based on the cyclomatic number from
graph theory. McCabe counts the number of regions in a graph of the control flow of a computer
program. His metric represerts the number of basic control path segments which when combined
will generate every possible path through the program. Thus, McCabe has measured the complexity
of the control structure. Schneidewind and Hoffmann (1979) demonstrated that the cyclomatic
number and the reachability measure which can be computed from it were superior to the number
of source statements in predicting the number of errors in a section of code and the time required
to find and fix them. Feuer and Fowlkes (1979) aiso demonstrated that the node count was re-
lated to the time to repair errors. However, their data indicated that different prediction equations
should be used with different types of errors. Separate prediction equations might be possible
when we have (1) developed more robust error classification schemes, and (2) progressed past
predicting gross errors to predicting types of errors.

B. Curtis
G.E.
217 I of 22

https://core.ac.uk/display/42854764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Another approach to software complexity was presented by Maurice Halstead (1977) in his theory
of Software Science. Halstead maintained that the amount of effort required to generate a pro-
gram can be derived from simple counts of distinct operators and operands and the total fre-
quencies of operators and operands. These quantities can be used to calculate the number of
mental comparisons required to generate a program. Halstead’s effort metric, E, expresses the
complexity of computer software in psychological terms. Halstead also developed a metric to
estimate the number of delivered errors in a system. This metric is' based on the notion that
there is a limited amount of code that a programmer can mentally grasp at a single time. When
a section of code exceeds this value it is likely that the programmer made at least one mistake in
producing it. Halstead predicts the number of errors by dividing the total volume of code by this
critical level for error-prone code.

Bell and Sullivan (1974) presented a scatterplot which suggested that there was some validity to
Halstead’s notion of a critical value for error-free code. In their data no program with a Halstead
volume above 260 was error-free, while only one program below this level had an error. Sub-
sequently, both Cornell and Halstead (1976) and Fitzsimmons and Love (1978) found correlations
of 0.75 and above between Halstead’s metrics and the number of errors found in various software
products. In a debugging study we recently completed at G.E. (Curtis, Milliman, and Sheppard,
1979) the Halstead and McCabe metrics were better predictors of the time required to find a bug
than was lines of code.

In studying some error data provided us by Rome Air Development Center, Phil Milliman and I
(1979) found Halstead’s metric a remarkably accurate predictor of delivered bugs in a system
developed with modern programming practices and tools. However, the prediction was poor in a
system developed with conventional techniques. The types of errors experienced in the former
system were typical when compared to the types of errors reported in other systems (in particular
to several reported by TRW). Phil and I also observed that the error ratio reported during the
final months of development was an excellent predictor of post-development test errors. The
error ratio represents the number of failed runs divided by the total number of runs. We observed
a linearly decreasing trend in the error ratio during the final 9 months of development. When we
extrapolated this trend into post-development testing, we observed a good prediction of the num-
ber of errors detected.

We suspect from the data we have observed that the prediction of errors and maintenance re-
sources will be more accurate onh projects guided by modern programming practices. We believe
that such practices will reduce the amount of variation in performance and quality resulting from
such sources as individual differences among programmers, the programming environment, etc.. .
That is, a structured discipline constrains the amount of variation in the way software is developed.
Since this variation is a source of error in predictions, the ability to predict various software-
related criteria (such as number of errors) should improve,

Based on the brief review of empirical research presented here, 1 propose the following conclusions,
but agree that much more data is needed to substantiate them.

° Measures of software characteristics can be used to predict the number of errors in a
portion of code-and the effort required to find and correct them. Such measures
will be more valuable than an actuarial approach based on lines of code.

o Different predictive plots may be observed for different classes of errors (computational,
logic, interface, etc.) -)
B. Curtis
-G.E.
218 , 20f 22

) Metrics should be calculated at the appropriaie ievel (subroutine, moduie, etc.) for
explaining the results. ’

- o The prediction of software reliability and of maintenance requirements can begin early
in the software development cycle, and improvements can be made and monitored if
feedback is provided for improving software quality.

ACKNOWLEDGEMENTS

I would like to thank Sylvia Sheppard and Elizabeth Kruesi for their comments, Beverly Day for -
‘manuscript preparation, and Lou Oliver for his support and encouragement. Work resulting in
this paper was supported by the Office of Naval Research, Engineering Psychology Programs
(Contract #N000014-79-C-0595) and the General Electric Company (IR&D Project 79D6A02).
However, the opinions expressed in this paper are not necessarily those of the Department of the
Navy or the General Electric Company.

REFERENCES

Bell, D. E. and J. E. Sullivan, Further investigations into the complexity of software (Tech. Rep.
MTR-2874). Bedford, MA: MITRE, 1974. '

Cornell, L. M. and M. H. Halstead, Predicting the number of bugs expected in a program module
(Tech. Rep. CSD-TR~205). West Lafayette, IN: Purdue University, Computer Science
Department, 1976.

Curtis, B. and P. Milliman, A matched project evaluation of modern programming practices (RADC-
TR-79, 2 vols.). Griffiss AFB, NY: Rome Air Development Center, 1979.

Curtis, B., S. B. Sheppard, and P. Milliman, Third time charm: Stronger prediction of programmer
performance by software complexity metrics. In Proceedings of the Fourth International
Conference on Software Engineering. New York: IEEE, 1979.

Feuer, A. R. and E. B. Fowlkes, Some results from an empirical study of computer software. In
Proceedings of the Fourth International Conference on Software Engineering, New York:
IEEE, 1979.

Fitzsimmons, A. B. and L. T. Love, A review and evaluation of software science. ACM Comput-
ing Surveys, 1978, 10, 3-18.

Halstead, M. H., Elements of Software Science. New York: Elsevier North-Holland, 1977.

McCabe, T. J., A complexity measure. [EEE Transactions on Software Engineering, 1976, 2,
308-320. -

Schneidewind, N. F. and H. M. Hoffmann, An experiment in.software error data collection and
analysis. IEEE Transactions on Software Engineering, 1979, 5, 276-286.

B. Curtis
G.E.
219 3of 22

0Te

7Tioe

= o]
suand g

GENERAL ELECTRIC
COMPANY

SPACE DIVISION

NEEDS

...........

INFORMATION SYSTEMS
PROGRAMS

NEEDS RELATING O ERROR ANALYSIS | (S D)

SOFTWARE MANAGEMENT
RESEARCH

USES

PREDICTORS OF THE NUMBER OF
ERRORS RES IDENT IN A PORTION OF CODE

PREDICTORS OF THE TIME REQUIRED TO
FIND AND CORRECT SOFTWARE ERRORS

INPUTS INTO SOFTWARE
RELIABILITY MODELS

ESTIMATION OF TESTING
AND MAINTENANCE RESOURCES

GENERAL ELECTRIC
COMPANY

CANDIDATE PREBICTORS

SPACE DIVISION

‘ ACTUARIAL DATA

SOFTWARE CHARACTERISTICS
f ® CYCLOMATIC NUMBER .
® SOFTWARE SCIENCE

DOES KNOWING - SOMETHING ABOUT THE CHARACTERISTICS OF
THE CODE IMPROVE OUR ABILITY TO PREDICT THE NUMBER
OF ERRORS IT CONTAINS?

INFORMATION SYSTEMS
PROGRAMS

Sl

SOFTWARE MANAGEMENT
RESEARCH

(A&

GENERAL ELECTRIC
COMPANY

Q%%S

SPACE DIVISION

DESIGN

ESTIMATED

THE USE OF SOFTWARE METRICS IN A
MANAGEMENT INFORMATION SYSTEM

CODING

VALUES PREDICY -

CODING
EFFORT

ACTUAL
VALUES

PREDICT,

TESTING
RESULTS

MODIFI1ED
VALUES

INFORMATION SYSTEMS
PROGRAMS

S [

SOFTWARE MANAGEMENT
RESEARCH

DELIVERED

BUGS

GENERAL ELECTRIC ; INFORMATION SYSTEMS
COMIPANY . PROGRAMS

THOMAS J. McCABE "
A COMPLEXITY MEASURE (1976) SEESEQE)
' . SOF THARE MANAGEMENT
SPACE DIVISION | RESEARCIH

JEQUATION: ‘ | DESCRIPT10N:

v(G) = # epces - # nobes + 2(# CONNECTED McCABE's METRIC REPRESENTS THE NUMBER
| COMPONENTS) ~ OF LINEARLY INDEPENDENT CONTROL PATHS
or | COMPRISING A PROGRAM, THAT 1S, THE |
‘ ' NUMBER OF BASIC CONTROL PATH SEGMENTS
v(G) = # PREDICATE NODES +'1 WHICH WHEN COMBINED WILL GENERATE
| EVERY POSSIBLE PATH THROUGH THE PROGRAM,
oR McCaBe's v(G) REPRESENTS A MEASURE OF
COMPUTATIONAL COMPLEXITY.

1 ¥44

v(G) = # REGIONS IN A PLANAR GRAPH OF THE
. CONTROL FLOM,

sman) °g

GENERAL ELECTRIC
COMPANY

SPACE DIVISION

COMPUTATION OF McCABE'S v(G)

INFORMATION SYSTEMS
PROGRAMS

S [0)

SOFTWARE MANAGEMENT
RESEARCH

GENERAL ELECTRIC
COMPANY

SPACE DIVISION

PREDICTOR

SCHNEIDEWIND AND HOFFMANN'S
DATA (1979)

CORRELATIONS

INFORMATION SYSTEMS
PROGRAMS

=)

SOFTWARE MANAGEMENT
RESEARCH

IR S G SR I

NUMBER OF # of FIND
PROCEDURES ERRORS TIME

CYCLOMATIC NUMBER
REACHABILITY

SOURCE STATEMENTS

sind) g

31
20

20

977

suiny g

GENERAL ELECTRIC
COMPANY

FEUER AND FOWLKES DATA (1979)

INFORMATION SYSTEMS.
PROGRAMS -

Sl

SOFTWARE MANAGEMENT
RESEARCH

“TIME 7O REPAIR

COUNTY

160

LTT

sund g

GENERAL ELECTRIC
COMPANY

@ . MAURICE H. HALSTEAD | (S [D)

INFORMATION SYSTEMS
PROGRAMS

ELEMENTS OF SOFTWARE SCIENCE (1977) } SOF TWARE nANAgengﬁr

SPACE DIVISION

EQUATION:

nlNZ (Nl + Nz) LOGZ (nl + nz)

=

2ny

WHERE,
n, = # OF UNIQUE OPERATORS
n, = # OF UNIQUE OPERANDS
N, = F oF oPerAaTORS
N, = F oF opERANDS

RESEARCH

DESCRIPTION:

THE AMOUNT OF EFFORT REQUIRED TO GENERATE
A PROGRAM CAN BE DERIVED FROM SIMPLE COUNTS
OF DISTINCT OPERATORS AND OPERANDS AND THE
TOTAL FREQUENCIES OF OPERATORS AND OPERANDS,
THESE QUANTITIES CAN BE USED TO CALCULATE

- THE NUMBER OF MENTAL COMPARISONS REQUIRED
TO GENERATE A PROGRAM. HALSTEAD’S EFFORT
METRIC, E, EXPRESSES THE COMPLEXITY OF
COMPUTER SOFTWARE IN PSYCHOLOGICAL TERMS,

GENERAL ELECTRIC | INFORMATION SYSTEMS
COMPANY . HALSTEAD'S MEASURE OF : PROGRAMS

DELIVERED BUGS | g@

: ' SOFTWARE MANAGEMENT
SPACE DIVISION) RESEARCH

87¢C

VOLUME

= THE MEAN NUMBER OF ELEMENTARY DlSCRlMlNATlONS‘
BETWEEN POTENTIAL ERRORS IN PROGRAMMING

LEVEL OF THE IMPLEMENTATION LANGUAGE

siunD) ‘g

GENERAL ELECTRIC
COMPANY

@

SPACE DIVISION

BELL AND SULLIVAN'S DATA
(1974)

62C

a0

7riott
sind) 'y

FCcrrect Programs
"Errorecus Prcgrams

Regreb'sicn
H=158 C2°109

Discrirninant
H:335-68 C2

5 1015 2C 253035 404550556065
C2

INFORMATION SYSTEMS
PROGRAMS

Sl

SOFTWARE MANAGEMENT
RESEARCH

0£¢

GENERAL ELECTRIC f | | INFORMATION SYSTEMS
COMPANY | (CORNELL AND HALSTEAD’S DATA , PROGRAMS

(1976) | S§§5t§§)

' ; ' SOFTWARE MANAGEMENT
SPACE DIVISION) RESEARCH

. NUMBER OF ERRORS
MILLIONS OF MENTAL
DISCRIMINATIONS ACTUAL PREDICTED

170.3 102 102
15.3 18 20
322.6 146 156
28,2 26 30
100.2 71 71
65.5 37 54
6.5 16 11
58.5 : 50 50
135.9 80 88

—— — ———

903.0

smnD) g

1€C

GENERAL ELECTRIC
COMPANY

SPACE DIVISION

SUBSYSTEM

FITZSIMMONS AND LOVE'S DATA
(1978)

TOTAL
- STMTS

RANGE OF STMTS
PER MODULE

NUMBER OF
MODULES

INFORMATION SYSTEMS
PROGRAMS

Sl

SOFTWARE MANAGEMENT
RESEARCH

CORRELATION OF
E WITH ERRORS

COMMAND EXECUTIVE
DATABASE MANAGER
REPORT GENERATOR

TOTAL

snn) g

47 ©70-7100 53,920

42 10-6050 64,910
50-3700

- 10-7100 166,280

47,450

.81

. smn) g

GENERAL ELECTRIC
COMPANY

INFORMATION SYSTEMS
PROGRAMS

Sl

SOFTWARE MANAGEMENT
RESEARCH

CURTIS, SHEPPARD, & MILLIMAN'S
DATA (1979)

SPACE DIVISION

INTERRELATIONSHIPS

v(e)
LENGTH 56" .90%**

TIME TO FIND BUG:
TOTAL PROGRAM J5% .65 524

SUBROUT INE

NOTE: N = 27
*** p <.,001

oLl

ID
smn) ‘g

GENERAL ELECTRIC

COMPANY

SPACE DIVISION

TIME TO LOCATE BUG (MINUTES)

40

w
Q

~N
(=]

—
(=]

INFORMATION SYSTEMS

HALSTEAD'S E

SCATTERPLOT OF HALSTEAD’S E PROGRAMS
WITH DEBUGGING TIME S [D)
SOFTWARE MANAGEMENT
RESEARCHH
@ .) ®
®
o ®
e ,°
®
P Se
'y @. R=.7/5
o ° Rec2) = +85
'y 3 1 .n__A
100K 150K 200K

peT

GENERAL ELECTRIC
COMPANY

ERRCR RATIO

1 - INFORMATION SYSTEMS
CURTIS AND MILLIMAN’S DATA (1979) § PROGRAMS

ERROR RATIO BY MONTH (S D)

SOFTWARE MANAGEMENT
RESEARCH

TR TN T B

osemn TOTAL ERRORS
we om os ALGORITHMIC ERRORS

®
Y

)
i
i
)
-
)
)
-\

S
)

(] 7] 9
MONTHS INTO DEVELOPMENT

13%4

siuny g

GENERAL ELECTRIC
COMPANY

PREDICTION OF POST-DEVELOPMENT
ERRORS

SPACE DIVISION

i
s
o
(0]
|
]
o
Qo
ol 4
80:
Ouw
[T
O
[' s
w
m
2
)
z

INFORMATION SYSTEMS
PROGRAMS

S [)

SOFTWARE MANAGEMENT
RESEARCH

ES LsDB
43 oae

7

Y,
Z

L

ACTUAL HALSTEAD DAP LIN. ACTUAL HALSTE
RATIO REG.

SOURCE OF PREDICTION

AD LSDB
RATIO

9¢T7

stun) g

GENERAL ELECTRIC " INFORMATION SYSTEMS
COMPANY | | PROGRAMS

COMPARISON OF ERROR V gt@

DISTRIBUTIONS
SPACE DIVISION : ' SOFTwaggEmagﬁceneur

2
[+]
[
=
w
"
<«
6
-
w
-3
:
w
(%]
e .
.

| 1 T T T
COMPUATIONAL DATA INPUT INTERFACE DATABASE
+ DATA 4 PROGRAM
HANDLING EXECUTION

CATEGORY OF ERROR

(9

LET

swn) g

GENERAL ELECTRIC

COMPANY _ FACTORS INFLUENCING THE

SPACE DIVISION

UNSTRUCTURED PROJECTS

.

————————

STANDARD
. ERROR OF
ESTIMATE

-

/

ACCURACY OF PREDICTION

INFORMATION SYSTEMS

PROGRAMS

S [

SOFTWARE MANAGEMENT

RESEARCH

STRUCTURED PROJECTS

(

INDIVIDUAL DIFFERENCES
ENVIRONMENTAL FACTORS ~—u

ACTUAL # OF BUGS ————p

STANDARDS & PRACTICES —

MANAGEMENT TECHNIQUES —u

SN~

STANDARD
ERROR OF
ESTIMATE

8€T

swn) g

GENEnALMEkgsTRIC . INFORMATION SYSTEMS
co : CONCLUSIONS . PROGRAMS

Slp

SOFTWARE MANAGEMENT :
SPACE DIVISION : | RESEARCH 3

MEASURES OF SOFTWARE CHARACTERISTICS CAN BE USED TO PREDICT THE
NUMBER OF ERRORS IN A PORTION OF CODE AND THE EFFORT REQUIRED

TO FIND AND CORRECT THEM

DIFFERENT PREDICTIVE PLOTS WILL BE OBSERVED FOR DIFFERENT CLASSES
OF ERRORS .

THERE ARE OPTIMAL LEVELS IN THE CODE FOR CALCULATING METRICS

THE PREDICTION OF SOFTWARE RELIABILITY AND MAINTENANCE REQUIREMENTS
CAN BEGIN EARLY IN THE SOFTWARE DEVELOPMENT CYCLE, AND IMPROVEMENTS
CAN BE MONITORED

