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SUMMARY

An analysis of the effects of sweep and aspect ratio on the longitudinal aerody-

namics of a wing in and out of ground effect has been made. Experimental data were

obtained in the Langley 4- by 7-Meter Tunnel for a wing with various sweep angles,

aspect ratios, and flap deflections both in and out of ground effect. Theoretical

predictions of the out-of-ground-effect lift coefficients and flap effectiveness and

the in-ground-effect lift coefficients are compared with the experimental results.

As expected, the lift-curve slope and flap effectiveness are reduced when the

aspect ratio is reduced or the sweep angle is increased both in and out of ground

effect. In ground effect, the lift and flap effectiveness are increased above a wing

height-to-span ratio of 0.15. However, with flap deflections less than or equal to

10 ° and an angle of attack near 0° , lift is markedly decreased at very low heights

above the ground plane. This trend is not predicted by planar theoretical models but

is predicted by a surface-panel method where thickness effects are included.

INTRODUCTION

In the early 1970's, a very large airplane was proposed to transport oil from

the North Shore of Alaska to the continental United States. This airplane was

designed to carry the payload of oil inside the wing itself. It was proposed that by

distributing the payload across the wing span the aerodynamic loads on the wing would

be largely balanced by the payload and structural weight as depicted in figure I.

Thus, the wing-root bending moments would be considerably reduced (see fig. 2), and

the structural-weight fraction of the airplane would be improved because the weight

of the massive spar structure required on conventional airplanes would be reduced.

Along with the proposed improvements in structural-weight fraction, it appeared that

because the payload was to be carried in the wing, the fuselage could be eliminated;

thus, the aerodynamic efficiency of the airplane would be improved because of the

more favorable ratio of wetted area to wing area. This early design led to the span-

distributed-load airplane or spanloader concept of the middle 1970's. These air-

planes were designed, again, to carry the payload in the wing, but the payload of

conventional consumables (instead of oil) was to be carried in standard 2.4- by 2.4-m

containers. Several companies designed such airplanes, and the Langley Air Cargo

Work Group had the responsibility of monitoring the company designs and analyzing the

concept. (See refs. I to 9.) Another large span airplane to be used to ferry and

air-launch the space shuttle orbiters was proposed during this time and was reported

in reference 10.

One of the major operating-problem areas for these large airplanes was seen as

the landing. Due to the long wing span and sweep angle of the airplane, conventional

landing techniques such as rotating to higher angles of attack for flaring at touch-

down or decrabbing and dropping a wing for crosswind operations, do not appear to be

feasible. Therefore, alternate techniques n_/st be developed for landing, such as not

increasing the angle of attack at landing but allowing for ground effect to reduce

the rate of descent as lift increases near the ground, and developing the method of

landing while in crabbing flight, like the B-52 strategic bomber, for crosswind oper-

ations. However, this is an area that was not addressed in a previous wind-tunnel



investigation in the Langley High-Speed 7- by 10-Foot Tunnel (ref. 11) or in theoret-

ical studies in the contractor reports (refs. I and 3 to 5).

A survey of NASA wind-tunnel reports indicated three applicable reports. (See

refs. 12 to 14.) These, however, covered only unswept wings with either a high

aspect ratio (AR = 10 in ref. 12) or a very low aspect ratio (AR = I in refs. 13

and 14). Information did not exist at intermediate ranqes of wing aspect ratio

(AR = 2 to 8) with varying sweep angles (A = 0 ° to 45 ° ) either in or out of ground

effect. It appeared that there was an opportunity to generate both a data base and

an understanding of ground effects for very large span configurations where airplane

wing height-to-span ratios h/b can be small. When planning the present investiga-

tion, the first step involved a determination of the appropriate range of wing

heights or h/b for the test program. For example, conventional transport-type

airplanes generally have a minimum h/b at wheel touchdown of about 0.1. This mini-

mum occurs because the landing gear must be long enough to allow rotation of the

airplane to take-off and landing attitudes. However, because the spanloader airplane

will not rotate but will take off and land in a flat attitude, and because there is a

reasonable limit to the maximum length of the landing gear, these airplanes will have

extremely low minimum ratios of h/b of about 0.01 to 0.02. (See fig. 3.) This

very low h/b might lead to some aerodynamic interaction between the wing lower sur-

face and the runway that is not generally seen at more conventional heights.

An investigation of the longitudinal aerodynamics for this class of vehicle both

in and out of ground effect was conducted with both a research model in the Langley

4- by 7-Meter Tunnel (formerly V/STOL Tunnel) and analytical-computer models. An

initial data report of this wind-tunnel investigation was given in reference 15. The

wind-tunnel model had an NACA 0018 airfoil section with a 25-percent-chord plain

trailing-edge flap. The sweep of the model could be varied from 0 ° to 45 ° , and the

aspect ratio could be varied from 2 to 8. These various configurations were analyzed

with computer studies to predict the basic aerodynamics both in and out of ground

effect before wind-tunnel testing began. These same configurations were then tested

in the wind tunnel to correlate the effects of sweep, aspect ratio, and ground height

on the longitudinal aerodynamics of the wing in and out of ground effect. These data

were obtained at a dynamic pressure of 1.44 kPa or a Mach number of 0.14. (See

ref. 15.) The range of angle of attack was from -7.2 ° to 18.7 ° and the range of wing

height-to-span ratio was from 0.016 to greater than 2.0.

SYMBOLS

All data have been reduced to standard coefficient form and are presented in the

stability axis system. Where there are differences, the symbols enclosed in paren-

theses are added to help correlate with the tabulated printouts in reference 15 and

their usual notation precedes them.

AR aspect ratio

b wing span, m

C D (CD) drag coefficient, D/q S

C L (CL) lift coefficient, L/q S

CL_ lift-curve slope measured over the linear portion of the

lift curve, _CL/5_ , deg -I
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h
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X

x/c
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Z

F
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(CM)

(CBAR)

(H)

(H/B)

(Q)

(ALPHA)

flap effectiveness measured between 6f = 0° and 5°,

5CL/_6f, deg -1

pitching-moment coefficient, (pitching moment)/q S_

pressure coefficient

chord length, m

wing mean aerodynamic chord, m

drag, N

distance from ground in z-direction to lower surface of wing

at 0.25_, m

ratio of height of wing above ground to wing span

arbitrary (panel)

arbitrary (horseshoe vortex)

lift, N

unit normal vector

free-stream dynamic pressure, kPa (KPA)

wing area, m 2

wing maximum thickness, m

thickness-to-chord ratio

free-stream velocity vector, m/sec

dimension on longitudinal axis

nondimensional distance along wing chord line from leading

edge

distance from nose of centerbody to moment reference center,

found to be the theoretical center of pressure of

configuration, m

length of panel in vortex-lattice modeling

direction on vertical axis

angle of attack, deg

horseshoe-vortex circulation strength

vorticity strenqth in surface-panel modeling



deflection of flap or elevon, measuredperpendicular to
hinge line (positive trailing edge down), deg

leading-edge sweep, deg

source strength in surface-panel modeling

Subscripts :

e elevon

f f lap

s streamwise

Abbreviations:

IGE in ground effect

OGE out of ground effect

VTOL vertical take off and landing

MODEL DESCRIPTION

The spanloader model tested in the Langley 4- by 7-Meter Tunnel (formerly the

V/STOL Tunnel) was a conceptual tailless configuration with an untwisted, NACA 0018

airfoil, constant chord wing with a centerbody (sized to accommodate the balance).

Figures 4 and 5 are photographs of the model installed in the tunnel.

A sketch of the model configurations is presented in figure 6. The four

leading-edge sweeps of 0 °, 15 ° , 30 ° , and 45 ° are designated as configurations I, II,

III, and IV, respectively, and were obtained by using different root sections.

Appropriate tip sections were added to maintain streamwise tips. Various aspect

ratios were obtained by the addition or subtraction of wing sections to the span-

wise segmented wing. For each leading-edge sweep angle, the configuration with

the highest aspect ratio is referred to as configuration A and with the lowest as

configuration D. Table I gives the geometric characteristics for each of the

16 configurations.

Figure 7 shows the available aspect ratios plotted against the available sweep

angles for the model. The points are faired to connect the configuration points

marked A, B, C, and D. It can be seen that, for this model, sweep cannot be varied

at a constant aspect ratio. The dashed line indicates that sweep can almost be

varied at a constant aspect ratio of 4; however, the aspect ratio actually varies

from 4.25 to 3.92, or about 8 percent. This model construction constraint presents

some problems in direct comparisons between configurations, because the wing area and

thickness ratio also change when sweep is varied.

The trailing edge of the wing was divided into several simple flap elements

which equal 25 percent of the wing chord in length from pivot to trailing edge.

These elements were defined as flaps on configuration D and as a combination of flaps

and elevons on configurations A, B, and C. Figure 6 shows the definition of flap and

elevons for configuration A0 Note that for the 30 ° and 45 ° sweep configurations, the

two outboard trailing-edge elements plus the small trailing-edge element on the wing
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tip are defined as elevons in figure 6(b). This elevon definition is maintained on
configurations B and C by removing an inboard section of the wing to change configu-

ration aspect ratio, while retaining the outboard and tip sections. Thus, the elevon

span remains constant while the flap span is reduced.

After a review of the solution for the flow separation on the spanloader model

tested in reference 11, vortex generators were placed on the wing upper surface at

x/c = 0.55 on the full span for all model configurations. These vortex generators

were designed with a toe out of 15 ° from free stream. Drawings of the vortex-

generator geometry for the left wing are given in figure 8; and figure 9 is a photo-

graph showing the installation on the A = 30 ° configuration. Note that the right-

hand vortex generators are simply mirror images of those on the left.

Transition strips of No. 80 abrasive grains, 0.3175 cm in width, were placed

2.54 cm aft of the leading edge on the upper- and lower-wing surfaces in accordance

with reference 16. Forces and moments were measured by an internally mounted six-

component strain-gage balance, and angle of attack was measured with an internally

mounted accelerometer. All pitching-moment data are referred to the moment reference

locations shown in table I. These data correspond to the aerodynamic center of pres-

sure of each configuration as predicted by the vortex-lattice theory of reference 17.

All axial-force data were corrected for the base-pressure drag of the centerbody.

Because of the relatively small model size and low lift coefficients generated, wall

effects were minimal. Therefore, no jet-boundary corrections have been applied to

these data.

Tests performed on each model configuration included an angle-of-attack sweep,

out of ground effect at _ = -7.2 ° to 18.7 ° , and height sweeps at _ = -1.2 ° , 0.8 ° ,

and 2.8 ° in ground effect. Approximate values of h/b for the in-ground-effect

sweep were 0.02, 0.03, 0.05, 0.10, 0.25, 0.35, 0.50, and 1.00.

In many cases, ground-effect testing is conducted in the presence of a moving-

belt ground plane to represent more accurately the interaction between the airplane

and the ground without the interference of a thick boundary layer on the wind-tunnel

floor. However, the use of the moving belt for this test would have limited the Mach

number to about 0.09 which would have reduced the Reynolds number for some configura-

tions below 1 x 106 . It was felt that the data obtained at such low Reynolds numbers

could be questionable. The criteria of reference 18 indicated that the combination

of low lift coefficients and the range of h/b to be used on most of the present

group of model configurations would provide test conditions which did not require the

use of the moving-belt ground plane. The tunnel-floor boundary-layer thickness was

reduced to approximately 4 to 5 cm with a displacement thickness of approximately

I cm (see ref. 19) at the model location by the boundary-layer removal system located

at the leading edge of the test section. This meant that some of the configurations

with a lower aspect ratio would be in the upper portion of the boundary layer at the

lower h/b setting. However, since most configurations met the requirement of ref-

erence 18 and were out of the floor boundary layer, the test was conducted at higher

Mach numbers without the moving belt so that Reynolds numbers would be in the range

from 1.3 to 1.8 × 106 •

PRESENTATION OF RESULTS

The complete tabulated results of the data obtained in this wind-tunnel investi-

gation are given in reference 15. Pertinent coefficient data, along with panel geom-

etries and comparisons of theoretical and experimental results, are presented in this

report as follows:



Figure

Effect of aspect ratio on longitudinal aerodynamics ........................ 10 to 13
Effect of aspect ratio on lift-curve slope ................................. 14
Effect of flap deflection on longitudinal aerodynamics ..................... 15 to 18
Effect of elevon deflection on longitudinal trim ........................... 19 to 22
Effect of aspect ratio on longitudinal aerodynamics in

ground effect ............................................................ 23 to 30
Effect of flap deflection on longitudinal aerodynamics in

ground effect ............................................................ 31 to 38
Sketches of theoretical panel models ....................................... 39 to 45
Theoretical effect of aspect ratio on lift-curve slope for

configurations I to IV ................................................... 46
Theoretical effect of wing sweepangle on lift-curve slope at

constant aspect ratio .................................................... 47
Effect of ground proximity on lift coefficient at _ = I°

for various configurations ............................................... 48

Comparison of ground effects predicted by vortex-lattice and

Hess surface-panel methods ............................................... 49

Theoretical pressure distribution due to venturi effect caused

by ground-image system ................................................... 50

Comparison of lift coefficients predicted by vortex-lattice

and Hess surface-panel methods with experimental data .................... 51

Comparison of lift-curve slope predicted by vortex-lattice
CL_

method and experimentally determined at several aspect
CL_

ratios ................................................................... 52

Comparison of flap effectiveness CL6 f predicted by vortex-

lattice method with experimentally determined CL6 f ...................... 53

Comparison of ground effects on lift coefficient predicted by

vortex-lattice and Hess surface-panel methods with

experimentally determined ground effects ................................. 54

Comparison of ground effects on lift coefficient predicted by

Hess surface-panel methods with experimentally determined

ground effects ........................................................... 55

Effect of vortex generators on longitudinal aerodynamics ................... 56

Effect of sweep on lift and pitching-moment coefficients at

approximately constant aspect ratio with vortex generators

in place ................................................................. 57

DISCUSSION

EXPERIMENTAL RESULTS

Longitudinal Aerodynamics Out of Ground Effect

Effect of aspect ratio.- The effect of aspect ratio on the longitudinal aerody-

namic characteristics of configurations I to IV with several flap deflections is

presented in figures 10 to 13. The effect of aspect ratio on experimental lift-curve

slope (measured on the linear portion of the lift curve) is presented in figure 14,

and, as expected, CL_ is reduced as aspect ratio decreases and leading-edge sweep



is held constant. For example, in configuration I-A (AR = 8), CL_ = 0.084 per

degree and this is reduced in configuration I-C (AR= 4) to 0.067 per degree. It
can also be seen that the effect of aspect ratio on CL_ is reduced as sweep angle

is increased. That is, for a given decrease (or increase) in aspect ratio, the

change observed in CL_ is smaller at higher sweep angles than at 0 ° sweep.

There is also, at first look, a possible anomaly in the data for the configura-

tions with lowest aspect ratio when the flaps are deflected. The lift-curve slopes

appear to be correct, but the angle of attack for zero lift is lower for configura-

tion D than for configurations A, B, and C. (See figs. 10(b), 10(c), and 10(d).)

This trend is present because configuration D has full-span flaps; whereas, configu-

rations A, B, and C have elevons (as discussed in the model description) which are

not deflected, and thus, are only partial-span flaps. This trend is also apparent in

the nose-down increment in the pitching-moment data and in the large increment in

minimum C D for configuration D.

There are also fairly large increases in minimum C D as the aspect ratio

decreases for all configurations when 6f = 0 °. (For example, see fig. 10(a), 11(a),

12(a), or 13(a).) This trend is a function of aspect ratio because as the wing span

(and, hence, the reference area) decreases the drag from the centerbody, which is

constant, becomes proportionally larger relative to the wing drag, thus increasing

minimum C D. An opposite effect would be seen as sweep angle is increased. Because

the wing area is increased for a given aspect ratio (as the root and tip sections are

added), the constant centerbody drag would contribute a smaller drag coefficient and

minimum C D would be decreased. Aside from the minimum C D shifts due to center-

body effects, the drag polars show the expected trends of decreased span efficiency

as aspect ratio is decreased.

Effect of flap deflection.- The effects of flap deflection on the longitudinal

aerodynamic data of configurations I to IV are presented in figures 15 to 18. The

data in figure 15 are for flap deflections of 0°, 10 ° , 20 ° , and 30 ° . It can be seen

that the increments in C_ and C m are greatly reduced at _e = 30 ° although mini-
mum C D increases at tha_ flap setting. This is typical of trends seen when a

plain flap separates at large deflection angles. This was noticed early during the

wind-tunnel tests, and the 6f = 30 ° deflection was replaced by 6f = 5° on subse-

quent configurations to avoid flap separation. In general, these data show the

expected trend of decreasing the effects of the flaps as flap deflections are

increased, thus showing the increasing flow separation on a simple flap as deflection

is increased. The flow separation is also evident in the increasing increments in

minimum C D as flap deflections are increased, particularly for 6f ) 20 ° • Finally,

the effect of the flaps is generally reduced as sweep is increased or aspect ratio is

decreased. These trends are consistent with the effects of sweep and aspect ratio on

C L . Along with this trend, it is seen that the negative pitching-moment increment

for a given 6f is greatly reduced as the sweep angle is increased.

Elevon Trim

The effects on the longitudinal aerodynamics caused by the outboard flap

elements as elevons are presented in figures 19 to 22. As discussed in the section

"Model Description," the elevons are simple flap elements which are deflected both

positively and negatively in order to generate longitudinal pitch-control moments



similar to those of a horizontal tail. It can be seen in figures 19 to 22 that the

elevons can maintain trim for neutral stability on all longitudinal configurations

with flaps deflected I0 ° over the entire angle-of-attack range tested except on con-

figurations I-A and I-B (A = 0 °, AR = 8, and AR = 6). In these two straight-wing

configurations, because the moment arms for the flaps and elevons are the same (see

fig. 6(a)), the moment generated by the larger flap area cannot be balanced by the

moments from the smaller elevons. Configuration I-C can be trimmed by the elevons

because the elevons as defined are larger than the flap. On all other configura-

tions, the favorable moment arm available for the elevons, due to the wing sweeps,

is dominant and trim can be easily obtained over the complete angle-of-attack range

tested. Also, as expected, positive elevon deflections (which become a full-span

trailing-edge flap) produce increases in C L and C D. Negative elevon deflections

produce decreases in C L and increases in C D. The changes in the drag polar and

minimum C D are typical of those caused by simple control deflections.

Longitudinal Aerodynamics in Ground Effect

Effect of aspect ratio.- The effects of aspect ratio on the longitudinal aerody-

namic characteristics of configurations I to IV in ground effect are presented for

= 2.78 ° in figures 23 to 26 and for _ = 0.78 ° in figures 27 to 30. As pre-

viously shown by the out-of-ground-effect data, the effect of decreased aspect ratio

in ground effect is to also reduce CL , or as shown in these figures, to reduce C L

at a constant angle of attack. Also, the trend of increasing C D with decreasing

aspect ratio, due to proportionally higher centerbody drag relative to the wing, is

again present in these data.

Effect of flap deflection.- The effects of flap deflection on the longitudinal

aerodynamics of configurations I to IV in ground effect are presented for _ = 2.78 °

in figures 31 to 34 and for _ = 0.78 ° in figures 35 to 38. As previously shown

in the out-of-ground-effect data, the effect of flap deflection is decreased with

increased flap deflection because of flow separation. Also, flap effectiveness is

reduced with increasing sweep angle. However, the effect of flap deflection is

approximately constant as the ground plane is approached at _ = 2.78 °. However, at

= 0.78 ° , the effect of flap deflection seems to increase as the ground plane is

approached.

Ground Effect

As a conclusion to the discussion of experimental results, a comment should be

made about ground effects. It should be noted that when _ = 2.78 ° (see fig. 23,

for example) the minimum h/b is increasing as the aspect ratio is decreased. This

result is because the geometry of the sting support system limits the minimum h

that can be obtained; and, thus, as wing span decreases, minimum h/b must increase.

However, when _ = 0.78 ° , the model lower-surface limits h; and thus, a generally

constant minimum h/b can be maintained by lowering the model as aspect ratio

decreases. The data of figures 23 to 26 (_ = 2.78 ° ) generally indicate expected

ground effects in that C L is increased, C D is decreased, and, for these data

only, slight nose-up changes in pitching moment are observed. However, as shown in

figures 27 to 30, there are some interesting trends in the data at _ = 0.78 ° . These

data show that C L increases down to h/b _ 0.1 as would be expected; and then,

for the data with low or zero flap setting, C_ decreases at the very low h/b.

Also, for these cases, C D increases at low _/b and rather substantial nose-up



pitching moments are indicated. These ef£_cts, which are due to accelerated flow

beneath the wing, will be discussed in greater detail in the following section of

this report.

These lift losses and drag increases are of particular interest because it has

been proposed that these spanloader airplanes would land at about _ = 0 ° and,

instead of cushioning a landing, these effects would lead to rather hard landings.

Rather than land with 6f = 0 °, it is more likely that an airplane would land with

some larger flap deflection. In this instance, with 6f = 5° to 10 ° , these effects

would be reduced but not eliminated. These effects appear to be eliminated at

6f = 20 ° •

THEORETICAL PREDICTIONS OF C L AND CL_

Preliminary theoretical predictions of lift-curve slope were made with the

method of reference 17. This method is based on the vortex-lattice concept where a

planform can be modeled as shown in figure 39. On each panel, a horseshoe vortex is

placed with the bound leg at the quarter chord of the panel, and the boundary condi-
A

tion of no flow perpendicular to the panel surface !_ • n = 01 is applied at the

0.75c on the panel. (See fig. 40.)

Ground interference effects can be calculated with this method by using an image

concept, as shown in figure 41, where a mirror image is placed below the ground

plane. This system is then represented as a planar vortex-lattice system. (See

fig. 42.) The image system produces a condition of no flow perpendicular to the

ground plane (or plane of symmetry), and induces an upwash on the main configuration

that simulates the normal ground effects. One possible drawback to this method was

the planar modeling of the configuration, especially when very near the ground

plane. It appeared that for a wing with t/c = 0.18, the thickness effects should

not be omitted. Another potential problem with this method is that for a high-

aspect-ratio wing with sweep, there is a large variation in actual height between the

wing apex and the trailing edge of the wing tip which is not accounted for in planar

modeling.

Therefore, the configurations were modeled with the Hess method of reference 20

which included thickness effects. Because of the thickness representation used in

this model, it was felt that the ground effects calculated by the Hess method could

be different from those calculated by the vortex-lattice method (to be discussed in a

later section). This method models a configuration as shown in figure 43. Constant

source and vorticity panels are then placed^on the actual-configuration surface

geometry, and the boundary condition _ • n = 0 is applied at the centroid of each

panel. (See fig. 44.) With this approach, the nonlifting or thickness solution is

given by the source panels, and this is combined with the lifting solution from the

vorticity panels to give the final surface pressures which can be integrated to give

total forces and moments. This approach was also used to estimate ground effects

with an image system. (See fig. 45.)

Lift-Curve Slope Out of Ground Effect

The theoretical calculations of CL_ from both methods for configurations I

to IV are given in figure 46 as a function of aspect ratio. Because it is well known

that vortex-lattice methods give reasonable results for CL_ and because inputs to

9



the Hess program are somewhattedious and the calculations are rather expensive, only
three configurations (I-A, II-A, and III-A) were modeled as a check of CL_ with

thickness effects included. The predictions in figure 46 indicate the expected
trends of reduction in CL_ when sweepis increased or aspect ratio is decreased.

These data are cross-plotted in figure 47 to showmore clearly the effect of increas-

ing sweep angle at a constant aspect ratio on The three values of for
CL_" CL_

configurations I-A, II-A, and III-A are plotted in figure 46 for comparison of the

Hess results with the vortex-lattice results. The results from Hess which include

thickness are, as expected, slightly higher than the results from the vortex lattice

which do not include thickness.

From these results, it can be seen that the effect of sweep diminishes at the

lower aspect ratios. For example, if AR = 5, then \/(CL hA=0 ° = 0.731 per degree

and \[CL /h = 0.0562 per degree for a change of CL_ of 0.0169 per degree. AtA=45 °

AR = 3, (eL)A=0 ° = 0.0600 per degree and (eL)A=45 ° = 0.0500 per degree for e

change of CL_ of 0.0100 per degree.

Effect of Ground Plane on Lift Coefficient

The vortex-lattice results for the ground effect on C L are presented in fig-

ure 48. The results are presented as C L plotted against h/b for each configura-

tion at a constant sweep angle as aspect ratio is decreased. The typical result of

ground-induced upwash, which causes an increase in C L as the ground is approached,

is clearly shown in the figure. The ground effects are generally limited to

h/b < 0.25 with a decided break in the curve at h/b = 0.10 where the slope of the

curve increases rapidly. This trend is consistent for all configurations, along with

the trends associated with increasing A and decreasing AR as discussed earlier.

Results from using the Hess method for the ground effect on C L for configura-

tions I-A, II-A, and III-A are presented in figure 49. Corresponding results from

using the vortex-lattice method are also shown for comparison. The striking differ-

ence in predicted ground effects for the two methods is apparent. At low h/b, the

Hess results predict decreasing C L as h/b is decreased, rather than the expected

increases in C L shown by the vortex-lattice results. This result had not been seen

previously. However, as the following discussion and figure 50 will show, this

result is not at all surprising and, in fact, should be expected for these very thick

wings at low h/b.

Figure 50 shows a two-dimensional section of the wing and its image of config-

uration I-A as represented in this method at _ = 1.0 ° and at h/b = 0.1 or the

break in the C L curve in figure 49. Also shown in figure 50 is the two-dimensional

section of the configuration when h/b = 0.05. Notice the similarity of the wing

lower surface and the image upper surface to the shape of a venturi tube. It would

seem that the flow would accelerate between these two surfaces and reduce the pres-

sures on those surfaces. The pressure distributions show that this venturi effect is

exactly what happens in this calculation. The upper-surface pressure is almost

unchanged, whereas the lower-surface pressure is markedly decreased; and the minimum

pressure is seen to occur at the point of minimum area between the wing and image

I0



(i.e., at maximum t/6) exactly as in a venturi tube. This lowering of the lower-
surface pressure reduces CL in a mannernot unlike the "suck down" seen on some
powered-lift VTOLconfigurations. Thus, for these thick wings, the venturi effect on
the lower surface can completely negate the upwasheffect of the ground plane and
actually reduce CL rather drastically very near the ground. This result now
becomesone of great importance because spanloader airplanes were proposed to operate
at these low h/b ratios, and this reduction in lift (if present on the real con-
figuration) would lead to somerather hard landings, instead of the cushioned land-
ings that were anticipated due to favorable ground effect. As will be discussed in a
following section and as wasmentioned in the discussion of experimental ground
effects, this effect is moderate at 6f = 5 ° and 10 ° and is effectively eliminated

at 6f = 20 ° •

COMPARISON OF THEORY AND EXPERIMENT

Lift-Curve Slope

A comparison of the predicted lift curves and the experimental lift curve for

three selected configurations is presented in figure 51. These three configurations

(I-A, II-A, and III-A) represent the configurations which were modeled in both the

vortex-lattice and Hess methods. The vortex-lattice method appears to give a fairly

accurate prediction of the lift curve for configuration I-A, whereas the Hess method

tends to overpredict the lift curve. At the higher sweep angles (i.e., A = 15 °

and 30°), both methods underpredict the lift curve of configurations II-A and III-A.

This trend is consistent for all configurations as shown in figure 52 where all con-

figurations are modeled in the vortex-lattice method. These predicted lift-curve

slopes are compared with the experimental CL ; and the theory fairly accurately

predicts CL_ at A = 0 ° and increasingly underpredicts CL_ as sweep is increased

to 45 ° • This trend is thought to be caused by the increased loads generated by the

vortex generators as sweep and resulting spanwise flow are increased. This discus-

sion is found in a later section of this paper.

Flap Effectiveness

A comparison of predicted out-of-ground-effect flap effectiveness C L and
6f

the experimental C L is presented in figure 53. The experimental values of

6f

C L were determined for the 5° flap deflection since C L fell off rapidly at
6f 6f

6_ = 10 ° and 20 ° because of flow separation on the flap. It should be noted that

t{e theory had streamwise flap deflections where the flap elements are deflected

parallel to the free stream. (See fig. 39.) However, the data (because of model

constraints) had hinge-line flap deflections where the flap elements are deflected

normal to the flap hinge line. (See fig. 6.) Therefore, the C L from the data
6f

has been adjusted to the equivalent streamwise values. This was done by calculating

the effective streamwise deflection of the model flap system by using

-I

6f, s = tan (tan 6f cos A)

11



and then computing

= CL6 fCL6f, s

A list of hinge-line and streamwise flap deflections is given in table II.

It can be seen that the predictions of C L are quite good for configuration I
6f

and are somewhat poorer for the other configurations with configuration III being the

worst case. Also, where there is disagreement, the experimental C L is generally
6f

below that predicted by theory. This result is not surprising because for any simple

hinge flap there will be a reduction from potential-flow effectiveness at any deflec-

tion. The adverse pressure gradient, because of rapid pressure recovery, aft of the

large negative pressures generated by the high curvature at the knee of the flap

will, at least, result in a thick boundary layer which will reduce flap effectiveness

and will, at most, completely separate the flow on the flap.

Ground Effects

The comparison of predicted and experimental ground effects on the four selected

configurations (I-A, I-C, II-A, and III-A) is presented in figure 54. The data are

presented as C_ Tc=/CL _C_ to nondimensionalize the results as a percentage

increase or decrease in _l{t from that of the configuration out of ground effect.

The theoretical results from figure 48 are replotted in the same form C_ T_/CT n_

for direct comparisons. The data follow the trend seen in the Hess prediction dls-

cussed earlier in that there is a lift increase indicated as the ground plane is

approached which becomes a rapid lift loss as h/b 4 0.10. There is scatter in the

data, and the magnitude and location (h/b) of the peak in lift increase are not

exactly as predicted; however, the overall trend is well established and in direct

opposition to the trends predicted by conventional vortex-lattice methods. There

does not seem to be a consistent trend to the difference between experimental and

theoretical data. That is, the differences do not appear to be a function of sweep

or aspect ratio which would indicate a basic problem with the modeling technique.

This reduction in lift at low h/b was present for all configurations except those

with high flap deflections where the traditional increases in C L are present.

When the flap is deflected, the flap trailing edge becomes the low point (i.e.,

nearest the ground plane) on the configuration and interference between the flap and

the boundary layer on the ground plane may be effectively blocking the flow. This

will tend to produce stagnation conditions under the wing and can then lead to large

increases in lift like the wing in-ground-effect (WIG) configuration of reference 21.

Another possibility for the change in ground effect when the flap is deflected

is that the area ratio between the maximum thickness point and the trailing-edge flap

point is changed. At 6_ = 20 ° , the minimum area is located at the trailing edge

which eliminates the ven_uri-tube shape under the wing (see fig. 6(c)) and thus, the

flow will not accelerate under the wing. At the intermediate flap settings (6f = 5°
and I0O), the area at the trailing edge is not the minimum under the wing but is

reduced from the 6f = 0° area. Thus, the venturi-tube shape is modified, and the

12



velocities under the wing will be correspondingly modified. As such, the ground

effects are reduced but not eliminated at 6_ = 5° and 10 ° • This is verified in fig-

ure 55 where CL, IGE/CL OGE from the Hess t_eory for configurations I-C and III-B or

A = 0° and A = 30 _ with 6f = 10 ° are compared with the experimental results.

Again, it can be seen that the theory and experiment agree well and that the lift

loss at low h/b is greatly reduced (but not eliminated) from the previous 6f = 0 °

cases.

EFFECT OF VORTEX GENERATORS

As noted in the section "Comparion of Theory and Experiment" for CL_ , the

theory tends to underpredict the lift data at sweeps greater than 0 ° and the error

seems to get worse as the sweep angle is increased. In an effort to define and

explain this problem, a general discussion of the effect of the vortex generators is

presented.

Prior to the wind-tunnel tests, reference 11 was used to determine the need for

a set of vortex generators to maintain attached flow on the aft portions of the thick

NACA 0018 airfoil section used on this model. The effect of the vortex generators

was large. (See fig. 56.) Significant increases in lift and increments in nose-down

pitching moment indicate that the aft portion of the wing was indeed separated and

was reattached when the vortex generators were in place. It may be pointed out that

while this flow was being reattached, a large increment in drag was shown for the

vortex generator. It would seem that reattaching the flow in an effort to approach

potential flow would result in a drag reduction. However, the physical size of the

generators and the drag associated with producing the vortices have outweighed the

benefit in drag reduction expected when separated flow is reattached.

The underprediction of the experimental lift-curve slope is another matter. As

seen before, CL_ at A = 0° is predicted accurately and the error seems to

increase with increasing sweep angle. It was also noted before that the vortex gen-

erators were placed on the wing in such a way that they are toed out a constant 15 °

relative to the free stream. In retrospect, this would seem to give an increased

loading on the vortex generators since the sidewash velocity (spanwise flow) would be

increased as sweep angle was increased. Thus, the vortex generators would be at a

higher angle of attack and generate more intense vortex flows at higher sweep angles.

If these vortices produced suction forces on the wing in a manner similar to a

leading-edge vortex (see ref. 22), it might be possible to generate higher than

potential-flow lift on the aft portion of the wing. A possible indicator of this is

shown in figure 57 where C L and Cm are plotted against _ for four configura-

tions having an aspect ratio of 4 at A = 0 °, 15 ° , 30 ° , and 45 ° • The following table

lists the theoretical and experimental values of CL :

Configuration

I-C

II-C

III-C

IV-B

AR

4

4.25

3.92

4.1

A, deg

0

15

3O

45

Theoretical

CL_

0.0672

.0672

.0620

.0549

Experimental

CL_

0.0664

.0683

.0698

.0572

13



The trend is consistent except for configuration II-C which has an aspect ratio of
4.25 rather than 4. If the higher than predicted C L is due to excessive aft

loading from the vortex generator, then the pitching moments should show increasing

nose-down increments. This trend is seen in the C m data.

Another indication is seen in the stall characteristics of the various config-

urations. (See fig. 57.) Here, as the wing sweep is increased and the vortex gen-

erators produce increased vorticity, the stall break is seen to be delayed to higher

angles of attack. When A = 45 ° , it can be seen that there is no indication of stall

up to _ = 19 ° . The delay in wing stall shows that the increased vorticity from the

vortex generators delays flow separation on the aft portion of the airfoil.

From this discussion, it would appear that the vortex generators are developing

excessive vorticity and actually are producing a greater than potential-flow condi-

tion on the aft portion of the wing. The penalty paid for this would appear to be

the large increment in drag that occurs when the vortex generators are on the config-

uration as shown in figure 55. A more accurate placement of the vortex generators

would seem to be at a constant 15 ° angle relative to the resultant spanwise flow as

the sweep is increased. This would give an approximate constant vorticity which

would be equal to that generated on the straight-wing configurations, which seems to

be close to potential-flow conditions.

CONCLUSIONS

An analysis of the effects of sweep and aspect ratio on the longitudinal aero-

dynamics of a wing in and out of ground effect has been made. Experimental data were

obtained in the Langley 4- by 7-Meter Tunnel for a wing with various sweep angles,

aspect ratios, and flap deflections both in and out of ground effect. Theoretical

predictions of the out-of-ground-effect lift coefficients and flap effectiveness and

in-ground-effect lift coefficients are compared with experimental results. Some

general conclusions concerning the longitudinal aerodynamics of spanloader-type

(i.e., wing alone) configurations both in and out of ground effect are presented as

follows:

I. As expected, lift-curve slope is decreased when either the aspect ratio is

decreased or the sweep angle is held constant or is increased.

2. As expected, flap effectiveness is reduced at higher deflections, because of

flow separation, and it is also reduced when aspect ratio is decreased or when sweep

angle is increased.

3. Lift-curve slope and flap effectiveness at low angles of attack are both

generally increased in ground effect above wing height-to-span ratios h/b of 0.15.

However, at higher angles of attack, flap effectiveness is essentially unchanged in

ground effect.

4. At low angles of attack and flap deflections of 0 ° , lift-curve slope is

markedly reduced at very low h/b ratios. This appears to be caused by a venturi

effect that is formed when the flow is accelerated between the lower surface of the

wing and the ground plane, thus reducing the pressures on the underside of the wing.

The phenomenon is reduced at flap deflections 6f of 5 ° and 10 ° and is effectively

eliminated at 6f = 20 ° where the flap trailing edge is the low point beneath the
airfoil.

14



5. Theory tends to predict the out-of-ground-effect lift-curve slope and flap

effectiveness fairly well. The experimental lift curve does seem to be underpre-

dicted by theory at increasing sweep angles. This appears to be the result of the

vortex generators producing greater than potential lift on the aft portion of the

wing.

6. Theoretical and experimental predictions of lift-curve slope in ground effect

differ markedly, depending on whether planar (no thickness) or surface-panel (thick-

ness) m_deling techniques are used. The reductions in lift-curve slope at low h/b

indicated in the surface-panel modeling when 6f = 0° or 10 ° agree with the experi-
mental data.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

July 26, 1982
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TABLE I.- GEOMETRIC CHARACTERISTICS OF SPANLOADER CONFIGURATION

Configuration

I-D

I-C

I-B

I-A

II-D

II-C

II-B

II-A

III-D

III-C

III-B

III-A

IV-D

IV-C

IV-B

IV-A

Af

deg

0

0

0

0

15

15

15

15

30

30

30

30

45

45

45

45

AR

2

4

6

8

2.38

4.25

6.11

7.98

2.42

3.92

5.42

6.92

2.1

3.1

4.1

5.1

bl

m

0.80

I .60

2.40

3.20

.99

I .76

2.53

3.31

1.12

1.81

2.51

3.20

I .19

I .76

2.32

2.89

m

0.40

.40

.40

.40

.41

.41

.41

.41

.46

.46

.46

.46

.57

.57

.57

.57

S

3.20

6.40

9.60

12.80

4.09

7.28

10.49

13.69

5.17

8.37

11.57

14.77

6.73

9.93

13.12

16.33

Xmc •

m

0.35

.38

.38

.39

.39

.45

.50

.56

.42

.52

.62

.72

.44

•58

.72

.86

m

0.40

.40

.40

.40

.43

.48

.53

.58

.46

.56

.66

.76

.47

.61

.76

.90

t/E

0.180

•180

.180

• 180

.174

• 174

.174

• 174

.156

.156

.156

.156

.127

.127

.127

• 127
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TABLE II.- COMPARISON OF HINGE-LINE AND STREAMWISE FLAP DEFLECTIONS

Sweep angle,

A, deg

15

15

15

15

30

30

30

30

45

45

45

45

Hinge-line deflection,

6f, deg

0

5

10

20

0

5

I0

20

0

5

10

20

Streamwise deflection,

6f,s, deg

0

5

0

5

I0

20

I0

20

0

4.83

9.67

19.37

0

4.33

8.68

17.49

0

3.54

7.11

14.43
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Figure 1.- Spanloading and weight distribution for conventional and

spanloader transport airplanes.
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Figure 2.- Comparison of relative wing-root bending moments for conventional and

spanloader transport airplanes.
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(b) Configurations III and IV. A = 30 ° and 45 °.

Figure 6.- Continued.
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Figure 7.- Plot of aspect ratio against sweep angles available

for spanloader model. Dashed line indicates that sweep can

almost be varied at a constant ratio of 4.
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(a) Configurations with A = 0 ° and 30 ° .

I
2. O0

2

f
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%

(b) Configurations with h = 45 °.

T
2.00

1
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! !
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°
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I

Vortex generator formed by bending up
900 on dashed line. (See fig. 5.}

. )0

(c) Configurations with A = 15 a.

Figure 8.- Vortex generator plates. All dimensions in centimeters unless

otherwise noted.
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L-79-7515

Figure 9.- Vortex generator installed on configuration III-A.

A = 30°; AR = 6.92.
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Figure 41.- Ground-plane image concept for vortex-lattice method.
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Figure 42.- Fundamental ground-induced vortex-lattice image system.

141



WING
PANELS

FUSELAGE

PANELS
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Figure 44.- Distribution of source, vorticity, and control-point locations

for Hess surface panels.
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Figure 52. Comparison of lift-curve slope predicted by
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vortex-lattice method and experimentally determined CL_ at
several aspect ratios.
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Figure 52.- Concluded.
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Figure 54.- Comparison of experimentally determined ground effects with ground
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methods.

158



1.4

1.2

CL, IGE 1.0

C L,OGE

.8

.6
0

\ _ _ -_......._._._.

0

I I 1 I
.2 .4 .6 .8

EXPER I MENT

VORTEX LATTI CE

HESS SURFACE PANEL

O

I
1.0 1.2

h/b

(c) Configuration II-A.

CL, IGE
C

L, OGE

J_,4 --

1.2

1.0

.8
P

.6
0

_k

O EXPER I MENT

VORTEX LATTICE

HESS SURFACE PANEL

O

I I I I I
.2 .4 .6 .8 1.0

h/b

i ,,,,,__J
1.2 oo

(d) Configuration III-A.

Figure 54.- Concluded.
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