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SUMMARY

An analysis of the effects of sweep and aspect ratio on the longitudinal aerody-
namics of a wing in and out of ground effect has been made. Experimental data were
obtained in the Langley 4- by 7-Meter Tunnel for a wing with various sweep angles,
aspect ratios, and flap deflections both in and out of ground effect. Theoretical
predictions of the out-of-ground-effect lift coefficients and flap effectiveness and
the in-ground-effect lift coefficients are compared with the experimental results.

As expected, the lift-curve slope and flap effectiveness are reduced when the
aspect ratio is reduced or the sweep angle is increased both in and out of ground
effect. In ground effect, the lift and flap effectiveness are increased above a wing
height-to-span ratio of 0.15. However, with flap deflections less than or equal to
10° and an angle of attack near 0°, lift is markedly decreased at very low heights
above the ground plane. This trend is not predicted by planar theoretical models but
is predicted by a surface-panel method where thickness effects are included.

INTRODUCTION

In the early 1970's, a very large airplane was proposed to transport oil from
the North Shore of Alaska to the continental United States. This airplane was
designed to carry the payload of oil inside the wing itself. It was proposed that by
distributing the payload across the wing span the aerodynamic loads on the wing would
be largely balanced by the payload and structural weight as depicted in figure 1.
Thus, the wing-root bending moments would be considerably reduced (see fig. 2), and
the structural-weight fraction of the airplane would be improved because the weight
of the massive spar structure required on conventional airplanes would be reduced.
Along with the proposed improvements in structural-weight fraction, it appeared that
because the payload was to be carried in the wing, the fuselage could be eliminated;
thus, the aerodynamic efficiency of the airplane would be improved because of the
more favorable ratio of wetted area to wing area. This early design led to the span-
distributed-load airplane or spanloader concept of the middle 1970's. These air-
planes were designed, again, to carry the payload in the wing, but the payload of
conventional consumables (instead of o0il) was to be carried in standard 2.4- by 2.4-m
containers. Several companies designed such airplanes, and the Langley Air Cargo
Work Group had the responsibility of monitoring the company designs and analyzing the
concept. (See refs. 1 to 9.) BAnother large span airplane to be used to ferry and
air-launch the space shuttle orbiters was proposed during this time and was reported
in reference 10.

One of the major operating-problem areas for these large airplanes was seen as
the landing. Due to the long wing span and sweep angle of the airplane, conventional
landing techniques such as rotating to higher angles of attack for flaring at touch-
down or decrabbing and dropping a wing for crosswind operations, do not appear to be
feasible. Therefore, alternate techniques must be developed for landing, such as not
increasing the angle of attack at landing but allowing for ground effect to reduce
the rate of descent as lift increases near the ground, and developing the method of
landing while in crabbing flight, like the B-52 strategic bomber, for crosswind oper-
ations. However, this is an area that was not addressed in a previous wind-tunnel



investigation in the Langley High-Speed 7- by 10-Foot Tunnel (ref. 11) or in theoret-
ical studies in the contractor reports (refs. 1 and 3 to 5).

A survey of NASA wind-tunnel reports indicated three applicable reports. (See
refs. 12 to 14.) These, however, covered only unswept wings with either a high
aspect ratio (AR = 10 in ref. 12) or a very low aspect ratio (AR = 1 in refs. 13
and 14). Information did not exist at intermediate ranges of wing aspect ratio
(AR = 2 to 8) with varying sweep angles (A = 0° to 45°) either in or out of ground
effect. It appeared that there was an opportunity to generate both a data base and
an understanding of ground effects for very large span configurations where airplane
wing height-to-span ratios h/b can be small. When planning the present investiga-
tion, the first step involved a determination of the appropriate range of wing
heights or h/b for the test program. For example, conventional transport-type
airplanes generally have a minimum h/b at wheel touchdown of about 0.1. This mini-
mum occurs because the landing gear must be long enough to allow rotation of the
airplane to take-off and landing attitudes. However, because the spanloader airplane
will not rotate but will take off and land in a flat attitude, and because there is a
reasonable limit to the maximum length of the landing gear, these airplanes will have
extremely low minimum ratios of h/b of about 0.01 to 0.02. (See fig. 3.) This
very low h/b might lead to some aerodynamic interaction between the wing lower sur-
face and the runway that is not generally seen at more conventional heights.

An investigation of the longitudinal aerodynamics for this class of vehicle both
in and out of ground effect was conducted with both a research model in the Langley
4~ by 7-Meter Tunnel (formerly V/STOL Tunnel) and analytical-computer models. An
initial data report of this wind-tunnel investigation was given in reference 15. The
wind-tunnel model had an NACA 0018 airfoil section with a 25-percent=-chord plain
trailing-edge flap. The sweep of the model could be varied from 0° to 45°, and the
aspect ratio could be varied from 2 to 8. These various configurations were analyzed
with computer studies to predict the basic aerodynamics both in and out of ground
effect before wind-tunnel testing began. These same configurations were then tested
in the wind tunnel to correlate the effects of sweep, aspect ratio, and ground height
on the longitudinal aerodynamics of the wing in and out of ground effect. These data
were obtained at a dynamic pressure of 1.44 kPa or a Mach number of 0.14. (See
ref. 15.) The range of angle of attack was from -7.2° to 18.7° and the range of wing
height-to-span ratio was from 0.016 to greater than 2.0.

SYMBOLS

All data have been reduced to standard coefficient form and are presented in the
stability axis system. Where there are differences, the symbols enclosed in paren-
theses are added to help correlate with the tabulated printouts in reference 15 and
thelr usual notation precedes them.

AR aspect ratio

b wing span, m

Cp (CD) drag coefficient, D/q_S

Cy, (cL) lift coefficient, L/q_S

CLa lift-curve slope measured over the linear portion of the

1lift curve, GCL/ba, deg"1



h/b
jth
kth

L

=3

t/e

<

x/c

mcC

(CM)

(CBAR)

(H)

(H/B)

(9)

(ALPHA)

flap effectiveness measured between §¢ = 0° and 5°,
ocy /08, deg

pitching-moment coefficient, (pitching moment)/g_S¢€
pressure coefficient

chord length, m

wing mean aerodynamic chord, m

drag, N

distance from ground in z-direction to lower surface of wing
at 0.25%, m

ratio of height of wing above ground to wing span
arbitrary (panel)

arbitrary (horseshoe vortex)

1ift, N

unit normal wvector

free-stream dynamic pressure, kPa (KPA)
wing area, m2

wing maximum thickness, m
thickness-to-chord ratio

free-stream velocity vector, m/sec
dimension on longitudinal axis

nondimensional distance along wing chord line from leading
edge

distance from nose of centerbody to moment reference center,
found to be the theoretical center of pressure of
configuration, m

length of panel in vortex-lattice modeling

direction on vertical axis

angle of attack, deg

horseshoe-vortex circulation strength

vorticity strength in surface-panel modeling



8 deflection of flap or elevon, measured perpendicular to
hinge line (positive trailing edge down), deg

A leading-edge sweep, deg

o] source strength in surface-panel modeling
Subscripts:

e elevon

f flap

s streamwise

Abbreviations:

IGE in ground effect

OGE out of ground effect

VTOL vertical take off and landing

MODEL DESCRIPTION

The spanloader model tested in the Langley 4- by 7-Meter Tunnel (formerly the
V/STOL Tunnel) was a conceptual tailless configuration with an untwisted, NACA 0018
airfoil, constant chord wing with a centerbody (sized to accommodate the balance).
Figures 4 and 5 are photographs of the model installed in the tunnel,

A sketch of the model configurations is presented in figure 6. The four
leading-edge sweeps of 0°, 15°, 30°, and 45° are designated as configurations I, 11,
ITI, and IV, respectively, and were obtained by using different root sections,
Appropriate tip sections were added to maintain streamwise tips. Various aspect
ratios were obtained by the addition or subtraction of wing sections to the span-
wise segmented wing. For each leading-edge sweep angle, the configquration with
the highest aspect ratio is referred to as configuration A and with the lowest as
configuration D. Table I gives the geometric characteristics for each of the
16 configurations.

Figure 7 shows the available aspect ratios plotted against the available sweep
angles for the model. The points are faired to connect the configuration points
marked A, B, C, and D, It can be seen that, for this model, sweep cannot be varied
at a constant aspect ratio. The dashed line indicates that sweep can almost be
varied at a constant aspect ratio of 4; however, the aspect ratio actually varies
from 4.25 to 3.92, or about 8 percent. This model construction constraint presents
some problems in direct comparisons between configurations, because the wing area and
thickness ratio also change when sweep is varied.

The trailing edge of the wing was divided into several simple flap elements
which equal 25 percent of the wing chord in length from pivot to trailing edge,
These elements were defined as flaps on configuration D and as a combination of flaps
and elevons on configurations A, B, and C. Figure 6 shows the definition of flap and
elevons for configuration A, Note that for the 30° and 45° sweep configurations, the
two outboard trailing-edge elements plus the small trailing-edge element on the wing
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tip are defined as elevons in figure 6(b). This elevon definition is maintained on
configurations B and C by removing an inboard section of the wing to change configu-
ration aspect ratio, while retaining the outboard and tip sections., Thus, the elevon
span remains constant while the flap span is reduced.

After a review of the solution for the flow separation on the spanloader model
tested in reference 11, vortex generators were placed on the wing upper surface at
x/c = 0.55 on the full span for all model configurations., These vortex generators
were designed with a toe out of 15° from free stream. Drawings of the vortex-
generator geometry for the left wing are given in figure 8; and fiqure 9 is a photo-
graph showing the installation on the A = 30° configuration, Note that the right-
hand vortex generators are simply mirror images of those on the left.

Transition strips of No. 80 abrasive grains, 0.3175 cm in width, were placed
2.54 cm aft of the leading edge on the upper- and lower-wing surfaces in accordance
with reference 16. Forces and moments were measured by an internally mounted six-
component strain-gage balance, and angle of attack was measured with an internally
mounted accelerometer, All pitching-moment data are referred to the moment reference
locations shown in table I. These data correspond to the aerodynamic center of pres-
sure of each configuration as predicted by the vortex-lattice theory of reference 17,
All axial-force data were corrected for the base-pressure drag of the centerbody.
Because of the relatively small model size and low lift coefficients generated, wall
effects were minimal. Therefore, no jet-boundary corrections have been applied to
these data.

Tests performed on each model configuration included an angle-of-attack sweep,
out of ground effect at o = -7.2° to 18.7°, and height sweeps at a = -1.2°, 0.8°,
and 2.8° in ground effect, BApproximate values of h/b for the in-ground-effect
sweep were 0,02, 0.03, 0.05, 0.10, 0.25, 0.35, 0.50, and 1.00.

In many cases, ground-effect testing is conducted in the presence of a moving-
belt ground plane to represent more accurately the interaction between the airplane
and the ground without the interference of a thick boundary layer on the wind-tunnel
floor. However, the use of the moving belt for this test would have limited the Mach
number to about 0.09 which would have reduced the Reynolds number for some configura-
tions below 1 x 108. It was felt that the data obtained at such low Reynolds numbers
could be questionable. The criteria of reference 18 indicated that the combination
of low lift coefficients and the range of h/b to be used on most of the present
group of model configurations would provide test conditions which did not require the
use of the moving-belt ground plane. The tunnel-floor boundary-layer thickness was
reduced to approximately 4 to 5 cm with a displacement thickness of approximately
1 cm (see ref. 19) at the model location by the boundary-layer removal system located
at the leading edge of the test section. This meant that some of the configurations
with a lower aspect ratio would be in the upper portion of the boundary layer at the
lower h/b setting, However, since most configurations met the requirement of ref-
erence 18 and were out of the floor boundary layer, the test was conducted at higher
Mach numbers without the moving belt so that Reynolds numbers would be in the range
from 1.3 to 1.8 x 108,

PRESENTATION OF RESULTS

The complete tabulated results of the data obtained in this wind-tunnel investi-
gation are given in reference 15. Pertinent coefficient data, along with panel geom-
etries and comparisons of theoretical and experimental results, are presented in this
report as follows:



Figure

Effect of aspect ratio on longitudinal aerodynamics tessesesrsasesessssneses 10 to 13
Effect of aspect ratio on Lift=CUrvVe SLOPE seeeeeeacroernsanasncennonnnnenns 14
Effect of flap deflection on longitudinal 2erodynamics esecesessseesssccnsees 15 to 18
Effect of elevon deflection on longitudinal trim ceecssersessssnssenssersass 19 to 22
Effect of aspect ratio on longitudinal aerodynamics in

ground effect coseeentitii ittt etrtititttttatttenreteerencnteoseocnonnnnan 23 to 30
Effect of flap deflection on longitudinal aerodynamics in

ground effect aueiteuetiatitttettenenettsettrteronroaneroneasocnononnennn 31 to 38
Sketches of theoretical panel models L R I R T L IR o I L
Theoretical effect of aspect ratio on 1lift-curve slope for

Configurations I £O IV seeeeeoeoeeonossonsonsaooneesansenonesonnenannsenns 46
Theoretical effect of wing sweep angle on lift-curve slope at

CONSLANt ASPECt FALLIO totneuteetensiootnoacncoeonsesoesonsosessennosensnnn 47
Effect of ground proximity on lift coefficient at a = 1°

for various configurations R R R T 48
Comparison of ground effects predicted by vortex-lattice and

Hess surface-panel MethOdS «ueeeeeereeoenesessocaneesssennasocessonnnnesss 49
Theoretical pressure distribution due to venturi effect caused

by ground-image system D I 50
Comparison of 1ift coefficients predicted by vortex-lattice

and Hess surface-panel methods with experimental data D T 51

Comparison of lift-curve slope Cy, predicted by vortex-lattice
a

method and experimentally determined Cy, at several aspect
a

ratiOS .o.u-.ltOunoI..u.lccil.u..ouo.ooo..c'b.cnocc.-co.clntoooc..t.i'..u. 52

Comparison of flap effectiveness CL& predicted by vortex-
f
lattice method with experimentally determined CL5 ceecrecrseansrasernens 53
f

Comparison of ground effects on 1lift coefficient predicted by

vortex-lattice and Hess surface-panel methods with

experimentally determined ground effects L 54
Comparison of ground effects on lift coefficient predicted by

Hess surface-panel methods with experimentally determined

ground effeCtS cuutteiiiietiiiieattetttnntttteteanronsotanoceoaennonnnanns 55
Effect of vortex generators on longitudinal AeYOQYNamiCS seserssecosasoonsnes 56
Effect of sweep on lift and pitching-moment coefficients at

approximately constant aspect ratio with vortex generators

in place 0.....-0....0.'l"..l'.l..ICQ................l...i...ll.'l..‘!..' 57

DISCUSSION
EXPERIMENTAIL RESULTS
Longitudinal Aerodynamics Out of Ground Effect

Effect of aspect ratio.- The effect of aspect ratio on the longitudinal aerody-
namic characteristics of configurations I to IV with several flap deflections is
presented in figures 10 to 13. The effect of aspect ratio on experimental lift-curve
slope (measured on the linear portion of the 1ift curve) is presented in figure 14,

and, as expected, cy, is reduced as aspect ratio decreases and leading-edge sweep
a
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is held constant, For example, in configuration I-A (AR = 8), C = 0.084 per

Ly
degree and this is reduced in configuration I-C (AR = 4) to 0.067 per degree. It
can also be seen that the effect of aspect ratio on CL is reduced as sweep angle
a

is increased. That is, for a given decrease (or increase) in aspect ratio, the
change observed in CL is smaller at higher sweep angles than at 0° sweep.
a

There is also, at first look, a possible anomaly in the data for the configura-
tions with lowest aspect ratio when the flaps are deflected. The lift-curve slopes
appear to be correct, but the angle of attack for zero lift is lower for configura-
tion D than for confiqurations A, B, and C. (See figs., 10(b), 10(c), and 10(d}.)
This trend is present because configuration D has full-span flaps; whereas, configqu-
rations A, B, and C have elevons (as discussed in the model description) which are
not deflected, and thus, are only partial-span flaps. This trend is also apparent in
the nose-down increment in the pitching-moment data and in the large increment in
minimum CD for configuration D.

There are also fairly large increases in minimum C, as the aspect ratio
decreases for all configurations when &g = 0°., (For example, see fig. 10(a), 11(a),
12(a), or 13(a).) This trend is a function of aspect ratio because as the wing span
(and, hence, the reference area) decreases the drag from the centerbody, which is
constant, becomes proportionally larger relative to the wing drag, thus increasing
minimum Ch An opposite effect would be seen as sweep angle is increased. Because
the wing area is increased for a given aspect ratio (as the root and tip sections are
added), the constant centerbody drag would contribute a smaller drag coefficient and
minimum C would be decreased, Aside from the minimum C shifts due to center-
body effects, the drag polars show the expected trends of decreased span efficiency
as aspect ratio is decreased.

Effect of flap deflection.- The effects of flap deflection on the longitudinal
aerodynamic data of configurations I to IV are presented in figures 15 to 18. The
data in figure 15 are for flap deflections of 0°, 10°, 20°, and 30°. It can be seen
that the increments in and C are greatly reduced at &, = 30° although mini-
mum  Cp increases at tha% flap setting. This is typical of e trends seen when a
plain flap separates at large deflection angles. This was noticed early during the
wind-tunnel tests, and the 6f = 30° deflection was replaced by éf = 5° on subse~-
quent configurations to avoid flap separation. 1In general, these data show the
expected trend of decreasing the effects of the flaps as flap deflections are
increased, thus showing the increasing flow separation on a simple flap as deflection
is increased. The flow separation is also evident in the increasing increments in
minimum C as flap deflections are increased, particularly for §_ > 20°. Finally,
the effect of the flaps is generally reduced as sweep is increased or aspect ratio is
decreased. These trends are consistent with the effects of sweep and aspect ratio on
C. . Along with this trend, it is seen that the negative pitching-moment increment

Ly

for a given §¢ is greatly reduced as the sweep angle is increased.

Elevon Trim

The effects on the longitudinal aerodynamics caused by the outboard flap
elements as elevons are presented in figures 19 to 22, As discussed in the section
"Model Description," the elevons are simple flap elements which are deflected both
positively and negatively in order to generate longitudinal pitch-control moments



similar to those of a horizontal tail. It can be seen in figures 19 to 22 that the
elevons can maintain trim for neutral stability on all longitudinal configurations
with flaps deflected 10° over the entire angle-of-attack range tested except on con-
figurations I-A and I-B (A = 0°, AR = 8, and AR = 6)., 1In these two straight-wing
configurations, because the moment arms for the flaps and elevons are the same (see
fig., 6(a)), the moment generated by the larger flap area cannot be balanced by the
moments from the smaller elevons. Configuration I-C can be trimmed by the elevons
because the elevons as defined are larger than the flap. On all other confiqgura-
tions, the favorable moment arm available for the elevons, due to the wing sweeps,
is dominant and trim can be easily obtained over the complete angle-of-attack range
tested. Also, as expected, positive elevon deflections (which become a full-span
trailing-edge flap) produce increases in C and C,_.. Negative elevon deflections
produce decreases in C and increases in 'C . The changes in the drag polar and
minimum CD are typical of those caused by simple control deflections,

Longitudinal Aerodynamics in Ground Effect

Effect of aspect ratio.- The effects of aspect ratio on the longitudinal aerody-
namic characteristics of configurations I to IV in ground effect are presented for
a = 2.78° in figures 23 to 26 and for « = 0.78° in fiqures 27 to 30. As pre-
viously shown by the out-of-ground-effect data, the effect of decreased aspect ratio
in ground effect is to also reduce CL ; or as shown in these figures, to reduce C
a

L

at a constant angle of attack. Also, the trend of increasing C with decreasing
aspect ratio, due to proportionally higher centerbody drag relative to the wing, is
again present in these data,

Effect of flap deflection.- The effects of flap deflection on the longitudinal
aerodynamics of configurations I to IV in ground effect are presented for g = 2,78°
in figures 31 to 34 and for ¢ = 0.78° in figures 35 to 38. As previously shown
in the out-of-ground-effect data, the effect of flap deflection is decreased with
increased flap deflection because of flow separation. Also, flap effectiveness is
reduced with increasing sweep angle. However, the effect of flap deflection is
approximately constant as the ground plane is approached at o = 2.78°, However, at
a = 0.78°, the effect of flap deflection seems to increase as the ground plane is
approached.

Ground Effect

As a conclusion to the discussion of experimental results, a comment should be
made about ground effects. It should be noted that when g = 2.78° (see fig. 23,
for example) the minimum h/b is increasing as the aspect ratio is decreased, This
result is because the geometry of the sting support system limits the minimum h
that can be obtained; and, thus, as wing span decreases, minimum h/b must increase.
However, when @ = 0.78°, the model lower-surface limits h; and thus, a generally
constant minimum h/b can be maintained by lowering the model as aspect ratio
decreases., The data of figures 23 to 26 (g = 2.78°) generally indicate expected
ground effects in that CL is increased, CD is decreased, and, for these data
only, slight nose-up changes in pitching moment are observed. However, as shown in
figures 27 to 30, there are some interesting trends in the data at a = 0.78°, These
data show that CL increases down to h/b = 0.1 as would be expected; and then,
for the data with low or zero flap setting, C decreases at the very low h/b,
Also, for these cases, CD increases at low ﬁ/b and rather substantial nose-up
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pitching moments are indicated. These eff=cts, which are due to accelerated flow
beneath the wing, will be discussed in gre:ter detail in the following section of
this report.

These 1ift losses and drag increases are of particular interest because it has
been proposed that these spanloader airplanes would land at about o = 0° and,
instead of cushioning a landing, these effects would lead to rather hard landings.
Rather than land with 6f = Q0°, it is more likely that an airplane would land with
some larger flap deflection. In this instance, with 6f = 5° to 10°, these effects
would be reduced bhut not eliminated. These effects appear to be eliminated at
6f = 20°.

THEORETICAL PREDICTIONS OF CL AND Ci
a

Preliminary theoretical predictions of lift-curve slope were made with the
method of reference 17. This method is based on the vortex—~lattice concept where a
planform can be modeled as shown in figure 39. On each panel, a horseshoe vortex is
placed with the bound leg at the quarter chord of the panel, and the boundary condi-
tion of no flow perpendicular to the panel surface (vm . ﬁ = 0) is applied at the
0.75c on the panel. (See fig. 40.)

Ground interference effects can be calculated with this method by using an image
concept, as shown in figure 41, where a mirror image is placed below the ground
plane. This system is then represented as a planar vortex-lattice system. (See
fig. 42.) The image system produces a condition of no flow perpendicular to the
ground plane (or plane of symmetry), and induces an upwash on the main configuration
that simulates the normal ground effects. One possible drawback to this method was
the planar modeling of the configuration, especially when very near the ground
plane. It appeared that for a wing with t/c = 0.18, the thickness effects should
not be omitted. Another potential problem with this method is that for a high-
aspect-ratio wing with sweep, there 1s a large variation in actual height between the
wing apex and the trailing edge of the wing tip which is not accounted for in planar
modeling.

Therefore, the configurations were modeled with the Hess method of reference 20
which included thickness effects. Because of the thickness representation used in
this model, it was felt that the ground effects calculated by the Hess method could
be different from those calculated by the vortex-lattice method (to be discussed in a
later section). This method models a confiquration as shown in figure 43. Constant
source and vorticity panels are then placed on the actual-configuration surface
geometry, and the boundary condition 3@ . ﬁ = 0 1is applied at the centroid of each
panel. (See fig. 44.) With this approach, the nonlifting or thickness solution is
given by the source panels, and this is combined with the lifting solution from the
vorticity panels to give the final surface pressures which can be integrated to give
total forces and moments., This approach was also used to estimate ground effects
with an image system. (See fig. 45.)

Lift-Curve Slope Out of Ground Effect

The theoretical calculations of Cp from both methods for configurations I

a

to IV are given in figure 46 as a function of aspect ratio. Because it is well known

that vortex-lattice methods give reasonable results for C and because inputs to
a



the Hess program are somewhat tedious and the calculations are rather expensive, only
three configurations (I-A, II-A, and III-A) were modeled as a check of CL with
a
thickness effects included. The predictions in figure 46 indicate the expected
trends of reduction in CL when sweep is increased or aspect ratio is decreased.
a
These data are cross-plotted in figure 47 to show more clearly the effect of increas-
ing sweep angle at a constant aspect ratio on C;, « The three values of Cy, for
a a
configurations I-A, II-A, and III-A are plotted in figure 46 for comparison of the
Hess results with the vortex-lattice results. The results from Hess which include
thickness are, as expected, slightly higher than the results from the vortex lattice
which do not include thickness.

From these results, it can be seen that the effect of sweep diminishes at the
lower aspect ratios. For example, if AR = 5, then (CL ) = 0.731 per degree
a/A=0°

and (C ) = 0.0562 per degree for a change of CL of 0.0169 per degree. At
L o a
a/ =45
AR = 3, (CL = 0.0600 per degree and (CL ) = 0.0500 per degree for a
a/ A=0° a/A=45°
change of CL of 0.0100 per degree.
a

Effect of Ground Plane on Lift Coefficient

The vortex-lattice results for the ground effect on C;, are presented in fig-
ure 48. The results are presented as C;, plotted against h/b for each configura-
tion at a constant sweep angle as aspect ratio is decreased. The typical result of
ground-induced upwash, which causes an increase in C;, as the ground is approached,
is clearly shown in the figure. The ground effects are generally limited to
h/b ¢ 0.25 with a decided break in the curve at h/b = 0.10 where the slope of the
curve increases rapidly. This trend is consistent for all configurations, along with
the trends associated with increasing A and decreasing AR as discussed earlier.

Results from using the Hess method for the ground effect on C;, for configura-
tions I-A, II-A, and III-A are presented in figure 49. Corresponding results from
using the vortex-lattice method are also shown for comparison. The striking differ-
ence in predicted ground effects for the two methods is apparent. At low h/b, the
Hess results predict decreasing C;, as h/b is decreased, rather than the expected
increases in Cy, shown by the vortex-~lattice results. This result had not been seen
previously. However, as the following discussion and figure 50 will show, this
result is not at all surprising and, in fact, should be expected for these very thick
wings at low h/b.

Figure 50 shows a two-dimensional section of the wing and its image of config-
uration I-A as represented in this method at « = 1.0° and at h/b = 0.1 or the
break in the C;, curve in figure 49. Also shown in figure 50 is the two-dimensional
section of the configuration when h/b = 0.05. Notice the similarity of the wing
lower surface and the image upper surface to the shape of a venturi tube. It would
seem that the flow would accelerate between these two surfaces and reduce the pres-
sures on those surfaces. The pressure distributions show that this venturi effect is
exactly what happens in this calculation. The upper-surface pressure is almost
unchanged, whereas the lower-surface pressure is markedly decreased; and the minimum
pressure is seen to occur at the point of minimum area between the wing and image
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(i.e., at maximum t/C) exactly as in a venturi tube. This lowering of the lower-
surface pressure reduces Cp in a manner not unlike the "suck down" seen on some
powered-lift VITOL configurations. Thus, for these thick wings, the venturi effect on
the lower surface can completely negate the upwash effect of the ground plane and
actually reduce Cj rather drastically very near the ground. This result now
becomes one of great importance because spanloader airplanes were proposed to operate
at these low h/b ratios, and this reduction in 1lift (if present on the real con-
figuration) would lead to some rather hard landings, instead of the cushioned land-
ings that were anticipated due to favorable ground effect. As will be discussed in a
following section and as was mentioned in the discussion of experimental ground
effects, this effect is moderate at §&§_ = 5° and 10° and is effectively eliminated

f
= o,
at 6f 20

COMPARISON OF THEORY AND EXPERIMENT
Lift-Curve Slope

A comparison of the predicted lift curves and the experimental 1lift curve for
three selected configurations is presented in figure 51. These three configurations
(I-A, II-A, and III-A) represent the configurations which were modeled in both the
vortex-lattice and Hess methods. The vortex-lattice method appears to give a fairly
accurate prediction of the 1lift curve for configuration I-A, whereas the Hess method
tends to overpredict the lift curve. At the higher sweep angles (i.e., A = 15°
and 30°), both methods underpredict the lift curve of configurations II-A and III-A.
This trend is consistent for all configurations as shown in figure 52 where all con-
figurations are modeled in the vortex-lattice method. These predicted lift-curve

slopes are compared with the experimental CL ; and the theory fairly accurately
a

predicts Cy, at A = 0° and increasingly underpredicts Cj as sweep is increased
a

to 45°. This trend is thought to be caused by the increased loads generated by the
vortex generators as sweep and resulting spanwise flow are increased. This discus-
sion is found in a later section of this paper.

Flap Effectiveness

A comparison of predicted out-of-ground-effect flap effectiveness CLB and
f
the experimental CL is presented in figure 53. The experimental values of
£
CLé were determined for the 5° flap deflection since CLé fell off rapidly at
f f

= 10° and 20° because of flow separation on the flap. It should be noted that
tﬁe theory had streamwise flap deflections where the flap elements are deflected
parallel to the free stream. (See fig. 39. ) However, the data (because of model
constraints) had hinge-line flap deflections where the flap elements are deflected
normal to the flap hinge line. (See fig. 6.) Therefore, the CL from the data

f

has been adjusted to the equivalent streamwise values. This was done by calculating
the effective streamwise deflection of the model flap system by using

-1
éf,s = tan (tan 5f cos A)

11



and then computing

A list of hinge-line and streamwise flap deflections is given in table II.

It can be seen that the predictions of CLé are quite good for confiquration I

f
and are somewhat poorer for the other configurations with configuration IIT being the
worst case. Also, where there is disagreement, the experimental Cy, is generally
f

below that predicted by theory. This result is not surprising because for any simple
hinge flap there will be a reduction from potential-flow effectiveness at any deflec-
tion. The adverse pressure gradient, because of rapid pressure recovery, aft of the
large negative pressures generated by the high curvature at the knee of the flap
will, at least, result in a thick boundary layer which will reduce flap effectiveness
and will, at most, completely separate the flow on the flap.

Ground Effects

The comparison of predicted and experimental ground effects on the four selected
configurations (I-A, I-C, II-A, and III-A) is presented in figure 54. The data are
presented as CL IGE/CL G to nondimensionalize the results as a percentage
increase or decréase in'?lgt from that of the configuration out of ground effect,
The theoretical results from figure 48 are replotted in the same form CL,IGE/CL,OGE
for direct comparisons., The data follow the trend seen in the Hess prediction dis-
cussed earlier in that there is a lift increase indicated as the ground plane is
approached which becomes a rapid 1lift loss as h/b < 0.10. There is scatter in the
data, and the magnitude and location (h/b) of the peak in lift increase are not
exactly as predicted; however, the overall trend is well established and in direct
opposition to the trends predicted by conventional vortex-lattice methods. There
does not seem to be a consistent trend to the difference between experimental and
theoretical data. That is, the differences do not appear to be a function of sweep
or aspect ratio which would indicate a basic problem with the modeling technique.
This reduction in 1lift at low h/b was present for all configurations except those
with high flap deflections where the traditional increases in C;, are present.

When the flap is deflected, the flap trailing edge becomes the low point (i.e.,
nearest the ground plane) on the configquration and interference between the flap and
the boundary layer on the ground plane may be effectively blocking the flow. This
will tend to produce stagnation conditions under the wing and can then lead to large
increases in 1lift like the wing in-ground-effect (WIG) configuration of reference 21.

Another possibility for the change in ground effect when the flap is deflected
is that the area ratio bhetween the maximum thickness point and the trailing-edge flap
point is changed. At §_ = 20°, the minimum area is located at the trailing edge
which eliminates the venguri—tube shape under the wing (see fig. 6(c)) and thus, the
flow will not accelerate under the wing. At the intermediate flap settings (8_ = 5°
and 10°), the area at the trailing edge is not the minimum under the wing but 1Is

reduced from the 6f = 0° area. Thus, the venturi-tube shape is modified, and the

12



velocities under the wing will be correspondingly modified. As such, the ground
effects are reduced but not eliminated at §&_. = 5° and 10°. This is verified in fig-

ure 55 where CL,IGE/CL,OGE from the Hess tﬁeory for configurations I-C and III-B or
A= 0° and ="30° with &_ = 10° are compared with the experimental results.
Again, it can be seen that the theory and experiment agree well and that the 1lift
loss at low h/b is greatly reduced (but not eliminated) from the previous 6f = 0°
cases,

EFFECT OF VORTEX GENERATORS

As noted in the section "Comparion of Theory and Experiment" for Cy, v the
a

theory tends to underpredict the lift data at sweeps greater than 0° and the error
seems to get worse as the sweep angle is increased. 1In an effort to define and
explain this problem, a general discussion of the effect of the vortex generators is
presented.

Prior to the wind-tunnel tests, reference 11 was used to determine the need for
a set of vortex generators to maintain attached flow on the aft portions of the thick
NACA 0018 airfoil section used on this model. The effect of the vortex generators
was large. (See fig. 56.) Significant increases in lift and increments in nose-down
pitching moment indicate that the aft portion of the wing was indeed separated and
was reattached when the vortex generators were in place. It may be pointed out that
while this flow was being reattached, a large increment in drag was shown for the
vortex generator. It would seem that reattaching the flow in an effort to approach
potential flow would result in a drag reduction. However, the physical size of the
generators and the drag associated with producing the vortices have outweighed the
benefit in drag reduction expected when separated flow is reattached.

The underprediction of the experimental lift-curve slope is another matter. As
seen before, C; at A = 0° is predicted accurately and the error seems to
a

increase with increasing sweep angle. It was also noted before that the vortex gen-
erators were placed on the wing in such a way that they are toed out a constant 15°
relative to the free stream. In retrospect, this would seem to give an increased
loading on the vortex generators since the sidewash velocity (spanwise flow) would be
increased as sweep angle was increased. Thus, the vortex generators would be at a
higher angle of attack and generate more intense vortex flows at higher sweep angles.
If these vortices produced suction forces on the wing in a manner similar to a
leading-edge vortex (see ref. 22), it might be possible to generate higher than
potential-flow 1lift on the aft portion of the wing. A possible indicator of this is
shown in figure 57 where C and C, are plotted against a for four configura-
tions having an aspect ratio of 4 at A = 0°, 15°, 30°, and 45°. The following table

lists the theoretical and experimental values of CL :

a
Theoretical Experimental
Configuration AR A, deg Cy, CL,
a a
I-C 4 0 0.0672 0.0664
I1-C 4.25 15 .0672 .0683
ITI-C 3.92 30 .0620 .0698
IV-B 4.1 45 .0549 0572

13



The trend is consistent except for configuration II-C which has an aspect ratio of
4.25 rather than 4. If the higher than predicted CL is due to excessive aft

a
loading from the vortex generator, then the pitching moments should show increasing
nose~-down increments. This trend is seen in the Cnp data.

Another indication is seen in the stall characteristics of the various config-
urations. (See fig. 57.) Here, as the wing sweep is increased and the vortex gen-
erators produce increased vorticity, the stall break is seen to be delayed to higher
angles of attack. When A = 45°, it can be seen that there is no indication of stall
up to a = 19°. The delay in wing stall shows that the increased vorticity from the
vortex generators delays flow separation on the aft portion of the airfoil.

From this discussion, it would appear that the vortex generators are developing
excessive vorticity and actually are producing a greater than potential-flow condi-
tion on the aft portion of the wing. The penalty paid for this would appear to be
the large increment in drag that occurs when the vortex generators are on the config-
uration as shown in figure 55. A more accurate placement of the vortex generators
would seem to be at a constant 15¢ angle relative to the resultant spanwise flow as
the sweep is increased. This would give an approximate constant vorticity which
would be equal to that generated on the straight-wing configqurations, which seems to
be close to potential-flow conditions.

CONCLUSIONS

An analysis of the effects of sweep and aspect ratio on the longitudinal aero-
dynamics of a wing in and out of ground effect has been made. Experimental data were
obtained in the Langley 4- by 7-Meter Tunnel for a wing with various sweep angles,
aspect ratios, and flap deflectlions both in and out of ground effect. Theoretical
predictions of the out-of-ground-effect 1ift coefficients and flap effectiveness and
in~ground-effect 1ift coefficients are compared with experimental results. Some
general conclusions concerning the longitudinal aerodynamics of spanloader-type

(i.e., wing alone) configurations both in and out of ground effect are presented as
follows:

1. As expected, 1lift-curve slope is decreased when either the aspect ratio is
decreased or the sweep angle is held constant or is increased.

2. As expected, flap effectiveness is reduced at higher deflections, because of
flow separation, and it is also reduced when aspect ratio is decreased or when sweep
angle is increased.

3. Lift-curve slope and flap effectiveness at low angles of attack are both
generally increased in ground effect above wing height-to-span ratios h/b of 0.15.

However, at higher angles of attack, flap effectiveness is essentially unchanged in
ground effect.

4. At low angles of attack and flap deflections of 0°, lift-curve slope is
markedly reduced at very low h/b ratios. This appears to be caused by a venturi
effect that is formed when the flow is accelerated between the lower surface of the
wing and the ground plane, thus reducing the pressures on the underside of the wing.
The phenomenon is reduced at flap deflections § of 5° and 10° and is effectively

eliminated at éf = 20° where the flap trailing edge is the low point beneath the
airfoil.

14



5. Theory tends to predict the out-of~-ground-effect lift-curve slope and flap
effectiveness fairly well. The experimental 1ift curve does seem to be underpre-
dicted by theory at increasing sweep angles. This appears to be the result of the
vortex generators producing greater than potential 1ift on the aft portion of the
wing.

6. Theoretical and experimental predictions of lift-curve slope in ground effect
differ markedly, depending on whether planar (no thickness) or surface-panel (thick-
ness) modeling techniques are used. The reductions in lift-curve slope at low h/b
indicated in the surface-panel modeling when 5f = 0° or 10° agree with the experi-
mental data.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 26, 1982
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TABLE I.~ GEOMETRIC CHARACTERISTICS OF SPANLOADER CONFIGURATION

c
Configuration A, AR b, Cs Sé Xme* X/Z' t/c

deg m m m m m
I-D 0 2 0.80 0.40 3.20 0.35 0.40 0.180
I-C 0 4 1.60 «+40 6.40 .38 .40 . 180
I-B 0 6 2.40 .40 9.60 .38 .40 .180
I-A 0 8 3.20 «40 12.80 «39 +40 . 180
II-D 15 2.38 .99 .41 4.09 «39 .43 «174
I1-C 15 4.25 1.76 <41 7.28 «45 .48 «174
II-B 15 6.11 2.53 <41 10.49 «50 «53 <174
II1-A 15 7.98 3.31 41 13.69 «56 +58 «174
III-D 30 2.42 1.12 «46 5.17 42 .46 «156
III-C 30 3.92 1.81 .46 8.37 «52 <56 . 156
III-B 30 5.42 2.51 .46 11.57 «62 .66 «156
III-A 30 6.92 3.20 +46 14.77 «72 «76 . 156
IvV-D 45 21 1.19 «57 6.73 «44 <47 . 127
IV=-C 45 3.1 1.76 .57 9.93 .58 «61 « 127
IV-B 45 4.1 2.32 «57 13.12 e 72 +76 «127
Iv-2a 45 5.1 2.89 «57 16.33 .86 <90 «127




TABLE II.- COMPARISON OF HINGE-LINE AND STREAMWISE FLAP DEFLECTIONS

Sweep angle,

Hinge-line deflection,

Streamwise deflection,

A, deg éf, deg 6f,s’ deg

0 0 0

0 5 5

0 10 10

0 20 20

15 0 0

15 5 4.83
15 10 9.67
15 20 19.37
30 0 0

30 5 4.33
30 10 8.68
30 20 17.49
45 0 0

45 5 3.54
45 10 7.11
45 20 14.43
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Figqure 6.- Continued.



spopUTOUO) -9 2anbTa

‘uoT309s TTOFATY (D)

M
M) hf.//// —_
OO - - :ly/-_ // ) . -
0 o~ H \\
| 8100 YOVN
9
01 =2/ §L°0 = I

0 =9X

27



10
CONFIGURATION

1 i

ASPECT
RATIO

I I 1 1 l
0 10 20 30 40 50

SWEEP ANGLE, DEG

Figure 7.- Plot of aspect ratio against sweep angles available
for spanloader model. Dashed line indicates that sweep can
almost be varied at a constant ratio of 4.
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Figure 8.- Vortex generator plates. All dimensions in centimeters unless
otherwise noted.
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Figure 9.- Vortex generator installed on configuration III-A.

A = 30°; AR = 6.92.
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Figure 23.- Effect of aspect ratio on the longitudinal aerodynamics in ground

effect of configuration I (A = 0°) at several flap deflections. 5e = Q9°;
a= 2.78°,
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(d) Configquration IV. A = 45°.

Figure 48.- Concluded.
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VORTEX LATTICE

O  CONFIGURATION I
10 - O  CONFIGURATION O

CL per degree
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CL per degree
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| | |
0 2 4 6 8 10

ASPECT RATIO

(a) Configurations I and II.

Figure 52.- Comparison of lift-curve slope Ci predicted by
a

vortex-lattice method and experimentally determined Cy at
several aspect ratios. a
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(b) Configqurations IIT and IV.

Figure 52.- Concluded.
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Figure 53.- Comparison of flap effectiveness C

Lg predicted by vortex-lattice method
f
with experimentally determined CL6 .
£
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1.4

—O—  EXPERIMENT
—_——— VORTEX LATTICE
——-—— HESS SURFACE PANEL
-0
A ] I ] 1 | |l A
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(a) Configquration I-A.
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(b) Configuration I-C.

Figure 54.- Comparison of experimentally determined ground effects with ground
effects on 1lift coefficient predicted by vortex-lattice and Hess surface-panel
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(d) Configuration III-A.

Figure 54.- Concluded.
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(a) Configuration I-C.
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(b} Configquration III-B.

Figure 55.- Comparison of experimentally determined ground effects with ground
effects on lift coefficient predicted by Hess surface-panel method.
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Figure 57.- Effect of sweep on lift and pitching-moment coefficients at
approximately constant aspect ratio with vortex generators in place.
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