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SECTION 1.0 . -
SUMMARY

The overall objectives of the program were to analyze various types of heat
flux sensors and, using the results of that analysis, fabricate and test
miniature high temperature heat flux sensors suitable for installation in
experimental combustor liners of advanced aircraft gas turbine engines.

A Titerature survey was conducted to review the state of the art of heat flux
sensor technology. Preliminary analyses were then performed to investigate
possible sensor configurations for the application. One-dimensional heat flux
sensors and Gardon gauges were identified as the most promising candidates. A
series of component and construction technique evaluation tests were performed
to determine the feasibility of various sensor configurations. On the basis of
the results of those tests, final designs of three sensor configurations were
generated and thermally analyzed. Two of these configurations, the embedded
thermocouple sensors and the laminated sensors, were selected by NASA for
continued development. Work on the third type, the Gardon gauge, was continued
at no cost to NASA as an alternate sensor configuration. Sensors of all three
types were fabricated, calibrated, and endurance tested. The conclusions that
were drawn from this program are identified below.

o Sensors of three types were fabricated that met the geometrical
requirements and could withstand the environmental conditions.

o Calibration data from both primary and transfer calibration techniques
confirm that the gccuracy goal of +5 percent of the nominal full scale
heat flux of 1x10° watts per square meter was met.

o Thermal cycle tests and thermal soak tests indicated that the sensors are

capable of surviving extended periods of exposure to burner environmental
conditions. ‘

0 A large number of sensor failures were observed. The primary cause of the
failures was identified as leadwire failure external to the sensors.
Corrective actions in the handling and protection of the leadwires have
been identified that should minimize the failure rate.







~ . SECTION 2.0
INTRODUCTION

2.1 BACKGROUND

Designing combustor liners and turbine airfoils which are durable and use a
minimum amount of cooling air requires a complete knowledge of heat flux
characteristics throughout the hot section of modern gas turbine engines.
Although analytical models have been developed to predict heat fluxes, the
technology is not currently available to measure heat flux directly on hot
section components. Such measurements are required to enable modification
and/or verification of analytical procedures used to design combustor liners
and turbine airfoils for longer hot section life while minimizing the amount
of cooling required, thus maintaining efficiency and economy. Therefore, it is
necessary to design miniature heat flux sensors for these high temperature,
high pressure app11§ations. These sensors are designed to measure heat flux
per unit area (kw/m¢). This quantity will be referred to as heat flux
throughout the report.

The measurement of heat loads in the hot section is complicated by several
factors. The temperature levels are sufficiently high so that high temperature
resistant materials must be used to fabricate the sensors and leads. Extreme
temperature gradients exist along the surface of the hot section components
which increase the need for small sensors. Finally, thermal and electrical
insulation is required in many sensor designs to enhance one-directional heat
flow. The presence of the heat flux sensor may disturb the thermal profile
where it is installed and alter the heat flux relative to the unperturbed
liner. Therefore, care must be exercised in selecting the material properties
and geometry of the insulation to minimize the surface temperature
perturbation. The presence of the sensor and its installation into the test
hardware produces a pronounced effect on the sensor calibration accuracy which
must be accounted for.

2.2 SENSOR ANALYSIS CRITERIA

The above considerations dictate that the criteria used to evaluate sensor
viability should include survivability, accuracy, and fabricability.

2.2.1 Survivability

The sensor must be capable of surviving in the hot section environment where
metal temperatures to 1250K, pressure to 40 atmospheres, pressure drops of up
to 1.5 atmospheres across the combustor Tiner, and heat flux to two million

watts per square meter must be tolerated. The sensor must also be compatible
with the products of combustion, thermal shock, and thermal cycling conditions
that exist in the hot section.

2.2.2 Accuracy

The heat flux accuracy goal of +5-10 percent of the nominal full scale heat
flux of 1x106 w/mé requires that any viable sensor must only disturb the



heat flux pattern a minimum amount, particularly where sensor accuracy is a
strong function of operating condition. Therefore, the sensor must not cause
large thermal or aerodynamic variations in the sensing area.

2.2.3 Fabricability

Viable sensors, and their components, must be fabricated using cost effective,
repeatable techniques that either currently exist or could be developed at
acceptable risk under contract.

2.3 SCREENING OF CANDIDATE SENSORS

A study was undertaken to identify sensor candidates that most adequately
satisfied the above criteria. The stepwise approach used in the study includes:

o literature survey to define state-of-the-art heat flux sensors,

o selection of sensor type suitable for high temperature/high flux operation
in aircraft gas turbine engine combustor 1liners,

o preliminary design of suitable sensors,

o thermal analysis of preliminary designs,

o fabrication and testing of sensor components,

0 selection of designs for fabrication and testing,

o thermal analysis of final designs,

o fabrication of sensors,

o calibration testing,

0 endurance testing.

Section 3.0 of this report describes the screening process that led to the
selection of the final candidate sensors; Section 4.0 presents a description
of the design, fabrication and testing of the final sensors; Section 5.0
presents the sensor test results; and Section 6.0 presents the conclusions and

recommendat ions of the program. The more detailed data from the program are
presented in Appendices A through E.



o - SECTION 3.0 L
SENSOR SELECTION BY PRELIMINARY ANALYSIS, DESIGN AND TESTING
3.7 LITERATURE SURVEY

A computer assisted literature survey was performed to identify the
state-of-the-art in heat flux sensor development. This survey was conducted
through the United Technologies Research Center 1ibrary using interlibrary
loans on requested materials. Initially, materials were requested with
publication dates from 1965 to the present. Subsequent findings indicated the
existence of important articles and papers with earlier publication dates and
these were also obtained. The references resulting from this survey are listed
in Appendix A. The information was separated into four categories:

1. steady state sensors (including Gardon gauges) that appeared
applicable to the present contract,

2. transient sensors,

3. miscellaneous sensors that were not applicable to the present
contract,

4. calibration methods.

The following is a discussion of the significant items identified under each
of the above categories.

3.1.1 Steady State Sensors

The steady state sensors are classified as sensors whose operation is based on
heat conduction through a thermal barrier. One-dimensional steady state
sensors determine the heat flux by measuring the temperature differential
across a material of known thermal conductivity. There have been a wide
variety of configurations that have been used in the construction of these
sensors, providing flexibility in design with regard to size, geometry and
materials. The thermal barrier may be installed in the test section, placed on
one surface of the test section, or the wall of the test section may be used
as the thermal barrier. Several configurations of existing one-dimensional
sensors are illustrated in Figure 3.1-1 and are discussed below.

The simplest form of a one-dimensional steady state heat flux sensor is formed
by placing a surface thermocouple on both the hot and cold side of the test
section. The test section itself then forms the thermal barrier for the one-

dimensional sensor. Since simply placing wires on the surface would cause a
large boundary layer disturbance, various techniques may be used to maintain

the aerodynamic integrity of the test section. Such techniques include
embedding the thermocouple in the wall of the test section, use of sputtered
thin film thermocouples, or installing foil thermocouples cemented in ceramic
coatings on the surface of the test section. Depending on the particular
installation, data may be obtained either by measuring both hot and cold side
temperature or a differential output signal may be measured directly.
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. Another type of one-dimensional sensor. is the laminated steady state sensor. .
In this sensor, the thermoelectric junctions are formed by a direct metal-to-
metal bond between layers of the thermoelectric materials. This is designed to
remove the Tocation of thermoelectric junctions from any thermal perturbations
introduced by the leadwires. Overall thermal perturbations introduced by the
laminated sensor may be minimized by matching the thermal conductivity of the
sensor materials to that of the surrounding combustor Tiner.

A third type of one-dimensional sensor may be formed by placing a thin
thermopile on either the hot or cold combustor Tiner surface. The thermal
barrier in these sensors is very thin and a multijunction pair thermopile is
used to increase the output voltage of the sensor. This type of sensor is
widely used for Tow temperature applications but it is not readily available
for high temperature applications. The advantage of these sensors is that they
are installed on the surface and do not require modification of the combustor
Tiner. The disadvantage is that the multijunction pair thermopile required to
increase the output also increases the size of the active area of the sensor.

Due to the overall advantages in design flexibility and materials selection
for the one-dimensional sensor type, several forms of one-dimensional steady
state heat flux sensors were chosen for further investigation.

The Gardon gauge is a form of the steady state sensor that operates on the
principle of radial heat conduction in a thin metallic foil rather than linear
heat conduction through a thermal barrier. The gauge is constructed by forming
a thin foil over a hole in the combustor liner. A differential thermocouple is
formed by attaching one wire to the center of the rear face of the foil and
the second wire to the surrounding combustor liner. The heat flux entering the
foil of the Gardon gauge flows from the foil center to the periphery of the
gauge on the combustor liner. This sets up a temperature difference between
the foil and Tiner. The heat flux seen by the sensor is proportional to the
difference between the temperatures of the liner and the foil and can be found
using the conduction equation in radial form.

The disadvantage of the Gardon gauge is that these sensors can cause large
thermal perturbations in the area of the sensor. However, Gardon gauges have
some advantages over other sensors. According to Gardon (11), these gauges are
adaptive to high fluxes and the sensors are rugged. These sensors also have
rapid response time (59), and are relatively insensitive to liner temperature.
W. A. Clayton (15) has studied several different methods for improving the
performance of this type of sensor. By using materials different from
conventional foil calorimeters, he has been able to improve the high
temperature performance without loss of sensitivity.

It was determined that Gardon gauges showed sufficient potential to allow the
design to be further evaluated.

3.1.2 Transient Sensors

Transient sensor operation is based on either the heat capacity equation, or
the transient form of the heat conduction equation, and requires a net change



in heat flux to the sensor to yield data. The sensor area is part of a he@}tu._ﬁmmﬁ_v_ .

sink of known physical and thermal properties.

Slug calorimeters, which are a typical type of transient sensor, are construc-
ted with a slug that is mounted in a thermally insulated housing. Thermo-
couples are attached to the body of the slug and track the time-temperature
history of the sensor as in Kraabel's sensor (16).

The thin foil transient heat flux sensor uses a thin layer of foil as a very
small slug. The foil is placed over a hole in the test specimen with a
thermocouple attached to the center of the rear face of the sensor. These
sensors are used in a variety of environments including spacecraft, boiler
furnaces, and aircraft.

Another type of transient sensor is the one-dimensional transient heat flux
sensor. It is constructed from the same materials as the skin in which it is
embedded. It is also the same thickness as the skin material. The sensor is
thermally isolated from the skin by a thin layer of insulation. A thermocouple
is applied to the front face of the sensor surface and tracks the time-
temperature history. Considering this sensor as an insulated rod, the heat
flux can then be calculated using the conduction equation.

The advantages of transient sensors are that they are reasonably simple to
fabricate, rugged, easy to use, and can be developed to give fast response to
thermal perturbations.

One of the disadvantages of these sensors is that they are transient and
require a step change in net heat flux to the sensor to yield data. Under
steady state conditions, or under transients that are slow compared to sensor
response time, these sensors yield no data. Since the goal of this program is
to measure steady state heat flux through the combustor, and since cycling a
gas turbine engine quickly enough to simulate a step change to the combustor
1s difficult, obtaining sufficiently accurate information from any transient
sensor to predict steady state heat flux would not be feasible. Therefore,
transient heat flux sensors are not considered viable candidates for the
combustor 1iner application.

3.1.3 Miscellaneous Sensor Types

Other types of sensors include radiometers and I2R heat flux sensors. The
latter consist of a number of resistively heated strips, each of which is
monitored by two thermocouples at known distances. The strips are heated until
a uniform temperature is reached. Cooling air is then applied to the surface
and the power to the strips is adjusted until the same uniform temperature is
regained. The power needed to regain uniformity represents the heat transfer
and is calculated from the voltage drop across the thermocouple leads and
current through the strips. Radiometers are most often thermopiles with a
window and respond only to radiant heat loads. These were not considered to be
of interest for the specified total steady state heat flux application and
were not researched further.



3.1.4 cCalibration Methods

Because of slight fabrication differences from sensor-to-sensor and the fact
that the sensor will produce small perturbations in Tocal heat flux, they must
be individually calibrated to achieve the accuracy goals specified for this
program. This can be done by subjecting the sensor to an accurately known heat
flux and measuring its output which will be a microvolt signal related to the

heat flux through the sensor. A known heat flux can be applied by conductive,
convective or radiative means.

Conductive calibrations are performed by placing a heater on one side of the
sensor and a heat sink on the other side. The edges of the sensor are either
well insulated or surrounded by guard heaters to prevent heat loss. A
conductive calibration may be absolute if the input power is measured and all
the heat losses from the back side of the heater and sensor edges are known.
More frequently, the conductive calibrations are comparative where the sensor
being calibrated is placed in series with a sensor of known characteristics.

A second method of calibration makes use of a convective heat source. This
method is not used frequently because it is difficult to obtain
reproducibility in the air flow and temperature characteristics of the source.

Radiative calibrations are the most widely used because they are relatively
easy to conduct, are straightforward to analyze, and are capable of producing
high heat Toads. In radiative calibrations, the sensor is exposed to a heat
Toad from a high temperature source. The sensor is coated to provide a surface
with known absorptance and emittance. A radiant calibration can be an absolute
calibration if the total heat balance of the system can be defined from
thermal and dimensional measurements, or it can be comparative where the
output of the sensor is compared with the output of a standard sensor with
known characteristics. For absolute calibrations, it is desirable to operate
in a vacuum environment to eliminate convective heat transfer effects. The
geometry of the radiative calibration devices must be designed to produce a
known view factor from the source to the sensor if absolute calibrations are
desired. This is most easily accomplished by positioning the sensor close to
the surface of a heat source that is considerably larger than the sensor.

Because of the high temperatures and high heat Toads involved in this program,
conductive and convective methods would be difficult to implement. It was
decided that the most effective and easily controllable approach would be to
use a well defined radiative heat flux.

3.2 ANALYTICAL SCREENING OF CANDIDATE SENSORS

Several sensor types which were identified during the literature search were
subjected to preliminary thermal analysis. The purpose of that analysis was to
evaluate the amount of perturbation to the thermal and heat flux distribution
caused by the sensors.



An analysis was conducted for a flat Hastelloy plate, with and without thermal

gradients imposed on the plate surfaces. These served as baselines for sensor - - =i

analyses. Temperature and heat flux distributions within five percent of these
baselines were chosen as design goals.

The sensor analyses were performed using Pratt & Whitney Aircraft's Thermal
Calculation (TCAL) program. This program performs three-dimensional finite
difference heat transfer analyses. The program allows materials properties
(thermal conductivity and specific heat) to vary with temperature and allows
both transient and steady state analyses to be performed.

For the purposes of this analysis, the heat load on the sensors was assumed to
be strictly convective. The hot and cold side boundary conditions were chosen
to give representative heat fluxes and combustor liner temperatures. The
uniform hot and cold side conditions chosen were:

A. hot side gas temperature of 2030K with a heat transfer coefficient of 1470

watts/meter<k,

B. cold side gas tegperature of 810K with a heat transfer coefficient of
2550 watts/meter<k.

To evaluate the effect of thermal gradients, the analysis was then repeated
with a hot side gas temperature gradient of approximately 44K/centimeter
imposed on the sensors.

The results of the early computer runs were used to modify the geometry of the
various sensor designs to better achieve the design goals. The end results of
these analyses showed that it would be possible to build several types of
one-dimensional heat flux sensors that introduced acceptably small thermal
perturbations to meet the initial design goals. In addition, it was determined

that it would be possible to construct Gardon Gauges which introduced hot side
thermal perturbations within the design goals.

Once the preliminary thermal analyses were completed, more detailed analyses
were performed to determine the validity of the assumption of constant heat
flux across the sensor. These analyses were performed using STAN5, a computer
program developed for NASA by Stanford University. The program performs a
step-wise, finite element solution of the boundary layer dynamics for a flat
plate given the free stream conditions, the plate thermal distributions, and
the initial shape of the thermal boundary layer; the solution chosen provided
Stanton number as a function of the distance from the start of the boundary
Tayer. The Stanton number can be directly related to the convective heat
transfer coefficient.

A ceramic strip, the width of a nominal sensor, was used to introduce the
thermal perturbation in the boundary layer. The strip was placed at five
locations downstream from the start of the boundary layer, giving variations
in turbulence from laminar to turbulent flow.

The hydrodynamic flow field that was simulated in this analysis was
one-dimensional as would be expected in a typical combustor section. In
addition, the diameter of the sensor was small relative to the curvature of
the combustor liner, making the flat plate analysis a reasonable approximation.
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An iterative solution was planned to determine the affect of variable heat

transfer coefficients across the sensors. The STAN 5 analysis would be used to

define the variation in h across the sensor. The h distribution from STAN 5
would be used in TCAL to determine a new surface temperature distribution for
STAN 5. The above procedure was to be repeated until the h distribution and
the surface temﬁerature distribution converged. In addition, a continuous
curve was fit through the sensor area using the unperturbed data before and
after the sensor. The mean values of these functions represent the heat
transfer coefficients that would have existed over the sensor area without the
sensor installed which allowed calculation of the error due to the assumption
of constant surface temperature and h distributions. After the first
iteration, the error was less than 2 percent for all cases except where the
flow was transitional. In that case, the error was 3 percent. These errors
represent negligible error in the sensor heat flux and verify.our-assumptions
of constant hot side surface conditions.

The preliminary analysis provided the results identified below.

1. Three basic types of heat flux sensors were identified for consideration:
0 one-dimensional sensors,

0 Gardon gauges,
0 transient sensors.

2. The one-dimensional sensors and Gardon gauges were found to be the most
suitable sensor types for miniature, high temperature, high heat flux
applications in aircraft gas turbine engine combustors.

3. The transient sensors were not considered feasible because of the problems
associated with introducing a step change in heat input to the combustor
liners. -

The results of the preliminary analysis were used to complete preliminary

designs and thermal analyses on a large number of sensor designs. Five designs

which appeared to offer the highest probability of meeting the contract
objectives were chosen for further evaluation in the sensor component test
program:

o embedded thermocouple sensors,

o thermocouples cemented in a ceramic coating,

o Tlaminated sensors,

o Gardon gauges,

0 thin thermopile on hot side surface.

11



3.3 LABORATORY TESTING OF COMPONENTS

The purpose of the laboratory tests was to identify materials and fabrication
techniques for production of sensors that were fabricable, survivable, and had
desirable output characteristics. The results of those tests were to be used
to choose, with approval from NASA, two sensor types for further development.
The tests conducted were:

o thermoelectric characterization tests,

o diffusion bonding tests,

o electrical insulation tests,

o thermal ageing tests,

o thermal cycling tests.

3.3.1 Thermoelectric Characterization Tests

The combustor liners for which the high temperature miniature heat flux
sensors are being developed are manufactured from Hastelloy-X. It was
considered desirable to use Hastelloy-X for the heat flux sensor bodies to
minimize any thermal disturbance introduced by the heat flux sensors. Several
of the sensor types could also make use of Hastelloy-X as part of the
thermoelectric circuit. Tests were, therefore, conducted to determine the
thermoelectric characteristics of various thermoelectric materials vs.
Hastelloy-X. The results of those tests are summarized in Figure 3.3-1 which
shows the output of various materials vs. Hastelloy-X as a function of
temperature. These data were then combined with the known temperature
dependent thermal conductivity of Hastelloy-X to calculate the sensitivity
that each of the thermoelements would yield in a one-dimensional steady state
heat flux sensor with a Hastelloy-X body. As shown in Figure 3.3-2, the
results indicate that the most desirable materials to pair with Hastelloy-X
from a thermoelectric standpoint were Constantan, due to its high output
Tevel, and ATumel which has an acceptably high output level and small
sensitivity variation with temperature over the range of interest.

3.3.2 Diffusion Bonding Tests

For the Taminated sensor to be successful, good electrical and mechanical
bonds between the layers of laminate are required. It is also important to
prevent voids in the bond Tine which could cause unacceptable thermal
perturbations. Diffusion bonding was felt to have the highest probability of
Yyielding the required high quality bonds. To minimize costs, a diffusion
bonding method that utilized differential thermal expansion was chosen. Shown
in Figure 3.3-3, this method eliminates the need for large presses. The
sensors to be bonded are stacked inside a TZM yoke. TZM is an alloy of
Molybdenum (containing small amounts of Titanium and gjgconium) with a
coefficient of thermal expansion of approximately 7x107°/K compared to
approximately 14x107°/K for typical nickel alloys. When this yoke is heated
in a vacuum furnace, the stack containing the sensors attempts to expand more
than the external yoke. This generates the force needed for diffusion bonding.

12
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Figure 3.3-3 General Arrangement for Diffusion Bonding Laminated Materials by
Differential Thermal Bonding

The bonding force obtained can be controlled by varying the relative amount of
nickel alloy (PWA 1455) and TZM in the sensor stack. Tests were run where
Chromel, Alumel, and Constantan were diffusion bonded to Hastelloy-X. In
addition, since it was considered possible that formation of aluminum oxide on
the surface of the Alumel could cause bonding problems, some Alumel samples
were flashed with a thin (0.0005 cm) nickel plate prior to bonding.

Following bonding, some of the samples were peel tested. These tests showed
that the strength of the bond lines was comparable to that of the bulk
materials. Some of the samples were sectioned and etched. Figures 3.3-4
through 3.3-7 show representative micrographs for each material diffusion
bonded to Hastelloy-X. A1l bond lines were uniform and free of voids. These
tests showed that any of the materials of interest could be diffusion bonded
to Hastelloy-X in a cost effective manner and that the resulting bonds were of
high quality. To eliminate any possibility of future oxide problems with
Alumel bonds, nickel flashing was used as a standard procedure for all further
Alumel bonding. : 4
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Figure 3.3-4 Photomicrograph of Alumel (Top) to Hastelloy-X (Bottom)
Diffusion Bond (Maa: 200X)

Figure 3.3-5 Photomicrograph of Alumel (Top) to Hastelloy-X (Bottom)
Diffusion Bond with a 0.0005 centimeter Nickel Plate on the
Alumel before Bonding (Mag: 200X)
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Figure 3.3-6 Photomicrograph of Chromel (Top) to Hastelloy-X (Bottom)
Diffusion Bond (Mag: 200X)

Figure 3.3-7 Photomicrograph of Constantan (Top) to Hastelloy-X (Bottom)
Diffusion Bond (Mag: 200X)
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3.3.3 Electrical Insulation Tests

Since several of the proposed sensor types could make use of ceramic cement as
a high temperature electrical insulator, tests were conducted to investigate
the resistivity characteristics of various ceramic cements. Figure 3.3-8 shows
the results of a typical test where three commercially available ceramic
Cements were cycled from room temperature to 1260K, held for approximately 50
hours, and returned to room temperature. For this particular test, one ceramic
(Sermabond P-1) showed a variation in resistance with time at temperature
while the two other ceramics tested did not. The results of this test program
showed that there were several commercially available ceramic cements with
sufficient resistivity at the temperatures of interest to act as an insulator
in these sensors.
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3.3.4 Thermal Ageing Tests

Thermal ageing tests were run to investigate the stability with time as well
as the survivability of the fine gauge sheathed lead wires that would be used
in the sensors. These tests were run in a Taboratory oven with capability of
testing to temperatures in excess of 1550K. Figure 3.3-9 shows a typical test
sampTle being installed in the oven while Figure 3.3-10 shows the test setup at
the start of a test. To obtain data over extended periods in a cost effective
manner, data were recorded automatically on a microcomputer-based data
acquisition system shown in Figure 3.3-11. Figure 3.3-12 shows channel
assignments for a typical test while Figure 3.3-13 shows representative data
taken during the warmup period of one of the tests.

Figure 3.3-9 1Internal View of Oven Used for Thermal Ageing Tests Showing
Placement of Samples

Commercially available wire of various gauges containing various thermoele-
ments were tested as well as sheathed Hastelloy-X wire that was produced at
Pratt & Whitney Aircraft. Tests were conducted both with exposed thermocouple

junctions (Figure 3.3-14) and with junctions protected by various ceramic
cements (Figure 3.3-15).
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Figure 3.3-10 External View of Oven Used for Thermal Ageing Tests Showing
Firebrick Closure

Figure 3.3-11 Data Acquistion System Used for AT1T1 Test Programs
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Heat-up Period
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Figure 3.3-14 Thermocouple Ageing Test Sample Plate with Exposed Thermocouple
Junctions after 50 hour Test

b’""ﬁw. .

Figure 3.3-15 Thermocouple Ageing Test Sample Plate with Ceramic Covered
Thermocouple Junctions after 50 hour Test
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As expected, the tests with exposed junctions showed severe oxidation for all
thermoeTements except platinum in 50 hours at 1250K. Junction failures were
often experienced before the end of the test period. It was found that
protecting the wires with ceramic cement provided substantial protection to
the junctions and yielded acceptable junction life. Also, as expected, heavier
gauge wires were found to have better survivability than fine gauge wires. The
finest wires tested (0.015 cm sheath outer diameter) were found to be
unacceptable both in terms of stability and survivability. This confirmed
results obtained previously by NASA (reference 53 of Appendix A). Both single
and dual conductor Chromel and Alumel wires of 0.025 cm sheath outer diameter
were found to have acceptable stability and Tifetimes. Commercial sheathed
Hastelloy-X wire was not available within the time restraints of this
contract. We were able to swage Hastelloy-X wire with a sheath outer diameter
of approximately 0.060 cm that had acceptable Tifetimes for use under this
contract.

3.3.5 Thermal Cycling Tests

Thermal cycling tests were conducted to investigate the effect of thermal
cycling on component durability. The tests were conducted in front of the high
intensity quartz lamp bank shown in Figure 3.3-16. Test samples were mounted
in front of the Tamp and impingement cooling was supplied to the back of the
samples. Figure 3.3-17 shows a test sample mounted in the thermal cycling
facility. Both rig operation and data reduction were controlled by the same
microcomputer-based data system used for the thermal ageing tests.

Figure 3.3-16 Quartz Lamp Bank Heat Source
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Figure 3.3-17 Sample Mounting Arrangement for Component Tests with Quartz Lamp
Bank Showing the Plenum to Supply Cooling Air

Thermal cycle testing of the diffusion bonded materials showed no indications
of delamination as the result of thermal cycling. Both single and dual
conductor Chromel and Alumel sheathed wires with 0.025 cm sheath diameters
were embedded in Hastelloy-X plates and cycled repeatedly. These wires
generally survived beyond the 50 cycle goal. Most ceramics, when applied to
flat Hastelloy-X plates, were found to peel after a few cycles due to the
stresses caused by the widely different coefficients of expansion of the
Hastelloy-X and the ceramics. When the plates were grooved and the ceramics
installed in the grooves, excellent results were obtained. Figure 3.3-18, for
example, shows a test sample with three ceramics installed in grooves with
0.025 cm diameter Type K sheathed thermocouples in a Hastelloy-X plate. This
sample was cycled 48 times to temperatures of approximately 1250K and twice to
temperatures of approximately 1450K. The ceramics maintained good adhesion
throughout the test sequence and the thermocouples survived intact.
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Figure 3.3-18 Ceramic Cement Sample Plate after 50 cycles in front of Quartz
Lamp Bank

Peeling of the ceramic from the flat plates indicated that the fabrication of
thin thermopiles and foil thermocouples on the surface would involve high
risk. The proposed installation method for thermopiles and foil thermocouples
was to cement them to the surface with a ceramic cement. The thin thermopile
sensors also pose problems as a result of the changes in thermal conductivity
of the thermal barrier materials with temperature. The Titerature values of
thermal conductivity for three common high temperature materials were used to
calculate the change in the calibration constant with temperature for a
thermopile sensor fabricated with these materials as thermal barriers. The
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data plotted in Figure 3.3-19 are the the factors by which the room tempera-
ture calibration constant must be multiplied to account for thermal barrier
temperature. The dotted line represents a material with a constant thermal
conductivity with temperature and, hence, a steady calibration constant over
the temperature range. The test results and analyses of the thermal barrier
conductivities indicated that both thin thermopiles and thermocouples cemented
in a ceramic coating on the surface would require considerable materials
development and thus, were eliminated from further consideration.
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(3]

THERMAL BARRIER TEMPERATURE, K

Figure 3.3-19 Plot of Calibration Shift with Temperature in a Thin Thermopile
: Sensor with Various Thermal Barrier Materials
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3.4 SUMMARY AND CONCLUSIONS

Several conclusions can be drawn from the results of this sequence of
laboratory tests.

o

Hastelloy-X would be a suitable thermoelectric material for sensor
fabrication.

A durable Taminated sensor could be formed by diffusion bonding.
Fine sheathed thermocouple wires (0.025 cm diameter) were stable and
durable enough for sensor construction.

Ceramics peeled when applied to flat Hastelloy-X plates but survived well
when applied to grooves.

Based on these results, it was recommended that three sensor types be
considered for further development:

0

0

0
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SECTION 4.0
DESIGN, FABRICATION AND TESTING OF SENSORS
4.1 DESIGN OF SENSORS

The embedded thermocouple sensor and the laminated sensor were chosen by NASA
for development. It was also agreed that Pratt & Whitney Aircraft would
continue development of the Gardon gauges at no additional cost to the
contract. Based on the results from the laboratory testing of components, as
well as its stability at elevated temperatures, Alumel was chosen as the most
desirable thermoelectric material to be paired with Hastelloy-X 1in
construction of these sensors.

TCAL analyses of the type discussed in Section 3.2 were performed on the final
sensor designs using the materials and geometries of the actual physical
construction of the sensors. The embedded thermocouple sensors and the
laminated sensors were found to meet all sensor design goals discussed in
Section 3.2. The hot side thermal perturbation introduced by the Gardon gauge
sensor was also found to be within the design goals.

4.1.1 Design of Embedded Thermocouple Sensors

The design of embedded thermocouple sensors utilized both dual and single
conductor sheathed wire. Figure 4.1-1 shows a schematic of the design
utilizing dual conductor sheathed wire. In this design, a grounded Type K
thermocouple is embedded in both the hot side and the cold side of the sensor.
The sensor output is obtained from the differential output of the Alumel wires
from the two thermocouples. The type K thermocouples give reference
temperatures near both the hot and cold sensor surfaces.

ALUMEL

\~/— COLDSIDE .

HROME T

ALUMEL
COLD SIDE — .
* \ o/
%\\\: S ;\\\\ HATELLQY X g
ANANANAN
' HOT SIDE CHROME‘L
ALUMEL

1-2 = TREFERENCE COLD
24 = TSENSOR OUTPUT
34 ~ TREFERENCE HOT

HASTELLOY-X / \— HOT SIDE

*0.8cmDIA. -

"NOT TO SCALE

Figure 4.1-1 Construction Details and Electrical Schematic of the Embedded
Thermocouple Sensor Fabricated with Dual Conductor Swaged Wire
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Figure 4.1-2 shows a schematic of the embedded thermocouple design utilizing
single conductor sheathed wire. The single conductor allowed use of a heavier
gauge conductor while maintaining an external sheath diameter of 0.025 cm. In
this design, sheathed Alumel wires with grounded junctions were embedded in
both the hot and cold side of the sensor. In addition a sheathed Chromel wire
with a grounded junction was embedded in the cold side of the sensor. The sen-
sor output is obtained from the two Alumel wires and the reference temperature
is obtained from the Chromel and Alumel wire on the cold side of the sensor.

ALUMEL CHROMEL

COLD SIDE

ALUMEL
CHROMEL

, COLD SIDE

" HOT siDE
ALUMEL

1-2 = TREFERENCE
ALUMEL 1-3 = TSENSOR OUTPUT
HASTELLOY-X
*0.11em.” Z
1/ HOT SIDE
— T *0.8cm DIA. " -
*NOT TO SCALE

Figure 4.1-2 Construction Details and Electrical Schematic of the Embedded
Thermocouple Sensor Fabricated with Single Conductor Swaged Wire

4.1.2 Design of Laminated Sensor

Figure 4.1-3 shows a schematic of the design of a laminated heat flux sensor.
This sensor is composed of a 0.046 cm thick Tayer of Alumel diffusion bonded
between two 0.034 cm thick layers of Hastelloy-X. The ceramic filled groove
electrically insulates the Alumel and cold side Hastelloy-X layers in the
sensor from the surrounding liner. M Bond GA100 cement was chosen to fill the
groove based on component test results and the desirable working characteris-
tics of that cement. The sensor output is obtained from a sheathed Hastelloy-X
wire attached to the hot side Hasteg1oy-x layer and a sheathed Hastelloy-X
wire attached to the insulated cold side Hastelloy-X layer. Sensor reference
temperature may be obtained from a sheathed Alumel wire attached to the cold
side Hastelloy-X layer and the Hastelloy-X wire from the cold side layer. In
the construction of these sensors, care must be taken that the sheaths of
neither the Alumel wire nor cold side Hastelloy-X wire contact the sensor it-
self, otherwise they will supply a current path across the ceramic insulation.
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Figure 4.1-3 gonstruction Details and Electrical Schematic of the Laminated
ensor

4.1.3 Design of Gardon Gauge

In view of the availability of the laminated material, the Gardon gauge was
designed to be fabricated from the same material used for the laminated
sensor. Figure 4.1-4 shows a schematic of the final Gardon gauge design. In
this design, sheathed Alumel wires were attached to both the center of the
Gardon gauge "foil” and the Alumel layer of the sensor. A Chromel wire was
also attached to the Alumel layer of the sensor. Sensor output is obtained
from the two Alumel wires while the reference temperature is obtained from the
Chromel and Alumel wires attached to the mid-layer of the sensor. The Gardon
gauge "foil" thickness was chosen as a nominal 0.020 centimeter based on trade
studies conducted to evaluate sensor sensitivity vs. induced thermal
perturbation. The Gardon gauge was designed to have the rear cavity either
covered with a thin foil to provide aerodynamic integrity or filled with
ceramic. Tests were conducted on Gardon gauge G-1 both with the rear cavity
covered with a thin foil and filled with M-Bond GA100 ceramic cement (see
Appendix E for data). Both configurations yielded acceptable results. The
ceramic filled design was chosen as the preferred configuration for all
further testing because it was more easily fabricated and the ceramic cement
supplied mechanical support and oxidation protection for the fine wires within
the rear cavity of the Gardon gauge.
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Figure 4.1-4 Construction Details and Electrical Schematic of the Gardon
Gauge Sensor

4.2 FABRICATION OF SENSORS

During design of the heat flux sensors, consideration was given to the
fabrication and installation procedures required. The sensors were intended
for use in a wide variety of combustor 1iners having various diameters and
louver designs. To achieve the required universality, the fabrication process
included the ability to produce any desired amount of curvature. During
installation, a Tip or a taper on the sensor would prevent the sensor from
falling into the flowpath of the engine. However, this configuration would
require precision machining of both the combustor liner and the sensor to
produce a fit flush with the combustor wall. Precision machining of a sensor
mounting hole in a fully assembled annular combustor liner is a difficult and
expensive operation. It was determined that a circular hole could easily be
installed in a combustor Tiner, and the hole can be reamed with a precision
reamer to a close tolerance. This would then only require that the sensor body
be machined to a close tolerance. The sensor would be welded into the liner.
The pressure differential across a combustor liner does not exert a large
force on the sensor and, hence the weld does not have to exhibit great
strength. In the unlikely event of a complete failure, all sensor designs
provide a minimum of two leadwires on the cold surface side to restrain the
sensor from entering the engine flowpath. A detailed description of the sensor
fabrication and installation procedure is given below.
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4.2.6 Installation of Swaged Wires

The swaged thermocouple wires are installed in the grooves and held in place
by fillet wires of Hastelloy-X or Chromel which are resistance welded in
place. After the thermoelectric junctions are made by resistance welding, the
entire groove is filled with the fillet wire, and the surface of the groove is
ground smooth.

4,2.7 Installation of the Ceramic Insulation

The groove in the laminated sensor and the rear cavity in the Gardon gauge are
filled with GAT00 ceramic material to provide aerodynamic integrity on the
cold side surface. The ceramic is cured at 340K for one hour then the
temperature is slowly rajsed to 590K and held for one hour. After curing, any
excess ceramic material is removed from the surface by sanding.

4.2.8 Installation of the Sensor in the Combustor Liner

After fabrication and calibration, the sensor is installed in the combustor
liner and welded around the circumference. For actual practice, it is
recommended that advanced techniques such as laser welding be evaluated for
the process. Figure 4.2-1 shows a sample sensor laser welded into a test
plate. This welding was performed by JEC Lasers, Inc. of Paterson, N.J. as a
demonstration of feasibility. Figure 4.2-2 shows a cross section of the weld
and indicates that the penetration is sufficiently shallow to protect the lead
wires coming off the rear face of the sensor. For the laboratory testing of
the sensors, resistance welding is used to install the sensors in 7.0
centimeter diameter test plates so that the sensor can be removed from the
plate after testing. Figure 4.2-3 shows one of the sensors installed in a test
plate by the resistance welding technique. This sensor had been heavily
resistance welded to obtain a pressure tight seal for an experimental program.
Sensors intended for actual use in combustor liners would only be tack welded
1i?htly in a few places. This would allow removal of the sensor from the
calibration plate without distortion or damage to the sensor., After the
sensors are installed, the Tead wires are strapped down to the cold side
surface to provide mechanical support.

4.3 TESTING OF SENSORS

The test program conducted on the heat flux sensors had two primary goals. The
first goal was to establish the sensor calibration characteristics. This was
accomplished by comparative calibrations using a commercially available heat
flux sensor as a reference and by absolute calibrations to confirm the
validity of the comparative calibrations. The second goal was to demonstrate
the durability and reliability of the sensors. Thermal cycle and thermal soak
tests were used to provide this demonstration. A summary of the test program
is provided in Table 4.3-I.
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LEAD WIRE

Figure 4.2-1 Hot (Top) and Cold (Bottom) Surface Views of a Sensor Installed
in a Test Plate by Laser Welding
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Figure 4.2-2 Photomicrograph of a Cross Section of a Sensor Installed in a
Test PTate by Laser Welding with an Enlargement of the Weld Area
to Show Depth of Weld Penetration
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Figure 4.2-3 Hot and Cold Surface Views of a Sensor Installed in a Test Plate
by Resistance Welding
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TABLE 4.3-1
'SUMMARY OF TEST PROGRAM

Sensor Type
Embedded Thermocouplie Sensors

SingTe Dual

Conductor Conductor Gardon Laminated
Test Type Swaged Wire Swaged Wire Gauges Sensors -
Comparative
Calibration
Tests 4 7 9 11
Absolute
Calibration
Tests 0 1 3 0
Thermal Cycle
Tests 0 0 2 2
Thermal Soak
Tests 1 1 1 1

4.,3.1 Test Fixtures

A pair of calibration fixtures were designed and fabricated to permit the
testing and calibration of sensors both in the three filament vacuum apparatus
and in the quartz lamp bank. An exploded view of the fixture for the quartz
lamp bank is shown in Figure 4.3-1. The sensor to be tested was mounted in a
circular calibration plate 7.0 centimeters in diameter. The sensor was
resistance welded into the plate around the circumference of the hot side
surface of the sensor. It was found that the resistance welding would produce
a vacuum tight seal for the sensor when cold but was prone to Teakage when
heated and the calibration plate bowed. In cases where severe leakage
occurred, the problem was corrected by rewelding the sensor into the plate.
The plate was held onto the body of the fixture by a water cooled flange, and
a metal 0-ring was used as a seal. The sensor was cooled during calibration
and test by cooling air impinging on the cold side surface of the sensor. In
quartz lamp bank testing, the fixture was open on the back and in the three
filament vacuum apparatus, the fixture was sealed and provided with inlet and
outlet ducts for the cooling air. The sensor leadwires were routed out through
the outlet air duct.
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Figure 4.3-1 Exploded View of Calibration Fixture to Position the Test
Sensor in Front of the Quartz Lamp Bank

4.3.2 Data Recording Equipment

Throughout the calibration and test programs, data were recorded and reduced
using the same microcomputer system used earlier for testing of components.
Data from the tests were stored in tabular form on floppy diskettes. Use of
this system allowed real time corrections to be applied to the calibration
data. In addition, the data files allowed later statistical analysis of the
data, presentation of summary results in English or SI units, and automated
graphical representation of test results through use of a digital plotter
interfaced to the system.

4.3.3 Quartz Lamp Bank Calibration Facility

The comparative calibration tests were run using the same quartz Tamp bank
shown in Figure 3.3-16 that had been used to thermally cycle sensor
components. A Hy-Cal asymptotic calorimeter was used as a reference sensor to
monitor the incident heat flux. The sensor to be calibrated was mounted in a
plate 7.0 centimeters in diameter and coated with a material of known
emittance and absorptance. The plate was then mounted in a fixture in front of
the Tamp. The Hy-Cal sensor was mounted on one side of the fixture at the same
distance from the Tamp. Impingement air was used to cool the back side of the
sensor. Figures 4.3-2 and 4.3-3 show the sensor installed for calibration.
During the calibration sequence, data were taken at different incident heat
flux Tevels with both a constant sensor temperature and a constant impingement
air flow. The incident heat flux, sensor temperature and sensor microvolt
output were measured during the calibration. The heat flow through the sensor
was determined by calculating the heat absorbed into the sensor and
subtracting the heat Tosses from reradiation and convection. A discussion of
the calculation procedure is given in Appendix B. The sensor sensitivity
(microvolt output per unit heat flux transmitted) was also calculated to
detect changes in output due to varying sensor temperature or heat flux Tevels.
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Figure 4.3-2 Quartz Lamp Bank with Figure 4.3-3 Closeup View of Cali-

Sensor Calibration Fix- bration Fixture and
ture and Reference Hy- Reference Hy-Cal Sen-
Cal Sensor Installed sor Installed on the

Quartz Lamp Bank
4.3.4 Three Filament Calibration Source

Absolute calibrations were perforred using the three filament vacuum
calibration facility shown in Figures 4.3-4, 4.3-5, and 4.3-6. The sensor
mounting configuration was identical to that in the quartz Tamp bank facility
to provide interchangability of samples. The three filament vacuum facility
applied the additional constraint that the mounting of the sensor in the
calibration plate must be a Teak-free weld. The heat source was provided by
three electrically heated graphite filaments. The sensor under test was
mounted on one side of the center filament and a Hy-Cal reference sensor was
mounted on the opposite side. The top and bottom filaments acted as guard
filaments to reduce heat losses from the edge of the center filament which
ensured a constant filament temperature. The filament temperature, Hy-Cal
sensor output, test sensor temperature and test sensor microvolt output were
measured during the test. The heat flux incident on the test sensor was
calculated from the filament temperature and the geometrical constants of the
test setup. An independent determination of the heat flux was provided by the
Hy-Cal sensor. The heat flux transmitted through the sensor was then
calculated as described in Appendix B. Figure 4.3-7 presents comparisons of:
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the absolute calibration data against the filament temperature,

data from a Hy-Cal asymptotic calorineter in the vacuum calibration
facility,

data from another Hy-Cal asymptotic calorimeter in the quartz Tamp bank
facility.
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Figure 4.3-4 External View and Schematic of Three Filament Vacuum Calibration
Facility
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Figure 4.3-5 1Internal View of Three Filament Vacuum Calibration Facility
Showing the Calibration Fixture and Heat Shield

The agreement shown confirms that the calibration data obtained in the quartz

Tamp bank facility is valid and can be verified by another independent
measurement technique.

At high heat flux Tevels in the vacuum calibration facility, the measured heat
flux was reduced by inadvertantly copper plating the surface of the sensor
Causing a decrease in the absorptance of the surface. The source of the copper
plating was traced to overtemperatured heat shields. The cooling on the heat
shields has been improved, and the shields are being chrome plated to
eliminate this problem on future runs.
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4.3.5 Thermal Cycling Tests

The thermal cycling tests were conducted with the quartz lamp bank facility. A
cycle consisted of rapgd heating to 1200K, with a transmitted heat flux of
approximately 560 kw/m“, and holding this condition for 1.8 minutes. The

heat source was then shut down and the sample allowed to cool for 5.2 minutes.
Data were acquired twice during each cycle, once 1.5 minutes. after the lamps
were turned on and again 3.5 minutes after the lamps were turned off. Figure
4.3-8 shows the channel assignments and Figures 4.3-9 and 4.3-10 show data
from a hot and cold cycle on sensor G-9. Of the five sensors that were thermal
cycled, two survived through the full 50 cycles. The comparison of calibration
data before and after the cyclic endurance tests are shown in Figures 4.3-11
and 4.3-12, The failures of the three sensors were all traced to broken
leadwires external to the sensors. This breakage was a result of Tleadwire
vibration caused by the cooling air impinging on the back of the sensor. This
problem has been minimized by providing better support for the leadwires
during both calibration and thermal cycling tests. '

4.3.6 Thermal Soak Tests

The thermal soak test was conducted by ageing one sensor of each type in an
oven for 50 hours at approximately 1175K. The test setup is shown in Figure
4.3-13. Sensors T-2, D-3, L-1, and G-3 were used in this test. The sensor
resistance, i.e., the resistance of the differential thermocouple, was
monitored during the test. A plot of the data from this test is given in
Figure 4.3-14, There is considerable variation among the sensors as was
expected, Sensor T-2 had the highest resistance because of the extremely fine
gauge Alumel conductors in the dual conductor swaged wire. Sensors D-3 and G-3
had significantly Tower resistance due to the larger gauge Alumel conductors
in the single conductor swaged wire used in these 'sensors. The Taminated
sensor (L-1) had an intermediate level resistance. The sensor had heavier
Rauge wire; however, the wire was Hastelloy-X with a higher resistivity than
Tumel. As the sensors were heated, the resistance increased due to the Tower
electrical conductivity of both Hastelloy-X and Alumel at elevated
temperatures. The resistance of the sensors remained constant during the
thermal soak and returned to the initial value upon cool down. These results
showed that the Teadwires physically survived the test without burnout or
severe loss of cross sectional area due to oxidation. Attempts to recalibrate
the sensors after the thermal soak produced erratic results with Tow microvolt
output from all four sensors. Heat was applied Tocally along the length of the
Teadwires, and it was found that secondary junctions had formed in numerous
areas, with the most significant junctions located in the gradient area where
the Teadwires exited the oven. This test showed that the sensors and Teadwires
could physically survive the 50 hour endurance test. The leads, however,
developed thermoelectric problems external to the sensors. In addition to
addressing leadwire problems, Pratt & Whitney Aircraft is currently procuring
a quartz Tamp bank that will allow ageing tests to be conducted under
conditions more representative of what would actually be experienced by the
sensors under active rig or engine test conditions. '
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SECTION 5.0
SENSOR TEST RESULTS
5.1 ACCURACY SUMMARY

The sensor accuracy goal was to achieve +5 percent of 1x108 Watt/m2 even
though +10 percent accuracy would be acceptable. The calibration curves for
all the sensors are presented in Appendices C, D and E along with the +5
percent and +10 percent error bands. The individual data points are
represented by the symbols. The Teast squares fit of the data forced through
the origin is shown by the solid Tine. The two short dashed Tines represent
the +5 percent error bands and the two long dashed lines represent the +10
percént error bands. For the majority of the sensors of each type, all the
data falls within the +5 percent error band. For each of the sensor types
however, there are a few sensors which exhibit increased scatter in the data,
but still fall generally within the +10 percent error band. Any sources of
nonrepeatability related either to the sensors themselves or the sensor
calibration system will be reflected as scatter in the data. An error
discussion is presented in Appendix B. System bias is believed to be small.
Section 4.3.3 and Figure 4.3-7 compare data taken by three different
calibration techniques in two different calibration devices. There is no
detectable rig-to-rig or technique-to-technique bias in this data.

5.2 SURVIVABILITY SUMMARY

Twenty-two of the thirty-nine sensors fabricated failed during the program.
The dominant failure mode for all the sensor types was failure of the
Teadwires external to the sensors. Twenty of the sensors experienced leadwire
failures. The two other sensors that failed developed opens in the
thermocouple circuits, and the location of these opens was determined to be
internal to the sensors.

The Teadwire failures can be attributed to two general causes. The first cause
of Teadwire failure was breakage resulting from handling during fabrication
and]mount1ng of the sensors. There were several factors contributing to these
failures: -

1. while sensor components had been tested earlier, several sensors of the
first type constructed (embedded thermocouples - single conductor swaged
wire) failed during construction or installation. This reflects the
"learning curve" process where techniques for sensor construction were
being developed.

2. The swaged wire was stripped back in the minfature thermocouple Tab by the
use of mechanical strippers. This technique, which is routinely used
successfully for heavier gauge thermocouple wire, tended to twist the.
sheath on the fine gauge wire for approximately 2.5 centimeters back from
the junction area. Consequently, the leadwire exiting the side of the
sensor was embrittled, and prone to failure. This problem was identified
during post test inspection, and the technique for stripping the wire is
being modified to eliminate the problem in the future.
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3. Several of the sensors were used in multiple tests. This required
extensive handling that eventually contributed to lead wire failure.

The second general cause of leadwire failure was vibration of the leadwires
behind the sensor by the air used to cool the back of the sensors. The wires
in this case had been somewhat embrittled by exposure to high temperature,
increasing the risk of breakage from the vibration. The technique for
installing the sensors in the calibration plate was modified to support
leadwires firmly at close intervals during calibration and cyclic testing.
This greatly reduced the number of this type of failure during later testing.

5.3 ;?ST RESULTS FOR EMBEDDED THERMOCOUPLE SENSORS - SINGLE CONDUCTOR SWAGED
RE

A total of 10 embedded thermocouple sensors, designated D-1 through D-10, were
constructed using single conductor swaged wire and tested. A summary of the
test program is given in Table 5.3-1. The individual sensor calibrations are
presented in Appendix C.

TABLE 5.3-1
TEST RESULTS OF EMBEDDED THERMOCOUPLE SENSORS -~ SINGLE CONDUCTOR SWAGED WIRE

Serial Lamp Vacuum Thermal Thermal
Number Status Calibration Calibration Cycle Soak Comments

D-1 Good X

D-2 Failed X Leadwire Failure
During
Calibration

D-3 Failed X X Leadwire Failure
. After Thermal
Soak

D-4 Good X Delivered to
NASA at
11/13/81 Oral
Briefing

D-5 Failed Leadwire Failure
During
Installation
in Rig

D-6 Failed Leadwire Failure
During
Installation

D-7 Failed . Leadwire Failure

During
Installation
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TABLE 5.3-1 (Continued)

Serial Lamp Vacuum Thermal Thermal

Number Status Calibration Calibration Cycle Soak Comments

D-8 Failed Leadwire Failure
During
Construction

D-9 Failed Leadwire Failure
During
Construction

D-10 Failed Leadwire Failure
During
Construction

These sensors were the first type to be fabricated and tested, and six out of
ten were failed by mechanical means during fabrication and installation. The
failure rate on subsequent sensors was dramatically reduced by improvements in
the fabrication techniques.

The failure of sensor D-2 during the lamp calibration was traced to vibration
of the leadwire by the cooling air impinging on the back of the sensor. Sensor
D-3 failed when subjected to a 50 hour thermal soak test at near maximum hot

?idg temperature. This problem was traced to secondary junctions in the
eadwires.

Figure 5.3-1 is a plot of the least squares fit of the sensor microvolt output
versus heat flux transmitted for sensor D-1. As anticipated, this line passes
close to the origin (zero output at zero heat flux transmitted). Figures 5.3-2
and 5.3-3 show the least squares fit of the sensor sensitivity versus heat
flux transmitted and sensor reference temperatures. Both these curves are
relatively flat, indicating that no correction to the sensor output is
required to account for sensor temperature or heat flux level.

5.4 TEST RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR - DUAL CONDUCTOR SWAGED WIRE

A total of nine embedded thermocouple sensors using dual conductor swaged
wire, designated as T-1 through T-9, were fabricated and tested. A summary of
the test program is given in Table 5.4-1. The individual sensor calibrations
are presented in Appendix C.

One of the dual conductor swaged wire sensors was damaged during fabrication
and one was damaged during installation in the calibration rig. Sensor T-3
failed during vacuum calibration and sensor T-4 failed during thermal cycling,
both due to leadwire failures external to the sensor. These failures were a
result of leadwire vibration caused by the cooling air impinging on the back
of the sensor. Sensor T-6 fajled during the quartz Tamp calibration. One of
the thermocouples opened during test, and the Tocation was determined to be
internal to the sensor.
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TABLE 5.4-1
TEST RESULTS OF EMBEDDED THERMOCOUPLE SENSORS - DUAL CONDUCTOR SWAGED WIRE

Serial Lamp Vacuum Thermal Thermal

Number Status Calibration Calibration Cycle Soak Comments

T-1 Good X

T=2 Failed X X Leadwire Failure
After Thermal
Soak

T-3 Failed X X Leadwire Failure
During Vacuum
Calibration
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TABLE 5.4-1 (Continued)

Serial Lamp Vacuum Thermal Thermal

Number Status Calibration Calijbration Cycle Soak Comments

T-4 Failed X Leadwire Failure

: During Initial

Calibration

T-5 Good X

T-6 Failed X Open
Thermocouple

Internal to the
Sensor During
Lamp Calibration

T-7 Good X Delivered to
NASA at
11/13/81 Oral
Briefing

T-8 Failed Leadwires Cut
During
Installation
in Rig

T-9 Failed Bad Weld on
Leadwire
Damaged
During
construction

Figure 5.4-1 is a plot of the least squares fit of the sensor microvolt output
versus heat flux transmitted for sensor T-1. As anticipated, the line passes
close to the origin (zero output at zero heat flux transmitted). Figures 5.4-2
and 5.,4-3 show the least squares fit of the sensor sensitivity versus heat
flux through the sensor and sensor reference temperature. The sensor
sensitivity versus both heat flux transmitted and sensor reference temperature
are relatively flat, indicating that no correction to the sensor output is
required to account for sensor temperature or heat flux level.
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5.5 TEST RESULTS FOR LAMINATED SENSORS
A total of eleven laminated sensors, designated L-1 through L-11, were

fabricated and tested. A summary of the test program is given in Table 5.5-1
and the individual sensor calibrations are presented in Appendix D.

TABLE 5.5-1
TEST RESULTS OF LAMINATED SENSORS
Serial Lamp Vacuum Thermal Thermal
Number Status Calibration Calibration Cycle Soak Comments
L-1 Failed X X Open Thermocouple

Internal to the Sensor
During Calibration
After Thermal Soak

L-2 Failed X X Leadwire Failure
During Thermal Cycle
L-3 Good X X Delivered to NASA at

11/13/81 Oral Briefing
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TABLE 5.5-1 (Continued)
TEST RESULTS OF LAMINATED SENSORS

Serial Lamp Vacuum Thermal Thermal

Number Status Calibration Calibration Cycle Soak Comments
L-4 Good X

L-5 Good X

L-6 Good X

L-7 Good X

L-8 Good X

L-9 Good X

L-10 Good

L-11 Good X

Of the eleven laminated sensors fabricated and tested, only two sensors
failed, one during thermal cycle testing and one after the thermal soak test.
Sensor L-1 developed an open thermocouple during recalibration after the
thermal soak and the Tocation of the open was determined to be internal to the
sensor. Sensor L-2 experienced a leadwire failure durin? the thermal cycle
test. Sensor L-3 successfully completed the thermal cycle test. In large part,
the reduced failure rate of these sensors can be attributed to the fact that
these sensors were fabricated and tested last, and the experience in
fabrication techniques and leadwire support procedures was evident.

The dashed Tine in Figure 5.5-1 is a plot of the least squares fit of the
sensor microvolt output versus heat flux transmitted for sensor L-11. This
curve does not pass near the origin (zero output at zero transmitted heat
flux). The cause of the discrepancy was found to be varying sensor sensitivity
with sensor temperature. Figures 5.5-2 and 5.5-3 are the least squares fit of
the sensor sensitivity versus heat flow through the sensor and sensor .
temperature. The plot of sensitivity versus heat flow through the sensor is
nearly flat, indicating that no correction is required to account for heat
flux level. The plot of sensor sensitivity versus sensor temperature has a
significant slope, indicating that accuracy might be gained by correcting the
output to account for changes in sensor temperature.
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The slope of sensor sensitivity versus sensor reference temperature plot,
shown by the dashed line in Figure 5.5-3, is positive. This is typical for all
the laminated sensors. Statistical techniques discussed in Appendix B were
used to obtain Ehe best overall slope of these curves which was 2.54x10-4
microvolts/kw/m¢/K. That correction was then applied to correct all the data
to a constant temperature of 1150K. The least squares fits to the corrected
data are shown as the solid lines in Figures 5.5-1 through 5.5-3. The
correction causes the output curve to go closer to the origin and results in
nearly flat slopes for the sensor sensitivity vs. heat flux and temperature
curves.

5.6 TEST RESULTS FOR GARDON GAUGE SENSORS
A total of nine Gardon Gauge sensors, designated G-1 through G-9, were

fabricated and tested. A summary of the test program is given in Table 5.6-I
and the individual sensor calibrations are presented in Appendix E.
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TABLE 5.6-I

TEST RESULTS OF GARDON GAUGE SENSORS

Serial Lamp Vacuum Thermal Thermal

Number Status Calibratijon Calibration Cycle Soak Comments

G-1 Failed X X Leadwire Failure
During Handling

G-2 Failed X Leadwire Failure
During
Calibration

G-3 Failed X X Bad Temperature
Profile-Suspect
Poor Lamination
Leadwire Failure
After Thermal
Soak

G-4 Good X X Delivered to
NASA at
11/13/81 Oral
Briefing

G-5 Failed X Leadwire Failure
During
Calibration

G-6 Failed X X Leadwire Failure
During
Thermal Cycle

G-7 Failed X Leadwire Failure
During
Calibration

G-8 Good X X

G-9 Good X X

Sensor G-1 was calibrated initially with an air cavity covered with
Hastelloy-X foil, and then rebuilt with the rear cavity filled with ceramic.
When tested, it was determined that the gauge performs satisfactorily with
both construction techniques, with a reduced but still acceptable output and
sensitivity with the ceramic filled cavity. Figure 5.6-1 shows the comparison
of calibration data for sensor G-1 with the air filled and ceramic filled
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cavities. Fabricability and survivability considerations favored the ceramic
f111gd Gardon gauge, and this construction was adopted for all further
test1ng= Sensors G-1, G-4, and G-8 were used for absolute calibrations in the
three filament vacuum rig. Sensor G-3 exhibited an uneven temperature profile
during the initial calibration which was traced to a lamination defect. This
sensor was then used for the thermal aging tests. Sensors G-6 and G-9 were
used for thermal cycling tests. Of the nine Gardon gauge sensors fabricated
and tested, six sensors failed during calibration testing. A1l of these were
traced to Teadwire failures.
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Figure 5.6-1 Plot Showing Comparison of Calibration Data for an Air
Filled and a Ceramic Cement Filled Gardon Gauge Sensor

Figure 5.6-2 is a plot of the least squares fit of the sensor microvolt output
versus heat flux transmitted for sensor G-9. As anticipated, this line passes
close to the origin (zero output at zero heat flux transmitted). Figures 5.6-3
and 5.6-4 are plots of the least squares fit of sensor sensitivity versus heat
flux through the sensor and sensor temperature. These plot are both very close
to flat, indicating that there is no correction of the sensor output required
to account for sensor temperature or heat flux Tevel.
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SECTION 6.0
CONCLUSIONS AND RECOMMENDATIONS

Sensors were fabricated according to three different designs that met the
goals set forth in the requirements of physical size, durability under the
anticipated environmental conditions, and accuracy.

The embedded thermocouple sensors, laminated sensors and Gardon gauge sensors

all were fabricated with external dimensions not exceeding 0.8 centimeter in

diameter and 0.115 centimeter in thickness. The actual sensor area in the
laminated sensors and the Gardon gauge sensors is 0.152 centimeter in

diameter. In the case of the embedded thermocouple sensors, the actual sensor

3ctiv§ area is undefined, but is estimated to be less than 0.2 centimeter in
jameter.

The sensors were shown to be capable of withstanding fifty thermal gycles from
near room temperature and negligible heat flow to 1175K and 50 kw/m¢, and of
repeating the initial calibration values after the cyclic testing. The sensors
were also shown to maintain a constant resistance throughout a fifty hour
thermal soak at approximately 1175K, indicating that oxidation of the
thermoelectric elements was not a significant factor.

The accuracy gf each type of sensor was found to be within +5 percent of
1x109 Watts/m for the majority of the individual sensors. A few sensors
of each type were found to exhibit more scatter in the data and to produce
accuracies in the +10 percent range. The cause for this variation between
sensors is not known, but it is suspected to result from problems with
intermittant secondary junctions in the leadwires.

The embedded thermocouple sensors were found to produce stable accurate
results and are the preferred sensors. These sensors experienced a very high
mortality rate due to leadwire failures, but this is attributed more to
problems in fabrication and handling procedures than to a problem in the
sensor design.

The Taminated sensors were found to exhibit a change in sensitivity with
changing sensor temperature. This required that an empirical correction be
made to the data. After correction, the data from the sensors exhibited the
accuracy required. These sensors are considered the third preference because
of the correction required to the data.

The Gardon gauge sensors were found to produce stable and accurate results and
are considered as second preference only from the standpoint that they tend to
Cause a larger thermal perturbation than the embedded thermocouples. This
thermal perturbation is only a problem in convective heating situations where
the gas temperature is close to the combustor liner temperature.

The fabrication of all three types of sensors is a labor intensive effort and

there is no significant difference in cost or complexity of fabrication
between the sensor types.
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The dominant failure mode for all the sensor types was failure of the Jead-
wires external to the sensors. Twenty of the tﬁirty—nine sensors experienced
Teadwire failures. Two of the remaining sensors developed opens in the
thermocouple circuits, and the location of these opens was determined to be
internal to the sensors. The leadwire failures can be attributed to two
general causes; 1) breakage resulting from handling during fabrication and
mount ing of the sensors; and 2) vibration of the leadwires behind the sensor
caused by the cooling air used to cool the back of the sensors.

No bias errors were detected between the two calibration devices used or
between the three calibration techniques employed. Repeatability errors in the
testing would appear as scatter in the calibration data.

Some scatter in the data and some of the inconsistancies in output between
sensors of the same type could be explained by secondary junctions in the
swaged wire. The single conductor Chromel and Alumel swaged wire used for
sensor construction was approximately twelve years old, and had an unspecified
INCONEL sheath. The Hastelloy-X swaged wire was fabricated in-house, and the
consistency of this wire could account for some of the observed data scatter.

Specific recommendations for improving the fabricability, durability and
repeatability of the sensors are listed below.

o Use new swaged wire for the fabrication of the sensors and improve
inspection requirements for the wire.

0 Modify fabrication techniques to strip the swaged wire with a resistance
welder rather than a mechanical stripper, and minimize the flexing of the
wire during installation.

0 Install the sensor into the calibration plate with a few tack welds rather

than a continuous weld to minimize handling and make removal of the sensor
easier,

0 Support leadwires firmly at close intervals during calibration and cyclic
testing.

0 Use lightweight connectors on the swaged wire to minimize stresses on the
wire caused by the weight of the connectors.
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APPENDIX A
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APPENDIX B
CALCULATION PROCEDURES, ERROR DISCUSSION AND ERROR ANALYSIS
B-1.0 APPROACH TO CALCULATION

In al1 testing conducted on the heat flux sensors, the measured parameters
were incident heat flux, sensor voltage output, and sensor reference
temperature. The calibration desired for the sensor is the sensor output as a
function of the heat flow through the sensor. The sensor is subjected to
changing conditions on both the hot and cold surfaces when it is installed in
a combustor 1iner, hence the heat flow through the sensor is the only
meaningful result that can be obtained from the sensor. The heat flow through
the sensor is calculated by determining the heat flux absorbed by the sensor
and subtracting the heat loss from radiation and convection off the front
face. Described below are the quantities that are calculated.

B-1.1 Heat Flux Absorbed

The sensors were all coated with Zynolite High Temperature Black Paint prior
to calibration. This paint has been found to have a stable emittance and
absorptance in air of 0.89 over the wavelength range of interest at
temperatures up to 1350K. The heat flux absorbed is determined by multiplying
the incident heat flux by the 0.89 absorptance value.

B-1.2 Transmitted Heat Flux

The transmitted heat flux was calculated by subtracting the radiation heat
loss and convection heat loss off the front face of the sensor from the heat
flux absorbed. The radiation loss off the front face of the sensor is
calculated using an emittance value of 0.89 and the calculated front face
temperature. For tests conducted in the quartz lamp bank facility, the
convection loss was calculated using an experimentally determined value of
394K for the temperature githin the quartz lamp bank and a heat transfer
coefficient of 0.017 kw/m¢K. For tests in the three filament vacuum rig, no
convection loss was used. The calculation is run iteratively with the front
face temperature calculation to converge on a solution.

B-1.3 Sensor Front Face Temperature

The sensor front face temperature is determined by estimating the depth of the
reference temperature measurement, and back calculating the surface
temperature using the transmitted heat flux and the thermal conductivities of
the materials. In the embedded thermocouple sensors, the reference temperature
Jjunction was estimated to be one half the wire diameter below the surface. In
the laminated sensor, the reference junction depth was taken as 0.09
centimeter below the sensor hot side surface. For the Gardon gauge sensors,
the depth was estimated as the midpoint of the Alumel layer in the sensor. The
front face temperature calculation is made iteratively with the transmitted
heat flux to converge on a solution. The front face temperature of the Gardon
gauge sensors was also calculated by adding the differential temperature
between the center of the foil and the Alumel layer to the reference
temperature, and this produced virtually the same result as with the estimated
depth of the reference junction.
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B-1.4 Sensor Sensitivity

The sensor sensitivity is calculated by dividing the sensor microvolt output
h{ the heat flux transmitted. This quantity provides a means to determine if
the unit output of the sensor is a function of sensor temperature or heat flux
lTevels. The sensitivities of the embedded thermocouple sensors and the Gardon
gauge sensors are essentially constant with both sensor temperature and heat
flux levels. For the laminated sensors, the sensitivity is constant with heat
flux level, but increases with increasing sensor temperature. This indicates
that to achieve maximum accuracy from the laminated sensors, a temperature
dependent sensor sensitivity must be used.

B-1.5 Laminated Sensor Output Correction

As mentioned above and in the text of the report, the laminated sensors showed
a variation in sensitivity with sensor temperature. The sensitivity was
consistently found to be higher at higher temperatures for these sensors.
While these sensors were the only type to use Hastelloy-X leadwires with an
Alumel thermal barrier, no basis could be found in the the material or
thermoelectric properties of Alumel or Hastelloy-X to account for the
variation. Statistical techniques were, therefore, used to derive a common
correction factor for the sensor type.

A least squares line was fit to the sensitivity vs. temperature curve for each
of the Taminated sensors. Since small errors in heat flux can cause large
errors in sensitivity at Tow heat flux levels, the data was weighted by the
heat flux transmitted through the sensor. The resulting slopes of the least
squares lines were found to be distributed roughly 1ognorma1ky. The fifty
percentile poins from that distribution (a slope of 2.54x10"
microvolts/kw/m</K) was then used to correct all data from all laminated
sensors to a constant temperature of 1150K. This correction significantly
reduced the scatter in the data. In addition, the corrected curves yield a
sensor output near zero for zero transmitted heat flux as should be expected
from the sensor. No such corrections were required for either the embedded
thermocouple sensors or the Gardon gauge sensors.

B-2.0 SAMPLE CALCULATION

To illustrate the above procedure, a sample calculation is presented below.

Ih{i example corresponds to the third data point in the calibration of sensor

B-2.1 Incident Heat Flux

The incident heat flux was measured using a Hy-Cal asymptotic calorimeter
mounted on one side of the test fixture in front of the quartz lamp bank. The
Hy-Cal reading was corrected for the small, experimentally determined, heat
flux difference between the location of the Hy-Cal and the sensor. The
resulting basic calibration results for this point were:

Incident Heat Flux 608 kw/m2
. Reference Temperature 1074
Sensor Output 138 microvolts
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B-2.2 Heat Flux Absorbed

Since the sensor was coated with a material of known absorptance, 0.89, the
absorbed heat flux is given by:

Qabsorbed = (0-89) (Qipcident) = (0.89) (608)
QAbsorbed 541 kW/m2

B-2.3 Heat Flux Transmitted

Front Face Radiation Loss - For a first pass, the sensor hot side temperature
was assumed to be equal to the sensor reference temperature. The average
temperature within the quartz Tamp bank to which the sensor reradiates was
determined experimentally to be approximately 394K.

QReradiation = € o (T4 - Twa114) using the 0.89 sensor emittance and o =
5.67x10~11 kw/m2/k4:

QReradiated = 0-89 x 5.67x10-11 (10744 - 3944)
QReradiated = 66 kw/m?

Front Face Convection Loss - The front face convection loss was calculated
using an air temperature within the quaEtz Tamp bank of 394K and a convective
heat transfer coefficient of 0.017 kw/m<K. This heat transfer coefficient,
which was based on a test conducted to investigate the effect of lamp cooling
air, is roughly twice that which would be expected from free convection.

Qconvection = 0-017 (1074 - 394) = 12 kw/m?
Transmitted Heat Flux - The heat flux transmitted is given by:

QTransmitted = QAbsorbed = QReradiated =~ QConvected
= 541 - 66 - 12

QTransmitted = 463 kw/m?

Sensor Front Face Temperature

At this point, the sensor front face temperature will be calculated based on
sensor reference temperature, the transmitted heat flux, the known reference
Junction location, and the known temperature dependent thermal conductivities
of the sensor materials.

The temperature increase across any layer of the sensor is given by:
aT = QT aX/k
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where;

Qr = Q transmitted
AX = thickness of the layer
k = thermal conductivity of the layer.

Therefore, to calculate the temperature rise between the reference
thermocouple and the hot side surface, we need only to sum the temperature
rise across each layer of the sensor above the reference thermocouple
junction. Since the Q transmitted is the same for all layers:

n

AT = Q7 Z aXi/k4

i=1

Figure B-1 presents a schematic of the conduction layers for the laminated
sensor. The conduction path between the reference junction location and the
hot side surface consists of approximately 0.009 centimeter of Hastelloy-X,
0.046 centimeter of Alumel, 0.034 more centimeter of Hastelloy-X, and 0.00l1
centimeter of the high emittance coating. At a temperature of 1074K, the
thermal conductivities are:

Hastelloy-X = 0.025 kw/m K
Alumel = 0.050 kw/m K
Coating (assumed) = 0.00175 kw/m K

The temperature rise between the reference thermocouple junction location and
the hot side surface is, therefore:

\T = 463 | 0:00009 , 0.00046 , 0.00034 , 0.00001

AT = 15K and
Thot side = 1089K

Recursive Calculation

This new hot side temperature is now substituted into the calculation for the
heat flux transmitted. The resulting transmitted heat flux is used to
calculate a new hot side temperature, etc. The result quickly converges on:

QTransmitted = 460 kw/m?

Thot side = 1088
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Figure B-1 Conduction Layers for Laminated Sensor
B-2.4 Sensor Sensitivity

The sensor sensitivity may now be calculated for the data point as:

Sensitivity = microvolt output/unit heat flux transmitted
= 139/460
Sensitivity = 0.300 microvolts/kw/m2

Laminated Sensor Output Correction

The previous step would complete the calculations for all sensor types except
the laminated sensors. As discussed in the Basic Approach to Calculations
Section, the Taminated sensors showed a variation in sensitivity with sensor
temperature. All data from these sensors were, therefore, corrected to a
constant sensor temperature of 1150K. As discussed earlier, the “besz" common
correction factgr for the laminated sensors was found to be 2.54x10-
microvolts/kw/m¢/K. Since this calibration point was at 1074K, sensor
reference temperature:
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(Sensitivity at 1150K) = (Sensitivity at 1074K) + 2.54x10-4 (1150 -1074)
= 0.300 + 0.019
= 0.319 microvolts/kw/m2
In actual use, this is the only correction required as explained in
Appendix D. To permit corrected data plots, however, the sensor output was
corrected to a nominal temperature of 1150K.
The output corrected to 1150K may be found as:
(Output at 1150K) = (Sensitivity at 1150K) (QTransmitted)

(0.319) (459.80)

147 microvolts.

B-3.0 ERROR DISCUSSION

The magnitude and importance of the various possible error sources will be a
function of the sensor operating condition (Qapsorbeds TSurfaces €tc-)-

That subject is discussed more fully in the error analysis presented in
Section B-4.0. A good qualitative feel for the relative importance of the
various parameters can, however, be obtained by investigating a typical data
point. The point that will be discussed here is the same data point from
sensor L-11 that was used for the previous sample calculation. This is an
intermediate level heat flux point at relatively high temperature.

Table B-I lists those parameters that are used in the calculation of sensor
sensitivity. Those parameters preceded by an asterisk are felt to be
accurately known and, as such, are sources of negligible error. Those
parameters will not be discussed further. The remaining parameters are
discussed further. The approach that will be taken is to analytically
investigate the affect that a variation in each parameter would have on the
calculated sensor sensitivity (calibration constant).

B-3.1 Incident Heat Flux

Figure B-2 shows the calculated effect of variations in the value of the
incident heat flux on the calculated sensor sensitivity. A +1.0 percent
variation in the incident heat flux results in a +1.1 percent variation in the
calculated sensor sensitivity. This indicates, as expected, that care must be
taken in measuring the incident heat flux.
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TABLE B-I
PARAMETERS ENTERING CALCULATION OF SENSOR SENSITIVITY

Incident Heat Flux

Sensor Microvolt Output

Absorptance of Hot Side Coating Layer
Reference Temperature

Reference Thermocouple Junction Location
*Stephan-Boltzman Constant

Temperature Within the Quartz Lamp Bank

Sensor Hot Side Convective Heat Transfer Coefficient
*Thickness of Sensor Alumel Layer

*Thickness of Sensor Hastelloy-X Layers
Thickness of Hot Side Coating Layer

*Thermal Conductivity of Alumel

*Thermal Conductivity of Hastelloy-X

Thermal Conductivity of Hot Side Coating Layer

00000 0DO0OO0OOO0OOOOO

Those parameters preceded by an * are assumed to be sources of

negligible error.
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B-3.2 Sensor Output

Figure B-3 shows the calculated effect of variations in the sensor output on
the calculated sensor sensitivity. A +1.0 percent variation in the sensor
output results in a +0.94 percent variation in the sensor sensitivity. This
differs slightly from the +1.0 percent to be expected because of the output
correction for the laminated sensor discussed earlier. An accurate microvolt
meter must, therefore, be used to measure the sensor output voltage.
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Figure B-3 Calculated Effect of Variation in Sensor Output on Calculated
Sensor Sensitivity

8-3.3 Absorptance of Hot Side Coating Layer

Figure B-4 shows the calculated effect of variations in the absorptance of the
hot side coating Tayer has on the calculated sensor sensitivity. A +1.0
percent variation in the coating emittance value results in a +0.96 percent
variation in the sensor sensitivity. This confirms the sensitivity of the
calibration to the absorptance of the hot side surface, and verifies the need
for a coating with known absorptance.
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B-3.4 Reference Temperature

Figure B-5 shows the calculated effect of a variation in sensor reference
temperature on the calculated sensor sensitivity. A +10K variation in the
reference temperature only results in a +0.22 percent variation in sensor
sensitivity. The calibration results are therefore, quite insensitive to

moderate errors in determination of the reference temperature.

B-3.5 Reference Thermocouple Junction Location

Figure B-6 shows the effect of a variation in sensor reference location on the
calculated sensor sensitivity. Only a +0.08 percent variation in sensor
sensitivity results from a +0.0075 centimeter variation in the reference
Junction location. This +0.0075 centimeter variation in junction location
equates to a +22 percent variation in the placement of the thermocouple
Junction within the 0.034 centimeter Alumel layer or a +6.6 percent variation
of the junction location within the total thickness of the sensor. Because of
the slight variation in sensor sensitivity, the calculation results are very
insensitive to errors in determination of reference junction location.
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B-3.6 Temperature within the Quartz Lamp Bank

Figure B-7 shows the calculated effect of a variation in the temperature
within the quartz lamp bank on the calculated sensor sensitivity. The
temperature primarily effects the convective loss from the sensor although it
also enters the radiation loss calculation. A +50K variation in the assumed
temperature within the quartz lamp bank results in a +0.13 percent variation
in the sensor sensitivity. The calculation results are, therefore, quite
insensitive to the temperature within the quartz lamp bank.
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Figure B-7 Calculated Effect of Variation in Temperature within Quartz Lamp
Bank on Calculated Sensor Sensitivity

B-3.7 Hot Side Heat Transfer Coefficient

Figure B-8 shows the calculated effect of a variation in the hot side heat
transfer coefficient on the calculated sensor sensitivity. A +50 percent
variation in the assumed heat transfer coefficient results in a +1.19 percent
variation in sensor sensitivity. The calculation results are, therefore,

relatively insensitive to moderate errors in the hot side heat transfer
coefficient.
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B-3.8 Thickness of the Hot Side Coating Layer

Figure B-9 shows the calculated effect of a variation in the thickness of the
hot side coating layer on the calculated sensor sensitivity. A +100 percent
variation in the coating layer thickness results in a +0.15 percent variation
in the calculated sensor sensitivity. The calculation results are very
insensitive to even large errors in this parameter.

B-3.9 Thermal Conductivity of Hot Side Coating Layer

Figure B-10 shows the calculated effect of a variation in the thermal
conductivity of the hot side coating layer on the calculated sensor
sensitivity. Varying this value from half the assumed value to infinity
results in a +0.15 percent variation in the calculated sensor sensitivity. The
calculation results are, therefore, very insensitive to even large errors in
this parameter.
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B-3.10 Summary

For most cases of interest, uncertainty in the sensor calibration results will
be dominated by any errors in the incident heat flux, sensor output, and
absorptance of the sensor hot side coating. Care should be used to determine
those parameters accurately. Large variations in the hot side heat transfer
coefficient and the sensor reference temperature could yield moderate errors
and should be avoided. A11 other error sources should introduce negligible
calibration uncertainty.

B.4.0 ERROR ANALYSIS

Identified below are the symbols to be used in the following discussion.

Q‘i =

O o0 O O o<
O X~ >
“ . owonoow

[}

Q r X -4 4 n on
]

o
x
L[}

Incident heat flux on the sensor

Sensor reference temperature

Sensor output

Heat flux absorbed by the sensor

Heat flux transmitted through the sensor

Heat flux loss from the sensor front face by radiation

Heat flux loss from the sensor front face by convection
Absorptance of the coating on the sensor

Emittance of the coating on the sensor

Heat transfer coefficient

Sensor sensitivity

Sensor surface temperature

Temperature within the quartz lamp bank

Thermal conductivity v
Length of conduction path
Stefan-Boltzmann constant
Uncertainty in x

B-4.1 Formulation of the Problem

The parameters actually measured during sensor calibration are:

< -4 o
S
1] n ]
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We then must calculate

W = o
r = Qa-QQr-Q
where:
Qg = o (Tg* - T5H)
Qc = h (Ts - Tg)
so:
QT'_'CQ.i'EO‘ (TS4-TE4)"h(TS'TE) 1

and sensitivity = V7/Qr but Ts is unknown.
From the conduction equation we find that
_k
Qr = ]:-(TS - TR)

and

L
Ts=Tp*x O
B-4.2 Approximations

It is shown above that
Te =Ty, +£Qr =Ty +5 (aQ - Q- Q)
S Rk T RTK 'Yy R c’

L/k is 0.035 and Qg + Q¢ <150. So, to within an accuracy of 5K, we may
write:

La
and we may substitute that expression into equation 1 to yield

QT=°Qi-e°[(TR+L% 01)4'TE4]~h(TR+'Il;—aQi-TE)' 2
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Tp, which is 600, is (La/k) Qj, which is 31. So we may expand the
fourth power expression and save only the two high order terms in TR to
obtain

4 4 3 La hLa
Qp =~ aQ; - ¢ o(TR - TE )-3¢co TR E—-Qi - h (TR-TE) sl Qi .

As mentioned earlier, over the ranges of wavelengths and temperatures of
interest, the coating used has been shown to have an ¢ = a = 0.89. So we set
e = a to obtain

4 4 3 Loy ahLQ,
QT = q Qi - ao (TR - TE ) -3 ao TR — - h(TR-TE) -

B-4.3 Differentiation

Equation 3 may be differentiated to yield the results shown in Table B-II.

TABLE B-II
RESULTS OF DIFFERENTIATION

aQT/aoi = a - 3c20TR3 %-- E%E
L
307/3“ = Qi -0 (TR4 - TE4) - GaoTR3 %-Qi - %— Qi
2
SQT/QTR = -4aoTR3 -9 020 TR %'Qf - h
- 3
3QT/OTE = 4acTE + h
La
3QT/ah = - TR + TE "X Qi
3020TR3 ha
Wp/el = - —— 4 - 4
2 + 3
3a"0T, LQ,

kZ ;2- i
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We can now use nominal values to get a feel for the relative size of the
various terms in each partial derivative:

« = e=0.89
o =  5.67 x 10-11 kw/m2/K4
h = 0.017 kw/m/K

Tg = 394

TR in range 600 < TR < 1200K

Qi in range 200 < Q; < 800 kw/m2

L/k = :E: Li/ki in range 0.010 < L/k < 0.032
i layers

3.92 :i]] be used for a nominal value, with L =~ 0.00058 m and k =~ 0.029
w m .

Using this range of values in each partial,

a) 3QT/3Q1' = q -3 azaTR3 % - :L_a

magnitudes 0.89 < 0.006 < 0.0004

SO aQT/aQ.i ~q.

That indicates that any error in the incident heat flux is directly related to
an error in the transmitted heat flux through the absorptance term, a.

b)  aQp/aa = Q - oTgt  +oTg - 6ol lak 0 4 Q,
e Sa— e — N e’
magni tudes 0-1000 7.5 to 120 <2 <11 <1

so aQT/aa ~Q; - oTR4

Uncertainty in the absorptance is reflected both as uncertainty in the
absorbed heat flux and in hot side reradiation correction. The error in the
absorbed heat flux depends on the incident heat flux while the uncertainty in
the reradiated heat flux depends on the fourth power of the sensor temperature.

_ 3 2 2L
c) 3QT/3TR -4 a aTR - 9a o TR X Q'i h
magnitudes 0.044 to 0.35 . <0.01 0.017

o aQ/aTy ~ da oTg]

87



This is independent of Q- The size of3this term is, however, strongly

dependent on the sensor temperature Tp . This is because uncertainty in

TR effects accuracy primarily through uncertainty in the hot side

reradiation term.

d) 2Q/aT; = daoTe> + b
e e

- -

magni tudes 0.013 0.017

so, since these terms are comparable in magnitude,

3QT/8TE = 4coTE3 + h.

Uncertainties in the temperature within the quartz lamp bank are reflected as
~ uncertainties in the hot side convection and reradiation losses. Again this is
independent of Q.

e) aQp/5 h = -To * T o- %ﬁ Qi
N—m N mmay N
magnitudes 600 to 1200 394 17

SO QQT/ah = - (TR - TE)

As would be expected, uncertainly in the hot side heat transfer coefficient is
reflected in uncertainty in the transmitted heat flux dependent on the size of
the temperature difference between the sensor and the temperature within the
quartz lamp bank. Again this is independent of Q4.

3 Qsa
f) aQT/aL = (-30.0'TR - h) -
“amsstn., s’ S -
magni tudes 0.033 to 0.27 0.017
3 9

so 3Qp/aL ~ -3 aonR X

An error in the conduction thickness L is propagated to an error in
transmitted heat flux through a term containing heat flux multiplied by the
third power of the sensor temperature. This is because uncertainty in the
conduction length results in an uncertainty in the surface temperature
(proportional to Qg). This results in an uncertainty in the reradiation loss
(proportional to T°).

g) aQq/ak (3 acTR3 + h) 5% 0
Nt —— ‘-'v"‘k

magnitudes 0.033 to 0.27 0.017
-LQ,
k
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This is the same general form as the previous terms. Any uncertainty in k is
reflected as an uncertainty in the reradiation loss.

B-4.4 Numerical Evaluation

Section B-4.3 indicated that most of the partial derivatives were functions of
either heat flux level, sensor temperature level or both. This indicates that
there are four cases that should be considered.

Low Temperature Low Heat Flux
Low Temperature - High Heat Flux
High Temperature Low Heat Flux
High Temperature High Heat Flux

The expressions in Table B-II were used to calculate numerical values for
these four cases. The results are shown in Table B-III. Our estimate for the
uncertainty values of the various parameters are given in Table B-IV. Under
the assumption that the errors are random, that is the errors in the various
parameters are not correlated, the uncertainty in QT may be calculated as:

2 2 2 2 2
aQ 3Q 3Q Q aQ
2, _ T 2 TY) 2 T 2 T 2 T 2 .2
GQT-(—-Q—ai)ch+(—aa)sa+(~r—6R) cTR+(—r—3E)5TE+<ﬁ1-a) 8§ h

2 2
0\ 0
+ (‘sr) sL + (‘EE 87k

TABLE B-III

NUMERICAL VALUES OF PARTIAL DERIVATIVES
OF Q TRANSMITTED

Tp = 600K TR = 1200K

- 7 7 T 7 7
partial  Umite &5 = 200 kw/m® Q; = 800 kw/m® Q; = 200 kw/m’ Q; = 800 kw/m
20 /30 0.889 0.889 0.885 0.885
0/3a (kw/nd) 194 793 80 673
30;/3T  (kw/mX)  -0.0620 -0.0642 -0.374 -0.381
20r/aT;  (kw/m’K)  0.0295 0.0295 0.0295 0.0295
30 /o (K) -210 -220 -810 -820
30:/oL (k/m) ~308 . -1250 -1736 -6942
30p/ak  (K/m) 6.16 25.0 34.7 139
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TABLE B-1V

UNCERTAINTY VALUES

TR = 600K TR = 1200K
G = G T 4=
Parameter 200 kw/m® 800 kw/m> 200 kw/m> 800 kw/m>
8Q; (kw/mz) +(1 percent FS + 12 18 12 18
1 percent Reading)
da +1 percent lTow temperature 0.0089 0.0089 0.0178 0.0178
2 percent high temperature

GTR(K).i (5K + 1 percent of value) 11 11 17 17
sTE(K) (+50K) 50 50 50 50
sh (kw/mzK) (+25 percent) . 0.00425 0.00425 0.00425 0.00425
sL{m) (+ 0.012 centimeter) 0.00012 0.00012 0.00012 0.00012
sk (kw/mK) (+25 percent) 0.00715 0.00715 0.00715 0.00715

The values of each of the uncertainty terms as well as the resulting

uncertainty in QT is presented in Table B-V.

It can be seen that virtually all error in QT is due to three sources. The

uncertainty in Qi is important in all cases. Errors in a become important in
high heat flux cases, and errors in Tp become important in high temperature
cases. If these sources of scatter were reduced significantly, uncertainty in
h could become important in high temperature cases. Uncertainty in Tg, L,

and K should introduce insignificant scatter. While the uncertainty in the
transmitted heat flux is typically only 1 to 2 percent of the nominal full
scale heat flux of 106 w/m » the uncertainty as a percent of the

transmitted heat flux can be quite large especially for the low heat flux-high
temperature case where the reradiated heat flux correction is large.

B-4.5 Uncertainty in Output Voltage and Sensor Sensitivity

The transmitted heat flux is then combined with the measured output voltage,

VT, to obtain the sensor sensitivity:

v
=T
S -U; .
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Parameter

(601

aQ
(3r1) (sk)2

(s0p)2 (kw/m?)?

8Q; (kw/mz)

O (kw/n?)

sQp (percent of
GQT (percent of QT)

103 kw/mz)

TABLE B-V

UNCERTAINTY IN QT

TR = 1200K
Q‘i = UiE— Q'I = Qi?
2 2 2 2
200 kw/m 800 kw/m 200 kw/m 800 kw/m
114 256 113 254
3.0 50 2.0 144
0.46 0.50 40 42
2.2 2.2 2.2 2.2
0.80 0.87 12 12
- 0.02 0.04 0.69
- 0.03 0.06 0.99
120 309 169 456
11.0 17.6 13.0 21.3
169 702 59.2 589
1.1 1.8 1.3 2.1
6.5 2.5 22.0 3.6
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This may be differentiated straight forwardly to yield:

I
v
_ 11 T
§S (Q—T> 5VT - (5—-2-) sQT
T
or, dividing by S,
S S

sw

Since the uncertainty in Q1 and VT are independent, this may be squared
and the cross terms eliminated to yield:

2 2
(ss R 0 A T A A T
5 \w) T w
That is, the present uncertainty in the sensor sensitivity can be determined
by quadrature summing the percent uncertainty in the transmitted heat flux
during calibration with percent uncertainty in the measured sensor output

voltage. The uncertainty sVT in the sensor output voltage is estimated to be
+ (4 microvolts + 1 percent of reading).

Since the output will be different for the different sensor types, the
importance of the voltage uncertainty will also be different for the different
sensor types. Table B-VI combines the voltage uncertainty with the uncertainty
in QT obtained from Table B-V to obtain the total uncertainty in sensor
sensitivity.

B-4.6 Comparison With Calibration Results

Qualitatively, the calibration results agree reasonably well with the results
predicted from the error analysis. The laminated sensors showed more scatter
than the other two sensor types, and the data scatter was generally greater at
high sensor temperature. Quantitatively, however, the data showed more scatter
than was predicted by the error analysis. A portion of this additional scatter
may be due to the lead wire problems discussed in the body of the report. In
addition, a review of the sensor calibration procedure is currently under way

to identify any changes in equipment or procedures that would reduce data
scatter.
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UNCERTAINTY IN OQUTPUT VOLTAGE AND SENSOR SENSITIVITY

Parameter
Qr (kw/m2)
s Qr kw/m?
8 Q1 (percent of Qr)

Nominal Output VT (Microvolts)

Embedded Thermo§oup1es
S=1.5 uv/(kw/m%)

Laminated Sensor
S~0.3 uv/(kw/m2)

Gardon Gauge
S~1.0 uv/(kw/m?)

sVT (Microvolts)
Embedded Thermocouples
Laminated Sensor
Gardon Gauge

sV1 (percent of V)
Embedded Thermocouples
Laminated Sensor
Gardon Gauge

§S (percent of S)
Embedded Thermocouples
Laminated Sensor

Gardon Gauge

TABLE B-VI

TR = 600K TR = 1200K

Q‘i = Q.iT Ti = Tli =

2 2 2 2

200 kw/m_ 800 kw/m 200 kw/m 800 kw/m
169 702 59.2 589
11.0 17.6 13.0 21.3
6.5 2.5 22.0 3.6
254 1053 89 884
51 211 18 177
169 702 59 589
7 15 5 13
5 6 4 6
6 11 5 10
2.8 1.4 5.6 1.5
9.8 2.8 22.2 3.4
3.6 1.6 8.5 1.7
7.1 2.9 22.7 3.9
11.8 3.8 31.3 5.0
7.4 3.0 23.6 4.0
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APPENDIX C
CALIBRATION DATA
Embedded Thermocouple Sensors

This Appendix presents the calibration data from embedded thermocouple sensors
T-1 through T-7 and D-1 through D-4. The remaining embedded thermocouple
sensors experienced failures during construction or installation before
calibration data were obtained. A1l data for the sensors are presented ,
although some of the high temperature, Tow heat flux points exhibit a large
amount of scatter and are not representative of realistic operating
conditions. The data for each sensor are presented in tabular form, as a plot
of sensor microvolt output versus heat flux transmitted through the sensor,
and as a plot of percent heat flux deviation versus sensor reference
temperature. The heat flux transmitted values were calculated from incident
heat flux measurements by accounting for absorption and losses from
reradiatijon and convection. The percent heat flux deviation is the deviation
of actual sensor output from the best straight 1ine fit of the data through
the origin expressed as a percent of the nominal maximum design heat flux of
one megawatt per square meter.

Files T-2-A and D-3-A are sensor calibrations after the fifty hour thermal
soak tests, and in both cases the sensor output was found to be Tow and
erratic due to secondary junctions in the Teadwires.

For each of the sensors, a sensor calibration constant was determined based on
a least square line forced through the origin of the microvolt output versus
heat flux transmitted plot. This value is presented below the tabular data.
When the sensor is in operation, the heat flux is determined by the equation:

1 .
Oneasured =  SensTETvity * Microvolt output.
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Figure C-1 Voltage Output versus Heat Flux Transmitted through Embedded
Thermocouple Sensor T-1
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Embedded Thermocouple Sensor T-1
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TABLE C-II

CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSORS T-2 AND T-2A

L TRAMSMITTED T REFEREHMCE DHITRUT SEHSITIVITY
EILOMATTS Tse2 FELYWIH HIIP!“HLT' OUTRUT. HHIT i

l

AT, 23 182, A

S5, B8 118, e

342,99 e, 47T

=241, 37 TEE, 323

187,37 AT 123,

4354, 5 lzas, S, =
ZEE.VE 1B, ZTE. i
142,21 1ze, 181, - 716
vl o3 1153, 45, )
L 1133, . » FEd
111.:22 I 1e2. 1,45
23V .38 PR I3TE. 1.583
164,71 =3 Zed, | P
SR 48 1125, B, 1,853
ard. 21 1173, = « DD
SER, 2 113z, EE, - S
TEE. 3T 1134, a2, - BE2
ohE. 14 1ze4, =le. - PV
. T 117, TP « BTE
S, TE 1123, SEV. - BRI
111.22 TIE. ez, 1,45
EEV .38 TR, are. 1.5
14,71 B3, 2, 1.a82

SEMSOR CALIBRATION COMSTHRMT

ERZED OM LEAST SQUARE LIME FORCED THROUGH ORIGIM OF OQUTFUT VWS, HERT FLUE

= 1.11 MICROWOLTSAEILOWATT. Msz

iy

IH LSE & MEASURED = OUTPUTAS
MAZA HEART FLUWY SEMSOR CALIBRATION RESULTS

SEMSOR SERIAL HUMBER T-2-H
HAFTER S8 HOUR THERMAL SUOAK

@ TRAMSMITTED T REFEREHCE QuTPUT SEMSITIVITY
FILOWATTS M2 FELYIN MICROWVOLTS OUTPUTSUMIT ©

291,38 1148, 181, 13
293025 1143, 1s2. » SIS
ZvVl.e9 1174, 111. « 194
S8, 87 1847, 1855, 3.SR5
354,081 aBvra. 284, DTS
213.79 =T S 1153, J.EvTE
213.63 ' =58, 1138, T 205

SEMSOR CRALIBRATION COMSTAMT

BASED O LEAST SOUARE LIME FORCED THROUGH ORIGIM OF OUTPUT %S, HERT

98

S= 1.87 MICROWOLTS~KILOWATT. M

The output of the sensor was found to be erratic in the Post Test Calibration after the 50 hour
Thermal Ageing Test. This was found to be due to secondary junctions in the leadwire external
to the sensor. The Post Test Calibration Data is not presented in Plot Form.
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TABLE C-III
CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR T-3
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This Data represents two separate calibrations. The §first 17 points were the initial
calibration, and it was found that some of the Zynolite Coating had peeled off

during the Calibration. The Sensor was recoated and a recalibration produced the
additional 9 points. The sensor was then installed in the Vacuum Calibration Facility
and experienced a thermocouple failure. The failure was found to be in the Leadwire
External to the Sensor, and is believed to be due to vibration of the leadwires by

the cooling air.
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TABLE C-1V
CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR T-4

@ TRAMSMITTED T REFEREHCE COUTFUT SEMSITIWITY
B ILOMAT TS M KELWIH MICROVMOLTSE  QUTPUTSUMIT o
ES2, 15 11=z. 1139, 1.746
43, 25 11668, 1185, 1.71%

SEHSORE CALIBRATION COMSTAMNT
BASED OM LEAST SOUARRE LIME FORCED THROUGH ORIGIM OF QUTFUT WS, HERT FLLES

S= 1,73 MICROVOLTSAKILOWATT S Mawz

IM USE @ MEASURED = QOUTRUT.Z

The hot side thermocouple failed after the 2nd point of the initial calibration. The
failure was found to be in the leadwire external to the sensor, and is believed to be
due to vibration of the leadwire by the cooling air.
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CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR T-5
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TABLE C-VI
CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR T-6
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The hot side thermocouple failed after the 9th point of the initial calibration.
Post test analysis indicated that the failure was internal to the sensor.
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CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR T-7
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During the initial calibration of this sensor the Chromel lead of the hot side thermocouple
failed. The calibration was continued and the cold side reference temperature was used

for data reduction. After test the failure was determined to be in the HARCO block

and the leadwire was repaired.
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Figure C-15 Voltage Output versus Heat Flux Transmitted through Embedded
Thermocouple Sensor D-1
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Figure C-16 Heat Flux Deviation versus Sensor Reference Temperature for
Embedded Thermocouple Sensor D-1
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TABLE C-IX
CALIBRATION RESULTS FOR EMBEDDED THERMOCOUPLE SENSOR D-2
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The hot side thermocouple failed after the 5th point of the initial dalibration.
The failure was found to be broken lead wire at the point where the leadwire exits
the sensor, and is believed to be caused by vibration of the leadwire by the
cooling air.
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The output of the Sensor was found to be erratic in the Post Test Calibration after the 50 hour
Thermal Ageing Test, This was found to be due to Secondary Junctions in the Leadwire External
to the Sensor. The Post Test Calibration Data is not Presented in Plot Form.
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APPENDIX D
CALIBRATION DATA
Laminated Sensors

This Appendix presents the calibration data from laminated sensors L-1 through
L-11 in both corrected and uncorrected form, with the uncorrected data
presented with a -UN suffix after the serial number. A1l data for the sensors
are presented although some of the high temperature, low heat flux points
exhibit a large amount of scatter and are not representative of realistic
operating conditions. The data for each sensor are presented in tabular form,
as a plot of sensor microvolt output versus heat flux transmitted through the
sensor, and as a plot of percent heat flux deviation versus sensor reference
temperature. The heat flux transmitted values were calculated from incident
heat flux measurements by accounting for absorption and losses from
reradiation and convection. The percent heat flux deviation is the deviation
of actual sensor output from the best straight line fit of the data through
the origin expressed as a percent of the nominal maximum design heat flux of
one megawatt per square meter.

File L-1-A is a sensor recalibration after a fifty hour thermal soak, and the
output was found to be Tow and erratic due to secondary junctions in the
leadwire. File L-3-A is a recalibration of sensor L-3 after the thermal cycle
test. The corrected data presented for the laminated sensors have been
corrected to account for the variation in sensor sensitivity with sensor
temperature as described in Appendix B and is thus normalized to a sensor
temperature of 1150K. A sensor calibration constant has been determined for
each sensor based on a least square line forced through the origin of the
microvolt output versus heat flux transmitted plot. This value is presented
below the tabulated data, and is valid only at a sensor temperature of 1150K.
When the sensor is in use, the heat flux is determined by the relation:

Q = L X microvolt output.

measured -4
S - 2.5433x10 (llsoK'Treference)
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TABLE D-1
CALIBRATION RESULTS FOR LAMINATED SENSORS L-1 AND L-1A
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After the 50 hour thermal ageing test the sensor output was lov and erratic,” and
the Alumel lead failed during the post test calibration. The failure was traced to

the leadwire external to the sensor and secondary junctions were found in the
leadwire. The post test calibration data is not presented in plot form.
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TABLE D-I1
CALIBRATION RESULTS FOR LAMINATED SENSORS L-1-UN AND L-TA-UN
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After the 50 hour thermal ageing test the sensor output was low and erratic, and
the Alumel lead failed during the post test calibration. The failure was traced to
the leadwire external to the sensor and secondary junctions were found in the
leadwire. The post test calibration data is not presented in plot form.
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CALIBRATION RESULTS FOR LAMINATED SENSOR L-2
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This sensor was calibrated in the quartz lamp bank facility, and removed from the
facility. The sensor was reinstalled in the facility for a thermal cycling test, and
the Alumel lead failed after one thermal cycle. The failure was external to the sensor
and is believed due to vibration of the leadwire by the cooling air.
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This sensor was calibrated in the quartz lamp bank facility, and removed from the
facility. The sensor was reinstalled in the facility for a thermal cycling test, and
the Alumel lead failed after one thermal cycle. The failure was external to the sensor
and is believed due to vibration of the leadwire by the cooling air.
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This data is from the post test recalibration of sensor L-3 after a 50 cycle thermal test.
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This data represents three separate calibration tests on the sensor. During these tests various
cooling air configurations were investigated to provide additional cooling for the leadwires.
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This data represents three separate calibration tests on the sensor. During these tests various
cooling air configurations were investigated to provide additional cooling for the leadwires.
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APPENDIX E
CALIBRATION DATA
Gardon Gauge Sensors

This Appendix presents the calibration data from Gardon gauge sensors G-l
through G-9. All data from the calibration are presented although some of the
high temperature, low heat flux points exhibit a large amount of scatter and
are not representative of realistic operating conditions. The data for each
sensor are presented in tabular form, as a plot of sensor microvolt output
versus heat flux transmitted through the sensor, and as a plot of percent heat
flux deviation versus sensor reference temperature. The heat flux transmitted
values were calculated from incident heat flux measurements by accounting for
absorption and losses from reradiation and convection. The percent heat flux
deviation is the deviation of actual sensor output from the best straight line
fit of the data through the origin expressed as a percent of the nominal
maximum design heat flux of one megawatt per square meter.

File G-1-A is the calibration of sensor serial number G-1 with an air filled
cavity, and the G-1 file is the calibration of the same sensor rebuilt with a
ceramic filled cavity. Files G-3-A and G-9-A are recalibrations of these
sensors after the thermal cycle tests.

A sensor calibration constant has been determined for each sensor based on a

least square line forced through the origin of the microvolt output versus
heat flux transmitted plot. This value is presented below the tabulated data.

In use, the heat flux would be determined according to the relation:

= .
Qneasured = —— X microvolt output.
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TABLE E-I
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-1
0 TRAMSMITTED T REFEREHCE OUTFUT SEHSITIWVITY

K ILOMAT TS M KELWIHM MICROVOLTSE  OUTFUTASUMIT @
122,82 1171. 141. 1,143

B TE 1174, SES. WL
21z 1a5a, JE3. o SR
G mya. R PR
==, e =45, .11z
B2 11vg. S5, . S
L 1173, 425, . SR
] 1 11732, 2VE. L3S
12 1172, 143, 1,13
124, 11&7. 1o, 1.11%

SEMZOR CALIBRATION COMSTAMNT
BASED OM LEARST SOUARE LIME FORCED THROUGH ORIGIH OF QUTPUT Wi, HERAT FLLE

H= o L34 MICROVOLTISCHILOWATT M

IH USE @ MERSURED = OUTRUTSS

This calibration data was taken with the cavity filled with GA-100 ceramic cement.
The sensor was also calibrated in the three filament vacuum facility. The sensor
experienced a leadwire failure external to the sensor caused by mechanical

damage during handling.
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TABLE E-I1I
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-1A

2 TRAMSMITTED T REFEREHCE OUTRUT SEMZITIVITY
EILHHHTT%'M##E FELVIH MICROWIDL TS QUTFUTAUMIT &
R o7, =58, 1.:205
147,37 1173, 134, 1.3218
' 1182, 131, 1.271

117%=. TE5. 1.188
185z, =2, l.213
14, i 1,343
11553, TIEE, 1.164
1172, SV 1,178
1175, aVE. 1.z84
1188, 127, 1,873
1165, 144, 1.1324

SEMZOR CRLIBRATION COMETAMT
BRASED OM LEAST SOUARE LIHE FORCED THROUGH ORIGIN OF OUTRUT W, HEART FLLE

[£3]

= 1.2 MICROVOLTSSETLOWATT Mk

IM USE @ MERSURED = OUTFUTSS

This calibration data was taken with an air filled cavity and a thin sheet of
Hastelloy-X covering.the Cotd Side.Surface to provide aerodynamic integrity. After
the calibration testing, the Hastelloy-X foil was removed and the cavity was filled
with GA-100 ceramic cement for further testing.
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TABLE E-III
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-2

@ TRAMSMITTED T REFEREMCE QUTFUT SEMSITIVITY
K ILOHAT TS M##2 KELWIN MICROMOLTS — OUTPUTSUMIT @
213,39 Tas. 287, 1. 3
2a9., B2 5@7. 275, 1,315
121,48 1134, 246. 2. E2E
123,25 1134, 236, 1.514
127.42 1185, 143, 1,163
123,14 1198, 135, 1,895
547, A 1172, TED. 1.187
531,45 1965, EE7. 1.255
395, 32 s43. sS4, 1.378
228,67 S0z, Z7a. 1.175
S4E. 48 1155, FET. =
435, 16 1173, TN 1.151
322,83 1172, 4a, 1.2339

SEMZOR CALIBRATION CORSTAMT
EASED OM LEAST SQUARE LIME FORCED THROUGH ORIGIM OF OQUTPUT ws. HEART FLLE

pi)]

= 1.27 MICEDWDLTSMHILDHHTT#N**E

IM LUSE @ MEARSURED = OUTPUTSS

The Chromel thermocouple lead failed after the 12th point of the initial calibrationm.
The failure was determined to be in the leadwire external to the sensor.
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TABLE E-IV

CALIBRATION RESULTS FOR GARDON GAUGE SENSORS G-3 AND G-3A

@ TRAMSMITTED T REFERENCE OUTFUT SEMEITIVITY
EILOMATTS M##3 KELWIM MICROVOLTS  QUTPUTAUNIT @
212.81 TET. 247. 1. 160
130, 48 1175, 133, 1. E5
131,67 1174, 1 1.@32
138,51 1153, 2 1,315
130,71 1171, z2: 1.744
S5, 46 1173, sa =R
535, 48 145z, S3a. 1. 06
339, 20 &S, 41, 1.8
228,83 S14. 2@, )
549, 86 1154, S1%. .3
496,25 1175. 455, .3
215, 65 1172, 384, .3
136,79 1173. 114, N
IBE. 16 1177. 2S5, .3
386, 8BS 1154, 351, .9
356, 96 1189, 399, 1.8
386,32 1171, 413. 1.8
334,60 1174, 4352, 1,123

SEMSOR CALIBRATION COMSTAMT

BRZED OM LEAST SOUARE LINE FORCED THROUGH ORIGIM OF OUTPUT YS. HERT FLLI
5= 1.82 MICROVOLTSAKILOWATTM#¥2
IMN USE & MEASURED = OUTPUTAS
SENSOR SERIAL HWUMBER G-3-R
AFTER S8 HOUR S0AK
2 TRANSMITTED T REFERENCE QUTPUT SENSITIVITY
KILOWATTS M##2 KELYIH MICROYOLTS QUTPLITAUNIT @
126.95 1178, 519, 4.833
385.31 1173, 2794, 4,773
479.82 194, 1937, 4.1581
359.60 287, 1433. S99
228.88 &79. 2391. 1a.a24
T36.48 1173, 2771, 4.724
451.80 117a. 2412, T.238
29%.83 11va. 1585, S.93
125.86 1174, 359. 2.829
SV7.84 1174, 1931, 3.445
Sv35.86 1172, 1923, 3.489

BRSED OM LEAST SQUARE LINE FORCED THROUGH ORIGIM OF QUTPUT WS,

=

SENSOR CRLIBRATION COMSTANT

4.39

HERT FLLK

MICROWOLTSAKILOMATT . ME#2

This sensor visually exhibited a non-uniform temperature profile on the cold side,

and a poor lamination from the diffusion bonding is suspected. After the 50 hour
thermal ageing test, the output was erratic, and this was traced to secondary junctions
in the leadwires external to the sensor. The data from after the thermal ageing is not
presented in plot form,
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TABLE E-V
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-4
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CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-5

B TREAMIMITTED T REFEREMCE QUTRUT SEMSITIVITY
KILDWATTS  MEw FELWVIHM MICROWOLTS CQUTRUTAUHIT &
148, 58 1124, 152, 1.1249
28,81 11v2. 113, R el
S2Z. 7S 1174, B7T7 . L3211
SRS F3 1852, G3E, L s
2ET .88 SVT . 39z 1.8&7
284,33 225, =28, 1.1&1

TABLE E-VI

SEMSOR CALIBRATION COMSTAMT
EASED OM LEAST SOUARE LIME FORCED THROUGH ORIGIW OF OQUTRUT WS, HERT FLLUN

S= .98  MICROWOLTS/KILOWATT M¥#D

IMH UZE @ MERSURED = OUTPUTSE

This sensor expereienced a leadwire failure after the 6th point of the initial
calibration, and the failure was found to be at the point where the leadwire exits
the sensor. The cause of failure is believed to be vibration caused by the

cooling air,.
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TABLE E-VII
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-6
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IM LISE @ MEASURED = OUTRUTS S

The Alumel lead to the cold side of this sensor failed during the 20th cycle of
a 50 cycle thermal test. The open was determined to be in the leadwire external
to the sensor.
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TABLE E-VIII
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-7

& TRAMSMITTEDR T REFEREHCE QUTPUT SEMSITIVITY
EITLOMATTEAMwED FELWIM MICRONVOLTS QUTFUTASUMIT 2
= . T - SED
123,85 1175, ! 117, . 2EE
STE. 24 1172, 543, - S
47E, 7R 1845, 475, .55
b I 1 ==l . et 1.827

SEMEOR CALIBRATION COMSTRAMT
BRZED OH LERST SRUARE LIME FORCED THROUGH ORIGIW OF QUTPUT WS, HEAT

S= L8V MICROMOLTSAEILMATT AMEZ

IM LEE 2 MEARSURED = OUTPUTAS

FLits

The Center Alumel lead failed after the 5th point of the initial calibration of this

sensor. The open was determined to be in the leadwire external to the sensor.
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TABLE E-IX
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-8

£ TRAMSMITTED 7 REFEREMCE QUTFUT SEHEITIWVITY
ETLOAT T E M FELWIH MICROVOLTE OUTPUTSUMIT 2
220,88 £31. 245, 1.113

131.268 1169, 129, . IEE
i i 1172 s97, 1. 867
431 .28 1EEE 525, 1. 888
DES, BE 261 a3, 1. 854
SR, 3E T 241, 1.8749
SEE, 29 1169, S14, 1. 848
Fdi5, 25 1174, 475, 1. 882
oaE, 13 1173, T2, 1.11&
1328, 55 1172, 174, 1.825

SEHE0R CRLIBRATION COMSTAMT
BAZED OH LEAST SQUARE LIME FORCED THROUGH ORIGIM OF OUTRUT W3, HEAT FLUE

11

Z= 1,85 MICEROWOLTSSEILOMATT ek

IM UsE @ MERSURED = OUTPUT. S
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TABLE E-XI
CALIBRATION RESULTS FOR GARDON GAUGE SENSOR G-9A

B TRAMSMITTED T REFEREMHCE CHATFUT SEMSITIVITY
FILGMATTE Mwz KELYWIN MICROWOLTS QUTPRUTSUMNIT @

2T . EE M L BT
11v¥3. 1ens. ?
1177. Tdl.
1845, 413,

HEL.

418.

T

Ty =) - O o =) R

Rt IS T L% Bt IR ¥y B ¥y ]

b b b Ty 00 5 e = U

O

SEMEOR CALIBRATION CORSTAMT
BASED OHM LEAST SOUARE LIME FORCED THROUGH ORIGIM OF OUTPUT W3, HEAT FLLUE

3]

= 8% MICROVOLTEASEILOMATT sz

IM LEE @ MERSURED = OUTPUT S

This is data from the post test recalibration of sensor G-9 after the 50 cycle
thermal test.
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Figure E-21 Voltage Output versus Heat Flux Transmitted through Gardon
Gauge Sensor G-9A

1S

~
p =
r L
fan
23 10}
=
o=
T
w -
z
- SL
e
L =]
s $
S 0L e e e e - - -~ D e e e e e e e e e e e
- ]
=
s ® ®
e
= -sL
>
=2
= L
L.
- =100
23
w
b=

b=

-15L
e
-20—‘_ﬂ. ,l " - L —t i A L o SN -
600 700 300 900 1000 1160 1200 1300 1400

REFERENCE TEMPERATURE -~ KELVIN

Figure E-22 Heat Flux Deviation versus Sensor Reference Temperature for
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