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ABSTRACT

This study considers the development of a method of analysis capable

of predicting accurately the fracture behavior of uni-directional hybrid

(buffer strip) composite laminates. Three particular solutions are dis-

cussed in detail: first the case of broken fibers in a uni-directional

half-plane, secondly the case of adjoined half-planes of different

fiber and matrix properties and finally the solution of two half-planes

bounding a third distinct region of finite width. This finite width

region represents a buffer strip and primary attention is given to the

potential of this strip 0 arrest a crack that originates in one of the

half-planes.

The analysis is based on a materials modeling approach using the

classical shear-lag assumption to describe the stress transfer between

}	 fibers. Explicit fiber and matrix properties of the three regions are

retained and changes in the laminate behavior as a function of the rela-

tive material properties, buffer strip width and initial crack length are

discussed. As an example, for a notch (broken fibers) in a graphite/epoxy

.E	 laminate, the results show clearly the manner in which to select the most

efficient combination of buffer strip properties necessary to arrest the

crack. Ultimate failure of the laminate after crack arrest can occur under

increasing load, either by continued crack extension through the buffer

r	 strip, or by fiber breakage in the undamaged half-plane. That is, for

certain choices of relative material properties and width, the crack can

3;	 jump the buffer strip.j
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As a special case of the buffer strip problem a solution is obtained

for a uni-directional finite width strip containing an arbitrary number

of brokenibe s.	 e stress concentration facto s o t e fin i te widthf	 r	 Th	 tr for h	 i	 w

strip are compared with those for an infinite region and finite width

correction factors are given.
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CHAPTER I

INTRODUCTION
a	 t
k

In the design and use of large composite panels in structures such 	 I

as aircraft and space vehicles a major concern is the ability of the

panel to function (continue to carry a substantial part of its design

load) after being damaged. One technique that has evolved from the
s

stringer reinforced metallic panel is the buffer strip or hybrid panel

shown in Figure 1. Because of the fabrication methods used in composites

it is possible to make such a laminate by replacing specific fibers,

usually parali,el to the load axes, with fibers of the appropriate physical

and geometric properties necessary to arrest a crack that originates in

the parent laminate material. Since the buffer strips are usually narrow

and relatively far apart the stiffness, weight, and strength of the

undamaged laminate is not significantly effected by the replacement.

Much experimental work has been done to investigate this behavior,

i.e. to determine the best buffer strip material, with the studies of

Eiseman and Kaminski [1], Hess, Huang and Rubin [21, Avery and Porter (3),

Verette and Labor [4], and Poe and Kennedy [5] being significant contribu-

tions in this area. The same cannot be said for published analytical

solutions and it is this question that is considered in the present study.

Some of the first work in modeling a uni-directional composite con-

taining broken fibers was presented by Hedgepeth [61 where the case of

no additional damage other than the initial notch was considered. This

study was extended by Hedgepeth and Van Dyke for the special case of one
a.

C
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replacement plies forming
the buffer strip

original
plies in
the parent
laminate

Figured . A Typical Buffer Strip Laminate Configuration
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broken fiber with matrix yielding parallel to the fiber [7] and for one

fiber with longitudinal splitting in the matrix [8]. Goree and Gross

[91 extended the Hedgepeth solutions to include longitudinal matrix

yielding and splitting for an arbitrary number of broken fibers. The

results of Goree and Gross gave very good agreement with experimental

results for brittle matrix composites which exhibit large longitudinal

matrix splitting. For ductile matrix composites such as boron/aluminum,

which exhibit large yielding but very little splitting in the matrix,

this model predicted the right trend but the agreement was not very

good, especially for short notch lengths. Goree, Dharani and Jones

k	
[101 attempted two modifications to the above solution. First, the

matrix was assumed to be strain-hardening and secondly, a corer sheet
ti.

was included over the main laminate. The results of [10] showed that
t`

ti
	 the inclusion of either a strain-hardening matrix or the addition of a

cover sheet did not improve the agreement between the predicted and

experimental results, Based on the observed fact that in addition to

longitudinal yielding of the matrix, a certain amount of stable trans-
i

verse extension of the initial notch under increasing applied load
rr

takes place, Dharani, Jones and Goree [11] then extended the solution of

[9] to include transverse damage ahead of the initial notch in addition

IE

	 to the longitudinal matrix damage. The results of [11] showed a very

significant improvement in the ability of the model to represent the

behavior of a ductile matrix composite.

In all these analytical studies the laminate is modeled as a two-

dimensional region having a single row (mono-layer) of parallel, identi-

cal, equally spaced fibers, separated by matrix. The damage is taken to

I
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a

consist of an a6, itrary number of broken fibers such that all breaks

lie along the x-axis, but they need not form a continuous break (notch).

The fibers are assumed to be of much higher strength and extensional

stiffness than the matrix and all the axial load is assumed to be

carried by the fibers, with the matrix transfering load by shear

stresses as given by the classical shear-lag assumption. One very impor-

tant feature of the shear-lag assumption is that is simplifies the equili-

brium equations by removing the transverse displacement dependence from

the longitudinal equilibrium equation. The fiber stress and matrix shear

stress can then be determined without solving the transverse equation.'

The methods of analysis develo ped and discussed in the above

studies [6-11] are extended in the present work to determine the

stresses and displacements in a hybrid uni-directional laminate having	 **

an initial notch in the vicinity of a single finite width region of

different material properties as shown in Figure 2. This geometry is

an idealization of the usual periodic placement of buffer strips as

indicated in Figure 1 and it is assumed that the stresses near the

notch tip and the single buffer strip are approximately the some as

r	 those in a wide panel with relatively narrow buffer strips.

Of particular interest is the investigation of the behavior of the

laminate as a function of the relative ultimate stress and extensional

modulus of the buffer strip fibers, the buffer strip width and initial

notch length.
1

As an initial step in understanding the basic mechanism of crack	 1

growth and arrest in a hybrid laminate, the main thrust of the investiga-

tion will be to study the behavior of the laminate as a function of the

design parameters; fiber/matrix properties, buffer strip geometry and



OF POOR QUALITY

z	 f

ss

i

k'y

k

N
L
A
4-	 #

4J Rd
ar
cr iQ

O

4u
r :sue. Q

0

N

Q
U

0
C
•r

a` `^^s (1/16 4^^n9 ^
p4o^A,tM a

.0 r-
its

^ •^E•r C
3 0

(('f
.^

w +p 0 c.

®sw. 4J

4-	 1
r- •r

Q
v

X
•^ ®

^
C]

r
4—

•r
r—

N
S-

rn
+r
11.



6

r

the initial crack length. In order to simplify the analysis, the

effect of any additional damage, e,g, longitudinal matrix yielding

and splitting [9] or transverse matrix and fiber damage [11] will not

be considered. l

A typical buffer strip laminate usually contains angle plies as

well as zero degree plies. 	 It is felt, however, that much of the

characteristic behavior of the buffer strip region can be represented

by the uni-directional	 laminate, as a major portion of the load is

carried by these fibers.	 It appears that a primary function of the

angle plies is to prevent longitudinal matrix splitting in a brittle

matrix such as epoxy. 	 This can be accounted for to some degree in the

present solution by allowing the matrix to support large strains without

splitting.

The presentation of the solution will follow the order of the
I

development by the author as this seems to indicate more clearly the

significant points of the analysis. 	 Results will, however, only be given
i

for the final solutions corresponding to the buffer strip laminate and

the finite width strip. 	 First the solution for a crack in a half-plane

having arbitrary shear stresses applied to the free-edge, 	 (which forms

the basis for all	 the later solutions), will be developed.	 By matching
3

boundary conditions along the interface, the solution for two different

adjoined half-planes will	 be given and then the adjoined half-plane solu-

tion will be modified to account for a second interface, resulting in the

buffer strip problem.	 The case of the finite width strip with broken x

fibers is obtained as a special case of the buffer strip problem by set-

ting the shear stresses along the two interfaces to zero. 	 These solutions

are all	 presented in Chapter II.	 Chapter III deals with the numerical

µ
^v

wa
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technique used ,o solve a system of linear bilebraic sio,ultaneous equa-

tions coupled with a set of linear Fredholm i ►tegral equations of the

second kind. A special method developed to evaluate accurately inte-

grals having a cusp is emphasized. Chapter IV gives results and con-

clusions for the buffer strip problem and the finite width strip.
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CHAPTER II

FORMULATION

Uni-Directional Half-Plane with Broken Fibers

A uni-directional array of parallel fibers with an arbitrary number,

of broken fibers in the form of a notch is shown in Figure 3. The

laminate is subjected to a prescribed shear stress, T a (y), along the
i.

free edge in addition to a remote uniform tensile stress in the axial

direction. Fiber breaks occur along the x-axis (axis of symmetry) and,

•_J	 since the loading is symmetric, only the upper half of the laminate is

-	 considered in the analysis.

The fibers are taken to be of much higher strength and extensional

stiffness than the matrix and therefore all of the axial load is assumed

to be carried by the fibers with the matrix transferring load by shear

stresses as given by the classical shear-lard assumption. The axial fiber

stress, a (y), and matrix shear stress, T n (y), are then given by the

simple relations

dvn(y)	
F

Cr= EF	
dy	

and

Tn(Y) = G^1 Ev (A - vn -1 (Y)^	 (1)T n

t

Where vn (y) is the axial displacement of the fiber n at the loca•-	 f

tion y, E  is the Young's modulus of the fiber, GM is the equivalent

matrix shear modulus and h is a shear transfer distance. Because of the

interference between fibers it is unlikely that GM will be the homo-

geneous matrix shear modulus or h the actual fiber spacing, and it is

r
s
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10

pointed out in [10] that these values should be determined experimentally

for a given laminate. It is also shown in [10] that a single experi-

ment giving the crack opening displacement as a function of applied

load is sufficient to determine both the equivalent shear modulus GM

and the shear transfer distance h for a particular laminate, indepen-

dent of the notch length. That is, these parameters are material con-

stants and depend only on the fiber and matrix properties and the

fiber volume fraction but not on the sizes of the damage.

By virtue of the shear-lag assumption the longitudinal and trans-

verse equilibrium equations become deroupled and the fiber axial dis-

placements and stresses can be obtained without solving the transverse

equilibrium equation. Therefore, only the equilibrium equation in the

longitudinal (axial) direction will be considered, With reference to

the free-body diagram of a typical fiber-matrix region shown in Figure 3,

the equilibrium equations in the longitudinal direction is given by

AF dun(Y)

t ___d_Y_ 
+ Tn+1(Y) - Tn(Y) = 0	 (2)

for all fibers except n = 0, and

AF d^'o(Y)
F dy	 + T 1(Y) - T a ( y ) = 0	 for fiber 0	 (3)

Using the stress-displacement relations, Equation (l), in the above

equilibrium equations, the following set of differential-difference equa-

tions is obtained:

AFEFh d2vn

G t	
2 + vn+l - 2vn + vn-1 = 0	 and

M	 dy

AFE Fh d2vo
GMt 	dy2 + v1 - vo = Ta (y) .

(4)

(5)
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Noting the coefficient of the second derivative term in the above equa-

tions, the following changes in the variables are suggested:

AFEFh
let Y =	 GMt n

dv

do - ^oD°n 	EF dy	
and

vn = a. E
AF Vn	

(6)
FM

Algebraic manipulation then gives

dVn
	 FEh

n' °^ ^ and r = v^
	 (Vn r Vn-1)	 (7)

where, n , an and Vn(n) are non-dimensional.

The resulting equilibrium equations in non-dimensional form are given by

A
dn2 + Vn+l - 2Vn + Vn-1 = 0	 and	 (8)

A

a t + V l - Vo = T a (n)	 (9)n 
where,

EFth Ta(Y)
T a (n) =	 AFGM	 oCo	 .

These differential-difference equations are reduced to differential

equations by introducing the even valued transform as

V(n,e) = E Vn(n) cos [(n + 2)e] 	 (10)
n=0

from which
q	

Vn(1)) _ 7T f V(n,o)cos[(n + i)elde	 (11)
o

•taking use of the above transformation and the orthogonality property of
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the circular functions, the two equilibrium equations may be written as

one equation valid for all values of n and n as follows.

 f (r

`ir 
A

 2 - 2[1- cos(o)]V cos[(n+t)o]do
o do

_• ott' a (n)cos(o/2)cos[(n +) o]do

which is of the form

tir

I F(n,o)cos[(n + f)o]do - 0 for all n and n
0

Noting the definition of V(n,o) in Equation (10) and (11) it is seen that

the function F(n,o) is even valued in o and therefore, if the integral is

to vanish for all n, the function F(n,o) must be zero. The single equa-

tion specifying 1(n,o) is then

d^2~	 (12)s2V = ^a(n)cos(o/2)

where, 6 2 = 2[1- cos(o)] = 4 sin 2 (0/2) .

The solution to the problem of vanishing stresses and displacements
n

at infinity and uniform compression on the ends of the broken fibers will

now be sought. The complete solution is obtained by adding the results

corresponding to uniform axial stress and no broken fibers to the follow-

ing solution. The appropriate boundary conditions are as follows:

V n (n) = 0 ,	 do
dVn(n) 

= 0 , as n -r, for all fibers,	 (13)

dVnW
dry	 = an (n)	 - 1	 at n = 0 , for all broken fibers,	 (14)

Vn (n) = 0 , at n = 0 , for all unbroken fibers.	 (15)

The complete solution to Equation (12), satisfying vanishing stresses

and displacements at infinity, is given by
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V(n,e) = A(e)e-6n _ cos (o/2)2	 P sinhNn-tM (t)dt	 (16)
n

where the function AN is yet unknown. The remaining two boundary con-

ditions give

dV (0)	 Co

do	
= - !^[-8A(e)- cos(e/2)t cosh(st)T (t)dt]cos[(n +y) elde - 1

m °	 °	 (17)
for all broken fibers, and

Vn (0) _	 f [A(e) + cos 8 
2 f sinh(6t)Ta (t)dt]cos[(n + 2)e]de = 0 ,

0	 0	
(18)

for all unbroken fibers. Equation (18) is solved exactly by taking

M
A(e) + cos d	 f sinh(dt)T a(t)dt = E Bm cos[(N* +m+  ^)e] , (19)

o	 m=1

where, M is the number of broken fibers. By eliminating A(e) between

equations (17) an: (19), the stress boundary condition reduces to

IT M
2—̂ f E Bm cos[(N*+m+ 2)ejcos[(n+ 2)e]sd e,

o m=1
2 7T	 00 -8t

}f	 +	 t cos(e/2)cos[(n + 2)e] f e 	 r a (t)dt do = 1,	 (20)
o	 0

u

for n	 N* + 1,...,N.

J	 For a given shear stress distribution, T a(t), Equation (20) reduces

to a set of linear algebraic equations in the Fourier constants B m . From

i
"	 Equations (16) and (19), A(e) may be eliminated to obtain V(n,e) in terms

bf'the constants Bm . Recalling the relation between V(n,e) and Vn(n),

an expression can be obtained for the axial fiber displacement V n(n) as

^r
Vn (n) _ 7rf e	 E Bm cos[(N* + m + i)e]cos[(n + 2)e]de

o	 m=1

_ t !^ cos e/2	 °°fD(a,n,t) T (t)dt cos[(n+^)e]de	 (21)
^ o	 a	 o	 a	 2

where D(u,n,t) = e -a ^ n-t) - 
e-b(n t)
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The axial fiber stress is obtained by differentiating Equation (21) with

respect to n and is given by

dVn(n)on - --dn
M

7Tf 6e^ &n E 
am 

cos[(N*+m+Y o]cos [(n+j)o]de
o	 m=1

-	

0	 o
f7icos(o/2)f	 e-

S (n+t) - p e b
In- tI	

a ( t)dt cos[(n + j)o]do,
}

(21a)

where, p = 1 for t < n , and

p=-1 for t> n,

Adjoined Uni-Directional Half-Planes

Figure 4 shows two uni-directional half-planes of different fiber

and matrix properties which are assembled to form adjoined half - planes.

Both planes may have an arbitrary number of broken fibers. Superscripts

I and II are used to designate quantities corresponding to plane I and II

respectively. The normalized spatial variables, n and C, in the longi-

tudinal direction tre related by

AFEFh I
	

A 
F 
E 

F 
h lII

G 
M 
t

n =	 GMt 1	 = y .

The shear stresses, TI(n) and Ira l (9), at the interface are normalized

with respect to material properties of plane I and II respectively, and

are related to the actual shear stresses as follows:

-I	
EFth I	 rI(Y)

T (n) _	 ,	 and
a	

AFGM	 vI

(22)
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III	 EFth IIaI(y)	
23

TF

00

where, T 1 (y) and r II (y) are the actual shear stresses at . the interface

acting on plane I and II. Since the remote displacements and hence the

remote strains are assumed equal, the remote stresses in planes I and II

must be related by

U I	 aII
Co	 00 (24)

FI	
EII

F	 F

If Ta(n) and Ta I (d are known then the solution for each of the half-

planes is the same as that developed in the previous section, Equation (20).

The Fourier constants Bm and 
BmI 

corresponding to broken fibers in plane I

and II can then be obtained by solving the following sets of equations

for known Ta ( n) and TaI(4):

E1 B I .2 f ITcos[(N* +m+ i )e]cos[(n+ l016 ie
m=1 m 7r 0	 1	 2

f7` cos(e/2)cos[(n+2)e]f00 
-at

 e	 Ta(t)dt d e = 1
0	 0

and	 F, Bm I 	!^ cos[(N*2 +m+2)elcos[(P'+ )o]ado
m=1	 0

2
00

+ 	 t7 cos(e12)cos[(Z+ Pelf 
e-dt 

Ta I (t)dt do= 1, 	 (25)
0	 0

	

{ u '	 for n = N* + 1, N^ + 2 9 ... ,N1 and t	 N* + 1, N2 + 21...,N2

	

if	
where, M l and M2 are the r ,amber of broken fibers in planes I and II. The

li 4

normalized displacements of a fiber in plane I and II are then given by

	

I	
M

VI (n) = 2 f 7 E BI cos[(ti* +m+^e]cos[(n + 1)e]e
-an 

de
n	

7T 
m-1 

m	 1	 2) 2

_ 1 f cos a /2 cos[(n + z)e] f D( a,n,t) TI(t)dt 0e	 (26)
^. 	 c	 o,}
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M2	 -dC

and VnI()	
2 

f^ Z Bm1 cos[(N2 + m^+)e1cos((n +i)e3e 	 de

i o m1

f"r cos	 2 cos[(n +t)e] !^ D(a , t,$) O I (s) ds d e , (27)
0	 0

where

°	 A h
I

vn(Y) 	 ao Vn(n) ,	 and
^F^M

II	

f(";F

Fh 
I

II 11
vn(Y) = F C I Vn( g) i	 (26)

M

When the above two half-planes are joined together the shear stress

along the interface is unknown, but from equilibrium the shear stresses

T I (y) and Tn I( y) acting on each of these two half-planes must be equal

and opposite. Further, as the shear stress is directly related to the

distortion of the matrix from the shear-lag assumption, it follows that

these stresses must be proportional to the difference in the displacement

of the first fibers of plane I and II. These conditions result in the

following two equations;

TI (Y) _ - TI1 (Y),	 and	 (29)

TI(Y) = ( GM/h)' vo(Y) - vII (Y)	 a	 (30)

where, ( GM/h)' is the equivalent shear stiffness of the interface. It is

interesting to note that in a continuous elasticity solution one would

match surface tractions and displacements at the interface while in the

present discrete modeling solution the shear stresses are required to be

equal and the shear-lag relation, Equation (30), takes the place of the

displacement equality.
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Substituting for the actual displacements in terms of normalized values

using Equation (28), and recalling the relation between the actual and

normalized shear stresses from Equation (23), Equations (29) and (30) re-

duce to
x+

W	 .. (GM/h)'(h/GM)" ^a(n) /R1 	,
	 and	 (31)

a I

``	

G

I(n)	 V (n)	 R l Vo IW	 (GM/h) i /(GM/h) I 	(32)a	 O
d;	 r
^;	 b

where,

v

AFE 
tI	 GMt

R	 33
l	 GMt	 TF

k

Using Equations ('26) and (27), V I (n)	 and VnI (4)	 can b	 ffa3,	 J and

substituted into Equation (32) thus resulting in an integra, 	 ern

for Ia (n)	 in terms of. the Fourier constants, Rm and R
i
n I , and the nor-

malized shear stresses, 7 I (n) and 7 Ia I (g).	 The spatial variable g and

the normalized shear stressca i () may be eliminated from the above in-

tegral equation and also from the equations for the Fourier ccI)stants,

Equation (25), resulting in the following set of governing equations;

'two series equations and one linear integral equation:

Ml

E	
Q I 

2 f^ cos [(N*+m+^e] cas[(n+^)e]a d el	 2)	 2
M=l	

m 7r 
o

-6t
+	 f^ cos(e/2)cos[(n + 2)e] f e	 T I (t)dt de	 1	 ,	 (34)

71	 a
o	 0

^`	

a

rr1

E 
Q II 2 

f ̂cos [(N* +m+ ^)e]cos[(R+ 1)e ]6de
m=1 m	 0	 2

_ G12 ? f	 cos(e/2)cos[(R.+ ^)e^ f e
-dlt 

^c I (t)dt de	 1	 ,	 (35)
R2	 Tr 

o	
2	 o	 a

1
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for	 n	 N^ + 1,ov.,N 1	and	 Z = N^ + 1,..,,N2	 and

Ml

T	 2	 T	 1	 -an
(n) " Gil	

f	
E	

Gm cos[(N
*

l	 +m +i)o]cos(o/2)e	 de
o	 m 1 F

- 
R G	 2	

M2 	 Ti	
*	 1	 "

61n

it	 f	 E	 Bm	 cos[(N2 +m +t)o]e 	do1	 ,^ 

o	 m

-1

- G	 f^ 2 fv cos2 
d	 p(a,niit) + G-	 Q( l ^n,t)	 do ^'(t)dti 1

0	 0	 1
( 36)

where,	 Gil	 (GM/h)^(h/GM)I	 G12	 (G
M/h) I (h/GM )

II	and	 61a 6/Rl.

?.t

The Buffer Strip laminate,

Figure 5 shows a finite width strip (buffer strip) between two half-

planes of different or of the same fiber and matrix properties. 	 00e of

the half-planes, plane I, and the finite stripy region II, may contain on

arbitrary number of broken fibers.	 The normalized spatial variables no

and 5 are related to each other in the same way as in Equation (22).	 The

normalized shear stresses 7 II (n), Ta I (c;), ^r II W and 
T,Ilk) 

are related

to their corresponding actual shear stresses in the same manner as in

Equation (23).	 Further, the remote strains in all three regions are

1
assumed equal.

r -
} The solutions for planes I and III can be obtained for known 7I(n)

and 7 1
b
II
(4) from the half-plane solution and therefore we need to de-

termine the solution for the finite strip, region II 	 only.	 This solu-

tion is developed by considering the half-plane shown in Figure 3 with

the following special condition. 	 It may be assumed that the matrix be-

tween the fiber Nw and (Nw + 1) splits all the way to infinity and that r

an external shear stress Tb I (y) is applied on the surface of the split
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as shown in Figure 6. The introduction of a split with or without the

external applied shear stress results in two special equilibrium equa-

tions for the two fibers on either side of the split [9, 10 9 11] in

addition to those valid for the free-edge fiber and the generic fiber,

n, given by Equations (8) and (9). These equilibrium equations in the

normalized form are as follows;

d 
2 V I I

d 0—j
	

+ V VolI = Ta IW	 ,	 for fiber 0	 , (37)

2 II
d Vn

+

dC VII	 -2Vn1
+ Vn i1 	= 0	 ,	 for fiber n	 , (38)

d2VII
d 2w	

- VNw +VNw- 1 _ - T b I () 	 for -Fiber Nw	 ,	 and (39)

d2VII

dN2+l + VNw+2 - VNw+1 = Tb I () 	 for fiber Nw + 1 (40)

The left hand sides of Equation (39) and (40) can be reduced to the

standard form by adding or subtracting a term (VNw+l -  VNw) on both sides.

Making use of the transforms similar to Equation (10) and (11) and fol-

lowing the procedure of the half-plane problem, the single equation

specifying the transformed normalized displacement V II (^,8) can be

obtained as

d2V I !^,8	 2- II	 II	 II	 2
d 2	 - a V (4,e)	 T a (^)cos(o /2)+ C g (9) - T , (C)]f	 (41)

where,

g (o = VNw+1 - VNw	 and F2 = cosC(Nw + )e] - cos[(Nw + 2)e].

The solution to Equation (41) satisfying vanishing stresses and dis-

placements at infinity and unit compression on the crack surface is then

given by:
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ME

BII	 = t^ cos[(N* + m+ 1)01 cos [(n+ 1 )o]d9i
{{{ m=1	 m	 rt o,,, rrW	 ^Vt

+	 t	 cos(o/2)cos[(n + 2)9] t	 e	 TaI (t)dt do
0	 0

-ds
t7r F2 cos[(n + -'Z)e] t^ a	 g(s)	 - Tb I (s)	 ds do = 1, (42)+ 722 o	 o

for all broken fibers.

a
If TaII (s), g(t) and T IIi (s) are known, Equation (42) reduces to a set of

linear algebraic equations in 
BII 

and can be solved directly.

When the above finite strip, region II, is introduced between the

two half-planes, planes I and III, as shown in Figure 5, it results in

two interfaces each similar to the one discussed in the problem of adjoined

half-planes.	 The interfacial	 shear stresses 0(n), zlal(g), Tb I ( g ) and

TbII 	 can be obtained in the same ma p Aer as in the previous solution,

that is, using the following relations:

Ta( y )	 _ - T Ia I ( y ),	 and

Ta(y) _ (GM/h) il	[vo(y) - vo I (y)],	 between planes I and II,	 (43)

and

Tb I ( y )	 = Tb
II

(y ),	 and

T b I (y) =-(GM/h) i2 [v^W(y) - vo ll (y)]	 between planes	 II and III,(44)

where (GM/h) il and (GM/h) i2 are the shear stiffnesses of the respective

interfaces.	 By definition g(g) is given by

r.

g()	 = V II	 VII	 (45)
Nw+l	 Nw

Equations (43) - (45) along with the two equations for the Fourier con-

stants from the stress boundary conditions on the broken fibers in region

I and II, Equations (34) and (42), represent the complete solution for the

4^
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finite width buffer strip problem. In Equation (45) it must be noted

that V II is the normalized displacement of fiber Nw of the finite strip,

whereas VNw+1 is the normalized displacement of the first fiber of a new

	

half-plane having applied shear stresses 
-II 	 along the free edge and

fiber/matrix properties of the finite strip.

As in the previous problem, first the actual displacements are sub-

stituted in terms of their corresponding normalized displacements, then

the normalized displacements are substituted in terms of the normalized

shear stresses and the Fourier constants. Further, Ta I (c) and TbII(^)

can be eliminated knowing the relationship between the actual shear

stresses, Equations (43) and (44). Then the final set of governing equa-

tions for the finite width buffer strip problem can be listed as follows:

Ml

E B ^ f cos[(N*+m nl +2)̂]cos[(n + 1 o]6de
M=l	 0

-6tCO

+	 tff cos(e/2)cos[(n + j)6] t e	 Ta(t)dt de = 1	 (46)

r 0	 0
M2
£ B II 2 f cos[(N* +m+ i)e]cos[(R+ y )e]6de

M=l m fr 0	 2	 2

- G22 ^ f cos(e/2)cos[(P.+ 2)6] 	!oo a - alt Ta(t)dt de
R 1	 0	 0

CO -6s (	 l
+	 t^ f2cos[('+ 1	 f e	 ` g ( s ) - TbII (s)) ds do= 1 ,	 (47)

IT	 2)61
0	 0	 l	 lJJ

for n = N* + 1,...,Nl and k = NZ + 1,...,N2

M1
-6n

T (n) - E Bm Gil 2 f cos[(N*+ m + 2)e]cos(6/2)e 	 de
m=1	 0

M2

	

E BmI G 1 R1 ^ fI 
c,^s[(N2 + m+	 j)6]cos(e/2)e-aln de

m=1	 0

t,

24
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G i l	 it	 2
f r l f cos S /2 [D(S ► n,t) + G12 DO, on it) ]do T' (t)dt
0	 0

+ f"°Gil R1 f COS L' 2 F2 D( S,n/R l ,$)do [9(0) - "(s)]ds,
0	 0	 (4a)

-SM2 11 Q II ? f'r cos [(N* +m+ 1 )oacos[(Nw + L1 )o]e 	do
m^ 1 ni it o	 2 

- fN G
122 1 f7r cos	 2 cos[(Nw+ 1 01D(S,t/R l ,^)do T (t)dt

0 R1	 0

+ 
o	 o

a	
F D(a,^,$)do g(s )ds

co	 ,r [ 2 (o/2) F2cos[(Nw +j)o] 	 -II
1	

cos+	
S	

D(S , 4, $)do i t (s)ds,

k

(49)

and
M2

Tb I ( ) =	
mzl B 

I Gil 2 o1r cos[(N2+m+ 2)o]cos[(Nw+^)o]e 	 do

f^ Gi2G12 1 fir cos o 2 cos[(Nw + )o] D(5,t/R l ,^)do T-I(t)dt
o	 R1 2 	 0	 s

G.	 IT cos[(Nw +1)o]
+ o
	 ^2 0

F 2 D(sg ,$)do g(s)ds

^r
_ fN

G
il f	 i 3 cos O L D

( 6 2 , :S)

+	 5	
F2D(Sg ,$) do Tb i(s)ds (50)

where

AFEFh II 
Gmt 

I

M	 FF

	

AEh III
	 GtIT.^

R2'	 G 	 AE h	 '
M	 F 
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al = 6/R1

r
62 = a/R2

Gil = (GM/h) i 1 (h/GM) 
I

Gi2 = (GM/h)i2(h/GM)II	 and

y	 G23 = (GM/h)II(h/GM)III

The solution reduces to two series equations and three linear integral

equations.

Uni-Directional Finite Width Strip with Broken Fibers

In this section a solution is obtained for a uni-directional finite

r width strip containing an arbitrary number of broken fibers as a special

` case of the solutions already developed. 	 With reference to Figure 5 it

can be seen that if the interfacial shear stresses T I ' (y)
a (Y) and T b (Y)

acting on the region II are zero then it results in a finite width strip

with broken fibers subjected to a uniform remote axial stress as shown

h in Figure 7.	 Therefore the solution to the finite width strip problem

can be obtained as a special case of the solution developed for region

nr

II of the buffer strip laminate by setting TII (t) and T b (s) to zero in

Equations (42).	 With reference to Figure 7 these equations are given as

t4

E	 B 	
f^ cos[(N*+m+2)e]cos[(n+i)e]de

M=1	 0

+ 2 f
IT 

F2 cos[(n + 2)6] f^ a	 g(t)dt de = 1	 (51)
0	 0

for all broken fibers, and

g (d _ -	 E	 Bm ^ f^ cos[(N * +m+ 1 o]cos[(Nw +j)e] a-
a 	

de
m _ 1	 0

A
n 007r cos[(Nw+ Z)e]

2+ f	 ^ f	 F2 D(a,E,t)de g(t)dt	 (52)
0	 0 a

-N,
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where

F2 = cos[ ( Nw + j) n] - cos[(Nw + 2) oa , and

g(O	 VNw+1 - VNw '

Since by definition VNw+l is the displacement of the first fiber of

a new half-plane having fiber/matrix properties of the finite width

strip and no applied shear stress along the free edge, it must be equal

to zero. Therefore g(^) is given by

g (O = - VNw .	 ( 53)

Therefore the solution of the finite width strip reduces to one

series equation coupled with one linear integral equation. The location

and the number of broken fibers are arbitrary except that the fiber

breaks must be along the x-axis. The solution obtained holds for a

central notch, an edge notch, an off-center notch, or for multiple

notches along the x-axis.
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CHAPTER III

SOLUTION TECHNIQUE

In all the problems dealt with so far, the solution reduces to one

r or two series equations coupled with one or more linear Predholm in-

tegral equations of the second kind, 	 Since there is no exact closed

form solution available to solve; such a system of equations, a numerical

procedure is developed and presented in this section, 	 The technique

makes use of a method given by Riez [12], to solve a linear Fredholm

integral equiition of the second kind defined within a semi-infinite

interval of fntc-gration.	 The solution is based on the fact that a given

,a
integral over a -semi-infinite interval may be approximated by the

Gauss-Laguerre quadrature rule as

ca	 k	 xi
f	 f(x)dx =	 E	 wi e- f(x i )	 (54)

o	 i=1

where xi is the i tfl zero of the Laguerre polynomial, LOX), and w i is

the corresponding weight function given by
X i
it,

j.

wi	
- C(k+l)	 L	 (x	 )^ 2 	

(55)

k	 1	 i

^. The Laguerre polynomial L k (x) is given by

 dk(xkk-

;
Lk(x)	

= ex 	
-) 	 (56)

dx

F Since the form of the equations for each of the solutions is the

same, the development and application of the numerical procedure can be

demonstrated, without loss of generality, by taking the equations corre-

sponding	 to	 one of the solutions. 	 Consider then the solution corre-

sponding to the problem of adjoined half-planes given by Equations
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Ml

E
1

Bm 2 
I	 COSUN' + M + i) 01cos[(n + 

i
)o]sdo

in	 1 0

00
I	 COS(0/2)cos[(n +	 'r	 do	 1	 (57)t)e] f	 e

7r	
a(t)dt

0	 0

M2
E 1B 1M 2	 Ir7 1 cos[(N*2 + m+ ^)O]cos[(Z+ j)o]Sdo

tt

0

G12 261t
f cos(0/2)cos[(z+ j)e] f e	 TI(t)dt do	 1	 (58)

al
0	 0

for	 n N* + l....,Nl	 and	 z	 N* + 1,...,N	 and
21	 2

a 
(n)

M
Tr

1	 1G il	 Bm cos[(N I + M+-T)o]cos(0/2)e- 
6TJ 

do7T 0	 M=l

M
7r	 2R G	 2 f	 E	 BII 

cos[(N* + m+ I Wcos (0/2)e	 do
M	 2	 77r 

0	 M=l

I 7r 2 Tr ERS ^e	
G

G	
/2	

D(6,n,t) +	 D(61 S

	

I — 1	 11 90

	

i 1 0 7r 0	 6	

R12

l

	

X 
do 

;' I (t)d	 (59)d

J

	

	
Integrals over the spatial variable, t, in the above equations,

defined over the semi-infinite interval, can now be replaced by the above

j fi	 series representation to yield

E

M l 	
2 f r cos[(N*+m+il)o]cos[(r,+ I 016do B I

M=l 7r 0	 m

I	 I
k 2

+ E	 f
7T 

cos(0/2)cos[(n +j -)e]e
6tj do wje

t j	
a

	

T ( tj ) 1	 (60)
j=1 7r 0	 2 

M2
E	 2 f7r cos[(N* + m + 1 0 1cos[(.z + 1

 elsdo B 
II

m =l Tr o	 2	 m
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GI2 2 
fu 

cos(o/2)cos[(z+j)ole It d^ w ets ca(ti ) *1„
=1 R I	 0	

(61)

for n = N* + l , .. ,N l , and z = N2 + l ,, .. " N2 , and

k	 tj	 Y

6ij + t K(n i , tj )wj e	 ca(tj)
j =1

E1 (Gil 2 hrcos[(N*+Iii+ 1 )oacos(o/2)e 	 do B
m=1 	 ,r 0	 1	 m

E [RG 	
2 

f1r cos[(N* -r ilt + l 03Co5(0 /2)e 1 i do
m=1	

l i l rr o	 2

X B li = o,	 i = 1 9 ...,k	 (62)

where, d ij = 1 for i = 3

1	 = o for i

	

^	 G
and K(n i ,t) = 

21iI1 I ^ cos 
a Q

/ ^ 
[p ( s ,ni, tj) + ^ D (5 1 ,n i ,tj )] do .

0	 1

Therefore, the solution of the integral equation coupled with .a set of

series equations reduces to solving a system of linear algebraic equations

in 
BID , 

aiii i and explici t values of ^ra(r1) at the quadrature points. The

above system of equations is solved by the method of Gauss-elimination

with partial pivoting.

It must be pointed out that the terms in the integral equation of

the form e` 6111`tl have cusp at rj = t and the quadrature representation in

the standard form, Equation (54), results in large inaccuracies especially

for large values of n. This has been overcome by modifying the above

quadrature rule by deleting selected terms in the series and replacing

them by closed form integration in the neighborhood of the cusp. With

reference to Figure 8, the integral over the semi-infinite interval is

then represented by the modified equation
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k
I K(n i t t) T a(t)dt = E K(n i I t	 (tj)et Wi

K(not_) ;(t_	 w)eti-i	 i
a	 i-I , K( n i t i ) ;I(t i )e

t
 W ii	 i ,	 i , 

+	 I(t	
)e ti+l

Wa	 i+i l

ti	 ti+l 
+A2

+
t	

-1	
t

f 
A 

K(n i ,t) T a (t)dt+	 j'	 K(n i st) T"a(t)dt	 (63)

where,

I	 (t i-1	 ti-2)/2	 and

A
22	 02 ti+,)/2

Since Tao.; I s yet unknown, the two integrals on the right hand side

of Equation (63) can not be evaluated in a closed form. However, if the

function 7 I (t) is taken to be the average of the terminal values within
a

each of the intervals, the above two integrals can be expressed as

	

t	 t

	

i	 [T(t a(ti)]-I	 a i-1 ) + ; I	 i

	

f	 K(ni,t)dt
2t	 t	 Ai-l-

and

ti+l+A2	 ^:I(ti) + - Ia(ti+l)] ti+,+A 2

	

f	 K(n.,t) ; I (t)dt	 f	 K(n i ,t)dt	 (64)

i

	

t	
I	 a	 2	

ti

Substituting Equation (64) into Equation (63) and rewriting

results in
k

f K(ni,t) Ta(t)dt	 E* K(Tj i ,t) Ta(tj )e	 wj
0	 j=l

I	
ti

+	 f	 K(ni,t)dt T a (t i - 1 )t i-1
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ti	 ti+1+A2
+	 f	 K(u i ,t)dt +	 !	 K(n i ,t)dt	 ca(ti)

ti-l'	 ti
it

ti+l+A2

^•	 !	 K(n, st)dt	 -ca(t i ) (65) e

ti

)
whero f* excludes terms corresponding to j = i - 1, i and i + 1

The quadrature-rule in the modified form, Equation (65), is used to

represent those integrals in which the integrand has terms with cusp.

x The two series equations remain unaltered and the substitution of Equa-

tion (65)	 into Equation (59) results in

k*K(il ,t )w^ eta 
,^x( t )	 + a 	 (t) +1+ 	I (t i ) + a *i	 a	 3	 i^l	 a	 i	 s	 i	 1 ^a(ti+l)

jml	
,l

M 1 	 ,^	 *
f	 cos[(N I +m+	 )Ojcos(0/2)e	 d0	 aE	

G il ^t
pl' l	 0

t!

+ ir CO.^	 *	 1	 -sln^
R16'il it	 )njcos(0/2)e	 do

111-1
X	 D	 =	 0	 1	 1,..,,k (66)

t
where,	

ti

fK( ►)i,t)dt
t	 -Ai-1	 1# ti
	 ti +1+A2

F ai	 I	 f	 K(n i ,t)dt +	 f	 K(n i ,t)dt	 and

.E
j}

ti
 

ti -1 -n i

7k{ 	 e
ti+l +p2

ail	 f	 K(ni,t)dt

ti
This again reduces to solving set of linear algebraic equations as before.

a-

p

j



with increasing length. The crack growth takes place by breaking

I

CHAPTER IV

RESULTS AND CONCLUSIONS

First, typical results are given for a Graphite/epoxy laminate con-

taining a buffer strip as shown in Figure 9. The crack growth behavior

of the lamina is studied by varying the buffer strip material, the width

and the thickness of the strip and the initial crack length. The three

materials considered for the buffer strip are Nylon, Kevlar and S-glass,

all in an epoxy matrix. The matrix and fibers are assumed to be linearly

elastic. The failure criterion is that a fiber fails upon reaching its

ultimate failure stress as determined from an unnotched coupon test.

Figure 10 presents results corresponding to initial crack growth in

plane I, crack arrest at the interface, crack growth in the buffer strip

and subsequent lamina failure. In these results all fibers are of the

same cross-sectional area and in all cases the buffer strip is ten

fibers wide. Since all the buffer strip candidate materials are of

lower modulus than that of the parent laminate, which in this case is

Graphite/epoxy, the stress concentration factor at the near end of the

notch (nearer to the interface) is always higher than that at the far

end of the notch. The solid line in Figure 10 represents the remote

stress required to initiate crack extension, (fail the first unbroken

fiber in front of the notch, fiber A in Figure 9). The remote stress

required to fail the lamina catastrophically, (fail the first fiber in

plane III, fiber G in Figure 9) is given by the broken line in Figure 10.

Both these stresses are functions of the initial crack length and decrease
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consecutive fibers from the crack tip to the interface. Then, depending on

the stress level required to run the crack to the interface and depending

on the buffer strip material, the crack may arrest. It is very interesting

to note that all three buffer strip materials require an increasing stress

to continue the crack growth in the buffer strip, although Kevlar will

only arres ,'L a crack if it initiates under fairly low load, i.e. initially

close to the interface.

Total lamina failure will occur when either the buffer strip is fully

broken or when the first fiber in plane III, fiber B, Fails. In both

cases continued crack growth is unstable once fiber B fails. For the

particular lamina of Figure 9, all fibers in the Kevlar buffer strip fail

before fiber B attains its failure stress, whereas for S-glass and Nylon,

fiber B fails when there are still some fibers left unbroken, i.e., the

crack jumps the buffer strip. The ultimate lamina failure stresses are

a. = 0.272 
ault 

for Kev'$"ar

a00 = 0.395 
ault 

for S-glass,	 and

a(0 = 0.444 cult for Nylon,

where 
ault is the ultimate fiber stress as determined from an unnotc'ned

Graphite/epoxy laminate. The material properties used for these results

are given in Table d. The results of Figure 10 indicate Nylon to be the

best of the three materials but this is only true if the matrix can

support the very large failure strains (about 20%) of Nylon. In a typical

angle-ply laminate with Nylon buffer strips and with continuous +45

graphite plies, high strain levels certainly cannot be reached before

failing the angle-plies and continuing the crack. This behavior was

observed by Verrette and Labor [4]. The extension of this study to
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account for angle plies is surely necessary to represent accurately such

low modulus fibers.

TABLE 1. FIBER PROPERTIES

fiber mass denity modulus ult.	 stress
Gms/m MPa MPa

Nylon 84 2000 233

Kevlar 106 111400 2020

S-glass 199 101000 2800

Graphite 155 300000 2800

, 	 a

In Figures 11-13 the effect of buffer strip width on crack growth

through the strip is indicated.	 The ultimate failure stress of the

lamina as a function of buffer strip width is plotted in Figure 14.

From Figure 14 it is seen that for Nylon the ultimate failure stress

continues to increase with an increase in width, whereas for S-glass and

Kevlar about ten fiber widths is optimum.

Table 2 gives a comparison of the ultimate lamina failure stress

for a buffer strip of ten fibers, first for equal area and then for

equal weights of the fibers.	 These results are normalized with respect
u.

to S-glass.	 A Kevlar region of two plies is approximately equivalent to

4
one ply of S-glass in weight and it is seen that S-glass is still superior

i
to Kevlar.	 This agrees with results obtained by Poe and Kennedy [5].

Next, results are presented for the finite width strip with broken

fibers forming a central notch and subjected to a uniform remote axial
5

stress as shown in Figure 7.	 The stress concentration factors for various

notch lengths (number of broken fibers, M) are obtained corresponding to
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TABLE 2. COMPARISON OF LAMINA FAILURE STRESS

fiber a.laul t a./au1 t
equal area equal weight

Nylon 0.444 0.472'

Kevl ar 0.272 0.318

S-glass 0.395 0.395

two widths, Nw = 24 and 48.	 Following Nedgepeth [6] the stress concentra-

tion factors for a uni-directional	 infinite region are obtained using the

relation

aN+l4.6.8. ( 214+2) (
6 7)aN+l	 a^	 _ 3.5.7 . . . . . "' . . (2M+1 

where

N+l = index of the first unbroken fiber at the notch tip,

M	 = total number of broken fibers in the notch,

aN+1 = stress concentration in fiber N+l,

aN+l = axial stress in fiber N+1, and

a00	 = applied remote stress.

By comparing the above two stress concentration factors corresponding

to a given notch length the finite width correction factor for a uni-

directional strip is obtained and is given in Table 3. Also given in

Table 3 are the corresponding finite width correction factors for an

isotropic strip obtained from the following relation [131

Y2 = 1.0 + 0.1282 (2a/W) -0.2881 (2a/W) 2 +1.5254 (2a/W) 3 , (68)	 f

4
where,

Y 2 = finite width correction factor,

a r half-crack length, and

W = width of the strip.
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From Table 3 it is seen that the finite width correction factors

for the isotropic strip and the uni-directional strip are not signifi-

cantly different for aspect ratios (notch length to strip width ratios)

less than 0.5. For higher values of aspect ratios there is a considerable

difference between the two cases. An aspect ratio of 0.9167 corresponds

to 22 broken fibers in the 24 fiber strip and all the applied load is

carried by the two remaining intact fibers giving a stress concentration

factor of 11 .0, (22 x 1.0/2). Similarly, the other limiting case corre-

sponding to the aspect ratio of 0.9583 in which 46 fibers are broken out

of 48, leaving the two end fibers to carry all the applied load giving a

stress concentration of 23.0 (46/2). These two limiting cases are pre-

dicted accurately by the above solution indicating the validity of the

model.

TABLE 3. FINITE WIDTH CORRECTION FACTORS

Finite width correction factors

2a/W uni-directional strip
Isotropic

Nw = 24 11w = 48
2a

0.1667	 1.01334	 1.01125 1.02042

0.25 1.02890 1.02514 1.03788

-	 W 0.3333 1.05207 1.04581 1.06722
1

0.5 1.13040 1.11598 1.18275

2a = M x d 0.75 1.44760 1.39280 1.57762

W = Nw x d 0.9167 2.57412 3.7 2.05049

d=fiber spacing 0.9583 3.77560 2.20070

F
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From the above results and discusions the following conclusions

l can be made,	 The method predicts the fracture behavior of a hybrid

laminate in terms of material properties, geometry and initial crack

i
length.	 The results agree well with those obtained experimentally for

buffer strips of high modulus fibers such as S-glass and Kevlar, where

the stiffness of the angle-plies is very small compared to that of zero

degree ply.	 For low modulus (high failure strain) buffer strip materials
u

such as Nylon, in which the stiffness of continuous angle-plies is com-

parable to that of the axial buffer strip fibers, the model is inadequate

due to the basic assumption made in idealizing the laminate as a uni-

directional composite, 	 The method predicts the best buffer strip material

to be one with a low modulus and as large an ultimate strength as

possible, e.g., S-glass is superior to Kelvar.

As stated earlier, the main aim of this work was to understand the

basic mechanism of crack growth and arrest in hybrid laminates, keeping

p the model as simple as possible. 	 This goal has been achieved.	 However,

in order to represent an actual buffer strip panel more realistically,

the model certainly needs and has the potential for, further modifications.

An immediate extension is to model the panel as a periodic uni-directional
i

hybrid laminate simulating the regular placement of the buffer strips.

Next, the role of angle plies must be accounted by either adding a cover

sheet over the uni-directional laminate or by some other means. 	 Finally,

the effect of matrix damage in the form of longitudinal yielding and

splitting at the crack tip and at the interfaces must be incorporated.
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