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ABSTRACT

This study considers the development of a method of analysis capable
of predicting accurately the fracture behavior of uni-directional hybrid
(buffer strip) composite laminates. Three particular solutions are dis-
cussed in detail: first the case of broken fibers in a uni-directional
half-plane; secondly the case of adjoined half-planes of different
fiber and matrix properties and finally the solition of two half-planes
bounding a third distinct region of finite width. This finite width
region represents a buffer strip and primary attention is given to the
potential of this strip to arrest a crack that originates in one of the
nalf-planes.

The analysis is based on a materials modeling approach using the
classical shear-lag assumption to describe the stress transfer between
fibers. Explicit fiber and matrix properties of the three regions are
retained and changes in the laminate behavior as a function of the rela-
tive material properties, buffer strip width and initial crack length are
discussed. As an example, for a notch (broken fibers) in a graphite/epoxy
laminate, the results show clearly the manner in which to select the most
efficient combination of buffer strip properties necessary to arrest the
crack. Ultimate failure of the laminate after crack arrest can occur under
increasing load, either by continued crack extension through the buffer
strip, or by fiber breakage in the undamaged half-plane. That is, for
certain choices of relative material properties and width, the crack can

jump the buffer strip.



ii

As a special case of the buffer strip probiem a solution is obtained
for a uni-directional finite width strip containing an arbitrary number
of broken fibers. The stress concentration factors for the finite width
strip are compared with those for ar infinite region and finite width

correction factors are given.
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CHAPTER I
INTRODUCTION

In the design and use of large composite panels in structures such
as aircraft and space vehicles a major concern is the ability of the
panel to function (continue to carry a substantial part of its design
load) after being damaged. One technique that has evolved from the
stringer reinforced metallic panel is the buffer strip or hybrid panel
shown in Figure 1. Because of the fabrication methods used in composites
it is possible to make such a laminate by replacing specific fibers,
usually parallel to the load axes, with fibers of the appropriate physical
and geometric properties necessary to arrest a crack that originates in
the parent laminate material. Since the buffer strips are usually narrow
and relatively far apart the stiffness, weight, and strength of the
undamaged laminate is not significantly effected by the replacement.

Much experimental work has been done to investigate this behavior,
i.e. to determine the best buffer strip material, with the studies of
Eiseman and Kaminski [1], Hess, Huang and Rubin [2], Avery and Porter [3],
Verette and Labor [4], and Poe and Kennedy [5] being significant contribu-
tions in this area. The same cannot be said for nublished analytical
solutions and it is this question that is considered in the present study.

Some of the first work in modeling a uni-directional composite con-
taining broken fibers was presented by Hedgepeth [6] where the case of
no additional damage other than the initial notch was considered. This

study was extended by Hedgepeth and Van Dyke for the special case of one



E A

ﬁ

fovso o o

o bow PR
P e N TR T
@ Al @;ﬁm)u o

main laminate buffer strip

Figure 1.

)

_JEEE\
/,E:t:::f:&:::ﬂ\\___;::::::

-/ \ original
ety / lies in
W ~ ~ P
of rrmvwerrweyey W the parent
| D YWYy YY N

laminate

replacement plies forming
the buffer strip

A Typical Buffer Strip Laminate Configuration



broken fiber with matrix yielding parallel to the fiber [7] and for one
fiber with Jongitudinal splitting in the matrix [8]. Goree and Gross
[9] extended the Hedgepeth solutions to include longitudinal matrix
yielding and splitting for an arbitrary number of broken fibers. The
results of Goree and Gross gave very good agreement with experimental
results for brittle matrix composites which exhibit large longitudinal
matrix splitting. For ductile matrix composites such as boron/ailuminum,
which exhibit large yielding but very 1ittle splitting in the matrix,
this model predicted the right trend hut the agreement was not very
good, especially for short notch lengths. Goree, Dharani and Jones
[10] attempted two moditications to the above solution. First, the
matrix was assumed to be strain-hardening and secondly, a cover sheet
was included over the main laminate. The results of [10] showed that
the inclusion of either a strain-hardening matrix or the addition of a
cover sheet did not improve the agreement between the predicted and
experimental results, Based on the observed fact that ‘in addition to
Tongitudinal yielding of the matrix, a certain amount of stable trans-
verse extension of the initial notch under increasing applied Joad
takes place, Dharani, Jones and Goree [11] then extended the solution of
[9] to include transverse damage ahead of the initial notch in addition
to the Tongitudinal matrix damage. The results of [11] showed a very
significant improvement in the ability of the model to represent the
behavior of a ductile matrix composite.

In all these analytical studies the laminate is modeled as a two-
dimensional region having a single row (mono-layer) of parallel, identi-

cal, equally spaced fibers, separated by matrix. The damage is taken to



consist of an arizitrary number of broken fibers such that all breaks

1ie along the x-axis, but they need not form a continuous break (notch).
The fibers are assumed to be of much higher strength and extensional
stiffness than the matrix and all the axial load is assumed to be

carried by the fibers, with the matrix transfering load by shear

stresses as given by the classical shear-lag assumption. One very impor-
tant feature of the shear-lag assumption is that is simplifies the equili-
brium equations by removing the transverse displacement dependence from
the longitudinal equilibrium equation. The fiber stress and matrix shear
stress can then be determined without solving the transverse equation.

The methods of analysis developed and discussed in the above
studies [6-11] are extended in the present work to determine the
stresses and displacements in a hybrid uni-directional laminate having
an initial notch in the vicinity of a single finite width region of
different material properties as shown in Figure 2. This geometry is
an idealization of the usual periodic placement of buffer strips as
indicated in Figure 1 and it is assumed that the stresses near the
notch tip and the single buffer strip are approximately the same as
those in a wide panel with relatively narrow buffer strips.

Of particular interest is the investigation of the behavior of the
laminate as a function of the relative ultimate stress and extensional
modulus of the buffer strip fibers, the buffer strip width and initial
notch length.

As an initial step in understanding the basic mechanism of crack
growth and arrest in a hybrid laminate, the main thrust of the investiga-
tion will be to study the behavior of the laminate as a function of the

design parameters; fiber/matrix properties, buffer strip geometry and
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the initial crack length. In order to simplify the analysis, the
effect of any additional damage, e.g. longitudinal matrix yielding
and splitting [9] or transverse matrix and fiber damage [11] will not
be considered,

A typical buffer strip laminate usually contains angle plies as
well as zero degree plies, It is felt, however, that much of the
characteristic behavior of the buffer strip region can be represented
by the uni-directional laminate, as a major portion of the load is
carried by these fibers. It appears that a primary function of the
angie plies is to prevent lTongitudinal matrix splitting in a brittle
matrix such as epoxy. This can be accounted for to some degree in the
present solution by allowing the matrix to support large strains without
splitting.

The presentation of the solution will follow the order of the
development by the authoy as this seems to indicate more clearly the
significant points of the analysis. Results will, however, only be given
for the final solutions correspcnding to the buffer strip laminate and
the finite width strip. First the solution for a crack in a half-plane
having arbitrary shear stresses applied to the free-edge, (which forms
the basis for all the later solutions), will be developed. By matching
boundary conditions along the interface, the solution for two different
adjoined half-planes will be given and then the adjoined half-plane solu-
tion will be modified to account for a second interface, resulting in the
buffer strip problem. The case of the finite width strip with broken
fibers is obtained as a special case of the buffer strip problem by set-
ting the shear stresses along the two interfaces to zero. These solutions

are all presented in Chapter II. Chapter III deals with the numerical



technique used .o solve a system of 1inear algebraic sinultaneous equa-
tions coupied with a set of Tinear Fredholn i;tegral equations of the
second kind, A special method developed to evaluate accurately inte-
grals having a cusp is emphasized. Chapter IV gives results and con-

clusions for the buffer strip probiem and the finite width strip.

o AR
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CHAPTER 11
FORMULATION

Uni-Directional Half-Plane with Broken Fibers

A uni-directional array of parallel fibers with an arbitrary number
of broken fibers in the form of a notch is shown in Figure 3. The
laminate is subjected to a prescribed shear stress, Ta(Y)9 along the
free edge in addition to a remote uniform tensile stress in the axial
direction. Fiber breaks occur along the x-axis (axis of symmetry) and,
since the loading is symmetric, only the upper half of the laminate is
considered in the analysis.

The fibers are taken to be of much higher strength and extensional
stiffness than the matrix and therefore all of the axial load is assumed
to be carried by the fibers with the matrix transferring load by shear
stresses as given by the classical shear-lag assumption. The axial fiber
stress, o,.(y), and matrix shear stress, Tn(y), are then given by the

n
simple relations

dv,(y)
on(y = EF v and
T
) = 5 Dy (y) - v (N . (1)

Where vn(y) is the axial displacement of the fiber n at the loca-
tion vy, EF is the Young's modulus of the fiber, GM is the equivalent
matrix shear modulus and h is a shear transfer distance. Because of the
interference between fibers it is unlikely that GM will be the homo-

geneous matrix shear modulus or h the actual fiber spacing, and it is
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pointed out in [10] that these values should be determined experimentally
for a given laminate. It is also shown in [10] that a single experi-
ment giving the crack opening displacement as a function of applied

load is sufficient to determine both the equivalent shear modulus GM

and the shear transfer distance h for a particular laminate, indepen-
dent of the notch length. That is, these parameters are material con-
stants and depend only on the fiber and matrix properties and the

fiber volume fraction but not on the sizes of the damage.

By virtue of the shear-lag assumption the longitudinal and trans-
verse equilibrium equations become decoupled and the fiber axial dis-
placements and stresses can be obtained without solving the transverse
equilibrium equation. Therefore, only the equilibrium equation in the
Tongitudinal (axial) direction will be considered. With reference to
the free-body diagram of a typical fiber-matrix region shown in Figure 3,

the equilibrium equations in the longitudinal direction is given by

AF dcn(y)

T —&— W) - ) =0, (2)
for all fibers except n = 0, and

T ——757—-+ r](y) - ra(y) =0, for fiber O . (3)

Using the stress-displacement relations, Equation (1), in the above

equilibrium equations, the following set of differential-difference equa-

tions is obtained:

AcE;h dzvn

-5 5tV -2vp +v .=0, and 4
GMt dy n+1 n n-1 (4)
AEeh  dPv, (

<5 —5 tvy-v =1 (y). 5
Bt 2 17V (5)
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Noting the coefficient of the second derivative term in the above equa-

tions, the following changes in the variables are suggested:

AcEch
F-F
let y = —_ N,
GMt
_ dv,
Un = Owon = EFW ’ and

’ AFh y (6)
v = om .
n EFGMt n

Algebraic manipulation then gives

O‘m 'E-;:—h-f (Vn'"vn_'l) ] (7)

_ n
9, = 9, I and L

where, n , o and Vn(n) are non-dimensional.

n

The resuiting equilibrium equations in non-dimensional form are given by

2
¢V,
dn PV -+ V4 =0, and (8)
n
d?v, _
d2+V1'Vo=Ta(n), (9)
n
where,

T ( ) Fth Ta(.Y)
T n = ——— e
a AFGM o,

These differential-difference equations are reduced to differential

equations by introducing the even valued transform as

(1,0) = 3 yln) cosl(n+3)o] (10)
n:
from which
Vn(n) = %—éTQ(n,e)cos[(n-+%)e]de . (11)

Making use of the above transformation and the orthogonality property of
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the circular functions, the two equilibrium equations may be written as

one equation valid for all values of n and n as follows:

7 " 4% - 1
T {w—g- 2[1~ cos(0)]V cos[(n+?—)o]do
0 \dpy ‘

= !r.:

. "% (n)cos(0/2)cos[(n+1)o1do
"o

which is of the form

v
%-f F(n,o)cos[(n-+%)0]d0 =0 foralln andn,
0

Noting the definition of V(n,0) in Equation (10) and (11) it is seen that
the function F(n,0) is even valued in 0 and therefore, if the integral is
to vanish for all n, the function F(n,0) must be zero. The single equa-

tion specifying V(n,0) is then
4Y - 687 = %, (n)cos(o/2) (12)

where, §2 = 2[1~ cos(e)] = 4 sinz(e/Z) .

The solution to the problem of vanishing stresses and displacements
at infinity and uniform compression on the ends of the broken fibers will
now be sought. The complete solution is obtained by adding the results
corresponding to uriform axial stress and no broken fibers to the follow-
ing solution. The appropriate boundary conditions are as follows:

v, (n)
Voln) =0, —g=— =0, as n-w, forall fibers, (13)

e g,(n) ==1 , at n=0, forall broken fibers, (14)

i

Vn(n) =0, at n=0, for all unbroken fibers. (15)

The complete solution to Equation (12), satisfying vanishing stresses

and displacements at infinity, is given by
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U(n,0) = A(0)e™" - S95(8/2) [ ginnre(n-t) T, (£)et (16)
n

where the function A(e) is yet unknown. The remaining two boundary con-
ditions give

dv
gi ) =-% J [-6A(8) - cos(e/2)f cosh(ét)T (t)dt]cos[(n4~7)6]d9--1,
0

(17)

for all broken fibers, and

() =2 7 [aGe) + S2L/2) P sinn(st)7, (£)dtIcosT(n+ F)eldo =0,
0

(18)
for all unbroken fibers. Equation (18) is solved exactly by taking
M
A(e) + _Qéiﬂl*l.f sinh(st)7,(t)dt = z] B cos[(N*-rnrrEQe] , (19)
=

where, M is the number of broken fibers. By eliminating A(8) between

equations (17) and (19), the stress boundary condition reduces to

m

B, cos[(N* +m+ )ejcos[(n+~—)e]6de

[T o 4

2
£
T 0 m=1
-2- w"Gt
™

+ Zr¢c (6/2)cos[(n-+ )e] f e T (t)dt do =1, (20)
0

for n=N*+1,...,N.

For a given shear stress distribution, %a(t), Equation (20) reduces
to a set of linear algebraic equations in the Fourier constants Bm' From
Equations (16) and (12), A(e) may be eliminated to obtain V(n,8) in terms
of ‘the constants B . Recalling the relation between V(n,6) and Va(n),

an expression can be obtained for the axial fiber displacement Vn(n) as

-8n M
V (n) = Z—f e b B cos[(N* + m + ?)e]cos[(n-+—oe]de
n o m=1
kil k © -
- LT eoslO2) [p(s,n,t) T,(t)dt cos[(n+hlelde ,  (21)
o 0 :

-8 |n- -5(nt
where D(8,n,t) = e 8|n-t| _ e 8(n+t) )
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The axial fiber stress is obtained by differentiating Equation (21) with

respect to n and is given by

. dv(n)
o =~
M
T =8n
5 - %‘g se z}Bm cos[(N*-+nrr%oe]cos[(n-+%ée]de
1w o '6(“+t) -G(n tl :
-= cos(0/2) s {e -pe } (t)dt cos[01+§003de, $
0 0 3
(21a) ]
where, p=1 for t <n, and “
i

-1 fort>n.

e
H

Adjoined Uni-Directional Half-Planes

Figure 4 shows two uni-directional half-planes of different fiber
and matrix properties which are assembled to form adjoined half-planes.

Both planes may have an arbitrary number of broken fibers. Superscripts

B e T W S

I and II are used to designate quantities corresponding to plane I and II
respectively. The normalized spatial variables, n and &, in the longi-

tudinal direction tre related by

AFEFh\II
e ]

II(

E=y . (22)
The shear stresses, TI(n) and t_°(&), at the interface are normalized
with respect to material properties of plane I and II respectively, and

are related to the actual shear stresses as follows:

.

1 (E sth\L <i(y) ;
T.\n}) = N an
2 AeBy oL
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E th \! TII(y)
=11 F a
T.°(E) = \I(T‘G‘) — (23)
a FOM ol 7
where, x;(y) and TII(y) are the actual shear stresses at the interface

acting on plane I and II. Since the remote displacements and hence the
remote strains are assumed equal, the remote stresses in planes I and II

must be related by

Aol -
e IR mwmaewe . 24
gl gll

F F

If %;(n) and E;I(E) are known then the solution for each of the half-

planes is the same as that developed in the previous section, Equation (20).

I1

The Fourier constants BI and B, corresponding to broken fibers in plane I

and II can then be obtained by solving the following sets of equations

Ly ie):

a ) and T

for known T

M
Q] B% % f cos[(N* +-m+-§~6]cos[ (n+ )e]éde
m:
.2 -St g
+ s é co (e/z)cos[(n+- )e]f e T (t)dt de =1,
M
?2 11 .?-
m=1

and / cos[(N* +rn+-40]cos[ (&4 )ejsde .
0

6t

+ 27" cos(o/2)cos[(n+ POl e Fl0de dos1, (29
0

= n* * = N* *
fOP n= N] + ], N] + 2,..A,N] and 2 = NZ + ], Nz + 2,;.-,N2 ]
where, M, and M, are the 1 umber of broken fibers in planes I and II. The

normalized displacements of a fiber in plane I and II are then given by

Lozt -6n
Vn(n) ==/, I By cos[(N14~m4-—)e]00a[(n-+—06]e de
0 m=]
-5 1 2SR cosn el 1 0(en,t) Fy(tdat do s (26)
T :
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and ViI(¢)

2 -8k
2,0 }:1 B;]I cos[(N*+m+%)eJcos[(n+%)eJe de
o -

- %-fw ;ggigzgl cos[(n+ )e] f D(8,£,s) 'II(s)ds de, (27)
0
where
I

Ach

vily) = (E;gﬁf) oVi(n) ,  and

I A AT 4y gy
v () = E6t) Vo (€) . (28)

When the above two half-planes are joined together the shear stress
along the interface is unknown, but from equilibrium the shear stresses
rg(y) and ng(y) acting on each of these two half-planes must be equal
and opposite. Further, as the shear stress is directly related to the
distortion of the matrix from the shear-jag assumption, it follows that
these stresses must be proportional to the difference in the displacement
of the first fibers of plane I and II. These conditions result in the

following two equations:

Thy) = - Tgl(y), and (29)
w(y) = (Gy/h)'! [vé(y) - vgl<y)] , (30)

where, (GM/h)i is the equivalent shear stiffness of the interface. It is
interesting to note that in a continuous elasticity solution one would
match surface tractions and displacements at the interface while in the
present discrete modeling solution the shear stresses are required to be
equal and the shear-lag relation, Equation (30), takes the place of the

displacement equality.

o e o wea ¥
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Substituting for the actual displacements in terms of normalized values

using Equation (28), and recalling the relation between the actual and

normalized shear stresses from Equation (23), Equations (29) and (30) re-

duce to
#e) = - (g (/6" Fn)/Ry L and (31)
fan) = [v§<n) - Ry vg‘w)] (Gy/h) '/ (8y/h)] (32)
where,

Ry = ’\J(AgFth) (Aeréth)l ' (33)
M F-F

Using Equations (26) and (27), Vﬁ(n) and vél(s) can bt 4 and
substituted into Equation (32) thus resulting in an integra:s =~ - «un
for E;(n) in terms of the Fourier constants, Bé and Bél, and the nor-
malized shear stresses, El(n) and Egl(g)s The spatial variable £ and
the normalized shear stress t II(E) may be eliminated from the above in-
tegral equation and also from the equations for the Fourier constants,
Equation (25), resulting in the following set of governing equations;
two series equations and one Tinear integral equation:

¥

zBI
m=1

:zgm

f cos[(N1+rn+-oe]cos[(n+ ~)8]5de
0

T o -8t -1
/ cos(e/2)cos[(n-+—oe] f e a(t)dt de =1, (34)
0

:slx\b

1
7 BII

m=1 m

3 {ro

m * 1 1
S cos[(N2+m+—2-)e]cos[(z+?_-)e]6de
0

o

12 2 = =51t
- —7?-—-f co (6/2)cos[(z4- )e] f e a(t)dt de =1, (35)
R] T o
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for n= ¥+ 1,00 and 2= N+ 1,00, and

M] -6n

2 21 BI cos[(N*~+nr+Eée]cos(e/2) do

T (ﬂ) = Gﬂ

Mo 810

2 B, cos[(N§+rn+%ﬁe]e 1 do

- 2 6
- 6y / -"15" cos Gw[o(s,n,t)ar-gl (ﬁ]m,t)]derl(t)dt
(36)
where, 653 ¢ (6/h) (/6T . 6y, = (G (h/GTT and 8= a/Ry.

The Buffer Strip Laminate

Figure 5 shows a finite width strip (buffer strip) between two half-
planes of different or of the same fiber and matrix properties. Ore of
the half-planes, plane I, and the finite strip, region II, may contain un
arbitrary number of broken fibers. The normalized spatial variables n, &
and ¢ are related to each other in the same way as in Equation (22). The
normalized shear stresses ?é(n) II(z), rbI(F) and TbII(C) are related
to their corresponding actual shear stresses in the same manner as in
Equation (23). Further, the remote strains in all three regions are
assumed equal.

The solutions for planes I and III can be obtained for known 5§(n)
and réll(c) from the half-plane solution and therefore we need to de-
termine the solution for the finite strip, region II, only. This solu-
tion is developed by considering the half-plane shown in Figure 3 with
the following special condition. It may be assumed that the matrix be-
tween the fiber Nw and (Nw + 1) splits all the way to infinity and that

an external shear stress TbI(y) is applied on the surface of the sp11t
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s shown in Figure 6. The introduction of a split with or without the
external applied shear stress results in two special equilibrium equa-
tions for the two fibers on either side of the split [9, 10, 11] in
addition to those valid for the free-edge fiber and the generic fiber,
n, given by Equations (8) and (9). These equilibrium equations in the

normalized form are as follows:

dZVII
~—— w it ol =zl for fiber 0 (37)
dg
dZVII - -
n I - .
_EEE_ + Vn+1' 2Vn Vn 1 , for fiber n , (38)
szNw SN S R 5. o _
dgz - VNw *‘VNw 15T, (g) , for fiber Nw , and (39)
a1 11 I 11
+ - .

The left hand sides of Equation (39) and (40) can be reduced to the
standard form by adding or subtracting a term (VNw+1 V&é) on both sides.
Making use of the transforms similar to Equation (10) and (11) and fol-
lowing the procedure of the half-plane problem, the single equation
specifying the transformed normalized displacement VII(g,e) can be

obtained as
2-11,

g_y_;;g,e Bt (g,0) = TiM(e)cos(0/2) + [g(s) - TLNR)IFE , (A1)

where,
g(g) = V§£+1 Vé& s and Fe = cos[(Nw + %Qe] - cos[(Nw + %Qe].

The solution to Equation (A1) satisfying vanishing stresses and dis-
placements at infinity and unit compression on the crack surface is then

given by:
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My

T B
m=1

I 2 f cos[(n*+m+-)e]cos[(n+-2-)6]d9

-8t .
f cos(e/2)cos[(n-+§oe] f e ?gl(t)dt de
0 0

dino

m 2 "65 "II
; F cos[(n-fﬁoe] f e {?(s) T (s)} ds do = 1, (42)
0

=i|t\>

for all broken fibers.

~11

If T, (s), g(t) and rbI(s) are known, Equation (42) reduces to a set of

linear algebraic equations in Bél and can be solved directly.

When the above finite strip, region II, is introduced between the
two half-planes, planes I and III, as shown in Figure 5, it results in

two interfaces each similar to the one discussed in the problem of adjoined

half-planes. The interfacial shear stresses T (n), rII(

;III
b
that is, using the following relations:

() = - 1, }(y), and

£)s ?gl(z) and

(z) can be obtained in the same mapaer as in the previous solution,

Tg(Y) = (GM/h)il [vg(y) - vgl(y)], between planes I and II, (43)
and

11, ., _ III
Ty (y) = Ly (y), and

Tél(y) =-(GM/h)i2 [V;I(y) - véll(y)] between planes II and III,(44)
W

where (GM/h)i] and (GM/h)iz are the shear stiffnesses of the respective

interfaces. By definition g{£) is given by
9(8) = Vierr ~ Vi - (45)
Equations (43) - (45) along with the two equations for the Fourier con-

stants from the stress boundary conditions on the broken fibers in region

I and II, Equations (34) and (42), represent the complete solution for the
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finite width buffer strip problem. In Equation (45) it must be noted
that VNw is the normalized displacement of fiber Nw of the finite strip,
whereas VNw+1 is the normalized displacement of the first fiber of a new
half-plane having applied shear stresses Eél(g) along the free edge and
fiber/matrix properties of the finite strip.

As in the previous problem, first the actual displacements are sub-
stituted in terms of their corresponding normalized displacements, then
the normalized displacements are substituted in terms of the normalized
shear stresses and the Fourier constants. Further, %;I(g) and %éll(c)
can be eliminated knowing the relationship between the actual shear
stresses, Equations (43) and (44). Then the final set of governing equa-

tions for the finite width buffer strip problem can be 1isted as follows:

Mol
» B =7/ cos[(N]-+n1+ )“]cos[(n + —49]6de
m=l 7o
2 T -I [+ -Gt "I
t= cos(e/2)cos[(n-+7)e] [ e ra(t)dt de = 1, (46)
) 0
M
5 pll g-f os[(N +-m+-])e]cos[(z+- ye]sde
Somow 27 M*7 2
G ‘n‘ o0 "6 t
- 322 [Moos(e/2)cos[(242)6] /e | il(t)dt do
R 0 0
1
o =85
+ g-f"cmos[(z+Joe] /e g(s) - TII s)) ds de=1, (47)
o 2777 % b

for n=Nj+71,...,N and 2= NJ+1,..,N, ,

- ] T -6“
Tg(n) = mE] BI Gy %-é cos[(N7+-m4~%)e]cos(e/2)e de
Y2 2 w1 -81n
-z Bm G1] 17 f Coa[(N2+|n+§ﬁe]cos(e/2)e de

m=1
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2 -
;o 02) ro(s,n,t) + 6y, D(8gun,t)Ido T(thdt

os{o(a! F2 D(8,n/Ry»s)do [g(s) --rbl(s)]ds.
(48)
313
IT 2 f COS[(N2+m+-2-)0]cos[(NW+'§)0]e do

" cos(0/2 , 1 -1
E—;-g ;r-g -—-—%/—)— cos[(Nw+-2-)0] D(ﬁ,t/R],g)do Ta(t)dt

T cos[(Nw+ %)0]
Ly 2= F2 0(8,E,5)do g(s)ds
0

2 1
{cos (0/2) , cos[([:w+-2-)a]]0(

5 §,E,5)do ?él(s)ds,

(49)
and
My
b ) m£1 B Gi2 %

1 ~8%
I'g f cos[(N2+m+—-—)0]cos[(Nw+§)0]e do

a!
—
[ 413
~
4]

T
1212 1,7 c0s(0/2). cosf(Mw+5)01D(s,t/R €00 T3(t)dt
0

- f
0 R]

©Bip 7 cos[(Nw +)0]

T 0 0

+ f F2 D(s,£,5)do g(s)ds

G. G 2
© B4 7| ¥23 cos“(6/2)
AR T+ D(85,6,5)

0 o 1
. COS[(N‘;“‘Z)O] an(a,s;,s)] do ?tI,I(S)dS (50)

=
—
i
P
€>{>
-
= m
i
=
~———
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1

= G/R-l »

62 = G/Rz []

f<p]
i

i = eym gt

o
i

2" (GM/h)lz(h/GM)II , and
The solution reduces to two series equations and three linear integral

equations.

Uni-Directional Finite Width Strip with Broken Fibers

In this section a solution is obtained for a uni-diractional finite
width strip containing an arbitrary number of broken fibers as a special
case of the solutions already developed. With reference to Figure 5 it
can be seen that if the interfacial shear stresses rgl(y) and Tgl(y)
acting on the region II are zero then it results in a finite width strip
with broken fibers subjected to a uniform remote axial stress as shown
in Figure 7. Therefore the solution to the finite width strip problem
can be obtained as a special case of the solution developed for region
II of the buffer strip laminate by setting TII(t) and TéI(S) to zero in

Equations (42). With reference to Figure 7 these equations are given as

£ B %—f cos[(N* +m+ )e]cos[(n+2-)e]de
0

%- cos[(n+~—)e] f e g(t)dt de =1 , (51)

S F
0

for all broken fibers, and

M 2 T * 1 ] =8¢
g(g) = - = : B, =/ cos[(N*+m+7)e]cos[(Nw+x)el e  do
m= 0
o cos[(Nw+~—)e] 2
L - 5 D(68,£,t)de g(t)dt (52)
0 0
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where

F2

= cos[(Nw + %00] - cos[(Nw + %)0] , and
9(8) = Vw1 = Vpw

Since by definition VNw+1 is the displacement of the first fiber of
a new half-plane having fiber/matrix properties of the finite width
strip and no applied shear stress along the free edge, it must be equal

to zero, Therefore g(g) is given by

Therefore the solution of the finite width strip reduces to one
series equation coupled with one Tinear integral equation. The location
and the number of broken fibers are arbitrary except that the fiber
breaks must be along the x-axis. The solution obtained holds for a
central notch, an edge notch, an off-center notch, or for multiple

notches along the x-axis.

"\



CHAPTER III
SOLUTION TECHNIQUE

In all the problems dealt with so far, the solution reduces to one
or two series equations coupled with one or more linear Fredholm in-
tegral equations of the second kind. Since there is no exact closed
form solution available to solve such a system of equations, a numerical
procedure is developed and presented in this section., The technique
makes use of a method given by Riez [12], to solve a linear Fredholm
integral equation of the second kind defined within a semi-infinite
interval of intzgration. The solution is based on the fact that a given
integral over a semi-infinite interval may be approximated by the
Gauss~-Laguerre quadrature rule as
k -Xj
o f(x)dx = IowWy e fx;) (54)
where X; is the ith zero of the Laguerre polynomial, Lk(x), and w; is
the correspondingxweight function given by

Wy = ] . (55)
ULk Lgq (x)1

The Laguerre polynomial Lk(x) is given by
X dkkae:il
L (x) = e . (56)
k dxk

Since the form of the equations for each of the solutions is the
same, the development and application of the numerical procedure can be
demonstrated, without loss of generality, by taking the 2quations corre-
sponding to one of the solutions. Consider then the solution corre-

sponding to the problem of adjoined half-planes given by Equations
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Moo v, 1
z:] By = f cos[(N] +m+~2-)e]cos[(n+-2-)e]6de
= 0
+ %-fw cos(O/Z)cos[(n-t%oe] f°° e-st Eg(t)dt d =1, (57)
0 0
My
i BII %(f) cos[(N;+m+%—)6]cos{(z+%-)e]6de
G - » o =81t
- El%.%-é cos(e/2)cos[(24~%)e] é e ] I(t)dt de =1, (58)

1
for n =N +1,...,N; and &= N3+1,...,N, , and
M

f I B
o m=1]

2 I -6n

(n) = Gyp = cos[(N]+m+-—)e]cos 6/2)e ' do

M -
2 T2 g1 Sy
- R6;, ?'é m§1 B cos[(N2+-n1+ 2)6]¢O“(6/2) de

2
- G.l-l f g‘f _____ée_/_Z_)_[D(d’ :t) + D(d] ﬂ'ht)]
o "o 1

X do Ti(t)dt. (59)

Integrals over the spatial variable, t, in the above equations,
defined over the semi-infinite interval, can now be replaced by the above
series representation to yield

M] ' .
z {-12? (f) cos[(N’f+m+%)e]cos[(n+%—)e]6de] B:l

m=1

™=

+

My
¥
m=1

g-f cos(e/Z)cos[(n+ )e]e °4 de w etj %I(t ) =1 (60)
LA J a*’j

=1

g-fw cos[(N} +nr+~4e]cos[(z+ )e]&de} pl1
T 2
)
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k G =8yt t
{-}i—:}% I cos(0/2)cos[(£+%)0]e "™ 4o Wi J} 'Eilx(td) "l
(61)

for n= N +1,...,N;, and 2= Ny + Theenshy,  and
: 5 1
85+ Jﬁ] K(ng » tyhwge ¥} ()
M] 2 T x 1 "6“,!‘ I
- 1 {6, 2 g cos[(Ny +m+x)0]cos(0/2)e do}B,

m=1

M ",
2 2 * ‘sl"‘i
3 : RiGyq 7 f cos[(N ~rlll+-2-)0]COS(0/2> do
m"u:

xsll=0, =1,k  (62)

where, §.. =1 for i =]

1)
=0 for 1#3J,
26 2 G
v RERA
and K(ni’tj) = T g £0s §0/2) [D(ssniatj) + "‘%]'g' D('s'l !ni’tj)]de .

Therefore, the solution of the integral equation coupled with a set of

series equations reduces to solving a system of linear algebraic equations
. nl I1
in By » By

above system of equations is solved by the method of Gauss-elimination

and explicit values of %g(n) at the quadrature points. The

with partial pivoting.

It must be pointed out that the terms in the integral equation of
the form e"6!“"t1 have cusp at n=1t and the quadrature representation in
the standard form, Equation (54), results in large inaccuracies especially
for large values of n. This has been overcome by modifying the above
quadrature rule by deleting selected terms in the series and replacing
them by closed form integration in the neighborhood of the cusp. With
reference to Figure 8, the integral over the semi-infinite interval is

then represented by the modifizd equation
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£ Kineot) TH(t)dt = X Knsot) 25t )etd W
5 Tl.i: a j='l "1’d A J d

-] i 1, G
- [ Koty Taltig)e T w4 K("i’ti) Taltyle "W

-1 ' w]
+ I King,t) Ta(t)de+ 5 King,t) 1,(t)dt (63)
b8 t

i
where,

by = (tyq - typ)/2 »  and

by = (tiyp = tyy)/2

; £} is yet unknown, the two integrals on the right hand side

of Equation (6

Since -

3) can not be evaluated in a closed form. However, if the

function rg(t) is taken to be the average of the terminal values within

each of the intervals, the above two integrals can be expressed as

t, I =1 t.
i - Tt )+ e b
£ Kinpt) Thtdp = 2l S s k(ng,thdt
b1 tih
and
tiaths -1

-1 t. 1+
(t:) + "(ts,q)] "it1 "2
S T K(ngat)dt . (64)
to
i
Substituting Equation (64) into Equation (63) and rewriting
results in

. L
/ Konpt) Th(t)de = —2
i

Z =1 k -1 t5
S K(ni,t) Ta(t)dt A K(nj,t) T (t e Wy
0 j=1
t.
! -1
. {_A]K(“i’t)dt Ta(ti-])
P

+
N
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" 7 King,tddt +  f 0 Kng,t)dt] T.(ty)
7). i | i a‘i
ty 4=b £
i=1"M i
, Binthe 0
+ 5 t;j; K(n.i,t)dt Ta(ti’ ’ (65)

wherg " excludes terms corresponding to j=1-1, 1 and i+1.

The quadrature-rule in the modified form, Equation (65), 1s used to
represent those integrals in which the integrand has terms with cusp.
The two series equaticns remain unaltered and the substitution of Equa-
tion (65) into Equation (59) results in

k ¢ ;
I Klngityuy e T ale) +agy Talbg) + (haT(ey) +agy Tlty)
Ja = » =4

M
! w * =n;
- % {Gﬂ %—g cos[(N]+m+%~)0]cos(0/2)e ‘do}&&l

M
2 " - =8yny
+ N {R1G” %—f cos[(N'2‘+m+-]§)0]cos(0/2)e L do}

m=1 0
X B:II';O, Fa 1,0k, (66)
where, ti
.1 \
a.i_-l -~ ‘2 N f..A K(“-i9t)dt ’
=19
a, = S King,t)dt + I K(ng,t)dt , and
1 ? 1 f i
t "A tu
i-1 "1 i
: tintea
By * 7 tf. K(ni,t)dt‘. ‘

i

This again reduces to solving set of linear algebraic equations as before.

D A



CHAPTER IV
RESULTS AND CONCLUSIONS

First, typical results are given for a Graphite/epoxy laminate con-
taining a buffer strip as shown in Figure 9. The crack growth behavior
of the lamina is studied by varying the buffer strip material, the width
and the thickness of the strip and the initial crack length. The three
materials considered for the buffer strip are Nylon, Kevlar and S-glass,
all in an epoxy matrix. The matrix and fibers are assumed to be linearly
elastic, The failure criterion is that a fiber fails upon reaching its
ultimate failure stress as determined from an unnotched coupon test.

Figure 710 presents results corresponding to initial crack growth in
plane I, crack arrest at the interface, crack growth in the buffer strip
and subsequent lamina failure. In these results all fibers are of the
same cross-sectional area and in all cases the buffer strip is ten
fibers wide. Since all the buffer strip candidate materials are of
Tower modulus than that of the parent laminate, which in this case is
Graphite/epoxy, the stress concentration factor at the near end of the
notch (nearer to the interface) is always higher than that at the far
end of the notch. The solid Tine in Figure 10 represents the remote
stress required to initiate crack extension, (fail the first unbroken
fiber in front of the notch, fiber A in Figure 9). The remote stress
required to fail the lamina catastrophically, (fail the first fiber in
plane III, fiber B in Figure 9) is given by the broken Tine in Figure 10.
Both these stresses are functions of the initial crack length and decrease

with increasing Tength. The crack growth takes place by breaking
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consecutive fibers from the crack tip to the interface. Then, depending on
the stress level required to run the crack to the interface and depending
on the buffer strip material, the crack may arrest. It is very interesting
to note that all three buffer strip materials require an increasing stress
to continue the crack growth in the buffer strip, although Kevlar will
only arrest a crack if it initiates under fairly low load, i.e. initially
close to the interface.

Total lamina failure will occur when either the buffer strip is fully
broken or when the first fiber in plane III, fiber B, fails. In both
cases continued crack growth is unstabie once fiber B fails. For the
particular lamina of Figure 9, all fibers in the Kevlar buffer strip fail
before fiber B attains its failure stress, whereas for S-glass and Nylon,
fiber B fails when there are stili some fibers left unbroken, i.e., the

crack jumps the buffer strip. The ultimate lamina faiiure stresses are

Q
H

0.272 %1t for Keviar
o, = 0.395 ult for S-glass, and

o = 0.444 Sult for Nylon,

where 9,1t is the ultimate fiber stress as determined from an unnotciied
Graphite/epoxy laminate. The material properties used for these results
are given in Table 1. The results of Figure 10 indicate Nylon to be the
best of the three materials but this is only true if the matrix can
support the very large failure strains (about 20%) of Nylon. In a typical
angle-ply laminate with Nylon buffer strips and with continuous +45
graphite plies, high strain levels certainly cannot be reached before
failing the angle-plies and continuing the crack. This behavior was

observed by Verrette and Labor [4]. The extension of this study to

o
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account for angle plies is surely necessary to represent accurately such

low modulus fibers.

TABLE 1. FIBER PROPERTIES

fiber masg dengity modulus ult. stress
ms/m MPa MPa
Nylon 84 2000 233
Kevlar 106 111400 2020
S-glass 199 101000 2800
Graphite 155 300000 2800

In Figures 11-13 the effect of buffer strip width on crack growth
through the strip is indicated. The ultimate failure stress of the
lamina as a function of buffer strip width is plotted in Figure 14.
From Figure 14 it is seen that for Nylon the ultimate failure stress
continues to increase with an increase in width, whereas for S-glass and
Kevlar about ten fiber widths is optimum.
Table 2 g{ves a comparison of the ultimate Tamina failure stress
for a buffer strip of ten fibers, first for equal area and then for
equal weights of the fibers. These results are normalized with respect
to S-glass. A Kevlar region of two plies is approximately equivalent to
one ply of S-glass in weight and it is seen that S-glass is still superior
to Kevlar. This agrees with results obtained by Poe and Kennedy [5].
Next, results are presented for the finite width strip with broken
fibers forming a central notch and subjected to a uniform remote axial
stress as shown in Figure 7. The stress concentration factors for various

notch lengths (number of broken fibers, M) are obtained corresponding to
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TABLE 2. COMPARISON OF LAMINA FAILURE STRESS

fiber om/ou]t dw/oult
equal area equal weight
Nylon 0.444 0.472
Kevlar 0.272 0.318
S-glass 0,395 0.395

two widths, Nw = 24 and 48. Following Hedgepeth [6] the stress concentra-
tion factors for a uni-directional infinite region are obtained using the

relation

o
- _ _Nt1 _ 4-6.
Nt1 T o T T (2M+1) (67)

where
N+1 = index of the first unbroken fiber at the notch tip,

M = total number of broken fibers in the notch,
5N+1 = stress concentration in fiber N+1,
ON+] = axial stress in fiber N+1, and

o = applied remote stress.

(e ]

By comparing the above two stress concentration factors corresponding
to a given notch length the finite width correction factor for a uni-
directional strip is obtained and is given in Table 3. Also given in
Table 3 are the corresponding finite width correction factors for an

isotropic strip obtained from the following relation [13]

Y, = 1.0 + 0.1282 (2a/W) - 0.2881 (2a/W)%+1.5254 (2a/W)3, (68)
where,

Y2 = finite width correction factor,

a = half-crack length, and

W

[}

width of the strip.
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From Table 3 it is seen that the finite width correction factors
for the isotropic strip and the uni-directicnal strip are not signifi-
cantly different for aspect ratios (notch length to strip width ratios)
less than 0.5. For higher values of aspect ratios there is a considerable
difference between the two cases. An aspect ratio of 0.9167 corresponds
to 22 broken fibers in the 24 fiber strip and all the applied load is
carried by the two remaining intact fibers giving a stress concentration
factor of 11.0, (22x1.0/2). Similarly, the other limiting case corre-
sponding to the aspect ratio of 0.9583 in which 46 fibers are broken out
of 48, leaving the two end fibers to carry all the applied load giving a
stress concentration of 23.0 (46/2). These two Timiting cases are pre-

dicted accurately by the above solution indicating the validity of the

model .,
TABLE 3. FIMITE WIDTH CORRECTION FACTORS
| Finite width correction factors
! 2a/W uni-directional strip ‘
Isotropic
I Nw = 24 Nw = 48
22— 0.1667  1.01334 1.01125  1.02042
i 0.25 1.02890 1.02514 1.03788
«—— W ——> 1 ,3333 1.05207 1.04581 1.06722
! 0.5 1.13040 1.11598 1.18275
‘ 0.75 1.44760 1.39280 1.57762
2a = Mxd
. . 3. 2.05049
W= N x d 0.9167 2.57412 7
. . 0.9583 —_ 3.77560 2.20070
d=fiber spacing
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Froim the above results and discugsions the following conclusions
can be made. The method predicts the fracture behavior of a hybrid
Taminate in temms of material properties, geometry and initial crack
length, The results agree well with those obtained experimentally for
buffer strips of high modulus fibers such as S-glass and Kevlar, where
the stiffness of the angle-plies is very small compared to that of zero
degree ply. For low modulus (high failure strain) buffer strip materials
such as Nylon, in which the stiffness of continuous angle-plies is com-
parable to that of the axial buffer strip fibers, the model is inadequate
due to the basic assumption made in idealizing the laminate as a uni-
directional composite, The method predicts the best buffer strip material
to be one with a low modulus and as large an ultimate strength as
possible, e.g., S-glass is superior to Kelvar.

As stated earlier, the main aim of this work was to understand the
basic mechanism of crack growth and arrest in hybrid laminates, keeping
the model as simple as possible. This goal has been achieved. However,
in order to represent an actual buffer strip panel more realistically,
the model certainly needs and has the potential for, further modifications.
An immediate extension is to model the panel as a periodic uni-directional
hybrid laminate simulating the regular placement of the buffer strips.
Next, the role of angle plies must be accounted by either adding a cover
sheet over the uni-directional laminate or by some other means. Finally,
the effect of matrix damage in the form of longitudinal yielding and

splitting at the crack tip and at the interfaces must be incorporated.
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