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Abstract

{

Solar wind research and studies of charged particle propagation often assume

that the interplanetary magnetic field represents a stationary random process.

{
	 In this paper we investigate the ,extent to %bich ensemble averages of the

a

,l "
	 solar wind magnetic fields follow the asymptotic behavior predicted by the

ergodic theorem. several time periods, including a span of nearly two years,

are analyzed. Data intervals which span many solar rotations satisfy the

conditions of "weak" stationarity if the effects of solar rotation are in-

eluded in the asymphotic analysis. Shorter intervals which include a small

integral number of interplanetary sectors also satisfy weak stationarity. The

results are illustrated using magnetometer data from the ISEE-3, Voyager and

IMP spacecraft.
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1. Introduction

in many areas of 5nlar wind research it is common to assume, explicitly or

implicitly, that the medium being studied is either tiny stationary or spatial-

ly homogeneous (or both). For example, the thoories of pitch angle scattering

of charged particles (Jokipii, 19603 ; Ftall anO Sturrock, 1967; Hasselmann and

Wibberenz, 1968; Klimas and Sandri, 1971; ,zones, Kaiser and Birmingham,

1973; Fisk et al., 1974] and field line random walk (dokipii, 1966; J'okipii

and Parker, 1968, 1969; jokipii, 1971) both utilize the concept of an en-

semble average of the interplanetary magnetic fields. Such averages are

meaningful only if a particular realization of the magnetic field time series

does, in fact, represent a realization of a stationar y process. Typically one

constructs the ensemble average either by utilizing a large number of degrees

of freedom in a Blackman-,rukoy procedure [Blackman and `i'ukey, 1958], or by

suitably smoothing the output of a fast Fourier transform calculation.

Essential to this procedure is the assumption that the underlying probability

distribution function which describes the observed magnetic fluctuations is

invariant with respect to shifts in the origin of time and/or space.

The purpose of this paper is to investigate quantitatively whether the oft

assumed time-stationarity of interplanetary magnetic .fluctuations is compati-

ble with the measured properties of the fields. 	 Stationarity of the two-time

correlation function is ensured if the first and second moments of the probabi-

lity distribution are themselves time stationary (i. e. "weak" stationarity),,

The assumption of weak stationarity is the most frequently encountered approxi--

mation in the literature.

The primary emphasis in this paper is to investigate the stationarity of
x,

solar wind fluctuations; the relationship of the analysis to the question of

?^	 a

I	 I
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l

homogeneity is deferred to Section 5. In Section 2 we first refine the

concept of stationarity and develop the analytic tools necessary to investi-

gate the extent to which the solar wind fields are stationary. In Sections 3

and 4 we apply those techniques to several intervals of solar wind magnetic

field data.

z .=fi

M
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2. Stationary Random Processes

Get B(t) be a random variable which depends on time. One can think of it

as a single vector component of the interplanetary magnetic field. Although a

sample of B(t) over a finite time interval is essentially irreproducible, the

set of all possible samples has well defined and physically meaningful average

properties. We will designate this average over the ensemble of samples by

<f(B)>, where f is any function of the random variable B(t).  The ensemble is

completely described in a statistical sense by a heirarchy of N-point proba-

bility distribution functions specifying the likelihood that B(t) lies near

specified values at N specified times. ?L both the probability distributions
4

and the ensemble averaged properties of B(t) do not depend on the origin of

time, the process B(t) is stationary. In that case the mean of B(t) is

a = <B (t)>	 (1)

where a is independent of time. The two point correlation function is defined

by

R(1)	 _- <oB(t l ) "B (t2)>
	

(2)

where T = t2 - t1 and dB B - a.

Stationar:.vy in the strict sense (Cramer, 1940; Pugachiev, 1962; Panchev,

1971; Yaglom, 1962] implies an infinite number of higher order relations, one

for each N-point correlation function. Strict stationarity is not of practi-

cal value because measurement of N-point correlation functions with N > 2 is

usually impossible. Consequently, weak stationarity (N = 2) is the property
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of interest. When (1) and (2) are satisfied, a is finite, and R(c) is both

bounded and vanishes sufficiently rapidly at infinity, it is possible to

define the power :spectrum of B(t) and to give a meaningful, definition to ':the

concept of a correlation time for B(t).

If one examines samples of B(t) over finite time intervals T, some varia-

r tion in the estimated values of the mean a and R(T) will be apparent. How-

ever, fvr sufficiently large intervals T, convergence of the estimated values

of a and R( T ) to the true ensemble average values must occur if the assumption

that B(t) is a stationary random process is justified. This intuitive concept

can be reformulated in a more rigorous way. Under fairly general assumptions,

it is possible to show that the sequence of time averages of a stationary

random variable converges to the ensemble average prediction as the averaging

interval T is increased without bound. This assertion is known as the ergodic

theorem for stationary processes, and has been proven with varying degrees of

generality and mathematical rigor by Slutsky (1938), Kolmogoroff [1938],

Khinchin [1934], Maruyama (1949), Grenander [1950] and others. General

discussions can be found in Panchev [197], Cramer [1940) and Xaglom [1962].

If we define the time average of B(t) over an interval T as

[B]T 	(l/T)otTdt B(t)	 (3)

then, in its simplest version, the ergodic theorem states that [B] T converges

to the ensemble average mean a in the sense that

Y.im <([a] T - a) 2> = 0	 (4)

T-►m



is

provided that the two-point correlation R(T) satisfies

Xim (111r) 0 1TdTR(T)	 0
	

(5)

T-

More general versions of this theorem state that higher order finite time

averages analogous to eq. (3) converge as does [B] T in seq. (4) provided that

certain higher order correlation functions, i. e. "central" moments, satisfy a

property analogous to the limit shown in eq. (5). 	 (Central moments ate

	

moments of ,B rather than B.) For example, if we define the estimate of the	 r

variance of B(t) over the interval T to be

[68 2 } T ?	 olTdt[B(t)	 (B ] T] z
	

1

t

and if the ensemble average variance is defined by u2 = «35, then the

ergodic theorem states that

Rim <([6B 2 ]  T - Q 2) 2>	 0	 (6)

T+oo

provided that, in addition to eq. (5), the following limit is satisfied

Rim (1/'T) o ITdT<{ aB(t) 2• aB(t + T) 2 - o"}> = 0.	 (7)

T+w

The last relation involves a two-point fourth order moment and the assump-

	

tion that it is independent of t goes beyonxi the realm of weak stationarity. 	 i+

In the special case of Gaussian distributions, strict stationarity is implied

by weak stationarity and all higher order generalizations of eq. (4), includ-

ing eq. (6), fc,,llow from (5) for 0,1e two-time correlation function because all 	 F
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it

the required limits (e.g., eq. 7) depend on moments that are determined

completely by R(T) (Panchev, 1971; Cramer, 1940).

If B(t) is a bounded function of time and the conditions leading to eq.

(4) are satisfied, then e 2 [B1 T = <(fs1 T - a) 2> possesses a Taylor series in

powers of 1/T about its limiting value of zero. It is a simple matter to

extract the asymptotic behavior of the series for several cases of interest.

Following Panchev (19711, it follows directly from the definition of (BI T that

A 2 (B) T = (2/T 2 ) o lTdt0
ltdTR(T)	 (8)

If R(T) is a "Lanczos-type" function (Lanczos, 1956; Matthaeus and Goldstein,

19821 so that for some large value of T', R(t > T') = 0, then the ev)luation

of (8) is straightforward. This is considerably more restrictive than is

required for ergodicity (cf. eq. 5), and corresponds to fluctuations which are

completely uncorrelated for t > T'. In this case

Of t R (T) d T = a'Tc
	

(9)

for any t > T', where the correlation time Tc is defined by (Batchelor, 19701

Tc = ol^dTR(-r)/R(0)
	

(1Q)

and R(0) = 02 . For large T > T', eq. (9) for d 2 (B1T can be rewritten as

d 2 [B 1 T 	 2a2TC/T + 0((Tc/T) 2)
	

(11)

f

which is the desired form.
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As we shall see below, the convergence of (BI T to its limiting value can

be slow and not dependent solely on Tc. This situation can sometimes be

treated by adding a coherent oscillating component with amplitude a and period

To = Z7t/wo to a time series whose two-time correlation function is Lanczos

type. For example, define b(t) B(t) + acos(w ot + where is a random

phase which is constant within a given realization. The two-point correlation

function corresponding to b(t) is then R ( T) + KCOS ( O T) where K a 2/2 provid-

ed that a 2/2, the power in the oscillating signal, is much greater at frequen-

cy wo than the power in the original signal B(t). If B(t) is a stationary

process, then so is b(t), and <b(t)! = <B(t)>. Because eq. (5) is satisfied,
i

[b] defined in analogy to (3) will converge to <b(t)> (cf. eq. 4). In placeT

of (11), the asymptotic behavior of e 2 [b) T is now

A 2 [b] T = 2 a 2Tc/I' + 4K [sin 2 (o /2) J / ( 0T) 2 + 0 ( (Tc/T) 2) + 0 (( o/`r) 1) (12)

Unlike (11), which depends on time only through Tc/T as T '* -, eq. (12) for

o 2 [b] T now also depends on To/T. For KTo a n 2 a 2Tc, there is a range of T near

To for which the first two terms in (12) are comparable in magnitude and all

higher order terms are negligible. For T >> Tr, the second term becomes

negligible and the simple dependence of (11) is recovered.

The relationships (11) and (12) describe in an ensemble average sense how

finite time averages of B(t) or b(t) converge to their means. These proper-

ties can be extended to higher order if the higher order correlation .functions

of B(t) are stationary with the appropriate limiting behavior. For example,

u	 the "variance of finite time variances", & 2 (SB 2 )	 <( [ 6B Z ] T - a = ) 2>, con-	 j

verges to zero if the fourth order two-point moment obeys the limit given in

eq. (7). The expression for 4 2 [6B 2 ]
T car. also be expanded about 0 for large T
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in powers of l/T. If the fourth order moment of the integrand of (7) is
i

stationary and obeys the "Lanczos property", it follows directly that the

leading term is proportional to T*/P where T* pis the correlation time for the

fourth-order moment. Adding a coherent oscillation again leads to higher

order corrections, but does not prevent statistical convergence for T > T o >

T*. In the geraral case, the exact form of this expansion is tedious to

evaluate and not of central interest in this paper. However, is the probabili-

ty distribution function of B(t) is st^ltionary and jointly normal, Monin and

Yaglom [1975] have shown for the case without a coherent oscillation that

T* _	 f 00dTR 2 (T)/QN0

and the expansion for A 2 [6B 2 ] T becomes

A 2 [SB 2 ) T = 4cr 4T*/T + 0[(T*/T) 2] 	 (13)

This procedure can be extended to arbitrarily high order. The (ensemble)

convergence of the .finite time estimates of the Nth order moment of B(t) is

guaranteed if all moments up to the 2N th are stationary and the central 2Nth

moment obeys a limit equivalent to eqs. (5) and (7). It is always possible to

	

predict the asymptotic dependence of the variance of the finite time N th order	 h

moments by postulating the Lanczos property for the 2N th central moment.

To examine the stationarity of interplanetary magnetic fluctuations, the

convergence described by eqs. (4), (11) and (12) is of primary importance.

Recall that the assumption that the one-time and two-time correlations were

stationary (eqs. 1 and 2) was used in deriving eqs. (11) and (12) . Thus, if

this asymptotic behavior can be shown, it is reasonable, if not entirely
(i

1f4E([

E	
y

Y
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rigorous, to assert that putt) is weakly stationary (and ergodic). In the next

section these results will be used to test the consistency of the stationarity

hypothesis for solar wind magnetic fluctuations.

a
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3. Application to Magnetic Fluctuations in the Solar Wind:

A Two Year Data Interval

The utility of equations (11) and (12) depends on the ability to estimate

A 2 [B] T for a given T from a finite data interval. To accomplish this, given a

long interval of equally spaced data, we calculate

° 2[B i ] T 	 <([Bi]T-a) 
2'	

M J+1MR 11 [(1/J) +i-1 6B i (n At) 1 2	 (14)

Equation (14) holds for each vector component of B for a range of values of J;

At is the time spacing of the magnetic field measurements B i (n At), and T =

JAt. The total length of the data record, M At, must be greater than the

maximum interval length Tmax _= JmaxAt if the estimates are to have reasonable

statist ;^,.al six ' Zt. Note that if Jmax + N;, then the right hand side of (14)

is forced to converge to 0. This is the reason for requiring Jmax << M. In

practice we have found that Jmax < M/5 is generally adequate. This gives at

least 4M/5 contributions to the averages calculated. In applying this tech-

nique to interplanetary magnetic fluctuations, the solar ecliptic coordinate

system is used and each of the components is tested separately for station-

arity. To avoid confusion, we will use x, y, and z to denote the radial,

tangential and normal (to the ecliptic) coordinates, in place of the tradi-

tional R, T, and N. The asymptotic behaviors described by eqs. (11), (12) and

(14) will be calculated for each vector component separately.	
v

Stationarity of solar wind fluctuations should be an increasingly good

approximation the longer the data interval except for complications arising

from the influence of the solar rotation. Consequently, we have chosen to 	 .

analyze a long data interval which includes many solar rotations. The data

base of IMP interplanetary magnetometer measurements available from the
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National Space Science Data Center contains an interval of 621 days (22 solar

rotations) of nearly continuous coverage (87%) of one hour averaged data

during the years 1967 to 1968. The 14,900 points were digitally filtered and

decimated to yield 4925 three hour averages of each field component. it is

important to i1ote that this data contains all tangential discontinuities,

shocks, rotational discontinutes, stream interaction regions, etc. that were

in the original time series. our approach is to treat all of these as part of

the time series whose stationarity is being investigated. The correlation

matrix

8ij 
(T) = <aai (t) 6Bi (t + T)>

	
(15)

was calculated using the Blackman-Tukey algorithm as implemented by Matthaeus

and Goldstein (1982], however, we did not use the "frozen-in-flow" hypothesis

to relate :frequency and wave number space. The diagonal components of Rij(T),

the x, y, z autocorrelation functions, are shown in Figure 1. The most strik-

ing feature of the x and y autocor relations is that they do not go smoothly to

zero, but show an oscillation with a period of about 28 clays. This, arises

from the stream and sector structures seen in the x and y components of the

field; structures which are absent in the z component.

Power spectra obtained from the Fourier transforms of the diagonal compo-

nents of Rij (T) are plotted in figure 2.	 The oscillations at the solar

rotation .frequency, 
to  

(21r/Po) = 4.3 x 10-7 Hz, are again evident in the x.

and y components. The correlation times of the components, defined for each

by eq. (10), are shown in Table 1 (cf. Matthaeus and Goldstein, 1982]. it is

interesting to note that the correlation times for this 621 day dataset are

approximately the same as Matthaeus and Goldstein (1982] reported for several
r

five day periods of Voyager 1 and 2 data from 1 to 5 AU.
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Because	 of	 the	 absence	 of	 low	 frequency	 oscillations,	 R22 (T)	 is	 well

approximated as a Lanczos-type function.	 Although the coherent power in B u

and By at o does not contribute to the correlation lengths of those compo-

nents,,	 its	 presence means	 that neither Rxx (T)	 nor Ryy (T)	 are	 Lanczos-type

functions.	 Nonetheless, all three autocorrelation functions appear, to satisfy

eq.	 (5), and thus, provided B(t) 	 is a stationary vector function, the ergodic

theorem (4) should be satisfied.

In Figure 3 we have plotted the results of using eq. 	 (14) to calculate the

variance of the means, 	 o 2 [Bi ] T,	 of each of the components of B i (t).	 These

means, calculated over finite times, do converge to their averages, but note

that the z component converges more rapidly than the others.	 Determination of

whether the behavior illustrated in Figure 3 indicates stationarity of B(t)

can best be done by using eq.	 (12) to model o 2 (B i ] T .	 The variances aX 2 , ay Z,

and	 QZ 2 ,	 their respective correlation times, 	 and	 the averages of the	 field

components (in units of Y = 10_
5
 G) over the entire dataset are given in Table

1.	 We further divide the variances of BX and By into a contribution K = a2/2

t
due to power near the spectral enhancements at frequency w0, and the remaind-

er, which presumably has little or no contribution from the solar rotation.

In this way it is possible to compare directly the values of n 2 [Bi ] T caculated

from eq.	 (14) with the stationary random function predictions of eq. 	 (11)	 for

the z component and eq.	 (12) for the x and y components. There are no free para-

meters in this comparison (cf. Figure 4). 	 o 2 [BZ ]T is in close agreement with

the	 theoretical	 behavior	 (eq.	 11)	 for	 T	 >	 Tc (z),	 where Tc (i)	 denotes	 the

correlation	 time of Bi (t).	 Similarly,	 o2 (Bx ] T and	 o2[ByIT'	 the	 components

influenced by solar rotation effects, are well modeled by eq. 	 (12).	 In Figure

5 we combine the three components into a single weighted curve defined by
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A2[B] /0 2	 1A2[Bi]T/fviz

Both the experimental curve and predicted curves are plotted. These results

support strongly the conclusion that this interval is an example of a weakly

stationary random vector process.

While there are no fit parameters in the comparison shown in Figures 4 and

5, the exact form of the theoretical curves derived from eqs. (11) and (12)

depends on the values of <B i (t)>, vi z and Tc (i). These are ensemble averaged

quantities and hence are themselves estimates. Small errors in those para-

meters can only slightly modif^r the predictions based on (11) and (12). By

extrapolating the curves of P(BO T shown in Figures (3) and (4), one can

infer that errors in the estimates; values of <B i (t)> are small.

The ability tro estimate a  s and Tc (i) from finite intervals, depends on

how well the second order moments converge. 	 The . extent to which (6Bi2]T

converges to its ensemble averaged value v i z is measured by eq. (6). To

investigate this behavior, we have evaluated o z [ dBi z] T 
= <([6B i z] T	 vi z) z>

for i = x, y, z, with v i z evaluated from

vi z - (1/hi) 
R31 6B  (A,At) 2
	

(16)

The values of e z [dBi 11  for the three field components are shown in Figure 6.

It is evident that all three components converge, though V(6B y z ] T converges

more slowly than do the x and z components. We have not attemped a detailed

comparison of the data in Figure 6 either with predictions based on eq. (13)

or generalizations which include the influence of coherent power at W0.

A linear least squares fit to the quantity -Zz[6B2]T '= ZZ2(6Bi2]T vs T

gives, over the decade corresponding to the largest T, a dependence of T u
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with u = 0.999 ± 0.005 indicating an overall convergence of second order

(vector) moments in moderately good agreement with the expectations of eq.

(13). Thus the fourth order moments apparently converge sufficiently rapidly

to allow good estimates of second order moments, including correlation unc

tions and power spectra.

The data analyzed in this section contain some 500 correlation times. It

appears clear that this length of data permits good estimates of first and

second order statistical moments to be made. Our results are consistent with

the hypothesis that the magnetic field at 1 AU is a stationary random vector

function. However, in many circumstances such a large dataset is either not

available or is not relevant to the problem being studied. The following

section deals with the issue of stationarity of smaller data intervals.
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4. Shorter Data Intervals

Most usage of power spectral techniques in analyses of solar wind data

start with data intervals considerably shorter than 22 solar rotations. To

the extent that the conclusions of the previous section apply generally in the

solar wind, the question which is relevant to the analysis of shorter inter-

vals is whether accurate statistical estimates may be deduced from them.

Clearly, this will depend upon the nature of the specific dataset. Poor
9

convergence usually indicates that some type of coherent structure is under

sampled in the dataset. The most obvious figure of merit for adequate conver-

gence is the extent to which the scaling of first and second order statistics

resembles the asymptotic predictions of the previous section. 	 Intervals

containing an integral number of sectors might be expected to admit adequately
b

convergent statistics. However, intervals containing n + e sectors with e

1/2 would probably be a poor choice. In this section we illustrate these

intuitive ideas by showing analyses of several smaller data sets. (Variances,

means and correlation times for these datasets are given in Table 1.)

In Figure 7 we have plotted the y component of B measured by the ISEE 3

magnetometer [Frandsen et al., 1978] during days 7 -- 99 of 1979. The interval

spans more than three solar rotations, and a regular sector structure is

present. When the stationarity analysis is done for this complete interval,

as is illustrated in Figure 8, it is clear that the finite time means do not

converge well.

The results of analyzing the single sector between days 57 - 66 is also

shown in Figure 8.	 (Each of the plots in Figure 8 is normalized to the

variance and correlation length of the specific interval being analyzed.) Not
p,

only is the overall convergence better, but nearly all contributions from the
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solar rotation period are absent. A least squares fit; over the last 50 points

gives a dependence of (Tc/T) -u with u = 0.965 ± 0.001, w[jich is very close to

the slope of 1.0 predicted by (11) .

Magnetic field measurements at larger heliocentric distances generally

indicate a less pronounced sector structure [Burlaga, et al., 19821. 'Thus one

might expect that a stationarity analysis of such intervals would show a much

reduced influence of solar rotation effects. To demonstrate this, We have

analyzed two data intervals at 5 and 10 AU taken by Voyager 1 from days 5 to

55, 1979, and days 235 to 295, 1980. One hour averages were used. In both

cases o 2 [B] T vs T (cf. Fig. 8) follows the predictions based on eq. (11) (no

solar rotation effects). Least square fits to the slope of the last 30 points

of the 5 AU analysis gives (Tc/T) -u with u = 0.992 t 0.003.

The last question we address is whether second moments, such as variances,

spectra and correlation functions, are well estimated for these shorter data-

sets. In Figure 9 we plot Z 2 [6B 2 ] T against T for the four datasets discussed

above. The curves are separately normalized by the square of the appropriate

variance and time is normalized to T/T c
(i). in all cases, the estimates begin

to converge rapidly as T begins to exceed 5 to 10 Tc, which suggests that only

small errors are made in estimating spectra and correlation functions from

this much data. As a further check on the internal consistency of this

approach, one should show that Lanczos type correlation functions are associ-

ated with good statistical convergence. This was the assumption made in

deriving the asymptotic forms (eq. 11 and 12). In Matthaeus and Goldstein

(1982] we argued that if the correlation functions were approximately Lanczo-

type, then weak stationarity should be a good approximation. In Figure 10 the

correlation functions of the four datasets discussed in this section are

plotted. The correlation functions of the two Voyager data sets and the
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	single sector of ISEE data are seen to be more nearly Ganczos-type than is the 	 t

fourth correlation function constructed from the 92 day dataset.

3
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5. Summary and Discussion

In the preceeding sections we have attempted to answer several questions

about the time stationarity of interplanetary magnetic fields by examining the

consequences of assuming that the field fluctuations are stationary and

testing the extent to which these consequences are satisfied. From the

discussion in Section 3, it appears clear that the interplanetary magnetic;

field is statistically time stationary (at least in the weak sense) when the

formalism is generalized to include the effects of low frequency coherent

oscillations arising from the sector structure and other phenomena driven near

the solar rotation period. To the extent to which this two year interval is

typical, one can conclude that both the first and second order moments are

stationary. This conclusion is entirely insensitive to the question of

whether the observed variations are due in part to dynamical evolution in the

plasma frame, or are simply a complicated but fixed pattern being convected

past the spacecraft. The more difficult question of the nature of the

Lagrangian statistical properties, i. e., means and covariances calculated in

the frame moving with the mean plasma velocity, remains an important and

unresolved issue.

The ergodic theorem for the first moment guarantees that when the correla-

tion function is stationary, finite; time estimates of the means converge in a

particular way. We have seen &,at these conditions are well fulfilled. The

convergence of the fourth order moment (eq. 7), guarantees in turn, that

variances, correlation functions and power spectra can be meaningfully evaluat-

ed from appropriately selected finite data intervals. In Section 4 we found

that intervals of 5 to 10 correlation times in duration were sufficient so

long as the interplanetary sector structure is treated carefully. Optimally, 	 k
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a dataset should contain either a very large number of sectors or a small

integral number of sectors.

We have also examined a few intervals which contained isolated inter-

planetary shocks. The results are what one might expect and we will only

s,xmu rize the analysis here. Inclusion of a single shock does not greatly

affect the convergence of the means, but the convergence of the variances is

strongly affected. Thus power spectra and correlation functions for such

intervals will not be statistically reliable.

The technique used in Sections 3 and 4 requires evaluation of statistical

quantities such as the correlation matrix (15) at varying times but at a

single point in space, requiring in effect that we must justify the neglect of 	 s

the spacecraft motion during the time of observation. The instantaneous rate

of change of the sig -.al seen by the spacecraft is predominantly due to the

bulk plasma motion and not the speacecraft motion because the solar wind speed

is several orders of magnitude greater than the spacecraft speed. It appears,

then, that the principal issue is whether during the measured interval the

orbital displacement of the speacecraft, AR, is small compared to the lengths

over which the mean properties of the magnetic field undergo significant

variation. We are unaware of any definitive evidence to guide the selection

of the latter quantity. However, the heliocentric distance, R, appears to be 1

a plausible candidate for 'describing the radial variations of the statistics

induced by the heliospheric expansion. The quantity AR/R is no greater than

0.01 for the data taken from the IMP and ISEE spacecrafts whose orbital

positions span less than 200 earth radii ( c 10" cm). For the 50 day 1979

Voyager dataset acquired near 5 AU AR/R 5 0.06, while for, the 60 day 1980

Voyager dataset AR/R a 0.07. If much longer data sets than these were used

from spacecraft with trajectories similar to the Voyagers, it would not be
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possible to examine time stationarity without explicitly taking into amount

spacecraft motion.

Finally, we would like to briefly discuss the relationship of these

results on time stationarity to the question of homogeneity. Because the mean

radial plasma outflow is super-Alfvenic in the solar wind, two-time correla-

tion functions can be interpreted as two-point single time correlation func-

tions, and frequency spectra can be converted into wavenumber spectra. (A

more detailed discussion of the "frozen-in-flow" assumption in the analysis of

solar wind data can be found. in Matthaeus and Goldstein [1382].) Thus,

fluctuations that are time stationary are also spatially homogeneous. There

are several obvious limitations to this conclusion. The concept of homogenei-

ty cannot be applied to length scales which approach the size of the entire

system. As one approaches these scales, the wavenumber-frequency correspon-

dence implied by "frozen-in-flux" breaks down and organized non-statistical

phenomena driven by the solar rotation become prominent. These phenomena are

not controlled by local dynamics, but rather represent magnetic field configu-

rations reflecting such things as the distribution of coronal holes, active

regions, etc. Nonetheless, at higher frequencies, where frozen-in-flow is a

valid approximation, our results suggest that spatial homogeneity is also a

valid approximation. Thus, at scales smaller than, say, the heliocentric

distance of the observer, the interplanetary medium seems well described as

statistically stationary and homogeneous. Over larger scales and longer time

periods, the observed time behavior is consistent with being stationary with

superimposed coherent time variations reflecting the organized macroscopic

structure of the heliosphere.
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Figure Captions

Figure 1. Diagonal components of the magnetic field correlation matrix for

621 days of IMP data obtained during 1967 - 1968. Both the radicA and normal

components (x and y, respectively) show low frequency coherent correlations

with a period near that of the solar rotation, while the normal. component (z)

approaches zero rapidly.	 The x, y, and z components are plotted with

decreasing line thickness.

Figure 2. Power spectra of the). x, y, and z components of the magnetic

field for the same 621 days of IMF data. Spectra were calculated from the

Fourier transform of the correlation functions shown in Fig. 1. Power at the

solar rotation period is a distinctive feature of the x and y spectra. For

clarity, the x and y components have been multiplied by a factor of 16 and 4,

respectively.

Figure 3. The variance of the means (P(B i I T) for the x, y, and z field

components of the 621 day interval are calculated for intervals of duration T

and plotted as functions of T /T, where T c is the the total correlation time.

The variance of the means are normalized by oi l. Convergence of the estimates

is evident.
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Figure 4. Comparison of values of V [Bi ] T (heavy lines) determined from

the 621 days of IMP data with 4'[b i ] T calculated from the analytic predictions

of eqs. 11 and 12. Separate plots for the x, y, and z field components are

shown. Equation 11 is used for the z component and eq. 12 is used for the x

and y components. The ordinate is normalized by a i l. The abcissa is T/Tc(i)

(i	 x, y, z) .

Fi ure 5_	 Z2[B]T/a2 (heavy line) determined from the 621 days of IMP data

and A2[b],,,/a2 (thin line) calculated from eqs. 11 and 12 are plotted against

T/Tc . There are no free parameters in any of the comparisons shown here or in
4

Fig. 4.

Figure 6. The normalized variance of estimates of the variances of the

field components (Z2  (6B i 2 T/ai ") obtained from data intervals of length T and

plotted versus T for i = x, y, z. The data is again from the 621 day interval

discussed in the text. In the figure, V is normalized by the appropriate

ai ", and T is normalized by Tc (i) .

Figure 7. The tangential (y) component of the magnetic field (in gammas)

from the ISEE-3 magnetometer. The interval begins on January 7, 1979 and

spans 92 days. A regular sector structure is evident.
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Figure 8.	 Total variance estimates of the means of the field components

(Z Z [B] T) for four datasets: ISEE-3 (days 7 - 99, 1979), ISEE-3 (days 57 66,

1979--a single magnetic sector), Voyager 1 (days 5 - 55 0 1979) and Voyager 1

(days 235 to 295, 1980). Each is normalized by their respective a' = fai z and

plotted versus T/Pc. The 92 day ISEE interval converges less rapidly than the

single sector subinterval due to influence of structure at the solar rotation

period. Both Voyager intervals converge at a rate very close to that predict-

ed by eq. 11.

Figure 9. n2[6B2]T/a" for the two ISEE and two Voyager 1 intervals des-

cribed in Fig. 8. The rapid decrease for large T/`Pc indicates that estimates

of variances and spectra are convergent.

Figure 10. The correlation functions (trace of the correlation matrix) for

the four intervals described in the text and Fig. 8. As expected, the correla-

tion function of the 92 day ISEE interval is the least Lanczos-type.
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Table 1

Variances and Correlation Times for the Data Intervals Analyzed

IMP (621 days)
1967 - 1968

	

Means	 Variances	 Correlation Times	 1,I

(Y)	 (Y^)	 (104 sec)

1

B 	 By	 B 	 °x2	
ayI	

°z2	
Tc Tc (x) Tc(y ) Tc(z)

.49 -.66 -.046	 11.22 13.07 6.31	 5.6	 7.4	 5.3	 3.2

ISEE-3 . 48 -.72 -.28
1979 days 7 to 99

ISEE-3 3.4	 -4.5 -1.09
1979 days 57 to 66

Voyager-1 -.03	 .03 .09
1979 days 5 to 55

Voyager-1 -.03	 .10 -.17
1980 days 235 to 295

	

22.55 31.4 17.6	 5.48 6.5	 7.3	 0.93

	

7.47	 8,23 12.36	 0.8	 1.2	 1.04 0.53

	

0.08	 0.50 0.175	 5.0 20.0	 2.9	 3.5

	

0.014 0.141 0.063	 11.2 6.9 15.7	 2.9
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