51

NASA Contractor Report 165991

NASA-CR-165991 19830002794

A FULL POTENTIAL INVERSE METHOD FOR WING DESIGN BASED ON A DENSITY LINEARIZATION SCHEME

Vijaya Shankar

ROCKWELL INTERNATIONAL SCIENCE CENTER Thousand Oaks, CA 91360

Contract NAS1-16379 October 1982

Langley Research Center Hampton, Virginia 23665

LIBRARY COPY

MNY 3 1982

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

A FULL POTENTIAL INVERSE METHOD BASED ON A DENSITY LINEARIZATION SCHEME FOR WING DESIGN

Vijaya Shankar

Rockwell International Science Center Thousand Oaks, California 91360

SUMMARY

A mixed analysis-inverse procedure based on the full potential equation in conservation form has been developed to recontour a given base wing to produce a prescribed favorable pressure distribution. The method incorporates a novel density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FLO3O finite volume analysis code has been modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for trailing edge closure model are proposed for further study.

INTRODUCTION

Currently, the aircraft industry is in need of quick turnaround methods to develop energy efficient transonic configurations with optimal aerodynamic characteristics. Development of computational transonic methods over the last decade has significantly contributed towards fulfilling this need by aiding the design of efficient transonic airfoil sections and wing surfaces. Although computational models have been primarily developed to treat the direct problem of determining the load characteristics of a prescribed shape, the inverse problem associated with determining the required recontouring of a given wing to provide a preassigned favorable loading is becoming increasingly important to eliminate much of the cut-and-try approach to geometry definition.

Inverse methods based on the transonic small disturbance theory $^{(1)}$ in two $^{(2)}$ and three $^{(3-4)}$ dimensions and full potential models in two $^{(5-6)}$ and

1/93-11Note

three $^{(7)}$ dimensions have been developed with some restrictions or other. The small disturbance method $^{(4)}$ provides geometric versatility in designing fairly arbitrary geometries. However, the limitation of the method involves the breakdown of the theory for large flow deflections, especially near the leading edge. The existing full potential inverse method $^{(7)}$ that can handle the design of shocked flows is based on the nonconservative form of the full potential equation and uses the FLO22 analysis code $^{(8)}$. It is essential that the finite-difference approximation to the full potential equation be cast in conservation form to satisfy certain jump conditions $^{(9)}$ across the shock system. The nonconservative procedures $^{(7,8)}$ introduce mass sources at shock waves, and the strength of these sources depends on the local grid spacing, a non-physical consideration. Erroneous shock solutions could thus result in improper geometry definition while using inverse methods based on nonconservative formulation.

Other inverse methods such as the ones based on the "fictitious gas" approach $^{(10-12)}$ are oriented toward achieving shockless designs. Such a restriction may be too severe from the standpoint of aerodynamic efficiency, since some wave drag may be necessary for the production of a good lift-to-drag ratio. Of equal significance is the fact that a shockless wing could experience radical trim changes associated with sudden generation of large aerodynamic center shifts produced by shocks at slightly off-design conditions. In general, inverse methods provide a valuable alternative to optimization methods $^{(13)}$ which can provide shapes that optimize certain aerodynamic quantities but require excessive computer time for any realistic wing modification.

The present report deals with the development of an inverse method based on the fully conservative form of the full potential equation to address some of the limitations of the existing methods. The currently available FLO30 finite volume full potential analysis code for wing-body combinations is modified to include the inverse option. The crux of the inverse problem is the incorporation of the prescribed pressure as a boundary condition on a surface yet to be determined as part of the solution procedure. A density linearization scheme is introduced in this report in applying the pressure boundary condition in terms of the velocity potential. Initially, the pressure boundary condition in terms of a Dirichlet problem is applied at the original shape location. After every n iterations (n \sim 5), the new shape information is

obtained at every span station using a mass flux integration procedure. Application of this inverse procedure to weaken the shock system of a typical transonic wing is illustrated. Another example of a wing design for laminar flow control pressure distribution is also demonstrated. The inverse method is reasonably inexpensive (35 to 45 minutes of CDC 7600 time for an analysis-inverse calculation) to use for wing modification requirements. The inverse program is also operational at the NASA-Langley Research Center using the CYBER 203 computing system.

At present, the currently developed inverse code is only a research tool and requires much more work to understand the constraints to be imposed on the specified pressure to achieve physically realistic looking shapes with closed trailing edges and also the relationship between the freestream Mach number and the specified pressure.

FORMULATION

The conservative form of the full potential equation in a general coordinate system ζ,η,ξ can be written as shown in Eq. (1) below. (This report uses $(x,y,z) \rightarrow (\zeta,\eta,\xi)$ as notation for the transformation. The use of $(x,y,z) \rightarrow (\xi,\eta,\zeta)$ is also common in the literature.)

$$\left(\rho \frac{U}{J}\right)_{\zeta} + \left(\rho \frac{V}{J}\right)_{\eta} + \left(\rho \frac{W}{J}\right)_{\xi} = 0 , \qquad (1)$$

where U, V, and W are the contravariant velocity components, ρ is the density, and J is the Jacobian of the transformation that relates the general coordinates ζ,η,ξ to the Cartesian system x,y,z. Introducing the following notation for convenience

$$U_1 = U$$
 , $U_2 = V$, $U_3 = W$
 $x_1 = x$, $x_2 = y$, $x_3 = z$
 $X_1 = \zeta$, $X_2 = \eta$, $X_3 = \xi$

the contravariant velocities are given in terms of the velocity potential ϕ by

$$U_{i} = \sum_{j=1}^{3} a_{ij} \phi_{X_{j}} \qquad i=1,2,3$$

$$a_{ij} = \sum_{k=1}^{3} \frac{\partial X_{i}}{\partial x_{k}} \frac{\partial X_{j}}{\partial x_{k}} \qquad i=1,2,3$$

$$j=1,2,3$$
(2)

The Jacobian of the transformation J is represented by

$$J = \frac{\partial(\zeta, \eta, \xi)}{\partial(x, y, z)} = \begin{bmatrix} \zeta_{x} & \zeta_{y} & \zeta_{z} \\ \eta_{x} & \eta_{y} & \eta_{z} \\ \xi_{x} & \xi_{y} & \xi_{z} \end{bmatrix}.$$
 (3)

The density ρ is computed from the isentropic formula

$$\rho = \left[1 - \frac{\gamma - 1}{2} M_{\infty}^{2}(q^{2} - 1)\right]^{1/(1 - \gamma)} \tag{4}$$

where the total velocity q is obtained from the relation

$$q^2 = \sum_{i=1}^3 U_i \frac{\partial \phi}{\partial X_i} . \qquad (5)$$

An analysis problem is one in which the Eq. (1) is solved to produce the flow field over a given geometry by imposing the usual surface tangency boundary condition ϕ_n = 0 (n is normal to the body surface) on the exact surface location. If η is the coordinate leading out of the surface, then the surface tangency condition reduces to the simple form in terms of the contravariant velocity V

$$V = 0 \tag{6}$$

on the surface. After Eqs. (1) and (6) are solved together, the resulting pressure distribution over the surface is computed from

$$C_{p} = \frac{2}{\gamma M_{m}^{2}} \left(\rho^{\gamma} - 1 \right) . \tag{7}$$

An inverse problem is one in which the Eq. (1) is solved subject to a prescribed pressure distribution (C_p specified) and the resulting body shape that satisfies the surface tangency condition Eq. (6) is sought.

Usually, for easy handling of the boundary condition, a body fitted coordinate system is chosen for ζ,η,ξ . Unlike the analysis boundary condition (V = 0), the incorporation of the inverse boundary condition in terms of a prescribed C_p (Eq. (7)) is considerably more difficult because the velocity potential ϕ appears nonlinearly through the ρ^{γ} term in Eq. (7). In order to aid in the application of the inverse boundary condition, first the density ρ appearing in the C_p relation is linearized as follows.

Density Linearization

From Eqs. (4) and (7), we can write

$$\rho = \left(\frac{C_{p}\gamma M_{\infty}^{2}}{2} + 1\right)^{1/\gamma}$$

$$= \left[1 - \frac{\gamma - 1}{2} M_{\infty}^{2} \left(U_{\varphi_{\zeta}} + V_{\varphi_{\eta}} + W_{\varphi_{\xi}} - 1\right)\right]^{1/(\gamma - 1)}$$
(8)

It can be seen from the above nonlinear relationship that from a given C_p distribution extracting the information in terms of the velocity potential ϕ would involve some type of a linearization. Denoting the current iteration cycle by (n+1) and the previous one by n, the variation in density due to variation in ϕ can be expressed as

$$\rho^{n+1} = \rho^n + \Delta \rho \tag{9}$$

where $\rho^n = \rho(\phi^n)$, $\Delta \rho = \rho(\phi^n + \Delta \phi) - \rho(\phi^n)$ and $\Delta \phi = (\phi^{n+1} - \phi^n)$. Rewriting Eq. (8) fully in terms of ϕ , $\rho(\phi)$ can be expressed as

$$[\rho(\phi)]^{(\gamma-1)} = \left\{1 - \frac{\gamma-1}{2} M_{\infty}^{2} \left(\left[\sum_{i=1}^{3} \left(\sum_{j=1}^{3} a_{i,j} \phi_{X_{j}} \right) \phi_{X_{i}} \right] - 1 \right) \right\} . \tag{10}$$

Substituting $(\phi + \Delta \phi)$ in the place of ϕ in Eq. (10) and using binomial expansion, an expression for $\rho(\phi + \Delta \phi)$ can be written as

$$\rho^{n+1} = \rho(\phi + \Delta\phi) \doteq \rho^{n} - \left(\rho^{n}\right)^{2-\gamma} M_{\infty}^{2} \left\{ U^{n} \frac{\partial}{\partial \zeta} + V^{n} \frac{\partial}{\partial \eta} + W^{n} \frac{\partial}{\partial \xi} \right\} \Delta\phi . \tag{11}$$

The derivation of Eq. (11) is given in Appendix A.

While operating at the $(n+1)^{th}$ iteration cycle, all the quantities appearing at the n^{th} level are known and Eq. (11) can now be used to get an estimate for $\Delta \varphi$ at the body surface for a given pressure distribution. Since we require V=0 at the body, the given C_n can be expressed as

$$\rho^{n} - \left(\rho^{n}\right)^{2-\gamma} M_{\infty}^{2} \underbrace{\left(U^{n} \frac{\partial}{\partial \zeta} + W^{n} \frac{\partial}{\partial \xi}\right)}_{\text{differential operator}} \left(\phi^{n+1} - \phi^{n}\right) = \left\{c_{p} \frac{\gamma M_{\infty}^{2}}{2} + 1\right\}^{1/\gamma} . \tag{12}$$

In the inverse problem Eq. (12) will be discretized to get an estimate for $\Delta \phi = (\phi^{n+1} - \phi^n)$ which in turn will be used as a Dirichlet boundary condition while solving Eq. (1).

Implementation of Boundary Conditions

When Eq. (1) is discretized and written in terms of $\Delta \phi$ using Jameson's (15) pseudo-time concept, at any point (i,j,k) it will appear in tridiagonal form as

$$- TM(\Delta \phi)_{i,j-1,k} + T(\Delta \phi)_{i,j,k} - TP(\Delta \phi)_{i,j+1,k} = R$$
 (13)

where TM, T, and TP are the coefficients of the tridiagonal system with built in artificial viscosity for handling mixed elliptic-hyperbolic flows and R is the finite-difference operator to be satisfied and is evaluated using values of ϕ from the previous iteration and values of ϕ which have already been updated on the current iteration. Referring to Fig. 1, at any boundary point (\bullet symbol) the evaluation of TM, T, TP, and R would require velocity potential information at the dummy points (\square symbol) that are introduced inside the body surface. Boundary conditions on the surface play a role in eliminating this dummy point information.

Analysis Problem

The analysis problem imposes V = 0 at all body points by simply reflecting all the various flux quantities across the surface. Referring to Fig. 1, this is done by setting

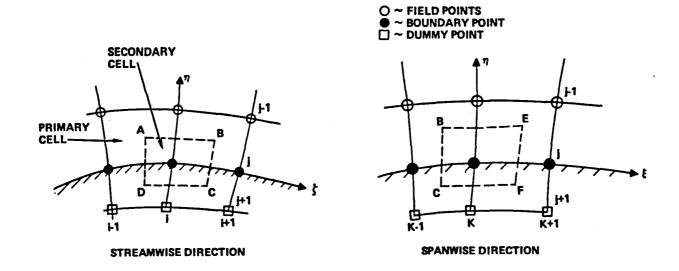
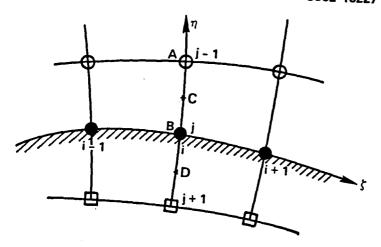


Fig. 1. Boundary cell distribution

$$\left(\rho \frac{V}{J} \right)_{D,C,F} = - \left(\rho \frac{V}{J} \right)_{A,B,E}$$

$$\left(\rho \frac{U}{J} \right)_{D,C,F} = \left(\rho \frac{U}{J} \right)_{A,B,E}$$

$$\left(\rho \frac{W}{J} \right)_{D,C,F} = \left(\rho \frac{W}{J} \right)_{A,B,E}$$


$$(14)$$

Equation (14) would automatically set $V^n = 0$ while forming R^n , TM, T, and TP, but doesn't rigorously satisfy $V^{n+1} = 0$ which is the actual boundary condition to be imposed. This can probably be achieved if $(\Delta \phi)_{i,j+1,k}$ corresponding to the dummy point can be replaced in terms of information on the surface and above the surface appropriately. In the present method $(\Delta \phi)_{i,j+1,k}$ is simply set to zero while solving for the body point.

Inverse Problem

Referring to Fig. 2, when Eq. (13) is written at one point above the body surface (point A at i,j-l,k), it involves $(\Delta\phi)_{i,j,k}$ appearing at the body point. In the inverse problem, the value for $(\Delta\phi)_{i,j,k}$ at the body point is first computed from the prescribed pressure distribution using the density linearization procedure given by Eq. (12), in the following way. Referring to Fig. 3, the pressure coefficient is prescribed at the center (* symbol) of

SC82-18227

rig. 2. Grid point notation for the inverse procedure

each primary cell face coinciding with the body surface. First consider the lower surface where along the direction of sweep the index i increases. The discretized form of Eq. (12) can be written as (at point P in Fig. 3)

$$\rho_{p}^{n} - \left(\rho_{p}^{n}\right)^{2-\gamma} \frac{M_{\infty}^{2}}{2} \left\{ \frac{U_{p}^{n}}{\Delta \xi} \left(\Delta \phi_{S} - \Delta \phi_{R} + \Delta \phi_{T} - \Delta \phi_{Q} \right) + \frac{W_{p}^{n}}{\Delta \xi} \left(\Delta \phi_{S} - \Delta \phi_{T} + \Delta \phi_{R} - \Delta \phi_{Q} \right) \right\}$$

$$= \left\{ \left(C_{p} \right)_{p} \frac{\gamma M_{\infty}^{2}}{2} + 1 \right\}^{1/\gamma} . \tag{15}$$

Since the direction of sweep is along increasing k-index in the span direction and increasing i-index in the streamwise direction at the lower surface, the quantities $(\Delta \phi)_R$, $(\Delta \phi)_Q$, and $(\Delta \phi)_T$ are known and the unknown to be computed from Eq. (15) is $(\Delta \phi)_S = (\Delta \phi)_{i,j,k}$. This is required while solving Eq. (13) at point A in Fig. 2. On the upper surface where the i-index is decreasing along the direction of sweep, C_p prescribed at (i^{+1}_2, k^{-1}_2) is used to compute $(\Delta \phi)_{i,j,k}$. For example (in Fig. 3) the pressure coefficient at point N and $(\Delta \phi)_H$, $(\Delta \phi)_G$, and $(\Delta \phi)_L$ will be used to compute $(\Delta \phi)_M = (\Delta \phi)_{i,j,k}$ in a manner similar to the Eq. (15) for the lower surface. While solving Eq. (13) at point A in Fig. 2, the quantity $TP(\Delta \phi)_{i,j,k}$ is known from the above procedure and is lumped into the right-hand side residual term and Eq. (1) is solved only up to one point above the body surface. Thus, the inverse problem uses a Dirichlet boundary condition.

New Shape Information

Initially, the pressure boundary condition is applied at the original shape location. After every n inverse relaxation cycles (n \sim 5 to 10), the new shape information is obtained by using a mass flux integration procedure as follows.

Referring to Fig. 2, point B is on the old surface where the specified pressure condition, in terms of $(\Delta \phi)_R$, was imposed as a Dirichlet boundary condition. After a vertical line relaxation is completed, the finite differenced form of Eq. (1) given by Eq. (13) is solved at point B, using $(\Delta \phi)_{R}$ and $(\Delta \phi)_{A}$ now available. The dummy point value of $\Delta \phi$ ($\Delta \phi_{j+1}$ in Eq. (13)) is set to zero, just as in the analysis problem. The right hand side R in Eq. (13) at point B can be represented as R = R $\left\{ \left(\rho \frac{V}{J} \right)_{D}, \left(\rho \frac{V}{J} \right)_{D}, \cdots \right\}$. In an analysis calculation $\left(\rho \frac{V}{J}\right)_{D}$ is set equal to $-\left(\rho \frac{V}{J}\right)_{C}$. But, for an inverse problem, where the new shape information is sought, the flux value $\left(\rho \frac{V}{J}\right)_{D}$ will not be equal to $-\left(\rho \frac{V}{J}\right)_{C}$. By accepting the value for $\left(\rho \frac{V}{J}\right)_{C}$ as it exists at point C, solution to Eq. (13) at point B will yield a value for the flux $\left(\rho \frac{V}{J}\right)_{D}$. The modified flux information at the old surface point B is taken to be $\left(\rho \frac{V}{J}\right)_{B} = \frac{1}{2} \left\{ \left(\rho \frac{V}{J}\right)_{C} + \left(\rho \frac{V}{J}\right)_{D} \right\}$. Again, this will not be zero for an inverse calculation. Once the modified flux information is known at the old surface points, the new shape information can be obtained. Let the dashed line in Fig. 4 represent the modified new shape. The surface transpiration at i-1 grid point is denoted by $(d_{\eta})_{i=1}$, and at point B by $(d\eta)_i$. Balancing the mass flux between the old shape (solid line) and the new shape (dashed line), the following relationship is obtained (neglecting the effect of the spanwise variation)

$$\left\{ \left(\rho \frac{U}{J} \right)_{i} (d\eta)_{i} - \left(\rho \frac{U}{J} \right)_{i-1} (d\eta)_{i-1} \right\} - \frac{\left\{ \left(\rho \frac{V}{J} \right)_{i} + \left(\rho \frac{V}{J} \right)_{i-1} \right\}}{2} (\zeta_{i} - \zeta_{i-1}) = 0 . (16)$$

Equation (16) assumes that V is zero along the dashed line (boundary condition for a solid surface). The only unknown in Eq. (16) is $(dn)_i$. Usually, the nose shape is prescribed, and the starting value of $(dn)_{i-1}$ is zero at the point of transition from analysis to inverse. Once $(dn)_i$ is known, the new values of x and y at point \overline{B} are computed as follows:

$$x_{\overline{B}} = x_{B} + \left(x_{\eta}\right)_{B} (d\eta)_{\overline{1}}$$

$$y_{\overline{B}} = y_{B} + \left(y_{\eta}\right)_{B} (d\eta)_{\overline{1}}$$
(17)

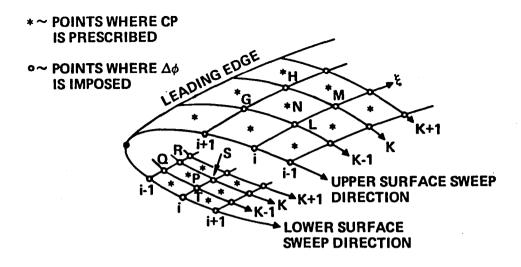


Fig. 3. Prescription of C_p at midpoints on the upper and lower surface $_{\text{SC82-18224}}$

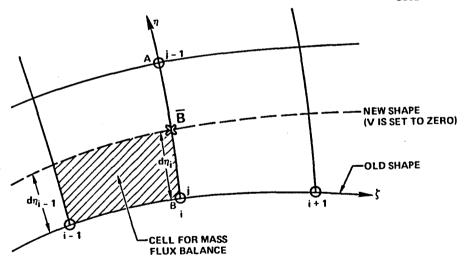


Fig. 4. Construction of new shape

where $(x_{\eta})_B$ and $(y_{\eta})_B$ are obtained by three-point one-sided differentiation.

RESULTS

The finite volume FL030 code (15,16) is an analysis code based on the full potential equation in conservation form and has the capability to handle wing-body combinations. The inverse procedure presented in this paper is also based on the full potential equation in conservation form and the FL030 analysis program is found to be a good choice to incorporate the inverse logic. One advantage of using the FL030 program is that it requires only a local description of the coordinate mapping to a body-fitted system and essentially decouples the solution process from the generation of the grid network. As a result, during the inverse calculation as shape changes take place, this method requires grid adjustments only to local cells adjacent to the wing rather than having to change the entire grid distribution at the end of each relaxation cycle.

To test the inverse concept, first an analysis calculation was performed using a typical transonic wing geometry definition as shown in Fig. 5, at $M_{\infty}=0.86$ and freestream angle of attack of 4.68°. After a sequence of crude-medium-fine grid calculations (approximately 30 minutes of computer time on the CDC 7600 machine using a $161\times27\times35$ fine grid), the analysis calculation was reasonably converged. The resulting pressure distributions on the upper surface at discrete span stations are shown in Fig. 5. The presence of a shock system is evident and the strength of the shock gradually increases from the wing root reaching a peak strength around 85% span. As a verification for the correctness of the inverse procedure, the analysis pressure of Fig. 5 is kept unaltered and specified as input pressure for the inverse calculation. After 20 inverse cycles, the resulting shape information is provided in a tabular form from the computer output in Table 1. It has eight columns. Explanations for Columns 1 to 8 are given below.

Column \bigcirc : Value of x/c at that span station.

Column (2): Value of x of the surface grid point.

Column (3): Value of Y of the grid point on the original shape.

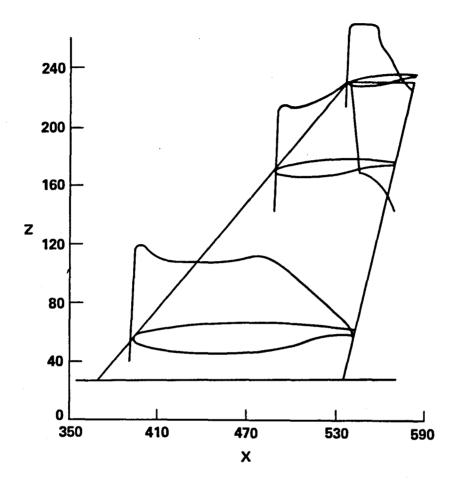


Fig. 5. Typical transonic wing showing presence of a shock system at $M_{\infty} = 0.86$, $\alpha = 4.86^{\circ}$

Column 4: Value of z of the surface grid point.

Column (5): C_p at node point on the surface (i,j,k).

Column 6: C_p at half node point (prescribed).

Column $rac{1}{2}$: Value of Y of the grid point on the new shape.

Column (8): Index i in the ζ direction.

In Table 1, the C_p in column 6 is the same as the analysis calculation of Fig. 5. The resulting shape information in column 7 very closely duplicates the original shape given in column 3.

Table 1. Recovery of original shape for unaltered analysis pressure specification, $M_{\infty}=0.86$, $\alpha=4.86^{\circ}$. (Explanations of columns 1) through 8 are on pages 12 and 13.)

~	~ * *		~~~	T A T T A A	
SECTI	UIV	LHANA		13116	

PCT SEMISPAN CL	CD CH
-56143348	•0636 ~ -•1685 ~
-(1) $-(2)$ $-(3)$ $-(4)$	(5)(6)(7)(8)-
1.000 559.301 118.567 127.7	150 •178 •185 118-620 25
.967 555.793 118.778 127.7	11 •141 •167 118•831 30
934 552.338 119.139 127.6	36 - 146 - 107 115-171 - 31
.902 548.918 119.491 127.6	60073630 119.543 32
·870 545·538 119·736 127·6	
839 542 196 119 917 127 6	
.808 538.894 120.095 127.6	
.777 535.632 120.251 127.6	
.717 529.229 120.553 127.6	
.687 526.094 120.661 127.5	
658 523.084 120.759 127.5	
•630 519•961 120•836 127•5	
.601 516.967 120.881 127.5	
- *574 514 * 024 120 * 696 127 * 5	59 +622 +619 129 +952 43
.546 511.134 120.876 127.5	
.520 508.297 120.835 127.5	70599591 120.888 45
- 493 505 514 120 776 127 5	
.468 502.788 120.687 127.5	90570569 120.739 47
.443 500.119 120.571 127.6	03553549 120.622 48
418 497-509-120-445-127-6	17 \$43 \$539 120 495 49
.394 494.960 120.301 127.6	34536530 120.350 50
.371 492.472 120.146 127.6	52535525 120.194 51
348 490 .049 119 .979 127 .6	71 538 526 120 - 026 52
•326 487•690 119•802 127•6	92543532 119.848 53
.304 485.398 119.612 127.7	14544538 119.656 54
- •283-483•174-119•407-127•7	36 539 535 119 450 55
·263 481 · 020 119 · 186 127 · 7	64537528 119.228 56
.243 478.936 118.965 127.7	89539532 119.005 57
224 476 - 927 - 118 - 723 - 127 - 9	17535534 110.762 50
•206 474•993 118•479 127 • 8	47530525 118.516 59
.189 473.135 118.227 127.8	76525522 118.263 60
172 	07 \$15 \$15 - 117 - 996 61 -
•156 469 •651 117 • 694 127 • 9	
•140 468 • 027 117 • 418 127 • 9	
- •126 466 •483 117•143 127•9	
•112 465•019 116•869 128•0	
•099 463•635 116•595 128•0	
	
.075 461.119 116.044 128.1	
.065 459.985 115.767 128.1	36507504 115.785 69

Table 1 (Continued)

•046	457.972	115.212	128.187	515	510	115.226	71 .
•038	457.093	114.931	128.212	523	514	114.542	72
			128.235			114-667	73
	455.581			533		114.384	74
	454.953			510		114.088	75
, –	-454-399			-•310 •482		113.794	 76
	453.933						
				-• 395 035		113.476	77 76
•	453.548			235	-	113.139	7 8
	453.277			-063		112.761	79
	453.142			• 264		112.352	86
0•		111.944		•457		111.544	81
	453 • 171					111.542	
	453.325			•598		111-148	83
	453.576			•553	•586	119.766	84
-	453.922				- •515-	110.397	85
•012	454.373	110.055	128.544	•340	•401	110.061	86
•017	454.913	109.733	128.559	.23 0	• 292	109.750	87
	455 - 545	105.431	128.573	127	-185	109.456	
•030	456 • 276	109.170	128.585	• 045	•089	109-198	8 9
•038	457 • 095	108.934	128.595	012	.021	108-964	90
-046	-458 • 68 8	108.723	128.694		627	106.756	- 91 -
	458.990			C 7 9	057	108.566	92
	460.062			108		108.387	93
			-128.524			108-228	94
	462.458			144		106.084	95
	463.779			159		107.953	96
	465 • 180			179		107.828	97 -
	466 • 662			197		107.718	56
	468 • 224			210		107.627	99
	-469 •864			223		107.527	100
	471.582			235		107.483	101
	473.376			247		107.432	102
	475 • 245			256		107.396	103
	477 • 188			268		107.379	104
	479.201			289		107.362	105
			128 • 657			107+373 -	
	483.441			317		107.402	107
	485.665			328		107.446	108
	487 • 957			341		107.511	109
	490.314			357		107.594	110
	492.736			 371		107-700	111
	495.221			384		167.831	-112
•421	497.767	107.922	128.649	- ∙394	394	107.988	113
•445	500.373	108.115	128.644	399	403	108.182	114
-478	503-039	108.342	120.637 -	398		108-405-	-115
•496	505.761	108.611	128.627	383		108.679	116
•522	508.540	108.932	128-613	- ⋅350	378	109-002	117
549	511 • 372	109.304	128.596	308		109-374	-118
•576	514.257	109.737	128.576	254	289	109.809	119
•603	517.192	110.238	128.550	185	225	110.312	120
	_						

Table 1 (Concluded)

•660	523-205	111.410	128.484	031	073	111-488	122
•689	526 • 281	112.060	128.442	•045	-006	112-140	123
	-529 · 400	112.721	128.337	113	073	112-803	-124
	532 - 563			•173	.142	113.468	125
•778	535 • 767	114.030	128.289	•227	•193	114-116	126
	539 - 013	-114+650 -	128.221	278	- 252	114-738-	-127
.843	542.298	115.224	128.154	•323	•301	115.314	128
.871	545.624	115.719	128.091	•362	. •343	115.811	129
983	548 - 989	116.130	126+033	391	379	116-223	-130
•935	552 • 393	116.396	127.989	401	•403	116-490	131
•967	555 - 836	116.477	127.963	• 365	-400	116.570	132
	559.381	116.317	127.932		327 -	116-408	-133

Next, the analysis pressure distribution with a strong shock system was modified on the upper surface from 50% to 95% span in such a way that the shock strength is considerably reduced. The modified pressures were then used as an input to the inverse code and the inverse calculations were started from the converged analysis results. After 50 fine grid cycle inverse calculations (15 minutes of CPU time), the residual and the maximum change in the velocity potential were of the same order as the converged analysis calculations. A sample output of this inverse calculation at 70% span station is shown in tabular form in Table 2. The shape differences between the original shape and the modified shape can be seen by comparing column (3) and column (7). Figure 6 shows the same results in graphical form. The openness of the trailing edge for the modified shape is much smaller than the original shape.

One other design problem reported here is a laminar flow control wing design. The objective here is to start with the base wing geometry shown in Figs. 7 and 8, and then modify the airfoil sections in the test strip shown in Fig. 7 to produce a laminar flow control pressure distribution shown in Fig. 9 at the midspan region. This is a very difficult design problem because the prescribed pressure is considerably different from the one produced by the base wing geometry. Like the previous example, the inverse calculation with the specified LFC pressure at 50% span was started from the analysis calculation. After 50 design cycles (the modified shape was computed at the end of every 5 cycles and updated), the resulting modified shapes at two different span stations to provide the LFC pressure of Fig. 9 at midspan, are shown in

Table 2. Computer output at 70% span indicating the old and new shape for an inverse calculation to weaken the shock strength, $\rm M_{\infty}=0.86$, $\alpha=4.86^{\circ}$

SECTION CHARACTER	ISTICS			
PCT SEMISPAN	CL	CO	CM	
6932	.3414	- <u>00034</u>	1724	
(1) (2)	(4)	(5)	(6) (7)	8
1.000 566.782	116.347 157.593	• 190	•200 114·951	25
.967 563·86E	116.449 157.963	•16B	•132 114·985	30
	116.653 157.923	-101	•145 115•169	31
	116.868 157.881	.007	.040 115.327	32
	117.030 157.865	081	054 115.368	33
•839 552·563	117.159 157.865	149	130 115.381	34
	117.292 157.864	203	176 115.465	35
	117.405 157.866	263	230 115.591	36
	117.515 157.867	323	274 115.814	37
	117.620 157.869	390	337 116.139	38
	117.691 157.873	432	424 11E.533	39
	117.752 157.879	444	447 116.996	40
	117.799 157.336	493	464 117.396	41
	117.805 157.886	<u>572</u>	542 117.613	42
	117.790 157.889	-•619	609 117.700	43
	117.742 157.894	626	625 117.704	44
	117.677 157.901	- •627	620 117.664	45
•493 522•115		624	624 117.596	46
	117.483 157.921	609	612 117.466	47
	117.359 157.933	595	593 117.331	48
	117.221 157.746	 587	586 117.180	45
	117.068 157.961	581	577 117.014	50
	116.907 157.976	 578	573 116.840	51
	116.737 157.992	57 9	572 116.657	52
	116.559 158.008	-•584	576 116.464	52 53
	116.372 158.005	-•582	530 116.265	54_
	116.178 158.042	<u>-•582</u> -•572	573 116.065	55
	115.967 158.058	568	564 115.846	56
	115.758 158.074	572	566 115.628	55 57
	115.540 158.090			
	and the second s	-•568 -•558	569 115-404	58 56
	115.312 158.107 115.084_158.124_		556 115.174	59 60
	114.848 158.124	-•551 -•541	551 114.947 544 114.713	60 61
		529	531 114.480	62
	114.610 158.158			
	114.367 158.175	520 - 517	518 114.245 513 114.018	63
	114.127 158.192	-•517 - 520		64 65
	113.889 158.206	520 531	510 113.798 518 113.593	65 66
	113.655 158.223	-•531 - 535		66 67
	113.417 156.239	535 538	532 113.366	
	113.175 158.254	 528	527 113.146	6 8
•U65 484 ± 551.	112.935 158.269	520	523 112.931	65

Table 2 (Continued)

(
•055 483•458 112•651 158•284	513	513 112.710	7 0
•046 482•652 112•452 158•299	507	511 112.489	71
.037 481.918 112.206 15E.313		503 112.254	72
.030 481.250 111.964 158.327	503	505 112.014	73
.023 480.654 111.714 158.341	516		74
	503		75
•012 479 •669 111 •188 158 • 370	442	488 111·192	76
.007 479.282 110.904 158.385	324	413 110.904	77
.004 478.968 110.601 158.400	144	260 110.601	78
•001 478•753 110•266 158•417	•091	053 110.266	70
•000 478•648 109•914 158•434	•324	.204 109.914	R O
	• 324 • 489	-409 105 565	
		•539 109•229	82
•001 478 •681 109 •229 158 •464	•577		
.002 478.814 108.899 158.478	•583	.591 108.899	83
.005 479.030 108.583 158.491	•5 <u>15</u>	•562 108•583	84
.008 479.326 108.284 158.502	• 395	•469 108•284	85
•012 479•712 108•018 158•512	• 266	•342 108 • 019	86
.017 480.165 107.763 158.522	•148	•218 107•774	<u> 67 </u>
.023 480.694 107.529 158.530	• 0 49	•110 107•559	98
.030 481.303 107.329 158.537	023	.022 107.371	89
<u>.038 481.984 107.151 158.543</u>			
•047 482•736 106•992 158•548			91
	131		92
.066 484.446 106.714 158.557	157		93
.077 485.405 106.596 158.561	176	-•161 106•685	54
.089 486.433 106.491 158.565	187		95
•101 487•528 106•396 158•568	 201	184 10E.500	96
.114 488.689 106.308 158.571	220		97
•128 489 • 918 106 • 232 158 • 574	237	224 106.349	98
•143 491 • 214 106 • 172 158 • 576	248	237 106.295	59
•158 492•574 106•122 158•578	259	248 106.251	100
•174 493•999 106•086 158•580	269	257 106.220	101
<u>•191 495 •487 106 • 061 158 • 582</u>	280		
.209 497.037 106.049 158.583	287		103
•227 498 • 649 106 • 055 158 • 584	-•296		104
•246 500•321 106•060 158•585			105
.266 502.052 106.090 158.585			106
•286 503 · 842 106 · 144 158 · 585	326		107
•307 505•685 106•194 158•584	 336	<u>329 106.355</u>	108
•329 507•592 106•271 15e•581	346	342 106-435	109
•351 509·549 106·364 158·578	-• 352	349 106.530	110
<u>.374 511.560 106.476 158.575</u>	360	357 106-645	111
•397 513•623 106•611 158•571	368	365 106.781	112
•421 515•736 106•767 158•566	37 3	374 106-939	113
• 446 517 • 899 106 • 955 158 • 560	-• 373	376 107.129 - 376 107 368	114
•471 520•111 107•168 158•553	372	376 107.342	115
.496 522.369 107.421 158.544 522 524 674 127 721 158 574	-•359	375 107.595	116
•522 524.674 107.721 158.534 •528 527 623 106 263 156 521	329	350 107-894	117
•549 527•023 108•060 158•521	288	314 108-231	118
•576 529·415 108·452 158·506	236	269 108.620	119

Table 2 (Concluded)

				• •	• •		•	
	•632	534.322	109.405	158.465	- •095	135	109.566	121
	•660	536.834	109.941	158.433	029	059	110.098	122
	•689	539 - 384	110.515	158.397	• 053	.016	110-668	123
	•719	541.970	111.099	158.358	•119	-067	111-248	124
	•748	544.591	111.686	158.316	• 178	•149	111-830	125
,	•778	547.248	112.259	158.271	231	•205	112.400	126
	-509	549.939	112.813	158.225	.280	•256	112.951	127
	-840	552 • 663	113.327	158-180	.323	.304	113.464	128
	.871	555 • 421	113.777	158.136	•359	•342	113.914	129
,	•903	558.215	114.162	158-110	• 387	• 376	114.301	130
	•935	561.044	114.433	158.108	.397	•399	114.577	131
	•967	563.906	114.555	158.119	•361	-396	114.704	132
	1.000	566.782	114.481	158.144	•261	•329	114.672	133

Fig. 10. The airfoil sections have considerable openness. One engineering procedure to close the gap is to rotate the lower surface about the leading edge. The inverse procedure in its present form needs a more rigorous trailing edge closure model. Two such candidate procedures are described in the next section as recommendations for further study.

RECOMMENDATIONS FOR FURTHER STUDY

Trailing Edge Closure

When a favorable pressure distribution is prescribed, it doesn's guarantee the resulting trailing edge thickness distribution to come out satisfactorily. To some extent, the trailing edge thickness can be controlled by adjusting the leading edge shape or the velocity potential value at the leading edge. Procedures to implement these ideas are described here.

Leading Edge (Nose) Shape Alteration

In a mixed analysis-inverse problem where the shape near the nose is usually prescribed and the objective is to weaken the shock or move the shock downstream, the shape of the nose can be used to control the trailing edge thickness. First, specify the nose shape given locally by $y = a_0 x^n$, where n and a_0 are two free parameters, and specify the desired C_p on the rest of

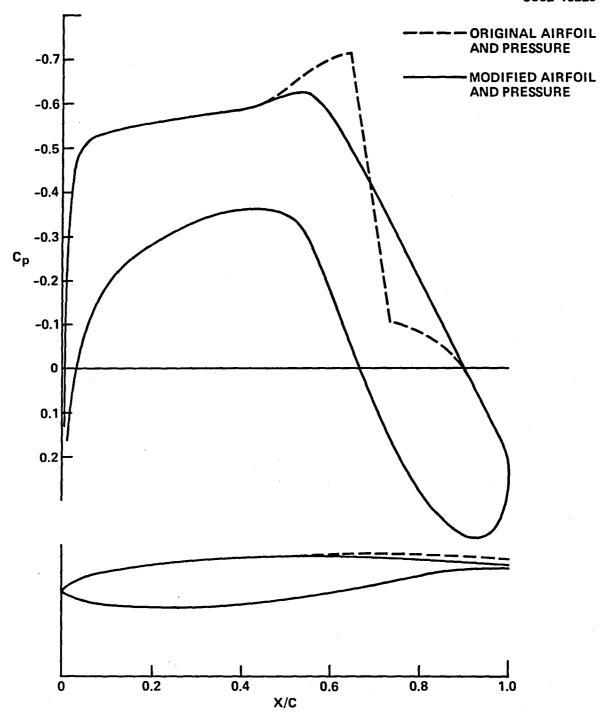


Fig. 6. Modified shape to weaken the shock system, η = 0.6932, M_{∞} = 0.86, α = 4.86°

BASE WING GEOMETRY



Fig. 7. Base wing geometry with a test strip where wing modification is required

BASE WING ROOT AIRFOIL

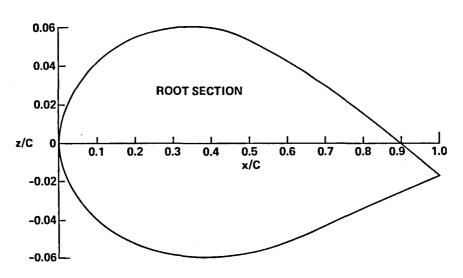


Fig. 8. Base wing airfoil geometry at the root section

DESIRED MIDSPAN PRESSURE DISTRIBUTION

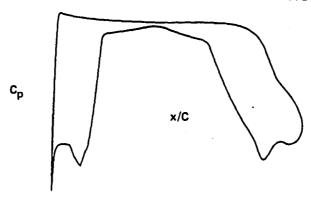


Fig. 9. Desired streamwise pressure distribution

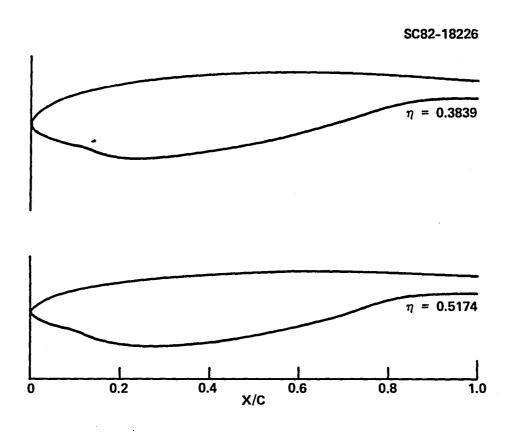


Fig. 10. Modified airfoil shapes at two different span stations to provide laminar flow control pressure distribution at midspan

the surface. The free parameters \mathbf{a}_0 and \mathbf{n} will then have to be adjusted using a gradient approach to satisfy a preset trailing edge thickness constraint. This method could possibly involve a mismatch in pressure at the point of transition from the analysis nose region to the $\mathbf{C}_\mathbf{p}$ prescribed inverse region. If a mismatch in pressure occurs, then the specified pressure in the transition region must be allowed to vary to preserve a smooth pressure distribution.

Leading Edge Velocity Potential Alteration

In the case of a small disturbance methodology (4), the trailing edge closure was obtained by an alteration of the nose velocity potential. Such a procedure can also be tried in this full potential formulation. Let us define t_k to be the trailing edge thickness for the k^{th} span station. The objective then is to drive this t_k to some preset value (will be zero for closed trailing edge airfoil) by perturbing the velocity potential ϕ residing at the leading edge which is denoted by ϕ_{NOSE} . Denoting the functional relationship of t_k as $t_k = t_k \big(\phi_{NOSE} \big)$, then one can write the following expansion

$$t_{k} \left[\left(\phi_{NOSE} + \Delta \phi_{NOSE} \right) \right] = t_{k} \left(\phi_{NOSE} \right) + \left[\frac{\partial t_{k}}{\partial \left(\phi_{NOSE} \right)_{m}} \right] \Delta \left(\phi_{NOSE} \right)_{m} + \cdots$$

$$m = k_{s}, \dots, k-1, k, k+1, \dots, k_{e}$$

$$k = k_{s}, \dots, k-1, k, k+1, \dots, k_{e}$$

$$189$$

where k_s and k_e denote the first inboard and final outboard span stations under design mode, respectively. For trailing edge closure condition, the left hand side of Eq. (18) is set to zero which yields enough equations to uniquely solve for all $\left(\Delta \phi_{NOSE}\right)_m$

$$\left\{ \Delta \phi_{\text{NOSE}} \right\} = -\left[\frac{\partial t_{k}}{\partial \left(\phi_{\text{NOSE}} \right)_{m}} \right]^{-1} \left\{ t_{k} \right\} . \tag{19}$$

The $\left\{\Delta \varphi_{NOSE}\right\}$ solution vector from Eq. (19) gives the amount of alteration to be made on $\left\{\varphi_{NOSE}\right\}$ to drive $\left\{t_k\right\}$ to zero. In Eq. (19), the $\left\{\frac{1}{2}\right\}$ symbol denotes a vector and $\left[\frac{1}{2}\right]^{-1}$ denotes the inverse of a matrix. Each element of this matrix is a partial derivative and a complete evaluation of all the matrix elements and the subsequent matrix inverse can be very costly and time-consuming, especially if several span stations are under design mode. To substantially reduce the computer time in the evaluation of matrix elements in Eq. (19), some tricks are used. First, the span station which has the maximum openness or fishtail is selected. For this span station (call it $\frac{\partial t_k}{\partial \left(\varphi_{NOSE}\right)_{k_+}}$ is generated and that influence

function distribution is kept the same for all other design span stations but the magnitude is scaled by the following

$$\frac{\partial t_{k}}{\partial (\phi_{NOSE})_{m}} = \left(\frac{\partial t_{k}}{\partial (\phi_{NOSE})_{k_{t}}}\right) \frac{\frac{\Delta t_{m}}{\Delta (\phi_{NOSE})_{m}}}{\frac{\Delta t_{k_{t}}}{\Delta (\phi_{NOSE})_{k_{t}}}}$$
(20)

$$m = k_s, \dots, k-1, k, k+1, \dots, k_e$$

It is recommended that both these procedures be tried in the currently developed inverse program. Besides the trailing edge closure model, further work is also recommended to assess the importance of pressure constraints in the inverse setting and the relationship between prescribed pressure and the freestream Mach number.

CONCLUSIONS

An inverse procedure based on the full potential equation in conservation form has been developed for use in recontouring a given wing to produce a prescribed favorable pressure distribution. A density linearization scheme is introduced to aid in the application of the pressure boundary condition. The inverse logic is incorporated into the existing finite volume FL030 analysis computer program. The new shape information is obtained from a mass flux integration procedure. The method is reasonably inexpensive and can be effectively used for shockless or shocked flow wing design. Two procedures to control the trailing edge are proposed for further study.

APPENDIX A

DERIVATION OF EQ. (11) IN THE DENSITY LINEARIZATION SECTION

For simplicity, the derivation shown here is for two dimensions and the extension to three dimensions is straightforward. Considering only the ζ,η directions, the contravariant velocities U and V can be written as

$$U = u\zeta_{x} + v\zeta_{y} = A_{1}\phi_{\zeta} + A_{2}\phi_{\eta}$$

$$V = u\eta_{x} + v\eta_{y} = A_{2}\phi_{\zeta} + A_{3}\phi_{\eta}$$
(A-1)

where

$$A_1 = \zeta_x^2 + \zeta_y^2$$

$$A_2 = \zeta_x \eta_x + \zeta_y \eta_y$$

$$A_3 = \eta_x^2 + \eta_y^2$$

and u and v are the Cartesian velocity components along x and y. Using Eq. (A-1), the expression for density can be written as

$$\rho(\phi) = \left[1 - \frac{\gamma - 1}{2} M_{\infty}^{2} (A_{1} \phi_{\zeta}^{2} + 2A_{2} \phi_{\zeta} \phi_{\eta} + A_{3} \phi_{\eta}^{2} - 1)\right]^{1/(\gamma - 1)}. \tag{A-2}$$

The change in density due to small changes in the velocity potential ϕ can be analyzed by substituting $(\phi + \delta \phi)$ for ϕ in Eq. (A-2).

$$\begin{split} \rho(\phi + \delta \phi) &= \left[1 - \frac{\gamma - 1}{2} \, M_{\infty}^2 \Big\{ A_1 (\phi_{\zeta} + \delta \phi_{\zeta})^2 + 2 A_2 (\phi_{\zeta} + \delta \phi_{\zeta}) (\phi_{\eta} + \delta \phi_{\eta}) + A_3 (\phi_{\eta} + \delta \phi_{\eta})^2 - 1 \Big\} \right]^{1/(\gamma - 1)} \\ &\doteq \left[1 - \frac{\gamma - 1}{2} \, M_{\infty}^2 \Big\{ A_1 \phi_{\zeta}^2 + 2 A_2 \phi_{\zeta} \phi_{\eta} + A_3 \phi_{\eta}^2 + 2 A_1 \phi_{\zeta} \delta \phi_{\zeta} + 2 A_2 (\phi_{\zeta} \delta \phi_{\eta} + \phi_{\eta} \delta \phi_{\zeta}) \right. \\ &\quad + 2 A_3 \phi_{\eta} \delta \phi_{\eta} - 1 \Big\} \right]^{1/(\gamma - 1)} \\ &= \rho(\phi) \Big\{ 1 - \frac{(\gamma - 1) M_{\infty}^2}{\left[\rho(\phi) \right]^{\gamma - 1}} \, \left[A_1 \phi_{\zeta} \delta \phi_{\zeta} + A_2 (\phi_{\zeta} \delta \phi_{\eta} + \phi_{\eta} \delta \phi_{\zeta}) + A_3 \phi_{\eta} \delta \phi_{\eta} \right] \Big\}^{1/(\gamma - 1)} \\ &\rho(\phi + \delta \phi) \doteq \rho(\phi) \Big\{ 1 - \frac{M_{\infty}^2}{\left[\rho(\phi) \right]^{\gamma - 1}} \, \left[U_{\delta} \phi_{\zeta} + V_{\delta} \phi_{\eta} \right] \Big\} \end{split} \tag{A-3}$$

$$\delta \rho = \rho(\phi + \delta \phi) - \rho(\phi) = -\rho^{2-\gamma} M_{\infty}^{2} \left[U \delta \phi_{\zeta} + V \delta \phi_{\eta} \right]$$

$$= -\rho^{2-\gamma} M_{\infty}^{2} \left[U \frac{\partial}{\partial \zeta} + V \frac{\partial}{\partial \eta} \right] \delta \phi$$

$$differential operator $\left(\frac{\partial \rho}{\partial \phi} \right)$

$$(A-4)$$$$

Equation (A-4) is the two dimensional analog of Eq. (11) in the main report.

APPENDIX B

INSTRUCTIONS FOR THE USE OF THE INVERSE CODE IN ITS PRESENT FORM

- 1. In subroutine XSWEEP (after XSWEEP.15), the user specifies the following information.
 - a. IDU \sim I index of the first upper surface point from the leading edge where inverse calculation starts.
 - b. IDL \sim I index of the first lower surface point where inverse calculation starts.
 - c. KNIB \sim First inboard span station index K where inverse calculation starts.
 - d. KOUTB \sim Last outboard span station where inverse calculation ends.
- 2. Specification of modified pressures at half node points under the dimensional array name CPD(I,K), in the main program after MAIN.80.
- 3. The format of the output is shown in Tables 1 and 2 and explanations of columns (1) to (8) are given on pages 12 and 13.

REFERENCES

- 1. Murman, E.M. and Cole, J.D., "Calculation of Plane Steady Transonic Flow," AIAA Journal, Vol. 9, No. 1, January 1971, pp. 114-121.
- Shankar, V., Malmuth, N.D., and Cole, J.D., "Computational Transonic Airfoil Design in Free Air and a Wind Tunnel," AIAA Paper No. 78-103, January 1978.
- 3. Shankar, V., Malmuth, N.D., and Cole, J.D., "Computational Transonic Design Procedure for Three Dimensional Wings and Wing-Body Combinations," AIAA Paper No. 79-0344. 1979.
- 4. Shankar, V., "Computational Transonic Inverse Procedure for Wing Design with Automatic Trailing Edge Closure," AIAA Paper No. 80-1390, July 1980.
- 5. Tranen, T.L., "A Rapid Computer Aided Transonic Airfoil Design Method," AIAA Paper No. 74-501, June 1974.
- 6. Carlson, L.A., "Transonic Airfoil Analysis and Design Using Cartesian Coordinates," Proc. AIAA 2nd Computational Fluid Dynamics Conference, June 19-20, 1975, pp. 175-183.
- 7. Henne, P.A., "Inverse Transonic Wing Design Method," Journal of Aircraft, Vol. 18, No. 2, February 1981.
- 8. Jameson, A., "Iterative Solution of Transonic Flows over Airfoils and Wings Including Flows at Mach 1," Comm. Pure and Appl. Math., Vol. 27, pp. 283-309, 1974.
- 9. Lax, P.D., "Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation," Comm. Pure and Appl. Math., Vol. 7, No. 1, 1954, pp. 159-193.
- Sobieczky, H., Yu, N.J., Fung, K.Y., and Seebass, A.R., "A New Method for Designing Shock-Free Transonic Configurations," AIAA Paper No. 78-1114, 1978.
- 11. Fung, H.Y., Sobieczky, H., and Seebass, R., "Numerical Aspects of the Design of Shock-Free Wings and Wing-Body Combinations," AIAA Paper No. 79-1557, 1979.
- 12. Yu, N.J., "An Efficient Transonic Shock-Free Wing Redesign Procedure Using a Fictitious Gas Method," AIAA Paper No. 79-0075, 1979.
- 13. Hicks, R.M. and Henne, P.A., "Wing Design by Numerical Optimization," AIAA Paper No. 77-1247, 1977.
- 14. Holst, T.L., "A Fast, Conservative Algorithm for Solving the Transonic-Potential Equation," AIAA Paper No. 79-1456, July 1979.
- 15. Jameson, A. and Caughey, D.A., "A Finite Volume Method for Transonic Potential Flow Calculations," AIAA Paper No. 77-635, June 1977.
- Caughey, D.A. and Jameson, A., "Numerical Calculation of Transonic Potential Flow about Wing-Body Combinations," AIAA Journal, Vol. 17, No. 2, February 1979.

1. Report No. NASA CR-165991	2. Government Accession No.		3. Recij	pient's Catalog No.			
4. Title and Subtitle A FULL POTENTIAL INVERSE	A FULL POTENTIAL INVERSE METHOD BASED ON A DENSITY LINEARIZATION SCHEME FOR WING DESIGN						
7. Author(s) Vijaya Shankar	SC!	orming Organization Report No. 5277.21FR					
9. Performing Organization Name and Address Rockwell International Science P.O. Box 1085 Thousand Oaks, California 12. Sponsoring Agency Name and Address National Aeronautics and	11. Cont NA: 13. Type Cot 08	ract or Grant No. S1-16379 To of Report and Period Covered ntractor Report 729/80 thru 08/28/81 Topology Report Of the No.					
Washington, D.C. 20546			14. 3001	Soming Agency Wide			
15. Supplementary Notes Langley Technical Monitor Final Report	: James D. Keller						
A mixed analysis-inverse procedure based on the full potential equation in conservation form has been developed to recontour a given base wing to produce a prescribed favorable pressure distribution. The method incorporates a novel density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FLO30 finite volume analysis code has been modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.							
17. Key Words (Suggested by Author(s)) Full potential formulation Inverse problem Density linearization Wing design Transonic flow			on Statement ssified - unli ct Category O				
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		21. No. of Pages 30	22. Price			

End of Document