A FULL POTENTIAL INVERSE METHOD FOR WING DESIGN BASED ON A DENSITY LINEARIZATION SCHEME

Vijaya Shankar

ROCKWELL INTERNATIONAL SCIENCE CENTER
Thousand Oaks, CA 91360

Contract NAS1-16379
October 1982

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virainia 23665

$$
\begin{array}{ll}
\text { fonv } & 1982
\end{array}
$$

A FULL POTENTIAL INVERSE METHOD BASED ON A DENSITY LINEARIZATION SCHEME FOR WING DESIGN

Vijaya Shankar

Rockwell International Science Center Thousand Oaks, California 91360

SUMMARY

A mixed analysis-inverse procedure based on the full potential equation in conservation form has been developed to recontour a given base wing to produce a prescribed favorable pressure distribution. The method incorporates a novel density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FLO30 finite volume analysis code has been modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for trailing edge closure model are proposed for further study.

INTRODUCTION

Currently, the aircraft industry is in need of quick turnaround methods to develop energy efficient transonic configurations with optimal aerodynamic characteristics. Development of computational transonic methods over the last decade has significantly contributed towards fulfilling this need by aiding the design of efficient transonic airfoil sections and wing surfaces. Although computational models have been primarily developed to treat the direct problem of determining the load characteristics of a prescribed shape, the inverse problem associated with determining the required recontouring of a given wing to provide a preassigned favorable loading is becoming increasingly important to eliminate much of the cut-and-try approach to geometry definition.

Inverse methods based on the transonic small disturbance theory ${ }^{(1)}$ in two ${ }^{(2)}$ and three ${ }^{(3-4)}$ dimensions and full potential models in two ${ }^{(5-6)}$ and
three ${ }^{(7)}$ dimensions have been developed with some restrictions or other. The small disturbance method ${ }^{(4)}$ provides geometric versatility in designing fairly arbitrary geometries. However, the limitation of the method involves the breakdown of the theory for large flow deflections, especially near the leading edge. The existing full potential inverse method ${ }^{(7)}$ that can handle the design of shocked flows is based on the nonconservative form of the full potential equation and uses the FLO22 analysis code ${ }^{(8)}$. It is essential that the finite-difference approximation to the full potential equation be cast in conservation form to satisfy certain jump conditions ${ }^{(9)}$ across the shock system. The nonconservative procedures $(7,8)$ introduce mass sources at shock waves, and the strength of these sources depends on the local grid spacing, a non-physical consideration. Erroneous shock solutions could thus result in improper geometry definition while using inverse methods based on nonconservative formulation.

Other inverse methods such as the ones based on the "fictitious gas" approach ${ }^{(10-12)}$ are oriented toward achieving shockless designs. Such a restriction may be too severe from the standpoint of aerodynamic efficiency, since some wave drag may be necessary for the production of a good lift-todrag ratio. Of equal significance is the fact that a shockless wing could experience radical trim changes associated with sudden generation of large aerodynamic center shifts produced by shocks at slightly off-design conditions. In general, inverse methods provide a valuable alternative to optimization methods ${ }^{(13)}$ which can provide shapes that optimize certain aerodynamic quantities but require excessive computer time for any realistic wing modification.

The present report deals with the development of an inverse method based on the fully conservative form of the full potential equation to address some of the limitations of the existing methods. The currently available FL030 finite volume full potential analysis code for wing-body combinations is modified to include the inverse option. The crux of the inverse problem is the incorporation of the prescribed pressure as a boundary condition on a surface yet to be determined as part of the solution procedure. A density linearization scheme is introduced in this report in applying the pressure boundary condition in terms of the velocity potential. Initially, the pressure boundary condition in terms of a Dirichlet problem is applied at the original shape location. After every n iterations ($n \sim 5$), the new shape information is
obtained at every span station using a mass flux integration procedure. Application of this inverse procedure to weaken the shock system of a typical transonic wing is illustrated. Another example of a wing design for laminar flow control pressure distribution is also demonstrated. The inverse method is reasonably inexpensive (35 to 45 minutes of CDC 7600 time for an analysisinverse calculation) to use for wing modification requirements. The inverse program is also operational at the NASA-Langley Research Center using the CYBER 203 computing system.

At present, the currently developed inverse code is only a research tool and requires much more work to understand the constraints to be imposed on the specified pressure to achieve physically realistic looking shapes with closed trailing edges and also the relationship between the freestream Mach number and the specified pressure.

FORMULATION

The conservative form of the full potential equation in a general coordinate system ζ, n, ξ can be written as shown in Eq. (1) below. (This report uses $(x, y, z) \rightarrow(\zeta, \eta, \xi)$ as notation for the transformation. The use of $(x, y, z) \rightarrow$ (ξ, η, ζ) is also common in the literature.)

$$
\begin{equation*}
\left(\rho \frac{U}{J}\right)_{\zeta}+\left(\rho \frac{v}{J}\right)_{\eta}+\left(\rho \frac{W}{J}\right)_{\xi}=0, \tag{1}
\end{equation*}
$$

where U, V, and W are the contravariant velocity components, ρ is the density, and J is the Jacobian of the transformation that relates the general coordinates ζ, η, ξ to the Cartesian system x, y, z. Introducing the following notation for convenience

$$
\begin{array}{ll}
U_{1}=u, & U_{2}=v, \\
x_{1}=x, & u_{3}=W \\
x_{1}=\zeta, & x_{2}=z
\end{array}
$$

the contravariant velocities are given in terms of the velocity potential ϕ by

$$
\left.\begin{array}{ll}
U_{i}=\sum_{j=1}^{3} a_{i j} \phi_{x_{j}} & i=1,2,3 \tag{2}\\
a_{i j}=\sum_{k=1}^{3} \frac{\partial x_{i}}{\partial x_{k}} \frac{\partial x_{j}}{\partial x_{k}} & \begin{array}{l}
i=1,2,3 \\
j=1,2,3
\end{array}
\end{array}\right\}
$$

The Jacobian of the transformation J is represented by

$$
J=\frac{\partial(\zeta, \eta, \xi)}{\partial(x, y, z)}=\left[\begin{array}{lll}
\zeta_{x} & \zeta_{y} & \zeta_{z} \tag{3}\\
\eta_{x} & \eta_{y} & \eta_{z} \\
\xi_{x} & \xi_{y} & \xi_{z}
\end{array}\right] .
$$

The density ρ is computed from the isentropic formula

$$
\begin{equation*}
\rho=\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(q^{2}-1\right)\right]^{1 /(1-\gamma)} \tag{4}
\end{equation*}
$$

where the total velocity q is obtained from the relation

$$
\begin{equation*}
q^{2}=\sum_{i=1}^{3} U_{i} \frac{\partial \phi}{\partial X_{i}} \tag{5}
\end{equation*}
$$

An analysis problem is one in which the Eq. (1) is solved to produce the flow field over a given geometry by imposing the usual surface tangency boundary condition $\phi_{n}=0$ (n is normal to the body surface) on the exact surface location. If η is the coordinate leading out of the surface, then the surface tangency condition reduces to the simple form in terms of the contravariant velocity V

$$
\begin{equation*}
V=0 \tag{6}
\end{equation*}
$$

on the surface. After Eqs. (1) and (6) are solved together, the resulting pressure distribution over the surface is computed from

$$
\begin{equation*}
C_{p}=\frac{2}{\gamma M_{\infty}^{2}}\left(\rho^{\gamma}-1\right) . \tag{7}
\end{equation*}
$$

An inverse problem is one in which the Eq. (1) is solved subject to a prescribed pressure distribution (C_{p} specified) and the resulting body shape that satisfies the surface tangency condition Eq. (6) is sought.

Usually, for easy handling of the boundary condition, a body fitted coordinate system is chosen for ζ, η, ξ. Unlike the analysis boundary condition ($V=0$), the incorporation of the inverse boundary condition in terms of a prescribed C_{p} (Eq. (7)) is considerably more difficult because the velocity potential ϕ appears nonlinearly through the ρ^{γ} term in Eq. (7). In order to aid in the application of the inverse boundary condition, first the density ρ appearing in the C_{p} relation is linearized as follows.

Density Linearization
From Eqs. (4) and (7), we can write

$$
\left.\begin{array}{rl}
\rho & =\left(\frac{C_{p} \gamma M_{\infty}^{2}}{2} f 1\right)^{1 / \gamma} \tag{8}\\
& =\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(U_{\phi_{\zeta}}+V_{\phi_{\eta}}+W_{\xi}-1\right)\right]^{1 /(\gamma-1)}
\end{array}\right\}
$$

It can be seen from the above nonlinear relationship that from a given C_{p} distribution extracting the information in terms of the velocity potential ϕ would involve some type of a linearization. Denoting the current iteration cycle by $(n+1)$ and the previous one by n, the variation in density due to variation in ϕ can be expressed as

$$
\begin{equation*}
\rho^{n+1}=\rho^{n}+\Delta \rho \tag{9}
\end{equation*}
$$

where $\rho^{n}=\rho\left(\phi^{n}\right), \Delta \rho=\rho\left(\phi^{n}+\Delta \phi\right)-\rho\left(\phi^{n}\right)$ and $\Delta \phi=\left(\phi^{n+1}-\phi^{n}\right)$. Rewriting Eq. (8) fully in terms of $\phi, \rho(\phi)$ can be expressed as

$$
\begin{equation*}
[\rho(\phi)]^{(\gamma-1)}=\left\{1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(\left[\sum_{i=1}^{3}\left(\sum_{j=1}^{3} a_{i j} \phi_{x_{j}}\right) \phi_{x_{i}}\right]-1\right)\right\} \tag{10}
\end{equation*}
$$

Substituting ($\phi+\Delta \phi$) in the place of ϕ in Eq. (10) and using binomial expansion, an expression for $\rho(\phi+\Delta \phi)$ can be written as

$$
\begin{equation*}
\rho^{n+1}=\rho(\phi+\Delta \phi) \doteq \rho^{n}-\left(\rho^{n}\right)^{2-\gamma} M_{\infty}^{2}\left\{U^{n} \frac{\partial}{\partial \zeta}+V^{n} \frac{\partial}{\partial n}+W^{n} \frac{\partial}{\partial \xi}\right\} \Delta \phi . \tag{11}
\end{equation*}
$$

The derivation of Eq. (11) is given in Appendix A.
While operating at the $(n+1)^{\text {th }}$ iteration cycle, all the quantities appearing at the $n^{\text {th }}$ level are known and Eq. (11) can now be used to get an estimate for $\Delta \phi$ at the body surface for a given pressure distribution. Since we require $V=0$ at the body, the given C_{p} can be expressed as

$$
\rho^{n}-\left(\rho^{n}\right)^{2-\gamma} \underbrace{\left(U^{n} \frac{\partial}{\partial \zeta}+W^{n} \frac{\partial}{\partial \xi}\right)}_{\begin{array}{c}
\text { differentiai } \tag{12}\\
\text { operator }
\end{array}}\left(\phi^{n+1}-\phi^{n}\right)=\left\{{\underset{\sim}{\text { specified }}}_{\left.C_{p} \frac{\gamma M_{\infty}^{2}}{2}+1\right\}^{1 / \gamma}}^{\psi^{1 / \gamma}}\right.
$$

In the inverse problem Eq. (12) will be discretized to get an estimate for $\Delta \phi=\left(\phi^{n+1}-\phi^{n}\right)$ which in turn will be used as a Dirichlet boundary condition while solving Eq. (1).

Implementation of Boundary Conditions

When Eq. (1) is discretized and written in terms of $\Delta \phi$ using Jameson's pseudo-time concept, at any point (i,j,k) it will appear in tridiagonal form as

$$
\begin{equation*}
-T M(\Delta \phi)_{i, j-1, k}+T(\Delta \phi)_{i, j, k}-T P(\Delta \phi)_{i, j+1, k}=R \tag{13}
\end{equation*}
$$

where TM, T, and TP are the coefficients of the tridiagonal system with built in artificial viscosity for handling mixed elliptic-hyperbolic flows and R is the finite-difference operator to be satisfied and is evaluated using
values of ϕ from the previous iteration and values of ϕ which have already been updated on the current iteration. Referring to Fig. 1, at any boundary point (e symbol) the evaluation of TM, T, TP, and R would require velocity potential information at the dummy points (\square symbol) that are introduced inside the body surface. Boundary conditions on the surface play a role in eliminating this dummy point information.

Analysis Problem

The analysis problem imposes $\mathrm{V}=0$ at all body points by simply reflecting all the various flux quantities across the surface. Referring to Fig. 1, this is done by setting

Fig. 1. Boundary cell distribution

$$
\left.\begin{array}{l}
\left(\rho \frac{v}{J}\right)_{D, C, F}=-\left(\rho \frac{v}{J}\right)_{A, B, E} \\
\left(\rho \frac{U}{J}\right)_{D, C, F}=\left(\rho \frac{U}{J}\right)_{A, B, E} \tag{14}\\
\left(\rho \frac{W}{J}\right)_{D, C, F}=\left(\rho \frac{W}{J}\right)_{A, B, E}
\end{array}\right\} \text {. }
$$

Equation (14) would automatically set $V^{n}=0$ while forming $R^{n}, T M, T$, and $T P$, but doesn't rigorously satisfy $\mathrm{V}^{\mathrm{n+1}}=0$ which is the actual boundary condition to be imposed. This can probably be achieved if $(\Delta \phi)_{i, j+1, k}$ corresponding to the dummy point can be replaced in terms of information on the surface and above the surface appropriately. In the present method $(\Delta \phi)_{i, j+1, k}$ is simply set to zero while solving for the body point.

Inverse Problem
Referring to Fig. 2, when Eq. (13) is written at one point above the body surface (point A at $\mathbf{i}, \mathbf{j}-1, k$), it involves $(\Delta \phi)_{\mathfrak{j}, \mathbf{j}, k}$ appearing at the body point. In the inverse problem, the value for $(\Delta \phi)_{i, j, k}$ at the body point is first computed from the prescribed pressure distribution using the density linearization procedure given by Eq. (12), in the following way. Referring to Fig. 3, the pressure coefficient is prescribed at the center (* symbol) of

SC82-18227

Fig. 2.
Grid point notation for the inverse procedure
each primary cell face coinciding with the body surface. First consider the lower surface where along the direction of sweep the index \mathbf{i} increases. The discretized form of Eq. (12) can be written as (at point P in Fig. 3)

$$
\begin{align*}
\rho_{P}^{n}- & \left(\rho_{p}^{n}\right)^{2-\gamma} \frac{M_{\infty}^{2}}{2}\left\{\frac{U_{p}^{n}}{\Delta \zeta}\left(\Delta \phi_{S}-\Delta \phi_{R}+\Delta \phi_{T}-\Delta \phi_{Q}\right)+\frac{W_{p}^{n}}{\Delta \xi}\left(\Delta \phi_{S}-\Delta \phi_{T}+\Delta \phi_{R}-\Delta \phi_{Q}\right)\right\} \\
& =\left\{\left(c_{p}\right)_{p} \frac{\gamma M_{\infty}^{2}}{2}+1\right\}^{1 / \gamma} . \tag{15}
\end{align*}
$$

Since the direction of sweep is along increasing k-index in the span direction and increasing i-index in the streamwise direction at the lower surface, the quantities $(\Delta \phi)_{R},(\Delta \phi)_{Q}$, and $(\Delta \phi)_{T}$ are known and the unknown to be computed from Eq. (15) is $(\Delta \phi)_{S}=(\Delta \phi)_{\mathfrak{i}, \mathfrak{j}, \mathfrak{k}}$. This is required while solving Eq. (13) at point A in Fig. 2. On the upper surface where the i-index is decreasing along the direction of sweep, C_{p} prescribed at ($i+\frac{1}{2}, k-\frac{1}{2}$) is used to compute $(\Delta \phi)_{i, j, k}$. For example (in Fig. 3) the pressure coefficient at point N and $(\Delta \phi)_{H},(\Delta \phi)_{G}$, and $(\Delta \phi)_{L}$ will be used to compute $(\Delta \phi)_{M}=(\Delta \phi)_{j, j, K}$ in a manner similar to the Eq. (15) for the lower surface. While solving Eq. (13) at point A in Fig. 2, the quantity $T P(\Delta \phi)_{i, j, k}$ is known from the above procedure and is lumped into the right-hand side residual term and Eq. (1) is solved only up to one point above the body surface. Thus, the inverse problem uses a Dirichlet boundary condition.

New Shape Information

Initially, the pressure boundary condition is applied at the original shape location. After every n inverse relaxation cycles ($n \sim 5$ to 10), the new shape information is obtained by using a mass flux integration procedure as follows.

Referring to Fig. 2, point B is on the old surface where the specified pressure condition, in terms of $(\Delta \phi)_{B}$, was imposed as a Dirichlet boundary condition. After a vertical line relaxation is completed, the finite differenced form of Eq. (1) given by Eq. (13) is solved at point B, using $(\Delta \phi)_{B}$ and $(\Delta \phi)_{A}$ now available. The dummy point value of $\Delta \phi\left(\Delta \phi_{j+1}\right.$ in Eq. (13)) is set to zero, just as in the analysis problem. The right hand side R in Eq. (13) at point B can be represented as $R=R\left\{\left(\rho \frac{V}{J}\right)_{C},\left(\rho \frac{V}{J}\right)_{D}, \cdots\right\}$. In an analysis calculation $\left(\rho \frac{V}{J}\right)_{D}$ is set equal to $-\left(\rho \frac{V}{J}\right)_{C}$. But, for an inverse problem, where the new shape information is sought, the flux value $\left(\rho \frac{V}{J}\right)_{D}$ will not be equal to $-\left(\rho \frac{V}{J}\right)_{C}$. By accepting the value for $\left(\rho \frac{V}{J}\right)_{C}$ as it exists at point C, solution to Eq. (13) at point B will yield a value for the flux $\left(\rho \frac{V}{J}\right)_{D}$. The modified flux information at the old surface point B is taken to be $\left(\rho \frac{V}{J}\right)_{B}=\frac{1}{2}\left\{\left(\rho \frac{V}{J}\right)_{C}+\left(\rho \frac{V}{J}\right)_{D}\right\}$. Again, this will not be zero for an inverse calculation. Once the modified flux information is known at the old surface points, the new shape information can be obtained. Let the dashed line in Fig. 4 represent the modified new shape. The surface transpiration at $\mathbf{i - 1}$ grid point is denoted by $\left(d_{n}\right)_{i-1}$, and at point B by $(\mathrm{dn})_{i}$. Balancing the mass flux between the old shape (solid line) and the new shape (dashed line), the following relationship is obtained (neglecting the effect of the spanwise variation)

$$
\begin{equation*}
\left\{\left(\rho \frac{u}{J}\right)_{i}(d n)_{i}-\left(\rho \frac{v}{J}\right)_{i-1}(d n)_{i-1}\right\}-\frac{\left\{\left(\rho \frac{v}{J}\right)_{i}+\left(\rho \frac{v}{J}\right)_{i-1}\right\}}{2}\left(\zeta_{i}-\zeta_{i-1}\right)=0 . \tag{16}
\end{equation*}
$$

Equation (16) assumes that V is zero along the dashed line (boundary condition for a solid surface). The only unknown in Eq. (16) is (dn) $\mathbf{i}_{\mathbf{j}}$. Usually, the nose shape is prescribed, and the starting value of $(\mathrm{dn})_{i-1}$ is zero at the point of transition from analysis to inverse. Once $(\mathrm{dn})_{\mathbf{i}}$ is known, the new values of x and y at point \bar{B} are computed as follows:

$$
\left.\begin{array}{l}
x_{\bar{B}}=x_{B}+\left(x_{\eta}\right)_{B}(d \eta)_{i} \tag{17}\\
y_{\bar{B}}=y_{B}+\left(y_{\eta}\right)_{B}(d \eta)_{i}
\end{array}\right\}
$$

Fig. 3. Prescription of C_{p} at midpoints on the upper and lower surface

Fig. 4. Construction of new shape
where $\left(x_{n}\right)_{B}$ and $\left(y_{n}\right)_{B}$ are obtained by three-point one-sided differentiation.
RESULTS
The finite volume FLO 0 code $(15,16)$ is an analysis code based on the full potential equation in conservation form and has the capability to handle wingbody combinations. The inverse procedure presented in this paper is also based on the full potential equation in conservation form and the FLO30 analysis program is found to be a good choice to incorporate the inverse logic. One advantage of using the FL030 program is that it requires only a local description of the coordinate mapping to a body-fitted system and essentially decouples the solution process from the generation of the grid network. As a result, during the inverse calculation as shape changes take place, this method requires grid adjustments only to local cells adjacent to the wing rather than having to change the entire grid distribution at the end of each relaxation cycle.

To test the inverse concept, first an analysis calculation was performed using a typical transonic wing geometry definition as shown in Fig. 5, at $M_{\infty}=0.86$ and freestream angle of attack of 4.68°. After a sequence of crude-medium-fine grid calculations (approximately 30 minutes of computer time on the CDC 7600 machine using a $161 \times 27 \times 35$ fine grid), the analysis calculation was reasonably converged. The resulting pressure distributions on the upper surface at discrete span stations are shown in Fig. 5. The presence of a shock system is evident and the strength of the shock gradually increases from the wing root reaching a peak strength around 85% span. As a verification for the correctness of the inverse procedure, the analysis pressure of Fig. 5 is kept unaltered and specified as input pressure for the inverse calculation. After 20 inverse cycles, the resulting shape information is provided in a tabular form from the computer output in Table 1. It has eight columns. Explanations for Columns (1) to (8) are given below.

Column (1): Value of x / c at that span station.
Column (2): Value of x of the surface grid point.
Column (3): Value of Y of the grid point on the original shape.

Fig. 5. Typical transonic wing showing presence of a shock system at $M_{\infty}=0.86, \alpha=4.86^{\circ}$

Column (4): Value of z of the surface grid point.
Column (5): C_{p} at node point on the surface (i, j, k).
Column (6): C_{p} at half node point (prescribed).
Column (7): Value of Y of the grid point on the new shape.
Column (B : Index i in the ζ direction.
In Table 1, the C_{p} in column (6) is the same as the analysis calculation of Fig. 5. The resulting shape information in column (7) very closely duplicates the original shape given in column (3).

Table 1. Recovery of original shape for unaltered analysis pressure specification, $M_{\infty}=0.86, \alpha=4.86^{\circ}$. (Explanations of columns (1) through (B) are on pages 12 and 13.)

SECTION CHARACTERISTICS

Table 1 (Continued)

. 046	457.972	115.212	$12 \varepsilon .187$	-. 515	-. 510	115.226	71
. 038	457.093	114.931	128.212	-. 523	. 514	114.542	72
$\begin{array}{r} 030 \\ .023 \end{array}$	456.295	114.0658 114.377	120.235 128.259	-.539	-. 527	114.667 114.394	73
.017	454.953	114.084	128.283	-. 510	-. 517	114.088	75
$\cdot 012$	454-399	113.793	1280306	- 48	50	113.79	76
. 008	453.933	113.476	128.330	-. 395	-. 459	113.476	77
. 004	453.548	113.135	128.355	-. 2.35	-. 331	113.139	78
.092	453.277	112.761	128.302	083	- 131	112.761	79
. 000	453.142	112.352	128.410	. 264	. 147	112.352	80
0.	453.109	111.944	128.437	. 457	. 378	111.544	81
$0 \cdot 01$	-453.171	111.542	-126.462	. 568	- 52	111.542	\%
-002	453.325	111.148	128.485	-598	. 594	111.149	83
. 004	453.576	110.766	128.507	. 553	. 585	110.766	84
-008	453.922	110.397	128.526	-454	. 515	110.397	As
-012	454.373	110.055	128.544	. 340	. 401	110.061	$\varepsilon \in$
.017	454.913	105.733	128.559	. 230	- 292	10% 750	87
023	$455 \cdot 545$	105.431	128.583	127	. 185	109.456	88
. 030	456.27t	109.170	128.585	. 045	. 089	109.198	89
.038	457.095	$108 \cdot 834$	128.595	-. 012	. 021	108.964	90
- 246	458.000	108.723	128.694	-0	- 627	10.7656	91
. 055	458.990	108.531	128.611	-. 079	-. 057	108.556	52
. 065	460.062	108.349	128.616	-. 108	-.085	108.357	93
-076	$461-215$	106. 187	12.5	. 130	. 115	10.228	
. 088	462.456	108.041	128.630	-. 144	-. 131	106.084	95
. 100	463.779	107.907	128.634	-. 159	-. 143	107.953	96
-114	465.100	107.70	120.t30	.17	-. 161	107.828	
. 128	466.662	107.668	128.642	-. 197	-.182	107.718	98
. 142	468.224	107.574	128.546	-. 210	-. 197	107.627	95
. 15	-469-64	197.492	128.648	-223	-20	107.547	100
. 174	471.582	107.426	128.550	-. 235	-. 222	107.483	101
. 191	473.376	107.373	128.552	-. 247	-. 233	107.432	102
. 208	-475.245	107.336	1280.653	. 256	-.246	107.396	103
. 227	477.188	107.317	128.654	-. 268	-. 252	107.379	104
. 246	479.201	107.299	128.656	-. 289	-. 270	107.362	105
. 265	481.28t	197.319	128.657	- 305	- 29	-107.373	106
. 286	483.441	107.338	128.658	-. 317	-. 305	107.402	107
. 307	485.665	107.381	128.658	-. 328	-. 319	107.446	108
. 32	-487-957	107.446	128.657	-.341	-329	107.511	105
. 350	490.314	107.528	128.657	-. 357	-. 346	107.594	110
. 373	492.736	107.634	128.655	-. 371	-. 364	107.700	111
. 397	-495-22i	107.765	128.552	-.384	-. 375	107.931	112
. 421	497.767	107.922	128.649	-. 394	-. 394	107.988	113
. 445	500.373	108.115	128.644	-. 399	-. 403	108.152	114
. 470	503.039	108.342	120.637	- 390	. 407	$10 ¢ 040$	115
. 496	505.761	1c8.611	128.627	-. 383	-. 407	108.679	116
. 522	508.540	108.932	126.613	-. 350	-. 376	105.002	117
. 549	-511.372	109.304	128.596	-	. 337	109.374	118
- 576	514.257	109.737	128.576	-. 254	-. 293	109.307	119
. 603	517.192	110.838	128.550	-. 185	-. 225	110.312	120

Table 1 (Concluded)

. 660523.205111 .410128 .484	-. 031	-. 073111.488	122
.689 526.281 112.060 128.442	. 045	.006 112.140	123
.710-529.403-112.721-120.377	.113	$073-1120803$	124
. 748532.563113 .384128 .348	. 173	.142 113.468	125
. 778535.767114 .030128 .289	. 227	.197114 .116	126
009-539.013-1140650-1280221	278	252-114.738	127
.843 542.298115 .224128 .154	. 323	. 301115.314	128
.871545.624115.719 128.091	. 362	.343115 .311	129
-903-540.989-116.130-128.033	. 391	-379-126-223	130
.935 552.393 116.396127.989	. 401	.403116 .490	131
.967555.836116.477 127.563	. 365	. 400116.570	132
-559.301-116.3171		.327-1160400	

Next, the analysis pressure distribution with a strong shock system was modified on the upper surface from 50% to 95% span in such a way that the shock strength is considerably reduced. The modified pressures were then used as an input to the inverse code and the inverse calculations were started from the converged analysis results. After 50 fine grid cycle inverse calculations (15 minutes of CPU time), the residual and the maximum change in the velocity potential were of the same order as the converged analysis calculations. A sample output of this inverse calculation at 70% span station is shown in tabular form in Table 2. The shape differences between the original shape and the modified shape can be seen by comparing column (3) and column (7). Figure 6 shows the same results in graphical form. The openness of the trailing edge for the modified shape is much smaller than the original shape.

One other design problem reported here is a laminar flow control wing design. The objective here is to start with the base wing geometry shown in Figs. 7 and 8, and then modify the airfoil sections in the test strip shown in Fig. 7 to produce a laminar flow control pressure distribution shown in Fig. 9 at the midspan region. This is a very difficult design problem because the prescribed pressure is considerably different from the one produced by the base wing geometry. Like the previous example, the inverse calculation with the specified LFC pressure at 50% span was started from the analysis calculation. After 50 design cycles (the modified shape was computed at the end of every 5 cycles and updated), the resulting modified shapes at two different span stations to provide the LFC pressure of Fig. 9 at midspan, are shown in

Table 2. Computer output at 70% span indicating the old and new shape for an inverse calculation to weaken the shock strength, $M_{\infty}=0.86, \alpha=4.86^{\circ}$

SECTION CHARACTERISTICS

PCT SEMISPAN .6932		CL. 3414		CJ					
		$-.1724$							
(1)	(2)			(3)	(4)		(6)	(7)	8
1.000	566.782		157.593	. 190	- 200	114.951	25		
. 967	563.86t	116.449	157.953	. 168	.132	114.995	30		
. 934	560.993	116.653	157.323	. 101	. 145	115.169	31		
-902	558.148	116.868	157.891	.007	. 040	115.327	32		
.870	555.338	117.030	157.865	-. 081	-.054	115.368	33		
-839	552.563	117.159	157.865	-. 145	-. 130	115.381	34		
-808	547.820	117.292	157.364	-. 203	-. 176	115.465	35		
.777	547.111	117.405	157.966	. .263	-. 230	115.591	36		
. 747	344.436	117.515	157.967	-. 323	-. 274	115.814	37		
- 717	541.797	117.620	157.869	-. 390	-. 337	116.139	38		
.687	539.195	117.691	157.873	-. 432	-. 424	116.533	35		
. 658	536.632	117.752	157.579	-. 444	-. 447	116.996	40		
. 629	534.107	117.795	157.336	-. 493	-. 454	117.396	41		
. 501	531.622	117.805	157.836	-. 572	-.542	117.613	42		
- 573	525.175	117.790	157.889	-.619	-.609	117.700	43		
. 546	526.779	117.742	157.874	-. 626	-. 625	117.704	44		
- 520	524.424	117.677	157.901	-. 627	-.620	117.654	45		
. 493	522.115	117.596	157.909	-. 624	-. 624	117.596	46		
-468	519.854	117.483	157.921	-. 609	-.612	117.466	47		
.443	517.640	117.359	157.933	-. 595	-. 593	117.331	48		
-418	515.477	117.221	157.746	-. 587	-. 536	117.180	45		
. 394	513.364	117.068	157.761	-. 581	-. 577	117.014	50		
. 371	511.302	116.507	157.976	-. 578	-. 573	116.840	51		
- 346	505.294	116.737	157.992	-. 579	-. 572	116.657	52		
- 326	507.340	116.559	158.008	-. 584	-. 576	116.464	53		
. 304	505.441	116.372	158.025	-. 582	-.530	116.265	54		
- 283	503.595	116.178	158.042	-. 572	-. 573	116.065	55		
. 263	501.813	115.067	158.058	-. 568	-. 564	115.246	56		
. 243	500.086	115.75 8	158.074	-. 572	-. 566	115.628	57		
- 225	498.415	115.540	158.090	-. 568	-. 569	115.404	58		
. 206	476.814	115.312	158.107	-. 558	-. 556	115.174	55		
. 189	495.270	115.084	158.124	-. 551	-. 551	114.947	60		
-172	493.791	114.848	158.141	-. 541	-. 544	114.713	$E 1$		
. 156	492.376	114.610	158.158	-. 529	-. 531	114.480	62		
.141	491.026	114.367	158.175	-. 520	-.518	114.245	63		
-126	489.742	114.127	158.192	-. 517	-. 513	114.018	64		
-112	488.523	113.885	158.208	-. 520	-. 510	113.738	65		
. 099	487.372	112.655	158.223	-. 531	-. 513	113.533	66		
. 087	486.289	113.417	158.239	-. 535	-. 532	113.356	67		
. 075	485.276	113.175	158.254	.. 528	-. 527	113.146	68		
-065	484.331	.112.935	158.269	-. 520	-. 523	112.931	69		

Table 2 (Continued)

Table 2 (Concluded)

Fig. 10. The airfoil sections have considerable openness. One engineering procedure to close the gap is to rotate the lower surface about the leading edge. The inverse procedure in its present form needs a more rigorous trailing edge closure model. Two such candidate procedures are described in the next section as recommendations for further study.

RECOMMENDATIONS FOR FURTHER STUDY

Trailing Edge Closure

When a favorable pressure distribution is prescribed, it doesn's guarantee the resulting trailing edge thickness distribution to come out satisfactorily. To some extent, the trailing edge thickness can be controlled by adjusting the leading edge shape or the velocity potential value at the leading edge. Procedures to implement these ideas are described here.

Leading Edge (Nose) Shape Alteration

In a mixed analysis-inverse problem where the shape near the nose is usually prescribed and the objective is to weaken the shock or move the shock downstream, the shape of the nose can be used to control the trailing edge thickness. First, specify the nose shape given locally by $y=a_{0} x^{n}$, where n and a_{0} are two free parameters, and specify the desired C_{p} on the rest of

SC82-18225

Fig. 6. Modified shape to weaken the shock system, $\eta=0.6932, M_{\infty}=0.86$, $\alpha=4.86^{\circ}$

Fig. 7. Base wing geometry with a test strip where wing modification is required

BASE WING ROOT AIRFOIL

Fig. 8. Base wing airfoil geometry at the root section

DESIRED MIDSPAN PRESSURE DISTRIBUTION

Fig. 9. Desired streamwise pressure distribution

SC82-18226

Fig. 10. Modified airfoil shapes at two different span stations to provide laminar flow control pressure distribution at midspan
the surface. The free parameters a_{0} and n will then have to be adjusted using a gradient approach to satisfy a preset trailing edge thickness constraint. This method could possibly involve a mismatch in pressure at the point of transition from the analysis nose region to the C_{p} prescribed inverse region. If a mismatch in pressure occurs, then the specified pressure in the transition region must be allowed to vary to preserve a smooth pressure distribution.

Leading Edge Velocity Potential Alteration

In the case of a small disturbance methodology ${ }^{(4)}$, the trailing edge closure was obtained by an alteration of the nose velocity potential. Such a procedure can also be tried in this full potential formulation. Let us define t_{k} to be the trailing edge thickness for the $k^{\text {th }}$ span station. The objective then is to drive this t_{k} to some preset value (will be zero for closed trailing edge airfoil) by perturbing the velocity potential ϕ residing at the leading edge which is denoted by $\phi_{\text {NOSE }}$. Denoting the functional relationship of t_{k} as $t_{k}=t_{k}\left(\phi_{\text {NOSE }}\right)$, then one can write the following expansion

$$
\begin{gather*}
t_{k}\left[\left(\phi_{\text {NOSE }}+\Delta \phi_{\text {NOSE }}\right)\right]=t_{k}\left(\phi_{\text {NOSE }}\right)+\left[\frac{\partial t_{k}}{\partial\left(\phi_{\text {NOSE }}\right)_{m}}\right] \Delta\left(\phi_{\text {NOSE }}\right)_{m}+\cdots \tag{18}\\
m=k_{s}, \cdots, k-1, k, k+1, \cdots, k_{e} \\
k=k_{s}, \cdots, k-1, k, k+1, \cdots, k_{e}
\end{gather*}
$$

where k_{s} and k_{e} denote the first inboard and final outboard span stations under design mode, respectively. For trailing edge closure condition, the left hand side of Eq. (18) is set to zero which yields enough equations to uniquely solve for all $\left(\Delta \phi_{\text {NOSE }}\right)_{m}$

$$
\begin{equation*}
\left\{\Delta \phi_{\text {NOSE }}\right\}=-\left[\frac{\partial t_{k}}{\partial\left(\phi_{\text {NOSE }}\right)_{m}}\right]^{-1}\left\{t_{k}\right\} \tag{19}
\end{equation*}
$$

The $\left\{\Delta \phi_{\text {NOSE }}\right\}$ solution vector from Eq. (19) gives the amount of alteration to be made on $\left\{\phi_{\text {NOSE }}\right\}$ to drive $\left\{t_{k}\right\}$ to zero. In Eq. (19), the $\}$ symbol denotes a vector and []$^{-1}$ denotes the inverse of a matrix. Each element of this matrix is a partial derivative and a complete evaluation of all the matrix elements and the subsequent matrix inverse can be very costly and time-consuming, especially if several span stations are under design mode. To substantially reduce the computer time in the evaluation of matrix elements in Eq. (19), some tricks are used. First, the span station which has the maximum openness or fishtail is selected. For this span station (call it $k=k_{t}$) the influence function $\frac{\partial t_{k}}{\partial\left(\phi_{\text {NOSE }}\right)_{k_{t}}}$ is generated and that influence function distribution is kept the same for all other design span stations but the magnitude is scaled by the following

$$
\begin{gather*}
\frac{\partial t_{k}}{\partial\left(\phi_{N O S E}\right)_{m}}=\left(\frac{\partial t_{k}}{\partial\left(\phi_{N O S E}\right)_{k_{t}}}\right) \frac{\frac{\Delta t_{m}}{\Delta\left(\phi_{N O S E}\right)_{m}}}{\frac{\Delta t_{k_{t}}}{\Delta\left(\phi_{N O S E}\right)_{k_{t}}}} \tag{20}\\
m=k_{s}, \cdots, k-1, k, k+1, \cdots, k_{e}
\end{gather*}
$$

It is recommended that both these procedures be tried in the currently developed inverse program. Besides the trailing edge closure model, further work is also recommended to assess the importance of pressure constraints in the inverse setting and the relationship between prescribed pressure and the freestream Mach number.

CONCLUSIONS

An inverse procedure based on the full potential equation in conservation form has been developed for use in recontouring a given wing to produce a prescribed favorable pressure distribution. A density linearization scheme is introduced to aid in the application of the pressure boundary condition. The inverse logic is incorporated into the existing finite volume FL030 analysis computer program. The new shape information is obtained from a mass flux integration procedure. The method is reasonably inexpensive and can be effectively used for shockless or shocked flow wing design. Two procedures to control the trailing edge are proposed for further study.

APPENDIX A

DERIVATION OF EQ. (11) IN THE DENSITY LINEARIZATION SECTION

For simplicity, the derivation shown here is for two dimensions and the extension to three dimensions is straightforward. Considering only the ζ, Π directions, the contravariant velocities U and V can be written as

$$
\left.\begin{array}{l}
u=u \zeta_{x}+v \zeta_{y}=A_{1} \phi_{\zeta}+A_{2} \phi_{\eta} \tag{A-1}\\
v=u n_{x}+v \eta_{y}=A_{2} \phi_{\zeta}+A_{3} \phi_{n}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& A_{1}=\zeta_{x}^{2}+\zeta_{y}^{2} \\
& A_{2}=\zeta_{x} \eta_{x}+\zeta_{y} \eta_{y} \\
& A_{3}=n_{x}^{2}+\eta_{y}^{2}
\end{aligned}
$$

and u and v are the Cartesian velocity components along x and y. Using Eq. (A-1), the expression for density can be written as

$$
\begin{equation*}
\rho(\phi)=\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left(A_{1} \phi_{\zeta}^{2}+2 A_{2} \phi_{\zeta} \phi_{\eta}+A_{3} \phi_{\eta}^{2}-1\right)\right]^{1 /(\gamma-1)} \tag{A-2}
\end{equation*}
$$

The change in density due to small changes in the velocity potential ϕ can be analyzed by substituting $(\phi+\delta \phi)$ for ϕ in Eq. (A-2).

$$
\begin{align*}
& \rho(\phi+\delta \phi)=\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left\{_{1}\left(\phi_{\zeta}+\delta \phi_{\zeta}\right)^{2}+2 A_{2}\left(\phi_{\zeta}+\delta \phi_{\zeta}\right)\left(\phi_{\eta}+\delta \phi_{\eta}\right)+A_{3}\left(\phi_{\eta}+\delta \phi_{\eta}\right)^{2}-1\right)^{1 /(\gamma-1)}\right. \\
& \doteq\left[1-\frac{\gamma-1}{2} M_{\infty}^{2}\left\{A_{1} \phi_{\zeta}^{2}+2 A_{2} \phi_{\zeta} \phi_{\eta}+A_{3} \phi_{\eta}^{2}+2 A_{1} \phi_{\zeta} \delta \phi_{\zeta}+2 A_{2}\left(\phi_{\zeta} \delta \phi_{\eta}+\phi_{\eta} \delta \phi_{\zeta}\right)\right.\right. \\
& \left.\left.+2 A_{3} \phi_{n} \delta \phi_{\eta}-1\right\}\right]^{1 /(\gamma-1)} \\
& =\rho(\phi)\left\{1-\frac{(\gamma-1) M_{\infty}^{2}}{[\rho(\phi)]^{\gamma-1}}\left[A_{1} \phi_{\zeta} \delta \phi_{\zeta}+A_{2}\left(\phi_{\zeta} \delta \phi_{\eta}+\phi_{\eta} \delta \phi_{\zeta}\right)+A_{3} \phi_{\eta} \delta \phi_{\eta}\right]\right\}^{1 /(\gamma-1)} \\
& \rho(\phi+\delta \phi) \doteq \rho(\phi)\left\{1-\frac{M_{\infty}^{2}}{[\rho(\phi)]^{\gamma-1}}\left[U_{\delta \phi_{\zeta}}+V \delta \phi_{\eta}\right]\right\} \tag{A-3}\\
& \delta \rho=\rho(\phi+\delta \phi)-\rho(\phi)=-\rho^{2-\gamma_{M}}\left[U \delta \phi_{\zeta}+V \delta \phi_{\eta}\right] \\
& =-\rho^{2-\gamma_{M}^{2}}\left[U \frac{\partial}{\partial \zeta}+V \frac{\partial}{\partial \eta}\right] \delta \phi \tag{A-4}\\
& \text { differential operator }\left(\frac{\partial \rho}{\partial \phi}\right)
\end{align*}
$$

Equation (A-4) is the two dimensional analog of Eq. (11) in the main report.

APPENDIX B

INSTRUCTIONS FOR THE USE OF THE INVERSE CODE IN ITS PRESENT FORM

1. In subroutine XSWEEP (after XSWEEP.15), the user specifies the following information.
a. IDU ~ I index of the first upper surface point from the leading edge where inverse calculation starts.
b. IDL ~ I index of the first lower surface point where inverse calculation starts.
c. KNIB ~ First inboard span station index K where inverse calculation starts.
d. KOUTB ~ Last outboard span station where inverse calculation ends.
2. Specification of modified pressures at half node points under the dimensional array name $\operatorname{CPD}(I, K)$, in the main program after MAIN. 80.
3. The format of the output is shown in Tables 1 and 2 and explanations of columns (1) to (8) are given on pages 12 and 13.

REFERENCES

1. Murman, E.M. and Cole, J.D., "Calculation of Plane Steady Transonic Flow," AIAA Journal, Vol. 9, No. 1, January 1971, pp. 114-121.
2. Shankar, V., Malmuth, N.D., and Cole, J.D., "Computational Transonic Airfoil Design in Free Air and a Wind Tunnel," AIAA Paper No. 78-103, January 1978.
3. Shankar, V., Malmuth, N.D., and Cole, J.D., "Computational Transonic Design Procedure for Three Dimensional Wings and Wing-Body Combinations," AIAA Paper No. 79-0344, 1979.
4. Shankar, V., "Computational Transonic Inverse Procedure for Wing Design with Automatic Trailing Edge Closure," AIAA Paper No. 80-1390, July 1980.
5. Tranen, T.L., "A Rapid Computer Aided Transonic Airfoil Design Method," AIAA Paper No. 74-501, June 1974.
6. Carlson, L.A., "Transonic Airfoil Analysis and Design Using Cartesian Coordinates," Proc. AIAA 2nd Computational Fluid Dynamics Conference, June 19-20, 1975, pp. 175-183.
7. Henne, P.A., "Inverse Transonic Wing Design Method," Journal of Aircraft, Vol. 18, No. 2, February 1981.
8. Jameson, A., "Iterative Solution of Transonic Flows over Airfoils and Wings Including Flows at Mach 1," Comm. Pure and Appl. Math., Vol. 27, pp. 283-309, 1974.
9. Lax, P.D., "Weak Solutions of Nonlinear Hyperbolic Equations and Their Numerical Computation," Comm. Pure and App1. Math., Vol. 7, No. 1, 1954, pp. 159-193.
10. Sobieczky, H., Yu, N.J., Fung, K.Y., and Seebass, A.R., "A New Method for Designing Shock-Free Transonic Configurations," AIAA Paper No. 78-1114, 1978.
11. Fung, H.Y., Sobieczky, H., and Seebass, R., "Numerical Aspects of the Design of Shock-Free Wings and Wing-Body Combinations," AIAA Paper No. 79-1557, 1979.
12. Yu, N.J., "An Efficient Transonic Shock-Free Wing Redesign Procedure Using a Fictitious Gas Method," AIAA Paper No. 79-0075, 1979.
13. Hicks, R.M. and Henne, P.A., "Wing Design by Numerical Optimization," AIAA Paper No. 77-1247, 1977.
14. Holst, T.L., "A Fast, Conservative Algorithm for Solving the TransonicPotential Equation," AIAA Paper No. 79-1456, July 1979.
15. Jameson, A. and Caughey, D.A., "A Finite Volume Method for Transonic Potential Flow Calculations," AIAA Paper No. 77-635, June 1977.
16. Caughey, D.A. and Jameson, A., "Numerical Calculation of Transonic Potential Flow about Wing-Body Combinations," AIAA Journal, Vol. 17, No. 2, February 1979.

1. Report No.		
NASA CR-165991	2. Government Accession No.	Recipient's Catalog No.
4. Tite and Subtite		
A FULL POTENTIAL INVERSE METHOD BASED ON A DENSITY	5. Report Date	
LINEARIZATION SCHEME FOR WING DESIGN	October 1982	

End of Document

