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COMPARISON OF EXPERIMENTAL AND THEORETICAL DRAG CHARACTERISTICS
FOR A 10-PERCENT-THICK SUPERCRITICAL AIRFOIL USING A
NEW VERSION OF AN ANALYSIS CODE (U)

Charles D. Harris and Dennis 0. Allison
Langley Research Center

SUMMARY

A new version of an advanced computer code has recently been developed at

the Courant Institute of New York University to analyze two-dimensional transonic
flow over an airfoil at high Reyno]ds numbers. Among the features incorporated
into the new version were the addition of a fast solver iteration between every
few relaxation iterations which dramatically reduces computation time and a
correction to the wave drag formulation which was needed because the computer
code uses a nonconservation form of the flow equation.

Drag results obtained with this code are compared with experimental data
to assess the ability of the code to predict the drag characteristics of a 10~
percent-thick supercritical airfoil at Reynolds numbers from 2 to 11 million.
For this airfoil, there remains a tendency for the code to underpredict drag
rise Mach number although predicted drag levels are significantly improved by
the correction to the wave drag formulation. Also, comments are made corcerning
various input parameters which may be of interest to users of the computer code.

INTRODUCTION

Reference 1 describes computer codes for the design and anaiysis of super-
critical wing sections. Except for a tendency to overpredict trailing-edge
pressure recovery, the analysis code is generally recognized to predict pressure
distributions and shock wave Tocations which agree well with experimental data
and has been widely accepted by users in both government and industry.



Drag calculations, however, have tended to overpredict wave losses and have
indicated drag rise Mach numbers below that which would be expected from
experimental data.

Recent improvements have been made to the anaziysis code (refs. 2 and 3)
which led to a better definition of wave drag and reduced computer time. The
purpose of this report is to present a limited comparison of the experimental
drag characteristics of a 10-percent-thick supercritical airfoil with charac-
teristics predicted by the improved computer code. The intent is to make
available to potential users experimental data suitable for correlation studies
and to share with them calculations already performed.

5YMBOLS

Values are given in both the International System of Units (SI) and U.S.
Customary Units. Measurements were made in U.S. Customary Units.

c chord of airfoil, 63.5 cm (25.0 in.)

Cq section drag coefficient

C section normal-force coefficient

M Mach number

Rn Reyﬁo1ds nunibér based on airfoil chord:

X ordinate along airfoil reference line measured from airfoil leading

edge, cm (in.)

z ordinate normal to airfoil reference line, cm (in.)

t

oot 10
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COMPUTER CODE PARAMETERS

A complete glossary of computer code parameters is presented in reference 1
except for two new input parameters NFAST and NRELAX. Revised definitions of
input parameters which supercede reference 1 will be distributed with the

improved code.

The following are computer code parameters referred to in this

report and are consistent with the revised definitions:

)

MxN

NFAST

NRELAX

NS1

The location of boundary-layer separation computed by

the code. Separation is predicted when SEP > SEPM.

The number -of mesh intervals in the angular and radial
directions in the circle plane at which the flow
equations are solved. Default 160 x 30.

The number of sweeps through the grid points for each

flow cycle using the fast Poisson solver for the subsonic
region of the flow. (See NS for definition of flow cycle.)
Default 1. '

The number of sweeps through tie grid points for each
flow cycle using the relaxation technique. (See NS for
definition of flow cycle.) Default 6.

NS is used along with ITYP on namelist input cards to
indicate mode of operation. Also, if NS and ITYP are
both positive, NS is the maximum number of flow cycles
computed before the next namelist is read. A flow cycle
consists of NFAST fast solver ijterations plus NRELAX
relaxation iterations. Default 1.

Number of flow cycles computed between boundary-layer
calculations. (See NS for definition of flow cycle.)
Default 1. '
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PCH

RDEL

SEP

SEPM

ST

XSEP

Chord location at which the turbulent boundary-layer
calculation is begun (the laminar boundary layer is
neglected). Transition is assumed to occur at this
point. Default 0.07.

Relaxation parameter for the boundiry-layer displacement
thickness. Default 0.125.

Output quantity used as a criterion for determining
separation. If SEP > SEPM, the boundary layer
separates.

Bound imposed on the separation parameter SEP for
X < |XSEP|. Also, separation is predicted when
SEP > SEPM. Defauit 0.004.

Convergence tolerance on the maximum velocity potential
correction and the maximum circulation correction.

ST = 1.E - 5 may be reasonable. ST = 0.0 ensures the
completion of NS flow cycles. Default 0.0.

For X < |XSEP|, if SEP exceeds SEPM,then the program
sets SEP equal to SEPM on the upper surface so that
the houndary-layer calculation can proceed through a
shock wave. For X > |XSEP|, SEP is free to exceed
SEPM to allow separation to be properly predicted.

If XSEP 1is negative, the upper and lower surfaces are
both treated as upper surfaces. Default 0.93.

THEORETICAL DRAG

01d Version of Analysis Code

An airfoi] analysis code developed by Garabedian, et al (ref. 1), based -

on a nonconservation form (NCF) of the equation for the velocity potential
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describing transonic flow, has gained wide acceptance for the prediction of
two-dimensional pressure distributions. This code has been distributed by the

Langley Research Center through the Computer Software Management and Information

Center (COSMIC) and will be reférred to hereafter as the "old" analysis code.

As discussed by Garabedian (refs. 2 and 3),however, the NCF method fell
short of giving an adequate prediction of drag rise Mach numbers because of
erroneous positive terms in the artificial viscosity. The shock jumps defined
by the NCF method created mass instead of conserving it (see also, ref. 4)
resulting in overprediction of the wave drag, especially in the case of large
supersonic zones.

New Version of Analysis Code

A correction has recently been made to this "old" analysis code to account
for the mass generated by the NCF method (refs. 2 and 3) which leads to a more
satisfactory evaluation of the wave drag. In addition to the corrected wave
drag formulation, an accelerated iteration scheme developed by Jameson (ref. 5)
has been incorporated to reduce computation time (ref. 3).

In the old analysis code, the equations for transonic flow were solved
iteratively through a relaxation technique. A series of relaxation iterations
were performed with the boundary layer being updated every few iterations.
Each relaxation iteration was considered to be an iterative "cycle". Jameson
found that the rate of convergence could be increased by adding a fast solver
over the subsonic flow region between every NRELAX relaxation iterations. An
iterative “"cycle" then becomes a combination of NFAST fast solvers and NRELAX
relaxation iterations with the boundary layer being updated between every NSi
"cycles".

This new version of the code, incorporating the corrected wave drag
formulation and reduced computing time, is referred to hereafter as the "new"
analysis code. It is also distributed through COSMIC as program number
LAR-12265.
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Drag Calculations

From the viewpoint of a user with only Timited knowledge of the mathe-
matical basis of the code, two questions naturally arise: how well does the
new analysis code predict drag, and to what extent can the code be used in a
cookbook fashion by letting certain input parameters assume their default
values?

In order to provide insight into these questions, drag characteristics
have been calculated with the new analysis code for comparison with experimen-
tal data for a 10-percent-thick NASA supercritical airfoil. In addition, the
effects of a limited number of input parameters were investigated. Although
detailed analysis of these effects were not made, the results are useful in
demionstrating the sensitivity of the code to certain parameters and provide
systematic data for further correlation studies.

EXPERIMENTAL DRAG

The experimental drag characteristics of a 10-percent-thick NASA super-
critical airfoil are presented in figure 1 for various normal-force coefficients
at Reynolds numbers from 2 to 17 x 108. An expanded drag scale is used in this
and subsequent figures to make it easier to differentiate between curves. Such
an expanded scale, however, tends to exaggerate differences and this must be
kept in mind.

The experimental data were determined from wake-survey measurements
utilizing a rrake of total head tubes during experiments in the Langley 8-foot
transonic pressure tunnel with the two-dimensional airfoil model spanning the
tunnel. 7he airfoil was a heretofore unpublished supercritical airfoil developed
for a normal-force coefficient of about 0.5 and identified as supercritical
airfoil 27. Transition was fixed at 5 percent on both the upper and lower
surfaces. Measured model coordinates are presented in table I.
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RESULTS AND DISCUSSION

The analysis code has 33 namelist parameters which include physical inputs
such as the bou.,‘ary-layer transition point (PCH) and abstract inputs such as
the maximum number of flow cyles (NS), the convergence tolerance (ST}, the
boundary-layer relaxation parameter (RDEL), and the number of mesh intervals
(MxN). These input parameters may be specified by the user or allowed to assume
values specified by the computer code (default values).

Calculated results presented in this report are based on various combina-
tions of the following values of NS, RDEL, and MxN: NS from 20/10 (crude/fine
grid) to 50/25; RDEL = 0.125 and 0.070; and MxN = 160 x 30 and 108 x 20.

ST = 5 x 10'6 for all calculations. Other abstract input parameters were
allowed to assume their default values.

Physical inputs such as Mach number, Reynolds number, and boundary-iayer
transition point are set equal to their experimental values. Section lift
coefficient is set equal to the experimental section normal-force coefficient
since the angle of attack was small (from -=1° to 1°) for all cases considered.

Basic Drag Comparison

Figures 2 to 4 show comparisons between the experimental drag characteristics

and the drag as calculated by the new analysis code for normal-force coefficients
of 0.40, 0.50, and 0.60. The calculations were performed at Mach numbers
corresponding to those for which experimental data were available with

NS = 40/20 (RDEL and MXN assumed their default values). Total drag values
(profile + wave) as calculated without the wave-drag correction term are shown

(+ symbols) on the figures to indicate the magnitude of the wave-drag correction
incorporated into the new analysis code.

The number of iterative cycles (40 crude/20 fine) was chosen somewhat
arbitrarily in the absence of a definitive study of their effects. The effects
of varying the number of iterative cycles were later studied and the results
are discussed in a subsequent section of this report. According to that study,
NS = 40/20 were more than enough cycles.

TS S LI

= i e e

RN,



Sl LR R

e A e b i e A L A gt e g 1

AN

The convergence tolerance (ST) of 5 x 10'6 which was used for all calcula-
tions was, in general, never achieved except for M = 0,60 where there were no
supersonic zones. The code, therefore, except for M = 0.60, generally ran the
full 40/20 iterative cycles. The values of the velocity potential correction
(DPHI) and the circulation correction (DCL) at the end of 40/20 cycles typi-
cally were on the order of 5 x 104 to s x 107°,

One abstract input parameter, XSEP, was monitored during the calculations
of the theoretical data of figures 2 to 4 to assure that its upper surface
chordwise location (LP) was ahead of the predicted location of separation (CS).
Thus, for a few conditions where separation occurred slightly ahead of the
default value of XSEP = (.93, the code was rerun with XSEP = 0.90 and the
results indicated by flagged symbols in figures 2 to 4.

As may be seen from figures 2 to 4, the theory often predicts a few counts
of negative wave drag (where the dashed line is below the solid 1ine) at the
lower Mach numbers. Since negative wave drag is physically unreal, it will be
excluded (assumed equal to zero) in all remaining calculated results (figs. 5
to 9). The advantage of excluding negative wave drag is best seen in figure 4
for the nommal-force coefficient of 0.60.

The experimental-theoretical drag comparisons shown in figure 3 for the
near design normal-force coefficient of 0.50 are repeated in figure 5 with the
negative wave drag excluded. Estimated values of the experimental profile drag
are also shown. In general, drag correlation at the lower Mach numbers where
the flow is entirely subsonic or where zones of supersonic flow are just begin-
ning to develop is good. Discrepancies at the highest Reynolds numbizr for low
Mach numbers are due to the fact that laminar flow could not be maintained
experimentally through the leading-edge pressure peaks which occur ahead of the
transition strip.

At M = 0.60 and R'i =11 x 106, for exampie, transition probably takes place
at the leading-edge pressure coefficient peak which occurs near the 2-percent
chord resulting in the experimental drag being about 4 counts (0.0004) higher
than the analysis code predicts with PCH = 0.05. Moving the Tocation at which
the turbulent boundary-layer begins on the upper surface forward to
PCH (upper) = 0.02 (requiring only a minor modification to the analysis code)

8
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would add 4 counts of profile drag to the theoretical drag and bring the theo-
retical drag into agreement with experimental drag (not presented). It is
important, therefore, that the Tocation of boundary-layer transition be correctly
specified on both the upper and lower surfaces in crder for the analysis code

to accurately predict drag.

At higher Mach numbers where zones of supersonic fiow have developed,
agreement is not as good as at the lower Mach numbers, particularly at the
Towest Reynolds number of 2 x 106 (fig. 5(a)). Figure 5 suggests that the
code's semiempirical treatment of the turbulent brundary layer does not ade-
quately model the thick boundary layers at the lower Reynolds numbers and
results in a slight overprediction of both profile and wave drag. In general,
agreemeni improves with increasing Reynolds numbers.

The theoretical drag at M = 0.82 and R, = 11 x 10° (fig. 5(d)) does not fit
the general pattern, however, since it is well below the experimental drag.
The discrepancy is believed to be associated with the relaxation parameter RDEL
default value of 0.125 which allows each succeeding boundary layer to exert too
much of an influence and results in fluctuations in the boundary layer and
calculated drag. This becomes impertant for flows where the shock wave has
moved near the trailing edge and increased in strength. At M = 0.82, fov
example, the shock is at the 75-percent chord station and has a strong influence
on the boundary layer at the trailing-edge. Such fluctuations are illustrated
in figure 6 whevre drag values for different values of NS (fine) are presented.
It is believed, therefore, that a smaller valuz of RDEL would be appropriate.

Reduced RDEL and Mesh Size

Figure 7 shows the effects of reducing the relaxation parameter for the
boundary-layer displacement thickness (RDEL) from its default value of 0.125 to
0.070 and the effects of reducing the number of mesh intervals by approximately
one-third in each direction. The smaller value of RDEL tended to dampen
boundary-Tlayer displacement thickness fluctuations between cycles (not presented),
smooth the drag characteristics (fig. 7),‘and hasten convergence. Pressure
distributions were not significantly affgcted by reducing RDEL.
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Reducing the number of mesh intervals from MxN = 160 x 30 to 108 x 20
tended to have the same general effects as reducing RDEL; boundary-layer
displacement thickness fluctuations were dampened and drag characteristics were
smoothed. The coarser mesh resulted in reductions in computing time of approxi-
mately 50 percent for flows with supersonic zones. The pressure distributions
calculated with MxN = 108 x 20 were essentially the same as for MxN = 160 x 30
except that shock wave locations tended to be 1 to 2 percent of the chord further
rearward, and the shock waves were slightly more smeared with the coarser mesh.

Thus, where computer capacity is limited or where computing time is a
factor, the coarser mesh could be utilized without a significant loss in accur ‘cy
as long as drag rather than shock wave dzfinition wsc of primary importance.

Number of Iterative Cycles

Figure 8 shows the effects of number of iterative cycles at selected
conditions for RDEL values of 0.125 and 0.070. There is some variatien in the
drag with the number of iterative cycles and with RDEL at the Towest Reynolds
number (Rn =2 x 106) where the boundary layer is thicker and its influence
more pronounced. At the higher Reynolds numbers, it appears to make little
difference how many cycles are used. To further verify this, a comparison was
made over the Reynolds number and Mach number range of the experimental data
for NS = 40/20 and 20/10 iterative cycles with RDEL = 0.125 at ¢, = 0.50 and is
presented in figure 9.

Because of the smoother drag characteristics with RDEL = 0.070 (fig. 7),
it seemed more desirable to use RDEL = (.070. rather than 0.125. Intuitively,
however, 20/10 cycles might not be enough cycles to achieve good resolution
of tne boundary layer with RDEL = 0.070, particularly at low Reynolds numbers.
For airfoils thicker than 10 percent where gradients would be steeper and
boundary~layers thicker, turther intuitive Jjustification for more than 20/10
cycles might be argued. Therefore, drag data were generated with an inter-
mediate number of cycles, 30/15, for RDEL = 0.070 and included in figure 9.

Overall, the NS = 30/15, RDEL = 0.070 data more nearly approximates the
experimental data. However, if plotted to a more conventional scale, the three
theoretical curves of figure 9 would be practically indistinguishable.

10



Drag Divergence Mach Numbers

Although significant improvements in drag calculations were made (figs. 2
to 4), there remains a tendency for the new analysis code to slightly overpredict
drag in the vicinity of the drag divergence Mach number at the near design
normal-force coefficient of 0.50 (fig. 9). Thus, the theoretical drag rise
occurs somewhat earlier than the experimental data would indicate. This dis-
crepancy varies with Reynolds number from roughly AM = 0,02 at the lowest
Reynolds number to AM = 0.01 at the highest Reynolds number.

Agreement between experimental and theoretical drag rise characteristics
seemed to be better at lower normal-force coefficients. At the Tower, off-
design nomal-force ccefficient of 0.40, for example, correlation was very good
at the higher test Reynolds numbers (figs. 2(c) and 2(d)).

CONCLUDING REMARKS

A comparison between experimental drag characteristics and theoretical drag
characteristics derived from an improved analysis ccie for a 10-percent-thick
supercritical airfoil at Reynolds numbers from 2 <i 11 million indicate the
following general conclusions:

1. There was significant improvement in predicted drag characteristics
compared with the "old" analysis code due to reformulation of wave drag.

2. There remains a tendency for the new code to overpredict drag in the
vicinity of drag divergence Mach numbers resulting in early drag rise predic-
tions at the near-design normal-force coefficient of 0.5. This discrepancy in
drag rise Mach number varies with Reynolds number from about 0.02 at

R, = 2 x 10% to 0.01 at R = 11 x 105,

3. At the lower, off-design normal-force coefficient of 0.4 good drag
rise Mach number correlation was evidenced at the higher test Keynolds numbers.

4. It appears that a good cookbook method of applying the new cede is to
run 30 crude cycles and 15 fine cycles, set the boundary-layer relaxation para-
meter equal to 0.07, let the number of mesh intervals assume the default value
of 160 x 30, and exclude any negative wave drag from the total drag.

n
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5. Where precise shock wave definition is not of primary importance,
appreciable savings in computer time may be realized with little effect on the
drag characteristics by a one~third reduction in the default number of mesh

intervais in each direction.
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Table I

ORIGINAL PAGE S
OF POOR QUALITY

Coordinates for 10-Percent-Thick Supercritical Airfoil 27

xfe  |(z/c) poer (2/¢); oyer
0 0 0
.005( .0122 -.0112
.010{ .0163 -.0151
.020{ .0212 -.0202
.03 | .0244 -.0236
.04 | .0269 -.0263
.05 | .0290 -.0286
.06 | .0308 -.0306
.07 | .0324 -.0324
.08 | .0339 -.0340
.09 | .0352 -.0355
.10 | .0364 -.0368
.1 | .0375 -.0380
.12 | .0385 -.0391
.13 | .0395 -.0401
.14 | .0404 -.0410
15 | 0412 -.0419
.16 | .0420 -.0427
a7 | L0427 -.0434
.18 | .0433 -.0441
.19 | .0440 -.0447
.20 | .0446 -.0453
21 | .0452 -.045¢
.22 | .0457 -.0464
.23 | .0462 - . 0469
.24 | .0466 -.0474
.25 | .0470 -.0478
.26 | .0474 -.0482
.27 | .0477 -.0485
.28 | .0480 -.0488
.29 | .0483 -.0491
.30 | .0486 -.0493
.37 | .0488 -.0495
.32 | .0490 -.0497
.33 | .0492 -.0498
.34 | .0494 -.0499
.35 | .0496 -.0500
.36 | .0497 -.0500
.37 | .0498 -.0500
.38 | .0499 -.0500
.39 | .0500 -.0499
.40 | .0500 -.0498

x/c (X/C)upper (2/¢)qoner
41 .0500 -.0497
.42 | .0500 -.0495
.43| .0500 -.0493
.44 .0500 -.0491
45| .0499 -.0488
.46] .0498 -.0485
471 .0497 -.0487 . .-
.48 | .0496 -.0477
49|  .0495 -.0473
50" .0493 -.0468
51| 0491 -.0463
52| .0489 -.0457
53| .0487 -.0450
541 .0485 -.0442
55| .0482 -.0434
.56 .0479 -.0425
.57 .0476 -.0415
.58 | .0473 -.0404
59| .0470 -.0392
.60| .0466 -.0389
61| .0462 -.0367
621 .0458 -.0353
.63 .0454 -.0338
.641 .0450 -.0322
.65{ .0445 -.0305
.66 | .0440 -.0287
.67 .0435 -.0269
68| .0430 -.0250
.69 | .0424 -.0231
70| .0418 -.0212
J11 .0412 -.0193
72| .0406 -.0174
73 .0399 -.0155
44| .0392 -.0136
75| .0385 -.0117
.76 .0377 -.0098
771  .0369 -.0080
.78 .0361 -.0062
79| .0352 -.0045
.80 .0343 -.0028
.81 .0333 -.0013
.82 .0323 .0001
.83] . .0312 .0014

T T T

m




ORIGIAL PACE 19

oF POOR QUALITY )

- Table I. -~ Continued.

x/e | (2/€)yppen | (2/)10her
.84 [ .0301 .0026
.85 | .0289 .0036
.86 | .0277 ,0045
.87 | .0264 .0052
.88 | .0250 .0057
-89 | .0235 10060
.90 | .0219 .0061
91| . .0202 0061
921 .0184 10059
93]  .0165 " 0054
94| .0145 ' 0096
95|  .0124 " 003
96| .0102 .0021
97|  .0079. .6004
98| .0055 _ 0016
9910029 -.0039

1.00{ -.0002 ' | -.0066
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Figure 1. - Variatiqn of experimental section drag coefficient with Mach number

for 10-percent-thick supercritical airfoil 27.
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Figure 2. - Comparison of experimental and theoretical drag characteristics and theoretical

separation characteristics. 'cn = 0.40; PCH = 0.05; MxN = 160 x 30, NS(crude) = 40;

NS(fine) = 20; RDEL = 0.125; XSEP = 0.93. Flagged symbols indicate Mach numbers for which
XSEP = 0.90.
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