General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

A Reproduced Copy OF

(NASA-XA-X-72684) EFFECYS OF LANDING GEAR。
N83-11085 SPEED BKAKE AND PRUTUBERANCES UN THE LONGITUDINAL AERODYNAMIC CHABACTERISTICS OF AN NASA SUPERCRITICAL-WING RESEARCK AIBELANE UnClaS MODEL (NASA) 55 pHC A04/MF AO1 CSCE O1A G3,102 32201

Reproduced for NASA
by the

NASA Scientific and Technical Information Facility

- COAFTHETVITAL. .
 EFFECTS OF LAIDDING GEAR, SIEED BRAKE AND
 PROTUBBRANCES ON THE LONGITUDINAL AERODYNAMIC
 CHARACTERTSTPICS OF AN IASA SUPERCRITICAL-
 WING RESEARCH AIFPLANE MODEL

By Dennis W. Bartlett and Giuliana Cangiorpio
Lancley Research Center

SUMMAFiY

An investigation has been conducted in the Langley Research Center 8-foot treansonic pressure tunnel to determine the effects of the landing gear, speed brake and the major airplane protuberances on the longitudinal aerodynamic characteristics of an 0.087 -scale model of the TF- 8 A supercritical-wing research airplane. For the effects of the landing gear and speed orake, tests were conducted at Mach numbers of 0.25 and 0.35 with a flap deflection of 20° and a horizontal-tail angle of -10°. These conditions would simulate those required for take-off and landing. The effects of the protuberances were determined with the model configured for cruise (i.e. horizontal-tai) angle or -2.5° and no other control deflection), and these tests were conducted at Mach numbers from 0.50 to 2.00 . The angle-ofattack range for all tests varied fron about -5° to 12°.

The exbension of the landing gear resulted in a slight incrence in lift and a small negative shift in pitching moment (less than a comparable change in horinontal-teil angle of 0.5°) throughout the angle-of-attack rance of the investigation. The deployment of the speed brake (deflected 15°), however, showed no appreciabie effects on either the lift or pitching-moment characteristics. . As would be expected, the landing gear and speed brake did cause a.significant

Increase in drag, however, this increase was substantially larger near the minimum drag point $\left(\alpha \approx 1^{\circ}\right)$ than at the take-off and landing angle of attack of 8.5°.

The effect of the protuberances on the lif't and pitching-moment characteristics is negligible, nowever, there is a small increase in drag throughout most of the lift-coefficient range at all Mach numbers. At the cruise lift coefficient of 0.4 , the drag increment due to protuberances varies from about 0.0003 in Urag coefficient at a Mach number of 0.50 to approximately 0.0008 et 0.95 Mach number. However, at the wing design Mach nuraber of 0.99 , the drag increment near 0.4 lift coefficient is about 0.0002 in drag coefficient.

INPRODUCTION

In support of the flight-test program and simulator studies for the $\mathrm{TF}-8 \mathrm{~A}$ supercritical-wing research airplane (ref. 1) and to establish the necessary data base for'a correlation of wind-tunnel and flight data, extensive windtunnel tests have becn conducted involving this airplane. In addition to configuration development-type programs (see refs. 2, 3, and 4 for examplc.), investigations were performed to determine the basic longitudinal and lateral static stability characteristics (ref. 5), the dynamic stability characteristics (ref. 6) and wing and fuselage pressure distributions (refs. 7 and 8). The purpose of this paper is to document the results of wind-tunnel tests that were conducted to determine the effects of the landing gear and speed brake on the longituainal aerodynamic characteristics of the TF-8A supercritical-wing research airplane at Mach numbers near those for take-off and landing ($M=0.25$ and 0.35). In uafdition, the effects of the ajor airplane protuberances (i.e. antennae, nose probe, etc.) on the longitudinal aerodynamic characteristics are presented at Mach numbers from 0.50 to 1.00 . Tests were conducted over an

original page is OF POOR QUALITY

- cemphetivinkte.

angle-of-attack range that varied from about -5° to about 12° and at Reynoids numbers which varied from approximately 10.2×10^{6} per m (3.1 $\times 10^{6}$ per ft$)$ at 0.25 Mach number to a maximum of about 20.0×10^{6} per $m\left(6.1 \times 10^{6}\right.$ per ft) at 0.80 Mach number. Near Mach 1.0, the test Reynolds number was about 16.0×10^{6} per m ($4.9 \times 10^{\epsilon^{*}}$ per ft$)$.

SMMBOLS
The longitudinal aerodynamic characteristics presented herein are referred oo the stebility axis system. Force and moment data have been reduced to conventional coefficient form based on the geometry of the reference wing planform, which is the planform produced by extending the straight leading and trailing edges of the outboard sections of the wing to the fuselage center line. (See fig. $1(a)$.$) Moments are referenced to the quarter-chord point (fuselage station$ $99.45 \mathrm{~cm}(39: 155 \mathrm{in})$.$) of the mean geonetric chord of the reference wing panel.$ All dimensional values are given in both SI and U.S. Customary Units; however, measureminis and calculations were made in U.S. Customary Units.
'Coefficient's and symbols used herein are defined'as follows:
b wing span, 114.30 centimeters (45.00 inches)
$C_{D} \quad$ drag coefficient, $\frac{\text { Drag }}{q S}$
$C_{L} \quad$ lift coefficient, $\frac{\text { Lift }}{q S}$
$C_{m} \quad$ pitching-moment coefficient, $\frac{\text { Pitching moment }}{q S \bar{E}}$
\bar{c} mean geometric chord of reference wing panel,
18.09 centimeters (7.121 inches)
local streamwise chord of wing
free-istrsam Mach number
free-stream dynamic pressure

$$
\cdots
$$

area of recerence wing planform including fuselage intercept,

$$
0.193 \text { meter }^{2}\left(2.075 \text { reet }^{2}\right)
$$

angle of attack, referred to a model water line, degrees horizontal tail deflection angle, referred to model water line
(positive when trailing edge is down), degrees
flap deflection angle (positive when trailing edge is down), degrees TEST FACILITY

The investigation was conducted in the Langley Research Center 8-foot transonic pressure tunnel (ref. 9). This facility is a continuous-flow, sinclereturn, rectangular slotted-throat tunnel having controls that allow for the independent variation of Mach number, density, stagnation temperature and dewpoint. The test section is square in cross section with the upper and lower walls axially slotted (each wall having an open ratio of approximately $0.0 \in$) to permit changing the test-section Mach number continuously through the transonic speed range. The stagnation pressure in the tunnel can be varied from a minimum value of about 0.25 atmosphere at all test Mach numbers to a maximum value of approximately 1.5 atmospheres at transonic Mach numbers and approximately 2.0 atmospheres at Mach numbers of 0.40 or less.

MODEL DESCRIPTIOII

Geometric characteristics of the 0.087 -scale research airplane model are presented in figure 1 , and photographs of the model are presented as figure 2. The basic fuselage and tails are scaled versions of those utilized on the testbed airplane (TF-8A). The model wis equipped with flow-through ducts which discharge at the base of the fuselage on either side of the flat-sided model support sting. Internal drag coefficients and mass-flow ratios are contained in ref. 5.

The wing used durine the investication to determine the effects of the landine gear and speed brake vas constructed of aluminun. A flap deflection of 20° was employed for these tests with a horizontal-tail angle of -10°. These flap and tail angles are those that were estimated to be required for take-off and landing. Flap and aileron control-effectiveness data obtained with this aluminum "control" wing are contained in references 10 and 11. To obtair wind-tunnel performance and pressure data for the research airplane, a separate steel wing was normally employed (see ref. 2 for example), and it was the steel wing that was used during the present tests to determine the effects of the major airplane protuberances. Both wing are ceometrically the same, and coordingtes are presented in reference 2.

The supercritical wing was mounted on the fuselage at a root-chord incidence angle of $1: 5^{\circ}$ and has approximately 5° of twist (washout) from root to tip in the uhloaded condition. The reference wing planform, which excludes The leading-edge glove and trailing-edge extension, has a taper ratio of 0.36 , an aspect ratio of 6.8 , and $42.2^{1.0}$ of sweepback at the quarter-chord, Iine. The area of the reference wing planform including the fuselage intercept is $0.193 \mathrm{~m}^{2}$ (2.075. ft^{2}), and the mean geometric chord of the reference wing panel is 18.09 cm (7.121 in.).

Detail; of the model landing gear and speed brake are presented in figures $I(b), I(c)$ and $I(d)$, and the landing gear and speed brake are shown on the model in the photographs of figure 2. The basic aircraft speed brake, derlected approximately 15°, was used during landing to aid in stopping the airyane which was not provided with a drogue chute. Details of the major airphe protuberances are presented in figure $\mathrm{I}(\mathrm{e})$, and these protuberances are also shown in the photographs of figure 2.

1-

The underwing, leading-edge vortex generators (fig. $l(f)$) were employed. on both model wings (ö-percent-wing-semispan station) for all tests of the . present investigation, however, the nileron hinge fairings (fig. $I(E)$ and $I(h)$) were included only on the steel wing. The underwing, leading-edge vortex generators are discussed in references 3 and 12 , and limited results for the effects of the aileron hinge fairings are also presented in reference 3 .

MEASUREMENTS AND TEST CONDITIONS
Measurements. of overall forces and moments on the model were obtained from a six-component, electrical strain-gage balance housed within the fuseluge cavity. Differential pressure transducers referenced to free-stream static $:$ pressure were used to measure the pressure in the fuselage balance chamber and at the model base.

The erfects of the landing gear and speed brake were measured at Mach. numbers of 0.25 and 0.35 for a flap setting of 20° and a horizontal-tail angie of -10°. For determination of the protuberance effects, the model had no control deflection other than a horizontal-tail. angle of -2.5° (estimated to. be that required for trim at the design-cruise condition), and measurements were cbtained at Mach numbers from 0.50 to 1.00. The angle-of-attack range for all tests varied from about -5° to approximately 12° for a sideslip angle of 0°. The tunnel test conditions at the Mach numbers of the present investigation are presented in table I.

Boundary-Layer Transition
The boundary-layer trip arrangemerts used for the wing are shown in figure 3. No, 120 Carborundum grains were located on the horizontal and ver.ind tails at 5 percent of the local streamise chords and were also applied $2.54 \mathrm{~cm}(1 . j 0 \mathrm{in}$.$) aft of the model nose and 1.27 \mathrm{~cm}(0.50 \mathrm{in}$.

6

Confrisonditht is.

relatively lurge main gear doors (fig. $1(\mathrm{c})$), which form an angle or about 20° with the horizontal in the deplojed state, are producing lirt. In addition, the deployment of the landing gear also results in a small negative shift in pitching moment ($\Delta C_{m} \approx 0.015$) throughrut the majority of the angle-bf-attack range, however, this only amounts to a comparable change in horizontal-tail angle of less than 0.5°. The speed brake (deflected $\approx 15^{\circ}$) nos only negligible effects on the lift and the pitching-moment characteristics. (See fig. 4.)

Near minimum drag $\left(\alpha \approx 1^{\circ}\right)$, the landing gear causes an increase in drag of approximately 50 percent over the basic configuration, while the speed brake results in about a 23 pecent drag increase. However, near the angle of attack for take-off and landing $\left(\alpha=8.5^{\circ}\right)$, the drag increase resulting from the landing gear and speed brake is. about 29 percent and 11 percent respectively. As would be expected, there is little variation in the effects noted above betwee:1 the two Mach numbers at which data are presented in figure 4 ($M=0.25$ and 0.35).

Effect; of Protuberances

The term "protuberances", as used in this report, includes the airspeed probe, the camera fairing plate, the PCM antenna, the anticollision light and. the drain valve (fig. $1(e)$).

The erfect of the protuberances on the longitudinal aerodynamic characteristics is presented in figure 5 at Mach numbers from 0.5 to 1.0 , and the drag increment due to protuberances is presented in rigure 6 at lift coefficients of 0.1 and 0.4 .

The protuberances have no appreciable effect on the lift and pitching-, moment characterirtjcs, however, as would be expected, therc is a small increase in drag throughout most of the lift-coefficient range at all Mach numbers

presented in figure 5. At the cruise lift coefficient of 0.4 , the protuberance drag increment varies from about 0.0003 in drag coefficient at a Mach number 0.50 to about 0.0008 at 0.95 Mach number. However, at the wine desien Macin rumber of 0.99 , the drag increment due to protuberances near 0.4 ift coefficient is about 0,0002 in drag coefficient (see fig. 6.) Similar effects are also noted in figure 6 at a lift coefficient or 0.1 which is near minimum drag.

The drag increments due to surface defects (slots, gaps, scratches, etc.) for the basic $5 F-8$ A airplane are documented in reference 13. These drag irmcrements along with those reported herein must, of course, be considered' when attempting to extrapolate wind-turnel derived drag data to full-scale conditions. (See for example, paper 5 of ref. 1.)


```
OR OH ,
```


-

- - .

1. Inon: Supercritical Wing Technolngy - A Progress Report on Flight Evaluations. NASA SP-301, 1972.
2. Bartlett, Dennis W.; and Harris, Charles D.: Aerodynamic C'aracteristics of an MASA Supercritical-Wing Research hirplane Hodel With and Without Fuselage Area-Kule Additions at Hach 0.35 to 1.00. NASA TA X-2633, 1972.
3. Bar:lett, Dennis W.; Harris, Charles D.; and Kelly, Thomas C.: Wind-Tunnel Develoment of Underwing Leading-Edge Vortex Generators on an NASA Super-criticai-Wing Research Airplane Configuration. NASA TM X-2808, 1973.
4. Bartlett, Dennis W.; and Harris, Charles D.: Effects of Wing Trailing-Edge Truncation on the AErodynamic Cheracteristics of an lilSA SupercriticalWing Research Airplane Model. HASA TM X-302.t, 1974.
5. Bartlett, Dennis W.; and Re, Richard J.: Wintorinel Investigation of. $:$ Busic Aerodynemic Characteristies of a fupercriticai-Wing Research Airplane Configuration. NASA TN X-2470, 1972.
6. Boyder, Fichmond P.: Dynamic-Stability Characteristicr in Pitch, Yaw, anc noll of a Supercritical Wing Research Airplane Model. HASA TM $\%-2900$, 1974.
7. Harris, Charles D.: Wind-Tunnel Neasurements of Aercdynamic Load Distribution on an NASA Supercritical-Wing Research Airplane Configuration. NASA T74 X-2469, 1971.
8. Harris, Charles D.; and Bartlett, Dennis W.: Tabulated Pressure Measuremente on an NASA Supercritical-Wing Research Airylane Model With and Without Fuselage Area-Rule Additions at Mach 0.25 to 1.00 . NASA TM X-2634, 1972.
9. Schuofer, William T., Jr.: Characteristics of Major Active Wind Iurnels at Langley Research Center. NASA IM X-1130, 2965.
10. Bartlett, Dennis W.: Effects of Differential and Symetrical Aileron Deflorion on the Longitudinal and Laterfl Aerodynamic Characteristics of an NASA Supercritical-wine Research Airpiane Model. MASA TM X-3231, 1975.
11. Re, Richard J.: Stability and Contrcl Characteristics, Ineluding Aileron Hinge Koments, of a Model of a Supercritical-Wing Research Airplane. WASA TM X-2929, 1974.
12. Harris, Charles D.; and Bartlett, Dennis W.: Ulnd-Tunnel Investigotion of Effects of Underwing Leading-Edge Vortex Generators on a SupercriticalWirs Research Airplane Configuration. NASA TM X-247之, 1972.
13. Morton; Elmer A.; and Tetervin, Neal: Measured Surface Defects on Pypical Transonic Airplanes and Analysis of Their Drag Contributions. NASA TN D-1024, 1962.
oiklginal page is OF SOOR QUALITY!

(e) Simulated full-scale airpiane protuberances.

Figure 1. - Continued.

‥ $F \cdot \square=-1$ -

(e) Simulated full-scale airplane protuberances. Concluded.

Figure I.- Continued.

18
-

(h) Cross section of aileron hinge fairings.
Figure I. - Concluded.

$$
\cdot
$$

$$
{ }^{*}
$$

Figure 3. - Wing boundary-layer trip arrangernents. Dimensions are in cm (in.).
 i

Figure 4. - Effects of landing gear and speed brake on the longitudinal characteristics. $\delta_{h}=-10^{\circ} ; \delta_{f}=20^{\circ}$.

ORIGINALI PAGE IS OF POOR QUALITY

(a) $M=0.25$. Continued.

Figure 4. - Continued.

(a) $M=0.25$. Coricluded.
Figure 4. - Continued.

ORHI: NS PAGE is OR POOK (UUALTM

(b) $M=0.35$.

Figure 4.- Continued.

(b) $M=0.35$. Continued.
Figure 4. - Continued.
ni.

(a) $M=0.50$.

Figure 5. - Effect of protuberances on longitudinal aerodynamic characteristics. $\delta_{h}=-2.5^{\circ} ; \delta_{f}=0^{\circ}$.

ORIGINAL PAGE IS OF POOR QUALITY

ORTCRAN PASE ES OF POOR QUARITV.
(a) $M=0.50$. Continued.
Figure 5. - Continued.

(b) $M=0.80$. Continued.
Figure 5. - Continued.

ORIGINAL PAGE IS OF POOR QUALITY

of POCR Quality		

(b) $M=0.80$. Concluded.
Figure 5.- Continued.

Figure 5.- Continued.

(c) $M=0.90$. Continued.
Figure 5. - Continued.

(c) $M=0.90$. Conciuded.
Figure 5. - Continued. $\quad \begin{aligned} & \text { ORIGRAL PAGE IS } \\ & \text { OF POOR QUALITY }\end{aligned}$
(d) $M=0.95$.

Figure 5. - Continued.

(d) $M=0.95$. Continued.
Figure 5.- Continued.

(e) $M=0.97$. Continued.

Figure 5.- Continued.

(f) $M=0.98$. Concluded.
Figure 5. - Continued.

(g) $M=0.99$.

Figure 5. - Continued.

(g) $M=0.99$. Continued.

ORIGINAL PAGE IS
OF POOR QUALI'I
Figure 5.- Continued.

(g) $M=0.99 . \quad$ Concluded.

Figure 5.- Continued.

(h) $M=1.00$. Concluded.
Figure 5. - Concluded.

 to protuberances.

CRIGINAL PAGE IS
OF POOR QUALITH

