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Ain investigation has been conducted in the Langley Research Center
8-foot transonic pressure tunnel to determine the effects of thelI riding
gear; 'speed brake and the major airplane protuberances on the longitudinal
aerodynamic characteristics of an 0.087-scale model of the TF-8A super-

' critical-wing research airplane. For the effects of the landing gear and
speed brake, tests were conducted at Mach numbers of 0.'25 and 0.35 with a
flap deflection of 20° and a horizontal-tail angle of -10". These conditions
would simulate those required for take-off and landing. The effects of the
protuberances were determined with the model configured for cruise (i.e.,
horizontal-tail angle of -2.5° and no other control deflection), and these
tests were conducted at Mach numbers from 0.50 to ?.00. The angle-of-attack
range for all tests varied from about -5° to 12°.
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of® 
PROTUBERANCES ON THE LONGITUDINAL AERODYNAMIC

CHARACTERISTIC;', OF AN NASA SUPERCRITICAL-

WING RESEARCH AIRPLANE MODEL

By Dennis W. Bartlett and Giuliana Sangiorgio

Langley Research Center

SUMMARY

An investigation has been conducted in the Langley Research Center 8-foot

transonic pressure tunnel to determine the effocts of the landing gear, speed

brake and the major airplane protuberances on the longitudinal aerodynamic

characteristics of an 0.087-scale model of the TF-•8A supercritical-wing re-

search'.airplane. For the effects of the landing gear and speed brake, tests

were conducted at Mach numbers of 0.25 and 0.35 with a flap deflection of 200

and a horizontal-tail angle of -10 0 . These conditions would simulate those

required •for.take-off and landing. The effects'of.the protubcranc!es'we' re de-

termined with the model configured for cruise (i.e. horizontal-tail angle of

-2,5 0 and no other control deflection), and these tests were conducted at Mach

numbers from 0.50 to 1.00. The angle-of-attack range for all tests varied from

about -5° to 120..

The extension of the landing gear resulted in a slight incrense'in lift

and a small negative shift in pitching moment: (less than a comparable change in

hori-.ontal-tail angle of 0.5 0 ) throughout the angle-of-attack range of the in-

vestigation. The deployment of the speed brake (deflected 15 0 ), however, showed

a	 no appreciable effects on either the lift or pitching-moment characteristics.
a

As would be expected, the landing gear and speed brake did cause a,significant
I
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increase in drag, however, this increase was substantially larger near the

minimum crag point (a ;z! 1°) than at the take-off and landing angle of attack

of 8.5°.

The effect of the protuberances on the lift and pitching-moment charac-

teristics is negligible, ,iowever, there is a small increase in drag throughout 	 .

most of the lift-coefficient range at all Mach numbers. At the cruise lift

coefficient of 0,4, the drag increment due to protuberances varies from about

0.0003 in drag coefficient at a Mach number of 0.50 to approximately 0.0008 at

0.95 Mach number. However, at the wing design Mach number of 0.99, the drag

increment near 0.4 lift coefficient is about 0.0002 in drag coefficient.

INTRODUCTION

In support of the flight-test program and simulator studies for the TF-8A

supercritical-wing research airplane (ref. 1) and to establish the necessary

data base for a correlation of wind-tunnel and flight data, extensive wind-

tunnel tests have bAc--n conducted involving this airplane. In addition to con-

figuration development-type programs (see refs. 2, 3, and 4 for example.), in-

vestigations were performed to determine the basic longitudinal and lateral

static stability characteristics (ref. 5), the dynamic stability characteristics

(ref. 6) and wing and fuselage pressure distributionE (refs. 7 and 8). The

purpose of this paper is to document the results of wind-tunnel tests that were

conducted to determine the effects of the landing gear and speed brake on the

longitudinal aerodynamic characteristics of the TF-8A supercritical-wing re-

search airplane at Mach numbers near those for tale-off and landing (M = 0.25

and 0.35). In addition, the effects of the ;ta,jor airplane protuberances (i.e.

antennae, nose probe, etc.) on the longitudinal aerodynamic characteristics are

presented at Mach numbers from 0.50 to 1.00. Tests were conducted over an

ORIGINAL PAGE IS
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angle-of-attack range that varied from about -5 6 to about 12 0 and at Reynolds

numbers which varied from approximately 10.2 x 10 6 per m (3.1 x 10 6 per ft) at

0.25 Mach number to a maximwn of about 20.0 x 10 6 per m (6.1 x 106 per ft) at

0.40 Mach number. Neat Mach 1.0, the test Reynolds number was about 16.0 x 106

per m (4.9 x 10
6
 per ft).

SYMBOLS

The longitudinal aerodynamic characteristics presented herein are referred

^.o the stability axis system. Force and moment data have been reduced to , con-

ventional coefficient form based on the geometry of the reference wing planform,

which is the planform produced by extending the straight leading and trailing

edges of the outboard sections of the wing to the fuselage center line. (See

fig. 1(a).) Moments are referenced to the quarter-chord point (fuselage station

99•45 cm (3915,5 in.) ) of the mean geometric chord of the reference wing p"anel.

All dimensional values are given in both SI and U.S. Customary Units; however,

measurem:ntz and calculations were made in U.S. Customary Units.

Coefficient's and symbols used herein are • defined'as follows:

b	 wing span, 114.30 centimeters (45.00 inches)

CD	drag coefficient, 
Dz

q
Sg

CL	lift coefficient, 
Lift

q

Pitchint^ moment
Cm	pitching-mcinent coefficient,	

9^c

c	 mean geometric chord of reference wing panel,

18.09 centimeters (7.121 inches)

c	 local streamwise chord of wing

M	 free-'stream Mach number

q	 free-stream dynamic pressure

Wk 3
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S	 area of reference wing planform including fuselage intercept,

0.193 meter  (2.075 feet`)

a	 angle of attack, referred to a model water line, degrees

6h	 horizontal tail deflection angle, referred to model water: line

(positive when trailing edge is clown), degrees

6 	 flap deflection angle (positive when trailing edge is down), degrees

TEST FACILITY

The investigation was conducted in the Langley Research Center 8-foot

transonic pressure tunnel (ref. 9). This facility is a continuous-flow, single-

return, rectangular slotted-throat tunnel having controls that allow for the

independent variation of Mach number, density, stagnation temperature and dew-

point. The test section is square in cross section with the upper and lower

walls ax
i
ally -slotted (each wall having an open ratio of approxi=mately 0.06) to

permit changing the test-section Mach number continuously through the transonic

speed range. The stagnation pressure in the tunnel can be varied from a minimum

value of about 0.25 atmosphere at all test Mach numbers to a m'aximirm valuL-•of

approximately 1..5 atmospheres at transonic Mach numbers and approximately 2.0

atmospheres at Mach numbers of 0.40 or less.

MODEL DESCRIPTION

Geometric characteristics of the 0.087-scale research airplane model are

presented in figure 1, and photographs of the model are presented as figure 2.

The basic fuselage and tails are scaled versions of those utilized on the test-

bed airplane (TF-8A). The model ws equipped with flow-through ducts which

discharge at the base of the fuselage on either side of the flat-sided model

support sting. Internal drag coefficients and mass-flow ratios are contained

in ref. 5.
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The wind; used during the investigation to determine the effects of the

landing gear and speed brake was constructed of aluminum. A flap deflection

of 200 was employed for these tests with a horizontal-tail angle of -100.

These flap and tail angles are those that were estimated to be required for

take-off and landing. Flap and aileron control-effectiveness data obtained

with this aluminum "control" win,a are contained in references 10 and 11. To

obtain wind-tunnel performance and pressure data for the research airplane, a

separate steel wing was normally employed (see ref. 2 for example), and it was

the steel wing that was used during the present tests to determine the effects

of the major airplane protuberances. Both win,7a are geometrically the same,

and coordinates are presented in reference 2.

The supercritical wing was mounted on the fuselage at a root-chord in-

cidence angle of 1.5° and has approximately 5 0 of twist (washout) from root to

tip in the'unloaded condition.. The reference wing planform, which excludes

the leading-edge glove and trailing-edge extension, has a taper ratio of 0.36,

an aspect ratio of 6.8, and h2.2'' O of sweepback at the quart er-chord,line.- The

area of the reference wing planform including the fuselage interce pt is 0.193 m`"

(2.075•ft2 ), and the mean geometric chord of the reference wing panel is 18.09 cm

(7.121 in.).

Detail.; of the model landing gear and speed brake are presented in figures

1(,b), 1(c) and l(d), and the landin„ gear and speed brake are shown on the model

in the photographs of figure 2. The basic aircraft speed brake, deflected

approximately 15°, was used during landing to aid in stopping the airplane

which was not provided with a. drogue chute. Details of' the major airNl•tn,.

protuberances ' are presented in figure 1(e), and these protuberance.; are.also

shown in the photographs of figure 2.
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The underwing, leading;-edL,c vortex generators (fig. l(f)) were emplaycd-

on both model wings (0-0-percent-wing-semispan station) for all tests of the .

present investigation, however, the aileron hinge fairings (fig. 1(g) and 1(h))

were included only on the steel wing. The underwing, leading;-edge vortex gen-

erators are discussed in references 3 and 12, and limited results for the

effects of the aileron hinge fairings are also presented in reference

MEASUREMENTy AND TEST CONDITIONS

Measurements,of overall forces and moments on the model were obtained

from a six-component, electrical strain-gage balance housed within the fuselu^e

cavity. Differential pressure transducers referenced to free-stream static

pressure were used to measure the pressure in the fuselage balance chamber and

at the model base.

The effects of the landing gear and speed brake were measured at Mach .

numbers of 0.25 and 0.35 for a flap setting of 20° and a horizontal-tail angle

of -10°. For determination of the protuberance effects, the model had no

control deflebti.on other than a horizontal-tail.angle of -2.5 0 (estimated to_

be that required for trim at the design-cruise condition), and measurements

were obtained at Mach numbers from 0.50 to 1.00. The angle-of-attack range

for all tests varied from about -5° to approximately 12° for a sideslip angle

of 00 . The tunnel. test conditions at the ! •loch numbers of the present investi-

gation are presented in table I.

Boundary-Layer Transition

The boundary-layer trip arrangements used for the wing are shown in

figure 3. No. 120 Carborundum grains were located on the horizontal and

ver.:' , ..1 tails at 5 percent of the local streamwise chords and were also

applied 2.54 cm (1.j0 in.) aft of the model nose and 1.27 cm (0.50 in.)

6	 -•
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rearward of the inlet lip on both the inner and outer surface,. All boundary-

layer trips were applied to the model in bands that were 0.1 27 cm (0.05 in.)

wide and were located by neasur •ements, taken in the streamwise direction.

Corrections

Drag coefficients contained herein have been adjusted to correspond to a

condition of free-stream static pr •essuro acting; in the balance chamber and at

the model base (excluding the duct exit area). No adjustments have been made

to the drag, however, for internal duct drag. (See ref. 5.)

Corrections have been made to the measured angles of attack to account

for deflecti.on' of the model balance and sting cupport system under aerodynamic

load and for tunnel airflow angularity.

PRESEIITATIOPI OF RESULT

The repults of this investi gation are presented in the following figures:

Figure

1	 Effects of landing; gear and speed brake on longituainal aerodynamic

characteristics. 6b = -100 ; ; f = 20°
i

Effect of protuberances on longitudinal aerodynamic chaacteristics.r 

I
6h = -

2.50; 6f = 00 . . . .	 . . . . . .	 . . . . . . . . . . . . .	 5

fVariation with Mach number of the drag increment due to protuberances	 6

DISCUSSION OF RESULTS,

Effects of Landing, Gear and Speed Brake

The effects of the landing, gear and the speed brake on the longitudinal

aerodynamic characteristics are presented in figure 4 at Much numbers 0..25 and

r0.35 (take-off and landing Mach number range). From this .figure it can be seen

that the extension of the landing gear causes a small increaue in lift t;hr•ough-

out the angle-of-attack range. This is probably due to the fact that the

r..	 7
i);iI{:IXAL NWE IS
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relatively large plain fear doors (fig. 1(c)), which form an angle of about 200

with the horizontal in the deployed state, are producing lift. In addition,

the deployment of the landing gear also results in a small negative shift in

pitching, moment (ACm 0.015) throughput• the majority of the angle-uf-attack

ranee, however, this only amounts to a comparable change in horizontal-tail 	 .

angle of less than 0.5 0 . The speed brake (deflected -- 15 0 ) fi,;,,s only negligible

effects on the lift and the pitching-moment characteristics. (See fig. h.)

Near minimum drag (a ti 1°), the landing gear causes an increase in drag

of approximately 50 percent over the basic configuration, while the speed brake

results in about a 23' pe.•cent drag increase. However, near the angle of attach

for take-off and landing (a = 8.59, the drag increase resulting from the

landing gear and speed brake is.about 29 percent and 11 percent respectively.

As would be expected, there is little variation in the effects noted above

between the two Mach numbers at which data are presented in figure h (M = 0.25

and 0.35).

Effect: of Protuberances

The term "protuberances", as used in this report, includes the airspeed

probe, the camera fairing plate, the PC14 antenna, the anticollision light and,

the drain valve (fig. 1(e)).

The cffect of the protuberances on the longitudinal aerodynamic character-

istics is presented in figure 5 at Mach numbers from 0.5 to 1.0, and the drag

increment due to protuberances is presented in figure 6 at lift coefficients of

0.1 and 0.4.

The protuberances have no appreciable effect on the lift and pitching

moment characterirtics, however, as would be expected., there is a small increase 1.

in drag throughout most of the lift-coefficient range at all Mach numbers 	 l
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j	 presented in figure 5. At the cruise lift coefficient of 0.4, the protuber-

ance drag increment varies from about 0.0003 in drag coefficient at a Mach

number 0.50 to about 0.0006 at 0.95 Mach number. However, at the wing design

.	 Mach -umber of 0.99, the drag $.nererent due to protuberances near 0.4 lift
r

coefficient is about 0.0002 in drab; coefficient	 (See fig. 6.) Similar

effects are also noted in figure 6 at a 'lift coefficient of 0:l which is near
s
s

`	

!	 minimum drag.

I	 The drag increments due to surface defects (slots, gaps, scratches, etc.)

for the basic rF-8A airplane ere documented in reference 13. These drag in-

cremenus along with those reported herein must, of course, be consideredrwhen

s
attempting to extrapolate wind-tunnel derived drag data to full-scale condi-

tions. (See for example, paper 5 of ref. 1.)
i
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TABLE I.- TWIMEL TEST CONDITIONS

Macb
number

Temperature	 Reynolds number

K	 OF	 perm 	 per ft

1.00 322 120	 15.9 x 106 4.8 x 106

•99 322 120	 16.1 4.9

.98 322 120	 16.1 4.9

.97 322 120	 16.1 4.9

.95 322 120	 16.11 5.0

.90 322 120	 18.4 5.6

.80 322 120	 I	 20.0 6.1

.50 322 120	 1 4 4 4.4

.35. 322 120	 7.2 2.2

.25 322 120	 10.2 3.1
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I	 (a) General arrangement of 0.087-scale model.
!

Figure I.— Model details. Dimensions are given in centimeters (inches).
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