General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Measurements in the Wake of an 'Infinite' Swept Airfoil

Iowa Inst. of Hydraulic Re3earch, Iowa City

Prepared for
National Aeronautics and Space Administration
Washington, DC

Apr 82
i

I.S. Department of Commerce

National Technical Information Service

BIBLIOGRAPHIC INFORMATION

PB82-212499
Measurements in the Wake of an 'Infinite' Swept Airfoil,
Apr 82
C. J. Novak, and B. R. Ramaprian.

PERFORMER: Iowa Inst. of Hydraulic Research, Iowa City. IIHR-240
Grant NSG-1200, Grant NAG-2-110
SPONSOR: National Aeronautics and Space Administration, Washington, DC.

Portions of this document are not fully legible.
This is a report of the measurements in the trailing edge rtsinn as well as in the report of the de eloping wake behind a swept NACA 0012 airfoil at zero incidence and a sweep angle of 30 degrees. The measurenents include both the mean and turbulent flow properties. The mean flow velocities, flow inclination and static pressure are measured using a calibrated three-hole yaw probe. The measurements of all the relevant Reynolds stress components in the wake are made using a tri-axial hot-wire probe and a digital data processing technique developed by the auchors.

KEYWORDS: *Airfoils, *Trailing edges, *Boundary layer tlow.
Available from the National Technical Information Service, Springfield, Va. 22161

PRICE CODE: PC A07/MF A01

MEASUREMENTS IN THE WAKE OF AN 'INFINITE' SWEPT AIRFOIL

by

C. J. Novak and B. R. Ramaprian

Sponsored by
National Aeronautics and Space Administration
Grants No. NSG-1200 and NAG 2-110

IIHR Report No. 240
Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa 52242
April 1982

Approved for public release; distribution unlimited

MEASUREMENTS IN THE WAKE OF AN 'INFINITE' SWEPT AIRFOIL

by

C. j. Novak and B. R. Ramaprian

Sponsored by
National Aeronautics and Space Administration
Grants No. NSG-1200 and NAG 2-1in.

IIHR Report No. 240
Iowa Institute of Hydraulic Research
The University of Iowa Iowa City, Iowa 52242

April 1982

Approved for public release; distribution unlimited

ABSTRACT

This is a report of the measurements in the trailing edge region as well as in the report of the developing wake tehind a swept NACA 0012 airfoil at zero incidence and a sweep angle of 30 degrees. The measurements include both the mean and turbulent flow properties. The mean flow velocities, flow inclination and static pressure are measured using a calibrated three-hole yaw probe. The measurements of all the relevant Reynolds stress components in the wake are made using a tri-axial hot-wire probe and a digital data processing technique developed by the authors. The development of the three-dmensional near-wake into a nearly two-dimensional far-wake is discussed in the light of the experimental data. A complete set of wake data along with the data on the initial boundary layer in the trailing edge region of the airfoil are tabulated in an appendix to the report.

ACKNOWLEDGEMENTS

The authors wish to thank Professors V.C. Patel and A. Prabhu for many useful discussions. Dr. Prabhu made significant contribution to the development of the triple-sensor \quad rumentation, which is discussed more elaborately in a separate report.
Page
LIST OF TABLES vi
LIST OF FIGURES iii
LIST OF SYMBOLS xi
CHAPTER
I INTRODUCTION 1

1. The Problem Introduced 1
II DEVELOPMENT OF THREE-DIMENSIONAL HOT-WIRE INSTRUMENTATION 5
2. Problem Description and Quantities Requiring Measurement 5
3. Availabie Techniques and a Relative Assessment 5
2.1 Method A 7
2.2 Method B 9
2.3 Method C 11
2.4 Description of the Probe 12
2.5 Signal Processing: Hardware and Software 13
2.6 Accuracy of the Software 14
2.7 Triaxial Hot Wire Probe Calibration 15
2.8 Validation Tests of Hot Wire Anemometry 16
2.9 Test Results 18
2.10 Accuracies 19
III DESCRIPTION OF AIRFOIL EXPERIMENTS 21
4. Coordinate System 22
5. Pressure Measurements on the Airfoil 23
6. Flow Angle Measurement and Calibration 24
7. Experimental Conditions 24
8. Experimental Procedure 25
IV RESULTS AND DISCUSSION 27
9. General 27
10. Mean Flow Measurements 27
11. Integral Parameters 28
12. Growth and Decay of the Velocity Defect and Wake Width 30
13. Self-Similar Velocity Profiles 32.
14. Turbulent Stress Measurement 32
15. Self-Preservation of the Turbulence Profiles 33
16. Eddy Viscosity Results 34
17. The Structure Parameter 35
18. Conclusions 36
REFERENCES 38
APPENDIX TALBE OF EYPERIMENTAL DATA 91

LIST OF TABLES

Table Page
1 Boundary Layer and Wake Traverse Stations 40
Al Symmetric Flat Plate Wake Data ($x=177.8$) using IIHR Probe 94
A2 Alrfoil Boundary Layer Data at $x / L=-.220$ (central plane) 95A3 Airfoil Boundary Layer Data at $x / L=-.124$(central plane)96
A4 Airfoil Boundary Layer Data at $x / L=-.124$(-6" plane)97
A5 Airfoil Boundary Layer Data at $x / L=-.124$ (+6" plane) 98A6 Airfoil Boundary Layer Data at $x / L=-.014$(far side)99
A7 Airfoil. Boundary Layer Data at $x / L=-.014$ (near side) 100
A8 Airfoil Wake Data at $x / L=.014$ (central plane) 101
A9 Airfoil Wake Data at $x / L=.027$ (central plane) 103
A10 Airfoil Wake Data at $x / L=.027$ ($-6^{\prime \prime}$ plane) 104
All Airfoil Wake Data at $x / L=.027$ (+6"'plane) 105
A12 Airfoil Wake Data at $x / L=.041$ (central plane) 106
A13 Airfoil Wake Data at $x / L=.055$ icentral plane) 107
A14 Airfoil Wake Data at $x / L=.138$ (central plane) 112
A15 Airfoil Wake Data at $x / L=.225$ (central plane) 117
Al6 Airfoil Wake Data at $x / L=$. 399 (central plane) 122
Al7 Airfoil Wake Data at $x / L=.661$ (central plane) 123
Al8 Airfoil Wakf, Data $a t x / L=.661$ (+6" plane) 126
Al9 Airfoil Wake Data at $x / L=.661$ ($-6^{\prime \prime}$ plane) 127

A20 Airfoil Wake Data at $x / L=.992$ (central plane) 128
A21 Airfoil Wake Data at $X / L=1.928$ (central plane) 129

LIST OF FIGURES

Figure Page

1. Sensor coordinate system and sensor direction cosines 41
2. Hot-wire probe 42
3. Instrumentation block diagram 43
4. Distribution of $\overline{u v}$ in the flat plate boundary layer at -76.3 mm 44
5. Distribution of u^{\prime} and v^{\prime} in flat plate boundary layer at -76.3 mm 45
6. Distribution of $\bar{u} \bar{v}$ in the flat plate wake at 177.8 mm 46
7. Distribution of u^{\prime} in the flat plate wake at 177.8 mm 47
8. Distribution of v^{\prime} in the flat plate wake at 177.8 mm 48
9. Distribution of w^{\prime} in the flat plate wake at 177.8 mm 49
10. Airfoil cross-section (dimensions in mm) 50
11. Airfoil in tunnel with measurement station locations 51
12. Coefficient of pressure variation on both sides of wing 52
13. Coefficient of pressure variation on both sides of wing on a spanwise basis 53
14. Yaw probe description and calibration 54
15. Static pressure variation across trailing edge and wake 55
16. Boundary layer profiles at $x / L=-.014$ and - . 220 56
17. bundary i•ver profiles at varicus spanwise locations 57
18. Variation of mean longitudinal velocity in the wake 58
19. Variation of mean longitudinal velocity at different jpanwise locations 59
20. Variation of crossflow angle in the wake 60
21. Variation of θ_{11} in the boundary layer and wake 61
22. Variation of θ_{21} in the boundary layer and wake 62
23. Variation of ε_{p} in the boundary layer and wake 63
24. Variation of shape factur in the boundary layer and wake 64
25. Defect velocity $w_{x 0}$ vs. x / θ_{f} 65
26. Half-width b_{x} vs. x / θ_{f} 66
27. Defect velocity $w_{z 0}$ vs. x / θ_{f} in $\log -\log$ coordinates 67
28. Half-width b_{z} vs. x / A_{f} 68
29. Self-similar streamwise velocities 69
30. Self-similar spanwise velocities 70
31. Variation of u^{\prime} across the wake 71
32. Yariation of v^{\prime} across the wake 72
3?. Variation of w^{\prime} across the wake 73
33. Variation of $\overline{\mathrm{UV}}$ across i.. 2 wake 74
34. Variation of $\overline{\mathrm{V}} \mathrm{W}$ across the wake 75
35. Variation of $u w$ arross the wake 76
 77
36. Decay rates of L^{\prime}, ov and VW with respect to x / θ_{f} 78
37. u' in self-preserving coordinates 79
38. uv in self-preserving coordinates 80
39. $\overline{\mathrm{VW}}$ in self-preserving coordinates 81
40. Eddy viscosity ε_{x} in se?f preserving coordinates 82
41. Eddy viscosity ε_{y} in self preserving coordinates 83
42. Recalculation of $\overline{u v}$ using ε_{X} compared to $\overline{u v}$ as determined experimentally: $x / L=.055$ 84
43. Recalculation of $\overline{u v}$ using ε_{x} compared to $\overline{u v}$ as determined experimentally: ${ }^{x} x / L=1.928$ 85
44. Recalculation of $\overline{v w}$ using ε_{x} and ε_{z} compared to $\overline{\mathrm{Vw}}$ as determined experimentaxlly: $x \neq \mathrm{L}=0.55$ 86
45. Recalculation of $\overline{V W}$ using ε_{x} and $\varepsilon_{z^{\prime}}$ compared to VW as determined experimentally: $x / \mathcal{L}=1.928$ 87
46. Structure parameter as calculated from Eqn. (34) (symbols as in figure 43) 88
47. Comparison of structure parameter as calculated from Eqn. (33) and Eqn. (35) 89
48. Recalculated value of $\overline{\mathrm{VW}}$ with $3=.15$ compared to $\overline{\mathrm{VW}}$ obtained experimentally at $x / L=.138$ 90

LIST OF SYMBOLS

a_{i}, b_{i}, c_{i}	Senscr direction cosines $\mathbf{i}=1,2,3$
$A_{2 d}$	Bradshaw structure parameter as calculated in twodimensional case
$A_{3 d}$	Bradshaw structure parameter as calculated in threedimensionai case
A^{\prime}, B^{\prime}	Constants in King's Law
b_{x}	Half width of longitudinal velocity in the wake
b_{z}	Half width of spanwise velocity in the wake
C, L	Airfoil chord length $=922 \mathrm{~mm}$
C_{p}	Pressure coefficient
A_{i}, B_{i}, C_{i}	Variables used in hot wire data analysis, $\boldsymbol{i}=1,2,3$
$\begin{aligned} & a_{4}, b_{4}, c_{6} \\ & d_{4}, e_{4}, f_{4} \end{aligned}$	Constants used in hot wire data analysis
E	Hot wire mean voltage output
H	Shape factor (δ_{1} / θ_{f})
k	Sensitivity correction factor $=.1$
n	Exponent in King's Law
$\bar{Q}_{1}, \bar{Q}_{2}, \bar{Q}_{3}$	Effective mean velocities of sensors 1, 2, and 3, respectively
q_{1}, q_{2}, q_{3}	Fluctuating effective velocities of sensors 1, 2, and 3
Q_{1}, Q_{2}, Q_{3}	Instantanecus effective velocities of sensors 1, 2, and 3
$\bar{U}, \bar{V}, \bar{W}$	Mean velocities in the x, y, and z directions
U,V,W	Instantaneous velocities in x, y, and z directions
$u^{\prime}, v^{\prime}, w^{\prime}$	Root mean squares of u, v, and w
$\mathrm{U}_{\mathrm{n}}, \mathrm{J}_{\infty}$	Constant freestream velocity

$W_{C l}$	W at the centerline
W_{x}	Defect velocity in the longitudinal or chordwise direction
W_{Z}	Defect velocity in the spanwise or crossflow direction
${ }^{\text {wo }}$	w_{x} at the centerline of the wake
w_{20}	w_{z} at the centerline of the wake
e	Fluctuating hot-wire voltage output
u_{τ}	Friction velocity
5	Boundary layer thickness
x, y, z	Streamwise (longitudinal or chordwise), normal and spanwise (crossflow) coordinates
ε_{x}	Eddy viscosity, as calculated from the gradient of U
ε_{z}	Eddy viscosity, as calculated from the gradient of w
θ	Sensor orientation in the $x-z$ plane
4	Sensor orientation in the $y-z$ plane
${ }^{\theta} \mathrm{f}$	Final station momentum thickness (2-0 definition)
θ_{t}	Trailing edge momentum thickness (2-D definition)
${ }^{7} \times$	y / b_{x}
η^{\prime}	${ }^{y /} / b_{x}$
${ }^{5}$	$\int_{-\infty}^{\infty}\left(1-\frac{U}{U_{\infty}}\right) d y$
δ_{2}	$\int_{-\infty}^{\infty}\left(1-\frac{W}{U_{\infty}}\right) d y$
${ }^{8} 11$	$\int_{-\infty}^{\infty} \frac{U}{U_{\infty}}\left(1-\frac{U}{U_{\infty}}\right) d y$
${ }^{*} 22$	$\int \frac{W}{U_{\infty}}\left(1-\frac{W}{U}\right) d y$

$$
\begin{array}{ll}
\theta_{12} & \int \frac{U}{U_{\infty}}\left(1-\frac{W}{U_{\infty}}\right) d y \\
{ }^{\theta} 21 & \int \frac{W}{U_{\infty}}\left(1-\frac{W}{U_{\infty}}\right) d y
\end{array}
$$

$r \quad$ Angle between the velocity vector and the x-direction in the case of the swept air foil
ϕ
Sweep angle of the airfoil

ATTENTION

AS NOTED IN THE NTIS ANNOUNCEMENT, PORTIONS OF THIS REPORT ARE NOT LEGIBLE. HOWEVER, IT IS THE BEST REPRODUCTION AVAIIABLE FROM THE COPY SENT TO NTIS.

CHAPTER I

introduction

1. The Probiem Introduced

There is a growing interest, in recent years, in the development of calculation methods of three dimensional turbulent shear flows such as boundary layers and wakes. This is largely because of their application in aerodynamics and ship hydrodynamics. Calculation of the drag on the swept wing of an aircraft is a typical example. This problem presents many complexities (especially in the trailing edge and near-wake regions) such as viscid-inviscid interaction, three dimensionality and the modeling of turbulence. Computational techniques capable of handling these complexities are currently under development at various research centers. In order to rerify the accuracy of such methods and also to aid the development of new methods, it is essential to have a comprehensive data base on three-dimensional flows in general and three dimensional wake flows with particular reference to the problem cited above. Such data should include information on velocities, pressure and the details of the turbulence properties. Measurement of turbulence properties in three dimensional flows is still a challenging task since the required measurement techniques are only in their early stages of developmeni. Consequently, there is not much data available on the turbulence properties in three dimensional flows. The present research has been aimed at obtaining a set of detailed measurements, in a
relatively simple three-dimensional wake, namely the developing wake behind an infinite swept airfoil. Also as a part of this research program, significant effort has been directed towards the development and validation of a suitable technique for turbulence measurements in three-dimensional flows.

Previous work done in the wake of streamlined bodies have been largely restricted to two-dimensional flows. These include the work of Chevray and Kovasznay (1969), Pot (1979), Andreopoulos and Bradshaw (1980) as well as that of Sastry (1981) in the symmetric and asymmetric wakes of flat plates and airfoils. In these studies, the relevant components of the Reynolds stress tensor have been measured. Computational models have also been developed and used to describe these experimental findings. Of the above, Sastry's studies included the twodimensional wake of a Korn-Garabedian airfoil at incidence. The development of various wake parameters were studied and compared with those in the case of the flat piate wake. It should be noted that most of the data reported by the previous investigators have been restricted to the near or intermediate wake regions.

It is only very recently that experimental studies of wakes 'exhibiting three-dimensionality have been performed. One study, that of Cousteix and Pailhaus (1980) explored the wake behind a swept 'ONERA D' airfoil at incidence. This study contains hot-wire measurement of all the components of the Reynolds stress tensor in addition to data on mean velocities and flow inclination. Similar hot-wire data in the threedimensional wakes of turbomachinery blade have been obtained at Penn State University. These data, however, were obtained under very
difficult experimental conditions, with many uncertainties introduced by such factors as small physical size, probe orientation, probe dimensions, data reduction, etc. The data of Cousteix and Pailhaus (1980) were obtained under more favorable conditions. Yet, even in these experiments, (the airfoil studied had a chord of 200 mm and a span of 300 mm) tunnel wall interference on the wake development could have been significant.

In the present study some of the limitations of the atove experiments have been removed. Present experiments were performed in the wake behind an "infinite" NACA 0012 airfoil swept at 30 degrees, and at zero incidence. Such a flow, being significantly three dimensional, yet relatively simple, is expected to provide useful information on growth rates, viscosity models and other properties of three-dimensional wakes. Also, these flows can be studied with regard to the manner in which they approach two-dimensionality at a large dirtance from the trailing edge.

A complete set of measurements are obtained both in the boundarylayer in the trailing edge region and in the developing wake behind the airfoil. These measurements include pressure distribution, mean velocity components, in the boundary layer and wake. Additionally, the six components of the Reynn?ds shear stress were also measured in the wake. The measurements extend up to two chord lengths downstream from the trailing edge. The turbulence measurements have been made using triplesensor hot-wire anemometry. A significant contribution of this study is the development and validation of a suitable technique for the measurement of turbulence properties using the triple-sensor probe and
a comparative study of alternative techniques. In fact, development of the present technique forms a part of a larger program of study on general three-dimensional boundary layer flows, currently in progress at the Institute of Hydraulic Research.

Chapter II will be devoted to the development of the triple-sensor anemometry. A complete description of the method is presented. Particulars concerning the airfoil experiments such as calibration procedures for hot-wire instrumentation, details of the airfoil fabrication, instrumentation, and mounting are discussed in Chapter III. The results and discussion are presented and discussed in Chapter IV. The effects of three-dimensionality are compared with previous two dimensional experiments and theory. Further, Chapter IV also contains the concluding remarks as well as suggestions toward further work.

CHAPTER II

DEVELOPMENT OF THREE-DIMENSIONAL
HOT-WIRE INSTRUMENTATION
$\frac{\text { 1. Problem Description and Quantities }}{\text { Requiring Measurement }}$
In studies of three-dimensional turbulent flows, it is necessary to measure the instantaneous values of three mutually orthogonal velocities at a given point in space. The instantaneous values will contain three mean velocities as well as three time-dependent or fluctuating velocities. It. is these three instantaneous fluctuating velocity components, in addition to the mean components that require retrieval in this study. This retrieval must be general enough, such that it allows one to study flow fields of arbitrary geometry.

2. Available Techniques and Relative Assessment

Hot-wire anemometry has been the most commonly used instrumentation for velocity measurements especially in three-dimensional flows. Laser velocimetry, which is currently gaining popularity, is complex and not well tested in three-dimensional flows. Two techniques, using hot-wire anemometry have been tried in three-dimensional flows. One of these uses a triple-sensor probe in which there are three independent sensing elements oriented in certain specific relative directions, and the other uses a single sensor or x-wire probe oriented sequentially at different
angles to the flow. The first method, used by Gorton and Lakshminarayana (1976) and others, requires that the predominant direction of flow is known and that the probe axis coincides with it. The three instantaneous outputs u, v, w, from the sensors are then processed by an analog computer which solves for the mean values \bar{U}, \bar{V}, and \bar{W} as well as for the six Reynolds stresses $u^{2}, v^{\prime}, w^{\prime}, \overline{u v}, \overline{v w}$ and $\overline{u w}$ via the soiution of a set of linearized simultaneous equations. One of the drawbacks of this nethod is that, often, there may not be a predominant direction in the flow. Also, nonlinear effects may affect the accuracy of this method.

The second method, used by Elsenaar and Soelsma (1974), consists of 1 single inclined wire probe rotating about it's roll axis. The probe outputs at successive orientations of the probe are used to obtain solutions for the mean velocities and turbulent stresses. Here again, the major difficulties are the need for actual physical rotation of the probe itself and the interference of the probe support system with the flow. Elsenaar and Boelsma have noted this and the associated uncertainties.

Apart from the shortcornings mentioned above, information is lost in these methods during the analog processing for time-averaged results. Thus instantaneous velocities, their triple correlations, and higher order moments cannot be determined.

The method selected for the present study use a triple sensor probe oriented in an arbitrary direction to the flow. The instantaneous outputs from the three sensors are used to obtain not only the three mean velocity components and the six Reynolds stresses but also the instantaneous fluctuating velocity components. This is done through
digital da :a acquisition software. Two alternate schemes were developed for comparison purposes. Each of these is described below in detail.

2.1 Method A

Figure 1 shows the probe and flow coordinate system. Consider hot wire sensor 1 with respect to the X, Y, Z (flow) coordinate system. This sensor has an orthogonal coordinate system $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ associated with its orientation. We, then, have

$$
\begin{align*}
& \left(Q_{1}\right)=a_{1} U+b_{1} V+c_{1} W \tag{1}\\
& \left(Q_{2}\right)=a_{2} U+b_{2} V+c_{2} W \tag{2}\\
& \left(Q_{3}\right)=a_{3} U+b_{3} V+c_{3} W \tag{3}
\end{align*}
$$

where Q_{1}, Q_{2} and Q_{3} are the instantaneous velocitics in the $\zeta_{i}, \zeta_{2}, \zeta_{3}$ coordinate system, and U, V, and W are the instantaneous velocities in the X, Y, and Z coordinate system. The coefficients $a_{j}, b_{p}, c_{1}, \ldots$, are the appropriate direction cosines of the X, Y, and Z axis with respect to the $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ coordinate system as shown in figure 1.

The effective velocity sensed by hot wire sensor 1 is given by [see for example Friehe and Schwarz (1968)]

$$
\begin{equation*}
Q_{1}=\left[\left(Q_{2}\right)^{2}+\left(Q_{3}\right)^{2}+k_{1}^{2}\left(Q_{1}\right)^{2}\right]^{1 / 2} \tag{4}
\end{equation*}
$$

with k_{1} being the cross-sensitivity factor associated with deviation from the cosine law. Q_{1} is obtained from the voltage output E_{1} of the sensor 1, via its calibration curve. Now, if we substitute Eq. (1,2,3) Into Eq. (4), the resulting expression becomes

$$
\begin{equation*}
Q_{1}=\left[a_{4} U^{2}+b_{4} v^{2}+c_{4} W^{2}+d_{4} U V+e_{4} U W+f_{4} W W\right]^{1 / 2} \tag{5}
\end{equation*}
$$

The coefficients in the above equations are:

$$
\begin{align*}
& a_{4}=a_{2}^{2}+a_{3}^{2}+k_{1}^{2} a_{1}^{2} \tag{6}\\
& b_{4}=b_{2}^{2}+b_{3}^{2}+k_{1}^{2} b_{1}^{2} \tag{7}\\
& c_{4}=c_{2}^{2}+b_{3}^{2}+k_{1}^{2} c_{1}^{2} \tag{8}\\
& d_{4}=2\left(a_{2} b_{2}+a_{3} b_{3}+k_{1}^{2} a_{1} b_{1}\right) \tag{9}\\
& e_{4}=2\left(a_{2} c_{2}+a_{2} c_{3}+k_{1}^{2} a_{1} c_{1}\right) \tag{10}\\
& f_{4}=2\left(b_{2} c_{2}+b_{3} c_{3}+k_{1}^{2} b_{1} c_{1}\right) \tag{11}
\end{align*}
$$

Similar expressions can be derived for sensors 2 and 3. One, then gets a set of three nonlinear algebraic equations for the three unknowns U, V, and W. These require solution by an iterative scheme. The method used is a Newton-Raphson scheme, which requires an initial guess to start the algorithm.

In practice, the instantaneous outputs E_{1}, E_{2} and E_{3} of the three sensors are sampled, digitized and stored. These data are later recalled, calibrated and the velocity components U, V, W are computed on an instant to instant basis using the above procedure. After the entire set of instantaneous velocity components are evaluated, they are time averaged to obtain \bar{U}, \bar{V}, and \bar{W}. The turbulent fluctuations, u, v, and w are then recovered and stored for subsequent procezsing. Since this method involves the solution of nonlinear equations, for each set of instantaneously sampled data, it is computationally very time-consuming and expensive. However, it does not involve any linearization and can therefore be used even for very large fluctuations.

2.2 Method B

In this method the effective velocities and resultant velocities are both decomposed into their mean and fluctuating components. Eqs. (1-3), thei,, become:

$$
\begin{align*}
& (\bar{Q}+q)_{1}=a_{1}(\bar{U}+u)+b_{1}(\bar{V}+v)+c_{1}(\bar{W}+w) \tag{12}\\
& (\bar{Q}+q)_{2}=a_{2}(\bar{U}+u)+b_{2}(\bar{V}+v)+c_{2}(\bar{W}+w) \tag{13}\\
& (\bar{Q}+q)_{3}+a_{3}(\bar{U}+u)+b_{3}(\bar{V}+v)+c_{3}(\bar{W}+w) \tag{14}
\end{align*}
$$

Now, if they are substituted into Eq. (4), we get

$$
\begin{align*}
& {\left[\left(a_{4} \bar{J}^{2}+b_{4} \bar{v}^{2}+c_{4} \bar{W}^{2}+d_{4} \overline{u v}+e_{4} \overline{U W}+f_{4} \overline{V W}\right)+\right.} \\
& \quad+\left(2 a_{4} \bar{u} u+2 b_{4} \overline{V_{v}}+2 c_{4} \bar{W} w+d_{4}(\bar{u} v+\bar{V} u)+e_{4}(\bar{u} w+\bar{W} u)+f_{4}\left(\overline{W_{w}} \bar{W} \bar{W}\right)\right. \\
& \left.\quad+\left(a_{4} u^{2}+b_{4} v^{2}+c_{4} w^{2}+d_{4} u v+c_{4} u w+d_{4} u v+c_{4} u w+f_{4} u w\right)\right] \\
& \quad=(\bar{Q}+q)_{1} \tag{15}
\end{align*}
$$

which can be written (collecting terms from Eq. 15 such that A_{7} contains \bar{W} terms, B_{1} contains terms as $\overline{\mathrm{V}}$, and C_{1} contains uv terms):

$$
\begin{equation*}
\bar{Q}_{1}+q_{1}=\left[r_{1}+B_{1}+c_{1}\right]^{1 / 2} \tag{16}
\end{equation*}
$$

If we assume that $B_{1}+C_{1} \leq A_{1}$, we can linearize Eq. (16) as

$$
\begin{equation*}
\bar{Q}_{1}+G_{1}=A_{1}^{1 / 2}\left[1+\frac{B_{1}+C_{1}}{2 A_{1}}-\frac{1}{8} \frac{\left(B_{1}+C_{1}\right)^{2}}{A_{1}}+\ldots\right] \tag{17}
\end{equation*}
$$

Squaring Eq. (16), time-āveraging and neglecting terms of higher order, the resulting expressions for hot-wire sensor 1 in terms of thie mean and fluctuating velocity components are

$$
\begin{align*}
\bar{Q}_{1}^{2} & =a_{4} \bar{U}^{2}+b_{4} \bar{V}^{2}+c_{4} \bar{W}^{2}+d_{4} \overline{U V}+e_{4} \overline{U W}+f_{4} \overline{V U} \tag{18}\\
q_{1} & =\frac{1}{2 A_{1} 1 / 2}\left[u\left(2 a_{4} \bar{U}+d_{4} \bar{V}+e_{4} \bar{W}\right)+v\left(2 b_{4} \bar{V}+d_{4} \bar{U}+f_{4} \bar{W}\right)+\right. \\
& \left.+w\left(2 c_{4} \bar{W}+e_{4} \bar{U}+f_{4} \bar{V}\right)\right] . \tag{19}
\end{align*}
$$

$$
\begin{equation*}
=\frac{1}{2 A_{1} / / 2}\left(u P_{1}+v S_{1}+w F_{1}\right) \tag{20}
\end{equation*}
$$

where P_{1}, R_{1} and S_{1} denote the terms in parentheses in Eq. (19). Simultaneous so'ution of the tiree nonlinear algebraic equation like Eq. (: 8) will directiy yie!d the mean velocity components \bar{U}, \bar{V}, and \bar{W}. Now, looking at (20) we find that it contains, as constants, the oredetermined mean velocities and those of geometry. The variables remaining are the instantancous fluctuations about the mean. Eq. (20) and the corresponding equations for the other two sensors will again yield three Tinear equations for the instantaneous turbulence velocities. Thus, the instantanecus details can be recovered in this methed aiso, as was done in Hethod A. Since the equations for u, v, w are linear in nature, this procedure requ res much less computer time (less by an order of 10) than method A, and also ensures absoluce convergence. However, it should be reminded that this method involves the process of linearization and is therefore acceptable only for flow situations wher the linearization assumption is valid.

2.3 Method C

If we consider Eq. (20) again, square it and time-average, we get

$$
\begin{align*}
\bar{q}_{1}^{2} & =\frac{1}{4 A_{1}}\left[u^{2} p_{1}^{2}+\bar{v}^{2} S_{1}^{2}+\bar{w}^{2} R_{1}^{2}+2 \overline{u v} p_{1} \xi_{1}+2 \overline{u w} p_{1} R_{1}+\right. \\
& +2 \bar{v} v S_{1} R_{1} ; \tag{21}
\end{align*}
$$

Also for the effective shear stresses, the resulting expression is

$$
\begin{gather*}
\bar{q}_{1} q_{2}=\frac{1}{4 A_{1} 1 / 2 A_{2}^{1 / 2}}\left[\bar{u}^{2} P_{1} P_{2}+\bar{v}^{2} S_{1} S_{2}+\bar{w}^{2} R_{1} R_{2}+\overline{u v}\left(P_{1} S_{2}+\right.\right. \\
\left.\left.P_{2} S_{1}\right)+\overline{u w}\left(P_{1} R_{2}+P_{2} R_{1}\right)+\overline{v w}\left(S_{1} R_{2}+S_{2} R_{1}\right)\right] \tag{22}
\end{gather*}
$$

Similarly, one can obtain two such equations for each of the other two sensors. There would be a set of six linear algebraic equations with known coefficients, which can be solved once for all, for the six Reynold's stress components $\overline{u^{2}}, \overline{v^{2}}, \overline{w^{2}}, \overline{u v}, \overline{v w}$, and $\overline{u w}$ in terms of the corresponding effective components as sensed by the three sensors. This method does not allow the instantaneous u, v, and w values to be recovered. It is, however, very economical computationally. This procedure is very similar to that used by Gorton and Lakshminarayana (1976), and has been used in the present studies chiefly to provide a comparison with methods A and B. In fact, the linearization assumption implied in this is less restrictive than in the method of Gorton and Lakshminayama.

2.4 Description of the Probe

Two prubes were used for the test of the methodology and softriare. One of these (Probe 1) was developed in house and the other (Probe 2) was a commercial probe, Disa triaxial hot-wire probe. Probe 1 has dimensions and sensor orientation, as shown in Fig. 2a. It can be seen that the ratio of probe diameter to sensor support length is such that significant probe interference may be present. This probe was a first attempt at constructing a 3 -wire probe at the Institute. The Disa
probe, Fig. 2b, has a much longer sensor support as well as a small head diameter. Sensing elements in the Disa probe sense over the central 1.25 mm , whereas the in-house probe senses over its entire length (approximately 2.1 mm). This is due to the fact that the Disa sensor is a gold plated tungsten wire of 5 micron diameter, with the central portion etched to give a 1.25 mm sensing length. The in-house sensor is a bare platinum-rhodium wire of the same diameter. It is obvious that the spatial resolution of the Disa probe is much better. However, for flow measurement where spatial resolution was not crucial, the inhouse probe proved to be quite adequate.

2.5 Signal Processing: Hardware and Software

Each hot-wire sensor of the triaxiai probe was operated by a Disa model 55 M 10 constant temperature anemometer. These instantaneous output voltages from the three anemometers were filtered using a high pass filter of $36 \mathrm{db} / o c t a v e$ roll-off, set at 0.1 Hz . The voltage signals were then amplified by 3 Preston SW 8300 amplifiers and sampled at a rate of 50 samples per second for 50 seconds by a Preston GMAD-3 analog to digital converter (with a 3-channel'sample and hold' front end). The data were stored on disk file on an HP-1000 minicomputer. At the end of the experiment the data were recalled from the disk file and processed to obtain the velocities. A block diagram of the instrumentation is shown in Fig. 3.

The computer program used for data acquisition records the time and date when the samples were taken. This information is used to apply corrections for sma!l drifts in probe calibration caused by temperature
changes in the tunnel and probe contamination. This is done by calibrating the probe at the beginning and end of the experiment and applying a simple linear correction to the calibration coefficients with respect to time. The corrected calibration constants are then used to convert the voltages to effective velocities in each case. Time-associated changes in the calibration for the hot-wire anemometry are therefore eliminated.

Double precision arithmeti, was used in calculating accumulated sums while computing average valuse where the numerics were suspected to exceed the single precision register size. This way, round-off and truncation errors were held to a minimum. Any errors still remaining have to be associated with the uncertainties in the overall process (i.e., probe orientation, tunnel speed, ... etc).

2.6 Accuracy of the Software

The stability of the Newton-Raphson algorithm used in Method A depends on the "closeness" of the initial velocity quesses as well as the convergence criteria specified. Tests on the program itself were performed to provide values of accuracy and reliability. In these tests, dummy values for the effective velocities, computed (independently) for a set of known velocities, were input to the program. The resultant velocities output by the program were compared with the correct values. It was found, that, in each case, the dlgorithm converged to the correct value in approximately 5 iterations with a convergence criterion of one
part in one thousand. The initial guess needed to be only of the same order of magnitude as the final converged correct value. In order to make the scheme converge quicker, the equations were analyzed and certain characteristics were noted. The predominant term in the three equations (Eqs. 5), were those that involved the U^{2} terms and if the effective velocities were averaged and divided by the sum of the coefficients the resultant velocity was found to be within 2% of the final value. For the other two velocities the relative magnitudes of the effective velocities were noted and the appropriate sign for one of the two could be recovered. The remaining velocity was guessed as the mean of all the velocities in that direction by averaging first the effective velocities and then using that solution as the starting point for the discrete solution in question. Furthermore, a relaxation factor was applied to U such that instabilities were damped. These techniques helped in arriving at the final result for the particular sample set. However, if convergence was not achieved, the set would be discarded and calculation would proceed to the next sample set. This dropout rate would be recorded and later examined to decide whether or not the results should be accepted. Typical dropout rates were .05 pir cent.

2.7 Triaxial Hoi Wire Probe Calibration

Each sensor of the probe was calibrated at the beginning and end of an experiment. The probe was traversed to the freestream in the wind tunnel with the probe axis aligned with the flow direction. This condition represents a limiting case for the three simultaneous equations, namely the equivalent velocities sensed by each sensor must be equal.

- This is true, of course, if the sensors are all symmetrically oriented with respect to the probe axis. A computer program was developed exclusively for probe calibration.

For the hot-wire anemometer, the output voltage across the sensor varies as a function of velocity, this variation being given by the well-known King's law. This law most commonly takes the form

$$
\begin{equation*}
E^{2}=A+B V^{n} \tag{23}
\end{equation*}
$$

where n is generally between . 45 and .55 .
The computer program developed would sample the sensor output at 50 samples per second for 50 seconds. These vaiues were time averaged to obtain E. The calibration was carried out at several wind tunnel velocities. The computer program would fit Eq. (23) to these data by a least square procedure. This method of calibration required a minimum amount of time due to the fact that the three sensors were calibrated simultaneously.

2.8 Validation Tests of Hot Wire Anemometry

Two of the well known two-dimensional flow fields, namely, a flat plate boundary layer and a wake were used to validate the performance of the triple-sensor probe and the related software and hardware. The results obtained by the methods A, B, and C, in each case were compared with those obtained earlier in the same flow with a conventional x-wire probe by Sastry (1981). In the case of the flat plate boundary layer
measurements, the triaxial probe results were also compared with the data of Klebannof (1955). In this situation, however, only the in-house probe was tested.

The flat plate used by Sastry (1981) was mounted as in the earlier experiments. Velocity traverses were made in the boundary layer (at -76.3 mm from the leading edge), and in the wake (at 177.8 mm from the trailing edge). Various tests were then performed on the probe and the software to determine uncertainties, accuracies, as well as the sensitivity to errors in nrientation of the probes with respect to the flow field. Effect of sample sizes and rates on drop out rates (in Method A) and accuracy was also studied.

Sensor orientation angles were measured to be within $\pm 1^{\circ}$ in the θ plane and $\pm 3^{\circ}$ in the ψ plane (see Fig. 1). Effects of uncertainties in probe orientation were estimated by sirulating these uncertainties in probe yaw, pitch and roll in the processing algorithm. Values determined from the adjusted geometric inputs deviated from the best known inputs substantially enough (approximately 5 to 10%) to verify the uncertainty ranges and their centers. Sample size and rates were varied also to find an efficient rate and size. The values used by Sastry (1981) were rechecked to see if such rates and si es were adequate for the three dimensional probe, and were, in fact, found to be so. The convergence criterion specified for the Newton-Raphson scheme was $0 . i \%$ of the freestream velocity, and further constraining (reducing the value) resulted in negligible changes (less than 2%) in the shear stresses (the most sensitive of the results).

2.9 Test F.zsults

It is seen from Fig. 4 that at $y / \delta=.2$ in the boundary layer, the predominant turbulent shear stress $\overline{\mathrm{UV}}$ (obtained by Method A) is 25% below the data of Klebanoff (1955), whereas the results obtained by Method C, developed by the authors and very similar to that of Gorton and Lakshimaryana (1976) appear to agree very well with the data of Klebanoff. Intensities u^{\prime} and v^{\prime} determined by Method A or C show smaller departures from the data of Klebanoff than in the case of the shear stress $\overline{\mathrm{uv}}$ (see Fig. 5). Hoivever, the most disturbing observation was that the nonprincipal shear stresses $\overline{u v}$ and $\overline{v w}$ (which should be zero) were found to be as large as the principal component $\overline{\mathrm{uv}}$ at some y locations. Results in the wake (shown in Table Al) for the in-house probe were found to be even worse in this regard, even though values for the principal stress $\overline{u v}$, were found to be of proper magnitude and to deviate by less than 20% from those of Sastry (1981).

The Disa triaxial probe 55 Pg 1 was traversed only in the wake because of probe support and mounting problems encountered in the boundary layer traverse. Principal shear stress component $\overline{u v}$, shown in Fig. 6 is in good agreement with the previous measurements. However, it was found that even though the nonprincipal stresses had decreased substantially in comparison with the inhouse probe, they are still as high as 30% of $\overline{u v}_{\max }$ in the worst case. Also shown for this case is a comparison of the three methods of data reduction presented earlier. It is seen that methods A and B agree well with each other and also with the data of Sastry (1981), especially in the evaluation of $\overline{u v}$. On the other hand, the time-averaged method C , while still giving good results
for u^{\prime}, v^{\prime}, and w^{\prime}, estimates the shear stresses very poorly (see Figs: $6,7,8,9)$. Since method B takes about $1 / 10$ the computer time of method A and shows comparable accuracy, it is concluded that this is the most useful procedure for data reduction.

Looking at the spatial resolution of the two probes, Disa 55P91 and the in-house probe, and the corresponding values of the $\overline{v w}$ and $\overline{u w} o b-$ tained using them provides some insight into the requirements for threedimensional flow measurement. The in-house probe with a spatial resolution of approximately 5 mm has failed to determine turbulent quantities in the moderately high shear regions. On the other hand, the DISA 55P91 probe with a resolution of 3.2 mm has given better results. It is therefore recommended that a probe of even smaller size (such as the custom made Disa subminiature triaxial probe with a resolution of 1.2 mm) be used in future measurements. It is felt that such a probe is needed to measure $\overline{u w}$ and $\overline{v w}$ to a better level of accuracy.

2.10 Accuracies

An uncertainty of $\pm .007$ meters per second, due to micromanometer error, is inherent in the calibration procedure. Other uncertainties are associated with the software as well as with probe size and orientation. The convergence criteria for velocities in the software is less than . 007 U . This is the maximum uncertainty associated with software, hence, remaining inaccuracies are best described as being well within the uncertainty associated with geometry. However, in high shear regions, the errors extend beyond this and are due to size and displacement effects. Those errors due to misalignment and sensor angle error are approximately $.5 \%$
in the mean velocity components and 5% and 15% for the intensitites and shear stresses respectively. However, because of the finite size, the accuracies are reduced even further. While the probe size effect is not significant on the intensities $u^{\prime}, v^{\prime}, w^{\prime}$, the estimated values of $\overline{v w}$ and $\overline{u w}$ may be in erior by as much $3 \pm 35 \%$ of $\overline{u v}_{\text {max }}$.

CHAPTER III

DESCRIPTION OF AIRFOIL EXPERIMENTS

In selecting a suitable airfoil for the study, several design requirements had to be satisfied before construction could begin. The test section of the wind tunnel used is octogonal throughout, with a distance of 1.67 m between the flats. This dimension provided the constraint for the span of the airfoil. The requirement of 'infinite' spail condition; restricted the maximum chord. By combining these two constraints with the range of velocities possible in the wind tunnel used, the sweep angle, span and chord could be specified.

The profile selected is the NACA 0012 symmetric airfoil - a well studied profile. For the purpose of fabrication the coordinates describing the profile geometry were taker, fror Abott and Van Joenhoff (1059).

A sweep angle of 30° was chosen, so that a sizeable crossflow component would be present at the trailing edge. The construction of the airfoil is shown in Fig. 10. Blocks of aluminum, milled to size, were secured to a central frame 12.5 mm thick aluminum plate, to form spanwise ribs. A wooden nose cone was attached to the central frame with pressure taps on both sides. Two aluminum sheets (0.75 mm) used as skins, were wrapped around the aluminum blocks on each side of the frame and were feathered to give a nominal trailing edge thickness of 1 mm . Pressure taps of 1.2 mm diameter (totaling 92) were provided on both sides
of the airfoil along midspan, and along two cff-mid span planes 15 cm away on either side of the midspan plane.

The airfoil was mounted in the wind tunnel with its spanwise direction located 30° from vertical. A false floor and boundary layer fence were used to remove end-wa?l boundary effects. This provided conditions close to the desired infinite airfoil configuration (see Fig. 11). Tubing and other mounting fixtures were concealed so as not to affect the flow under measurement. Flow visualization studies made, using wool tufts did not indicate any areas of separation or tunrel-wall effects. These tests also showed that the fence had no appreciable effect on the flow and hence was not used during the main experiments.

1. Coordinate System

The coordinate system used is a right handed orthogonal system, the freestream velocity direction corresponding to the x-direction. The y direction is normal to the airfoil surface and towards the near wall of the tunnel. The z-direction is perpendicular to the tunnel ceiling. This system is shown in Fig. 10 and it should be noted that the sensor's direction cosines are referenced to this system.

Traversing the $\dot{\text { u }}$ oundary layer and wake in the y-direction was accomplished by a servo-controlled stepping notor with a range of 20 cm and ar accuracy of .025 mm . The traverse is movi.ble in the x-direction for the longitudinal repositioning. A list of traverse stations and their locations are shown in Table 1.

2. Pressure Measurements on the Airfoil

Measurements of static pressure were used to insure that the airfoil was mounted at zero incidence, and more importantly to provide the ą:ual pressure distribution on the airfoil. A total of 92 pressure taps were used for this purpose. In the midpları of measurement, 22 taps were located on each side of the airfoil with additional 11 taps $\pm 15 \mathrm{~cm}$ from the midplane. These were also located on both sides of the airfoil.

To perform the measurements a 48-port-selecting scani-valve was used in conjunction with an alcohol micromanometer. The micromanometer had an accuracy of .025 mm and was used for monitoring tunnel speed as well as measuring the static pressure.

Static pressure taps on the two sides of the airfoil and directly opposite to each other were used for initial alignment of the airfoil. For a further and more accurate check on alignment complete scans of all the pressure taps were made at a tunnel speed of 21.84 meters per second. The coefficients of pressure, C_{p}, defined as

$$
\begin{equation*}
C_{p}=\frac{P-P_{\infty}}{\frac{1}{2} \rho U_{\infty}^{2}} \tag{24}
\end{equation*}
$$

are shown in Figs. 12 and 13. It is seen that the static pressure distributions at the three spanwise locations coincide reasonably well. This is an indication that the airfoil can be considered to be nearly 'infinite' in span. However, it should be noted that this test will be
pressure, which, according to Bussman and Ulrich (see Schlichting (1974)) is the region where natural transition occurs on an NACA 0012 airfoil. Past experience at the Institute has shown that sand paper strips perform better than trip wires often used for this purpose. With this tripping, the boundary layer on the airfoil was found to be fully turbulent and the Reynolds number based on the momentum thickness at 2.5 cm upstream of the trailing ed! :vas 7280.

5. Experimental Procedure

The wind tunnel was started and allowed to warm up before starting the experiment. Typically, the temperature rise over the duration of an experiment was of the order of $1^{\circ} \mathrm{C}$. First, yaw probe traverses were made in the bcundary layer and wake. These included profiles on either side of the airfoil to check for symmetry and profiles at spanwise locations 15 cm above and below the midspan plane to check for infinite conditions. These locations are indicated in Table 1, referred to eariier. The yaw probe traverses were followed by traverses of the Disa 55p9i triaxial hot-wire probe in the wake. Location of the wake centerline was inferred from the minimum in :he velocity distribution across the wake.

Uncertainty in the velocity measurements is estimated to be 2%. Static pressure is considered to be accurate within 15-20\% and the flow angle within 0.5°. Hot wire uncertainties are primarily due to errors in probe alignment and resolution. Preset yaw is expected to be less than $+0.5^{\circ}$ and : freset error in pitch is likely to be less than $+2^{\circ}$. Inaccuracies in probe manufacturing were of the order of 2° as determined by direct measurement through a steroscope with a graduated reticie. Roll
inaccuracies were eiminated through the Disa type mounting that fixed the roll axis to the traversing mechanism. The overall uncertainties in the turbulence measurement were $u^{\prime}, v^{\prime}, w^{\prime}: 5 \%, \overline{\mathrm{Lv}}: 15 \%, \overline{\mathrm{vw}}: 30 \%$. The uncertainties in the $\overline{u w}$ were too large to be acceptable. Hence, these data are not discussed in this report. Further miniaturization of the probe is necessary in order to improve these results. Also not used in the discussion are the data on the various triple correlations such as $\overline{u^{3}}, \overline{u^{2} v}$, etc., since their accuracy has not been established so far. All the data are, however, reported in the Appendix, for the purpose of documentation.
followed by boundary layer traverses in "the midplane" and "off-planes" for this aspect to be further verified.

3. Flow Pigle Measurement and Calibration

Magnitude and cirection of the velocity vector were determined by a directionally sensitive thee-hole yaw probe. This probe of similar type and size to thrt used by Ramaprian, Patel, and Choi (1978) and was calibrated in, a similar manner. However, several changes were made to make the calioration more accurate. The probe was also caiibrator to yield the local static pressure, in addition to the magnitude and direction of the velocity. Details of this calibration, inciuding probe dimensions are shown in Fig. 14. The yaw probe outputs we read via a set of three STATHAM pressure transducers, amplified, scanned, digitized and reco:-ded by the HP/ 1000 computer. The results were averaged over 20 seconds to obtain the mean pressure for each tube. The transducer calibration was repeated several, times each day to see if the instrumentation and methodology used ensured repeatability.

4. Experimental Conditions

The experiments were performed at a tunnel velocity of about 22 meters per second corresponding to a trailing edge Reynol is number of approximately 1.36×10^{6}. To fix transition te t.jrbulence, a boundary layer 'trip' consisting of a strip of 20 -grid sand japer, 15 cm wide and extending over the entire span, was glued to the surface on boch sides of the airfoil at a distance of 20 cm from the leading edge. The location of the sand paper corresponds roughly to the region of lowest

CHAPTER IV
 RESULTS AND DISCUSSION

1. General

The results of the experiments are presented and discussed in this chapter. A complete set of tabulated experimental data is provided in Appendix A.
2. Mear: Flow Measurements

The variation of static pressure across the tr: ? ing edge boundary layer and wake is shown in Fig. 15 . It is interesting to see that the static pressure varies across the wake and reaches a maximum value at the wake centerline. This trend persists mildly even at the last measuring s+ation in the wake. This observation confirms similar otservations made by Sastry (1981) in the developing two-dimensional wake of an airfoil. The static pressure variation across the wake can be viewed as the result of the interaction among the boundary layer, wake and the external inviscid flow. These data should, therefore, provide a good test case for interactive calculation methods.

Figure 16 shows the distributions of the longitudinal velocity component U across the boundary layer in the trailing edge region. Specifically, the velocity profiles at $x / L=-0.220$ and $x / L=-0.014$ are shown. It is seen that these profiles, especially the latter, resemble a typical distribution in a moderate adverse pressure gradient. The
profile does not show any evidence of flow separation. The variation of the crossflow angle γ in the boundary layer at the same locations are also shown in Fig. 16. It is seen that the crossflow increases towards the trailing edge. Also, at the trailing edge, the crossflow is strong ! $\gamma=15^{\circ}$) pmough to introduce significant three-dimensional effects into the wake flow. Furthermore, at $x / L=-.124$, spanwise variations in the boundary layer are seen to be small (see Fig. 17).

Figures 18 and 19 show the distributions across the wake of the chordwise velocity component. A close study of these profiies shows that there is slight asymmetry in the flow. The reason for this is not known. Also, the profile at the last station has been shown only for half of the wake since the traverse could not be extended to cover the other half of the wake at this station. The crossflow angle, (γ) profiles across the wake shown in Fig. 20 exhibit similar properties as the chordwise velocity profiles, namely decay of the crossflow angle and the increase in spread with distance downstream. It is also seen that at the last measuring station, the crossflow is verv small, indicating that the mean flow is virtually two-dimensional beyond this point.

3. Integral Parameters

We now define the foliowing integral parameters for the wake:

$$
\begin{align*}
& \text { displacement thickness } \delta_{1}=\int_{-\infty}^{\infty}\left(1-\frac{U}{U_{\infty}}\right) d y \tag{25}\\
& \text { momentum thickness } \theta_{11}=\int_{-\infty}^{\infty} \frac{U}{U_{\infty}}\left(1-\frac{U}{U_{\infty}}\right) d y \tag{26}
\end{align*}
$$

momentum thickness $\theta_{21}=\int_{-\infty}^{\infty} \frac{W}{U_{\infty}}\left(1-\frac{U}{U_{\infty}}\right) d y$
shape factor $\quad H=\frac{\delta_{1}}{\theta_{11}}$
The distributions of these parameters with dcwnstream distance are shown in Figs 19-22. First, Fig. 21 shows the variation of θ_{11}. In this figure the reference length scale used is the momentum thickness ${ }_{f}$ at the far wake, defined as

$$
{ }^{\theta_{\mathrm{f}}}={ }^{\theta} 11 \text { at the last measurement location }
$$

From Fig. 21 certain aspects concerning the flow may be noted. Clearly, the momentum thickness increases in the boundary layer due to the adverse pressure gradient. There is a small increase in ${ }^{9} 11$ again in the very near wake due to the finite thickness of the trailing edge of the airfoil. Continuing into the wake we see a gradual decrease of θ_{11} brought about by the combined contributions from the favorable longitudinal pressure gradient and the rotation of the velocity vector towards the streamwise direction. The effect of the gradual weakening of three-dimensionality in the flow is also seen from Fig. 22 which shows that the momentum deficit thickness θ_{21} decreases nearly to zero at the last station. Unfortunately, measurements could not continue beyond $x / L=1.928$. It is assumed that the flow will be two-dimensional beyond this distance and hence θ_{11} will remain constant at its value θ_{f} at the last station. This value is, therefore, used as the reference length scale in the rest of the figures.

Figure 23 shows the variation of the displacement thickness along the streamwise direction. The initial increase in the boundary layer is caused again by the adverse pressure gradient in the trailing edge region. Subsequent reduction in δ_{i} is primarily due to the evolution oi the wakelike profile from the original boundary-layer-lik? profile. This trend is, of course, also influenced by factors such as the prevailing favorable pressure gradient and gradual decay of three-dimensionality. The changes in profile shape are more clearly seen from Fig. 24 , winch shows the variation of the shape factor H with θ_{f}. It is seen that the shape factor, at the trailing edge, has a value of about 1.5 , indicating that tine boundary layer is only under a moderate adverse pressure gradient. The shape factor is seen to drop quick', and at $x / \theta_{f}=326$, is only slightly greater than 1, its asymptotic value at very large distances.

4. Growth and Decay of the Velocity Defect and Wake Width

The decay of the maximum longitudinal yelocity defect $w_{x 0}$ is shown in Fig. 25 in the usual coordinates used for two-dimensional wakes. The distance downstream is normalized with θ_{f}. Also shown in the figure is the asymptotic decay law [See Sastry (1981)].

$$
\begin{equation*}
\left(\frac{U_{\infty}}{w_{x 0}}\right)^{2}=.4\left(\frac{x}{\theta_{f}}\right) \tag{29}
\end{equation*}
$$

for two-dimensional far-wake. The data seem to indicate that the decay rate approaches this law near the farthest downstream station $\left(x / \theta_{f}=326\right)$. Likewise, Fig. 26 shows the half-width of the wake again plotted in the
usual two-dimensional coordinates. The theoretical two-dimensional far-wake behavior given by [Sastry (1981)].

$$
\begin{equation*}
\left(\frac{b_{x}}{\theta_{f}}\right)^{2}=.355\left(x / \theta_{f}\right) \tag{30}
\end{equation*}
$$

is also shown in the figure. The wake width does not show any clear signs of approach to two-dinensional far-wake state, though changes in slope qualitatively resemble two-dimensicnal flow results. In Figure 25, if the dotted line can be assumed to repiresent the decay process at large distances, it intersects the x-axis, at a virtual origin corresponding to $x / \theta_{f}=70$. If, this point is joined to the last data point in Fig. 26 the line is approximately parallel to the asymptotic growth line. This is a very rough indication that the wake has perhaps reached very nearly the two-dimensional far-wake state at $x / \theta_{f}=326$. This observation is in conformity with the findings of Sastry (1981), who inferred that the two-dimensional wake behind a flat plate reaches an asymptotic state around $x / \theta_{f}=350$. The present data, are inadequate to confirm this definitively. More closely spaced data as well as data extending further downstream are needed to substantiate the present observations.

Figures 27 and 28 show the corresponding decay and growth rates of parameters $w_{z 0}$ and b_{z}, the maximum defect velocity in the z-direction and half-width of this profile. The velocity defect in this case is normalized by $U_{\infty} \sin \phi$ (where ϕ is the swend angle), since this is the maximum value that w_{z} can attain. It is seen that the crossflow defect velocity decays very rapidly compared to the longitudinal velocity. The wake half-width behaves qualitatively like b_{x} but is seen to be much larger.

5. Self Similar Velocity Profiles

The velocity data plotted in the conventional self-similar coordinates are shown in Figs. 29 and 30. In Fig. 29 showing the streamwise velocities, it is seen that beyond $\quad x / L=0.138\left(x / \theta_{f}=23.4\right)$ the profiles become very nearly self-similar and that the profiles follow closely the profile for asymptotic two-dimensional far-wakes. The spanwise velocity profiles shown in Fig. 30 also appear to approach selfsimilarity. Compared to the $w_{x o}$ profile, however, the half-width of this self-similar profile is approximately 25% larger.

6. Turbulent Stress Measurement

The turbulence quantities measured using the three-dimensional hot wire probe can be analyzed in different ways. First of all, the three intensities $u^{\prime}, v^{\prime}, w^{\prime}$ and the three shear stresses $\overline{u v}, \overline{u w}$ and $\overline{v w}$ are normalized with respect to the freestream velocity so tha - general trends may be observed. These results are shown in Figs. 31 thru 36. In general, the intensities are of similar magnitude and behave in a similar way. This indicates that the turbulence is not too far from isotropy. Furthermore, in Figs. 31, 32, and 33 it is seen that the profiles exhibit a minimum in the center and are fairly symmetric about the wake centerline. The shear stresses $\overline{u v}, \overline{v w}$ and $\overline{u w}$ are shown in Figs. 34, 35 and 36 . It is seen that $\overline{u v}$ and $\overline{\mathrm{w}} \mathrm{W}$ arenearly anti-symmetric about the wake centerline changing sign as expected. In contrast, however $\overline{u w}$ measurements are considerably in error. This stress has almost the same magnitude as $\overline{\mathrm{vw}}$. This trend is similar to that observed during the validation tests in the flat plate wake mentioned earlier. The ratio of $\overline{v w}$ to $\overline{u v}$ is shown in

Fig. 37. This ratio is a good measure of the three-dimensionality of the shear flow field. It is seen that at the last station $\left(x / \theta_{f}=326\right), \overline{v w}$ is of the order of 15% of $\overline{u w}$, indicating the near two-dimensionality of the flow field. Next, the decay rates for $u_{\text {max }}^{\prime} \overline{u v}_{\text {max }}$ and $\overline{v w}_{\text {max }}$ are shown in Fig. 38. The centerline turbulent intensity is seen to increase continuously with distance downstream. The normalized Reynolds shear stress $\frac{\overline{u v}_{\text {max }}}{w_{x 0}}$ is also increasing, but at the last measuring station its value is only slightiy higher than the value of 0.48 for the asymptotic two-dimensional far-wake (Sastry 1981). The shear stress $\frac{\nabla W_{\max }}{2}$ on the other hand is found to be slow?y decreasing at large values of x / θ_{f}. It is difficult to predict from the present measurements whether it would continue to decrease or reach an asymptotic value farther downstream. The developmient of $\overline{u v}_{\text {max }}$ is faster then in the case of the flat plate wake of Sestry or Pot (1979), but otherwise qualitatively similar in that it approaches the asymptotic vaiue from "below". This is in contrast with the behevior of either the wake behind a cylinder or that behind a two-dimensional dirfoil at incidence [Sastry (1981)]. In both these cases, $\overline{u v}_{\text {max }}$ decreases 0 the asymptotic value from 'above". The trends in ali these cases are consistent with the relative influence of the wall on the velocity profile just before the flow detaches from the wake generator.

7. Self Preservation of the Turbulence Profiles

Figures 39-41 show the profiles of $u^{\prime}, \overline{u v}$ and $\overline{v w}$ in self preserving coordinates. It is seen tha: the profiles are evolving continuously.

It appears that the turbulence properties have not attained self-similarity even at the last location. However, since $\overline{u v}_{\max }$ at $x / \theta_{f}=326$ is nearly equal to the dsymptotic value, further data in the far wake are needed to detemmine whether the turbulence profiles indeed have attained the asymptotic self-preserving form.

8. Eddy Viscosity Results

The preseni data can be used to calculate the eddy viscosity in both x and z directions defined by

$$
\begin{equation*}
\varepsilon_{x}=\frac{\overline{u v}}{\partial U / \partial y} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{z}=\frac{\overline{\bar{l} w}}{\partial w / \partial y} \tag{32}
\end{equation*}
$$

Plots in self-preserving coordinates of both ε_{x} and ε_{z} are shown in Figs. 42 and 43. From this it is seen that both viscosities are evolving continuously. The eddy viscosity in the z direction exhibits considerable scatter, but is still of similar magnitude as ε_{x}. As to whether or not the flow has reached asymptotic behavior it is difficult to confirm because of the lack of adequate data points between $x / \theta_{f}=$ 180 and 326. However, the value of ε_{x} obtained from the present experiments can be compared with the asymptotic values given by Schlicnting (:-3) and Sastry (1981). At $x / \theta_{f}=326$ the present value for $\varepsilon_{x} / \mathrm{U} \mathrm{\theta}_{\mathrm{m}}$ is .039. This compares with .032 quoted by Sastry and a value of .044 by

Schlichting. Therefore, it seems reasonable to say that at $x / \theta_{f}=326$ the streamwise flow is sufficiently close to the two-dimensional far-wake.

If we now assume an average eddy viscosity from Figs. 42 and 43 for each x / L location, we should in turr be able to recalculate the stresses. Typical results for $\overline{u v}$ and $\overline{v W}$ are shown in Figs. 44-47. These figures allow us to compare the extent to which it is realistic to use a constant eday viscosity model to describe the shear stress in the wake. For the shear stress $\overline{u v}$ it is seen that the agreement with experiment is good. The plots for $\overline{\mathrm{VW}}$ show the difference in result obtained by using ε_{z} or ε_{x} (scalar eddy viscosity assumption). Average values of the viscosity for the given x-iocation were used in eacn case. The comparison (considering experimencal scatter) shows little difference and hence we conclude, that for calcuiation purposes, ε_{x} can be used as a scalar eddy viscosity at least for mild crossflows.

2. The Structure Parameter

Nash proposed for three-dimensional turbulent shear flow, the following relations (see Nash and Patel 1972):

$$
\begin{align*}
& |\overline{u v}|=a \bar{q}^{2} \frac{\partial H / \partial y}{\left[\left(\frac{\partial U}{\partial y}\right)^{2}+\left(\frac{\partial \dot{W}}{\partial y}\right)^{2}\right]} \tag{33}\\
& |\overline{v W}|=a \bar{q}^{2}\left(\frac{\overline{\partial W}}{\partial y}\right) /\left[\left(\frac{\overline{\partial U}}{\partial y}\right)^{2}+\left(\frac{\partial \bar{W}^{\partial y}}{\partial y}\right)^{2}\right]
\end{align*}
$$

where $q^{2}=\left(u^{\prime 2}+v^{\prime 2}+w^{\prime 2}\right) / 2$ and

"a" is often called the structure parameter. For two-dimensional flows, the proposal takes the form

$$
\begin{equation*}
|\overline{u v}|=a \bar{q}^{2} \tag{35}
\end{equation*}
$$

Results of calculating 'a' from Eq. (34) are shown in Fig. 48. It is Seen that except near the centerline and in the outer intermittent region, 'a' ras a nearly constant value. Typical comparisons of the value of 'a' ubtained using the alternate definitions Eq. (34) and Eq. (35) (three-dimensional and two-dimensional definitions) are shown in Fig. 49. It is seen that tho-dimensional definition is adequate to evaluate 'a' in this mildly three-dimensional fiow. Again, to assess the validity of the model for practical use in three-dimensioral flows an average value for a (= .15) was used in Eq. (34) to calculate $\overline{\mathrm{vw}}$ for a few nearwake locations. These results are compared with measurements in Fig. 50. The agreement is seen to be moderate considering the uncertainties in measurement. Therefore, it can be concluded that the structure parameter model in the for of Eos. (33) and (34) is reasonably satisfactory for describing dimensional wakes.

10. Conciusions

The following conclusions can be arrived at from the study reported in this thesis.

1. A triaxial hot-wire probe can be used, with one of the techniques developed in the present study, for turbulence measurements in three-dimensional shear flows. The accuracy of such measurements,
critically depends on probe orientation, probe size and correct knowledge of sensor angles.
2. The present techniques A and B are superior to that used by Gorton and Lakshminarayana (1976) both in accuracy and versatility.
3. At present, the measurement of $\overline{u w}$ is unsatisfactory. Further miniaturization of probe is necessary to get better results.
4. The study of the developing three-dimensional wake behind an infinite swept airfoil shows that the static pressure varies across the near-wake with the maximum occurring at the wake centerline.
5. The longitudinal and crossflow wake defect components reach near self-similar distributions within about 10 momentum thicknesses downstream of the trailing edge.
6. Three-dimensionality of the flow becomes negligible within about 325 momentum thicknesses. Also, at this distance, the wake begins to exhibit many of the mean and turbulent flow properties of two-dimensional far-wakes.
7. A scalar eddy viscosity, constant across the wake, can be used to describe both the shear stress components $\overline{u v}$ and $\overline{v w}$ reasonably well.
8. The turbulence in the wake exhibits structural similarity in the manner proposed by Nash.

REFERENCES

Abboth, I.H. and Von Doenhoff, A.E., 1959 "Theory of king Sections," Dover Pablications, Inc., New York, N.Y., USA.

Andreopouios, J. and Bradshaw, P., 1980 "Measurement of Interacting Turbulent Shear Layers in the Near Wake of a Flat Plate," J. Fluid Mech. , 100, 639-668.

Chevray, R. and Kovasznay, L.S.G., 1969 "Turbulence Measurements in the Wake of a Thin Flat Plate," AIAA J. 7, 1641-1603.

Cousteix, J. and Pailhaus, G., 1980 "Measurements of Mean Velocity and Reynolds Stress Tensor within a Wake of a Swept Wing," CERT, Rapport Technique OA 41/2259 AYC.

Elsenaar, A. and Boelsma, S.H., 1974 "Measurements of the Reynolds Stress Tensor in a Three-Dimensional Turbulent Boundary Layer," NLR, TR 74095 U.

Friehe, C.A., and Schwarz, W.H., 1968 "Deviations from the Cosine Law for Yawed Cylindrical Anemometer Sensors," Trans. ASME, Series E, Vol. 35, p. 655.

Gorton, C.A. and Lakshminarayana, B., 1976 "A Method of Measuring the Three-Dimensional Mean Flow and Turbulence Quantities Inside a Rotating Turbo-Machinery Passage," Engineering for Power, 98, 2, 137-146.

Klebanoff, P.S., 1955 "Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient," NACA Rep. 1247.

Nash, J.F. and Patel, V.i.., 1972 "Three-Dimensional Turbulent Boundary Layers," SBC Technical Books, Sybucon Inc., Atlanta, Ga., USA.

Pot, P.J. 1979 "Measurements in a 2-D Wake and in a 2-D Wake Merging into a Boundary Layer. Data Report. NLR TR-79063 L (Provisional Issue).

Ramaprian, B.R., Patel, V.C. and Choi, D.H., 1981 "Mean-Flow Measurements in the Three-Dimensional Boundary Layer over a Body of Revolution at sncidence," J. Fluid Mech., 103, 479-504.

Sastry, M.S. 1981 "Turbulent Wake Development Behind Streamlined Bodies," Ph.D. Thesis, Dept. of Mechanics and Hyd́raulics, University of Iowa, Iowa City, Iowa, USA.

Schlichting, H., 1979 "Boundary Layer Theory," McGraw-Hill Book Co., New York, N.Y., USA.

Table 1

Boundary Layer and Wake Traverse Stations

Station \#	x / L	x / θ_{f}
	-.220	-36.7
2	-.124	-21.0
3	-.014	-.37
4	+.014	3.37
5	.027	4.57
6	.041	6.94
7	.055	9.32
8	.138	23.4
9	.275	46.6
10	. .669	67.6
11	. .992	112.0
12	1.928	168.1
13		326.7

Figure 1. Sensor coordinate system and sensor direction cosines

a. IIHR constructed three-dimensional hot-wire probe

b. Disa 55P91 three-dimensional hot-wire probe

Figure 2. Hot-Wire Probes

Figure 3. Instrumentation block diagram

Figure 4. Distribution of $\overline{u v}$ in the flat plate boundary layer at -76.3 mm

Figure 5. Distribution of u^{\prime} and v^{\prime} in flat plate boundary layer at -76.3 mm

Figure 6. Distribution of $\overline{u v}$ in the flat plate wake at 177.8 mm

Figure 7. Distribution of u^{\prime} in the flat plate wake at 177.8 mm

Figure 8. Distribution of v^{\prime} in the fiat plate wake at 177.8 mm

Figure 9. Distribution of w in the flat plate wake at 177.8 mm

Figure i0. Airfoil cross-section (dimensions in mm)

Figure 11. Airfoil in tunnel with measurement station locations

Figure 12. Coefficient of pressure variation on both sides of wing

Figure 13. Coefficient of -ressure variation on both sides of wing on à s .nwise basis

$$
\begin{aligned}
& \text { AKP }=\frac{n_{1}^{-D} 3}{\left.P_{2}-\frac{P_{1}+P_{3}}{2}\right]} \\
& \text { AK23 }=P_{2}-P_{3} \\
& 1 / 2 \rho Q^{2}=A K 23 /\left[.51885+.023779 * \gamma-.0000142 * \gamma^{2}-\right. \\
& \left..0000035 * \gamma^{3}-.0000001 * \gamma^{4}\right] \\
& \gamma=-1.4345+10.28219 * \text { AKP }+.04959500 * \text { AKP }^{2} \\
& -.0246590 \text { * AKP }{ }^{3}-.0148545 \text { * AKP }{ }^{4} \\
& P_{\text {static }}=P_{2}-\left[1.0088296-.0011767 * \gamma-.0002621 \gamma^{2}\right] * 1 / 2 \rho Q^{2}
\end{aligned}
$$

Figure 14. Yaw probe description and calibration

$$
\begin{aligned}
& \text { (2.8: } \\
& \text { (W) } 2^{01} \times{ }^{\circ}
\end{aligned}
$$

Figure 30. Self-similar spanwise velocities

$\left(2^{s / 2} 2^{(1) \wedge n}\right.$
(1.8

$$
\left(2^{s /} 2^{W}\right) \underline{M n}
$$

APPENDIX
TABLES OF EXPERIMENTAL DATA

KEY TO CYMBOLS USED IN DATA TABLES

Beta	angle between mean flow vectors and the chordline
Gama	angle between mean flow vectors and the free streamline
Delta*sub x	δ_{1} meters
Delta*sub z	δ_{2} meters
Theta sub x	δ_{11} meters
Theta sub z	δ_{22} meters
Theta sub xz	${ }^{\text {o }} 12$ meters
Theta sub $\mathrm{z} \mathrm{\lambda}$	δ_{21} meters
Pstatic	static pressure in inches of alcohol
$u /$ Uinf	loca? chordwise velocity/reference velocity
w/Jinf	locai spanwise velocity/reference velocity
U bar 1	U/U from 3-D hot wire probe
V bar	normal velocity component/ U_{∞} from 3-D hot wire probe
W bar	W/U from 3-D hot wire probe
uu bar	$\sqrt{\bar{u}^{2}} / U_{\infty} \times 100$
IV bar	$\sqrt{\mathrm{V}^{2}} / U_{\infty} \times 100$
ww bar	$\sqrt{W^{*}} / U_{\infty} \times 100$
uv bar	$\frac{\overline{u v}}{U_{\infty}{ }^{2}} \times 10^{4}$
$Y(m m)$	distance from wake centerline or wall in millimeters
uw bar	$\frac{\overline{u w}}{U_{\alpha}^{2}} \times 10^{4}$

vw bar
uuu bar
vov bar
www bar
uuv bar
uuw bar
vvu bar
vvw bar
wwu bar
liwv bar
uvw bar
$\frac{\overline{V W}}{U_{\alpha}{ }^{2}} \times 10^{4}$
$\frac{\bar{u}^{3}}{U_{\alpha}^{3}} \times 10^{5}$
$\frac{\bar{v}^{3}}{U_{\alpha}^{3}} \times 10^{5}$
$\frac{\bar{w}^{3}}{U_{\infty}} \times 10^{5}$
$\frac{\overline{u^{2} v}}{U_{\alpha}^{3}} \times 10^{5}$
$\overline{\frac{u^{2} w}{U_{a}^{2}}} \times 10^{5}$

- $\frac{u v^{2}}{U_{x}^{2}} \times 10^{5}$
$\frac{\overline{v^{2} w}}{\overline{U_{\infty}^{3}}} \times 10^{5}$
$\overline{\frac{U w^{2}}{U_{\alpha}^{3}}} \times 10^{5}$

$$
\frac{v w^{2}}{w_{x}^{3}} \times 10^{5}
$$

$$
\frac{\overline{U V W}}{U_{\sigma}{ }^{3}} \times 10^{5}
$$

Table Ai

Symmetric Flat Plate Wake Data $(x=177.8)$ using IIHR probe

$\bar{Y}_{\text {mm }}$	$u / U_{\text {inf }}$	${ }^{\text {u }}$ bar	$\mathrm{Vv}_{\text {bar }}$	${ }^{W} w_{\text {bar }}$	$\mathrm{uv}_{\text {bar }}$	${ }^{\mathbf{V W}}$ bar	${ }^{\text {uw }}$ bar
9.62	. 81	6.273	6.460	3.476	+10.879	-14.358	-7.370
5.81	. 76	6:219	6.764	3.755	10.091	-13.694	-0.821
2.00	. 72	5.381	6.709	. 317	5.551	-6.361	-15.538
. 73	. 709	5.098	6.422	4.713	4.056	-1.497	-17.972
-. 54	. 710	4.933	6.009	5.075	-2.966	+4.693	-17.587
-1.30	. 711	5.131	5.758	5.349	-4.775	6.742	-17.594
2.06	. 714	5.292	5.645	5.613	-7.217	9.636	-17.105
2.32	. 717	5.530	5.572	5.724	-12.607	10.014	-15.674
4.09	. 729	5.799	5.084	5.873	-12.315	12.802	-14.390
5.36	. 742	5.086	4.965	5.926	-15.098	14.263	-13.412
7.90	. 769	6.409	4.931	5.829	-15.113	14.137	-11.317
12.98	. 839	6.259	4.819	5.279	-13.286	12.468	-9.424
18.06	. 882	5.397	4.504	4.570	-9.85i	8.262	-6.942
23.84	. 930	4.648	3.660	3.646	-6.184	5.515	-4.753
33.0	. 922	2.199	2.063	1.837	-1.058	1.273	-2.113
48.24	1.00	. 477	. 792	. 603	-. 002	. 099	-. 339

Airfoil Boundary Layer Data at $x / L=-.220$ (central plane)

Integral Parameters
Melta*sut $x=4776659 E-02$
Deltaxsub
Theta sut
$=.34150475 E-02$
Theta sub $z=.6247743 \mathrm{E}-03$
Theta sut. $2=2=2697000 \mathrm{E}-01$
Theta sut $2 x=.1681640 \mathrm{E}-03$
Shape factar $H=1.298$
Foundaru Laver Profile

$\because \mathrm{Mm}$.	u'linf	Gama	w/Uinf	Heta	Pstatic
51	454	3. 37	$0 こ 7$	33.37	$-.0016$
. 76	5010	4.8	03%	34.19	0007
1.0	52	\& 57	042	34.5	0043
1.27	535	4.51	042	34.51	0062
1.53	5	4.43	043	34. 0^{4}	0093
2.03	官74	4.47	045	34.47	0021
3.54	596	4.35	045	34.35	0.0000
5.05	E16	4.20	045	34.20	-0012
3.5	639	4.10	640	$\because 4.10$	-0095
4.83	676	3.65	144	37.69	-.0132
6.10	716	3.36	041	33.26	- 0252
\%. 37	739	3.07	039	쿤.7	-. 0161
8.64	76	2. 68	036	32.63	- 0206
5.91	795	2.31	032	3231	-.0301
12.45	842	1.77	026	31.77	-0.094
14.95	859	1.19	016	31.10	-0303
it. Ef	\bigcirc	. 55	019	30.55	- 16A 4
26.61	984	46	003	30.18	- 045
26. 0	± 0110	0.65	0.010	30.00	- 0380
30.23	1. 000	0.00	0.000	30.00	-039%

TABLE A3
Airfoil Boundary Layer Data at $x / L=-.124$ (central plane)
RUNT OF RUN 29381.

Urefernce (m/5) = $21 . \therefore$

Uinfinity (m / s) $=22.31$
Integral Parameters
Dejta*sut $x=6346047 \mathrm{E}-02$
Dejta*sut z $=.7913063 E-012$
Theta sut $z=.7212564 \mathrm{E}-03$
Theta sut $x==7305337 E-01$
Shape Factor $H=1.443$

Eoundary Laver Frofile

Y' MM	u'Uinf	Gama	w/Uinf	Hota	Petatic
. 51	416	4.80	035	34.80	0428
1.27	400	6.09	051	36.09	0612
2.03	526	6. 27	058	36.27	0635
3.30	578	5.87	059	35.87	0604
5.08	630	5.20	057	35.20	0583
7.11	678	4.36	059	34.36	0520
10.16	742	3.27	042	33.27	045%
1245	796	2.44	034	32.44	0407
16.29	887	1.20	015	31.20	0235
25.91	977	1.04	001	30.04	0173
33.53	$9{ }_{9} 9$	-13	-. 002	29.67	0 28
43.69	997	-. 28	-. 005	29.72	0214
58.53	¢¢8	$-.15$	-. 003	29.65	0182
74.17	1.000	0.00	0.000	30.00	0145

TABLE A4
Airfoil Boundary Layer Data at $x / L=-.124$ ($-6^{\prime \prime}$ plane)

TABLE A5
Airfoil Boundary Layer Data at $x / L=-.124$ ($+6^{\prime \prime}$ plane)

```
RUN # OF RÜN 29884
Urefernce (m/s) = 21.84
Uinfinitu (m/E) = 22.65
Integral Farameters
Delta*sut x = 5613346E-02
DElta*sut z =.4455480E-01
Theta sut x = . 3972160E-02
Theta sut z = .9642757E-03
The:a sut xz = 3918079E-01
Theta sut :x = .2592422E-03
Shape factor H = 1.413
```

Eoundary Laver Profile

$Y \mathrm{~mm}$	u/Uinf	Gama	W/Uinf	Feta	Petatic
51	41.8	5.36	035	75.36	1560
. 76	40°	5.58	045	35.58	9640
1.03	496	5.91	051	35.91	1640
1.27	520	5.84	053	35.84	1000
$\frac{1}{2} 9$	54%	5.6	056	35.80	1620
3.05	605	5.36	05	35.36	1540
4.32	635	4.91	055	34.91	1520
5.59	6.1	4.46	052	34.46,	1450
6.86	691	4.19	051	34.18	1560
8.13	795	3.67	040	33.63	1450
10.67	776	2.89	$0{ }^{\circ}$	32.88	1380
13.21	825	2. 19	032	32.19	1260
$\frac{95}{19} 95$	884	1.65	025	31.65	1260
	963		009	30.49	1160
20.75	987	10	003	30.10	1910
36.07	1.001	02	000	30.09	1130
42.42	1.000	-0\%	01.1	29.97	1070

TABLE A6

Airfoil Roundary Layer Data at $x / L=-.014$ (far side)


```
\refernce (m/0) = 214 = 21.84
Uinfinitv(m!́)=22.23
```

Integral Parametere
Delta*sut $x=7026338 E-0:$
Delta*sut $z=524734$ PE-01
Trieta sut $x=.4873316 \mathrm{E}-02$
Theta sut $z=1921229 E-02$
Theta sut $x z=.4601236 E-01$
Theta sut $x=.565845 \mathrm{E}-0 \frac{1}{3}$
Shade factor $H=1.442$

Houndary Layer Profije

Y Mm.	u'Uirif	Gamä	wiUirf	FEta	Petatic
Tif	475	12.62	07	A2. 6	205
76	496	13.53	109	42.53	2296
1.02	455	12.55	110	$A 2.56$	E.29
1. 27	507	12.23	110	42.23	2206
1.52	517	15.01	130	42.01	人ator
1.72	$5 こ 3$	11.93	110	41.95	2270
2.03	534	1 1. 44	108	A1. 44	930
2. 54	551	10.85	105	4 (1) 8 ?	2204
3.05	56	10.72	106	40.72	203?
-5. 56	573	10.33	104	40.33	2016
4.06	584	10.05	103	40.03	628
5.08	607	9.46	1.01	39.46	5201
6.10	637	8.55	096	33.55	21.40
6.13	678	7.36	088	37.36	2074
19.16	702	6.72	083	36.7%	2188
12.70	76%	526	070	35.26	4979
45.24	815	- 17	059	34.17	1005
20.30	98'	2.60	140	32.60	1695
20.40	940	1.43	024	31.83	49\%
30.48	\%78	79	013	30.79	1597
35.56	992	47	000	30.47	1. 98
$4 \% \cdot 13$	99%	. 11	002	30.11	1314
50.80	1. 000	0.00	0.000	30.00	1. O 1.6

TABLE A8

Airfoil Wake Data at $x / L=.014$ (central plane)

TABLE A8（Continued）

$Y \mathrm{Mm}$	U／UArif	Gumer	w／Un的	He¢a	$\mathrm{F}=$ ¢atar
－$\overline{5}$	$4 \% 9$	14.16	¢11	44.16	2154
－-76	442	14.45	112	44.15	¢10
－ 5.27	465	13.30	110	43.34	ご96
－1．78	46	13．86	196	$43 \cdot 66$	\％280
－ 54	$4{ }^{4} 9$		194	42.8	¢180
－3．30	5？	12.20	${ }^{1} 1414$	$4{ }^{4} 4$	3154
－A． 32	594	11.29	1910	41.29	
－5， 5	500	10.47	107	40.6	
－6．80	614	9.69	103 1097	39.60	6164
-7.97	836	$\frac{8}{7} 80$	097 093	37.87	¢08\％
－9．65	703 7	6.86	0¢	36.8	2074
－1 $\frac{1}{3} .97$	747	5.76	075	35.7	2024
-17.76	610	4.23	060	34.23	196
－31．59	．86\％	2.91	044	39.91	1050
-26.67	6	1.57	026	31.57	164
-31.76	976	89	016	30.89	1545
-39.37	－9\％	． 41	007		4 ${ }^{4} 0$
－46．99	1．0100	0.10	0.00%	30.12	125
-54.63	1．000	0.00	0.000	$\cdots 0.00$	1．…

TABLE A9
Airfoil Wake Data at $x / L=.027$ (central plane)

ROTE OF Rut eqeat					
$\begin{aligned} & \text { Urefern } \\ & x \text { loca. } \end{aligned}$	$\begin{gathered} (m / 0) \\ .027 \end{gathered}$	21.84			
Uirifinity (m/s) $=22.26$					
Integraj. Farameters					
Shape Factor $H=1.453$					
Wake Frofile					
$Y \mathrm{MM}$.	u/Uirif	Gama	W/Uinf	Heta	Pstatic
-54.56	1.005	35	006	30.35	1. 1317
-44.78	98	09	905.	30.30	1.453
- 56	96	86	015	30.36	1508
-21.84	8%	\bigcirc	05	83.9	1275
-56.76	887	\% 64	075	\%E.93	9.769
-11.68	675	7.05	08	8.05	1980
$\cdots 6.60$	63.	6. 3	05.	38.27	1970
-5.08	59%	9.39	09%	35.36	2049
$\cdots 4.06$	558	19.76	106	40.64	2047
-2.05	545	10.84	\%s?	40.74	2013
-3.0E	505	11.13	099	41.13	2009
0.00	500	11.15	697	41.12	2015
	509	19.70		39.94	151.
	536		093	39.48	1947
3.98	59	8.89	09	38.89	1 c
		Q. 37	188	$3 \mathrm{3C} .17$	1971
\% $=7$	6 m	7.3	164	37.38	1048
51	6%	¢. 0	878	36.9%	${ }^{18 \%}$
12.5	746	4.96	05	$\square 4.06$	377
14.99	788		056	3\%.39	3505
2!	98	1. 20	019	31.20	1401
注•者,	96\%	-43	0107	30.44	1304
4.39	996	1%	003	30.10	1370
AC. 6	. 090	(1.00	0.000	30.00	1113

Airfoil Wake Data at $x / L=.027$ ($-6^{\prime \prime}$ plane)

RUNTE OF RUN 3981

Urefernce $(\mathrm{m} / 5)$
X joca $=21.84$
Uinfinity (m / s) $=2194$

Inteoral Farameters
yeltawsub $x=\{524869 E-01$
Dejta*sut $z=.1011579 E+00$
Theta sut $y=.104263 E-01$

Shade factor $H=1.463$
Wake Profile

$Y \mathrm{MM}$	u'Uirif	Gama	w'Uinf	Eeta	Petatic
	1.003	00	000	30.00	1.243
44.20	1.009	14	002	30.14	1367
36.55	998	26	005	-1.68	1375
29.96	87%	2.84	035	32.27	1.46
56.26	806	3.70	05	33.70	1854
13.2	758	4.69	062	34.69	18988
11. 18	717	5.59	070	35.58	1939
		789	085	37.84	1950
4.3	¢ 7	6.63	085	38.63	2031
3.05	55	8.98	087	38.98	2009
2.29	539	\%. 50	090	39.50	2050
1. 52	526	40.88	089	40.88	20¢
0.00	516	$10 . t 5$	097	40.69	2057
-26	54	10.67	095	$40 \cdot 6$	
-3. 56	55%	10.8%	109	40.81	205
-3.56	563	16.19	101	41.19	2109
-5. 53	6.4	E.56	152	38.56	2014
-7.11	642	7.85	088	37.85	906
-9.6. 9	695 738	6.478	070	35.43	196
-1 ${ }^{-1} 97$	926,	3.5	05		1860
-20.35	94.5	2.2%	035	32.23	1740
-29.97	974	1.11	119	31.11	1.630
-37.59	. 997	6	011	30.80	1435
-45.at	1.000	54	cor	$\bigcirc 4$	13.

$\stackrel{10}{\text { RUN }}$

Uinfinjtu (mis) = 2215

Integial Parametere
Deltax 5 ub: = 1577514E-01
Deitawsut i =. $1282576 \mathrm{E}+00$
Theta sub $x=. \hat{0} 6 E 428 E-0$ S.
Theta sut $z=.3429951 E-02$
Theta sub $x=1135999 E+09$
Theta sub $2 x=107508 \mathrm{E}=02$
Shape Factor $H=\frac{2}{4} 47^{\circ}$
Wate Profile

$\bar{Y} \mathrm{MM}$.	u/Uinf	Gama	n/Uinf	Feta	Pstatic
60.96	1050	-. 18	-. 003	29.82	1106
5. ${ }^{4}$	1.009	- 18	-. 002	39.89	1207
45.72	1.006	-. 03	-. 000	29.97	129
3 Sa 10	1.000	07	001	30.07	1421
30.43	954	. 36	006	30.36	1463
20.80	507	1.39	025	31.39	1695
12.70	743	4.	054	4	2012
4 C .16	70	5.0	065	35.07	2054
7.6	$65 i$	G.06	069	30.09	2117
5.84	$\bigcirc \mathrm{C}$	713	076	37.12	2205
4.06	589	0.01	080	38.01	2244
$\cdots \mathrm{F}$	54.3	8. 61	$0 ¢$	38.61	2957
2. 03	527	9.11	095	37.11	2250
1.52	590	9.29	$0 ¢ 5$	30.29	2248
1.02	513	9.74	083	39.74	2271
	509	9.9	109	39.97	2957
0.00	510	10.13	051	40.13	2275
-. 76	513	46.52	095	40.52	2349
-1.78	523	18.81	098	40.61	2300
-3.05	509	40.24	0%	40.2A	256.1
-4.32	574	9.75	098		
-6. 10	614	8.5	093	38.59	236
- 96.64	658	7.20	084	37.63	2298
-19.53	0.9	3 \%		35.5	5
-29.61	Est	2.3	035	気: ${ }^{3}$	4975
	96:	\%	116	30.9	1866
- 4.6	095	24	004	3084	1694
-53 if	1. 000	0:	01	30.05	1470
-60.74	1.000	0.011	0.000	30.00	1369

Airfoil Wake Data at $x / L=.041$ (central plane)


```
RUNM*OF 12
DATE OF RUN 3981
Urefernce (m/E) = 055 = 21.84
Uinfinity (m/s) = 22.14
Integral Parameters
Delta*sub x= 14509999E-01
DElta*sut z =.1879447E+00
Theta sut x = .1045328E-01
Theta sut z = . 2475021E-02
Theta sut xz= = 17423005+00
Shape Factar H = 1.3%7
Wake Profile
```

$Y \mathrm{~mm}$.	u/Uinf	Gama	w.Uinf	Eet	Stat
-33.31	1.005	-. 44	-. 008	29.56	0964
-73.15	1.002	-. 39	-. 007	29.62	0961
-62.99	1.000	-. 23	-. 005	29.72	1130
-52.83	995	-. 10	-. 002	29.90	1259
-42. 67	. 997	00	000	30.00	1278
-33.76	992	$2 i$	004	30.21	1357
-2. 16	969	70	012	30.70	1353
-19.84	989	4.95	130	31.96	1659
-14.73	819	3.26	047	33.26	1710
-10.92	752	4.55	060	34.55	1898
-7. 11	696	5.65	068	35.65	1707
-4.57	635	6.98	078		1869
- 2.54	.602	7.69	081	37.69	1872
-1.02	. 573		084		
0.00	565	8.30	08,	38.35	1897
1. 51	. 575	8.83	$08 \frac{2}{1}$	$38.20{ }^{38}$	1885
1.52	.569	3.21	082	38.21	1855
2.54	575	9.14	085	39.14	1833
4.06	587	7.65	081	37.85	1870
¢. 10	6 67	6.88	076	36.89	1776
a. 64	672	5.93	070	35.93	1725
16.26	798	3.31	046	33.31	1669
23.88	910	1.40	022	31.40	1449
34.14	978	42	007	30.42	1514
44.20	989	19	003	30.19	1371
54.36		16	003	30.16	
64.52	.996	9	003	30.17 30	1178
56.90	1.000	-2.97	-1.147	27.03	0995

TABLE Al3 (Continued)

Turbulerice Data						
y / L Location $=.055$ Reference Velocity $=21.8 \mathrm{~m} / \mathrm{s}$						
Wake Profile						
$\begin{array}{r} Y \\ 43 M \\ 33.69 \\ 25.93 \\ 20.93 \\ 18.29 \\ 15.75 \end{array}$	Ubar 1.000	Ubar 000	Wtar	yubar	$\begin{aligned} & \text { unbar } \\ & \hline 78 \end{aligned}$	Whbar
	. .994	. 001	003	1.440	4.703	1.772
	952	-. 000	061	4.244	3.817	4.210
	895	-. 002	. 015	5.674	5.120	5.715
	859	-. 002	019	6.303	5.701	6. 126
	825	004	. 026	6.788	6.052	6. 570
10.67	740	011	038	7.724	6. 646	7.241
8.13	694	015	045	7.897	6.794	7.426
5.59	. 644	018	046	7.723	6.993	7.435
3.05	. 602	023	052	7.037	8.802	7.022
- 51	-572	033	066	6.032	6.534	7.261
-5.73	. 579	040	081	¢. 036	6.564	7.598
-4.57	613	051	095	\%.876	6.709 6.894	- 955
-7.1i	662	058	065	8.313	7.037	8.485
-5.65	751	062	077	8.085	6.848	S. 242
- 12.19	. 755	064	063	7.538	6.677	7.601
-14.73	\% 93	065	$0{ }_{0} 9$	7.335	6.555	7.592
- 19.81	876	067	034	6.087	5.70\%	6.063
-22.35	905	066	034	5.335	5190	5.314
-27.43	962	067	007	3.637	3.728	3.361
- 35.05	.993	067	-. 011	1.072	1.617	1.191
-45.21	. 995	688	-. 015	481	. 817	663

TABLE Al3 (Continued)

Profile	conti	a*	$=$.			
$Y \mathrm{Mm}$	uruar	untorar	vebar	uuubar	uuubar	whwbar
43.69	-. 049	027	03	002	-. 001	
33.53	-. 547	627	14	630	400	
25.91	-5 893	2. 112	49	9.619	1.883	-4.075
20.83	-1 5.54	- 805	2.67	10.649	$\frac{1}{5} .743$	-4.621
18.29	-14.57	1.907	3.59	11.487	5.278	-6. 527
15.75	-38.74	1. 053	5.15	9.449	-. 708	-5.240
13.24	-21.14	-. 557	6.56	6.700	6.456	6.142
10.6	-25.83	- -3.301	5.85	6.253	8. 880	-2.970
5.59	-25.30	-2.125	5.79	-1204	10.199	203
3.05	- 59.99	-6. 697	4.23	- 15.932	4.814	2. 375
-. 76	-5.256	-4.799	-2. 2.67	-8.657	-5.607	- $\mathrm{S}^{\text {. }}$ S 97
-2.03	13.694	-6.051	-4.59	-16.48	-3 931	-4. 271
-4.57	23.008	-1i. 20	-9.72	-19.39	-9.6.99	-3.926
-7. 11	25. 356	- 17.82	-13.46	-7.130	-5.490	$\frac{1}{2} .066$
-19.65	24.408	-13.18	-10.5\%	3.687	-4.966 -7.206	2.195 -.188
-14.73	20.784	-15.07	-10.83	11.366	-10.72	3.759
-17.27	16.665	-9.671	-5.9\%	12.142	-5.797	2.727
-19.81	15.484	-8. 233	-6 43	10.567	-5.905	8.045
-22. ${ }^{-25}$	12.033	-6.786	-5 63	10.977	-4.757	6. 872
-35.05	-. 226	- -3.97	- -36	, 14\%	-. 4 -	. 609
-45.21	-. 021	-. 043	-. 04	-. 001	-. 002	011

TABLE Al3 (Continued)

Pr	continued	et X / L	055	
Y mm	uuvbar	uuntar	uoubar	uuwbar
43.69	-. 001	001	-. 001	004
33.53	- .188	210	. 460	134
25.91	-3.774	384	4.183	
20.83	-4.480	343	5.362	- $-\frac{1}{3} .671$
15.75	-4.451	- 488	5. \% $^{\text {¢ }}$	- 2.328
13.21	-4.200	-3.980	6. 057	-2.786
10.67	-3.003	-2.856	3.313	- 2.144
8. 13	-. 308	-1. 178	. 474	-2. 308
5.59 3.05	2.917	.802 -.454	-5.411	-1.817
. 51	3.282	1.600	-9.519	829
-. 76	-3.500	${ }^{2} .164$	- 10.83	2.869
-2.03	-8.344	3.249	- 40.45	1.491
-4. 57	-7.127	8.861	-4.762	-4. 309
-9.65	2.665	542	2.788	-5.753
-12.15	3.205	-3.025	4.332	-5.779
-14.73	5.442	-2.941	5.843	-4.322
-19.27	4. 7171	- 2.349	6.175	- 5.445
-22. 35	6.059	-1.892	6.331	-4.016
-27. 43	3.053	-1.522	4.503	-2. 555
- 45.05	06	- 1180	- 1505	- 0001

TABLE Al3 (Continued)

table al4

Airfoil Wake Data at $x / L=.138$ (central plane)

TABLE A14 (Continued)

Turbulence Data						
$x /$ L Location $=.130$ Refererice Velocity $=2: .8 \mathrm{~m} / \mathrm{s}$						
Wake Profile						
Y MM.	Ubar1.000	Ubar	Whar	uubar	$\begin{aligned} & \text { uybar. } \\ & 772 \end{aligned}$	wwbar
44.45		-. 001	.001			
36.83	997	-.003	$00 \frac{1}{5}$	970	1.227	1. 340
29.21	. 976	-007	003	2.938	2.937	3.186
24.13	932	$-.007$	006	4.383	4.357	4.868
19.05	. 875	-. 004	015	6.142	5.577	6.109
16.51	.843	-.004	020	6.668	5.919	6.576
13.97	. 802	. 002	096	7.347	6.256	6.784
11.43	768	602	030	7.510	6.466	6.886
8.89	725	005	035	7.530	6.727	7.038
6.35	695	006	039	7.210	6. 454	6.703
3.81	. 666	012	049	6.460	6.348	6.300
1.27	. 648	017	05	5.804	6.238	6.215
0.00	. 648	8 C	06	5.801	6.225	6.513
-1.27	. 651	QEi	065	5.947	6.089	6.854
-2.54	. 655	054	065	6.191	6.14%	6.783
-5.08	. 684	030	070	7.562	6.276	7.113
-7.62	718	031	066	7.483	6.612	7.546
-10.16	757	$0 \cdot 5$	16.4	7.835	6.538	7.769
-12.70	797	037	055	7.84	6.619	7.492
-15.24	836	830	046	7.416	6.223	6.950
-17.78	874	. 040	077	6.554	5.751	6.604
-20.32	906	$0<0$	030	6.009	5.295	5.694
-55.40	958	037	0 ± 4	4.278	3.985	4.020
-30.46	990	$0 \frac{3}{5}$	-.001	2.306	2.614	玉. 210
-38.10	959	035	- 009	. 728	1.119	. 868
-45.72	1. 000	035	-.011	. 521	. 789	700

TABLE A14 (Continued)

	α 3 3	0 0 0 +
		$\stackrel{\sim}{\sim}$
	E	\square 3
-ovbonwifmo	+	-
	3	$\stackrel{H}{3}$
		m
	E	\square
Enunco	cr	0
	a	\rightarrow
 	-	x
	Σ	$!$
-	${ }^{1}$	
	9	
)		
	${ }_{5}^{5}$	
	c	
	-	
	${ }^{\text {a }}$	
	\rightarrow	
1111111		
	c	
	c	
	\square	
	$\stackrel{\square}{3}$	
	Σ	
	Σ	
	Σ_{0}	
	$\underset{\sim}{w}$	

TABLE A'4 (Continued)

Profile	continued	X/L	138	
$Y \mathrm{~mm}$	uuubar	uuwbar	uvubar	uuwbar
44.45	-. 001	001	-. 003	003
56.83	- 0.088	024	. 0.05	028
27.293	- -4.735	- 588	2. 5.435	-1.095
19.05	-5.021	-2. 110	7.200	-1.891
$\frac{16.51}{46}$	-3.191	-5.483	4.848	- 1.570
13.97	-3.605	-5.825	4.730 5	-3.189
18.89	2.601	-1.033	2. 253	-1.436
6.35	6.625	-. 707	-3.610	453
3.81	7.794	713	-6.815	1.028
1.27	3.210	1.364	-9.432	2.138
-0.00	- $\frac{1}{2} \cdot 102$	$\frac{1}{2} \cdot 284$	-9.934	2. 031
-1. 274	- 2.470	2.913	-8.629	. 920
-5. 08	-7.042	5.685	-8. 434	- ${ }^{4} \cdot 408$
-7.62	-3.55	3.402	-3. 33.9	-1. 153
$\cdots 10.16$	2.776	2.670	3.660	-3.459
-12.70	6.000	-1.368	5.990	-6.357
- 15.34	8. 467	-3.561	6.901	-6.042
- 20.32	6.543	- 1.810	6.287	-4.105
-25.40	4.30%	-2.791	5.008	- $\because .777$
-30.48	985	-. 975	1.287	-. 802
-48.72	001	-. 0001	-084 -.004	012

TABLE A14 (Continued)

Prof	continued	x / L	1.38
Y MM.	wwutar	wwubar	unwbar
44.45	-. 005	-. 002	-. 007
36.83	2.093	-. ${ }^{1707}$	- 1115
$22^{29} \cdot 2 \frac{1}{1}$	2.186	- .807	$\overline{5} 3 \mathrm{Cl}$
99.05	5.461	-1.946	8.473
46.51	2. 466	-1.156	6.856
13.97	2. 021	301	6.356
14.43	581	189	8.123
8.89	-4.450	1.396	3.524
$\frac{8.35}{} 3.8$	- -5.411	1.869 2.704	4. 682
1.27	-5.440	. 310	-3.292
0.00	-3.704	-3. 243	171
- $-\frac{1}{2} \cdot 54$	-7.0418	-3. 5 - 8.1	6.080
-5.08	-6.139	-2.059	6.899
-7.62	-4.458	-. 590	6.842
-10.16	-1.203	1.012	-1.012
-12.70	3.147	4.042	-8.345
- 15.38	$4 . \frac{1}{5} 46$	3.455	-8.901
-20.32	7.090	2.998	-6.711
-25.40	4.589	2. 750	-5. 718
-30.48	1.397	595	-1.432
-3a. 10	-. 010	026	-. 032
-45.72	-. 003	001	005

TABLE A15
Airfoil Wake Data at $x / L=.225$ (central plane)

$\begin{aligned} & \text { Unefernce } \\ & \times \text { loca }=(5) \\ & .275 \end{aligned}=21.84$
Uirifinity (mis) = 25.3i
Integral Parameters
De1ta*sub $x=1050085 E-01$. DE1ta*sub z =.8172131E-01 Theta sut $x=.8346590[-02$
Theta sut $z^{2}=.2319180 \mathrm{EE} 02$ Theta sub $\times 2=.7163487 E-01$ Theta sut $2 x=41984 E-03$
58

Wake frofile

Y MM.	u/Ujnf	Gama	w/uinf	Eeta	Petatic
30.10	1.000	87	012	30.67	0865
30.48	. 987	89	015	30.89	034%
22.85	936	1.41	023	31.41	0847
15.24	84%	2.46	036	35.46	0947
10.16	794	3.06	042	33.06	0954
6.3 "'	755	3.56	047	35.56	1015
3.91	735	3.80	047	33.7\%	1040
2.54	726	3.82	049	33.82	1037
1. ${ }^{2}$	722	3.86	049	33.86	1047
0.00	75	3.89	049	33.89	1057
-1.3\%	719	3.80	149	33.80	1057
-5. 08	734	3.85	048	33.81	1056
-3.68	754	3. ${ }^{2} 3$	043	3, ${ }_{3} \cdot 6$	- 030
-11.43	790	2.76	039	䢒. 70	102
-16.51.	847	2.10	631	32.10	0973
-23.86	920	1.19	019	-31.19	0876
-30.40	934	36	006	30.36	0812
-39.37	1.000	0.00	000	30.00	0797

TABLE A15 (Continued)

Turbulence Data
Xeferenceton Velocity ${ }^{275}=21.8 \mathrm{~m} / \mathrm{s}$
Wake Prafile

$5^{\text {Mm }}{ }^{\text {m }}$
52.07
31.75
24.13
20.32
12.70
10.16
7.82
5.5
0.00
2. 54
- 0.9
-1
7
7.78
9
49. 5

[^0]
TABLE Al5 (Continued)

Frafile continued at $X / L=.275$

Y MM.	uvtiar	Uwbar	voter	uuutar	vuutar	Wwwtar
52.07	006	-. 023	-. 01	000	-. 001	003
41.91	-.051	-. 003	-. 01	-. 045	. 021	-. 060
31.75	-2.453	1.639	. 19	4.557	1.699	-1.926
24.13	-9.112	1.762	1.95	13.305	2. 161	-5.148
20.32	-13. 27	-.933	4.34	13.430	2.915	-6.466
16.51	-17.63	-2.174	7.40	9.217	3.760	-5.441
12.70	-17.67	-2. 539	7.45	-1.671	4.802	-2.570
10.10	-18.2	-2.730	6.44	-8. 135	5.111	811
7.62	-15.91	- 5.501	5.60	-7.595	. 298	1.789
5.08	-1040	-3.607	3.25	-9.080	5.573	1.602
2.54	-4.087	-4.305	1.30	-6.399	3.501	1.296
0.01	2.821	-2. 569	$2 \pm$	-5.828	1.926	075
-2.54	7.942	- 5.368	- 84	-8.859	2.509	-1.802
-5.08	43.833	-5. 263	-2. 26	-10.26	4.494	-2.376
-762	15.025	-7.119	-3.17	-6.043	-. 355	-3.026
-10.16	17.619	-6.591	-3.37	-. 154	. 88	-353
-13.97	10.744	$-\frac{1}{1} 0.2$	-3.39	7.688	-6.1800	3.368
-17.70	15.170	-7.134	-1.42	16.395	-4.547	6.841
-31.59	10.690	-7.574	-1.66	15.791	-4.276	5.619
-29.21	2.750	-2.022	-1.05	5.076	-3.106	3.515
-39.37	040	-. 147	02	-. 010	-. 001	150
-49.53	-.018	. 110	04	0.000	$-.005$	000

TABLE A15 (Continued)

Profile	ntinued	at X /L	275	
Y MM	uubtar	uuwbar	vuubar	vuwbar
52.07	-. 000	0.000	-. 002	004
$4{ }^{4} .91$	- 009	$-.002$	-.013	-. 005
31.75	-1.674	. 415	2.249	-. 318
24.13	-5. 566	- -3.305	6.052	- 1.843
20.32	-5. 5.363	- -1.169	6.557	-2. 3 - 35
12.70	2. 163	-1.086	. 918	-1.222
10.16	4.336	- 264	-2.435	-. 210
7.62	5.680	-. 056	-4.862	119
5.08	4.192	1.309	-5.271	748
2. 04	- 2.2814	1.249	-5. 534 C	705
-3. 54	-4.360	1.479	-6.622	028
-5.08	-5.463	2.413	-4.165	$-.657$
-7.62	-2.350	4.173	-2.225	-1.487
- 10.16	3. 877	1.773	4.186	-1.496
-17.78	S. 736	-1.662	8.204	-3.2488
-21. 59	5.501	-2.744	5.813	$\cdots 3.393$
-29.21	2.270	-. 958	2. 214	-1.582
- -39.37	a. 025	- 005	- 030	-006
-49.53	0.000	-. 002	-.003	-.003

TABLE A15 (Continued)

Profile	continued	at $X / L=$	275
Y MM.	wwutar	wwutar	uuwtar
52.07	-. 004	001	-. 004
41.91	-024	-. 017	$-.001$
31.75	1.956	$-.694$. 737
24.15	5.259	-1.785	4.886
20.32	5.305	-. 446	7. 127
13.51	2. 491	-. 898	7.050
15.70	-1.851	1.469	4.444
10.16	-3.131	3.119	. 710
7.62	-1.994	. 391	-2.272
5.08	-3.984	1.529	- 429
3.54	$-\frac{3}{3} .053$	1. 405	$\because 095$
0.00	-3.449	-307	-283
-2. 54	-3.157	-1 114	-638
-5.08	-3. 346	-1.386	$\therefore .834$
-7.62	-2.758	-.920	4.353
-13.97	$\frac{1}{3} .586$	2.436	$-3 \cdot \frac{2}{2}$
-7.78	$6 \cdot 2$	5.805	$-1 .$
$-2 i$	5.825	5.400	$-\frac{2}{3} .6$
- 59.21	1.807	. 686	-i. 644
-393	. 005	-.002	012
-47. 53	0.009	$-.002$	004

Airfoil Wake Data at $x / L=.399$ (central plane)
RUN \# OF KUTE KI 3981

Uinfinjty (m/s) = 22.26
Integr. Parameters
Dfi:is*sut $x=9473079 E-02$
Delta*sut $z=1359371 E+00$
T.うta sub $x=.7767224 E-02$
-neta sut $z=.17513645-02$
The ta sub $x z=-1267331 E+00$
Shape Factor $H=1.220$

Wake Profile

$Y \mathrm{~mm}$.	u/Uinf	Gama	wruinf	Eeta	Pstatic
64.77	1.008	25	004	30.25	0736
54.81	1.005	19	003	30.19	-. 0718
44.45	1.004	14	002	30.14	-. 0743
34.29	946	$3{ }^{3}$	006	$30.3{ }^{3}$	-. 0801
24.13	925	1.03	017	31.03	-. 0524
15.97	835	2.07	030	32.67	-. 0218
6.35	773	2. 52	$0{ }^{0} 4$	52. 52	- 0013
1.27	769	2. 56	00_{04}	弪2. 59	0040
-1.27	761	2. 61	035	$\frac{3}{32} \cdot 61$	0047
-3.81	771	2.47	035	32.47	0025
-6.35	786	2.35	032	32.32	-.001\%
-11.43	825	1.97	028	51.97	- 0127
-16.51	873	1.54	023	31.54	-. 0250
-24.13	954	74	${ }^{12}$	30.74	-. 0860
-31.75	985	30	005	30.30	-. 0547
-41.91	977	08	001	30.08	-.0618
-52.07	998	01	000	30.01	-. 0643
-62. 23	1.000	0.00	0.000	30.00	-. 3609

TABLE Al7
Airfoil Waike Data at $x / L=.66 i$ (central plane)

Y MM.	u/tinf	Gama	w'Uinf	Eeta	Petatic
63.25	1. 1008	7	013	30.72	-. 0766
46.99	4. 006	4.70	012	30.70	-. 0757
49.05	885	1.31	028	31.81	-. 0387
11.43	$0 \cdot 57$	-20	033	32.29	-. 0207
8.89	826	E. 3.	034	32.37	-. 0161
7.62	95i	2. 411	034	32.40	-. 045
¢. 5.08	816 810	5.4.	$0{ }^{1} 34$	32.42	-.0176
3.81	807	5.42	034	35.4?	-.0123
2.54	307	2.48	035	32.48	-. 0117
1.27	806	2. 47	035	3.49	-. 0092
0.00	803	2.47	035	32.47	-.0104
-1.27	805	2.41	$\bigcirc 34$	32.41	-. 0119
- -4.05	8818	2. 40	? 34	32. $\frac{40}{77}$	-. 0125
-7. ${ }^{-3}$	8	2. 25	32	起: 25	-. 0147
\%919	539		V39	32. 13	- 0211
	884	1. 61	029	$\frac{31}{3} \cdot 915$	- 0.028
-5.15	946	3.16	019	31.16	- 055
-32.77	975	. 74	013	30.74	-.05\%2
- 61.06	1.954	46	018	30.46	-. 0413
-51.02	1.003	69	234	30.60	-. 0609

TABLE AI7 (Continued)

Turbulence Data

X/L Location $=$
Reference Velocit ${ }^{661}=21.8 \mathrm{~m} / \mathrm{s}$
Wake Profile

$Y_{53}{ }^{\text {MM }} \mathbf{3} 4$	utar	Utiar	Whar	uubar	yutiar	unbar
43.18	996	001	. 000	1. $5 \frac{1}{3} 2$	1.783	1. 550
33.02	965	-. 000	001	3.760	3.460	3.385
22.86	903	-. 005	008	5.414	4.94	4.89
15.24	847	-. 001	014	5.617	5.469	4.909
7.62	904	004	026	5.046	5.204	4.656
2. 54	\%9	007	027	4.392	5.054	4.4
-2. 54	793	008	038	4.607	5.206	4. 547
-12.70	843	015	026	5.609	5.386	5.112
-17.78	875	015	035	5.722	5.046	5.008
-22.86	908	014	020	5.442	4.699	4.659
-37.94	941	013	013	4.514	4.076	3.840
-35.56	972	009	000	2. 552	2.835	2.308
-43.18	981	008	-. 003	1.137	1.683	1.203
-50.80	982	005	-.003	749	1.049	780
Profile	contin	d at X	$=.6$			
$Y \mathrm{~mm}$	uubar.	untiar	untiar	uuubar	vuutar	wwwb a
	-. 002	C12	. 05	-. 008		-. 070
43.18	- 5.847	-138		- ${ }^{5}{ }^{\text {a }}$	1.36	- -4.054
53.02	-5.382	1. 373	. 27	6.543	1.359	-4.095
122.86	-13.39	-. 0150	3.98	6.881	1.480	-1.893
7.62	-7.482	-1.279	1.03	-4.980	1.646	007
2.54	-1.641	-1. 578	1.25	-3.183	803	606
-2. ${ }^{-7} 4$	5.110	-1.7i6	- 22	-2.7 41	593	- 1.288
-12.70	$1{ }^{1} 8.85$	-4.007	-1.95	-4.41\%	- 097	1.957
-17.78	13.984	-4.990	-1.36	3.543	.334	2. 347
-22.86	12.680	-5. 607	-1.40	10.473	-3.069	4.595
-27.94	7.794	-4.646	- 81	10.951	-2.931	5.573
-35.56	2.648	-2.037	-. 69	3.880	-1.895	3.100
-43. 18	546	-. 340	-. 10	199	-. 288	836
-50.80	150	-. 028	-. 05	114	-. 014	204

TABLE Al7 (Continued)

Profile	ontinued	at X /	661	
Y MM.	vuutiar	Uuwbar	vuubar	vowbar
53.34	-. 012	-. 003	010	-. 013
43.18	-. 585	-. 003	575	-. 145
33.02	-2.751	. 037	3.647	- 492
23. 86	-2.923	- 686	4.345	-1. 524
15.24	3.355	-. 5198	-2.461	-. 309
$2 \cdot 54$	1. 131	341	-2. -1.167	-. 228
-2. 54	-2.075	517	-4. 330	$-.954$
-7.62	- 2.915	687	-2. 521	- -2.47
-12.76	こ. 287	494 152	2. 188	-5.281
-32.86	4.802	- 928	4.124	- 1.070
-27.94	4636	-2.095	4.746	-1.639
- 35.56	1.984	-1.014	2.293	-1. 158
- 50.18	. 285	-. 01418	141	-. 1019

Profile continued at $x / L=.661$

$Y \mathrm{~mm}$	wwutar	wwotar	uuntiar
53.34	-. 001	-. 014	025
43.18	. 185	- 33	315
37.00	2.586	1.343	. 956
$\frac{22}{5} .84$	- 2.046	-1.353	5.694
17.6	-1.781	$1 \cdot 755$	530
2. 54	-1. 591	- 298	1.260
-2. 54	-1.619	-. 790	1.612
- -6.6	-1.405	-. 570	4.469
-17.78	1. 8.96	1. 469	- 1.721
-25.96	3.989	3.350	-2.953
-27.94	3. 6.75	2.300	-3.658
-35.56	1.247	c\%0	-1.939
-43.18	126	194	-. 151
-50.80	005	00	-. 1146

TABLE A18

Airfoil Wake Data at $x / L=.661$ ($+6^{\prime \prime}$ plane)

RUY ${ }^{\text {DATE OF }}$ R ${ }^{\text {RUN }}$ (4981					
$\begin{array}{r} \text { Urefernce }(\mathrm{m} / \mathrm{s}) \\ \mathrm{n} \text { loca }= \\ .661 \end{array}=21.84$					
Uinfinitu (m/s) $=22.50$					
Integral farameters					
Delta*sut $x=9693721 E-02$Deltaxsub $z=9094906 E-7425145 E-02$Theta sub $x=.74254$					
Theta sub z $=.21108515-02$Theta sut $x z=.850125 E-01$Theta sub $x x=.245953 E-03$					
Shape factor $H=1.171$					
Wake Profile					
$Y \mathrm{MM}$	u/Uinf	Gama	w/Uinf	Eeta	Fstatic
48.26.	$1.04{ }^{1}$	$\underline{9}$	015	30.86	0495
27.94	1.95%	1.25	021	31.24	0381
20.32	915	1.5	024	31.50	0334
12.70	861	1.96	0	31.86	0350
7.62	833	2.07	031	32.07	0359
5.88	818		036	$32 \cdot 29$	0376
2. 54	807	2. ${ }^{1}$	033	32.31	0396
1.27	800	2.36	035		0445
0.00	796	2. 37	033	32.36	0438
- $-2 \cdot 54$	814	2. 3.9	${ }_{0}^{03}$	32.19	0154
-4. 5.7	816	2. 19	031	$3{ }^{3}$ 2 19	0140
-7. 916	825	2.29	030	32. ${ }^{3}$ 2	0198
-14.73	854	1.86	028	31.66	0153
-21.08	888	1.57	024	31.56	0192
- 37.5	1. 000	44	175	30.40	0037

TABLE A19
Airfoil Wake Data at $x / L=.661$ ($-6^{\prime \prime}$ plane)

TABLE A2O
Airfoil Wake Data at $x / L=.992$ (central plane)

TASLE A21

Airfoil Wake Data at $x / L=1.928$ (central plane)

RUN \# 18
 DATE OF RUN 4981

```
Urefernce. (m/5) \(=21.84\)
Uinfinitり (m/5) = 33.34
```

Integral Parametere
Delta*sub $x=3385820 E-02$
De1ta*sub $z=.2070857 E+00$
Theta sub $x=2963738 \mathrm{E}-02$
Theta sub $z=.3562933 E-03$
Theta sut $\times 2=.1039173 \mathrm{E}+00$
Theta sut $z x=.2139227 E-04$
Stape Facior $H=1.075$

Wake Profi?e

$Y \mathrm{Mm}$	u/Uinf	Gama	w/ binf	Eeta	Petatic
0.00	899	77	012	30.77	0116
3.81	901	51	008	30.51	0103
7.6	90%	50	008	30.50	0084
12.70	9	47	0084	30.47	0001
26.67	947	55	0.19	30.55	0029
25.56	968	20	003	30.15	$-.0034$
45.72	981	09	002	30.09	0039
57.15	994	13	002	30.93	0037
69.8	999	05	001	30.05	0035
O. 06	1.000	00	001	30.00	0072

TABLE A21 (Continued)

Turbulence Data

```
X/L Locatign = {
```

Half Wake Profile

Y MM	Utär	Vtar	Whar	uutar	vツbap	Wubam
-6. 35	. 902	. 004	. 015	3. 378	4.385	ㄷ.59
-5.08	900	003	016	3.376	4.485	3.656
-2.54	905	005	017	3.358	4.351	7. 674
0.00	900	003	014	3.439	4.545	3.637
2.54	903	004	016	3.482	4.308	$\because .654$
5.08	904	003	016	3.454	4.293	5.726
7.62	908	004	015	3.584	4.315	3.755
10.16	911	000	014	3.650	4.127	3.841
12.70	914	002	012	3.537	4.196	3.714
17.78	923	005	011	3.669	3.973	3.710
22.86	934	001	010	3.735	3.802	3. 635
27.94	946	005	010	3.504	3.730	3.553
33.02	955	002	009	3.379	3.580	3.414
38.10	965	001	. 000	3.139	3.257	ㅍ.006
43.15	975	001	007	2.756	2.988	2.853
5 (1. 8 (1)	987	-000	004	2.310	2.453	\%.326
58.42	992	001	006	1.766	1.967	1. 909
66.04	998	002	005	1.290	1.691	1. 473
76.20	1.00\%	001	005	883	1.162	1. 044
86.36	1.000	$-.000$	-000	62 c	. 930	. 640

TABLE A21 (Coniinued)

Profile continued at $X / L=1.928$

$Y \mathrm{MN}$	untiar	UWtar	UWtat	vuutar	quubar	wwwter
-6.35	801	$\text { - } 184$	-69		906	$\begin{array}{r} 389 \\ 159 \end{array}$
-5.06	961	-979	-70	$\text { - } 331$	$.590$	345
-2.54	-. 018	- 425	- 60	-. ${ }^{2} 7$	656	- 455
0.00	- -740	-. 149	- 39	-. 167	175	-1.085
2.54	-2.947	342	$\cdots .08$. 065	849	-1.309
7.6	$-3.60{ }^{-3}$	479	.37	249	$\frac{2}{9} \frac{1}{7}$	7
10.16	-3.806	700	46	114		
12.70	-4.57\%	. 828	66	081.	756	-1 74
17.78	-4.812	1. 428	40	1.66?		- 2480
22.86	-5.369	967	$\frac{15}{5}$	1.808	1.029	- 5.189
27.94	-5.393	1.383	9	$\frac{2}{2} .484$	1.682	-2.807
33.02	-5.111	1.249	82	2.360	482	-5.46
38.10	-4.299	1. 004	62	2.803	447	$\bigcirc 2045$
43.16	-3.451	$7 \mathrm{7a}$	60	1.90%	94	-1. 69
50.80	-2.359	769	14	95	68	-1.067
58.42	-1.412	$5 \% 7$	5	- 0	方i	-1.097
60.04	-. 608	- 150	1. ${ }_{4}$	$05 \frac{1}{5}$	-00\%	. 225
76.20	-. 188	-. 029	0	- $00 \frac{3}{4}$	-. 016	$-.053$
86.36	-. 041	-.012	6	-.003	010	.

TABLE A21 (Continued)

Y mm	uuubar	uuwtiar.	quubar	vuwtar.
-6.35	-. 160	6	-1.831.	- 402
-5.08	- ${ }^{3}$.004	-1. 554	-. 303
-2.54	306	-. 043	-1.494	-. 401
0.00	543	-. 016	- 5.635	-. 151
2.54	455	-. 264	- -1.694	-. 210
7.6 2	492	- 550	-1.066	-. 325
10.16	326	-. 307	$-.584$	035
42.70	383	-. 005	-. 404	- 077
17.78	. 240	-. 068	038	-. 0.38
25.88	-. 325	-.063	1. 236	-. 187
3'02	-1.149	169	1. 508	- 5
38.10	-1.401	056	1. 461	- 408
43. 180	-1. 0174	288	1.309	-. 088
58.42	-. 577	194	1.657	-. 18%
66.14	-. 217	104	172	- 480
76.20	-. 888	009	068	-.026
86.36	-. 012	004	005	© 4

TABLE A21 (Continued)

Y MM	wwubar	wwubar	uuwbar
-6. 35	-. 036	-. 104	1.675
-5.09	. 063	-. 089	1.560
-2. 54	-. 228	. 103	1.470
0.00	. 061	$\underline{137}$	2. 025
5.08	-. 2345	- . 2 2를	2. 0851
7.62	. 114	- 2 ¢ 3	1.335
10.18	139	085	1.378
17.78	429	054	868
29.86	650	- 511	456
27.94	1.009	-. 610	244
33.02	. 828	-. 686	718
38.10	1.020	-1.089	765
43.18	896	-. 607	711
50.30	893	- 550	253
66.04	403	- 473	- 060
76.20	-. 019	-. 089	017
86.36	-. 002	-. 015	020

[^0]: Arusinulguninginininutoronarue
 vet
 762
 034
 686
 018
 321
 103
 069
 102
 905
 861
 515
 614
 804
 896
 876
 989
 895
 961
 104

 Whbar

