Design of a Helicopter Autopilot by Means of Linearizing Transformations

G. Meyer, R. L. Hunt, and R. Su

October 1982

N/S^

National Aeronautics and
Space Administration

421 Pr/men-Th-842ge

DISPIQy $42 / 1$

 Me 1.15 .84296821060 14 PAGES UQLAGGIFIED DOCUTMT
UTL: Desigh of a helicoter autoplot by mens of ineaizing thantometione

CoRP: Mationel Aeronatics and Gpec moministration Ames Regench Centen: Motet Field Galt: AnIL. NTIS GP: HC AOZAF की
WASE कUTOMATIC PLOTGFFLGUT COTROLMELCOPTER DESIG
 HEDICOPTER
ABA: S.
ABS: An automatic fleht contol syetems design method for airont het heve comele कhanctelstics and operatonal requirements guch be the pomered lif gTol and vetol confiurations are diguseed. The method is effectire
 thet heve highy oupled honlmeat ties fedundent ontrols, and complex multidmensiona operationel ehelopes. The method explotis the posibility ot lhenizine the system oue its onenational melope by

Design of a Helicopter Autopilot by Means of Linearizing Transformations

G. Meyer
R. L. Hunt
R. Lu, Ames Research Center, Moffett Field, California

N/ SA

National Aeronautics and
Space Administration

Ames Research Center

Moffett Field. California 94035

DESIGN OF A HELICOPTER AUTOPILOT BY MEANS OF LINEARIZING TRANSFORMATIONS

G. Meyer, R. L. Hunt, and R. Su

NASA Ames Research Center, Moffett Field, California, U.S.A., 94035

SUMMARY

A method for designing automatic flight control systems for aircraft that have complex characteristics and operational requirements, such as the powered-lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems that require multiaxis control and that have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. The method exploits the possibility of linearizing the system over its operational envelope by transforming the state and control. The linear canonical forms used in the design are described, and necessary and sufficient conditions for linearizability are stated. The control. logic has the structure of an exact model follower with linear decoupled model dynamics and possibly nonlinear plant dynamics. The design method is illustrated with an application to a helicopter autopilot design.

1. INTRODUCTION

Consider in general terms the control-system design problem. Let us take the usual hardware/software model of the problem in which the hardware consists of the plant together with all the sensors and actuators which are connected to a digital computer, and in which the software embodies the complete control strategy. The hardware is fixed; we may change only the software, over which, however, we have full control. So one may say that since the underlying physical process is to remain fixed, only its representation may be changed. If this point of view is taken, then much of the control-system design problem may be interpreted in terms of transformations.

This paper outlines a design approach that is being developed from the transformations point of view, and describes an application to the control of a helicopter. This approach, first outlined in Ref. 1, has been applied to several aircraft of increasing complexity, and the completely automatic flight-control system was first tested on a DHC-6. The reference trajectory used in the flight test, exercised a substantial part of the operational envelope of the aircraft. Despite disturbances and variations in plant dynamics, the system performed well (see Ref. 2). Next, the technique was applied to the Augmentor Wing Jet STOL Research aircraft, the successful flight tests of which are reported in Ref. 3. Methods for providing pilot inputs to this design were examined in Ref. 4, and application of the scheme to the control of an A-7 aircraft for carrier landing and testing in manned simulation is reported in Refs. 5 and 6 . The design method is currently being applied to the UH-1H helicopter, again with the substantial portion of the operational envelope of this aircraft being used.

The key concept of the approach is to simplify the representation of the plant dynamics by means of a change of coordinates of the state and control. The design proceeds in three steps. First, the given nonlinear system - possibly time-varying, multiaxis, and cross-coupled - is transformed into a constant, decoupled linear representation. Second, standard linear and nonlinear design techniques, such as Bode plots, pole placement, LQG, and phase plane, are used to design a control law for this simple representation. And third, the resulting control law is transformed back out into the original coordinates to obtain the control-law in terms of the available controls.

The mathematical foundation for the approach is provided by modern differential geometry, the necessary and sufficient conditions for linearizing have been established, and the theory is given in Refs. 7-15.

2. CANONICAL FORM

Suppose that the given natural representation S_{1} of the physical process is given by the state x_{1}, control u_{1}, and field f_{1},

$$
\begin{equation*}
\dot{x}_{1}=f_{1}\left(x_{1}, u_{1}\right) \tag{1}
\end{equation*}
$$

and that we wish to change S_{1} into S_{2} with state x_{2}, control u_{2}, and field f_{2},

$$
\begin{equation*}
\dot{x}_{2}=f_{2}\left(x_{2}, u_{2}\right) \tag{2}
\end{equation*}
$$

This change will be accomplished, and hence a large part of the design problem solved, once we construct the appropriate transformations of the state and control,

$$
\begin{align*}
& x_{2}=T\left(x_{1}\right) \tag{3a}\\
& u_{1}=W\left(x_{1}, u_{2}\right) \tag{3b}
\end{align*}
$$

which relate S_{1} to S_{2} so that for all admissible $\left(x_{1}, u_{2}\right)$,

$$
\begin{equation*}
\frac{\partial T}{\partial x_{1}}\left(x_{1}\right) f_{1}\left[x_{2}, W\left(x_{1}, u_{2}\right)\right]=f_{2}\left[T\left(x_{1}\right), u_{2}\right] \tag{4}
\end{equation*}
$$

The function W is the control law.
The construction of the transformation (T, W) is often greatly simplified by the introduction of an intermediate canonical representation S_{0} as shown in Fig. 1. To obtain (T_{12}, W_{12}), which links S_{1} to S_{2}, both S_{1} and S_{2} are first transformed into the canonical representation S_{0}. Then

Fig. 1. Manipulation of system representations.

Fig. 2. Diagram of Brunovsky form.

$$
\begin{align*}
& T_{12}=T_{2} \delta T_{10} \tag{5a}\\
& W_{12}=W_{10} W_{2} \bar{d} \tag{5b}
\end{align*}
$$

In the design procedure being described, the Brunovsky form (Ref. 14) is taken to be canonical. In linear theory this form is basic. It consists of decoupled strings of integrators which may be diagramned as shown in Fig. 2 where each dot represents a scalar integrator.

The number of strings, which may be of different lengths, equals the number of controls which itself equals the number of Kronecker indexes $k_{1} \geq k_{2} \geq \ldots \geq k_{m}$. The lengths of the ith string is given by $k i$ and the dimension of the state space

$$
n=\sum_{i=1}^{m} k_{i}
$$

Let the canonical state $x_{0} \in R^{n}$ con.rol $u_{0} \in R^{m}$, and denote the canonical field $f_{0} b$,

$$
\begin{equation*}
\dot{x}_{0}=A_{0} x_{0}+B_{0} u_{0} \tag{6}
\end{equation*}
$$

According to linear theory any constant, linear, controllable system may be viewed as a nonsingular transformation of an appropriate Brunovsky form. Thus, if S_{1} is given by the state $x_{1} \in R^{n}$, control $u_{1} \in R^{m}$, and field

$$
\begin{equation*}
\dot{x}_{1}=A_{1} x_{1}+B_{1} u_{1} \tag{7}
\end{equation*}
$$

with controliable $\left(A_{1}, B_{1}\right)$, then there is a Brunovsky form that can be transformed into S_{1} by means of nonsingular transformations (T, W nonsingular)

$$
\begin{align*}
& x_{1}=T^{-1} x_{0} \tag{8a}\\
& u_{1}=W u_{0}+Q x_{1} \tag{8b}
\end{align*}
$$

Of course, So may also be transformed into nonlinear and time-varying systems without any loss of information by allowing the transformations in Eq. (8) to be nonlinear and time-varying but still nonsingular:

$$
\begin{align*}
& x_{1}=T^{-1}\left(x_{0}, t\right) \tag{9a}\\
& u_{1}=W\left(x_{1}, u_{0}, t\right) \tag{9b}
\end{align*}
$$

This fact gives rise to our design procedure. When presented with a nonlinear system S_{2}, the first step is to try to linearize the system over its whole operational envelope by constructing (T, W) which maps S_{1} into S_{0}. Then a control law is synthesized for the much simpler S_{0}. Finally, the S_{0} control law is transformed into the coordinates of S_{1} to obtain the control law for S_{1}.

3. TRANSFORMABILITY

Fig. 3. An example of a block triangular system.

A class of systems particularly amenable to this approach has the following form. The control $u \in R^{m}$, the state $x \in R^{m} \times R^{m} \times \ldots \times R^{m}$ and the field f is without transmission zeroes and invertible. An example is shown in Fig. 3. In this example, the state $x \in R^{m} \times R^{m}$, the control $u \in R^{m}$, and the field f,

$$
\left.\begin{array}{l}
\dot{x}_{1}=F_{1}\left(x_{1}, x_{2}, t\right) \tag{10}\\
\dot{x}_{2}=F_{1}\left(x_{1}, x_{2}, u, t\right)
\end{array}\right\}
$$

and F_{2} and F_{2} are invertible relative to $\left(x_{2}, \dot{x}_{2}\right)$ and $\left(u, \dot{x}_{2}\right)$. That is, functions h_{1} and h_{2} can be constructed so that if

$$
\left.\begin{array}{rl}
x_{2} & =h_{1}\left(x_{1}, \dot{x_{1}}, t\right) \tag{11}\\
u & =h_{:}\left(x_{1}, x_{2}, \dot{x}_{2}, t\right)
\end{array}\right\}
$$

then

$$
\left.\begin{array}{rl}
F_{1}\left[x_{1}, h_{1}\left(x_{1}, \dot{x}_{1}, t\right), t\right] & =\dot{x}_{1} \tag{12}\\
F_{2}\left[x_{1}, x_{2}, h_{2}\left(x_{1}, x_{2}, \dot{x}_{2}, t\right), t\right] & =x_{2}
\end{array}\right\}
$$

on the operational envelope. Because of the form of Eq. (10), such systems will be called blocktriangular.

For this example, the canonical form S_{o} has m Kronecker indexes, all equal to 2 . The state $x^{\circ} \in \mathbb{R}^{m} \times R^{m}$, the control $u^{\circ} \in \mathbb{R}^{m}$, and the field,

$$
\left.\begin{array}{l}
x_{1}^{\circ}=x_{2}^{0} \tag{13}\\
\dot{x}_{2}^{\circ}=u^{\circ}
\end{array}\right\}
$$

The map linking Eq. (10) with Eq. (13) may be obtained by letting $x_{1}=x_{1}^{\circ}(t)$ and pushing, as it were, the time-history $x_{i}^{\circ}(t)$ upstream through f to obtain $u(t)$. Thus,

$$
\left.\begin{array}{rl}
x_{1} & =x_{1}^{\circ} \tag{14}\\
\dot{x}_{1} & =\dot{x}_{1}^{\circ}=x_{2}^{\circ} \\
x_{2} & =h_{1}\left(x_{1}^{\circ}, x_{2}^{\circ}, t\right) \\
\dot{x}_{2} & =\frac{\partial h_{1}}{\partial x_{1}} x_{2}^{0}+\frac{\partial h_{1}}{\partial x_{2}} u^{\circ}+\frac{\partial h_{1}}{\partial t} \\
u & =h_{2}\left(x_{1}^{\circ}, x_{2}^{\circ}, \dot{x}_{2}, t\right)
\end{array}\right\}
$$

In general, the canonical form S_{0} of a block triangular S_{1} will have m Kronecker indexes, all equal to n / m where n is the dimension of the state space of S_{1}.

This procedure of constructing the linearizing transformations will fail if S_{1} does have transmission zeroes. In that case, one obtains differential equation constraints on u, thereby destroying its status as an independent control variable. Nevertheless, such systems may still be linearizable. For example, the scalar system

$$
\left(\begin{array}{l}
\dot{x}_{1} \tag{15}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
0
\end{array}\right)+\left(\begin{array}{c}
-x_{3} \\
0 \\
1
\end{array}\right) u
$$

is linearized by the transformation

$$
\begin{align*}
x_{1}^{0} & =x_{1}+\frac{1}{2}\left(x_{3}\right)^{2} \\
x_{2}^{0} & =x_{2} \tag{16}\\
x_{3}^{0} & =x_{3} \\
u & =u^{0}
\end{align*}
$$

On the other hand it will be shown that the system

$$
\left(\begin{array}{c}
\dot{x}_{1} \tag{17}\\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
0
\end{array}\right)+\left(\begin{array}{c}
-x_{2} \\
0 \\
1
\end{array}\right) u
$$

is not linearizable; the nonlinearity in this case is intrinsic and cannot be removed by a change of coordinates. The conditions under which linearization is possible are summarized next.

Let $x \in R^{n}, u \in R^{m}$, and the field

$$
\begin{equation*}
\dot{x}=F(x, u) \tag{18}
\end{equation*}
$$

There are four conditions for this system to be linearizable. First, it is necessary to be able to construct a new control variable, ϕ,

$$
\begin{align*}
& \phi=h^{-1}(x, u) \tag{19}\\
& u=h(x, \phi)
\end{align*}
$$

so that ϕ enters linearly into the field:

$$
\begin{equation*}
F[x, h(x, \phi)]=f(x)+\sum_{i=1}^{m} g_{i}(x) \phi_{i} \tag{20}
\end{equation*}
$$

The remaining three conditions are technical, and they are best expressed by means of Lie brackets defined as follows. If f and g are C^{∞} vector fields on R^{n}, the Lie bracket of f and g is

$$
\begin{equation*}
[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g \tag{21}
\end{equation*}
$$

and we set

$$
\begin{aligned}
\left(a d^{\circ} f, g\right) & =g \\
\left(a d^{2} f, g\right) & =[f, g] \\
\left(a d^{2} f, g\right) & =[f,[f, g]] \\
& \vdots \\
\left(a d^{k} f, g\right) & =\left[f,\left(a d^{k-1} f, g\right)\right]
\end{aligned}
$$

A collection of C^{∞} vector fields $h_{1}, h_{2}, \ldots, h_{r}$ on R^{n} is involutive if there exist C^{∞} functions $\gamma_{i j k}$

$$
\left[h_{i}, h_{j}\right]=\sum_{k=1}^{r} \gamma_{i j k} h_{k}, \quad 1 \leq i, \quad j \leq r, \quad i \neq j
$$

Now, suppose that we wish to transform Eq. (20) into S_{0} with Kronecker indexes $k_{1} \geq k_{2} \geq \ldots \ldots k_{m}$. Define the sets

$$
\begin{aligned}
& C=\left\{g_{1},\left[f_{1} g_{1}\right], \ldots\left(a d^{k-1} f_{1} g_{2}\right),\right. \\
& g_{2},\left[f_{1} g_{2}\right], \ldots\left(d^{k_{2}-1} f_{1} g_{2}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& C_{j}=\left(g_{1},\left[f_{1} g_{2}\right], \ldots\left(a d^{k j-2} f_{1} g_{1}\right)\right. \text {, } \\
& g_{2},\left[f_{1} g_{2}\right], \ldots\left(a d^{k} j^{-2} f_{1} g_{2}\right) \text {, } \\
& \left.\bar{g}_{m},\left[\bar{f}_{1} g_{m}\right], \ldots .,\left(a d^{k} \bar{j}^{-2} \bar{f}_{1} g_{m}\right)\right) \text { for } j=1,2, \ldots, m
\end{aligned}
$$

Then it can be shown that the transformation is possible if and only if at each admissible x,

1. The set of C spans an n-dimensional space
2. Each C_{j} is involutive for $j=1,2, \ldots, m$
3. The span of C_{j} equals the span of $C_{j} \cap C$ for $j=1,2$, .., m

For a linear field, $\dot{x}=A x+B u$, the spanning condition (1) or C is equivalent to controllability, rank $\left(B, A B, \ldots, A^{n-1} B\right)=n$. The other conditions are automatically satisfied. The new coordinate surface $T_{1}(x)=$ constant in a plane through the origin in the old state space. For nonlinear field, $T_{:}(x)=$ constant will be a general surface. The involutivity condition (2) guarantees that this surface is constructible from local conditions (integrability theorem of Frobenius).

Suppose we wish to transform system (17) into S_{0} with $k=3$. Here the set $C=\left\{g,[f, g],\left(\mathrm{ad}^{2} f, g\right)\right.$) spans R^{3}. But the $C_{1}=\left\{g,[f, g],[g,[f, g]]\right.$) also spans. R^{3}; therefore, system (17) is not transformable into S_{0}. For further details on the transformation theory see Refs. 7-15. Let us turn our attention next to the control structure in which these ideas of transformability may be implemented in practical cases.

4. EXACT MODEL FOLLOWER

If the plant S_{1} is equivalent to a system S_{2} in the sense that each can be transformed into the other by nonsingular transformations, then one may construct an exact model follower in which the plant S_{1} will, except for disturbances, follow exactly the system S_{2}, which is interpreted as being the model. Let the system representing the tracking error be denoted by S_{3}. The three systems, are related to each other and to the Brunovsky form S_{0} as shown in Fig. 4.

Fig. 4. Plant S_{1}, model S_{2}, and regulator S_{3}.

Now consider the structure of the model follower as shown in Fig. 5. There are five subsystems: model servo, regulator, plant, and two transformations. The desired system behavior is defined in the model servo. The model servo law may be nonlinear, time-varying, and dynamic. The TW-map (T_{23}, W_{23}) transforms the S_{2} system

$$
\begin{equation*}
\dot{x}_{2}^{m}=f_{2}\left(x_{2}^{m}, u_{2}^{m}\right) \tag{22}
\end{equation*}
$$

into S_{3},

$$
\begin{equation*}
\dot{x}_{3}^{m}=f_{3}\left(x_{3}^{m}, u_{3}^{m}\right) \tag{23}
\end{equation*}
$$

The TW-map $\left(T_{13}, W_{13}\right)$ transforms the plant S_{1}

$$
\begin{equation*}
\dot{x}_{1}=f_{1}\left(x_{1}, u_{2}\right) \tag{24}
\end{equation*}
$$

Fig. 5. Structure of the model follower.
into S_{3}

$$
\begin{equation*}
\dot{x}_{3}=f_{3}\left(x_{3}, u_{3}\right) \tag{25}
\end{equation*}
$$

That is, when seen through the $T W$-map (T_{13}, W_{13}) in terms of $\left(x_{3}, u_{3}\right)$, the plant looks like Eq. (25); which is also how the model looks through the TW-map (T_{23}, W_{23}).

In the absence of disturbances and with proper initialization of the model (i.e., $x_{2}^{m}(0)=T_{12}\left[x_{1}(0)\right]$), the plant will follow the model exactly in the sense that the error defined by

$$
\begin{equation*}
e_{3}=x_{3}-x_{3}^{m} \tag{26}
\end{equation*}
$$

will be zero for $t \geq 0$. In a realistic situation, disturbances, say, d, are present, and they are controlled by means of the regulator which transforms the tracking error e_{3} into corrective control δu_{3}. The error dynamics are given by

$$
\begin{equation*}
\dot{e}_{3}=f_{3}\left(x_{3}, u_{3}\right)-f_{3}\left(x_{3}^{m}, u_{3}^{m}\right) \tag{27}
\end{equation*}
$$

which for small errors simplifies to

$$
\dot{e}=\frac{\partial f_{3}}{\partial x_{3}} e_{3}+\frac{\partial f_{3}}{\partial u_{3}} \delta u_{3}+d
$$

In particular, if S_{3} is chosen to coincide with S_{0}, so that $f_{3}=f_{0}$, then without approximation,

$$
\begin{equation*}
\dot{e}_{0}=A_{0} e_{0}+B_{0} \delta u_{0}+d \tag{28}
\end{equation*}
$$

It may be noted that the regulator need not be gain-scheduled; that function is accomplished automatically by the TW-map.

This completes the outline of the design approach. Consider next an application to a helicopter.

5. THE PLANT-A HELICOPTER

The helicopter will be represented by a rigid body moving in three-dimensional space in response to gravity, aerodynamics, and propulsion. The state,

$$
\begin{equation*}
x=(r, v, C, w)^{\top} \in X \subset R^{3} \times R^{3} \times S O(3) \times R^{3} \tag{29}
\end{equation*}
$$

where r and v are the inertial coordinates of body center-of-mass position and velocity, respectively, and C is the direction cosine matrix of the body-fixed axes relative to the runway-fixed axes (taken to be inertial). The attitude C moves on the sphere $S O(3)$. The body coordinates of angular velocity are represented by ω.

The controls,

$$
\begin{equation*}
u=\left(u^{M}, u^{P}\right)^{\top} \varepsilon U \subset R^{3} \times R \tag{30}
\end{equation*}
$$

where u^{M} is the three-axis moment control, that is, roll cyclic and pitch cyclic, which tilt the main-rotor thrust, and the tail-rotor collective, which controls the yaw moment; and $u P$ is the main-rotor collective, \because which controls the main-rotor thrust.

The effectively 12 -dimensional state equation consists of the translational and rotational kinematic and dynamic equations:

$$
\left.\begin{array}{rl}
\dot{r} & =v \tag{31}\\
\dot{v} & =f^{F}(x, u) \\
\dot{C} & =S(\omega) C \\
\dot{\omega} & =f^{M}(x, u)
\end{array}\right\}
$$

where f^{F} and f^{M} are the total force and moment generation processes, and (x, u) are defined by Eqs. (29) and (30). This is the natural representation S_{1} of the helicopter.

Consider next the transformation of Eqs. (31) into a Brunovsky form S_{0} by means of the transformations $u=W\left(x, u_{0}\right)$ and $x_{0}=T(x)$.
6. THE TW-MAP

In general, the moment generation process f^{M} is invertible with respect to the pair (\dot{w}, u^{M}), and for the restricted class of maneuvers being considered in this experiment (i.e., no 360° rolls), ff is invertible with respect to the pair ($\dot{v}_{3}, u p$). Thus, in the present case for the set of angular and vertical acceleration commands restricted to the set

$$
\begin{equation*}
u_{i}=\left\{\left(\dot{\omega}_{,}, \dot{v}_{3}\right):\left|\dot{\omega}_{i}\right| \leq 1.0 \mathrm{rad} / \mathrm{sec}^{2}, \quad i=1,2,3,\left|\dot{v}_{3}\right| \leq 0.5 \mathrm{~g}\right\} \tag{32}
\end{equation*}
$$

a function $h^{M}: X \times U_{\dot{W}} \rightarrow U$ can be constructed so that if

$$
\begin{equation*}
u=h^{M}\left[x,\left(\dot{\omega}_{0}, \dot{v}_{30}\right)\right] \tag{33}
\end{equation*}
$$

then

$$
\left.\begin{array}{rl}
\dot{w} & =\dot{\omega}_{0} \tag{34}\\
\dot{v}_{3} & =\dot{v}_{30}
\end{array}\right\}
$$

If ($\dot{w}_{0}, \dot{v}_{30}$) are chosen to be the new independent control variables to replace the natural controls ($u^{\mathrm{M}}, \mu^{\mathrm{P}}$), then the state equation (31) becomes the following:

$$
\begin{align*}
\dot{r} & =v \\
\binom{\dot{v}_{1}}{\dot{v}_{2}} & =f^{\circ}(r, v, c)+\epsilon f^{2}\left[r, v, c, \omega,\left(\dot{w}_{0}, \dot{v}_{30}\right)\right] \tag{35}\\
\dot{v}_{3} & =\dot{v}_{30} \\
c & =s(\omega) c \\
\dot{w} & =\dot{w}_{0}
\end{align*}
$$

where $\varepsilon=1$ and f^{1} is such that $f^{1}[r, v, C, 0,(0,0)]=0$.
The function f° is invertible with respect to the pair. $\left\{\left[\dot{v}_{1}, \dot{v}_{2}, E_{3}(\psi)\right], C\right\}$ in which $E_{3}(\psi)$ is an elementary rotation about the runway z-axis, representing the heading of the helicopter.

$$
E_{3}(\psi)=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \tag{36}\\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

If the horizontal acceleration comands are restricted to the set

$$
\begin{equation*}
u_{\dot{v}}=\left\{\left(\dot{v}_{1}, \dot{v}_{2}\right):\left|\dot{v}_{i}\right| \leq 0.5 \mathrm{~g}, \quad i=1,2\right\} \tag{37}
\end{equation*}
$$

then a function $h^{F}: R^{3} \times R^{3} \times U_{\dot{v}} \times S O(2) \rightarrow S O(3)$ can be constructed so that the helicopter attitude given by

$$
\begin{equation*}
c_{0}=h^{F}\left[r, v, \dot{v}_{0}, E_{3}\left(\psi_{0}\right)\right] \tag{38}
\end{equation*}
$$

results in the commanded acceleration,

$$
\begin{equation*}
\dot{v}=\dot{v}_{0} \tag{39}
\end{equation*}
$$

Equations (33) and (38) are the trim equations of the helicopter (31) without the parasitic effects ($\varepsilon=0$ in Eq. (35)). That is, for a given motion $\left\{r(t), E_{3}[\psi(t)]\right), t z 0$, the corresponding trim state and control may be computed as follows:

$$
\left.\begin{array}{rl}
r_{0} & =r(t) \\
v_{0} & =r(t) \\
c_{0} & =h^{F}\left(r_{0}, v_{0}, \dot{v}_{0}(t), E_{3}\left[\psi_{0}(t)\right]\right\} \\
\omega_{0} & =q\left[c_{0}(t) c_{0}^{T}\right] \tag{40}\\
\dot{\omega}_{0} & =\dot{\omega}_{0}(t) \\
u_{0} & =h^{M}\left[r_{0}, v_{0}, c_{0}, \omega_{0},\left(\dot{\omega}_{0}, \dot{v}_{30}\right)\right]
\end{array}\right\}
$$

where the function q extracts ω from $S(\omega)=\delta C^{\top}$. . The required time derivatives in Eq. (40) are computable provided that the motion (r, E_{3}) is generated by the strings of integrators shown in Fig. 6 where a dot represents a scalar integrator, and $y^{5} \in R^{4}$ is an independent control. variable. The system shown in Fig. 6 (Kronecker indexes $\{4,4,2,2\}$) will be taken as the canonical model of the helicopter. The canonical variables will be denoted by y rather than x_{0} to reduce the number of subscripts. The transformation and feedback that change the natural representation (Eq. (31)) to the canonical representation are approximately the following.

The coordinate change, $y=T(x)$, is given by

$$
\left.\begin{array}{l}
y^{1}=\left(y_{1}^{2}, y_{2}^{1}\right)^{\top}=\left(r_{1}, \dot{r_{2}}\right)^{\top} \\
y^{2}=\left(y_{1}^{2}, y_{2}^{2}\right)^{\top}=\left(v_{1}, v_{2}\right)^{\top} \tag{41}\\
y^{3}=\left(y_{1}^{3}, y_{2}^{3}, y_{3}^{3}, y_{4}^{3}\right)^{\top}=\left(f_{1}^{0}, f_{2}^{0}, E_{3}(\psi), r_{3}\right)^{\top} \\
y^{4}=\left(y_{1}^{4}, y_{2}^{4}, y_{3}^{4}, y_{4}^{4}\right)^{\top}=\frac{\partial f^{\circ}}{\partial C} \omega, \omega_{3}, r_{3}^{\top}
\end{array}\right\}
$$

Fig. 6. Canonical model of helicopter.
where

$$
\cos \psi=c_{11} / c, \sin \psi=c_{12} / c, c=\left(c_{11}^{2}+c_{12}^{2}\right)^{1 / 2}, \text { and }\left(c_{i j}\right)=C .
$$

The control variable change, $u=w\left(x, y^{5}\right)$ is defined in two steps:

$$
\begin{align*}
& \dot{\omega}=\left(\begin{array}{c}
\frac{\partial f^{\circ}}{\partial C_{i}} \\
0 \\
0
\end{array}\right)^{-1}\left(\begin{array}{l}
y_{1}^{5} \\
y_{2}^{5} \\
y_{3}^{5}
\end{array}\right): \tag{42}\\
& \cdot \dot{v}_{3}=y_{4}^{5}
\end{align*}
$$

and

$$
\begin{equation*}
u=h^{M}\left[r, v, c, \omega,\left(\dot{\omega}, \dot{v}_{3}\right)\right] \tag{43}
\end{equation*}
$$

The effects of the various approximations made in the construction of these transformations are relegated to the regulator.

7. MODEL SERVO AND REGULATOR

The field of the model S_{2} is chosen to be canonical as defined in Fig. 6. The design of the three trajectory channels of the model servo is shown in Fig. 7. There are four 3-axis integrators. Two axes correspond to the horizontal strings (r_{1}, r_{2}) in Fig. 6. The third axis represents the vertical (r_{3}) string, but with two additional smoothing integrators. The exceedingly simple structure of the field (i.e., linear, decoupled) greatly simplifies the servo design process. The inner loop (a_{0}, \dot{a}_{0}) is designed to be an acceleration servo whose input a_{l} is the sum of coarse acceleration command a^{*} from the coarse command generator, and δa_{0} which is generated by the outer loop to smoothly reduce any discontinuities in. the commanded position and velocity vectors, r^{\star} and v^{\star}, respectiyely. The acceleration servo bandwidth is $0.63 \mathrm{rad} / \mathrm{sec}$. The bandwidth of the outer loop is 0.1 rad $/ \mathrm{sec}$. Large position errors are reduced at the rate of $6 \mathrm{~m} / \mathrm{sec}$.

The heading model servo is shown in Fig. 8. It is designed to have two scalar integrators corresponding to the E_{3}, string in Fig. 6. The heading error,

$$
\begin{equation*}
\mathbf{e}_{\psi_{0}}=\cos \psi_{0} \sin \psi^{\star}-\sin \psi_{0} \cos \psi^{\star} \tag{44}
\end{equation*}
$$

is computed in the q-block. Block S represents, together with the integrator, the kinematic equation of E_{3}.

The model reference state y_{0} and control y_{0}^{5} in Fig. 5 are defined (see Figs. 6-8) as follows:

$$
\begin{align*}
& y_{0}^{1}=\left(r_{10}, r_{20}\right)^{\top} \\
& y_{0}^{2}=\left(v_{10}, v_{20}\right)^{\top} \\
& y_{0}^{3}=\left[a_{10}, a_{20}, E_{3}\left(\psi_{0}\right), r_{30}\right]^{\top} \tag{45}\\
& y_{0}^{4}=\left(\dot{a}_{10}, \dot{a}_{20}, \omega_{30}, v_{30}\right)^{\top} \\
& y_{0}^{s}=\left(\ddot{a}_{10}, \ddot{a}_{20}, \dot{w}_{30}, a_{30}\right)^{\top}
\end{align*}
$$

Fig. 7. Model servo-trajectory, $r=\left(r_{1}, r_{2}, r_{3}\right)$.

Fig. 8. Model servo-heading $E_{3}\left(\psi_{0}\right)$.

The field of the regulator S_{3} is also chosen to be canonical S_{0}. The regulator design is outlined in Figs. 9-11.

Fig. 9. Regulator-horizontal axes.
Fig. 10. Regulator - vertical channel.

The estimated canonical state y is computed from the estimated natural state by means of the transformation T defined by Eq. (41). The outer loop of the horizontal channels (Fig. 9) has a bandwidth of $0.3 \mathrm{rad} / \mathrm{sec}$, with a $3 \mathrm{~m} / \mathrm{sec}$ largeerror reduction rate and $0.1-\mathrm{g}$ authority limit. The inner loop bandwidth is 3 rad $/ \mathrm{sec}$. The vertical channel, shown in Fig. 10, has a bandwidth of $0.63 \mathrm{rad} / \mathrm{sec}$, a $1.5-\mathrm{m} / \mathrm{sec}$ large-error reduction speed, and $0.3-\mathrm{g}$ authority. Finally, the heading channel is regulated as shown in Fig. 11, where the heading error is given by

$$
\begin{equation*}
\mathbf{e}_{\psi}=\cos \psi \sin \psi_{0}-\sin \psi \cos \psi_{0} \tag{46}
\end{equation*}
$$

The bandwidth of the heading regulator is $3 \mathrm{rad} / \mathrm{sec}$.

The total regulator output, δy^{5}, is added to the open-loop command, y_{0}^{5}, resulting in the total canonical control, y^{5}. It is then transformed by means of the \mathcal{W}-map giver by Eqs. (42) and (43) into the natural control u which, in turn, drives the actual plant.

8. SYSTEM PERFORMANCE

The results of a manned simulation are summarized in this section. The code was implemented on the flight computer to be used in the flight test, and the mathematical model of the helicopter (UH-1H) was driven through the actual hydraulics.

The experimental flightpath is defined by a set of way points, segments of lines and helixes, and a speed profile, as shown in Figs. 12 and 13. As can be seen from Fig. 12, the flightpath is a closed curve. The time dependence is shown in Fig. 13.

The experiment, which consists of automatically flying this trajectory, exercises the system over a wide range of flight conditions. The helicopter is taken from hover (way-point 1 in Fig. 12) to high-speed ($50 \mathrm{~m} / \mathrm{sec}$) accelerating, turning, and ascending flight. This input to the system is coarse, with a variety of discontinuities. The required smoothing is provided by the model servo discussed in the preceding section.

For the data presented, the helicopter was flown manually to the point $*$ marked in Fig. 12. There the automatic system was engaged. It takes about 500 sec for the helicopter to go once around the flightpath. Unlike the coarse accelerations in Fig. 13, the model accelerations are smooth, as is the vertical velocity, v_{30}. The second panel in Fig. 14 (labeled "acceleration error") shows the effects of the neglected parasitic terms on acceleration. The acceleration errors are quite small less than 0.05 g . The regulator controls these effects by means of position errors. The resulting horizontal error is less than 2 m , and the vertical error is below 0.5 m . The speed error, $e_{v}=\|v\|-\left\|v_{o}\right\|$, is below $0.5 \mathrm{~m} / \mathrm{sec}$.

Thus, the perfomance of the design in the simulation tests was good, and, at this writing, flight tests are in progress.

Fig. 12. Experimental flightpath shown in horizontal and vertical planes.

Fig. 13. Time-dependence of the coarse command.

Fig. 14. System response - canonical variables.

REFERENCES

1. Meyer, G., and Cicolani, L., A Formal Structure for Advanced Flight Control Systems. NASA TN D-7940, 1975.
2. Wehrend, W. R., Jr., and Meyer, G., Flight Tests of the Total Automatic Flight Control System (TAFCOS) Concept on a DHC-6 Twin Otter Aircraft. NASA TP-1513, 1980.
3. Meyer, G., and Cicolani, L., Applications of Nonlinear System Inverses to Automatic Flight Control Design - System Concepts and Flight Evaluations. Theory and Applications of Optimal Control in Aerospace Systems, P. Kant., ed., AGARDograph 251, 1980.
4. Wehrend, W. R., Jr., Pilot Control through the TAFCOS Automatic Flight Control System. NASA TM-81152, 1979.
5. Smith, G. A., and Meyer, G., Total Aircraft Flight Control System Balanced Open- and Closed-Loop Control with Dynamic Trimmaps. AIAA 3rd Digital Avionics Conference, Dallas, Texas, 1979. (Published in IEEE proceedings.)
6. Smith, G. A., and Meyer, G., Application of the Concept of Dynamic Trim Control to Automatic Landing of Carrier Aircraft. NASA TP-1512, 1980.
7. Krener, A. J., On the Equivalence of Control Systems and Linearization of Nonlinear Systems. SIAM J. Control, vol. 11, 1973, pp. 670-676.
8. Brockett, R. W., Feedback Invariants for Nonlinear Systems. IFAC Congress, Helsinki, 1978.
9. Jakubcyzk, B., and Respondek, W., On Linearization of Control Systems. Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., vol. 28, 1980, pp. 517-522.
10. Hunt, L. R., and Su, R., Linear Equivalents of Linear Time-Varying Systems. International Symposium on Mathematical Theory of Networks and Systems, 1981, pp. 119-123.
11. Hunt, L. R., and Su, R., Control of Nonlinear Time-Varying Systems. IEEE Conference on Decision and Control, 1981, pp. 558-563.
12. Hunt, L. R., Su, R., and Meyer, G., Global Transformations of Nonlinear Systems. To appear in IEEE Trans. on Autom. Control, vol. 27, 1982.
13. Hunt, L. R., Su, R., and Meyer, G., Multi-Input Nonlinear Systems. To appear in Differential Geometric Control Theory Conference, Birkhaüser, Boston, Cambridge, Mass., 1982.
14. Brunovsky, P., A Classification of Linear Controllable Systems. Kibernetika (Praha), vol. 5, 1970, pp. 173-188.
15. Meyer, G., The Design of Exact Nonlinear Model Followers. Joint Automatic Control Conference, FA-3A, 1981.

$\begin{aligned} & \text { 1. Report No. } \\ & \text { TM-84295 } \end{aligned}$	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle design of a helicopter autopilot by means of LINEARIZING TRANSFORMATIONS		5. Report Date October 1982
		6. Performing Organization Code
7. Author(s) G. Meyer, R. L. Hunt, and R. Su		8. Performing Organization Report No. A-9091
9. Performing Organization Name and Address NASA Ames Research Center Moffett Field, Calif. 94035		10. Work Unit No. T-5257
		11. Contract or Grant No.
		13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		Technical Memorandum
		14. Sponsoring Agency Code 505-34-01
15. Supplementary Notes Point of Contact: George Meyer, M/S 210-3, Ames Research Center, Moffett Field, CA 94035, (415) 965-5446 or FTS 448-5446		
16. Abstract A method for designing automatic flight control systems for aircraft that have complex characteristics and operational requirements, such as the powered-lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems that require multiaxis control and that have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. The method exploits the possibility of linearizing the system over its operational envelope by transforming the state and control. The linear canonical forms used in the design are described, and necessary and sufficient conditions for linearizability are stated. The control logic has the structure of an exact model follower with linear decoupled model dynamics and possibly nonlinear plant dynamics. The design method is illustrated with an application to a helicopter autopilot design.		
17. Key Words (Suggested by Author(s)) Control, Nonlinear, Multiaxis, Differential geometry, Aircraft		Category - 08
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 14 22. Price* A02

