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DESIGN OF A HELICOPTER AUTOPILOT BY MEANS OF LINEARIZING TRANSFORMATiQNS

G. Meyer, R. L. Hunt, and R. Su .
NASA Ames Research Center, Moffett Field, California, U.S.A., 94035

SUMMARY

A method for designing automatic flight control sysfems for aircraft that have complex characteristics
and operational requirements, such as the powered-1ift STOL and V/STOL configurations, is presented. The
method is effective for a large class of dynamic systems that require multiaxis control and that have highly
coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. The method
exploits the possibility of linearizing the system over its operational envelope by transforming the state
and control. The Tinear canonical forms used in the design are described, and necessary and sufficient condi-
tions for linearizability are stated. The control.logic has the structure of an exact model follower with
linear decoupled model dynamics and possibly nonlinear plant dynamics. The design method is illustrated with
an application to a helicopter autopilot design.

1. INTRODUCTION

Consider in general terms the control-system design problem. Let us take the usual hardware/software
model of the problem in which the hardware consists of the plant together with all the sensors and actuators
which are connected to a digital computer, and in which the software embodies the.complete control strategy.
The hardware is fixed; we may change only the software, over which, however, we have full control. So one
may say that since the underlying physical process is to remain fixed, only its representation may be changed.
If this point of view is taken, then much of the control-system design problem may be interpreted in terms
of transformations. . )

This paper outlines a design approach that is being developed from the transformations point of view,
and describes an application to the control of a helicopter. This approach, first outlined in Ref. 1, has
been applied to several aircraft of increasing complexity, and the completely automatic flight-control system
was first tested on a DHC-6. The reference trajectory used in the flight test exercised a substantial part
of the operational envelope of the aircraft. Despite disturbances and variations in plant dynamics, the
system performed well (see Ref. 2). Next, the technique was applied to the Augmentor Wing Jet STOL Research
aircraft, the successful flight tests of which are reported in Ref. 3. Methods for providing pilot inputs to
this design were examined in Ref. 4, and application of the scheme to the control of an A-7 aircraft for
carrier landing and testing in manned simulation is reported in Refs. 5 and 6. The design method is currently
being applied to the UH-1H helicopter, again with the substantial portion of the operational envelope of this
aircraft being used.

The key concept of the approach is to simplify the representation of the plant dynamics by means of a
change -of coordinates of the state and control. The design proceeds in three steps. First, the given non-
linear system — possibly time-varying, multiaxis, and cross-coupled — is- transformed into a constant, decou-
pled linear representation. Second, standard linear and nonlinear design techniques, such as Bode plats, pole
placement, LQG, and phase plane, are used to design a control law for this simple representation. And third,
the resulting control law is transformed back out into the original coordinates to obtain the control-law in
terms of the available controls.

_ The mathematical foundation for the approach is provided by modern differential geometry, the necessary
and sufficient conditions for linearizing have been established, and the theory is given in Refs. 7-15.
2. CANONICAL FORM ) !

Suppose that the given natural representation S, of the physical process is given by the state xi,
control u,, and field f,, :

X1 = f1(xy,u) (1)
and that we wish to change S, into S; with state x,, control u., and field f,,
X2 = Fa(xa,uz) (2)

This change will be accomplished, and hence a large part of the design problem solved, once we construct the
appropriate transformations of the state and control, -

Xz = T(x1) - (3a)
up = W(xy,uz) (3b)

which relate S: to S, so that for all admissible (xi,uz),
;TTI (x3)F1[x,W{x1,5u2)] = F2[T(x1),u2] (4)

The function W is the control law.

The construction of the transformation (T,W) is often greatly simplified by the introduction of an
intermediate canonical representation S, as shown in Fig. 1. To obtain (Ti2,Wi2), which links Si to S2,
both S; and S, are first transformed into the canonical representation Sp. Then



T12 = T3iTao (5a)
Wiz = WyoWa} (5b)
In the design procedure being described, the
Brunovsky form (Ref. 14) is taken to be canonical.
In Tinear theory this form is basic. It consists of
decoupled strings of integrators which may be dia-
grammed as shown in Fig. 2 where each dot represents
a scalar integrator.
T10 T20
The number of strings, which may be of different
lengths, equals the number of controls which itself
Wio Wao equals the number of Kronecker indexes
ky 2 k2 2. . .2 Kkn The lengths of the ith string
is given by ki and the dimension of the state space
ﬁ .
ns=s k; .
T12 i=1 1

Let the canonical state x4 € R" con.rol up € R,
and denote the canonical field fg b/

W2 Xy = Agxy + By, (6)
Fig. 1. Manipulation of system representations.
1 According to linear theory any constant, linear,
U0 —>0—aet——t ¢ ¢+ o s 0——g kq INTEGRATORS controllable system may be viewed as a nonsingular

transformation of an appropriate Brunovsky form.

—Prnmel—t) © © ¢ o
ug e——= K2 INTEGRATORS Thus, if S, 1is given by the state x, € R", control
m o ® o 0 00 0 0 0 0 0 s u; € Rm' and field
Up —>Ome—® o o o =0 k,, INTEGRATORS
Fig. 2. Dfagram of Brunovsky form. X1 = Ajxy + Byu; (7)

with controllable (A1,8:), then there is a Brunovsky form that can be transformed into S, by means of non-
singular transformations (T,W nonsingular)

Xy = T"x‘J (8a)
uy = Huo + Qx, (8b)

Of course, So may also be transformed into nonlinear and time-varying systems without any loss of
information by allowing the transformations in Eq. (8) to be nonlinear and time-varying but still nonsingular:
x1 = T7H{xg,t) (9a)
u = H(X1.U°.t) (9b)
This fact gives rise to our design procedure. When presented with a nonlinear system S,, the first step
is to try to linearize the system over its whole operational envelope by constructing (T,W) which maps S,

into So. Then a control law is synthesized for the much simpler Sg. Finally, the S, control law is
transformed into the coordinates of S, to obtain the control law for Si.

3.  TRANSFORMABILITY

u=x3 *p x2

F xq A class of systems particularly amenable to this
2

/ > Fq > J approach has the following form. The control u € RM,
the state x e RM x RM x , , . x RM and the field f
is without transmission zeroes and invertible. An
example is shown in Fig. 3. In this example, the
state x € R" x R™, the control u € R™, and the
field f,

A

X3 = F1(x1,X2,t) }
(10)

Fig. 3. An example of a block triangular system. X2 = Fi(x1,X2,u,t)

and F, and F, are invertible relative to {(x2,X:) and (u,%z). That is, functions h, and h. can be con-
structed so that if

x2 = hi(X1,%1,t)
’ . (11)
u = h:{x1,X2,X2,t)
then
Falxi,hy(X1.%1,t),t] = Xa (12)
Fz[’h .Xz.hz(X; oX2 .)'(z nt) -t] = X2



on the operational envelope. Because of the form of Eq. (10}, such systems will be called block-
triangular.

For this example, the canonical form S has m Kronecker indexes, all equal to 2. The state
x° € RM x R™, the control u°®e R", and the field,

X$ = x3
s a (13)
X3 =u

The map Yinking Eq. (10) with Eq. (13) may be obtained by letting x; = x§(t) and pushing, as it were,
the time-history x$(t) upstream through f to obtain u(t). Thus, -

x1 = X3 1

x1 = x§ = x8

X2 = hl(xgsxg)t) > (14)
. _dh1 o, 31 o, 3
X2 T X e Ut

u = hz(xi’ aXS);(Z at)

In general, the canonical form So of a block triangular S, will have m Kronecker indexes, all
equal to n/m where n is the dimension of the state space of S;.

This procedure of constructing the linearizing transformations will fail if S, does have transmission
zeroes. In that case, one obtains differential equation constraints on u, thereby destroying its status as
an independent control variable. Nevertheless, such systems may still be linearizable. For example, the
scalar system -

)-(1 X2 -X3
)‘(2 = X3 + 0 u (15)
X3 0 1

is linearized by the transformation
1

x§ = x1 + 7 (x3)? l
xg = Xe | (16)
X§ = X3 )
u=u° ’ : . v '
On the other hand it will be shown that the system
)'(1 X2 -X2
2 1= % ]+ 0>u (17)
X3 0 1

is not linearizable; the nonlinearity in this case is intrinsic and cannot be removed by a change of coordi-
nates. The conditions under which linearization is possible are summarized next.

Let xeR", ue R, and the field
% = F(x,u) ‘ o (18)

There are four conditions for this system to be linearizable. First, it is necessary to be able to construct
a new control variable, ¢,

6 = h™1(x,u)
' (19)
u = h(x,s)
so that ¢ enters linearly into the field: .
m
F[x!h(X’O)] = f(x) + 2 gi(x)¢i (20)
k i=1

The remaining three conditions are technical, and they are best expressed by means of Lie brackets defined as
follows. If f and g are C® vector fields on R", the Lie bracket of f and g is

22 of
(f9) =33 f-3c9 (21)
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and we set
(ad°f,g) = g
(ad*f,g) = [f,g]
(ad?f,g) = {f,[f,g]]

(ad*f,g) = [f,(ad* *f,g)]

A collection of C™ vector fields hy,hz, . . ., hy on RV is involutive if there exist C~ functions

Yi 3k with

r
[hi:hj]"zyijkhk’ l1gi, jsgr, t#3
k=1

Now, suppose that we wish to transform Eq. (20) into So with Kronecker indexes ki 2 k2 2 . .
Define the sets

. 2 Ky

€ = {g:1,[f192]s . . - (aqk"’flg;),
9, [f192], .+« ., (adk2 7 aga),

S [F181s - - -0 (28T 1g))

Cj = {g1,(f191], - . ., (adkj'zfxgl),

gzo[f192]. LI } (adkj-zflgz)’

g lfrgpds - - oy (adkj'zfxgm)} for j=1,2,...,m

Then it can be shown that the transformation is possible if and only if at each admissible x,
1. The set of C spans an n-dimensional space
2. Each Cj is involutive for j =1, 2, .. ., M
3. The span of Cj equals the span of CjNC for j=1, 2, . . ., M

For a linear field, %X = Ax + Bu, the spanning condition (1) or C 1is equivalent to controllability, rank

(B, AB, . . ., AN-1B) = n. The other conditions are automatically satisfied. The new coordinate surface
T,(x) = constant in a plane through the origin in the old state space. For nonlinear field, T:(x) = constant
will be a general surface. The involutivity condition (2) guarantees that this surface is constructible from
local conditions (integrability theorem of Frobenius).

Suppose we wish to transform system (17) into So with k = 3. Here the set € = {g,[f.q],(ad?f,g)}
spans R®. But the C, = {g,[f,q].[g.[f.g]]} also spans R?®; therefore, system (17) is not transformable into
Sg. For further details on the transformation theory see Refs. 7-15. Let us turn our attention next to the
control structure in which these ideas of transformability may be implemented in practical cases.

4. EXACT MODEL FOLLOWER

If the plant $1 1is equivalent to a system S: in the sense that each can be transformed into the other
by nonsingular transformations, then one may construct an exact model follower in which the plant S; will,
except for disturbances, follow exactly the system S, which is interpreted as being the model. Let the
system representing the tracking error be denoted by Sj;. The three systems, are related to each other and
to the Brunovsky form Sy as shown in Fig. 4.

Fig. 4. Plant S;, model Sz, and regulator S,.



Now consider the structure of the model fol-
lower as shown in Fig. 5. There are five subsys-
tems: model servo, regulator, plant, and two
transformations. The desired system behavior is

m-
Xg: .

defined in the model servo. The model servo Taw MO f
may be nonlinear, time-varying, and dynamic. SEéii; |
The TW-map (Tz3,W transforms the S: system
p (Tz23,W23) 2 Sy CONTROL f I i
. LAW f
K7 = f2(x3,u7) . oo (e2) -} : |
into S;, : i
= (0,00 (23) ug .
- e g REGU-
The TW-map (T13,W12) transforms the plant S, MODEL SERVO ITWMAPI |TW'MAP| PLANT

LATOR

Xy = filxi,u) (24) Fig. 5. Structure of the model follower.

into S;
X3 = fa(xs,us) (25) -

That is, when seen through the TW-map (Ti3,Wi3) in terms.of (xs,us), the plant looks like Eq. (25); which is
also how the model looks through the TW-map (T23,W23).

In the absence of disturbances and with proper initialization of the model (i.e., XT(O) = T12[x1(0)]),
the plant will follow the model exactly in the sense that the error defined by o

ey = X3 = X§ ' - ' (26)

will be zero for t > 0. In a realistic situation, disturbances, say, d, are present, and they are controlled
by means of the regulator which transforms the tracking error e; into corrective control éu;. The error
dynamics are given by R .

.

€3 = fa(xs,u;z) - £5(x7,u%) . (27)

which for small errors simplifies to

st - afg Bfg
=z =2 + —= +
e 3% e 305 sus +d

In particular, if Si3 is chosen to coincide with Sg, so that f; = fo, then without approximation,

€y = Aggp * Budug + d o E . (28)

It may be noted that the regulator need not be gain-scheduled; that function is accomplished automaticd]iy
by the TW-map. .

This completes the outline of the design approach. Consider next an application to a helicopter.

5.  THE PLANT-A HELICOPTER

The helicopter will be represented by a rigid body moving in three-dimensional sbace in respanse to .
gravity, aerodynamics, and propulsion. The state,

x = (rwv,Cow)T € X TR x RT xSO(3) xR . . (29).

where r and v are the inertial coordinates of body center-of-mass position and velocity, respectively, and
C is the direction cosine matrix of the body-fixed axes relative to the runway-fixed axes (taken to be
inertial). The attitude C moves on the sphere SO0(3). The body coordinates of angular velocity are
represented by w.

The controls,
u= W) T cucr xR (30)

where . ! is the three-axis moment control,. that is, roli cyclic and pitch.cyclic, which tilt the main-rotor
thrust, and the tail-rotor collective, which controls the yaw moment; and uf is the main-rotor collective, -~
which controls the main-rotor thrust. -

v

The effectively 12-dimensional state equation consists of the translational and rotational kinematic and
dynamic equations: ’ ’

r=v
v = fF(x,h3
¥ . (31)
; 'C = §{w)C

o= M)
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where f' and M are the total force and moment generation processes, and (x,u) are defined by Eqs. (29)
and (30). This is the natural representation S, of the helicopter.

Consider next the transformation of Eqs. (31) into a Brunovsky form So by means of the transformations
u .= W(x,up) and xq = T(x).
6, THE TW-MAP

In general, the moment generation process fM {s invertible with respect to the pair (&.uM). and for
the restricted class of maneuvers being cgnsidered in this experiment (i.e., no 360° rolls), ff is
invertible with respect to the pair (vy,uf). Thus, in the present case for the set of angular and vertical
acceleration commands restricted to the set

UL:’ = (((:).93) H ":‘i' s 1.0 rad/sec’. i{= 1,2,3, I.Vgl s 0.5 g} (32)

a function WX U; + U can be constructed so that if

u = WMx.(5gs¥50)] (33)

& = G
. (34)
Ve = V,o

then

If (0,v,0) are chosen to be the new fndependent control variables to replace the natural controls (uM,uP),
then the state equation (31) becomes the following:

;
2
Ve

0!
¢

b= 5

.y )

forwv,C) + ¢ £1lr,v,Cou,(ig.v,0)]

* Yy

S{w)C

where e'= 1 and f! {s such that fr,v,C,0,{0,0)] = 0.

The function f° is invertible with respect to the pair, {[V1,v2,Es{¢)],C} in which E,(¢) is an elemen-
tary rotation about the rurway z-axis, representing the heading of the helicopter.

cosy siny 0
E,(&) = l-siny cosyv O (36)
0 0 1 '
If the hbrizontal acceleration commands are restricted to the set
Uy = ((Vy,9,) : Iﬁil $0.5g, i=1,2} (37)

then a function e « RY x U; = S0(2) + SO(3) can be constructed so that the helicopter attitude given by
Co " hF[r.V.Vo.E,(wo)] A (38)

results in the commanded acceleration,

R (39)

Equations (33) and (38) are the trim equations of the helicopter (31) without the parasitic effects (¢ = 0
in Eq. (35)). That is, for a given motion {r(t),E,[¢(t)]),t 2 O, the corresponding trim state and control
may be computed as follows: :

o * r(t) W
Vo * '.'(t)

Co = M (rgWoui(£).E, [ ()1}
wg = alto(t)C]]

(:)o = h‘lo(t)

S (40)

Ug = hH[ro ovo 'CO g (':,O 'q,o)]



where the function q extracts o from S{w) = CCT.,,Ihe,_ v . y4 y3 yz !
required time derivatives in Eq. (40) are computable pro- S

vided that the motion {(r,E;) is generated by the strings — ¢ —————o 1
of integrators shown in Fig. 6 where a dot represents a C

scalar integrator, and y® e R* 1is an independent control |
variable. The system shown in Fig. 6 (Kronecker indexes °
{4,4,2,2}) will be taken as the canonical model of the
helicopter. The canonical variables will be denoted by~ y .
rather than x, to reduce the number of subscripts. The o

transformation and feedback that change the natural repre- oL ;. _ )
sentation (Eq. (31)) to the canonical representation are ' o :
approximately the following. : . ——— —————@ Ej.

The coordinate change, y = T(x), is given by

ye GhynT e ()T | e ey
Y= (¥§vY§)T - (V1'V2)T ) " Fig. 6. Canonical model of hel{copferQ
‘ { el
y = (yi;y;,yi,yz)T = (F2,£5,E, (¥)ury)T L
¥ = (yt,y{ayz,yt)T = A L, T '
where - = ‘

€05 y = €,,/¢, Siny = cpp/e, €= (e, 4 c2,)/2, and (¢j5) = € .

The control variable change, u = w{x,y®) is defined in two ‘steps:

o V1
0 0\ (42)
v, = yS : S .
and . . R : .
u = e, Chus (60Y4)] N U I

The effects of the various approximations made in the construction of these transformations are relegated to
the regulator.

7. MODEL SERVO AND REGULATOR

The field of the model S: is chosen to be canonical as defined in Figs 6. The design of the three
trajectory channels of the model servo is shown in Fig. 7. There are four 3-axis integrators. Two axes
correspond to the horizontal strings (ry,r2) in Fig. 6. The third axis represent$ the-vertical (r;) string,
but with two additiona) smoothing integrators. The exceedingly simple structure of the field (i.e., linear,
decoupled) greatly simplifies the servo designprocess. The inner loop {ag,dp) is designed to be an acceler-
ation servo whose input aj is the sum of coarse acceleration command a* from the coarse command gener-
ator, and 8ap which is generated by the outer loop to smoothly reduce any discontinuities in.the commanded
position and velocity vecters, r* and v*, respectiyely. The acceleration servo bandwidth is 0.63 rad/sec.

The bandwidth of the outer loop is 0.1 rad/sec. Large position errors are reduced at the rate of 6 m/sec.

The heading model servo is shown in Fig. 8. It is designed to have two scalar integrators corresponding
to the E, string in Fig. 6. The heading error,

ewO = €0s y, sin y* - sin y, co§ ?T. o (44?

is computed in the q-block. Block S represents, together with the integrator, the kinematic equatioh
of Ej,. . . .

The model reference state y, and control yé in Fig. 5 are defined (see Figs. 6-8) as follows:

yé = (rxo’rzo)T

¥ = (vm,vm)T

¥ [alo'azo'Ea(Wo)’rao]T b (45)
TR T
Y5 = (8,0+8,009307V350)

s _ g s T
Y5 = (8,0+8,0s0300250)




o
INITIAL rlo)—st J
WAYPOINT
r* Yo
+Y -
AR sy
COARSE |v® +4- !
TRAJECTORY .15 vio)—»{ [
GENERATOR Z_V
a® ++Y 5, E3lv*) q E3(Vg)
a - 8%
H 1> *vo I
1
! oY
. ‘ S
4
2
° *%_ 1.0 w30
01 .
= |itore] 1 s/
T ! d
1g 5 [
/ S+6
5
L 1o L w30
Fig. 7. Model servo-trajectory, r = (r,,r,,ry). Fig. 8. Model servo-heading E,(yy).

The field of the regulator S, is also chosen to be canonical So. The regulator design is outlined
in Figs. 9-11.

S+1

Y20

N e O
w
+
N

5
Y10

Fig. 9. Regulator-horizontal axes. Fig. 10. Regulator — vertical channel.



The estimated canonical state y 1is computed
from the estimated natural state by means of the y3= Ea (V) y4
transformation T defined by Eq. (41). The outer 33 3
loop of the horizontal channels (Fig. 9) has a
bandwidth of 0.3 rad/sec, with a 3 m/sec large-
error reduction rate and 0.1-g authority limit. y3 =Eal(.)
The inner loop bandwidth is 3 rad/sec. The verti- 20" 3%
cal channel, shown in Fig. 10, has a bandwidth of q 9
0.63 rad/sec, a 1.5-m/sec large-error reduction
speed, and 0.3-g authority. Finally, the heading
channel is regulated as shown in Fig. 11, where a + +F
the heading error is given by Y30 | 6

e, = cos y sin y, - siny cos ¢, (46) by,

i

5 5
The. bandwidth of the heading regulator is Y30 o Y3
3 rad/sec.

The total regulator output, 8y®, is added to Fig. 11
the open-loop command, y§, resulting in the total g- -
canonical control, y*. ft is then transformed
by means of the W-map given by Egs. (42) and (43) into the natural control u which, in turn, drives the

actual plant.

Regulator — the heading channel.

8.  SYSTEM PERFORMANCE

The results of a manned simulation are summarized in this section. The code was implemented on_the flight
computer to be used in the flight test, and the mathematical model of the helicopter (UH-1H) was driven
through the actual hydraulics.

The experimental flightpath is defined by a set Y
of way points, segments of lines and helixes, and a
speed profile, as shown in Figs. 12 and 13. As can
be seen from Fig. 12, the flightpath is a closed
curve. The time dependence is shown in Fig. 13.

The experiment, which consists of automatically
flying this trajectory, exercises the system over
a wide range of flight conditions. The helicopter
is taken from hover (way-point 1 in Fig. 12) to
high-speed (50 m/sec) accelerating, turning, and
ascending flight. This input to the system is
coarse, with a variety of discontinuities. The
required smoothing is provided by the model servo
discussed in the preceding section.

2438 mm

2438 m

For the data presented, the helicopter was
flown manually to the point x marked in Fig. 12.
There the automatic system was engaged. It takes
about 500 sec for the helicopter to go once around
the flightpath. Unlike the coarse accelerations in 45m/s 30m/s
Fig. 13, the model accelerations are smooth, as is
the vertical velocity, v,o. The second panel in A -1 - } *_
Fig. 14 (labeled "acceleration error") shows the 600
effects of the neglected parasitic terms on acceler- T
ation. The acceleration errors are quite small —
less than 0.05 g. The regulator controls these
effects by means of position errors. The resulting
horizontal error is less than 2 m, and the vertical
error is below 0.5 m. The speed error,
ey = || vli - llvolls is below 0.5 m/sec.

HORIZONTAL FLIGHTPATH

500 +

400

Thus, the performance of the design in the sim-
ulation tests was good, and, at this writing, flight
tests are in progress.

300 -

200 -

VERTICAL FLIGHTPATH, m

100

Fig. 12. Experimental flightpath shown in
horizontal and vertical planes.
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a ay ACCELERATION

m/sec

deg/sec

"y y 1
0 100 200 300 400 500
RELATIVE TIME, sec

Fig. 13. Time-dependence of the coarse command.

bay ACCELERATION ERROR
0 > e e - — —
631

30
/.. MODEL VELOCITY

)
§ol L T
&y ~ ~ !
1 1 1 o J
0 100 200 300 400 500
RELATIVE TIME, sec

Fig. 14. System response — canonical variables.
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