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FOREWORD

This document is a compilation of reports from Princi-
pal Investigators and their Associates of NASA's Office of
Space Science and Applications, Earth and Planetary Explor-
ation Division, Planetary Geology Program. The reports
present research that adds to our knowledge of the origin and
evolution of the solar system and to our understanding of the
earth as a planet. Advances in Planetary Geology was establish-
ed as a complement to "Reports of Planetary Geology Program" and
to professional journals. This document provides a method of
publishing research results which are in a form that would not
normally be published elsewhere such as lengthy research reports,
progress reports, Ph.D. dissertations, or master's theses.

Joseph M. Boyce
Discipline Scientist
Planetary Geology Program
Office of Space Science

and Applications
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ABSTRACT

Various origins have been proposed for intercrater plains on

Mercury and the Moon which lead to divergent thermal, tectonic, and

bombardment histories. The relative ages of various geologic units and

structures place tight constraints on their origin and thus provide a

better understanding of the geologic histories of these bodies. Crater

statistics, a re-examinatlon of lunar geologic maps, and the compila-

tion of a geologic map of a quarter of Mercury's surface based on

plains units dated relative to crater degradation classes were used to

determine relative ages. This provided the basis for deducing the

origin of intercrater plains and their role in terrestrial planet

evolution.

Mercury's extensive intercrater plains span a range of ages

contemporaneous with the period of heavy bombardment. Most intercrater

plains predate scarp formation and the formation of the hilly and line-

ated terrain. The age of the hilly and lineated terrain is identical

to that of its probable progenitor, the Caloris basin impact. Post-

Caloris plalns--smoother in texture, less extensive, and confined to

crater depresslons--formed as cratering waned and scarp formation

progressed.

This research indicates that mercurian intercrater plains are

volcanic deposits interbedded with ballistically emplaced ejecta and

reworked by basin secondaries and smaller impacts. A greater pro-

portion of ejecta may comprise lunar intercrater plains. Neither the
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lunar nor mercurian intercrater surface is primordial because each pre-

serves pre-plalns crateriforms.

Ancient volcanism on Mercury is evidenced by (I) widespread

plains distribution, (2) structurally controlled deposition, (3) em-

bayment of craters and basins, (4) associated (but tentative) volcanic

landforms, (5) losses of small craters, and (6) uncorrelated plains

and crater coverage. The limited range of mercurian ejecta reduces the

resurfacing potential relative to that of lunar craters. Crater densi-

ties are affected by intercrater plains emplacement, additions of sec-

ondaries, ancient basin impacts, and target physical properties.

"One-plate" thermo-tectonlc models best explain the geologic

characteristics recognized in this study. Thermal expansion during

core formation causes global extension and widespread volcanic extru-

sions; subsequent cooling and radial contraction form compressional

scarps. Younger plalns-formlng materials issue from magma reservoirs

in subsurface tensional zones tapped by impact fractures. The age and

stress environment of these volcanic plains suggest a source greater

than 40 km depth and a composition different from that of the intercra-

ter plains.

i0



CHAPTER 1

INTRODUCT ION

Half the observed surface of Mercury consists of flat-lying

to rolling terrain which surrounds clustered or isolated large

craters. It was designated the "intercrater plains" by Trask and Guest

(1975). High densities of smaller craters, 5 to 15 km in diameter, pit

the plains' surface. The major exposure of Mercury's observed inter-

crater plains occurs on its first quadrant (imaged prior to encounter

by the Mariner I0 spacecraft), as illustrated in Fig. i. A similar

intercrater plains unit of far more restricted extent occurs on the

Moon, in the southern nearside highlands; this unit is mapped as the

"Pre-lmbrian Pitted Plains" by Scott (1972). Fig. 2 shows that this

plains unit lies south and southwest of the Nectaris basin.

The similarity of plains' morphology on these two planets is

not reflected in the physical properties of the Moon and Mercury.

Mercury is much denser, slightly larger, and has a higher surface

gravity than the Moon, as noted in Table 1. These properties, as well

as heliocentric distance, orbital parameters, and rotational period

show that Mercury differs from the Moon in its composition, solar

insolatio_ and exposure to distance-dependent forces or bombarding

populations within the solar system. Inasmuch as the surfaces of

atmosphereless bodies record their geologic and bombardment history,

ii



Table i: Physical Data of Mercury and the Moon

Parameters Mercury Moon

Mass (Earth = l)ab 0.055 0.0123
Equatorial Radius 2439 km 1738 km

Mean Density 5.44 g/cm3_ 3.343 g/cm32
Equatorial Surface Gravity 370 cm/sec _ 162 cm/sec

Escape Velocity b 4.25 km/sec 2.38 km/sec

Effective Temperature c 440 = K 270 ° K

Temperature Extremes 100°K to 725°K 94°K to 390°K
Bond Albedo d 0. i0 0.07

Geometric Albedo: average d 0.16 _ 0.03 0.13
normal extremes 0.13 to 0.23 0. ii to 0.16

Magnetic Dipole Moment e 4.9 _ 0.2) 1022 ---
Gauss cm2

Semi Major Axisa, f 0.387 AU _i AU
57.9.106 km 0.3844.106 km f

from Earth

Eccentricity 0.206 0.055

Inclination to Ecliptic 7° 00' 5c 09'

Mean Orbital Velocity 47.90 km/sec 1.03 km/sec

Sideral Period of Revolution a 86.0 days 27.32 days
mean solar time mean solar time

Aphelion Distance 69.8.106 km 0.4055.106 km
Perihelion Distance 46.0.106 km 0.3633'106 km

Rotation Period: Synodic a 176.0 days 29.53 days
mean solar time mean solar time

Sideral a 58.6 days 27.32 days
mean solar time mean solar time

Sideral Period b 87.97 days

Synodic Period b 115.88 days

Inclination of Equator to

Orbit (Obliquity) a near 0° 1° 32'

a. Data from Frontispiece Proc. Lunar Planet. Sci. Conf. 9th, Vol. 3

from cover, compiled by Ray Newburn, 1978.

b. Data from Strom (1979)

c. Thermal data from Morrlson (1970) and Chase et al. (1976)

d. Data from Dzurlsin (1977b)

e. Data from Ness (1978)

f. Geocentric orbital parameters for the Moon, in "a."
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this dissertation thus constrains the internal and external evolution

of Mercury and the Moon by determining the nature, origin, and "role"

of the intercrater plains surfaces.

Justification

The above statementexpressesthe major justification of this

research.Such a determinationis not easily accessible.On both the

Moon and Mercury, the areas mapped as intercraterplains are them-

selves diverse, and the relative ages of various units remains

obscure; the morphologicsimilaritiesamong the plains may or may not

imply geneticsimilarities.By determiningthe relativeages of the

intercraterplains, one could evaluate the three major theoriesof

their origin: (i) a primordial surface remaining after accretion

(Oberbecket al., 1977), or a remnantsecondarysurfacewhich formed

after global melting and crustalsolidification(Malln, 1976a);(2)

late planetaryvolcanism associated with ongoingdifferentiation of

the planet during bombardment(Murray et al., 1975; Strom, Trask, and

Guest, 1975b;Trask and Strom, 1976; and Strom, 1977);and (3) bal-

listic depositionof ejecta from crater-and basin- formingimpacts

(Howard, Wilhelms,and Scott, 1974;Head, 1974; Wilhelms, 1976a;and

Oberbecket al., 1977).

Complications occur in determinationof the bombardment his-

tory of the intercratersurface,becauseresurfacing by volcanic or

ballistic plains emplacementwill locallyreset or alter the cratering

13



Fig. I. Photomosaicof the IncomingSide of Mercury

Mercury'sfirst quadrant,viewed as Mariner I0 approachedthe planet,
has large expansesof intercraterplains and clustersof heavilycra-
tered areas as shown in this mosaic,prepared from 70 medium to high
resolutionimages. The bright craterwith the dark halo near the
northwest llmb is Lermontov,160 km in diameter. Near the left cen-
ter of the disk is Kuiper,a rayed crater 60 km in diameter. Mercury's
evening terminatoroccurs at 10°W longitude;the llmb occurs at 90°W
longitude,approximately. Fig. I0 illustratesthe geologicmap
boundariesand latltude-longitudesystem.

North at top.
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Fig. 2. Southern Highlands of the Moon

Lunar intercrater plains lie southwest of the Nectaris basin (N),

beyond its topographic rim, the Altai Scarp (A), 435 km in diameter.
Radial valleys extend 1.0 - 1.6 R from the basin center; the plains lie
between 1.6 R to 3.6 R.

Lunar Orbiter IV 95-M. North at top left.

16
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record.In addition,although secondary crateringmay aid in deter-

mlning relativeages, it also adds spuriouscraters to the primary

craterpopulation.Becausemany of the small craters superposedon the

plains are similarin morphologyto secondarycraters, i.e. they are

elongateand arrayed in chains sometimesradial to large cratersor

basins,many of the plains are thoughtto be older than the superposed

clustersof large craters,collectivelyknown as the heavily cratered

terrain(Trask and Guest, 1975).However, this observation does not

uniquelydistinguishamong the major theoriesof plains formation.

Other surfacealterationsmay be associatedwith volcanism or

ballistic deposition. Thermal anomalies in the crust could, by

decreasingcrustalviscosity,contributeto the disappearance of basin

structures (Schaber,Boyce, and Trask, 1977; Bastin, 1974).Continued

erosionalbombardmentby smaller impacts,in additionto mass wasting

and seismic disturbances from larger impacts,could create a plains

surface in situ (Trask, 1976a;Malin, 1976b; Schultz and Gault,

1975a,b, 1976).

The intercrater plains of the Moon, as well as those on

Mercury, appear to embay or bury older craters,weakeningsupportfor

the first hypothesis for plains formation. Both surfaces record

irregularly shaped cratersinterpretedto be secondariesof distant

cratersand basins.Yet, the lunar intercraterunit, unlike most of

the lunar surface,lies far from the reworkingof young lunar basins,

and thereforemay aid in distinguishing volcanic from ballisticori-
J

gins. Because of their limited extent, the lunar intercrater

17



Pre-lmbrlanPlains also may offer a less diverserange of morphologies

and relativeages than do their mercurlancounterparts. In summary,by

determining the relativeages and origins of the Intercrater plains,

one can constrain the thermal and bombardmenthistoryof these two

planets_and possiblydeterminethe flux and origin of the bombarding

projectiles.

Method

Photolnterpretation_geologic mapping, and craterlng studies

comprise the principaltools throughwhich the Intercrater plains are

examined.Mariner I0 and Lunar Orbiter IV imageryprovide the prin-

cipal data sources. Both data sets, however, suffer from similar

limitations. Mariner I0 imageryof Mercury covers only_45% of the

planet's surface; resolution and sun angle vary widely. The lunar

southern highlandswere imaged by Lunar Orbiter IV and earth-based

photography only; the highlands were not overflownin the Apollo

missions. From Mariner i0 and Orbiter IV photographs,the first quad-

rant of Mercurywas mapped,and the existingmaps of the lunar regions

were examined.Crater statisticsof large regionsand selectedsmaller

areas were collected. The nature of the intercrater plains is als0

intricatelywoven into the fabricof the surroundingunits. Therefore,

Mercury's heavily crateredterrain, its hilly and lineated terrain,

and its smooth plainswere comparedto the intercraterunit. The lunar

marla, the Imbrian light plains, the Nectarlanplains,and the terra

18



surfaces were similarly examined and fitted into the framework of the

pitted plains surface. The detail and extent of the mapping and map

analysis, the integration of cratering statistics, and the intercom-

parlsons of mercurian and lunar units are unique to this research.

Synopsis of Results

The intercrater plains of Mercury represent a primarily vol-

canic surface interbedded with ballistically emplaced ejecta of cra-

ters and basins and reworked by basin secondaries and small craters.

The lunar unit is similar, possibly a product of pre-lmbrlan highlands

volcanism, but has more interbedded ejecta deposits than the mercurlan

plains, in part because of its proximity to the Nectarls basin.

Neither intercrater plains surface is primordial, but rather sugges-

tive of an intermediate stage of volcanism usually occurring exterior

to craters and basins, but sometimes localized to ancient basin

floors.

Plains emplacement appears to be greatest during the heaviest

phases of bombardment, prior to the Calorls impact on Mercury, and

prior to the Imbrium impact on the Moon. Both plains and crater

coverage decrease with time, but not in the kind of matching propor-

tions which would suggest plains formation by ejecta deposition alone.

Other eviden_e--plalns distribution, morphology, stratlgraphic rela-

tionships, and tentative identifications of volcanic features--favor

the volcanic origin for mercurian and lunar intercrater plains. The

19



cratering records on Mercury are confused by these multiple

resurfacing episodes during the heavy bombardment.

The plains formation ("igneous") chronology, the tectonic

history, the cratering record, and remote sensing results are used to

set constraints on thermal histories. These may then be used to pre-

dict or test for compositional variations during planetary differen-

tiation, and to identify profitable areas for further research.

Organizationof the Dissertation

The next two chapters describe the nature of the intercrater

plains derived from geologicmapping and crater statistics.The ini-

tial sectionsof Chapter 2 examinein detail the correlationof crater

classificationsystems for the Moon and Mercury, so that a firm base

can be prepared for later comparisons. The study of mercurianand

lunar units will follow parallelformats,with the lunar unit used as

a loll for the mercurianunit. The crateringchapter (Chapter 3) first

presents expectedstatisticalsignatures of geologic processes, then

proceeds to examine crater statisticsof the Moon and Mercury.Chapter

4 synthesizescratering and geologic histories, and evaluatesthe

major theoriesfor the plains' origin.Compositional data and thermal

models in Chapters5 and 6 complementthe geologicsynthesesto better

define the origin of the plains and their part in terrestrialplanet

evolution.Implications and the "role" of the intercraterplains are

discussedin the concludingChapter7.

20



CHAPTER 2

GEOLOGIC MAPPING OF MERCURY AND THE MOON

This chapter presents the geologic framework of the inter-

crater plains on Mercury and the Moon as determined through geologic

mapping. The strategies used in such mapping are discussed first.

Then, because the degree of crater degradation is applied to both

mapping and crater statistics, the correlation of degradation classi-

fication of lunar and mercurian craters is thoroughly addressed. Dif-

ferent imaging systems can potentially affect this classification, and

are therefore also discussed. The techniques used in mapping Mercury

are discussed in Section 2, followed by presentation of the Geologic

Map of Mercury in Section 3. Material units, structure, and relevant

albedo and color data are discussed therein. Preliminary conclusions

regarding plains' origins are given there, and in the Description of

Units (Appendix A) accompanying the map. The last section of this

chapter presents the mapping analyses of the lunar intercrater plains,

including tentative conclusions of their origin.

Early in the analysis of the imaging data of Mercury, geologic

mapping was used to help synthesize the data. Murray et al. (1974b)

produced a preliminary geologic map in addition to determining crater

statistics on the general map units. Trask and Guest (1975) followed

with the Preliminary Geological Terrain Map of Mercury in which they

defined the intercrater plains unit and postulated that it predates the

21



heavily cratered terrain. Detailed geological maps of Mercury's quad-

rangles are now being published by the U.S. Geological Survey. They

may use a new mapping strategy suggested by Malin (1975) which is used

in this work and described in the following section. Similarly,

studies of the intercrater plains of the Moon depend heavily on geo-

logical maps of the lunar southern highlands and related areas, as

well as upon studies of crater densities and morphologies, as

described below.

In this analysis, emphasis is focused on the comparatively

localized area of intercrater material on the nearside southern high-

lands of the Moon, and on the widespread intercrater surface of the

incoming side, or first quadrant, of Mercury. Although geologic map-

ping of terrestrial quadrangles is rarely influenced by geologic

events in the other hemisphere, such might be the case for the Moon

and Mercury, because the planets are smaller and the geologic pro-

cesses (impact cratering, mass wasting, tectonism, and volcanism) are

globally more uniform than on the Earth. However, the uninvestigated

parts of Mercury and the Moon are quite different from the investi-

gated areas, principally because of large basin events and their

associated plains. Studies of Mercury's second quadrant and the lunar

farside, as reported in the literature, fill this potential infor-

mation gap in the intercrater plains analysis.

Intercrater plains and smooth plains similar to those of the

first quadrant also occur in Mercury's second quadrant, but in dif-

ferent areal proportions. For instance, smooth plains nearly dominate

22



the Calorishemisphere.Although both intercraterand smooth plains

may have similaroriginson each quadrant,they appear to representa

different historyof plains emplacement.Processesassociatedwith the

Calorisimpact are probablythe primary factorwhich may have altered

these histories.

The lunar pitted plains in the Maurolycus area form the only

major exposures of terrain similar to the intercrater plains of

Mercury. Areas of Nectarianplains in farsidebasins are less exten-

sive with respect to youngerplains materials. These farsldeplains

are studiedthrough recent regionalgeologicmaps. Basin distribution

and crustalthicknessmay also affect the dichotomy in intercrater

plains distributionseen on the near and farsidesof the Moon. Thus,

the other regions of the two planets are not ignored;the author is

cognizant of the northernplains units on Mars as revealedby Mariner

9. Later sectionsaddress this problemmore fully throughcomparisons

of regionsdominatedby the intercraterplainswith those in which the

plains are apparentlya minor unit.

Materialsand Techniquesof GeologicMapping and Analysis

Mapping Strategyof the U. S. GeologicalSurvey

The mapping of Mercury and the Moon has as its basis the geo-

logic mapping of the earth--a base in techniques and rationale

expressedby Wilhelms of the U.S. Geological Survey (USGS) in his

monograph, "The Geologic Mapping of the Second Planet," (1972).
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"Terrestrial stratigraphlc practice," he states, is built upon the

concepts of (a) geological units formed either by a discrete process

or over a discrete interval of time, and (b) sequence of formation.

That is, when a "younger unit overlaps or embays an older unit, or the

contact of a younger unit cuts across the contact between the two

older units," (Wilhelms, 1972, p.6), one can determine the units'

relative age within the rock stratigraphic column. Photogeologlc data

quality and age or character of the unit may force the mapper to rely

on secondary characteristics, such as crater densities and morphol-

ogies, rather than on primary characteristics such as flow fronts.

When the data are primarily photographic, as for the Moon and Mercury,

overlap and transection relationships are most useful. However, the

principle of uniformitarlanism, in which "older terranes are likely to

be degraded equivalents of younger, demonstrably bedded ones,

(Wilhelms, 1972, p. 8), is applied cautiously to the plains materials,

for it is not clear if the Intercrater plains are simply degraded

smooth plains. Because of the uniformity of meteoritic erosion over

the surface of Mercury, and the lack of an atmosphere, Trask and Guest

remark, "We may assume that on Mercury, surface morphology reflects

the age, composition, lithology, and mode of formation of the under-

lying rock unit. To a much greater extent than the earth, therefore,

we may recognize different rock units by their surface characteris-

tics," (Trask and Guest, 1975, p. 2461).
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In relating local units to the total stratigraphic record, the

mapper uses "extensive and synchronous datum planes," llke the

secondary craters and ejecta blankets of Imbrium, Orientale, and

Caloris. If such extensive marker horizons are not available, second-

ary features such as superposed crater densities or crater morphology

are applied to the larger area from the reference area, under the

assumption, that "morphology partly indicates state of preservation,"

(Wilhelms, 1972, p. 8). On Mercury's first quadrant, one must use

degradational states or crater densities, for many of the existing

datum planes are model dependent (e.g. first quadrant features inter-

preted to be related to the Caloris basln of the second quadrant),

non-synchronous (plains formation), or restricted in area (most ejecta

blankets). This also holds to some extent on the lunar southern high-

lands, where the plains lie far from the Imbrlum and Orientale marker

horizons.

Wilhelms states that the USGS attempts to "map materials, not

physiographic forms," resulting in stratigraphy and not geomorphology.

However, the units mapped here are a mixture of terrain and

time-stratigraphic units, somewhat analogous to the lunar material

units, yet not strictly the rock stratigraphic units common in

terrestrial mapping. The lunar geologic systems are: Copernican,

Eratosthenian, Imbrian, and Pre-lmbrian; the latter system is now

divided into Nectarian and Pre-Nectarian (Stuart-Alexander and
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Wilhelms, 1975). The mercurlan systems, which are presented in subse-

quent sections, are: Post-Calorls (Class I and Class 2, defined

below), Calorls (Class 3), and Pre-Calorls (Class 4 and Class 5), in

order of increasing age. Unlike the lunar systems, where the marker

hcrlzon forms the base of the period, the mercurlan system proposed

here places the Calorls marker horizon at the "top" of the crater and

plains Class 3 period, or at the base of the Class 2 period (the Post

Caloris System).

It is USGS policy to avoid the "interpretative bias" by por-

traying units as they appear physically, not hypothetically, thus

extending the "map's usefulness beyond the acquisition of new data."

Lines delineating unit boundaries must be reproducible, "unit names

must be objective," (p.10), and description of physical characteris-

tics must be separate from interpretation of those features. For

example, small craters radially distributed around a larger crater may

be described as satellltlc craters, rather than "secondary" craters, a

name which presumes an origin for these features. Age assignments must

be clearly stated and reproducible; surface properties should be

quantified where possible. Wilhelms concludes that a planet's surface

is mapped to "learn and communicate," (p.13), a practice adopted here.

In the mapping process, one's observations are filtered, organized,

tested,and generalized.
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Materialsand Techniquesof Lunar Mapping

Materials. The materials used in the analysis of the lunar

intercraterplains include a variety of imagery, maps, and catalogues

of lunar crater data. Lunar Orbiter IV imagery covers the southern

highlands at photographic resolutionsof about 100 meters at sun ele-

vations of 0°to 24_ dependingon latitude. More specific data on

Orbiter 1V imagery is given in Chapter 3 and in the accompanying

figuresand tables of crater statistics in the Appendix. Supporting

data includeimagery from other Orbitermissions and, for comparisons,

the Apollo missionphotographyof the light plains,the maria, and the

farsideplains.High resolutionOrbiterIV and V photos were used in

studiesof Copernicusand Langrenus,discussedin Chapter 3.

A second set of materials uses the I:I,000,000 scale quad-

rangle maps of the GeologicAtlas of the Moon series (U.S.Geol. Surv.

Misc. Inv. Geol. maps). The four quadranglesenclosingthe intercrater

plains designatedby Trask and Guest (1975)are }_urolycus (Scott,

1972), Hommel (Mutch and Saunders,1972), Clavius (Cummings, 1972),

and Tycho (Pohn, 1972). Bordering quadrangles of interest include

Rheita (Stuart-Alexander, 1971) and Rupes Altai (Rowan, 1971).The

four centralmaps were compared to Orbiter IV and to earth-based

imagery to astertalnunit boundaries,contacts,relative ages, etc.,

to understandthe mappers' observationsand interpretations. The com-

mon boundaries of the quadrangle maps were examined to determine

consistency of unit ages and interpretation.These maps were then
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compared to the Geologic Map of the Near Side of the Moon, a

1:5,000,000 scale map independently constructed by Wilhelms and

McCauley (1971). The Pre-lmbrlan Plains unit on that map combines

several different units of the lower scale maps (pitted plains,

Imbrlan cratered plains 3 ridged terra_ etc.); the constituent units

were examined for mutual similarities and for similarities to the

intercrater plains of Mercury. (See Table 6 in the last section of

this chapter.) The nearside maps are structured about the four lunar

geologic time systems noted above. The Nectarlan and Pre-Nectarian

systems appear in more recent maps, the limb and farside 1:5_000,000

series: West Side (Scottg McCauley_ and West_ 1977)_ the East Side

(Wilhelms and Ei-Baz, 1977), the Central Far Side (Stuart-Alexander,

1978),and the North Side (Lucchltta,1978). Plains units which could

possibly be related to or analogous to the pre-lmbrlan plains (pip)

unit were studied on each of the large scale maps.

The geologic map data were augmented by crater statistics on

diameter, degradation class, morphologic type, and other data found in

the Lunar and Planetary Laboratory Catalog of Lunar Craters (Wood and

Andersson, 1978a). Other materials used include charts from the System

of Lunar Craters (Arthur et. al., 1963_ 1964, 1965, 1966), the Lunar

Earthside Chart (laMP-l), the Farslde Chart (LMP-2), and South Polar

Chart (LMP-3), and the Lunar Orbiter IV Atlas and Gazateer

(Gutschewski, Kinsler, and Whltaker, 1971).
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Crater Degradation Criteria from the Moon to Mercury. The

relative age of craters is often expressed by their extent of degra-

dation. On the premise that all (primary) impact craters begin as

fresh crateriforms and become progressively degraded, degradation can

be roughly quantified and correlated with age.

The USGS system used in Mercury mapping (see Strom, Malin, and

Allen, 1978; and McCauley et al., 1978) is built upon work by Pohn and

Offield (1969) who proposed a 7.0 to 0.0 continuum in which a 7.0

rating is given to a fresh, sharp-rimmed rayed crater and 0.0 rating

is given to a severely degraded crater. Lunar craters of three size

groups (diameters less than 20 km, 20-45 km, and greater than 45 km)

were Judged according to the degradation of the following features:

rays, radial ejecta, satellitic craters, rim crest sharpness,

terracing, interior radial channels, polygonality, rim texture, and,

for smaller craters, the geometry of the interior shadow. The change

in these features with age is interpreted by Pohn and Offield (1969)

in Fig. 3. As one can see, rim sharpness was considered the most sig-

nificant criteria, especially for the larger craters. The non-linear

relative age scale, determined by non-linear erosional processes, is

affected by at least three variables--rock strength, volcanic

materials, and proximity aging. The latter, also called proximity

weathering, occurs when fresh craters are severely degraded by large

impacts in the immediate vicinity. This catastrophic degradation

belies the true age of the affected crater. Similar uncertainties

apply to relative age dating on other planets.
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From Pohn and Offleld (1969)
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Offleld and Pohn (1969) demonstrate that small craters "age"

more quickly than the larger structures (Fig. 3; also see Fig. 1 of

Strom et al., 1978). Craters of diameters between 8 and 15 km were

considered the best to use when dating surface units; larger craters

were often too scarce for accurate statistics and small craters tended

to show a false older age. Generally, surfaces dated by the Offield

and Pohn (1969) technique corroborate surface ages determined by geo-

logic mapping except in those areas with significant numbers of endo-

genie craters or in areas likely to have undetected secondary craters.

The following table compares the Pohn and Offield (1969) system to the

geologic time systems used in the lunar mapping, adapted from Wilhelms

and McCauley (1971). Note the rather good time resolution possible in

the Pohn and Offleld morphologlc continuum shown in Table 2.
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Table 2: Age Classification Comparisons

USGS System Name Symbol Pohn and Offield "Age"

Late Copernican Cc2 7.0 -- 6.5

Early Copernican CcI 6.4 -- 6.0

Eratosthenian E 5.9 -- 5.5

Late Imbrian Ic2 5.4 -- 4.8

Early Imbrian IcI 4.7 -- 4.2

Late Pre-lmbrian plc3 (N) 4.1 -- 3.0

Middle Pre-lmbrian plc2 (N, pN) 2.9 -- 2.0

Early Pre-lmbrian plcI (pN) 1.9 -- 0.0

a. The Early Middle Pre-lmbrian is the proposed time of the Nectaris
event. Symbols and names would then change to Nectarian (N)
and Pre-Nectarian (pN).

32



The degradation class "filter" has been applied to other

crater studies, one of which is the Lunar and Planetary Lab (LPL)

Catalog of Lunar Craters, and another, the USGS degradation spectrum

applied to Mercury's craters. Both are five class systems, but ranking

is oppositely numbered: USGS designates Class 5 craters as the

youngest and freshest, and Class i as oldest, while in the LPL system

used here_ Class 1 is freshest and Class 5 most degraded. Degradation

criteria differ slightly as discussed below.

The five-class system developed by Arthur et. al. (1963) at

LPL and used in the current Catalog of Lunar Craters (Wood and

Andersson, 1978a) and in the Brown University Mercury Crater Library

(Cintala et al., 1976) has as its main criteria rim sharpness and as

secondary criteria rim completeness and brightness under high sun

angle illumination (see Wood, Head, and Cintala, 1977). Smaller

craters have greater symmetry and regularity than larger lunar craters

of the same class. Rim degradation occurs with successive impacts,

large and small; by Class 3 (C3--LPL), rims are "broken and poorly

defined." Ruins characterize Class 4 (C4) structures, while Class 5

(C5) objects "are so battered and fragmentary, or so subdued, that

they sometimes are not easily recognized as former craters," (Wood and

Andersson, 1978a).

Craters classified by the LPL scheme do not fall into distinct

groups of the Pohn and Offleld dating method, as shown in Table 3,
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adapted from Wood and Andersson (1978a). Represented are 106 craters.

The last column gives the name of the USGS system equivalent to the

Pohn and Offleld morphologlc age.

Table 3: LPL Degradation Class Comparisons

Pohn & Offleld LPL Class USGS System Name

Morphologic Age 1 2 3 4 5

7.0 -- 5.0 52 7 1 0 0 CE to Ic2

4.9 -- 4.0 7 15 3 i 0 Ic2 to plc 3

3.9 -- 3.0 0 0 i0 2 0 plc 3

2.9 -- 2.0 0 0 2 S i plc 2

1.9 -- 0.0 0 0 1 1 0 plc I

The differences result from the different criteria used for each

classification system. Advantages of the LPL system include its

greater ease and speed of application, the adequate "degradation

resolution," and the improved statistics within classes. A great

amount of other data is available for each crater classed in the LPL

Catalog.

Using the decreasing depth of craters with age, due to fill-

ing, Wood (1979) has determined the general absolute ages of the LPL

crater classes. His crater ages are presented below in Table 4, with
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estimates of percent shallowing of the crater from a pristine

Tycho-type depth-diameter ratio. Fig. 4 interrelates these ages with

major lunar events.

Table 4: Crater Age and Shallowing

LPL Class Pohn and Offleld Age Percent Shallowing Absolute Age

1 7.0-- 5.0 0 0 -- 3.5 b.y.

2 4.9 -- 4.0 23 3.5 -- 3.9

3 3.9-- 3.0 40 4.0 a

4 2.9-- 2.0 59 4.1 a

5 1.9-- 1.0 76 4.2 a

a. These are the approximate ages of the middle of the crater-forming

period (Wood, 1979), in billions of years before present.
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Fig. 4. Major Events in Lunar Surface History From Wood et al. (1977)

Crater degradation Period i is much more severe and intense than Peri-

od 2; see Head (1975) and Wood et al. (1977). The queried area spans
4.25 to 3.98 ae., the proposed ages for the Nectarls impact and the
marker horizon dividing Pre-Nectarlan and Nectarlan geologic periods
(Stuart-Alexander and Wilhelms, 1975). Adapted from Wood et al. (1977).
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The mercurian degradation criteria as determined by the

Brown-LPL system are schematically presented in Fig. 5 (Wood et al.,

1977). The U.S. Geological Survey places more emphasis on interior

feature preservation (such as central peaks and terraces), superposed

craters, and infilling and various ejecta facies, while weighting rim

sharpness slightly less heavily (McCauley et al., 1978). The broader

criteria, somewhat similar to those used by Pohn and Offield, are

necessitated by the decreased resolution of Mercurlan imagery and the

increased gravity of the mercurlan surface.

Mercury's gravitational field probably acts to restrict the

range of ejecta facies--both continuous and discontinuous deposits

(Gault et al., 1975). For craters of diameter D r less than 300 km,

Gault et al. find that the width of the continuous eJecta deposit

Rcb is

Rcb/D r = 0.44 - IO-3.D r

for Mercury and

Rcb/D r = 0.68 - 1.5 10-3.D r

for the Moon. A greater amount of ejecta deposited on the rim wall may

increase its relative resistance to degradation by increasing the

amount of material which must be degraded. Hence, "raised rims" may be

a more persistent feature for the mercurian crater than the lunar

crater. Basins and craters are classed differently because of the

increasing preservation of features of larger sizes and of larger

formation energies (See Fig. 1 of Strom et al., 1978).
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Fig. 5. "Changes in Diagnostic Degradation Features With Age For
Mercurian Craters (LPL Class)" From Wood et al. (1977)

Note the persistence of circular and raised rims for mercurian craters.

Compare with Fig. 3 fromPohn and Offield's (1969) study of lunar cra-
ters.
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Summary of Morphologie Criteria for Mercury. The morphologlc

Criteria used in the mapping and crater analysis of Mercury are

essentially llke those of the USGS with an LPL numbering system. The

five degradation states are determined by (I) rim sharpness and com-

pleteness; (2) preservation of interior features such as terraces,

slumps, central peaks or peak rings, and the plateau region inside the

rim; (3) preservation of ejecta facies, including rays, secondary

craters and troughs, and the continuous ejecta blanket; and (4) the

number of superposed craters. The system was desiBned to be consistent

with current USGS practices as well as current LPL studies of

slze-degradatlon distributions. Emphasis is retained on rim sharpness

so that this hybrid LPL system is analogous to that used by Wood et

al., (1977), i.e. Brown University's catalogue of mercurlan craters. A

"sixth" class, representing the Cb'("C-five-prime") structures, has

been added to indicate vague circular depressions of inferred ancient

crater and basin rims. Fig. 6 presents crater degradation types for an

area of the lunar southern highlands; Fig. 7 shows the analogous mer-

curian crater types.

Dependence of Desradation Classification on Imagery Systems.

Orbiter IV photos of the southern highlands (such as Fig. 6) were

compared to earth based photos of the same highland region, plates GII

and HII of the Consolidated Lunar Atlas (Kulper et al., 1967). In

general, a criterion based on rim sharpness enables the viewer to
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Fig. 6. Degradation Classes of Lunar Craters

Area east of Tycho (with North at bottom). Crater names are C1Naser-

eddin; C2 Miller; CS Saussure; C40rontius; and C5, a saucer-shaped
crater under Saussure. Note Imbrian secondaries (thick arrows) and

the secondaries of Tycho (thin arrows). The latter form chains of

small craters radiating from a point off the photo at right center.

Pre-lmbrian Plains (plp) occur in a small area at top center of this
photo.

Lunar Orbiter IV I12-H2. North at bottom. Nasereddin is 52 km in
diameter.
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Fig. 7. Degradation Classes of Mercurian Craters

The region near Ibsen (large, 160 km crater at lower center) and Im-

hotep (large 160 km crater at upper left center) includes all crater

types from CI (freshest) to C5 (most degraded). C5' craters are ten-

tatively marked.

Note secondaries of the CI crater (i00 km diameter) on the floor of

Ibsen. The scarp cutting the C2 crater at upper right deflects around

the central peak within the central depression. The trace of the scarp

on the east crater wall suggests that it represents a normal fault

(see Scott et al., 1980).

FDS 27363. North at top.
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properly classify the large craters at lower resolution, even through

the ejecta blanket and secondaries are harder to distinguish. Wood and

Andersson (1978a) compared their classifications of 1200 craters in

the new LPL catalog based on Lunar Orbiter (and Apollo) imagery, to

the older System of Lunar Craters (Arthur et al., 1963, 1964, 1965,

1966), which used only earth based photography. Seventy two percent of

the 1200 craters common to each catalogue were assigned the same

classes in the 1-5 LPL degradation system, while the remainder dif-

fered by one class higher or lower. Reproducibility at differing

illuminations showed a standard error of _ 0.2 class units, (Wood and

Andersson, p. 27). In other words, degradation classification did not

fluctuate greatly under changing resolutions (or illuminations) from

earth based imagery of the Moon to Orbiter IV imagery, for craters _7

km diameter.

A similar comparison was made between Orbiter IV photo 103 HI,

the earth-based Atlas plates A5 and BI0, and Mariner i0 image FDS 2286

of the area around Arlstoteles. The resolution available on much of

the Mariner I0 lunar and mercurian imagery is very similar to earth

based photography of the Moon. However, many small craters visible in

the higher resolution Orbiter photo are not visible at the lower

resolution of the Mariner image, therefore affecting the completeness

of crater statistics at small diameters. Schultz (1977) estimates

that 50% of the craters on smooth surfaces visible on Orbiter imagery
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are no___tdetected on the Mariner 10 photo if they are smaller than 2.5

plxels, the so-called"resolutionlimit."If the backgroundterrain is

hilly, nearly 90% of these smaller cratersare lost. Schultz cautions

that statisticalstudiesof craters should be limitedto those of

diameterstwice as large as the resolutionlimit_ or about 5 pixels.

That practice is adoptedhere.

Other effects of lower resolution and vldicon imagery are

noticeablewhen trying to determinecrater class or morphologictype,

especially for small craters.Rim sharpnessremainsan excellentcri-

teria when reinforced by other relativeage criteria. Superposition,

embayment, and transectionrelationships, however, also become more

obscure as resolutiondecreasesfrom I00 m to I-3 km. Secondary cra-

ters of primaries less than 50 km in diameterare nearly undetectable

except at the highest resolutions.Slump featuresare either enhanced

or lost_ and crater recognitionvaries with terrainbackgroundas well

as with lighting.Diametersof the smaller craters, less than 5 pixel

units, are largerby up to 25%; rayed and haloed cratersare also

overestimatedin diameter (Schultz,1976a).

For the larger craters,degradationclassesare fairly repro-

duciblebetweenearth-based,Orbiter, and Mariner imagery.In compar-

ing degradationclasses thatwould be assigned to lunar craterson the

Mariner i0 photo with those previously determined by Wood and

Andersson, the followingobservationsare made. Class 1 cratersretain

their class status_ especiallywhen the cratersare rayed,haloed, or

lie on top of the dark maria. Class 2 craterswith sharp rims but some
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detectable superposed craters are easily identified (and remain C2).

Class 3 craters have quite battered rims, and seem to span a larger

range of stages of degradation. Most of the rims remain intact, how-

ever, and this observation is readily made at Mariner I0 resolution.

Smaller craters are much harder to classify on Mariner I0 imagery,

for, as Schultz noted, they all appear fairly sharp and bowl-shaped,

except where there are obvious superposed craters. Clues to small

crater degradation states, such as interior shapes and shadows (Pohn

and Offield, 1969), are much harder to detect on highland areas than

on mare.

Highly degraded craters, if identifiable, have moderately

reproducible class assignments. The more battered and incompletely

rimmed of the Class 4 craters may be classed as C5 structures on the

Mariner I0 photos. The most degraded class, Class 5, are unambiguously

C5 craters if they are recognized at all. It is uncertain what status

the "ancient circular depressions," the C5'forms detected on Mercury,

would have on the Moon. Some might be Class S structures; others would

receive no designation because of their vague nature. Buried craters

under high sun lighting tend to be lost in the Mariner I0 imagery.

Features which are linear, such as rilles and scarp faces, are often

not lost, even when their width is one-fourth the resolution limit

(Schultz, 1976a), with the exception of features extending east--west,

parallel to solar illumination.
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The intercomparlson of these three imaging systems correlates

the loss in feature recognition and changes in apparent crater degra-

dation classes and morphologies with the loss in resolution; this

loss can be quantified, as Schultz has shown. Fortunately, some of the

Mariner i0 imagery is of higher, I00 meter, resolution, enabling one

to compare feature recognition and crater degradation within the

Mariner i0 imaging system.

The Discovery Scarp Mosaic illustrates the effects of a change

in resolution within the Mariner I0 imaging. The mosaic, centered

about the crater Rameau (--50 km diameter), consists of four high reso-

lution, third encounter pictures (FDS 528881-4) in the center, sur-

rounded by moderately high resolution photos from the first encounter,

(FDS 27397-9, 27393, 27386). One can see the increase in number of

recognizable small craters and general detail in the central scarp

region. The degree of degradation of the moderate size (20 km) craters

appears to increase slightly as resolution drops, but larger craters,

llke Hesiod's northern neighbor, retain enough detail to be classed

according to degradation state. The Discovery Scarp area is discussed

later in this chapter and illustrated in Fig. 8.

Materials and Mapping Techniques for Mercury

Materials. A photomosalc base of moderate to high resolution

(0.5 to 1.5 km) Mariner i0 imagery (Fig. i) was used to construct the

Geologic Terrain Map of Mercury's first quadrant (Fig. 9).
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The scale of this "Perspective Projection" is approximately

1:7,700,000;a working scale o£ 7.74 km per mm was used to measure

featuresparallelto the limb of the mosaic. Featuresof 40 km (5 mm)

and largerwere includedin the geologicterrainmap; smallerfeatures

were included if they proved useful in the map interpretation.Source

data for this project were: Mariner 10 imagery from all three

encounters,photomosaicsand stereo pairs prepared by JPL/IPL, and

published color and albedo data. Outgoing,post-encounterimages (of

the second quadrant)were used mainly for comparative purposes.A

diagramof the map boundariesappearsin Fig. i0.

Techniques.In the mapping techniqueused here, crater groups

are classifiedfirst. The youngest cratersof the area or clusterare

delineatedusing their continuouseJecta blanket as the extent of this

material unit. Secondarycrateringappears to rework the local terrain

rather than add substantial amountsof new material from the target

area and bolide. Many craters can still be identified after being

bombarded with secondary craters and continuousejecta depositsof

other craters and basins (Trask and Strom, 1976).Even on the lunar

surfacewith its lower gravity,the proportionof countryrock mixed

with primary crater ejecta and redepositedas secondaryand tertiary

eJecta outweighsthe target material (Oberbeck,1975; Oberbeck and

Morrison, 1976; Oberbeck et al., 1977; and Morrison and Oberbeck,

1978).As noted, mercuriangravitytends to concentrate the continuous

ejecta blanket closer to the crater rim (Gaultet al., 1975).EJecta
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Fig. 8. Discovery Scarp Mosaic--Intercrater Plains

Crisper features in central area of mosaic result from higher resolu-

tion images (0.8 km to 0.9 km) than the surrounding images (average
resolution 1.4 km).

Discovery Scarp transects Rameau (R), a C2 crater of 55 km diameter,
and two C3 craters north of Rameau. This section of the scarp roughly
parallels the contact between a P4 unit to the west and a P3 unit to

the east. P2 plains embay the northern end of Discovery Scarp at
top left.

Because Discovery Scarp does not alter the craters it transects, the

scarp is likely to be tectonic, and another example of mercurian
thrust fault scarps. The graben-like structure at the southern end

of the scarp may be a remnant of the planet's expansion, or can be

interpreted at a pair of facing thrust faults, a remnant of the plan-

et's contraction. The domical feature (arrow) noted by Malin (1978)

appears to be Class 2 in age (about the same age as the scarp). Note
the intracrater scarp in crater A, north of Hesiod.

FDS 528881-4 in center; FDS 27386, 27393, 27397-9 around the edges.
North at top.
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20 °

Kuiper

Fig. 9. Geologic Terrain Map of the Incoming Side of Mercury

a. Northern Section. The southern section and correlation of units

are continued on the next page. Color copies of this map will

be distributed to Principal Investigators and other interested

persons.
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Fig. 9. Geologic Terrain Map of the'Incoming Side of Mercury

b. Southern Section
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Fig. I0. Boundaries of Geologic Map and Crater Count Areas

of the First Quadrant of Mercury

Boundaries are marked for the General Map Area (1.0284"107 km2) and the

Restricted Map Area (4.985"106 km2); the latter more closely conforms
f!

to the discrimlnability limits" used by other authors. Crater statis-

tics (D _ 5 to 7 km) were gathered for heavily cratered areas I, 2, 5,

5', and 6 (and part of 6'), and for intercrater regions surrounding
areas 1,2, and 6. Area 2 intercrater plains were subdivided into 8 re-

gions roughly corresponding to map units (see Fig. 63 and Appendix D).
FDS numbers are given for each footprint. North at top.
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from secondary and tertiary impactsls likewise concentrated close to

their rims. Color-ratio images of the surface may confirm that com-

positional variations are confined to the continuous eJecta blanket,

if a variation in surface and substrate exist (Hapke et al., 1975).

Boundaries of craters underlying the freshest crater or cut by

its secondaries were delineated next. When two or more craters

appeared to be degraded approximately to the same extent, with few

clues as to which of the craters was the older, the pair or group was

included in one crater material boundary. Where an emplacement

sequence was obvious, but the crater's degradation state was similar

or of the same class, crater materials were separately drawn, although

the unit classes were equivalent. The crater units indicate a sequence

of emplacement as well as degradational groups; however, degradational

classes over the entire incoming side are as consistent with these

classes as possible. Sequencing within the cluster of large craters on

Mercury's surface is less difficult than determining the degradation

class of craters isolated in the plains. Superposltlon of basin and

crater secondaries or ejecta could not always be applied, so their

relative ages depended more heavily on morphologic criteria such as

described earlier.

Mapping and relative age dating of plains units followed the

determination of crater boundaries and sequences. Smooth plains were

outlined first. Boundaries of plains areas of similar texture and
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apparent crater frequency were outlined next. Contacts, in general,

were hard to establish at the resolution of most of the Mariner i0

imagery. Poor resolution in the northern limb regions makes unit

boundaries and relative ages more questionable. Albedo transitions

sometimes accentuate the contact, but are not common. More often,

superposed crater densities, surface textures, and abrupt termination

of crater troughs and chains delineated plains boundaries.

Once the rough physical limits of the various plains units

were established, the time limits of plains formation were determined

by the relative ages of the oldest craters which overlie the plains'

surface and the youngest crater which is overlain or embayed by the

plains (Malin, 1975). Plains which overlie a C3 crater but are

cratered by a C2 crater or its eJecta are classified as P3 plains.

Impact melt surfaces inside a C3 crater are also designated P3 plains

material. Although plains units can be thought of as an extensive

marker horizon, embaylng craters and other plains, they are not as

useful as crater eJecta blankets for the former could well lack

simultaneity and uniformity of origin.

Plains units varied in both lateral and vertical extent. Some

were thin enough to recognize rough, more highly textured, older

plains material beneath. The degree of burial of subjacent topography

often increased toward a central area; this is interpreted as a

thickening or deepening of deposits, sometimes associated with indis-

tinct depressions. Buried craters were noted with dot-dash symbols if
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their rims were still distinctlycrateriform; rims of the ancient,

vague depressions were less certain and denoted with long dashed

lines. Stereo pairs availablefor the southernhalf of the incoming

side of Mercury helped in recognition of buried craters,contacts,

tectonicfeatures, and in determiningrelativethicknessesof plains

units. High resolutionphotography and stereo pairs were used to

insure consistency and continuity of plains surfacesacross the first

quadrant•

Because lightingconditions change so drasticallyacross the

incomingquadrant,plains units of similarages often do not appear to

have similartextures.Crater and plains units near the limb may be

less well definedbecause of high sun angleswhere relief appearsmuch

more subdued and craterlformsare more difficultto recognize.Bright

patches from small reaent craters and swaths of ray material

contrasted againstthe darkerbackground of smoothplains on the limb

areas (e.g. Copley). Although resolutions of the second Mercury

encounterwere poorer and sun angleswere greater, it was still pos-

sible to recognize the older intercrater plains units by the high

densitiesof small bright crater rims. Relief and textureon the ter-

minator, on the other hand, are often exaggeratedby shadowing,as can

be seen in the secondarycrater fields of old basins (e.g. Fig. 12,

the basin surroundingHitomaro)and the textureand roughness of units

underlyingthe smootherplains near the terminator.
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The hilly and lineated terrainis a tectonic modification of

pre-existingterrainunits, rather than a separatematerial unit. The

region was closelyexaminedusing much of the hlgh resolutionphotog-

raphy, and its surface was compared to those in borderingareas.

Cratersand plains emplacedbefore and after the modificationevent

were established.Map units were extended inward from the surrounding

regions.The relative age of the youngest affected crater sets the

lower age limit for the hilly and llneatedarea. Likewise,the age of

the oldest unmodifiedcraterin the zone, preferablynear the area of

greatestdamage,sets an upper time limit to this event.

The last materials mappedwere dome materials and rimless

depressions(see Chapter 4, "The Caloris Connection").It is not

likely that all domicalfeatures are recordedhere, especiallythose

smaller than 40 km. (For instance, DiscoveryDome, north of Rameau

below the rim of a smallercrater cut by the scarp, is not marked;see

Malin, 1978).

Tectonic Features. Although tectonic features are not included

in the terrain map presented here, they were mapped separately and

used in the subsequent analysis (next section). Comparisons of the

tectonic overlay were made to maps of Strom et al. (1975b) and

Dzurisin (1977a, 1978), both of whom studied Mercury's tectonic

frameworkin order to define its thermal,rotational, and surface

histories. No distinction was made between arcuate, lobate, and linear
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scarps. Lineatlonswere also mapped, including linear crater chains,

fault traces, linear segments of crater rims, the llneationswithin

the hilly and llneated terrain, troughs, valleys, and linear ridges.

The tectonicoverlaywas then comparedwith the completedand colored

geologic terrainmap to determineages of scarp formation relativeto

crater and plains ages. Scarpswhich transectcratersand plains offer

anothermeans to check the relativeages of these units.

A "Restricted Area" map was compiled which excluded far

northern, southern, and extreme limb reglons, thereforereducingany

errors in plains and crater classificationand measurementresulting

from exaggeratedterminatorrelief or loss of resolutionand high sun

angle illumination near the limb. The area of the RestrictedMap, the

General }_p, the hilly and llneatedregion, and the areas designated

for craterlngstudieswere calculatedfrom the bounding latitudesand

longitudes(AppendixB). These regionsare illustratedin Fig. I0.

The finished geologic map was transferred to the appropriate

USGS Shaded ReliefMap bases,with somewhatfiner detail than possible

in the photomosaic base. Plains areas were then measured using a

planimeter.The area in cm2was tallied for 5 or I0 degree latitude

strips and convertedto km2 using an average of the printed scale

lengthsof the bounding latitudes."Exterior"and "interior"plains of

all five ages were then computedand are presentedand discussedfur-

ther in Chapter 4. Errors in areal measurementsare described in

AppendixB.
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Geologic Map of Mercury's First Quadrant

Correlation of Map Units

The map units are correlated in morphology and time of

emplacement as illustrated in Fig. ii (reproduced from the terrain

map). In general, the five plains units are considered "coeval with"

the youngest of the five crater units they embay. The hilly and

lineated unit was formed in the late Class 3 or early Class 2 period,

possibly by seismic activity generated by the Calorls impact, which

also occurred between the Class 2 and Class 3 periods (McCauley et

al., 1978). The "system name" is derived from this hypothesized link.

Craters and plains of Classes 1 and 2 are "Post Caloris" features,

while those of Classes 4 and 5 are "Pre-Calori_'features; the Class 3

units, although they are mostly pre-Caloris in age, are designated the

"Caloris" features.

The temporal formation of other landforms overlaps this dating

scheme. Dome materials range in apparent age from very old Class 4,

pre-Calorls ages, to fairly young Class 2, post-Calorls age. Buried

craters have indeterminate ages; they are at least as old as the sur-

face which covers them. Rimless depressions may be younger than the

material in which they appear, especially if the feature formed by

collapse without subsequent resurfaclng. Vague circular depressions

often underlie the P5 surface, and are designated C5', implying ages

equal to or greater than C5. These craters must have formed on an even

older surface , as also noted by Malin (1976b).

58



PERSPECTIVE PROJECTION

SCALE 1:7,700,000

CORRELATION OF MAP UNITS
iii

PLAINS CRATER OTHER "SYSTEM"
MATERIALS MATERIALS UNITS NAME

PI i CiL POST

. CALOR IS

Dome
Mat.

Circular PREi Depressions CALORIS

Fig. Ii. Correlation of Map Units from the Geologic Map

Circular depressions are the C5' units; dome materials are denoted by
heavy diagonal lines where queried. Age of the Caloris event has been

independently determined to be the same age as that of the hilly and
lineated terrain (McCauley et al., 1978; see text).
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Ages of tectonic features are described in a later section.

Material Units

Crater Materials. Crater materials are divided into five

formal degradation classes (CI-C5) and one informal class (C5'), as

described in the preceding section. Figs. 12 and 13 illustrate the

type areas for the CI through C5' structures. The materials mapped

(i.e. rim and floor materials) depend somewhat on size and position,

in that the map detail for 40 km structures (especially near the llmb)

is necessarily less than for larger structures nearer the terminator.

Many materials comprise the freshly formed crater. These

include the central peak, floor, wall, rim crest, exterior rim, con-

tinuous and discontinuous ejecta facies. Central peak-type materials

are not mapped unless they form basln rings. They are therefore

included in the appropriate class of crater material. Floor materials

usually are mapped as plains; impact melts form plains coeval with the

crater. The remaining landforms, except for the discontinuous ejecta

facies, are included as crater materials. These materials and morpho-

logic features are now discussed.

Very fresh and/or rayed craters have crisply defined rims and

interior forms (central peaks or peak rings, and terraces), with very

few to no superposed craters greater than about I0 km diameter. The

rim crestmaterialsare usuallycircularin plan, sharp,and contin-

uous; however, a sharp but discontinuous rim is noted for Hitomaro
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(Fig. 12b), and a polygonal plan following the local lineament direc-

tion is noted for Kulper (Fig. 78). Central peak materials vary with

crater size, and begin to appear in craters as small as i0 km

(Cintala, Wood and Head, 1977). Peaks are sometimes angular or linear

in plan; craters of 70 to 140 km diameter often have circular arrays

of hills or hummocks, grading to incomplete peak rims with larger size

(as described below).

A continuous, thick blanket of material, radially ridged to

hummocky with dunes, extends from the rim crest to i/2 to 1 radii

beyond the rim. Some rayed craters have unusually large, continuous

and smooth blankets of material, extending 2 to 4 diameters from the

primary's rim. The slope of the continuous deposit is concave to

linear from the rim crest to the surrounding surface; fresh craters on

basin floors appear to have conical deposits when viewed in stereo.

Relief of the continuous deposit varies with the underlying

topography; the above examples occur on smoother surfaces. Continuous

deposits are hummocky in the hilly and lineated area; they are lobate

and extended when they fall within a larger basin (where the crater is

superposed on the rim of a larger crater or basin). The edge of the

deposit forms a distinct toe, similar to that of a landslide, extend-

ing a full radii or more onto the depression's floor.

Discontinuous deposlts--llnear troughs, or chains of satel-

litic craters--extend downrange a maximum of 3 to 5 radii from the
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Fig. 12. Crater Degradation Classes CI, C2, and C4

a. C2 crater Mahler at top left (M). Secondaries of C1Hitomaro

(Fig. 12b) crater Mahler's floor. Secondaries from Mahler crater
the floors and rims of the C4 craters Kenko (K; 90 km in diameter)

and Balagtas (B; I00 km in diameter) to the east. Secondaries

from the C3 basin to the north superpose the C4 craters' rims,

but not their floor materials, indicating that the latter are

P3 in age. The crater at lower center is C5 in age.

FDS 27427. North at top.

b. C2 crater Hitomaro, 105 km diameter, contains the type area P1
plains. Note that very few craters superpose either the plains
or Hitomaro's sharp, but discontinuous rim. The larger basin
surrounding Hitomaro is C3 age; its peak ring has been largely
destroyed by Hitomaro and its secondaries. Arrows mark the
double ring structure noted by De Hon (1976).

FDS 27430. North at top. This area lles immediately north of

region shown in Fig. 12a.
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Fig. 13. Crater Degradation Classes C3 and C5'

a. C3 craters, 60 and 93 km in diameter, lie west of Ibsen in P4
intercrater plains. Rims are subdued and cratered. Large C5'
basin to the northwest (top left, arrows) has scarp-llke rims
which align with the global lineament directions.

FDS 27425. North at top.

b. C5' craters of about 50 km and I00 km in diameter lle south of

Murasakl (M) and Hiroshlge (H). Rims are highly subdued and

buried by intercrater plains and ejecta of the larger craters.

This area best illustrates a possible example of ballistically
emplaced plains.

FDS 27432. North at top.
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primary crater's center. The satellitic craters are less subdued at

greater ranges and have greater depth/diameter ratiGs (Mouginis-Mark,

1978). They often extend inward and superpose the continuous deposits

or the crater rim. Further description of this material is given in

the secondary cratering section of the next chapter.

Morphologic data for fresh mercurlan craters indicates that

their depths (d) vary with diameter D as follows: for D _ 9.8 km, d

= 0.176 D 0.98 and for D _ 9.8 km, depth d = 0.91D 0"26 (Malin and

Dzurisin, 1977). The width of the continuous deposits has been noted

earlier. Other morphologlc data (floor width, rim width, rim height,

swirl features, terrace onset, slump onset, and frequency of these

features) are found in Gault et al. (1975), Wood and Head (1976),

Malin and Dzurisin (1977, 1978), Smith (1976), Smith and Hartnell

(1978), Cintala et al. (1977), and others.

The fresh (CI) features are interpreted as young impact cra-

ters surrounded by ballistically emplaced ejecta deposits. Rayed

craters are the youngest examples. The continuous blanket of material

about the rim is interpreted as ballistically emplaced ejecta followed

by a debris surge (Oberbeck, 1975); the discontinuous material is

ejected at higher angles to the horizontal and greater velocities,

thus landing at greater ranges from the ejection site (Shoemaker,

1962). Some high angle material is expected to fall close to the rim

of the crater, producing craters on top of the continuous ejecta

blanket or cutting the rim.
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Central peak materials are interpreted to be local rock

uplifted by seismic rebound, or toes of slump blocks from the crater

walls. Peak ring origin is still controversial; see Hale and Head

(1979a,_and Hale (1979). Fresh, but non-rayed craters might have

undergone some modifications of rim, walls, and floor due to slumping,

mass wasting associated with smaller bombardments and tectonism, and

volcanism at a late stage in Mercury's history, during which molten

materials were extruded through fractures beneath the crater floor.

"Shadowing" of ejecta deposits of ray craters suggests very

low angle ejection (although the "shadows" may be confused with dark

ejecta, Schultz, 1976€). Rayed craters are obviously very high energy

impacts, with consequently greater distributions of ejecta deposits.

Cintala (1979a,b) suggests that the high energy impacts have shallow

depths of burst, with lower ejection angles and greater ranges. The

resulting crater may be shallower.

The fresh crater's morphologic characteristics are modified as

the crater ages, as discussed in the preceding section. The

type-craters illustrate the increasing degrees of shallowing, rim

degradation, loss of crispness in terraces and central peaks, and

embayment by surrounding plains deposits. Basin-size craters are sub-

Ject to isostatic equilibration of the rim and basin floor. Convex,

lobate aprons e of material extend from the rims and rings of older

basins onto the adjacent floor materials; a greater amount of such

material is noted when the adjacent floor is deeper.
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These features are in part the result of slumping and mass wasting.

The width of the exterior basin or crater rim not only varies with

size as noted above, but" also with age, the elevation of surrounding

terrain, and processes affecting the surrounding plains (subsidence,

infilling). The oldest, most indistinct structures, designated the

Vague Circular Depressions (C5'), are often filled with smoother

materials (see also Fig. 85).

Some large, fresh craters (from 70 to 140 km) have an inner

ring of peaks, hills, or hummocks interpreted to be the incipient peak

ring of craters of sizes intermediate between simple central peak

craters and double ring basins. Material between the hills and crater

wall is often rougher, radially or concentrically ridged, and may

have a higher crater density (as can be noted in Figs. 14 and 15). It

is termed a "peak ring plateau" because it is raised above the region

interior to the incipient peak ring. The interior depression is sur-

rounded by an inward facing scarp which drops from the plateau level

usually Just inside the hilly area. A central peak is often present,

sometimes located off center within the depression (Fig. 15a). The

smoother materials which occupy this area are usually flat lying, but

sometimes concave upward at the scarp face, and at the base of the

central peak. The peak ring of Brunellesehi (Fig. 15a) lles acentri-

cally inside the scarp and smooth material covers the entire crater

floor. The depth of the inner depression decreases with the extent of
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the smooth materlal (Fig. 14b), especially when the latter extends

into the higher plateau area. (That is, the height difference between

plateau and depression decreases.) The peak ring and inward facing

scarp vary from 0.3 to 0.5 times the rim diameter, as shown in Table 5.

Significance of this morphology is (i) PI or P2 material

interior to craters may have two distinct facies, hummocky or smooth,

depending on crater size and possibly underlying topography, (2)

intermediate size craters may fill with plains material from within,

either by extrusion of volcanic material into the deeper central

depression of the crater, or by mass wasting of material off the

steeper slopes of the central peak and inner scarp wall, and (3) pla-

teau material may be older, while the inner material may be contin-

ually resurfaced. An extreme example of this morphology is the basin

Homer, 320 km diameter, C4 age, with a plateau of P4 material I km

below the rim (Zohar and Goldsteln, 1974) and an inner depression

(about 2-3 km depth) filled with material of P3 age.

Table 5 below lists the fresh transition-size craters with

the typical morphologies described above.

69



Fig. 14. Fresh Crater "TransitionMorphologies,"C2

a. C2 crater, about I00 km diameter at top center of photo (A).

Smooth plains (PI) surround a central peak but lie in a depressed

region of roughly circular plan, surrounded by a plateau of hum-

mocky P2 plains which are faintly radially striated. Hills at

the inner scarp edge may form an "incipient peak ring."

Secondariesfrom Kuiper,to the southwest,crater the floor of the
C2 crater and Byron (B). The rim of a large C5 crater lies
immediatelywest of the crater A. Fig. 43 is a high resolution
image of this transitionmorphology crater.

FDS 27436. North at top.

b. Titian, a C2 crater of 115 km diameter. Its inner peak ring is
flanked by a plateau of slightly hummocky material and an inner
area (slightly depressed in radar cross section, Zohar and Gold-
stein, 1974) of smooth plains. Note its distinct eJecta blanket;
just north of this area, the ejecta blanket appears to have fin-
ger-like lobes.

FDS 27437. Northat top.
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Fig. 15. Fresh Crater "TransitionMorphologies'"C2 and C3

a. Brunneleschl,a C3 crater, 140 km in diameter,lles at left cen-
ter. The entire crater floor is floodedwith smoothmaterial,
includinga broad plateau surroundingan interiorfacing scarp
and shallowinner depression. The plateau scarp is cut by an off-
centerpeak ring. Floor materialspartly inundateslumpeddebris
from the walls of the southerninner rim. Brunneleschiis at the

larger extremeof the 70 km to 140 km size range of cratersin
"transition"from centralpeak cratermorphology to peak ring
basin morphology.

FDS 27435. North at top.

b. Unnamed C2 crater southwestof Donne occurs near the center of
photo. Smooth plains surroundthe centralpeak within a shallow
depression. The rugged scarp encirclingthe peak may be part of
the wall materials; small arrows trace the scarp. A similar
morphology is noted in Donne. Smooth P2 and P3 plains embay the
depressionat lower right (thickarrows); some of the plains appear
to be limitedby the broad ridges.

FDS 27438. North at top. The unnamed crater is about 75 km
in diameter.
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Table 5: Transition Size Craters

Location Crater Name Class Diameter (D) Inner Scarp Outer/Inner Peak

(lat2 long_ ) km r Diameter Material # Material *

(-9.5,34) (South of Byron) C2 61 25 P2 cp,sc
(76,103) (South of Bach) C3 68-70 25-29? P2 cp,sc
(-70.5,69.5) Camoes C2 70 28 P2 sc,cp
(1.0,17) (SW of Donne) C2 71-90 43 P1 cp,sc
(11,21) Asvaghosa C1 80 35 PI/PI cp,pr
(-19,31) (east of Imhotep) C2 84 (28) P2 cp,sc
(5,25) "dome" crater C3 85 27 P3/P2 h = pr
(3,14) Donne C1 90 41 P1 sc,cp,sc
(0.5,23.5) Lu Hsun C2 95 40 P2/PI cp,h=sc
(-76,135) Van Gogh (?) C2 95 34 P2 cp,pr
(-5,29) (North of Kuiper) C2 97 31 P2/PI cp,h=sc
(-16,16) Hitomaro C1 105 (45) P1 cp,pr
(-3,42.5) Titian C2 115 50 (25?) P1 pr
(23.5,22.5) Ts'ai Wen-chi C1 120 60 PI/PI h,cp
(-8.5,22.5) Brunelleschi C3 140 46 P1 cp,h,sc
(-79.5,136) Bernini C3 145 45 P3 pr,cp,r
(4,34) Handel C2 150 65-70 P2 pr

* Peak Material: cp = centralpeak
h = hills

sc = inner scarp
pr = peak ring
r = ridge

PI/PI = hummocky and smoothP1 materialin outer/innerfloor of crater
P2/PI = materialof outer/innerfloor

# Diameterof named cratersfrom Atlas of Mercury,Davies et al. (1978).



Plains Materials.Type areas for the five plains units are

illustratedin Fig. 12 (PI),Fig. 16 (P2), Fig. 17 (P3), and Fig. 18

(P4 and Pb). The plains units within the hilly and llneatedregion are

shown in Fig. 19, As can be seen in these figures,plains morphologies

vary extensivelyacross the first quadrantof Mercury.

As classified here on the basis of age relative to degrada-

tional class of includedor superposed craters,differentmorphologies

are exhibitedby the same age of plains material.

Geologic mapping established that the intercrater plains

definedby Trask and Guest (1975)actually differ in relative age,

comprisingthe P3 throughP5 units (Fig. 17,18).The oldest plains are

the most extensive.The P5 material is heavily cratered,hummocky,

pitted by secondariesof C4 and C5 basins, and sometimes subduedwhen

locatedoutside of large, young craters.It often occupies higher

elevationsthan youngerplains units,but also buries,and followsthe

topographiccontours of, the vague shallowcirculardepressions(C5').

Superposed cratersincludea wide spectrumof sizes, with 5-15 km

diametersthe most common at moderate resolutions.Pockets of smooth

material lie within depressionsin the plains units, often fillingthe

superposed craters. Slightly younger intercrater material has a

reducedsize spectrum of superposed craters,although densitiesare
0

just as high, as shown in Chapter3. P4 plains are levelerthan the P5

materials,and sometimescontinuous with eJecta blanket facies of C4

craters.P4 material is also elevatedabove youngerplains units.
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Fig. 16. P2 Plains Materials in Andal Area

P2 plains materials embay the interior of Andal (A) and its ejecta
blanket to the east. Buried craters of various sizes can be detected

beneath P2 and P3 materials.

Note the scarps in the area: west of Andal, a fresh C1 crater super-

poses Mirni Rupes (M_ top left); to the east, P2 plains embay the

northern end of Discovery Rupes. Such superposition relationships

are used to constrain the ages of scarp formation.

FDS 27386. North at top. Andal is 90 km in diameter.
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Fig. 17. P3 Plains Materials in Schubert Area

P3 plains east of Schubert (S), a C3 basin 160 km in diameter, overlie
its ejecta sculpturing and may embay a large ancient depression noted

by Malin (1976b). The P3 materials may overlie some ballistically em-

placed debris from Schubert. P2 plains lie within Schubert; P4 plains
occur on a plateau to the east and are overlain by Schubert's secon-
daries to the west.

Note the morphology of rim deposits and ejecta facies of the crater at

top center (B). The shelf with the lobate toe may be characteristic

of all crater rims formed by impacts onto the rims of pre-existing cra-

ters. Rim destruction may involve landslides as well as ejecta depo-

sition. Nampeyo (N; 40 km diameter) has dark floor deposits.

FDS 27387. North at top.
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Fig. 18. P4 and P5 Materials in Vostok Rupes Area

P4 plains west of Vostok Rupes (V) are level but heavily cratered; P5

materials to the south are more heavily cratered. Highly degraded cra-

teriforms (arrows) occur near the border of the hilly and lineated ter-

rain. The crater Guido d' Arezzo (G; 50 km in diameter) is laterally

offset by Vostok Rupes, and is shortened perpendicular to the strike
of the scarp; this is interpreted as a i0 km westward heave of a

thrust fault of estimated dip 25 to 45 degrees to the east. (See

Strom et al., 1975 b .)

FDS 27381. North at top. Rilke, lower right corner, is 70 km in
diameter.
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Fig. 19. Plains Materials of Hilly and Lineated Area

Larger crater in left center is Petrarch, 160 km in diameter, C4 in

age. P2 plains in Petrarch were emplaced after the event which dis-

rupted its rim and wall materials. Hummocky P3 plains are interpreted
to be older materials emplaced prior to the disruption event. Hills

and rim segments of this region are 0. I to 1.8 km in height and i0 km

in width (see Trask and Guest, 1975).

Radial valleys to the northwest (Arecibo, A) and northeast of Petrarch

are filled with deposits mass-wasted from the walls, but embayed only

slightly by materials from the P2 plains in the large craters. A

sinuous valley of unknown origin extends from Petrarch to the south

(arrows).

FDS 27370. North at top. Outlined area denotes the boundaries of FDS

27423, illustrated in Fig. 90.
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Morphologie and albedo variations within the intercrater

plains P5 and P4 are less marked than between younger units. This is,

in part, due to the homogenizing process of continued impacts. Appar-

ent albedo variations in P5 material may be spurious and result from

changing illumination angle. The added roughness from secondary cra-

ters of young basins and craters may obscure the ancient features of

P5 materials. Some materials mapped here as P5 plains (as around

Rodin, Fig. 21) are mapped elsewhere as young, rough terra (See DeHon,

Scott, and Underwood, 1980; DeHon, Underwood, Scott, 1977). (Note that

albedo variations did not necessarily dictate placement of geologic

units or contacts.)

Younger plains units have two basic morphologies which appar-

ently depend on the thickness of the deposit relative to the relief of

the underlying surface. These units appear "smooth," gently rolling to

level, when the underlying surface is smooth or highly subdued, or

when the deposit itself is thick (Fig. 16). The second type of unit

appears rougher and discontinuous when overlying hummocky and ridged

topography (Fig. 85). The smoother deposits occur in crater and basin

interiors and irregular depressions; the latter occur in ancient C5'

basins, and regions scoured by basin secondaries. P3 plains material

may have a third morphology if the thicker and more massive deposits

are divided into cratered and less cratered units, as, for example, in

the Santa Maria Rupes area (Fig. 20) and the Bach regions (Fig. 26)

respectively.
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The plains units P5, P4, and Santa Maria Rupes-type P3 comprise

the intercrater plains described by Trask and Guest. As mapped, and

illustrated in Fig. 80 (Chapter 4), P4 plains appear to embay Chekov

(C4) and a C5 crater nearby. P3 plains embay the ejecta blanket of

Schubert (C3) (Fig. 17), Ma Chlh-Yuan (C4) (Fig. 84), and completely

bury 30 to 60 km craters in the Victoria Quadrangle. P5 plains appear

to bury C5' and some C5 units, although the extent of the rim degra-

dation makes this relative age uncertain. The C5' structures must

overlie an even older unit. Thus the intercrater plains span a range

of relative ages, but are not primordial.

P2 materials are found most often as smooth plains interior to

C2 craters or older crateriforms. Less often P2 plains fill regions

exterior to craters in a thick smooth blanket (as outside of Andal,

Fig. 16) or thinner deposits in multiple depressions outside of

younger craters (as outside of Handel, Fig. 85). P2 materials embay

some arcuate scarps. PI materials predominantly occur in CI craters

(Fig. 12b) but also are identified in inner depressions of fresh,

transition-size craters (Fig. 14a) and possibly on top of a dome-like

crater rim (Fig. 80). PI materials may comprise the bright halo depos-

its of rayed craters which extend two to four diameters from the

primary's rim. Ray material may instead be emplaced on smooth P1

deposits.
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The different morphologies may signify different origins,

namely: ballistically emplaced deposits in shallow, discontinuous

depressions in a field of secondary craters; impact melt interior to

craters of the same age; or volcanic flooding of older craters and

deeply depressed regions within older intercrater plains. Underlying

topography may appear as gentle swells and ridges, or as "islands" of

rim remnants in an otherwise level surface. Depressions and ridges may

be preserved by viscous flow; level plains may be formed by ballistic

deposits, often accompanied by seismic events or continued redistri-

bution by small craters. Although few of the older plains materials

remain as "impact melts" within the C4 and C5" craters, they may be

interpreted as above, as volcanic or ballistic deposits. Embayment

relationships, their widespread distribution, and association with

tentative volcanic landforms described below favor a volcanic origin.

Other Materials. Other material units include buried craters,

the ancient circular depressions (a type of buried crater?), rimless

depressions, and dome materials. Craters are buried by P5 through P2

units (Fig. 20), and occasionally completely inundated under the con-

tinuous ejecta blankets of larger basins. The C5' structures are

commonly buried by P5 and P4 materials, but Malin (1976b) suggests

that simple degradation of these crateriforms may produce the inter-

crater plains material (see Fig. 85). Rimless depressions are found in

crater floors and usually associated with tectonic features (scarps,
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Fig. 20. Santa Maria Rupes Area--Buried Crater at Upper Right

Different classes of craters and plains are shown here in the region

of Santa Maria Rupes (S). Smooth P2 plains fill and bury part of the
rim of a 46 km crater (C5) at top right of the frame. P3 plains in the

central region are surrounded by hummocky P4 materials. Note the abun-

dance of irregular, breached craters aligned in chains or clusters.

The scarp transects C3 and C4 craters and appears to be overlain by a
small C2 crater at its southern end; its age is thus Class 2 or late

Class 3. P2 plains in the C4 crater at the center of the picture may

have been deposited on a level surface prior to the scarp forming event.

FDS 27448. North at top. Crater B is approximately 30 km in diameter.
t
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ridges, or faults), and interpreted to be collapse pits (Fig. 21).

Volcanic features usually occur in the vicinity. Domes appear rounded,

convex-up to plateau-like; Ma!in identifies a conical feature in H-12

quadrangle (Malin, 1978). Heavily cratered domes, of class 3 or 4 in

age, are pitted (Figs. 22-24) but sometimes surrounded by low albedo,

smoother materials (Fig. 23a). One group of older domes is aligned

north-south (Fig. 89). Dome materials are, in most cases, interpreted

to be volcanic and mark the closing of a vent source. Ridges like

Mirni Rupes may be closed fissure vents (Fig. 27; see Dzurisin, 1978).

Structure

The tectonic fabric of Mercury's first quadrant has been de-

scribed by Strom et al. (1975b), C0rdell (1977) and Dzurisin (1977a).

Definition and descriptions of these features are adapted from

Dzurisin's work. Stress patterns and their interpretations are further

discussed by Melosh (e.g. 1977a,b) and Melosh and Dzurisin (e.g,

1978).

Structures noted in this preliminary informal mapping include

escarpments (or "scarps", undifferentiated by type), faults, ridges,

lineaments, troughs, sinuous valleys, domes, rimless depressions, and

ancient circular depressions. The last three features are discussed

above. Basic characteristics, ages, and interpretations of the other

structures are discussed below.
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Fig. 21. Rodin Complex--High Relief Plateau of Older Plains

Rodin, a C3 basin of 250 km diameter, is superposed by Moliere (M; C3)

Abu Nuwas (A; C2), and Ts'ai Wen-chi (T; CI). Part of the plateau may

consist of ejecta from this cluster of craters. Buried craters are
visible southwest of Ts'ai Wen-chi and west of Abu Nuwas. The latter

one lies on the plateau's edge; half of its rim is embayed by the
smoother P3 materials west of the plateau. Arrows denote this crater.

Note the morphology of the basin ring and rim of Rodin (R) farthest from

the superposed craters; compare the lobate apron of debris to that of

Ma Chih-Yuan, a C4 basin illustrated in Fig. 84.

The rimless depression in the C2 crater B at upper left is probably a

collapse pit formed after plains emplacement, concurrently with the
formation of the transecting ridge, Antoniadi Dorsum.

FDS 27342. North at top right. Abu Nuwas is 115 km in diameter.
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Fig. 22. Domical Feature and Contact Zone East of Handel

a. Domical feature (thick arrow) on the south rim of this 85 km crater

has a central rimless depression. Associated tectonic or mass
wasting features occur as layers or terraces on the eastern dome

mass, inside and outside of the crater rim. The dome sits on the

intersection of the crater's rim and a linear contact zone sep-
arating two surfaces of nearly similar age (Fig. 22b). The cra-
ter chains south of the large crater are radial to Lu Hsun. The
C5' structure illustrated in Fig. 85 lies to the southwest.

FDS 27449. North at top.

b. Linear contact zone trending north-south cuts the 85 km crater of

Fig. 22a (arrows). There is little to no height difference across

this feature to support an interpretation as a fault scarp. Chains
of large craters from Homer (or Handel?) appear to be terminated
at the contact. The region traversed by the linear feature is

the floor of an ancient circular depression centered on the C3 cra-

ter north of the C3 "dome" crater (see Fig. 24 for sketch map of
area and Fig. 9, in pocket; also see Malin, 1976b).

FDS 27444. North at top. This image adjoins Fig. 22a, with (b)
north of (a). A mosaic of the linear contact zone also contains

images FDS 27440, 27442, 27443, 27453, and 27458.
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Fig. 23. Domical Features on Rims of Ancient Craters

a. Domical feature near the left center of the photograph (arrow) is
located on the overlapping rims of a C4 and C5 crater. The dome

material is low in albedo, highly cratered or pitted, and flanked
by smooth plains within the C5 crater. The entire area is south

of Bramante (C3). The C5 crater Coleridge (C) is II0 km in diam-
eter and retains a raised rim.

FDS 166663. North at top.

b. Domical feature located on a crater rim (arrow) in region which
may be an ancient circular depression filled with younger plains.

Wren basin (W; 215 km in diameter) can be seen at top center.

Li Po (L; 120 km diameter) lies in the center of the image; Sinan,

140 km diameter (according to the Atla_____s,Davies et al., 1978), lles
just east of Li Po. The latter is C4 in age; Sinan is C3. Wren
is a C4 basin.

FDS 27343. North at top.
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Fig. 24. Dome Location in the Homer - Handel Area: A Sketch Map

Drawn on Shaded Relief Map H-6 base. Domical features are shaded

black; the dome of Fig. 22 lies nearest center right. Units are de-

scribed in Figs. 9 (in pocket) and II. Abbreviations are Hn--Handel,
Ho--Homer, L--Lu Hsun, W--Wren, and R--Rodln. Short dashed lines are

crater rims; long dashes are C5' structures.
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Dzurlsln defines scarps as "relatively steep, cllff-like

slopes of considerable lateral extent separatingterrain lying at

different levels," (Dzurlsin,1977a,p. 8). Most are arcuate to irreg-

ular in plan, and convex in profile. Scarps often transectcrater

walls, floors,and the surroundingplains units withoutaltering those

landforms.With a few exceptionsnoted later, albedo and crater den-

sities do not change across the scarp face. A few craters are

shortened perpendicular to the strike of the scarp (e.g. Guido

d'Arrezo on Vostok Rupes, Fig. 18). Strom et al. (1975b)interpret

these features as tectonic, high Bnglereverse faults or thrust

faults. Because they are apparentlygloballydistributed (Strom et

al., 1975b), the scarpsmay signifyglobal compressivestressesdue to

cooling of Mercury'score or lithosphere.A radial contractionof 2 km

was computedby Strom et al. (1975b).

Based on scarp ages of Class 3 throughClass I, determined by

transectionand superposition relations,the onset of scarp formation

(and global compression)appearsto be early in the Class 3 period,

continuingthrough to the Class i period. Most scarps are Class 2 in

age. Cordell (1977)finds a dearth of scarps in the latitudeof the

hilly and llneatedarea; no such lack is registered here, althoughthe

scarps do a_pear damaged.Thus scarp formationmay have begun prior to

the formation of the hilly and llneatedarea (andby implication,as

defended later, the impact formingthe Calorisbasin).However,if the

scarps are purely tectonic, their formation minimallydisturbs the
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existing hilly topography, similar to the minimal disturbance of

transected crater rims.

Intracrater scarps have various origins. Scarps adjacent to

and facing the inner wall along the floor perimeter may be thrusts of

consolidated floor material over the materials of the wall-floor con-

tact (as north of Hesiod, Fig. 8). Irregular scarps within smooth

plains confined to older craters may be flow fronts of lava (Fig. 89;

Strom et al., 1975b), or landslides of debris from superposed impacts

(Fig. 17). Some scarps form circular depressions interior to the

incipient peak ring (see Crater Materials; Fig. 14a).

Tensional features are regional or rare, isolated occurrences

on Mercury's surface. The hilly and lineated zone and the interior of

the Calorls basin are the only two regions of extensive normal-type

faults, fractures,and graben. A few normal faults and graben are ten-

tatively identified exterior to the hilly and lineated region on the

first quadrant. One of the two normal faults (see Scott, Underwood,

and DeHon, 1980) deviates around a central peak, paralleling the cir-

cular inner scarp of a C2 crater (Fig. 7); the other borders a smooth

plains region and may have resulted from drainage of a lava pool (see

Fig. 25b, Renoir south). A few features appear to be ancient, 10-15 km

graben: southeast of Bramante (Fig. 81)_ near Discovery Scarp at

Rameau (Fig. 8), east of Schubert (Fig. 17), and south of Ts'ai Wen-

chi (Fig. 21). These features could also be a pair of thrust faults,
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or plateau-scarp combinations. Each lies within P3, P4, or P5 plains;

in two or three cases, younger plains are confined within the

graben-like feature. No firm relative age can be set.

Although scarps are primarily tectonic in origin, two possible

exceptions are noted by Malin (1976b) and Dzurisin (1977b); near

Holberg (Fig. 26) and in Renoir (Fig. 25). They are interpreted as

volcanic for the following reasons: (I) albedo changes across the

scarp trace, (2) craters transected by the scarp are visibly mantled

and subdued, and (3) plains units of different age are divided along

the scarp trace. A volcanic origin is reaffirmed in this mapping. Some

major scarps such as Fram Rupes are closely associated with volcanic

features, and may be linked with an episode of volcanism (Fig. 84).

Other scarps strike along unit boundaries, although they are tectonic

features; differential strength of the two materials may define the

fault surface.

93



Fig. 25. Renolr Basin Area

a. Renolr (R), a double ring C3 basin of 220 km diameter, exhibits

a variety of features interpreted to be volcanic. Smooth materi-

als filling crater A appear to flank both sides of its thin,

crenulated rim, and extend down onto the outer and inner rings

of Renolr, ending in a rough lobe near the inner ring. Equal in

age but smoother P2 materials fill the west part of the outer
plateau and the inner basin area, flooding two craters. Dzuri-

sin (1977a,b) finds an albedo difference between the rough tex-

tured material (arrows) along a different contact zone than

mapped here. Crater B to the west (C5 age) also has been flooded

with plains subsequent to the formation of Renolr and the for-
mation of a small crater on its floor. Secondaries from Renolr

scour the plains to the southwest.

FDS 166649. North at top.

b. Part of the plains to Renoir's south. The older plains appear to

have been raised to form a lobate scarp (thick arrows), while

smooth materials have collected at the base of the scarp. From

a high plateau to the southwest, smooth material "spills" down

(long arrow) into the depressions south of Renolr, flooding low

areas at the base of the scarp and embaying Renolr's crater

chains. The crater C at center left appears to be faulted along

its east rim (short arrows); this normal-type fault may be

associated with the emplacement or drainage of the smooth plains
just north of it.

FDS 166650. North at top. Unkel (U) is II0 km in diameter.
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Fig. 26. South Polar Mosaic SP - 7 of Bach Region

Features of the Bach Quadrangle (H-15) are illustrated in this mosaic

and subsequent images. The C3 basin Bach (B) is 225 km in diameter.

Note that it did not destroy the smaller craters near its rim with

ejected debris. Fresh crater Van Gogh (V) at lower center superposes

two double ring basins: Cervantes, C5 in age, 200 km in diameter (C),

and Bernini, a C3 central peak basin of 145 km in diameter (Br).

A large C5' basin may lle north of Bach, but was not mapped here.
Basins buried by P3 plains appear to retain the double ring struc-
ture; P2 plains lie within the inner depression. Other local depres-
sions in P3 materials are filled with smooth P2 plains.

Ridges in the Bach Quadrangle may be tectonic structures or buried

crater rims. Scarps are usually tectonic, but the feature perpen-

dicular to Adventure Rupes (A) at arrows displays variations in albe-

do and crater density across it, and is interpreted as a volcanic

flow front (see Dzurlsin, 1978). Other features referred to in the

following illustrations are Coleridge (Co), Khansa (K), Boccaccio

(Bo), and Ma Chih-Yuan (M).
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Fig. 26. South Polar Mosaic SP - 7 of Bach Region
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Ridges have various morphologies. Linear to arcuate ridges,

like Mirni Rupes (Fig.27), may be sites of extrusion of plains

material surrounding the ridge. Broad, rounded ridges transecting

smooth P3 materials of the Bach Quadrangle (Fig. 26) are probably

tectonic features because of their great height (Strom et el., 1978);

but rows of craters along the ridge summit, and destruction and

embayment of craters transected by the ridge, argue for associated

volcanism. These ridges appear to have domical cross sections. Ridges

near Santa Maria Rupes have a subdued, rim-like profile; they may

overlie a C5' structure recognized by De Hon (1978) (Fig. 20).

Antoniadi Dorsum, associated with the collapse pit noted earlier

(Fig. 21), may be a source region for the smooth plains of the southern

Victoria Quadrangle.

Lineaments (defined earlier) are found mainly in older plains

materials--PS, P4, and P3 units--as well as in all ages of craters. Few

lineaments are found in smooth plains materials unless underlying

topography is visible or if linear scarps or ridges transect the

plains. Polygonal rim segments occur on C5' through CI craters. Melosh

and Dzurisin (1978) interpret these features as part of an ancient

stress pattern formed during intercrater plains formation, prior to

scarp formation. The lineament pattern may have resulted from stresses

produced during tidal spin- down, i.e., the relaxation of the equa-

torial bulge of a more rapidly spinning planet. Tidal spin-down of
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Mercury may produce thrust faults in equatorial regions, strlke-slip

faults at mld-latitudes, and normal faults at the poles. The latter

may be suppressed if the planet is also cooling and undergoing global

compresslonal stresses (Melosh, 1977a; Melosh and Dzurisln, 1978; and

Pechmann and Melosh, 1979). Expansion due to planetary heating fol-

lowing core formation may have produced globally isotropic grabens

and rifts, while contraction during cooling of the planet may have

produced the globally isotropic thrust faults (scarps).

Linear troughs, sinuous valleys,and radial valleys have varied

origins. Linear troughs are common in the hilly and lineated area and

result from the destructive event which formed this terrain (Fig. 19).

The troughs are oriented a!ong the global lineament directions, sug-

gesting that failure occurred along zones of structural weakness.

Widening of the trough may occur through mass wasting. Troughs which

are formed on crater rims or along a linear rim segment may be

secondary Crater chains from adjacent primary impacts. Slumping is an

alternative explanation.

Albedo and Color of Mercury's Surface

In addition to stratigraphy and structure, albedo and color

data from Mariner i0 should be incorporated into any theory of

Mercury's surface history. Other remote sensing data are presented in

Chapter 5.

Mercury's general surface reflectance is lunar-llke, with a

geometric albedo of 0.16 _ 0.03, slightly higher than that of the Moon,
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Fig. 27. Ridge Materialsof Mirnl Rupes and H-15 Regions

a. Linear ridges llke Mirnl Rupes (M) may have been fissuresthrough
which plalns-formlngmaterialswere extrudedlate in the expan-
sional stage of the planet's thermalhistory,or they may be
materials"squeezedup" during the early compresslonalstage.Cra-
ters transected5y the ridge appear to have massive deposits
within them, althoughno lateralor transversemovement is
noted along the ridge strike. (See Dzurlsln,1978.)

FDS 27420. North at top. CraterA at lower left is 60 km in
diameter.

b. The ridges near Boccaccio (in terminator of H-15 Quadrangle) are
topographically high, domlcal in cross section, and have rows of

craters along their summits. Crater rims appear to be altered

where transected by the ridge.

FDS 166688. South Pole lles near the lower right corner of the
image. The crater in center, Sadi (S), is 60 km in diameter.
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0.13 (Dzurisin, 1977b). Surface contrasts, in albedo and color, are

less on Mercury than on the Moon, more akin to the weak contrasts of

the lunar highlands than to the significant contrasts of lava flows on

the mare (Murray, Dollfus, and Smith, 1972; Hapke et al., 1975;

Whitaker, 1972). The albedos of Mercury's major units are very sim-

ilar: 0.18 in the P3-P5 intercrater plains, 0.17-0.18 in the heavily

cratered terrain (C3-C2), and 0.15 for the smooth plains around and in

Caloris (probably P3 to PI plains; Dzurisin, 1977b). The lunar mare

and terra highlands have geometric albedos of 0.ii and 0.16 respec-

tively (Dzurisin, 1977b; Murray et al., 1974b). Dzurisin (1977b)

concludes, that because of the similar albedos of Mercury's three

major surface units, homogenizing processes have affected most of

Mercury's surface as recently as sometime within the Post Caloris

period.

The absence of contrast in albedo caused Hapke et al. (1975)

to conclude that there are no large regions characteristic of concen-

trations Of metallic iron or bare rock. Albedo, polarimetry, ultravio-

let, and infrared data are consistent with a silicate-like surface

whose upper centimeters form a fine, intricately structured regolith

(e.g. Morrison, 1970; Dollfus and Geake, 1975; Chase et al., 1974,

1976).

Variations in albedo do occur, however, in both young and old

units. Young, smooth P2 plains may be dark, with albedos of 0.13, or
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bright, with albedosof 0.23. Dzurisin (1977b) finds that neither

brightnor dark smooth plains are intrinsicto craterinteriors (as

intracraterplains) and that no sequence of albedovariations occurs

between these types of smoothplains.This impliesthat the homogen-

izing processis not strictlya functionof bombardmenthistory, nor

simply a brighteningor darkeningof the surfacewith age. Some of the

youngest units have the brightest albedos: rays, 0.23, and bright

patches on crater floors,0.44 (Fig. 28).

Local variations in albedo occur across two scarps, one per-

pendicularto RendevousRupes, and the other enteringRenoir's inner

ring (Dzurisin, 1977b).Lack of an albedo change across most scarps

supports their tectonic origin. Albedo changesin the young and old

terrainsprovidepartial supportfor their proposedvolcanicorlgln.•

Color contrasts on Mercuryreach variations of 25% in the

OR/UV ratio, as opposed to 45% on the Moon (Hapke et al., 1980b).

Bright and dark patchesof red and blue materials which occur within

craters do not appear to be impact melts (Dzurisln, 19775). Fresh

cratersand rays on Mercuryare mostly blue and have a high albedo

(Hapke et al., 1975).This color-albedo combinationis inconsistent

with Ti-rich materialsfrom Mercury's subsurfacesoils. Some basins

with blue rims containred floor materialsemplacedwell after the

basin's formation;the color differenceand delayedinfillingprobably

reflect a compositional difference produced by endogenic processes.
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Fig. 28. South Polar Mosaic SP-3: Albedo Features

Locations of various features and rayed craters noted in the text and

succeeding figures: S--Schubert; C--Chekov; M--Ma Chih-Yuan; B--Bach;
H--Hawthorne volcanic area; thin arrows--dome materials; thick arrows-

rimless depressions; P--Pourquols-Pas Rupes and Hero Rupes area, with

conical formation nearby; and A--crater near Shevchenko with multiple

layers of plains on the floor.

Albedo features near Copley (Co) suggest that the rayed crater was

formed by an impact into dark deposits flooding an ancient basin.

This C5' basin may be 500 to 700 km in diameter. Rayed crater north

of Hawthorne is located on an anomalously smooth area and appears to

have excavated both light and dark materials.

North at top.
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Four dark halo craters east-southeast of Caloris have red halos, blue

and red floor materials, but rays of the same color as the surrounding

terrain. These craters have excavated deep-seated materials of a com-

position unlike the surrounding surface. (The change in color approx-

imately coincides with the change from continuous ejecta deposits to

discontinuous ejecta. The latter is hypothesized to consist primarily

of local materials, and thus is consistent with the indistinct rays.)

Two craters with massive central peaks occur on the periphery of the

800 km basin surrounding Lysippus. Their rare, red-colored rays are

the reddest features observed on Mercury (Hapke et al., 1980 a,b). The

craters may be endogenic, resulting from differentiation and intrusion

of magma into a crust punctured by the large impact (Schultz, 1977).

Most color boundaries on Mercury show little or no correlation

with geologic unit or topographic boundaries (Hapke and Rava, 1980).

There is a higher degree of chemical homogeneity compared to the Moon,

"at least as far as those elements which affect color, particularly

iron, are concerned" (Hapke et al., 1980a, p. 394). In some cases it

appears that the compositionally distinct units were formed prior to

cratering. In other cases, postulated young volcanic units do not

differ in color (and composition?) from older surrounding materials.

Whether this is inconsistent with volcanically or ballistically de-

rived plains units is not clear, since lunar color maps show that

regions of different origins (highland and mare) may have the same
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"color,', and regions of different color (i.e. composition), such as

mare basalts, may have broadly similar origins.

Widespread variations in color occur between the Caloris

smooth plains and the intercrater plains of the second quadrant. The

yellower smooth plains may consist of more iron-(Fe0) rich soils.

Intercrater and smooth plains of the first quadrant are blue-green and

yellow respectively.

In summary, albedo and color data constrain geologic history

in several ways. Some process has insured that all major units or

materials are homogeneous in albedo and nearly so in color. Different

color ratios and changes in albedo across scarps and within crater

floors indicate that composition may vary in such ways that a volcanic

origin is supported. In some cases, units of distinctive color dif-

ferences are young, suggesting that the homogenization process is less

active with time, and thus may be related to the decline in bombard-

ment and ejecta distribution. This poses the question of whether this

indirectly supports ballistic plains formation. Color differences or

compositional differences are also sometimes ancient, predating

existing geologic events. Overall, however, the ancient surface is

fairly homogeneous in composition.

Initial Conclusions From Geologic Mapping of Mercury

The planet Mercury is affected by both impact cratering and

its associated deposition and reworklng, and by volcanism. The

intercrater plains (P5, P4, and P3) appear to be volcanic surfaces
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interbedded with ballistically emplaced ejecta and some mass-wasted

debris. Tentative volcanic landforms are identified--domes, some

scarps, some ridges and flow fronts--which have ages similar to those

of the intercrater units. Stratigraphic relationships which suggest a

volcanic origin for the intercrater and some younger smooth plains

(P3, P_ and PI) include: delayed infilling of cratered basins (some-

times with materials of distinct color or albedo), embayment of crater

rims and interiors, albedo differences across scarps associated with

unit contacts, and alterations of morphology of embayed craters.

Smoother plains are sometimes isolated from younger craters by tracts

of older terrain and lie within older basins. Minor amounts of bal-

listic deposits may thinly cover rough topography outside of large,

young basins (e.g.Handel?). In only a few cases, however, do these

deposits lie on topographic elevations as well as depressions, as

would be expected for ballistically emplaced materials. Younger smooth

plains are concentrated in topographic depressions; intercrater plains

may occupy depressed areas (C5v) but their preservation is in part

attributed to their plateau-llkeelevated positionswith respectto

surroundingterrain.

Plains morphology is not uniquely relatedto plains age. From

the degradationsequenceP1 to P5 one may infer that P5 materialswere

once formed llke P1 plains and subsequentlydegraded to their present

state.This may occur only if bombardment of the original material
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does not build up substantial deposits of younger material, and if

subsequent volcanism does not embay or bury P5 relief (like the C4

secondaries) in the low lying areas. The P5 plains are remarkable in

that they do represent such ',preserved" areas. Their elevation and the

restricted ballistic range of ejecta may insure their preservation_ A

primordial surface is unlikely; P5 plains often bury the C5' struc-

tures which in turn cover a more ancient surface. In conclusion,

geologic mapping of Mercury's first quadrant suggests that many expo-

sures of both Intercrater and smooth plains (PS-PI units) formed

through volcanic processes.

Lineaments are found in the intercrater plains and are appar-

ently ancient. Most scarps are globally distributed, tectonic features

formed in Class 3 to Class i periods. A majority formed during Class 2

crater and plains formation. Normal faults and grabens are rare, but a

few examples are tentatively identified; the graben-like features may

be older than scarps, possibly concurrent with Class 4 to Class 3

age. Ridges and dondcal structures may be associated with the last

stages of intercrater plains emplacement; rimless pits are associated

with scarp-forming tectonics. Intercrater plains emplacement occurred

during the formation of C5', C5, C4, and C3 craters. Smoother plains PI

and P2 were emplaced during formation of more sparsely distributed C2

and CI crateriforms.

The detailed crater production hlstory will be discussed in

the next chapter, and incorporated into the preliminary geologic

history outlined here.

109



GeologicMap Analysesof theLunarIntercraterPlains

In order to accuratelydefine the nature of the lunar inter-

crater unit, the Near Side map of Wilheims and McCauley (1971)was

locallyredrawnand modified to highlight the Pre-Imbrlan Plains,as

shown in Fig. 44 in the next chapter.The general 1:5,000,000scale

map was then compared to the 1:1,000,000scale maps, principallythe

Maurolycus,Hommel, Clavlus,and Tycho Quadrangles, to determine what

specific units comprised the pre-Imbrian plains (pip) mapped by

Wilhelmsand McCauley (1971).(This intercomparlson was outlinedin

the first section of this chapter.)Fig. 29 illustrates the pip expo-

sures on the four quadrangles. The individualquadrangle map units

which comprisethese exposuresare listedin Table 6; note the variety

of "textures" and assigned ages of these units. Most of these

materialsare illustratedin the Orbiter IV photographswhich follow.

The collectivecharacteristicsof these areas describe a level

plains unit of primarilyNectarian (middle to late Pre-Imbrian) age,

heavily crateredwith i-I0km craters,some of which have irregular

shapes similar to that of secondarycraters.The type area of the pip

is located southwestof Nicolai (labelled N in Fig. 30). The entire

expanse of the intercraterpip unit lles within 1.6 to 3-3.6 basin

radii from the centerof Nectarls, using 435 km as the radius of the

Altal Scarp (Wilhelms, Hodges,and Pike, 1977). The plainsextend

between clustersof larger craters (e.g. the clusteraroundMaurolycus
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and Barocius) and embay some smaller craters of mlddle-to-late

pre-lmbrian age (Fig. 30). Fewer craters over 40 km diameter seem to

occur within the pip exposures than within other highland areas, such

as those west and north of this area.

Though its contacts are obscure, the pre-lmbrlan plains appear

to embay the Janssen Formation and thus may postdate the emplacement

of Nectarls' ejecta (Scott, 1972; Stuart-Alexander, 1971). Fig. 31

illustrates the textural difference between the pre-lmbrian Janssen

(plJ)unit and the pip unit. Subdued to sharp 5-15 km secondaries from

Imbrlum are superposed on the plains' northern extension (Figs. 30,

32). Secondaries from the Nectarls Basin underlie the Janssen

Formation, forming ridges radial to the Altai Scarp; faint lineations

and buried craterlforms trending northeast within the plains suggest

that they too overlie Nectarian secondaries and sculpture. The north-

ern pitted plains lie within 150 to 300 km of the Altal Scarp, and

therefore may contain greater amounts of embedded ejecta, or thinly

overlie these materials at their margins.

However, the degradation of the crater Zagut may suggest

otherwise. Zagut, an 84 km crater which lies I00 km east of the

northern-most exposure of the pip unit, appears to be cratered by

Nectarlan secondaries (Fig. 32). Scott (1972) and Wilhelms and

McCauley (1971) assign it an early pre-lmbrian age. Despite its age,

and its proximity to the Altal Scarp (within 150 km), its western rim
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Fig. 29. Pre-lmbrlan Plains Locations on Quadrangle Maps
of Lunar Nearside Southern Highlands

Stippled areas represent the Pre-lmbrian Plains mapped by Wilhelms and

McCauley (1971) as distributed on the following four Quadrangle Geo-

logic Maps: Tycho, upper left; Maurolycus, upper right; Hommel, lower
right; and Clavius, lower left.

Marked craters are Tycho (Ty), Werner (W), Stofler (S), Licetus (L),

Maurolycus (Mr), Barocius (Br), Rabbi Levi (RL), Nicolai (N), Pitis-

cus (P), Baco (B), Ascelpi (A), Hommel (H), Tannerus (T), Mutus (Mu),

Jacobi (J), Cuvier (Cv), Zach (Z), Clavius (CI), and Maginus (Mg).

Table 6 (text) lists the various units mapped within each quadrangle
which are collected under the Pre-lmbrian Plains designation of Wil-
helms and McCauley (1971).
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Table6: QuadrangleMap UnitsAssumedUnderTitle
"Pre-lmbrianPlains''a

Quadrangle Unit Unit Name Ageb Location of
(Author) Symbol Unit Center

27°E,44°S
Maurolycus pip Materialof PittedPlains pl3 21°E,36°S
(Scott,1972) pit - Terra Material pl2 21°.5E, 39°.5S

20°E, 38.°5S
20°E, 44o S

Hommel pip Highly Cratered Plains 140E, 51° S
Material PI2- 260E, 48 ° S

(Mutch and plrt Ridged Terra Material PII_ 2 260E, 5055 S

Saunders, plst Smooth Terra Material PI2-Pl 3 22°E, 52 ° S
1972) 19°E, 5415 S

22°E, 58 ° S

Ipc Cratered Plains Material I1 12°E, 54 ° S

Clavius Ipc Plains Material, I1 9°E, 54_5 S
Cratered I°E, 48 ° S

(Cummings, It Terra Materlal, Hilly I 9°E, 52_5 S

1972) Ips Plains Material, Smooth 12 (small patches)

Tycho pip Plains Material Pl3 I[5 E, 47°S
915 E, 39°S

(Pohn,1972) IpIt Hilly Terra Material PI3-Ii 9°E, 39.5Os

Rheita pip Plains FormingMaterial pl2- 58°E, 44° S
(Stuart- PI3
Alexander,1971)

a On the Map of the Near Side of the Moon (Wilhelms and McCauley, 1971),

the Pre-lmbrlan Plains type area is located at 2215 to 25 ° E longitude,
and 44 ° to 45_5 S latitude.

b Standard lunar stratigraphlc nomenclature. In Hommel and Clavius

Quadrangles, the Pre-lmbrian is divided into Upper and Lower, noted here

by Pl2-Pl 3 and Pll-Pl 9 respectively. Older units are numbered "I," and
younger units "2" or "3."
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is relatively undamaged. This preservation suggests that Janssen

Formation deposits in this region are not as destructive or as volu-

minous as they are south and southwest of Nectaris (Fig. 34). However,

Rowan (1971) maps Zagut as a post-Nectarian crater; the radial

troughs and lineations are interpreted to have formed from tectonic

activity some time after the basin impact. If so, there is little

reason to conclude that ejecta deposits from Nectaris were unsubstan-

tial in this area. Other factors in this debate are introduced

shortly.

Nectarian secondaries are also found on the rims of the larg-

er, older craters surrounding the plains farther south: Cuvier,

Vlacq, and Mutus are some examples. The pip unit appears to embay the

rim materials of these craters. Although the relative age of this unit

is thus established as Nectarian, obscure contacts and variable small

crater densities across the mapped pre-lmbrian plains suggest that

this surface was formed in successive episodes. The variety of unit

ages of Table 6 supports this.

Near Nearch and Mutus, within a generally depressed area, rims

of buried craters are slightly visible (Fig. 33a). The thickness of

the plains appears to vary over the Hommel and Maurolycus quadrangles,

and is the result of some structural control. Smooth Imbrian plains

deposits lie on crater floors and depressions within the older plains

units. Large scale blocks and their associated vertical movements may
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Fig. 30. Nicolai Area: Type Area of the Pre-lmbrlan Plains and
Selected Areas 1 and 2

Rectangular region outlined at center left is the type area for the

Pre-lmbrlan Plains (Wilhelms and McCauley, 1971). Pre-lmbrian Pit-

ted Plains mapped by Scott (1972) occupy most of the lower two-thlrds
of the photograph. The lower third of the photo was used for crater

statistics of the Lockyer G area (Selected Area I), denoted LG, and
the Spallanzanl Area (Selected Area 2), denoted S. Note the arcuate

chain of fresh Imbrian secondaries at top center, north of Nicolai
(N). Striations and crater chains east of Nicolal are radial to

the Nectaris basin and form parts of the Janssen Formation exposure.
Arrows indicate the two regions sampled by Pieters (1979) in studies
of highland spectra.

Lunar Orbiter IV 88 H2. North at top. Nicolai is 42 km in diameter.
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Fig. 31. Janssen Formation Contact With Pre-lmbrian Pitted Plains

Crater chains and ridges radial to Nectaris (trending north-northeast

to upper right) are characteristic of the Janssen Formation (plj),

Nectaris' eJecta blanket. The crater Janssen (J) contains the plJ
type area; rilles cross its floor.

Pre-lmbrian Pitted Plains embay the Janssen Formation along a contact
traced by arrows (see Scott, 1972, and Figs. 29 and 44). The Lockyer
G area (LG) crater statistics may be affected by small craters within
the Janssen Formation. The thick arrows denote craters southeast of

Nicolai (N) which are roughly aligned radial to Nectaris, embayed by
the pitted plains unit (pip), and filled by younger plains. According
to Wilhelms (1976b), these craters may be secondaries of Nectaris.

Lunar Orbiter IV 83 H2. North at top. Lockyer (L) and Nicolai (N)

are both C2 craters, 34.3 km and 42 km in diameter respectively.
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Fig. 31. Janssen Formation Contact with Pre-lmbrian Pitted Plains

Lunar Orbiter IV 83 H2
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Fig. 32. Zagut Area East of Altai Scarp--Northern
Limit of Pitted Plains

Patches of Pre-lmbrlan Plains occur in the lower center of the photo-

graph. Note that the rim of Zagut (Z) appears to be scoured by cra-

ters radial to Nectaris (thin arrows); this is interpreted to mean

that Zagut pre-dates the Nectaris impact and was cratered by Necta-
ris' secondaries. Other interpretations are discussed in the text.

Many of the 5-15 km craters in chains or clusters and which appear to

be fresher than the Zagut lineaments are secondaries from Imbrium,
north-northwest of this region.

Lunar Orbiter IV 88 HI. North at top. Zagut is 84 km in diameter.
Rabbi Levi (RL) is 81 km in diameter.
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Fig. 33. The SouthernExtent of the Lunar IntercraterPlains

a. Intercraterplains of the Ascelpl (A) and Mutus (M) area. Plains
of severalages are shown in this photograph: Pre-ImbrianPlains
occupy the upper left cornerand a small zone in the left center.
Pre-Imbrianterra--bothsmoothand rldged--formplainsunits in
the upper left quarterof the photo. Imbrlanage plains occur in
center and lower right; note how these plainsunits embay and
bury older craters (thinarrows). Mutch and Saunders(1972) find
that the plains emplacementin this region (TheHommel Quadrangle)
is structurallycontrolledby fault block uplifts (thickarrows).
Hommel occurs at top right center (H).

East of Mutus, Imbrianplains (Ip), apparentlyflow lobes from the
south,embay two breachedcraters. High crater densitieson this
material indicate it may be older than other Ip units. Strom
(1977)includesthis featureand similarsmoothpre-Imbrlanterra
and Imbrlanplains to the south of this region within the Moon's
intercraterplains units.

Crater statisticswere sampledin the Ascelpi and Tannerus (T)
region (upper left corner of photo) and in the Mutus flow lobe
area. These SelectedAreas 3 and 4 are marked by corner lines.
Statisticswithin the two regions aye discussedin Chapter3.

Lunar OrbiterIV 82 H3. North at top. Diametersof Ascelpl and
Mutus are 42.5 km and 77.6 km respectively.
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Fig. 33. The Southern Extent of the Lunar Intercrater Plains--
Cont inued

b. Jacobi (J) and Lilius (L) area Pre-lmbrian Plains. This region
lies south of the area illustrated in Fig. 6 (also with south at

top), and adjacent to the area of Fig. 33a. Pitted plains to
the right of Jacobi and in crater A are mapped as pre-lmbrian

in age (Wilhelms and McCauley, 1971); those left (east) of Jacobl
are mapped as Imbrian highly cratered plains (Mutch and Saun-

ders, 1972). Buried craters (arrows) are discernible. Compare

the cratered plains units with the smooth Imbrian plains within
Cuvier (Cv).

Cratering statistics were gathered in the southwest portion of

this photograph (the upper right quarter). Many of the units

represented here are characteristic of the Clavius region which

Strom (1977) uses as a standard lunar highland area.

Lunar Orbiter IV 112 HI. North at bottom. Lilius and Jacobi,

both C3 craters, have diameters of 61.1 km and 68.1 km respective-
ly.
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Fig. 34. Nectarian Intercrater Terrain Near Frauenhofer
and Furnerius

Furnerlus, the large crater at top center of frame_ contains post-
Imbrian mare deposits. The terrain west of Frauenhofer (F) and south

of Furnerius is Nectarlan in age, and has pitted and rolling topog-

raphy. Although its appearance is quite similar to pre-lmbrlan

pitted plains (see Stuart-Alexander, 1971), it is surrounded by Nec-
taris' secondaries and ridges of the Janssen Formation. Wilhelms

and EI-Baz (1977) suggest that this "Nectarlan Terra" is therefore

basln-associated eJecta. Wilhelms (1976b) further suggests that the
pre-lmbrlan plains of Fig. 30 are ejecta facies of Nectarls.

Secondaries of Nectarls superpose the C3 crater Vega (V), helping to

establish the early C3 age for the Nectarls impact event. The pitted
plains are late C3 to early C2 in age.

Lunar OrbiterIV 76 HI. North at top. Frauenhoferis 56.8 km in
diameter. Vega is 75.6 km in diameter.
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have controlled older plains deposition within the Hommel quadrangle

(Mutch and Saunders, 1972). Structural lineations are generally more

subdued under the pre-Imbrian plains units compared to those within

the Imbrian-Pre-Imbrian terra (IpIt) of the Clavius Quadrangle

(Cummings, 1972). This region is similar to the western Jacobi area of

Fig. 33b.

Tentative volcanic features are associated with the plains.

The volcanic landforms in the region include domes of Imbrian and

pre-Imbrian age, rilles within Tannerus (a floor-fractured crater?),

and a maar-type crater Lockyer G. These latter features are Imbrian

age or younger. A possible flow lobe mapped as Imbrian smooth plains

embays a breached crater east of Mutus (Fig. 33a; Mutch and Saunders,

1972; Strom, 1977). This plains feature may be older, perhaps

Imbrian-Nectarian (INp) in age.

Other units south of Nectaris, variously labelled pitted

plains or Nectarian terra, have characteristics similar to the

pre-Imbrian plains features, yet they are more clearly associated with

the Janssen Formation; Wilhelms and Ei-Baz (1977) interpret these

units as ballistically emplaced, smooth-lying deposits from Nectaris.

(See also Wilhelms, 1976b.) Fig. 34 and Fig. 35 display Nectarian

plains units south of Frauenhofer and in the Biela-Watt region east of

Nearch respectively; note the lineations radial to Nectaris.

Areal coverage by plains material within the southern high-

lands area appears to decrease--or at least fluctuate--with time.

128



Although plains areas were not measured, one can note the following

trends. Young Imbrian plains decrease in their scattered areal extent

away from the major basins Imbrium and Orientale (see Fig. 44). For

example, Ip units are more extensive north of Werner (0berbeck et al.,

1974, 1975, 1977; Howard et al., 1974).

Farside highlands show a general increase in plains with time,

i.e. Imbrian plains are more common than Nectarlan plains

(Stuart-Alexander, 1976; Gifford and Ei-Baz, 1979). The latter units

are most often found in the interiors of pre-Nectarian craters (e.g.

Gagarin, Fig. 36), and basin remnants (e.g. Lomonosov-Fleming;

Stuart-Alexander, 1976). The nearside southern highlands contain more

pre-lmbrian (or Nectarian Np) plains than Imbrian plains; some

characteristic of the nearslde and farside surfaces (like their dif-

ferent crustal depths and basin ages) may have altered their plains

emplacement history. The location of farside plains within basins and

the observed lower densities of large craters in the pip

region--analogous to the decreased crater densities in the South

Polar-Aitken basin as observed by Wood and Gifford (1980)--suggest

that the nearside unit lles within an ancient basin, previously

unrecognized. See last section of this chapter.

To afford some comparison with the geologic map and relative

age studies of Mercury, degradation classes (LPL) were plotted onto

the Near Side base map. Class 3 craters dominate the entire area;
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Fig. 35. Smooth Plains and Nectarian Sculpture
Near Biela and Watt

East of Hommel, Nectarlan intercrater terrain extends beyond Watt (W)
"to Biela (B). Nectarian secondaries have cratered the rim of Vlacq (V)
and produced the ridges noted west of Watt. The plains south of Watt
are pitted with small craters, lack obvious sculpture, and are quite
similar to the pre-lmbrian plains to the northwest.

Lunar Orbiter IV 52 H2. North at top. Biela (C2) is 76.2 km in
diameter. Watt (C3) is 66.3 km in diameter.
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Fig. 36. Far-Side Lunar Highlands and Nectarian Plains

The oldest smooth plains units, the Nectarian plains (Np), often are
found within old basins and large craters such as Gagarin (G; 230 km
in diameter) on the lunar farside, rather than in extensive inter-

crater tracts as on the lunar nearside. Note that the Nectarlan

plains do not cover the most heavily cratered areas visible in this
farside region.

Grooved terrain, analogous to Mercury's hilly and lineated terrain

(Fig. 19), surrounds the Mare Ingenli (MI) area. The disrupted re-
gion lies antipodal to the Imbrium basin.

Lunar Orbiter II 75 M. This view toward the south (at top) encom-
passes much of the South Polar-Aitken Basin.
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fresher craters become more numerous to the south pole and more

degraded craters (Classes 4 and 5) become more abundant toward the

north, nearing the Imbrium and Nectaris basins. (See also Ronca and

Green, 1969.) From embayment and transection relationships, the

pre-lmbrian plains appear mainly as a P3 surface. Interpretations are

"broad" because the LPL and USGS degradation criteria do not always

produce the same crater ages relative to adjacent units (see Chapter

2, Section I). The Janssen Formation could be interpreted as a P3 (to

P4?) surface, and the pre-lmbrian ridged terra a P4 surface, while the

smooth Imbrian plains range from P2 to P3 age. Subdued Imbrian second-

aries overlying the area fall within Class 3, narrowing the relative

"Class 3" age of the plains; however, fresher looking Imbrian second-

aries are given Class 2 ages. ?_re surfaces to the north are likely to

be designated P2 or PI.

Dated in this manner, the lunar intercrater plains--the pip

unit--display a narrower range of relative ages than their Mercurian

counterparts. On Mercury, the intercrater plains are P5 through P3

units; the smooth plains are P2 to P1 surfaces. The lunar intercrater

plains are P3 units, and the smooth light plains (Ip units), are P3 to

P2 in relative age. Inclusion of the pre-lmbrian terra surfaces would

broaden this lunar plains spectrum to P4 intercrater surfaces.

The overwhelming consensus of interpretations of the

pre-lmbrian plains, prior to the Apollo 16 mission, favored volcanic
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plains, lava or ash flows produced in an episode of pre-mare,

pre-Imbrianvolcanism (e.g. Scott, 1972;Wilhelms and McCauley, 1971).

Volcanic landforms,variable unit depth, embayment relationships,and

other stratigraphicdata were cited as evidence for a volcanicorigin.

The age of the pre-Imbrianplains was not consideredto be obscuredby

possible endogeniccraters (Mutch and Saunders,1972).Pohn (1972)

interpretedthe terra and possibly the plains within the Tychoquad-

tangle as mainly volcanic,but possibly interbedded(or composedof)

crater and basin ejecta, "a deep regolithdeveloped in situ."Many

interpretedthe pip unit as an older equivalentof the Imbrianplains

(includingthe Cayley Formation).

Pohn's cautious interpretation was a precursor to the

post-Apollo16 views recordedin all later maps and analyses.Follow-

ing the discoveryof the breccia dominated, ballistically-emplaced

Cayley plains, interpretationsof all plains formation swung to basin

and crater related origins (e.g.Oberbecket al., 1974, 1975; Head,

1974, 1976a). Volcanic hypotheses,though not completely dismissed

(Stuart-Alexander,1976; Wilhelms and Ei-Baz, 1977; Scott et al._

1977), were outweighed by growingevidence for plains formation by

ballistic deposition of crater and basin ejecta. The pre-Imbrian

plains unit was then consideredto be a depositof the Nectarianbasin

of a more subduednature (smooth,with fewer ridges)than the basin's

lineated,but ancientejecta blanket, the JanssenFormation (Howardet

al., 1974; Stuart-Alexanderand Wilhelms, 1975). Comparisonswere
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made to the eJecta blankets and secondary craters of Imbrium and

Orientale (Wilhelms, 1976b; Wilhelms et al., 1977).

The West Side map of the Orientale basin (Scott et al., 1977)

was studied to determine the nature of the ejecta deposits of the

basin, and compare it to the Nectarls area. Secondary craters as large

as 30 km form overlapping "chains and clusters radial and peripheral

to the basin," (Scott et al., 1977). They are subdued close to the

basin rim on the inner Hevellus facies, as if mantled, and both over-

lie and underlie areas of the outer Hevelius facies. Very few second-

aries are superposed on the highly lineated inner facies which begins

at the Cordillera Scarp and extends to 3 basin radii from the center

of Orientale. Morphology of the outer facies varies from swirly and

lineated to hummocky and smooth; its outermost boundary is indistinct

and extends a basin radii beyond the inner facies, i.e. from 3 to 4

radii from the basin center.

As noted by Woronow, Stro_ and Rains (1979), craters within

300 km of the Cordilleran Scarp are severely affected: 40% of craters

greater than 50 km in diameter are obliterated.

The extent of either facies may vary because of the oblique

impact of the projectile (Scott et ai.,1977; Wilhelms,1980; Gault and

Wedekind, 1978). An impact from the northeast may have caused the

following morphologic features: (i) decreased width of the inner and

outer ejecta (Hevelius) facies to the northeast (uprange of the impact
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trajectory); (2) increased width of knobby facies to the southwest

(downrange) which extends past the outer ejecta facies; (3) second-

aries abundant to the northwest, southwest, and possibly southeast, but

fewer to the northeast (some features to the northeast are buried

under Oceanus Procellarum); (4) disrupted ring and rim scarp to the

southwest, but better defined concentric ring system to the northeast;

and (5) extensive valley formation perpendicular to and downrange of

the impact trajectory. These factors can be applied to the Nectaris

Basin, assuming it was formed by an impact from the southwest.

Smooth Imbrian plains lie on top of the outer facies at the

edge of the inner Hevellus facies; numerous patches of plains lie in

areas bordering the ejecta deposits of Humorum and Imbrium to the east

and north respectively.

The late pre-lmbrian pitted plains appear well displaced

"temporally" from the early middle pre-lmbrian impact forming the

Nectaris basin (Scott, 1972; Offield and Pohn, 1969). Evidence sup-

porting this conclusion are (I) superposition of the Janssen Formation

by the pip, (2) burial an_ embayment of Nectarian secondaries and

ridges, (3) burial of circular 3-5 km craters, (4) occupation of

lower-level fault blocks and depressed regions, and (5) embayment of

craters of early to late middle pre-lmbrian and flows of ages of

middle pre-lmbrian to early Imbrian, including the flow lobes east of

Mutus (Strom, 1977).
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Because the pre-lmbrian plains are within a basin diameter of

Nectarls, the level surface of the plains may at least reflect the

subjacent extension of the Janssen Formation or other smoother eJecta

deposits. The abundant I0 to 20 km craters in the area may be

secondaries from Nectaris; those identified by Wilhelms (1976b) are

middle to late pre-lmbrian in age.

However, some of the evidence reviewed here is consistent with

a basin related origin (Wilhelms, 1976b; Howard et al., 1974; Moore,

Hodges and Scott, 1974; Wilhelms et al., 1977; and Wilhelms, Oberbeck,

and Aggarwal, 1978). Although not definitive, the evidence includes

the obscure contacts of the pip unit with the Janssen Formation, the

ambiguous relative ages of the proposed basin secondaries and

post-basin, pre-plains craters, and the absence of well identified

pre-lmbrian volcanic features. (Younger Imbrlan age features were

noted; they include the floor-fractured crater Tannerus, and the

maar-type crater Lockyer G.)

As was noted in the discussion of the West Side map of the

Orlentale basin, late arriving basin secondaries may overlie, or

escape mantling by, the outer ejecta facies, which may vary in texture

from lineated to smooth; alternatively, basin secondaries may be

mantled by the basins' later eJecta deposits.

Two puzzles remain. The first is that the time interval between

Nectarls basin formation and intercrater plains formation is
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still undetermined. Secondaries from Imbrian provide a well defined

upper marker horizon 5ut tend to obscure the observations of older

details. A second puzzle is that the plains occupy an area lacking the

large craters which are so abundant elsewhere in the southern high-

lands. The missing craters do not appear to lie beneath the plains, as

their rims would be higher than the llneatlons from Nectarls which do

appear faintly at the pitted plains margins. Neither have these cra-

ters been destroyed by the Nectarls basin impact, for alleged

pre-Nectarlan craters closer to the basin (llke Zagut? See Rowan, 1971

and Scott, 1972) are still quite intact and visible. Plains distri-

bution on the farside suggests that nearside old plains might lie

within the confines of a very old, unrecognized basin. (Detection of

Lomonosov-Fleming, South Polar Aitken, and other farside basins is

remarkable enough that such an unrecognized structure on the nearside

is unlikely or quite remarkable.) The effects of an ancient

basln-formlng impact are discussed in the next chapter.

Thus the pitted plalns--the pre-lmbrlan plains--may have var-

ious origins, or stages of formation, as yet unclear. The area

occuppied by the plains has not escaped basin influences of Nectaris,

nor even entirely of Imbrlum, but at least the area is not dominated

by the younger Imbrium impact. Relegating an origin to the older

plains based 'on its morphologic similarities to younger plains may

not be Justified (and may not be applicable to Mercury!) A volcanic
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origin is not excluded, and indeed supported by many features,

although the dominant presence of basin related material and processes

is recognized for the lunar highlands. A range of ages is spanned by

the lunar plains units, and the position of the intercrater plains

within that spectrum indicates that it (I) is not a primordial surface

and (2) was emplaced over an extended period of time/ perhaps

overlapping the Nectaris and Imbrian basin impacts.

The preferred interpretation of the mapping is that the

pre-lmbrian plains may well be a volcanic surface, one which has sub-

stantial amounts of basin and local ejecta superposed on or underlying

these deposits. The unit's placement in topographic depressions, its

extended formational age, and burial of craters, suggests that

volcanism is structurally controlled. Ancient basalts would have been

intruded into locally thin regions of the crust such as ancient basins

or faulted provinces. The Nectaris impact though has greatly affected

the pip region, and its ejecta may have collected in such topographic

depressions.
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Note in Proof. In a recent map of the South Side of the Moont

Wilhelms,Howard, and Wilshire (1979)proposetheexistence of a 680

km diameterbasin encompassingthe pre-lmbrlan plains region. The

basin is named after the crater Mutus and Vlacq which superposeits

southern rim remnants. Wilhelms et al. (1979) argue that the

Nectarianplains (plp) units within the basin are merely collections

of ejectedbasin and crater debris. It is argued here, and through-

out, that the ancient basin site may also structurally control the

emplacement of volcanic materials,in particularthose extruded into

shallowerareas of the lunar crust.
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CHAPTER 3

CRATERINGHISTORIESOF THE INTERCRATERPLAINS

The intercraterplains of Mercury and the Moon are defined,

in part, by their high densities of small craters. The crater

size-frequencystatisticspresentedin this chaptermay help constrain

the relative ages and originsof these surfaces.To this end, the

effectsof common geologic processeson crater frequencystatistics

(Sections2 and 3) are compared with the dlameter-frequencydistri-

butions of the intercraterregionsof the Moon (Section 4) and Mercury

(Section5). Such analyses may determine whether secondarycraters

dominate the distributionat small diameters, and whether volcanic

plains or ballisticdeposits form the intercratersurface.

Determiningthe mass--frequencydistributionand flux of the

impacting population is a more difficult problem. The necessary

information-suchas scaling relationships betweenprojectile energy

and crater diameter,the relativefluxes of solar system objects,and

the absoluteages of surface unlts--ismodel dependent and poorly

constrained,especiallyfor Mercury.Only generalcommentscan be made

about the bombarding populationand its changes relative to geologic

events in the planet'shistory.
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Methods Summary

The collection of cratering data from planetary imagery is

fairly straightforward, consisting of determining the number of cra-

ters N of diameter intervals _D on a surface of area A. Diameter,

degradation class, presence in a chain or cluster, the underlying

units, and the approximate position were determined for each crater

larger than a limiting diameter on the selected Mariner i0 images and

the Lunar Orbiter IV photographs.

Appendix C revelws measurement techniques and errors. In its

first section, I discuss the preparation of the base photograph, mea-

surements of crater diameters and the sampled area, and the

instruments used. Among the errors discussed in the second section are

those related to sun angle, scale factors, degradation classification,

and biases in crater recognition. Most of these errors are more ser-

ious for the Mariner I0 images than for the Lunar Orbiter IV

photographs, because of the poorer resolution of the Mariner images.

For instance, areas derived with a scale factor in km per pixel (or TV

line) were not equal to areas derived from the longitude and latitude

of the region's boundaries on the Shaded Relief Maps. Because of

slight changes in the classification criteria used in the crater

assignments and the geologic mapping of Mercury, degradation classes

of large craters within the selected regions of Mercury were Judged to

be (usually) one class younger when mapped, using the revised LPL
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scheme, than when the crater was classified using the lunar LPL cri-

teria. The shift in classes involved some C4 and C3 craters which were

mapped as C3 and C2. Further details are discussed in the appendix;

the degradation criteria are discussed in Chapter 2. Uses of different

scale factors and degradation criteria for Mercury's selected regions

do not change the conclusions drawn in Section 5.

Data Presentation

Tabular and graphical presentation of the data follow the

guidelines set by the Crater Analysis Techniques Working Group (1978).

Tables of diameter frequency data and supporting information appear in

Appendix D. These tables llst, for each area A, the number of craters

N(D) within a diameter bin of limits D1 and D2 = DI. (2)½ .The mean

diameter of the logarithmic bin is then_ = (D1 x D2)½ or DI(2)¼ . A

standard diameter D1 of (7/23) km is used here. Supporting data

include the image identification, image source, image processing, the

photo scale, regional boundaries, measuring instruments used and their

accuracy, the lower diameter limit sampled, and notes on picture

quality or special problems.

Most of the data are displayed throughout the chapter as Area

Plots or, in regions of general interest, as Cumulative Size-Frequency

Plots. Both abscissa and ordinate of the graphs are equally scaled to

the log base I0. The diameter is plotted along the abscissa at the

geometric mean of the diameter bin, _. The left-hand side ordinate of
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the Area Plot is the function P(D)_ the percent coverage of area A by

N craters within the diameter bin of D-. Percent coverage is repre-

sented by the formula: P(D) = (100_D--'2N)/(4A). The right-hand side

ordinate of the Area Plot is the Relative Size Frequency factor, R(D).

When the bin widths of the Relative Size Frequency Plot equal those

for the Area Plot, as they do here, the two values are related by the

expression, R(D) = 0.0365 P(D). The cumulative slze-frequency distri-

bution displays the integral of the differential size-frequency

distribution F(D). The slope of the differential distribution is

called the population index "a," where N = bD a , or F(D) = bD a . The

relative size frequency distribution ratios the function F(D) to a

reference distribution S(D), commonly D-3. Thus, if F(D)_D -3 , the

slope of the Area Plot and the Relative Size Frequency Plot will be

zero_ i.e.

d(log R(D))/d(log D) = 0

A line of "-3 slope" has been used by Gault (1970) and others to

designate some fraction of equilibrium or saturation of the cratered

surface. On the Area Plot, a distribution of differential index a =

-3 will be horizontal. Positive slopes on the Area Plot represent

indices of a> -3, and negative (downward left to right) slopes of the

Area Plot represent indices of a<-3. Mathematical formulation of these

functions are presented in the Workshop booklet noted above and

reviewed in Appendix C.
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A Poissonerrordistributionis assumed for the crater popu-

lation. Frequencyvaluesand theirI sigmaerrorbars are thus: log

((N ++_)/A) for the Cumulative Plot; log (R + R/N½ ) for the Relative

Size Frequency Plot; and log (P_+ P/N½) for the Area Plot, (Crater

Analysis...Group, 1978). The Area Plot format is emphasized in this

work because it readily shows deviations from theoretical saturation

or equilibrium distribution, i.e., deviations from the horizontal

(Woronow, 1977a; Strom, 1977). Goodness-of-fit tests and regressions

lines were not calculated. Area Plot slopes, where given, are esti-

mates derived from slope of the linear part of the curve over a

specified diameter range.

Signatures of Geologic Processes on a Crater Population

A surface which records all impacts upon it, without any one

impact obliterating another, records the production population. The

size-frequency distribution of the production population may take any

form on the area or cumulative plots; the lunar post-mare population,

for instance, forms a near-horizontal line (-2.8 slope) on the area

plot at 0.1% coverage (Strom, 1977).

Degradation criteria as specified in Chapter 2 often indicate

the age of the crater. By extension, the size-frequency distribution

of a certain crater class may represent the population statistics for

craters of a common age. However, the size of the crater, the distance

of large and young events, and the criteria used for fresh craters
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weaken this correlation. The first two factors refer to rapid degra-

dation of small craters and proximity weathering, explained in Chapter

2. Area plots of C1 craters classified on the basis of continuous and

sharp rims will not be equal to area plots of C1 craters classified on

the degree of infilling by dust or ejecta (Woronow, 1979a).

The effects of common geologic processes on the total crater

distribution and the degradation class distributions are summarized

below. Secondary cratering is described in Section 3.

Saturation and Equilibrium

W hen the crater size-frequency distribution no longer changes

with time, as impacts accumulate, the cratered surface reaches either

saturation or equilibrium, depending on whether the obliteration pro-

cess consists of simple overlap of crater rims, or additional

processes respectively (Woronow, 1977a; Gault, 1970). The distribution

of a saturated surface yields only general information on the gener-

ating function.

If the saturated distribution is horizontal (a = -3), the

generating function was negatively inclined, a(-3. If the saturated

distribution is sloped upward, the generating function may also have

been positively sloped, with -3< a_-2. The value of the population

index a, the slope of the area plot, and the magnitude of P(D)

increase as the surface reaches saturation.
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Direct Basin Impact

Craters of all ages (classes) and sizes are destroyed within

the excavation cavity. Crater densities are reduced by a factor which

decreases with the age of the basin relative to the age of unaffected

areas. The excavation cavity may suffer further resurfacing by vol-

canic extrusions. Wood and Gifford (1980) discuss the crater density

reductions caused by the South Polar Aitken impact.

Basin Impact--Periphery

A basin impact produces the most severe form of proximity

weathering Just outside the basin rim. Lunar studies (Strom, 1977)

indicate that losses of small craters near the basin rim will steepen

the area plot of that region by reducing P(D) at small D. The percent

obliteration within the continuous eJecta blanket of the basin is

greatest for the smallest craters; %_thin 300 km (0.6 R) radially

outward from the Cordillera Scarp of Orientale, fully 80% of the cra-

ters 8 - 12 km in diameter are destroyed by the basin's continuous

eJecta deposits (Woronow et al., 1979). (One may expect that similar

destruction extends 278 km from the 870 km Altai Scarp of Nectaris.)

Severe degradation of large craters will increase abundances

o{ C4 and C5 craters above normal levels; the extent of degradation

decreases outward from the basin rim (Ronca and Green, 1969). Beyond

the continuous ejecta blanket, one expects additions of basin second-

aries; they may exceed the primary crater population, as shown in the

next section (Wilhelms et al., 1977, 1978; Oberbeck et al., 1977;

Woronow et al., 1979).
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Ballistic Pla_ns Emplacement

A crater population affected by this mechanism may exhibit

characteristics of basin proximity weathering, with its associated

degradation, and volcanic plains emplacement, with its elimination of

small and shallow craters. The degree of burial decreases radially

away from the basin. This "signature" will be examined later in this

chapter.

Volcanic Plains Emplacement

Flood plain type flows will eliminate small craters and old

shallow craters whose rim heights are less than or equal to the flow

depth. Rims of larger craters are left intact although the interior

and exterior of the crater may be embayed. The resultant area plot

will steepen below a certain diameter, although densities and degra-

dation classes of larger craters should not change. The resurfacing

will eliminate most secondary craters. The lunar post-basln, pre-mare

area plot exhibits the effects of mare floodlng (Strom, 1977).

Typical crater distributions on Imbrian plains surfaces have

roughly constant coverage of i% to some diameter; coverage decreases

abruptly for greater diameters. The size of the sampled area may

determine the transition diameter. Mare areas have similar distribu-

tions, but about a tenth the magnitude of Imbrlan plains. Nectarian

plains sampled by Neukum and Horn (1976) and Beals and Tanner (1975)

have higher levels of constant coverage. (See also Neukum, K6nig, and

Arkani-Hamed, 1975a; and Neukum et al., 1975b.)
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Endogenlc Craters

Rimless, collapse-pit craters in a terrestrial volcanic lava

field are represented by an area plot which reaches maximum coverage

at some diameter possibly related to flow depth, and decreases in

coverage for larger and smaller diameters. Such an addition to exist-

ing small crater coverage may increase the apparent age of the surface

(Greeley and Gault, 1979). Size and degradatlonal class characteris-

tics are uncertain. Volcanic eruptions may produce secondary craters

very close to the "primary" crater rim (e.g. Hartmann, 1967).

Isostatlc Equilibration

This process will eliminate larger craters and basins from the

population; smaller craterlforms are unaffected over the same time-

scale. The time for isostatlc adjustment, as applied by Schaber et al.

(1977) to Mercury's basins,

te = (20_)/(pgw)

varies directly with viscosity 7, inversely with the half-width of the

landform w_ the denBity p, and the gravity g. A basin will adjust

(i.e. lose its vertical relief) much more quickly than its second-

aries. The loss of basin coverage decreases the slope of the area plot

and makes that of the cumulative plots more negative at the higher

diameters. Basins, of course, may be eliminated by both large and

small impacts long before attaining isostatic equilibrium (e.g. South

Polar Aitken and Mare Australe).
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DifferentialPreservationandDegradationDue to TargetProperties

Consolidatedand unconsolldatedtargets, llkemare basalt and

terramegaregolithrespectively,differentlyaffect morphologyand

preservationof superposedcraters (Cintalaet al., 1977;Thompsonet

al., 1979; Head,1976b;and others).Pike,Roddy, and Arthur (1980)

find that the transitiondiameterfromsimple to complex craters

varleswith the planettsgravityand targetstrength:MercuryVsvalue

of 16 km indicatesits surface is "hard"or consolidatedrather than

extenslvelybrecclated.Cintalaet aL (1977)note a similareffect.

Cratersformed in a megaregolithejectless blocky material

(possiblyreducingthe secondarycratersizes),have less consolidated

rims,and are degradedmore qulckly thancratersformedin a consoli-

datedsurfaceby a similarprojectile.Such processesmay affect cra-

tersas largeas 12km on the Moon (Thompsonet al., 1979).This

effect may be offset bythe smallersizeof craters formedin more

consolldatedmaterlalsunderthe samegravityandvelocityfactors.
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Craters formed in layered targets reflect the strength of the

materials which form the more substantial portion of (i.e. dominate)

the crater wall (Aggarwal and Oberbeckp _979; Schultz, Greeley, and

Gault, 1977; and Oberbeck and Quaide, 1968). When craters are better

preserved, their coverage P(D) rises. Thus penetration of a lava flow

overlying a megaregolith which overlies bedrock alternately raises,

lowers, and raises coverage by small craters at increasingly larger

diameters which are some multiple of each layer's depth (see also

Young, 1975). This factor may vary from 5 to 8 depending on the

depth-diameter relation used. This differential preservation may not

apply to large craters. Schultz et al. (1977) set this limiting diam-

eter at about 2 km. Scott (1977) discusses other mechanisms (higher

impact velocities and ejection angles) which increase the preservation

of secondary craters on Mercury. Shallow secondary craters--formed in

lower energy impacts--may be differently affected by target composi-

tion and layering than primaries of the same diameter. (See the

gravity and strength scaling section.)

Initially Degraded Craters

Secondary craters and volcanic craters may be formed in

degraded states, artificially increasing abundances of similar size

craters of the same degradational class (Oberbeck, 1975; Morrison and

Oberbeck 1975, 1978).
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Erosion by Infilllng with Dust or Ejecta

Infilllng by dust or widely distributed ejecta, in addition to

crater obliteration by overlap, reduces abundances of small and older

craters. Degradation class area plots will not be parallel, since

craters which are degraded to older classes (i.e., filled by dust) are

more likely to be obliterated by continuing impacts. The limit of

maximum coverage attainable before reaching equilibrium or a steady

state is reduced by atmospheric erosional processes. Changing atmo-

spheric conditions may cause changes in the area plot and its level of

equilibrium (e.g. Woronow, 1977b, 1979a,b).

Tectonic Processes

Mass wasting is likely to be associated with normal and thrust

faulting and with impact generated seismic waves. The resulting rim

degradation (or rejuvenation) and infilllng may be severe enough to

alter the degradation-class statistics. The area plot will steepen if

smaller craters are destroyed; at larger diameters, C5 populations may

be filled by the degradation of craters contemporary with the tectonic

event. Modification may be localized, focused on antipodal areas, or

global (Schultz and Gault, 1975a,b, 1976; Hughes, App, and McGetchin,

1977; O'Donnell, 1978). Unless collapse depressions form, no craters

are expected to be added to the existing population, unlike the effect

of a basin impact. Effects such as those described above for erosional

infilllng by dust are to be expected for mass wasting.
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Gravity and Strength Scaling

Mercury's higher gravity and the expected higher velocities of

projectiles impacting its surface may have offsetting effects on cra-

ter size. Gault et al. (1975) document how gravity affects the range

of eJecta and possibly the morphology of mercurlan Graters, although

the latter effects are disputed by Malin and Dzurisln (1977, 1978).

The scaling of crater diameter with gravity or target strength is

still not well defined (e.g. Gault and Wedekind, 1977; Gaffney, 1978).

Strength scaling is responsible for the differential preservation of

small craters (Schultz et al., 1977). In this case, diameter is a

function of the one-third power of kinetic energy. For targets of no

strength, or for large craters, gravity scaling requires that diameter

vary with the one-fourth power of kinetic energy (or the negative

fourth root of gravity). The experimentally derived value lles between

these functions; D=g -.165 + .005-- at fixed velocity and energy (Gault

and Wedeklnd, 1977). The restricted range of ejecta on Mercury will

reduce infilling of craters distant from the impact, reduce the radial

extent of proximity weathering from basins and craters, and will

reduce the width of the continuous eJecta blanket (Gault et al.,

1975). Ranges of ejecta on the Moon and Mercury are illustrated by

Strom (1979).

External Processes: Changes in the Bombarding Population

Externally imposed changes in the crater statistics will

result from changes in the impacting population--its slze-frequency
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distribution, its flux, or its source. These changes may be recorded

in crater statistics if the above affects can be minimized (especially

partial losses of craters) or utilized (especially the completely

resurfaced areas): e.g. Guest and Gault, 1976; Whltaker and Strom,

1976; Oberbeck et al., 1975. Increased flux or increased size of the

bombarding objects may increase degradation rates and alter the gen-

eral type of degradation (e.g. Head, 1975). Flux rates, however, can

only be determined if absolute ages are available for craters or the

surfaces on which they lie (e.g. Hartmann, 1977).

The geologic and external processes which affect crater sta-

tistics, aspresented above, will be used to determine the processes

affecting lunar and mercurlan crater populations. The most important

of these may be basin formation and volcanic flooding, although other

effects are anticipated. Note that differential preservation may

indicate both lava flows (consolidated layers) or basin ejecta depos-

its (unconsolidated layers).

Secondary Cratering on the Moon and Mercury

In this limited study of secondary cratering, two large, lunar

craters were chosen whose secondaries are superposed on adjacent mare

regions. Ideally, the objectives were to (I) quantify the addition of

secondary craters to a post-mare production population, and (2) apply

that algorithm to secondary cratering in the lunar highlands. Signif-

icant studies of secondary cratering from basin sized impacts are
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reviewed, with particular focus on the Nectarls basin. Some charac-

teristics of secondary cratering on Mercury are also discussed. To

apply the lunar studies to the mercurian surface, the effects of

increased gravity and impact velocities must be evaluated.

Secondary Craterlng From Fresh Lunar Craters

Mare areas northeast of Copernicus (95 km in diameter) and

northwest of Langrenus (136 km in diameter) were divided in annuli of

width equal to one or one-half the primary crater radii (e.g., Fig.

37). Within each annulus, crater diameters, degradation classes, and

distances to possibly interfering primaries were noted. The most

important results of the data are enumerated below. Secondary crater

diameters are scaled to the diameter of the primary, and ranges are

scaled to the radius of the primary and measured from its center.

In the Langrenus area, to a distance of 6 R, craters of sizes

0.01 D to 0.04 D have nearly equal coverage of N2.5% (Fig. 38). The

post-mare background averages 0.1% coverage (Strom, 1977). Fresh

secondaries (CI and C2) reach a maxlmum coverage only one fourth the

combined total for craters which are 0.03 to 0.04 the primary

diameter.

The maximum coverage for secondaries of a certain size and range

(Fig. 39) occurs for craters of 0.03 D (0.026D to 0.05D) within a

radial range of 1.5R to 2.0R from Langrenus and 2R to 3R from

Copernicus. The greater scaled range of the Copernicus secondaries
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Fig. 37. Sketch Map of Copernicus Area Used In
Secondary Crater Study

Annuli of one Copernican radius (47.5 kin)in width extend north of
Copernicus into Mare Imbrium. Craters greater than 2.45 km were tal-

lied in Annuli A0 - A3, greater than 1.84 km in5A4 and A5, and greaterthan 1.22 km in A6 - Ag. Total area 1.069-10 km2. Abbreviations

are: C - Copernicus, E - Eratosthenes, S - Stadius, 0 - Gay Lussac,
P - Pytheas, L - Lambert, and W - Wallace. Stippled regions are
highland massifs. Statistics for this region can be found in Tables
DI6 and DI7 of Appendix D. Langrenus area is similarly divided,
but annuli are 0.5 R in width; see Tables DI4 aud DIS.

157



I0.0 _ i , i I i I

5.0- - 0.2

All Classes 0.1

2.0

- 0.05

1.0

0.5 - 0.02

p R

0.01

0.2

- 0.005

0.1 Classes I and 2

- 0.001

0.01 I I I I I I
I 2 5 I0 20 50 I O0

Diameter (k m)

Fig. 38. Crater Coverage of Mare Region Northwest of Langrenus

Percent coverage P(D) by craters of mean diameter D km in Mare Fecundi-

tails, northwest of Langrenus. Right ordinate R(D) is the Relative

Frequency Factor discussed in text.
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suggests that the Copernicus impact was more energetic than the

Langr@nus impact, although other factors may be involved (e.g. slump-

ing, Settle and Head, 1979; Melosh, 1977c).

As the secondary size increases, the range of peak coverage

decreases, moving inward to the rim of the primary, as expected from

earlier studies of Shoemaker (1962) and Oberbeck and Morrison (1974).

Early in the impact event, more highly shocked comminuted material is

ejected at higher velocities from regions near the center Of the

transient crater; this material travels to the greatest ranges and

impacts after the rim-forming eJecta. Larger fragments are ejected at

lower velocities from regions closer to the transient crater rim. The

volume of material ejected increases with time, and with the expanding

radius of the shock front, forming the rim and continugus ejecta

blankets (Oberbeck and Morrison, 1974, 1976; Shoemaker, 1962).

Craters nearest the primary rim are more degraded; presumably,

the debris surge blankets the area following secondary excavation.

Fresher secondaries in a particular size group reach peak coverages at

greater radial ranges, usually i R farther, than more degraded craters

of that size. The greater diversity in degradation class found at

greater ranges results from (I) lack of debris surge blanketing and

(2) increasing significance of the local primary population.
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Allen (1979) shows that the average maximum secondary diame-

ter is (0.04 + 0.006) D and its range is 2.8D0"89 i.e. about 3.3-3.4

radii from the primary crater. (Compare Fig. II of Wilhelms et al.

(1977), who find that secondary range is 5.2 R 0.9, where R is the
P P

radius of the primary.) Allen finds that maximum secondary size and

range vary nearly linearly over three orders of magnitude from i00 m

to 250 km. Copernicus and Langrenus are included in his sample. Note

(on Fig. 39) that the craters contributing the greatest areal coverage

at I.bR to 2.0R are only slightly smaller, 0.03 D, than the maximum

size secondary, 0.04 D.

Percent coverage of the maximum size secondary peaks at a

range of 2.5 R- 3.0 R with coverage P(D) one half that of the more

numerous smaller secondaries. The last substantial contribution of the

larger secondaries, about 2%, occurs within the range 3.0 R to 3.5 R,

consistent with that determined by Allen (1979). At that range, the

numerically dominant secondaries of diameters 0.01 D contribute 2.6%

coverage.

Although secondary densities of Langrenus and Copernicus dif-

fer in detail, perhaps due to different impact energies, age, or

target consolidation, plots of their number density distributions

versus range in primary diameters are similar (Fig. 40). Number den-

sities (N/k_) of secondaries are highest for small craters of
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Fig. 39. Coverage by Specific Size Crater Within Specific
Range From Langrenus

Craters larger than 8.3 km are likely to be primaries unrelated to the

Langrenus impact. Such "field" craters are included in these statis-
tics. The relation of these crater sizes to primary crater Langrenus

(D = 136 kin) is given in the table accompanying Fig. 40.
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Fig. 40. Areal Densities (N/kin2) of Specific Size Crater Within
Specific Range of Langrenus and Copernicus

Solid llne refers to Copernicus data where range of 1.0 radius is 47.5
km. Dashed llne refers to Langrenus data where range of 1.0 R is 68
km. Note the variation in cut off diameter for Copernicus number den-
sities; see Fig. 37. The table below lists mean diameters expressed
as a fraction of the primary crater diameters, _= 136 km for Langre-
nus and D = 95 km for Copernicus. Symbols are_he same as those used
in Fig. 3_.

Diameter of Secondary as Ratioed to Primary

"D (l(m) D/D L "D/DC

1.0 0.01 0.01
1.5 0.01 0.02

2.1 0.02 0.02
2.9 0.02 0.03
4.2 0.03 0.04
5.9 O.04 0.06
8.3 0.06 0.09
11.8 0.09 0.12
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diameters 0.01D at a range of 2 R to 3 R from the primary's center

(see also Gault et al., 1975). Numerical density calculations imply

that degraded craters of the smallest measured diameter are most com-

mon well outside the continuous ejecta blanket, at ranges greater than

2.5 R. Inside that range, slightly larger but still degraded craters

are most abundant.

Secondary Craterlng by Lunar Basins

Secondaries of lunar basins have lower scaled sizes and ranges

than those of large lunar craters; this factor is partly dependent on

the basin ring chosen to represent the crater's diameter (see Wilhelms

et al., 1977). Studies of Orientale show that fresh secondaries of

sizes 0.01 to 0.02 times the basin's outer scarp-dlameter contribute

significant coverage at ranges of 2 to 3.2 times the radius of this

scarp (Woronow et al., 1979). Smaller secondaries (above the 7 km

limit of the LPL catalogue) contribute marginally detectable coverage

within that range, and secondaries larger than 0.02 D are insignifi-

cant at ranges beyond 3.2 R _ee also Wilhelms et al., 1977, and

Allen, 1979).

When scaled to the Altal Scarp of Nectarls (Table 7), the

range of significant bombardment by Nectarian secondaries of scaled

size II to 19 km in diameter extends from 890 km to 1390 km, encom-

passing,much of the northern pre-lmbrian plains. As noted in Chapter

2, Wilhelms (1976b) has identified probable secondaries of Nectaris in
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Table 7: Scaled Secondary Diameters and Ranges for
Orientale and Nectaris Basins

Parameter Basin Rin_ Values in Kilometers

NI N2 N3 Ol 02 03

D * 400 600 870 480 620 940
P

D = 0.01 D 4.0 6.0 8.7 4.8 6.2 9.4
s p

D = 0.03 D 12.0 18.0 26.1 14.4 18.6 28.2
s p

D = 0.04 D 16.0 24.0 34.8 19.2 24.8 37.6
s p
1.5 R 300 450 652.5 360 465 705

3.0 R 600 900 1305 720 930 1410

4.0 R 800 1200 1740 960 1240 1880

* Ring diameters from Wilhelms, Hodges, and Pike, 1977

D = Diameter of primary; R = Radius of primary
P

Ds = Diameter of secondary

N = Nectaris; 0 = Orientale
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this region. The shallow, degraded secondary craters closer to the

basin rim may be more easily embayed by subsequent deposits than the

fresher, deeper secondaries at greater ranges. These results suggest

that Nectaris' secondaries should be apparent in the LPL statistical

data, especially at ranges of 2R to 3R from the basin center. Second-

aries are numerous south and southeast of the basin. The Janssen

Formation extends 2.7 RA from Nectaris' center; Rheita Valley (formed

by Nectaris' secondaries) extends 1.3 R to 2.7 R. (The plp exposures

begin at 1.6 R.)

The magnitude of coverage by secondaries of Imbrium and

0rientale, averaged over the nearside lunar surface, reaches 1.0% and

0.5% respectively, nearly 2 to 5 times greater than coverage of

Imbrian-age primaries (Wilhelms et al., 1978; see Fig. 41). The

resulting population of 5-15 km Imbrian-age craters is dominated by

basin secondaries (Fig. 42).

Wilhelms has recently noted (1980) that basin morphology is

often irregular because of oblique impact of the projectile_ Nectaris

may be such an example. The ejecta distribution and secondary distri-

bution visible today (the Janssen Formation and the Rheita Valley, for

instance) are indeed surficially asymmetric, indicating an impact from

the southwest. This has some serious implications, some of which are

related to the Zagut degradation problem. If the region now occupied

by the pitted plains southwest of the basin is in the forbidden zone
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uprange of the trajectory, it may have been spared substantial amounts

of both continuous and discontinuous ejecta (Gault and Wedekind,

1978). The pre-lmbrian pitted plains may not embay a great thickness

of the ballistically emplaced continuous deposits of Nectaris (the plj

unit), as Scott (1972) had concluded. On the other hand, if these

deposits are embayed by the pre-lmbrian terra and the pitted plains,

there is less reason to conclude that the deposits are asymmetric, and

the impact oblique.

Secondary Cratering on Mercury

Secondary cratering on Mercury differs from that on the Moon

in the following ways: (I) Range of continuous and discontinuous

deposits is less on Mercury (due to its higher gravity, Gault et al.,

1975); (2) secondaries reach a larger size relative to the primary

crater (this study); and (3) secondaries are better preserved (Scott,

1977; Trask, 1976a,b).

Mercury's secondaries are often superposed on the continuous

ejecta blanket and so closely spaced that they form broad, radial

troughs; both effects may result, in part, from high ejection angles.

Higher impact velocities, which cause ejection velocities of debris to

be 50% higher on Mercury than on the Moon (Scott, 1977), and higher

ejection angles contribute to preservation of secondary craters on

Mercury. With greater energy and a steeper descent, the ejected mass

produces a larger and deeper secondary, which is less easily degraded

than its lunar counterpart.
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Fig. 41. Crater Coverage of Lunar Surface From
Wilhelms et al. (1978) Data

Primary craters of different time stratlgraphlc ages were sampled by
Wilhelms et al. (1978) using specific criteria to exclu de possible

secondaries. Four age groups are represented by statistics for craters

greater than 20 km: Copernican and Eratosthenlan (C + E), Imbrlan (I),

Nectarlan (N), and Pre-Nectarlan (pN), from youngest to oldest re-
spectively. Younger primaries and secondaries are included in statis-

tics from 5 - 20 km over a limited area of the nearslde. The data

were rebinned and are presented in the areal coverage format above.

Note the high coverage by secondaries of Imbrlum (Isc) and Orlentale
(Isco) on the lunar nearslde. Further discussion in Section 3 of

this Chapter.
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Fig. 42. Total Crater Coverage of Lunar Surface
Using Wilhelms et al. (1978) Data

Large primaries include Copernican through pre-Nectarian craters;

small (5-20 kin) craters include secondaries and primaries from Coper-
nican to Imbrian systems. Gap between total primary curve and total

small crater curve may be due to Nectarian and pre-Nectarian primaries
(and secondaries) less than 20 km in diameter. Wilhelms et al. 's

data show an apparent "secondary hump" for lunar craters of I0 - 15
km diameter.
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The secondary crater's eJecta is also constrained. The con-

centration of tertiary ejecta may reduce the distribution of locally

excavated, plalns-forming material (Oberbeek, 1975). The fresh, large

craters Mozart and Ts'ai Wen-chi, for example, do not appear to pro-

duce plains material around their periphery.

Maximum areal density of secondaries (Chapter 2) occurs at 2.4

R to 2.5 R from the primary crater center (Mouginis-Mark, 1978; this

distance is about .12 R from the edge of the continuous ejecta

blanket). Gault et al. (1975) show that the mercurian range (2R to 3R)

is less than the analogous distance for lunar craters, 2.5 R to 4R.

The enhanced destructive effects of this concentration of ejecta on

Mercury is offset, over a large area, by the ejecta's more limited

extent (Malin and Dzurisin, 1977; Woronow, 1977 a,c). The resurfacing

potentials of mercurian craters and basins do not appear to be as

great as those of lunar craters and basins. Small pre-impact struc-

tures are noted even under the concentrated continuous eJecta blankets

of larger craters and basins, such as Caloris, Bach, and the basin

under Hitomaro (Strom et al., 1978).

In a preliminary survey of secondary craters on Mercury, the

largest secondaries were found to be 0.07-0.05 times the primary cra-

ter diameter; some are as large as 0.I D. Smaller secondaries are, of

course, more common. In other respects, they are like lunar second-

aries: they overlap downrange, have weak interference ridges
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(herringbone patterns, Oberbeck and Morrison, 1974; and Oberbeck and

Aggarwal, 1977), and become deeper downrange (Mouglnis-Mark, 1978; see

Fig. 43). The maximum range of large secondaries is 5 R from the pri-

mary's center. Linear troughs radial to large basins extend to

distances of 3R to 4R from the basin's center. Close to the basin rim,

some troughs appear to be filled by continuous ejecta deposits,

The rayed craters form exceptions to those comments. They have

remarkably large, "smooth," continuous ejecta blankets which extend 3R

to 5R from the primary center (as compared to 1.88 R for normal fresh

craters studied by Gault et al., 1975). Their ejecta, however, is not

sufficient to fill adjacent older craters of half their size. High

resolution images of Mozart suggest that rays are concentrations of

unresolved secondary craters, extending outward tens of diameters. A

high velocity, low angle ejection, as suggested by Cintala (1979 a,b),

from rayed craters, e.g. at i0° from the horizontal and at 2.25

km/sec, will project material_1000 km (from Fig. 6b in Strom, 1979).

Allen (1977) argues that rays include primary ejecta, as well as ter-

tiary material. The diameter-frequency distribution of the rayed

craters on Mercury and the Moon suggest that they are a high energy

subset of the fresh crater population (the post-Caloris craters on

Mercury, and the C1 craters of the Moon).

Discussion of Additonal Studies of Secondary Cratering

Opinions on the contribution of secondary cratering to a pri-

mary population vary markedly but usually reflect an assessment (and
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Fig. 43. Secondary Craters from Kuiper Superposed on Rim
of Fresh "Transition-Size" Crater

Secondaries from Kuiper (along left edge of photo) are arranged in clus-

ters and radial chains, overlap downrange, and have discernible herring-

bone patterns. Interference ridges (arrows) occur downrange of the

secondaries. High albedo material of the ray is apparently associated

with secondary cratering. The largest Kuiper secondaries visible here

are 2.5 to 3.3 km diameter, or 0.04 - 0.05 times Kuiper's diameter of
60 km.

This high resolution photo of Fig. 14a shows the incipient peak ring

shelf and the inner depression. The outer shelf materials, mapped as

P2 plains, are more rugged and cratered than the P1 deposits of the

central depression. Both units, however, are cratered by secondaries

of the C1 crater Kuiper.

FDS 27474. North at top. The flat floored crater at top right is
18 km in diameter.
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avoidance) of local contributions. Gault (1970) calculates that

secondary cratering from a hypothesized impact flux would not be sub-

stantial until after one billion years of bombardment, i.e. after

substantial numbers of larger bodies had impacted the surface. The

Nectarian age of the pre-lmbrian plains may represent 4.2 to 3.9 b.y.

of bombardment, but only 0.2 to 0.6 b,y. in that interval spanning the

heaviest impact flux.

Although Schultz et al. (1977) conclude that effects on crater

distributions due to secondaries are minimal and only local, they too

avoid secondary material. Similar diameter-density distributions for

small craters (5-500 m) were found in highland and mare areas, showing

a dependence on regolith depth and not on additions of secondary cra-

ters. The opposing viewpoint is held by Wilhelms: as shown in Chapter 2

above, additions of basin secondaries appear to overwhelm the primary

crater population from 5 km to at least 20 km diameter (Wilhelms,

1976b, 1979; Wilhelms et al., 1977, 1978).

Studies of Langrenus and Copernicus suggest that the addition

of secondaries is noticeable in the mare, where background coverage is

0.1%. If the ratio of secondaries to a primary is the same in the

highlands as in the mare, one expects greater numbers of secondaries

in the heavily cratered highlands. They may contribute to the 2% to 4%

"background" coverage noted in the highland areas. More substantial

coverage from secondaries of 0.03 D may elevate P(D) in the vicinity
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of large fresh craters' Such local contributions may be illustrated in

the lunar (and mercurian) selected area statistics.

How significant is secondary cratering on Mercury? Trask

(1976a, p. 473) notes that "The observed population of larger craters

and basins 50 km in diameter and larger yield a background density 0f

secondaries slightly below those shown in Fig. I." His statistics for

the southern polar region are illustrated by Strom (1977) reproduced

in Fig. 49 of the next section. The "hump" in the mercurlan curve at

15 km diameter has thus been interpreted as partly due to secondary

craters from primaries in the heavily cratered terrain which have

diameters I0 to 20 times larger than the secondaries. Recent statis-

tics of W oronow_ Strom_ and Gurnls (1980) show no "hump." However,

the studies completed here suggest that there are significant contri-

butions of degraded craters below 10-15 km which appear to be

secondaries. Watklns' (1980) statistics of the young craters of the

Caloris plains also show a minor increase in crater density at 15 km,

but few "primary-size" (source) craters.

CraterlnKHistoriesof the Lunar IntercraterPlains

Hypothesesadvanced for the origin of the intercraterplains

of the lunar nearsideare similar to those proposed for the inter-

crater plains of Mercury. The positionof the lunar unit, far from the

youngestknown basins, suggestsa primitive surface (Oberbecket al.,

1977). Yet proximityto Nectarls argues for an origin throughdeposi-

tion of ballisticallyemplacedejecta (Howardet al., 1974;Wilhelms,
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1976b). Finally,morphologic similarities to volcanicplains, plus

mineralogicalevidence in other regionsof the Moon, have revivedthe

pre-mare volcanismhypothesis (e.g. Strom, 1977).

Crateringstudieswere dividedinto three programs.The first

studiesdiameter/densitydistributionsof craters greater than 1-3 km

in diameter for selectedplains and terra units of the intercrater

region.A second study utilizedexistingdiameterand degradationdata

(Wood and Andersson, 1978a)for craters over 7 km in four regions

separatedby the 45° S latitudeand the centralmeridian.The third

study entaileddividing three quadrantsexaminedby Strom (1977)into

heavily cratered and non-heavilycrateredareas, similarto plains and

crater divisions on Mercury, and computingdiameter-degradationsta-

tisticsfor those areas.

Crater Statistics of Selected Lunar Areas

The first program of cratering studies presents statistical

data on the pre-lmbrian pitted plains (pip) and adjacent units for

five areas located generally outside the large, overlapping crater

clusters (Fig. 44). Data on diameter, degradation class, floor diam-

eter, shadow length, and presence in a chain or cluster were

collected for craters of 1-3 km diameter and greater, thus extending

the 7 km diameter limit accessible with the LPL Catalog of Lunar

Craters (Wood and Andersson, 1978a).
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The individualpre-lmbrianpitted plains units were found to

differ little in densitydistribution from the other pre-Imbrian to

Imbrian-age surfacesstudied.These surfacesincludepre-Imbrianterra

near Spallanzani, pre-Imbrian ridged terra and pre-Imbrian smooth

terra near Ascelpi, Imbriansmooth plains east of Mutus in the "flow

lobe" area, and Imbrian crateredplains. All are included in the

Pre-ImbrianPlains of Wilhelms and McCauley (1971).Their area plots

are commonlyV-shaped_with peaks in coveragefor cratersof diameter

1.5 km to 2.5 km and 14 km to 28 km. Areal densities in the pitted

plains were usuallygreaterthan that of other units for craters of

diameters1-5 km_ but lower than other units for craters greaterthan

I0 km.

When combined_ the southern highland selected regions' area

plot (Fig. 45_ with key to symbols,Fig. 46) shows constantcoverage

between 3.5 - 7 km, with peaks at _ equal to 3 km and 17 km. The

averageslope of this plot is representedby an index of -2.7. The

non-pittedplains (non-pip)units show a broad peak in coverage from

diametersof i0 to 28 km. The area plot (Fig.47) is nearly identical

to the combined southernhighlandsbecausenon-pipunits comprisemost

of the selected areas.Degraded craterscontribute heavily to the

small craterpopulation;C3 cratersdominateover the entire diameter

range. The pitted plains area plot (Fig. 48) is roughly horizontalat

a high level of coverage.(Its constant coverage may have resulted

from averagingtwo out-of-phaseV-shapedplots.)
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Fig. 44. Locationsof SelectedRegionsand Imbrianand Pre-lmbrian
Plains of Lunar SouthernHighlandsAdapted From

Wilhelms and McCauley (1971)

Black regions indicate Imbrian plains (Ip) units; stippled regions are

pre-lmbrlan (pitted) plains (pip) as mapped by Wilhelms and McCauley
(1971). Outlined areas selected for crater statistical studies are:

Area I - Lockyer G; Area 2 - Spallanzanl; Area 3 - Ascelpl; Area 4 -
Mutus Flow Lobe; Area 5 - Jacobi. See also Fig. 29. Mare Nectaris
is located near top right.
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Fig. 45. Crater Coverage of Selected Regions in the
Lunar Southern Highlands

Key to symbols given in the following figure. Data given in Appendix
D, Table D6.
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Key to Symbols
on Cumulative and Area Rots

LPL Crater Symbols
Class

C I Freshest + , +

C2 • .....

C3 • ........... •

C4 X---------X

C5 Most Degraded A"-- "B'A

Cs+ C5, a--.. --A

Total All classes, +-.Io" _1- -I_Total Hilly and lineated ---
terrain

Total All classes except _

C5,

Post Caloris C I +C 2 V ..... V

Caloris C5 • ........... •

Pre Caloris C4+ C5 A----A

c4+c5+cs, A..... •

Flg. 46. Key to Symbols on Cumulative and Area Plots

These symbols are used in all subsequent plots of crater statistics of
the mercurlan and lunar surfaces.
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Data presented include pIt units of Areas 1 and 2, all units of Areas
3, 4, and 5; see Table DB of Appendix D. (Symbols in Fig. 46.)
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Statistics of pIp units of Areas 1 and 2 are presented; see Table D7 of
Appendix D. Poor statistics at large diameters are a result of the
smaller area sampled and the exclusion of large craters from the pitted
plains (pIp) unit of Scott (1972).
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The magnitude of coverage at small diameters on these plots

may not be unusual. Area plots of crater statistics of central high-

land plains (Ip unit; statistical data in Greeley and Gault, 1970)

show a constant coverage at comparable magnitudes, P(D) = 4% - 6% from

diameters of 14 meters to I km. However, the combined area coverage by

craters of diameters of 7 km to 30 km exceeds values determined by

Whitaker and Strom (1976) and Strom (1977) for the central lunar

highlands (see Fig. 49).

The principal enigmatic feature of the crater distributions in

these selected areas, also noted by Mutch and Saunders (1972) and

Young (1975), is that small-crater densities on the plains units are

higher than on the terra units. The older terra are not able to

retain, or do not have, a great abundance of small craters. Even C1

coverage on the plains exceeds that on the non-pip units, although

both units are nearly equal in average age and both are emplaced prior

to the CI craters. Another major characteristic of the pre-lmbrlan

plains is precisely their lack of large craters; the size of the

"larger" craters may unfortunately depend on the observer's or

mapper's definition.

The nearly zero slopes of the combined and pitted plains area

plots do not suggest losses of craters by volcanism, ballistic depo-

sition, or tectonic destruction (Sec. 2). Instead, the statistics of
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Fig. 49. Crater Coverage of Planetary Surfaces From Strom (1977)

Lunar curve plotted by Strom (1977) displays highland statistics of 7
150 km craters in Clavius Region from the LPL Catalog (Wood and Anders
son, 1978a). Larger craters and basins were sampled over the entire
lunar surface. Note that P(D) values over the 7-30 km size range are
much less than those of selected regions (Fig. 45, 47, 48). These data
are discussed later in this section.
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selected areas suggest that secondary cratering and differential pres-

ervation determine the V-shaped plot. If volcanism and resurfacing

had occurred, small-crater densities have been subsequently increased

by either of the two above mechanisms (secondary cratering and pres-

ervation on a consolidated surface). Although the diameters sampled

here may be too large to apply theories of differential preservation

(Schultz et al., 1977), the V-shaped plot may reflect a deep unconsol-

idated layer sandwiched between two consolidated layers. The lower

layer may be bedrock, and the upper layer, the pitted plains surface.

Nectarls eJecta and the megaregollth may comprise the middle layer

(Aggarwal and Oberbeck, 1979; Thompson et al., 1979; Hartmann, 1973;

Oberbeck and Quaide, 1968; and Young, 1975).

If the relative peaks in the area plots are due to second-

aries, one expects source craters of 25 to 30 times thedlameter of

craters at the peak in coverage; 30 km to 90 km primaries and a

primary of about 510 km diameter. The large craters of the southern

highlands and the Nectaris basin are the probable sources of these

secondary craters. The major factors affecting any secondary popula-

tion in any locality are the size, age and distance of the primary,

and the age of the surrounding surface (the intercrater plains) rela-

tive to the primary crater. These factors will be further assessed in

the large-crater statistics of the next section.

r
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Crater Statistics of Sectors of the Southern Highlands

In a second cratering study, crater statistics from the LPL

Catalog (Wood and Andersson, 1978a) were compiled in four general

areas divided by the central meridian and latitude 45° S (Fig. 50).

Northern and southern extents were 24 ° S to 75° S and east to 40°- 60°

E, west to 30°- 50_ The regions are labelled C, D, S, and T starting

clockwise from the northwest quadrant. Region S encloses most of the

pre-lmbrian plains units, "D012" corresponds to the Werner area of

Strom (1977), and "T012" corresponds to his region about Clavius.

(Region "C01" includes Tycho.)

The percent coverage of crater material can be computed by

summing the P(D) values for all diameter bins over a certain set of

diameters. The cumulative coverage by craters greater than 40 km diam-

eter was depressed in the areas dominated by pre-lmbrian plains

(S123) relative to regions around Clavlus (T012) to the west and

Werner (D123) to the north. Large craters cover from 20% to 32% of the

intercrater regions, compared to 46% to 53% in the peripheral areas,

including an area Just east of the central meridian from Licetus to

Slmpelius (SO). Coverage by craters of 7-40 km diameter is slightly

larger for the intercrater areas (26%) relative to surrounding zones

(18% - 22%). The comparison of cumulative crater coverage confirms

one's visual impression that the intercrater areas have fewer large

(40 km and greater) craters and an abundance of smaller craters.
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Fig. 50. Locations of Southern Highlands Sectors C, D, S, and T

Orthographic Eta-Xi projection of lunar nearside adapted from Wood and
Andersson (1978a). Informal sector names are: C01 "Tycho," D012 "Wer-

net," S123 "Cuvier" (pre-lmbrian plains area), SO "Jacobi," and T012
"Clavius."
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Differencesin the area plots of crater distributionson these

surfaces (Fig. 51-55) are quite apparent; their interpretations,

however, are not. Slopes of area plots of the C01, D012, and T012

quadrantsagree with the curves of Strom (1977)for nearly equivalent

regions (see also composite in Fig. 56). Within the Claviusarea the

densityof small 7-20 km cratersincreaseswestward;presumably these

could be Orientale or Humorumsecondaries.No such systematic rise

occurs eastwardtoward Nectaris in the S quadrant,althoughdensities

of 14 to 28 km cratersare higher than those of the Claviusarea. A

more positively sloped plot (index a = -1.6 from 12 to 56 km) was

determinedfor the SO sector. In this region, densities of larger

craters33-80 km were higher than those of the T012 region;small

craterswere abundant,but less so than the S123 region to the east.

Major exposuresof pre-Imbrlanplains occur in the S123 sector.

Strom's (1977)analysis of the intercrater plains shows that

theirmode of degradationis similarto that of volcanicfloodingand

unlike that of areas dominated by Cayley-like deposits on the

periphery of basins (Sec. 2). The regionwhich may be affected by

volcanic floodingis in the southernmostpart of the S quadrant,nearly

out of range of the Nectarls ejecta. This area may not be completely

analogous to the Intercrater--pIpunits studiedhere. However, the

characteristicsof volcanic flooding (steep slopes and a lack of C5

craterson the area plot) may be applicable to the S123 region if
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Statistics of region cited by Strom (1977) as representative of south
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from the Imbrlum impact.
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Increased coverage by large ( ~ 20 km) degraded craters, increased
numbers of 10-15 km Imbrian craters, and deficiencies of 7-10 km
craters relative to the T012 area may indicate degradation, resurfac
ing, and burial by Imbrian impact debris and Cayley plains material.
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Pre-Imbrian Plains are most abundant in this sector. Note the steeper
area plot, dominance of C3 and C2 craters, absence of C5 craters, and
deficiency of 7-10 km craters relative to the Clavius sector statis~

tics. Differences between the S123 statistics and those of Werner in
dicate a different mode of crater degradation and resurfacing, possi
bly burial by volcanic flows which leave rims of large craters intact.
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This sector lies between 5123 and T012 and exhibits statistics some
what intermediate to those of its neighbors. Note however, the area
plot's steep slope and the apparently greater coverage by 33 to 80 km
craters relative to the Clavius and Cuvier regions.
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11-19 km secondaries from Nectaris have been added. The abundance of

large degraded craters formed by a nearby basin impact, seen in the C

and D blocks, is not obvious in the plains region, S123 (Fig. 56). The

absence of large degraded craters may instead indicate that the area

was once affected by a direct basin impact in pre-Nectarian times,

(Sec. 2; see also Wilhelms et al., 1979).

Oberbeck et al. (1977) argue that the apparent deficiency of

small craters with respect to large ones (or the "increase in the

frequency distribution slopes," Oberbeck and Aggarwal, 1977) is not

due to erasure of small craters by flooding, but is an intrinsic prop"

erty of the bombarding population. They claim that one of the most

primitive areas of the Moon (based on its distance from young basins)

is the region near the central meridian, the area designated SO in

this study. By removing obvious and suspected basin secondaries from

crater statistics in the pre-lmbrlan plaids region (S123), they derive

the equivalent of a steeper area plot, as in SO. In other words, they

reject pre-mare highland volcanism as the mechanism which removed the

small 650 km diameter craters from the southern highlands.

Geologic analysis of the southern highlands indicated that the

pre-lmbrian plains formed a P3 surface emplaced in mid to late Class 3

time, and that the Nectaris event occurred in early C3 time If so,

the originally freshest secondaries of Nectarls may be C3 or older. If

the P3 plains embayed the eJecta blankets of C3 craters, secondary

fields of those craters may have been lost, but rims of Ii to 19 km
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secondariesmay not have been buried. This impliesthat many of the

observedsmall-crater densitiesmust consistof secondaries of C1 and

C2 craters. C3 secondariesmay survivevolcanicburial if they were

emplaced in elevated regions (on crater rims); theywould not survive

substantialballisticdepositionin those areas. Since Cl and C2 cra-

ters greaterthan 40 km only cover 0.3% to 3% of the intercraterS123

region,it is not certainwhether they are abundantenough to produce

the 5% coverageby I - 4 km craters.

Crater Statisticson DividedSectors

In a third phase of crateringanalysesof the southernhigh-

lands, three regionsaround Manzinus,Cuvier,and Werner (Strom,1977)

were divided into heavilycratered and non-heavily cratered areas.

Diameter and degradationclass data were collectedfor large ( _ 7 km)

craters.The divisioninto heavily (HC) and non-heavily(NHC) cratered

areas is acknowledgedas artificialand is noted in the large transi-

tion diameterwhere coverageof large craterson the HC regionbegins

to exceed that of the NHC regions.When statistics of all three prov-

inces are combined (Figs. 57 and 58), one notes that small crater

densities for NHC regions exceed those of the HC regions to 20 km

diameter. Class 3 craters dominatethroughout all diameter ranges.

Class I cratershave similardensitieson HC and NHC areas, indicating

that plains emplacement occurred prior to C1 time. The transition

diameter for the Class 5 cratersis larger than that of other classes,
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perhaps because of the proximity weathering effects within the clus-

ters of large craters and the greater "visibility" of severely

degraded craters on the plains. Survival of C5 craters on either

terrain is biased toward higher diameters.

Major differences among crater abundances on the Werner,

Cuvler,and Manzinus regions occur for degraded Class 4 and 5 craters.

As noted by Strom (1977), the Manzlnus area shows a severe lack of C5

craters on both HC and NHC units when compared to Werner. Fresh cra-

ters of i0 to 40 km diameter are more abundant on the plains (NHC) of

the Werner areas, than on the plains of Cuvier regions relative to

their HC populations. Imbrium secondaries are expected in the Werner

area and the northern part of the Cuvier region. Fresh craters are

nearly equally abundant on both divisions of the Manzinus region. The

Werner area has a higher abundance of large degraded C5 craters than

either Manzinus or Cuvier; C3 craters make up less of its total crater

density and are not as depleted at lower diameters on its HC unit

compared to other regions.

This analysis suggests that volcanic processes affected the

Manzlnus region, which includes the southern quarter of the S block,

and generally supports Strom's hypothesis that the style of degrada-

tion in the plains units is unlike the degradation in areas near

recent basin impacts.
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Discussion

The change in lunar crater production with time is approached

similarly by Strom (1977) and Wilhelms et al. (1978) using different

age classifications of craters. Strom (1977) employs the correlation

of a crater's degradation class with general age, using crater dis-

tributions on marker horizons (e.g. Orientale eJecta blanket, or the

mare surface) to tie degradation class to absolute ages. Fig. 59a and

Fig. 60a reproduce his analyses of lunar and mercurian populations.

Fig. 59a from Strom (1977) presents area plots for the highlands, the

total population,and that of each class, I through 5. From Tables 3

and 4 of the preceding chapter, one notes that Class 1 craters are

Imbrium age and younger, Class 2 later pre-lmbrian to Imbrian, Class

3, late pre-lmbrlan, Class 4, middle pre-lmbrian, and Class 5 early

pre-lmbrian (Wood, 1979; Wood and Andersson, 1978a). A change occurs

in the populations, from a peaked distribution weighting coverage by

very large craters in earliest times, to a horizontally distributed

(constant coverage with diameter) population appearing in C2 time

(Whitaker and Strom, 1976).

Wilhelms et al. (1978) present crater statistics for primary

craters greater than 20 km in diameter as a function of geologic age.

By attempting removal of secondaries from the data and avoidance of

all confusing resurfacing episodes (proximity weathering, volcanic

flooding), the density of primary craters of Copernican through

201



Fig. 59. Comparison of Crater Coverage of Lunar Highlands

Using Degradation Classes and Time Stratigraphic Systems

Area plot of lunar highland data reprinted from Strom (1977) on left

(Fig. 59a) and adapted from Wilhelms et al. (1978) on right (Fig. 59b).
Raw data from Strom (1977 ; Fig. 49) has been smoothed out and broken

into Classes 1-5 and post-mare craters. Wilhelms et al.'s data is

plotted in P(D) format (Fig. 41,42), divided into time stratigraphic

units listed in Fig. 41. Wilhelms et al.'s data include selected pri-
maries and secondaries; Strom's data include all craters larger than 7

km on the nearside highlands (see text).
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Fig. 60. Comparison of Accumulated Crater Coverage on Surfaces of
Different Age on the Moon With Mars and Mercury

Crater densities on different planetary surfaces (from Strom, 1977;

Fig. 60a, left) are compared to those on surfaces of different age on

the Moon (from Wilhelms et al., 1978; Fig. 60b, right). P(D) values

shown in Fig. 59b have been summed up to the surface "age," e.g., the

"N" surface includes coverage by Nectarlan (N), Imbrian (I), and Co-
pemican and Eratosthenian (C + E) craters. Imbrian and Orientale

secondary craters are included in curves marked with arrows to Isc

and Isco, respectively. Crater densities of Mercury's south polar

regions from Trask's data in Strom (1977) show a bump at 10-15 km

which may be due to abundant secondary craters.
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pre-Nectarlanage was determined. Densitiesof smaller craters, 5-20

km diameterprimariesof Imbrlanto Copernican age and secondariesof

Imbriumand Orlentale, complete their observations. Area plots of

their results (Figs.41, 42 and 59b) are strikingly similarto Strom's

(1977) degradation class area plots. The correlationof geologic age

with degradationclass is clearlyseen. The more positivelysloped age

profilesof Wilhelms et al.'s data are in part due to the greater

degradation with age for smaller craters. Strom's Class 3 plot (late

pre-Imbrlan to Imbrian) may include part of Wilhelms et al.'s

Nectarfanpopulationat large diameters and part of the Imbrlanpopu-

lation at smallerdiameters,thus making the curve appear less steep.

Both authorsagree that the change in slze-frequency distri-

bution of the crater population indicateseither a change in the

slze-frequency distribution of the bombarding population or the

shiftingdominanceof two differentgroups of impactingobjects, the

older dominated by large objectswhich produce 50-150 km diameter

craters and basins over a period of .4 to .6 aeons, and a younger

group of less numerous objectswhich are smaller, producingconstant

coverage by craters,over a time span of 3.9 ae. (Whltakerand Strom,

1976;Wilhelms et al., 1978).

Basin secondariesmay be a large part of the small craterpopu-

lation if Wilhelms et al.'s data are correct.

Fig. 60 compares the crater densitiesin the four lunar

time-stratlgraphicperiods (Wilhelmset al., 1978; Fig. 60b) with the
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densitieson variousplanetary surfaces (Strom,1977; Figs. 60a and

49). Malin (1976a)suggests that the surfacesof these planetsbegan

to record impactsat differenttimes in their thermalhistory.The two

graphs imply that the martianhighlandshave recordeda cumulative

Nectarlan population, while the mercurlan surface has recorded a

pre-Nectarian population,repletewith "secondaryhump" at about 15

km. Similaritiesoccurringin the youngerpopulationsare displayed in

Fig. 60a (Strom,1977).Revised statistics of Woronow, Strom, and

Gurnis (1980)show even greatersimilarities in magnitudeand slope of

the total craterpopulations,suggestingthat the highlandsurfaces of

all three planets solidifiedat the same time and record the same

impactingpopulation;this heavy bombardmentended about 4.0 b.y. ago

on all bodies. Because different fluxes could bombard each planet,

and their surfacessolidifyat different times, and becauseno abso-

lute ages are availablefor Mercury or Mars, it may be prematureto

speculatethat the coincidenceof area plot statisticsimpliessimilar

surface ages and surface bombardments(Chapman,1976).The next sec-

tion details the mercurlan crater statistics compiled in this

research;relativeand absolute ages of the planetarysurfaces are

discussedin Chapter 7.

Summary of Lunar Crater Statistics

The data generally support the hypothesis that the lunar

intercrater plains are an old volcanic surface, and that the high
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densitiesof small craters are probably secondaries. There are some

ambiguities.If the lunar surfaceis partitionedinto regions llke

Strom's (1977)_the data strongly imply that volcanic processesformed

the intercrater plains of the Manzinus area, an area south of

Nectaris,and out of range of many of its secondaries.Other regional

divisions(e.g.,S123, SO) indicateadditionof Nectarian secondaries,

and slightvolcanic resurfacingwith respectto the Clavlus area. In

supportof an origin not related to depositionof basin ejecta and

basin-destruction, there is no overabundance of C4 and C5 cratersin

the lunar Intercraterregions. The S123 region is more representative

of the lunar intercrater plains as definedby Trask and Guest (1975)

than is the Manzinus area. Small crater statistics do not indicate

substantiallosses of small craters;to the contrary,they indicate

additionsdue to secondaries of moderate-sizecraters.Differential

preservationwithin more consolidated plains units may supporta vol-

canic origin.

On a regional scale, the lunar intercraterplains lack craters

of 40 km diameterand larger_ indicating possible reductionof crater

densitiesby an ancientimpact in this area. Such an event would reset

the crateringrecord and reduce the coverage relative to an older

surface (notnecessarilythe ClaviusQuadranglef).

Thus the cratering record of this region indicatesthat a

variety of processesmay have affectedit. Volcanismis likely to have
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reduced small to Intermedlate-slze crater densities, but subsequent

cratering produced many secondaries less than about 1/25-th the size

of the primaries. The Nectaris impact has injected larger (8-18 km)

secondaries into the region. Consolidated materials may better pre-

serve small craters in the plains. An ancient basin-forming impact may

have reduced all crater densities in the areas i.e., resurfaced the

area, prior to the Nectaris event or volcanic flooding of the surface.

Craterin_ Histories of the Intercrater Plains of Mercury

The crater statistics of mercurian surfaces will be compared

to the various models of sections 2 and 3 and to those behaviors dis-

played by the lunar crater statistics of the preceding section. The

selected regions are described below. Statistical data of the geologic

map are briefly summarized in a later section. The data, as will be

seen, are remarkably similar to selected area and regional statistics

of the lunar southern highlands.

Statistics of Selected Areas

Description. A pervasive dichotomy on the mercurian surface

is that between clusters of large craters and the intercrater plains.

Four regions of overlapping large craters, designated heavily cratered

areas (HCA), and four adjacent regions of intercrater plains (ICP)

were selected for crater density studies. Tables in Appendix D provide

imagery data and the crater statistics for each area. Fig. 61 illus-

trates the area boundaries.
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Area 1 (HCA i) contains the crater S_tatsu and its neighbors.

Area 2 (HCA 2) consists of the Andal crater complex. Areas 5 and 5'

(HCA 5 and HCA 5') include craters east and west of Kuiper and

Murasaki. Area 6 + 6' (HCA 66') encloses the crater Lu Hsun and large

craters east of it. The lower diameter limit within these regions

varies from 2.5 km to 3.5 km; resolution (2.2 TV lines) is usually one

half the limiting crater size ("cut-off diameter"), about 1.4 km.

The intercrater areas sampled include the plains east (DSE)

and west (DSW) of Discovery Scarp, the area east of the Andal complex

(ICP 2), and the area east of the Lu Hsun complex (ICP 6). Craters

greater than 2 km diameter were counted east and west of Discovery

Scarp to detect any relative age variation across the scarp trace. The

ICP 2 area was divided into eight subsections roughly corresponding to

mapped _ plains (Fig. 63); statistics were collected on each area. Cra-

ters of 2-2.4 km diameter and greater were sampled. Resolution varied

from 0.8 km in the center of the Discovery Scarp mosaic (Fig. 8) to

1.4 km elsewhere.

Heavily Cratered Area Statistics. Individual and combined

heavily cratered areas display a typical V-shaped area plot. As shown

in Fig. 62, the area plot of combined HCA's is much llke an area plot

of lunar selected areas displaced to higher diameters. Equally high

coverage occurs for craters less than I0 km or greater than 40 to 56

km in diameter. Over diameters of 20 to 160 km, the slope of the HCA
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combinedplot is representedby a slope index of -2.0. The opposite

leg of the V, over diametersof 7 to 20 km, is representedby slope

index of -5.0.

The "description"of this curve or the intercratercurve may

bias its interpretation. One may cite a decreasein production, or

increased obliteration,of 14 to 40 km craters in the neck of the V.

Or, one may postulatean additionof small Craters (D•20 km) to the

upwardly slopingcurve of D> 20 km. Interpretationof the first sug-

gests a bimodal productionpopulation, or a horizontallydistributed

one which sufferedunique destructionof 14 to 40 km craters. The

latter hypothesis is not likely. The second description suggestsa

lunar-llke production population to which excess numbersof small

craters, very likely secondaries,have been added.Whether the large

crater distribution representsthe bombardingpopulationor a crater

population previously altered by obliteration processes is not

evident.

The major tasks are to distinguishcrater additions and crater

obliterationfrom the productionpopulation.Crater overlap,proximity

weathering, and productionof secondarieswill stronglyaffect crater

statisticswithin a selectedregionwhich is boundedby the continuous

eJectablankets of its craters.The sequenceof events is very impor-

tant, for statistics may be dictatedby the largest, youngest crater

in the cluster.This effect is averagedin the combined HCA plot.

Furthermore,the resurfacingor floodingof large old crater floors is
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equally effective in producing uncratered areas, and to a lesser

extent, in reducing the intermediate size crater population. Many

processes thus will eliminate or severely degrade the smaller

craters--overlap, proximity weathering, ejecta deposition, flooding of

crater floors--but primarily overlap by a large crater is likely to

eliminate the I00 km craters which dominate the clusters. Larger,

basln-slze craters may also be affected by isostatlc equilibrium over

their lifetimes (Schaber et al., 1977).

At large diameters, pre-Calorls impact craters dominate the

lunar-llke crater statistics; the area plot's steep slope is similar

to that of the lunar intercrater region S123. The more abrupt decline

of C3 craters of 14 to 40 km relative to C4 and C5 craters complicates

any interpretation. The decline may simply be due to degradation of

intermediate size C3 craters by larger C3 and C2 craters. Or it may be

a tectonic-type degradation, in which a catastrophic event obliterates

C3 craters, or degrades them to C4 or C5, prior to C2 emplacement. If

P3 age volcanism eliminates craters of 14 to 40 km (as it appears to

do in the Victoria Quadrangle), it should eliminate smaller craters as

well, and be so registered in the statistical data.

The preferred interpretation of the small-crater statistics of

the HCA (and ICP) regions is a contribution by secondary craters.

(Endogenlc craters are rare; only a few collapse pits of 14 km have

been identified.) Individual HCA and ICP regions show up to 6% addi-

tional coverage by craters in chains or clusters typical of
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secondaries.The influx is greatestat 5-7 km diameters. From Section

3, one finds that primariesof the size corresponding to 5-7 km

secondariesare abundant in the HCA regions.Preservation of second-

aries on Mercury, and the formationof degradedsecondariescontribute

to the dominanceof degraded states at 5-14 km. Volcanicplains will

not embay secondaries emplaced on the large craterrims or elevated

plateaus common in the crater clusters.

Are the HCA (and ICP) statistics consistentwith volcanism?

They are not consistentif the volcanism was recent (Class 2 or I),

extensive,and covered older crateredplains (the floor of a C4 basin

for example) within the sampled region.However, the statistics are

consistentwith volcanism if it occurred (I) early in the heavy bom-

bardment, (2) within smallercraters, (3) to very shallowdepths,and

(4) if it was followed by extensive (secondary) cratering, forming

small craters.Again, differentialpreservationof craterson consol-

idated (volcanic) surfaces may enhance the lifetime of small

secondaries and small primaries.Other studies have concludedthat

Mercury's surface, both plains and heavilycrateredregions,is more

consolidatedthan the lunar terra (Cintalaet al., 1977; Pike et al.,

1980).

Are changesin the bombarding populationindicated?A 5imodal

populationof projectiles, very large bodies and much smaller debris,

may characterize the early, heavy bombardmentof the pre-Calorisand
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Caloris eras. Secondaries may contribute to the small crater popula-

tions, but are not responsible for its entirety. Following the Caloris

event--which may have signalled the end of a heavy bombardment--the

projectile population appears to lose its larger members and much of

its smaller debris, thereby leaving a signature of reduced, but nearly

constant, coverage over a broad range of crater diameters.

Intercrater Plains Statistics. The curves of the intercrater

areas are similar in form and magnitude to those of the heavily

cratered areas, but peaks and minima occur at slightly different diam-

eter ranges, due to the general age of the plains surface, proximity

to large primaries, or inclusion of field craters.

The small crater coverage in individual intercrater units

increases slightly with average age of the unit. Lower densities of

small craters occur on ICP 2, dominated by P3 and P2 plains, than on

ICP 6, dominated by P4 and P5 units. Crater coverage east and west of

Discovery Scarp differed little, reaffirming that average relative age

of plains does not change across the scarp, i.e. that it is primarily

a tectonic structure (Strom et al., 1975b). Degradation class coverage

suggests that the western plains consists of older units, consistent

with geologic mapping. Younger plains of the ICP 2 region (Fig. 63)

appear to contain higher densities of very degraded craters. This

puzzling occurrence suggests that some younger surfaces were formed by

shallow burial of older topography. Limited volcanism or sporadic

ballistic deposits may incompletely resurface these areas.
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Fig. 63. Selected Area 2: HCA 2 and rcp 2 in Andal (A) Region

a. Heavily cratered area (HCA 2) is outlined above and illustrated in
Fig. 63b. rcp 2 forms the rest of the photograph area. The
intercrater plains were divided into eight regions shown in the
sketch map. (See Appendix D for statistical data.) Geologic
mapping shows that Region 2 contains mainly P2 materials, Region
4 consists of p3 materials, and Region 6 contains p4 materials.
Schubert lies immediately to the west.

FDS 27395. North to left, as shown. Andal is 90 km in diameter.

217



Fig. 63. Selected Area 2: HCA 2 and ICP 2 in Andal (A) Region
--Continued

b. FDS 27395. North at left.
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The area plot of the combined intercrater plains statistics

(Fig. 64) nearly duplicates that of the heavily cratered regions,

except that the plains lack the larger structures. A great many of the

small, degraded craters, about as many as in the heavily cratered

regions, are recognized as possible secondary craters, aligned in

chains and clusters. Many of the chains can be traced to a probable

primary source in the HCA clusters; the source craters are not dis-

tant._The intercrater regions have higher densities of intermediate

size C5 craters than do the HCA clusters. This can be explained by a

greater visibility of this size feature due to the lack of oblitera-

tion by overlap on the intercrater surface.

The absence of large craters on the plains, partly a product

of definition, may be attributed to direct basin impacts in the ear-

liest phases of Mercury's bombardment history, followed by

plains-forming volcanism. C5' structures are common under the inter-

crater plains. Large crater densities are thus reduced at the C5'

site. Volcanism following the impact destroys later structures and

then better preserves subsequent small impact craters. Because the

characteristic signature of volcanism is not observed over the diam-

eter range of 5 to 20 km, these craters may either be too large to be

buried by volcanic plains, or they were emplaced after the resurfacing

event.

Because the heavily cratered and the intercrater plains areas'

dlstributions are so similar, they may represent the same population.

219



10.0

p

1.0

~

\A
~ h' \

.... \
....... ~

.•.....~. \
...... ~

.... ~

~'" " '~
~.... ~ \.

v.....\l,\ "I'J\\ I /
,~ rt -, I:
,~ , : '. ,\ :
,,' ... ""~J""\7' : ''li
e.. .:.....

1.0

0.5

0.2

0.1

R

0.05

0.02

0.01

0.1 O'-~--...l10~--2~0-::--------L __.....J-__....1..__---I
50 100 200

Diameter (km)

Fig. 64. Intercrater Plains of Mercury: Crater Coverage
Within Selected Regions

Symbols in Caloris system format as explained in Fig. 62. Data from
ICP regions of Discovery Scarp East and West, ICP 2, and Iep 6 (see
Table D26 of Appendix D).

220



The younger plains and some intercrater plains may lie within ancient

basins and sites of volcanic resurfacing, while the seeds of the heav-

ily cratered clusters and the older plains lie on that C5' basin's

rim (or exterior to it) where they are better preserved. The paradox-

ical conclusion is that the heavily cratered areas occur in the

intercrater regions of the C5' basins, while some of the intercrater

plains are the floors, or intracrater regions, of the C5' basins.

Combined Statistics of the Selected Re_ions. The combined

statistics better represent the cratered surface of Mercury (Guest and

Gault, 1976). All the features of the combined area plot (Fig. 65)

have been described above. The statistics are affected by volcanic

resurfacing on the plains, crater overlap in the crater clusters, and

direct basin impacts during the early bombardment. The latter essen-

tially formed the ICP--HCA dichotomy. Direct basin impacts, however,

must have had "peripheral effects," yet the age of these impacts and

the restricted range of ejecta on Mercury may have reduced associated

crater degradation, plains formation, and small crater eradication.

For such great numbers of secondaries and small craters to

accumulate, significant basin cratering and plains resurfacing must

have been completed before many of the smaller craters (and their

secondaries) formed (Trask, 1976 a,b; Trask and Guest, 1975). Changes

in the external impacting population may be involved too, as has been

established for the Moon (_itaker and Strom, 1976; Strom, 1979). A
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change in the diameter-frequency distribution may have followed the C3

period (see Fig. 66 where Caloris era format is used; see also

O'Donnell, 1978).

The data from selected areas is also presented in the standard

cumulative curve format (Fig. 67). Breaks in s]ope, often very subt]e,

are interpreted to represent obliteration events, such as ]ava flows,

or different responses to subsurface structure (Neukum and Horn, 1976;

Greeley and Gault, 1970; Schultz et al., 1977). This type _f presen-

tation does not make the alternative interpretations any clearer. The

major questions still focus on what produced the fluctuations of cra-

ter density. (Such a task is difficult when working with the total

crater statistics. It may be even more d_fficult when working with

subjective degradation classes containing fewer craters.)

Statistics of the Geologic Map Area

Metho______dd.Following completion of the geologic mapping of the

first quadrant of Mercury, data for crater frequency distributions of

the map area were collected. The data recorded include diameter, inner

ring diameter, latitude and longitude in i0° bins, degradation state

in the five class system with C5' structures, and the principa] units

on which (or in which) the crater is located. The General Geologic Map

area is 1.0284"106 km2; the more conservative Restricted Geologic Map

area is 4.985"i07km 2.

Data from the Geologic Map. Data from the geologic map for

craters over 40 km diameter provides a broader sampling of cratering
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in the first quadrant, analogous to the statistics of the combined

selected regions. A variety of data presentations enables one to

determine the average first quadrant diameter/density distribution,

regional distributions by quadrangle, the crater coverage in the hilly

and lineated area, and the diameter/density distribution on specific

mapped units. Information on small diameter craters can be supplied by

the selected areas contained within these regions. Changes in the

degradation criteria in mapping may shift some of the C4 and C3

craters of selected regions to C3 and C2 classes respectively.

Crater coverage statistics of the general map (Figs. 68, 69,

and 70) resemble those of the restricted map (Fig. 71) and the Kuiper

and Discovery Quadrangles (Figs. 73, 75, and 76). All present an

average over diverse collections of crater and plains units.

In general, coverage increases with increasing diameter to

basin sizes. No deficit in basin density is noted if ancient circular

depressions are included in the statistics. If these queried struc-

tures are omitted, a relatively severe lack of coverage by basins

results, consistent with observations by Schaber et al. (1977), Malin

(1976a), Wood and Head (1976), Frey and Lowry (1979), and others. The

maximum in crater coverage occurs at larger diameters for more

degraded craters, even though the magnitude of C2 through C5 coverage

does not vary significantly. Fresh CI craters display constant cover-

age, at 3 _ 1%, at the same magnitude as C1 crater coverage in the

combined selected regions over a total diameter range of 5 to 150 km.
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C3 craters dominate the statistics from 40 to 158 km diameter.

Coverage for all craters of diameters less than 50 km decreases,

reflecting the intermediate size crater deficiency noted in the

selected regions (due to volcanism?), or reflecting the production

population. If the map boundaries are restricted, excluding more

plains than craters, the area plot becomes more distinctly peaked and

more positively sloped, with fewer basins and fewer 56-80 km craters

represented (Fig. 71). All trends remain the same. Slope index of the

40-112 km segment of the general map is -2.3; for the restricted map

area, it is -1.9. (The former is similar to the general lunar highland

statistics, and the latter is similar to the intercrater plains region

of the Moon, S123.) The steeper slopes of the restricted curve may

indicate resurfacing events such as volcanism, similar to the proposed

volcanism in the S123 region.

The Hilly and Lineated Region. The hilly and lineated region

(Fig. 72, total coverage plotted only) exhibits abnormally large

coverage by very degraded craters, and sparse coverage by fresher

crater classes. Although geologic mapping suggests that the disruption

event occurred near the end of the Class 3 formation period, crater

statistics suggest an event in early C2 time. Class 3 coverage is

normal in this area when compared to statistics for craters outside

the disturbed region, but Class 2 coverage falls below that of exte-

rior regions. The area plot is not unusually steep at diameters greater
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Fig. 68. Geologic Map Crater Coverage (B) and Key to Symbols (A)

Crater coverage displayed by C1 to C5' craters; note that starred total

curve omits the queried C5' craters, reducing coverage most severely at
basin diameters. Compare absolute coverage and relative densities to

those of the lunar surface, Fig. 59a. Data presented in Table D28 of

Appendix D.
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Fig. 71. Crater Coverage of Restricted Geologic Map Using

Calorls System Notation

Conservative map boundaries exclude some basins, peaking up coverage by
60-150 km craters. Surface area = 4.985.10 _ kmZ; data given in Table
D30 of Appendix D. Compare with Flg. 69.
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than 40 km (compared to the restricted area), suggesting that craters

were degraded rather than completely obliterated, or that exterior

regions were affected in a similar manner. A variety of questions and

uncertainties remain in the interpretation of this area plot. The

signature of the disturbance appears to be the severe (tectonic)

degradation of craters as large as I00 km, boosting the population of

C5 classes and depleting somewhat C3 classes (Sec. 2). Timing of the

event determines which classes of craters are depleted. Guest and

Gault (1976; see also Gault, Guest, and Schultz, 1976) propose that

the hilly and lineated terrain formation severely degraded craters as

large as 80-90 km in diameter, and obliterated all existing craters

less than 20-30 km in diameter.

Quadrangle Data. Cratering data from the Victoria and Bach

Quadrangles (Figs. 73, 74, and 77) may provide some examples of

regional resurfacing and its effect on crater populations. Unusually

high densities of fresh craters are noted in the Victoria H-2

Quadrangle, where P3 plains cover a great part of the mapped area (and

bury 30 to 60 km craters). Degraded craters provide only sparse

coverage at 40-56 km, but are more common at large sizes. De Hon

(1978) has proposed that part of this area is the site of an ancient

basin. Direct basin impacts and later volcanism are consistent with

the statistics of the Victoria Quadrangle. The Bach Quadrangle also

shows a domination by C3 craters, but relatively higher degraded C4
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Similar coverage statistics are displayed by the four quadrangles of
the f~rst quadrant: H-2 Victoria, H-6 Kuiper, H-ll Discovery, and H-15
Bach. Variations may be due to the extent of diversity of units within
the sampled areas.
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Fig. 74. Crater Coverage of Victoria Quadrangle (H-2)

Fresher craters appear to dominate Sove2age in the sampled half of the
Victoria Quadrangle. A = 9.1564'10 km. See Table D34, Appendix D.
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Fig. 75. Crater Coverage of Kuiper Quadrangle (H-6)

A large sampling of diverse units, basins, and craters causes the H-6.

st§tlstics to mimic those of the general map, Fig. 68. A = 4.4327"i0 b
]an-. See Table D33 of Appendix D. The largest basins include Homer
and its two neighbors to the south and west, and numerous C5' de-

pressions.
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Agalnnote similarity to _eneral map statistics, Fig. 68. A large, di-
verse area, A = 3.9197.10 km 2, was sampled. See Table D32, Appendix

D. The larges t basin represented is that surrounding the rayed crater

Copley, Fig. 28.
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Fig. 77. Crater Coverage of Bach Quadrangle (H-15)

The half of the Bach Quadrangle sampled in these statistics is domi
nated by p5 plains and a sizeable region of p3 materials. The lack of
100 km and Cl craters is part15 due to the 70°5 latitude northern limit
of this region. A = 8.0998·10 km2; statistics given in Table D31,
Appendix D.
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crater abundances, without severe losses at smaller diameters.The

spectrum reflects greater coverageby older plains units (P5 and P4)

and multipleresurfacingepisodes.

All crater distributions demonstrate that pre-Caloris

bombardment(C5, C4, and C3) greatlyexceedspost-Calorisbombardment.

This intense crateringflux occurs during Pb, P4, and P3 plains

formationepisodes.The end of the heavy bombardmentmay extend into

the beginningof the C2 period;plains formationduring that era con-

tinues,but is less than in the precedingClass 3 period.

The distribution of craters on different ages of surfaces

illustratesthat magnitude of coverage decreaseswith time, and its

maximum shifts towardsmallerdiameters on younger units. The speci-

ficity of coverage by craters over 40 km dlameter--and of the

projectiles responsiblefor the impacts--mayincrease (become more

restricted) as the populationevolves to the present. The greatest

coverageis exhibitedby craterswhich lie in or underneaththe older

intercrater plains surface. The P5 plains are thereforenot inter-

preted as primordial, because the large number of structuresembayed

or buried by those plains must yet cover an older surface.

Discussionand Summaryof MercurianCrater Statistics

As in the lunar statistics, the mercurian crater

size-frequencydata collected in this study are more complexand less

transparent than the study of Strom (1977) in which he establishes
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that volcanic plains emplacement probably affected the mercurian

intercrater plains as well as the lunar intercrater region. Volcanism

is consistent with some of the regional statistics found here (includ-

ing the Woronow et al., 1980, study), and is consistent, with a few

conditions, with the selected area statistics. However, other pro-

cesses have affected the crater distributions. Ballisticdeposition of

eJecta may be indicated by the combination of small crater losses,

abundant C4 and C5 craters, and C5 craters partly covered by younger

plains material. Direct basin impacts are postulated to decrease

overall crater abundances within some circular areas (C5' depressions)

later filled by intercrater plains. Magma may intrude into such

locally thin crustal regions and further reduce crater densities.

In addition, tectonic destruction is indicated in the hilly

and lineated region. Differential preservation may be a factor in some

selected areas if the craters are small enough to be strength domina-

ted (Schultz et el., 1977; Pike et al., 1980). The high numbers of

small craters--many of which are secondaries--may be preserved in more

consolidated intercrater and smooth plains (Cintala et al., 1977), as

well as preserved by factors noted earlier, such as higher ejection

angles and higher ejection velocities (Scott, 1977). Gravity effects

have been noted only in reference to the restricted ejecta blanket

distribution on Mercury (Gault et al., 1975). Its control over other

morphological factors may be minimal (Malin and Dzurisin, 1977, 1978).
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The slze-frequency distribution of impacting objects appears

to shift from larger to smaller sizes with time to the present. The

loss of basin producing objects seems well established. The relative

increase in small bodies producing craters of 40-100 km may be due to

decreasing activity of plains emplacement, crater destruction, or

ballistic deposition. A heavy bombardment is represented by C5' to C3

craters. According to the arguments of Strom (1977), Wilhelms et al.

(1978), and Woronow et al. (1980), this bombardment occurred prior to

4.0 b.y. ago, and may have been common to the Moon and Mars. The

revised mercurlan statistics of Woronow et al. show a progressive loss

of craters of smaller diameters relative to the lunar highlands; this

loss probably resulted from plains emplacment.

Returning to Fig. 60, one notes that a lunar-like post mare

population does not seem to be recorded on Mercury's observed surface.

The sparsely cratered plains of the Moon and Mars exhibit the -3 dis-

tribution of the same magnitude coverage over diameters of 8 to 150

km. The CI population of Mercury exhibits the same slope and slightly

higher magnitude (equal to Cl's on the Moon). The largest expanse of

young plains on Mercury, however, records a hlghland-type,

post-Orientale population; the Caloris plains are thus interpreted as

older than the lunar mare. The distribution of rayed craters on

Mercury (Allen, 1977) supports this conclusion. Further comparisons of

relative ages of mercurian and lunar surfaces are given in the next

chapter.
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The major preferred interpretation of Mercury's cratering

history restates the conclusions of the geologic study, namely, that

volcanism has probably eliminated smaller craters from the surface,

direct impacts have resurfaced large circular regions and degraded

some peripheral landforms, and that secondary cratering from the sur-

viving large craters, usually clustered around the rims of ancient

depressions, has produced the high density of small 5-15 km craters

which superpose the plains'surface.

243



CHAPTER 4

GEOLOGICMAP ANALYSES: CORRELATION

OF GEOLOGICAND CRATERINGHISTORIES

Geologic map analyses are expanded in this chapter, beginning

with a discussion of particular regions which may illustrate volcanic

and ballistic plains emplacement on Mercury. Major attention is

focused on the surface history of Mercury through discussion of the

areal distribution of plains and craters and the paleogeologic maps of

the first quadrant. A summary of the lunar intercrater plains forma-

tion similarly interrelates the information from the Moon's geologic

and craterlng histories. The derived "igneous chronologies" set con-

straints on the thermal models discussed in Chapter 6.

Specific Areas Illustrating Volcanic and Ballistic

Plains Emplacement Mechanisms

The areas of Renolr basin, Chekov, and a large crater west of

Shevchenko present strong evidence for volcanic emplacment of plains

material. Tentative examples of ballistically deposited plains mate-

rlal occur between the Kulper and Imhotep complexes, east of Schubert,

east of Handel, and possibly surrounding Ma Chlh-Yuan. The evidence

for ballistic emplacement is poorer, and suggests that this process is

supplemented by volcanism and mass wasting. The best example of each

process, Renolr and Kuiper-lmhotep (stereo images in Figs. 78 and 79),

is discussed in more detail; a brief discussion of the other regions
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Fig. 78. Renolr Area Volcanic Features--Stereo Pair

The superposltion relationships of smooth plains, the small cra-
ter (A) to Renoir's southeast, and Renoir (R) are illustrated above.

Although severely degraded, crater A appears to be superposed on Re-
nolr's rim. Note the vertical relief of the pitted lobe. The dark ma-

terial near the inner rim does not correspond well with mapped geolog-

ic units; compare with Fig. 9 (xviii-xix).

The arcuate scarp to the south bounds materials lifted above regions

containing Renoir secondary sculpture. To the east and west, this de-

pressed region has been embayed by P2 and P3 plains materials. See

also Fig. 25b.

Note the large 300 km C5' basin west of Renolr visible in the right

hand picture. Its rim consists of inward facing scarps which trend

along the global lineament directions. Simelz Vallis (S), an arcuate

valley atop the rim crest of large C4 basin (D) to Renoir's west, may
be associated with the collapse of the C4 basin's rim. The C4 and

C5' basins appear to have outer scarps located a half radius beyond
the primary rims. The crater Repln (Re), located north of the "pond-

ed" smooth plains, also has an exterior depression (moat?) encircling
its rim.

Left: FDS 166649. Right: FDS 27301. North at top. Renolr is 220

km diameter; Repln is 95 km in diameter.
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Fig. 79. Kulper - ImhotepArea Plains: TentativeExamplesof
BallisticEmplacement

In this stereoview, complexesof large cratersare separatedby re-
gions of irregularplains which may consistof ejecta depositsfrom
the surroundingcraters. Ancient circulardepressionsoccupy almost
all regionsnow coveredby plains. Two distinctfeaturesdisplayed
in Fig. 13b are designatedA and B. A larger C5' basin may underlie
both A and B, its west rim visibleas a curved ridge east of Gold-
stone Vallls (G). The latter is probablya secondarychain of Mura-
sakl; other sculpturevisibleunder the plainsmaterialappears to
be part of a differentradial system (from a large craternearly
destroyedby Murasaki?).

Plains here do not necessarilyoccupy topographicallylower regions.
Younger plainsmaterial is distributedbetweenthe two youngerC2
craters,althoughthe southerncrater has been embayedby some P2
plains. Older plains units lle beneaththe youngerplainsbetween
the older craters. Large C5' structuresflank this zone to east
and west, suggestingthat the craterlnghistoryof this regionhas
been quite severe.

Stereo pair FDS 166478 (Left) and FDS 27304 (Right). North at top.
Kulper is 60 km in diameter; Mahler (M) on right is I00 km in
dlame ter.
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Fig. 80. C4 Basin Chekov Embayed by P4 Plains

The C4, 180 km diameter basin Chekov is embayed by P4 intercrater ma-

terials along its southern rim. Pitted and hummocky materials lie within
the outer scarp of the basin and also bury a C5 crater south of the
basin. The other half of the C5 crater is filled with and surrounded

by P3 plains. The C4 crater (B) just southwest of Chekov appears to

have dark materials on its rim to either side of a trench along the
rim's crest.

The ridge oriented north-south at the lower center of the image is

Astrolabe Rupes. It is mapped as P4 material which was thrust upward

in Class 3 time, then flooded by P3 materials. The entire region to
the west of the scarp may contain materials within a large basin (C5'),

roughly centered on the rayed crater Copley (see Fig. 28). Volcanic
activity is indicated for the P4, P3, and tentative P1 materials of

this region.

Rectified image FDS 166601. North at top. Chekov is 180 km in
diameter.
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Fig. 81. Multiple Flow Units in Crater West of Shevchenko

Crater (A) is best interpreted to be embayed by a succession of plains

materials, some of which are volcanic. The lowermost, roughest mate-

rial is P4 impact melt filling the C4 crater, or part of the P4 deposit
overiylng the crater's western ejecta blanket. The P3 deposit forms

part of the P3 plains unit exterior to the crater; these plains fill

the western half of the crater, and embay the southern rim and adja-
cent areas. P2 material later filled the crater's northern sections.

The east-west wedge or dome shape may be due to the thickness of the

deposits or to later tectonic uplift. It is not understood why the
usual relation of younger plains occupying lower levels is reversed

inside the crater but normal outside of the crater. Fault blocks may
form the multilayered floor, but volcanism is the preferred interpre-
tation.

a. FDS 166669. North at top. P2 material fills a sinuous depression
which seems to open northward into a crater-like depression. The

"graben" may be a remnant of intercrater plains formation, but few

constraints exist on its age, other than its formation prior to P2
plains emplacement.

b. Stereo pair FDS 166613 (Left) and FDS 27399 (Right). North at

top right corner. Shevchenko (S) is 130 km in diameter. Khansa,
although only 90 km to the southeast, does not appear to have
ejected debris into the P4 unit within crater A.
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Fig. 82. Hawthorne Area--Volcanlc Features?

Possible volcanic landforms near Hawthorne lie justoff the geologic

map, south of Ma Chlh-Yuan in the H-12 Quadrangle (see Fig. 28). The

smooth area in right center may be asymmetrically deposited ray cra-

ter material, because its thickness appears to increase away from the

dark-floored ray crater. Thinner deposits, as determined by the sub-

Jacent topography, may occur at the edges of the smooth area, where
darker material dominates. The rays partly superpose a rimless,

scalloped-edged depression, termed a caldera depression (cd) in Fig.
82a.

The sinuous trench near Hawthorne has raised edges, is nearly I0 km

in width, and is headed by a small crater at one end, while super-

posed by a similar size crater at its other end. The rimless pit
north of the rayed crater is elongated linearly along a fault trace.

Like the pit within the C2 crater transected by Antoniadl Dorsum

(Fig. 21), this one also lies within a crater, and is associated with
tectonic features.

Fram Rupes is visible near the top right corner of Fig. 82a. The

domical mass lies Just off the picture, visible in Fig. 84, southwest

of Ma Chih-Yuan. C5' depressions occur north, east, and west of
Hawthorne.

a. FDS 166605. North at top right. Hawthorne is i00 km in diameter.

b. Stereo pair FDS 166660 (Left) and FDS 166605 (Right). North at
right. Michelangelo (M) is 200 km in diameter.
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Fig. 83. Hero Rupes Area Volcano-Tectonic Features

This region lies within the H-12 Quadrangle near the termination of
Pourquois-Pas Rupes and Hero Rupes, near 60 S and 153 W. Structural
features include a continuous chain of 5-15 km craters radial to Dos-
toevskij (390 km diameter), circular depressions (C5 and C5') of var-
ious sizes, a series of overlapping 70 km discs of smooth plains, and
the features noted at right. The crater chain (which is unusually
long and distinct) and the two arcuate scarps appear to converge at
the center of the photographed area (Fig. 83a), in a depression (C5'?)
partly covered by smooth plains. The flat-floored crater to the west
may be transected by the sinuous valley; note the stereo view (Fig.
83b). The massive, pitted, conical peak, nearly 30 km at its base,
has been described by Malin (1978), and is interpreted to be a vol-
canic dome.

Coincident with a bright ray on the east of the stereo image, there

appears to be a subdued scarp consisting of the overlapping, smooth

spatulate discs noted above. The linear array (of at least 3 circu-

lar features) is depressed along its center. It is not possible to

specify the origin of this feature, but one speculation is that it is

a remnant of planetary expansion flooded by smooth plains.

a. FDS 166750. North to lower left (direction of the trend of Pour-

quois-Pas Rupes); east parallels the trend of Hero Rupes. The
central crater is 40 km in diameter. DostoevskiJ's crater chain
extends I D to 2 D from its rim (3R to 5R from its center).

b. Stereo pair FDS 166750 (Left)and FDS 166836 (Right). North is
up. This region can be seen in South Polar Mosaics SP-16, SP-7,
and SP-II.
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Fig. 84. Ma Chih-Yuan and Perimeter

The C4 basin, Ma Chih-Yuan, 170 km in diameter, may be attaining iso-

static equilibrium, based on the shape and relief of its rim and peak

ring (compare Rodin, Fig. 21, and Fig. 6 in Scott, 1967). Part of the

basin rim has collapsed to form a trough along its crest. The ancient

age indicated by the high density of superposed craters and the basin's

degradation conflicts with the preservation of basin secondaries in

adjacent materials (P5 plains). Beyond 1 - 2 D from the basin center,
Ma Chih-Yuan's secondaries are buried by a peripheral ring of P3

plains. The encircling deposits may be ballistically emplaced; however,

they also embay a 45 km crater through its breached southern rim (farthest
from the basin). Note the domical feature (thin arrow) in the P3 ma-

terials, near Fram Rupes (F; lower left). The scarp, dome, and flooded

crater suggest a volcanic origin for the P3 plains.

FDS 166666. North at top. Sei (S) is 130 km in diameter.
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illustrating volcanic and ballistic processes is presented in Figs. 80

- 85. Please refer to the Geological Terrain Map (Fig. 9, xviii-xix)

for detailed stratigraphy of these regions.

Volcanic Plains

Renoir. The area of Renoir basin (Fig. 78; see also Fig. 25)

exhibits a variety of volcanic and tectonic features. The double-

ringed, C3 basin, 220 km in diameter, is an impact structure;

sculpturing from its secondaries can be detected to the southwest

extending one diameter outward from the rim. P2 and P3 plains fill the

interior: P2 plains lie in a deeper inner basin and within depres-

sions in the outer plateau.

A companion crater which appears to lie on top of Renoir's

southeast rim is highly degraded. Its basinward rim is thin and cren-

ulated, but intact, unlike the rim farther from the basin. Deposits of

smooth material cover the small crater's floor and extend up to the

crenulated rim crest on the inner edge; they also flank the outer rim,

extending down into the outer ring portion of Renoir, ending in a

massive, pitted, and lobate extension at Renoir's inner ring. These

deposits may also embay the ejecta blanket of Renoir west of the com-

panion crater. Dzurisin (1977b) detects an albedo difference extending

from the small crater to the lobate extension, and along similarly

pitted material (here mapped as P3) to the west. Malin (1976b) detects

a textural difference.
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Fig. 85. C5' Features of the Homer-Handel Area

a. Vague circular depression C5' denoted by arrows. Irregular de-
pressions to nartheast, northwest, and south suggest smaller,

very degraded crateriforms. Corner marks denote the boundaries of

Fig. 85b. Homer (Ho), Handel, and Lu Hsun (320 km, 150 km, and 95

km in diameter respectively) may have contributed ejecta deposits

as well as secondary crater-forming materials to this circular de-
pression. P5 material (which records secondaries from C4 basin

Homer) apparently covers this C5' feature. Handel and Lu Hsun

are C2 in age.

FDS 27317. North at top right.

b. High resolution image of the large depression. Note that features

radial to Handel (west) and Homer (southwest) are overlain by

smooth material in the depressed regions of the C5' feature. In

addition to nearby volcano-tectonlc features (a dome and contact

zone, Figs. 22 and 24), the superposed P2 material suggests that

its origin may be volcanic.

FDS 27440. North at top right. The crater at lower left is

approximately 32 km in diameter. The entire area is mapped

in Fig. 24, an excerpt from Fig. 9 (in pocket).
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Within the inner basin, two circular rims of 30 km diameter

are noted; the one closer to the basin center has less topographic

relief. These features are best interpreted as the result of volcanic

processes. The hummocky P3 material may be impact melt of Renolr; the

two "ghost rings" are craters which impacted the basin's central

depression, prior to plains emplacement. The delayed embayment, the

albedo change associated with the lobate escarpment, and the mantled

rim of the crater to the southeast are the major arguments for vol-

canism. The smooth P2 plains may have several source vents: the basin

center, the northeast basin rim, and the exterior rim flank where

impacted by the C3 crater. The hummocky lobe of material can be

i
interpreted as a pitted volcanic extrusion, or decollement thrust

fault.

The plains embaying Renoir are apparently shallow--800 to I000

m deep (De Hon et al., 1980)--and only partly bury the two 30 km

craters. Further infilling would eliminate both the craters and the

basints ring. Renoir illustrates part of the process of intercrater

plains formation as proposed in Chapter 3: direct basin impact, fol-

lowed by volcanism interior to that basin, resulting in a circular

area which lacks intermediate to large craters. The smooth P2 plains

are clearly neither impact melts nor ejecta from nearby basins:

Renoir is relatively isolated. The emplacement of volcanic plains

exterior to Renoir's rim may have been structurally controlled by the
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superposed rims of Renolr, the smaller crater, and a C5' basin to the

east. A large arcuate scarp may control plains emplacement south of
i

Renoir (see Fig. 25b).

Renoir's companion crater with the crenulated rim may belong

to a group of endogenlcally modified craters described by Schultz

(1976b, 1977). His examples, mostly second quadrant craters, often lie

on the periphery of plains-flooded basins. Albedo data, color data

(e.g. Hapke et al., 1975),apparentfloor depth, and cratermorphology

provide clues for detection of modified craters.(Both Schultz (1976a,

1977) and _lin (1978)discussthe discernibilityof possiblevolcanic

landformsusing the Mariner I0 imagery.)

BallisticEmplacement

Ballisticemplacement of plains-formingmaterials is not evi-

dent around large fresh craters (e.g.Mozart, 225 km); althoughthe

rim materialsof the continuous ejectablanket are somewhatsmoothed,

no plains appear near the distal end of the satellitic craters.

However, around larger and older craters and basins,materialscom-

monly embay secondarycrater chains radial to the crater,and appear

to be ballisticallyemplacedejecta.

Kulpe_-Imhotep. Between heavily eratered regionscontaining

the cratersImhotepand Kuiper,respectively,are plains which may be

ballistically emplaced, although the mechanismis uncertain.Patches

of plains lle betweenbasins and cratersof the same age as the plains
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material, and usually outside the satellitic crater fields of those

structures. (Refer to map, Fig. 9, in pocket, and Fig. 79.) P3 plains

lie between Murasaki (C3, 125 km diameter) and Imhotep (C3, 160 km)

but beyond most large secondary crater troughs of the former. P2

plains lie between smaller C2 craters of each area; some of these

plains embay the southern C2 crater's ejecta blanket. The plains fill

C5' structures, overlying both their raised rims and their interiors

(Fig. 13b). Secondaries of Murasaki severely crater these raised

areas. It appears that primary crater ejecta has embayed the

secondaries, or those of similarly-aged craters. As shown in Figs. 13b

and 79, the proposed ballistic deposits are smooth and not confined to

depressions.

Color Differences near Renoir and Kuiper-lmhotep. From the

color-ratio map of Hapke et al. (1980b), Renoir's outer ring plateau

is comprised of bluer-than-average materials. A lobe of these blue

materials appears to embay a C5 crater directly north of Renoir. The

color boundaries on Hapke et al.'s map, the plains' boundaries mapped

here, the albedo boundary of Dzurisin (1977b), and the textural

boundary of Malin (1976b) all differ in their details, but do show

that the deposits of the basin's interior are unlike those of the

basin's outer ring. No anomalous color appears to be associated with

the companion crater.

The Kuiper and Murasaki region is unusual in its distinctive

colors; however, there are no color differences associated with the P2

260



and P3 deposits postulated to be ballistically emplaced between C2 and

C3 craters respectively. As might be expected, they are similar to the

surrounding surface in color. However, directly north of the region,

Murasaki's red floor contrasts with the much bluer Kuiper, and with

the yellower deposits outside the rim of Murasaki. Slightly bluer ray

material extends west and south; not all bright ray deposits appear in

the color ratio map. Bluer-than-average materials occupy two craters

to the south which have tentatively-identifled volcanic flows within

them (Strom et al., 1975b; Dzurisln, 1978). The C2 craters in question

do not impact onto these anomalous units.

Thus, the color-ratio data--in these two examples--support a

volcanic origin for Renolr's plains, and a ballistic origin for the

plains between the Kuiper and Imhotep complexes. Many of the areas

illustrated in the following figures are not included in the Hapke et

al. (1980b) data; for those areas which are included, color differ-

ences better correspond to ray materials than possible volcanic plains

deposits.

Discussionof Mapping Bias

The definition of plains in this mapping technique is

reviewed and the implicationsexploredin this discussion.

The older age limit of the plains unit is definedas the

youngestmaterialwhich it overliesor embays,and the other age limit

is less than the oldestmaterial superposedupon it (Malln,1975).The
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relative age of a plains unit is thus bracketed by the relative ages

of the craters which are embayed by or superposed upon the plains

material.

Clearly volcanic plains material fits well into this method of

classification. Volcanic materials extruded exterior to craters will

embay craters of older or similar age classes. While smaller craters

may be completely eliminated, the larger craters may simply have their

ejecta blankets embayed, or inundated to the rim. In the latter case,

age identification must depend on degradation of the remaining rim.

Fresher craters will impact the resurfaced area, or distribute their

secondary fields upon it. Complications arise if there are too few

craters in the plain's locale to constrain its age, or if those cra-

ters are either too old or too young to confine the relative age of

the plains material. However, neither the plains-forming episode nor

the cratering episode will be discrete events over separate intervals.

That ambiguity, as well as the likelihood of partial resurfacing and

variation in crater degradation states due to proximity weathering,

will make the plain's relative age less specific than presupposed in

the age-dating technique, even though emplaced as a volcanic unit.

However, plains formation by ballistic deposition could pose

even more ambiguities in this mapping strategy; such a plains unit is

formed from the ejecta of many craters in multiple events. Material

should be distributed over all topographic forms, and only locally
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confined to low-lying areas where secondary impacts and seismic shaking

promote mass wasting (Trask, 1976a).

On the lunar surface, plains deposits from basins are emplaced

at the edge of the continuous eJecta blanket, near the beginning of

secondary fields (Scott et al., 1977; Howard et al., 1974), or adja-

cent and downrange of the secondary clusters (Oberbeck et al., 1974).

If the order of secondary cratering and debris surge mantling are the

same for Mercury and the Moon, the plains-forming debris surge of a

crater may overlie its secondaries, thereby embaying the crater depos-

its, and may be then classed as material of the same age as the

primary. This appears to be true of many craters on the Moon (and

Mercury?).

However, for some impacts, including basin impacts (e.g.

Orientale), late arriving secondaries crater the continuous ejecta

deposits and plains material. Oberbeck (1975) finds that target

layering may cause such an effect. Low velocity, strength-dominated

impacts into layered targets with incompetent material overlying a

consolidated material may produce two ejecta curtains: first a coni-

cal ejecta sheet ejected at angles below 45° from the horizontal,

followed by high angle ejecta of the firmer substrate. Material from

the high angle ejecta is sometimes deposited as fallback (Settle,

1980) or as secondaries on the continuous (or first layer) deposits

(Oberbeck, 1975, p. 359; Oberbeck et al., 1977). Similar processes may
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occur on Mercury. If so, the material crateredby secondariesaround a

primary may actuallybe materialsfrom the crater,but will be mapped

and dated as an older surface according to the definition of the

plaln's age.

However,nearly all the cratersmapped here are over 40 km in

diameter,and dominatedby gravityand not by strengthof the target

medium. Layering effects will be negligible, and most debris can be

expected to be ejectedin a thin conicalshaped curtain(Gault,Quaide

and Oberbeck,1968; Oberbeck,1975).If a velocitydispersionoccurs

in the ejectedmaterial,due to target Inhomogeneities or an atmo-

sphere,newly depositeddebris may be re-excavated by target ejecta,

producing a net effect of less local material excavation.This is the

major argument of the thick ejecta cone model of Schultz (1978)%

which is used by Schultzand Mendell (1978)in infrared"maps" of

lunar ejecta blankets.

If the depositsare constrainedto lie between the continuous

eJecta depositsand the point of maximum areal densityof secondaries,

they must fall between 1.88 R and 2.5 R from the primary crater center

(Gaultet al., 1975; Mouginis-Mark, 1978).The formation of a plains

surface through depositionof ejecta so narrowly constricted to the

crater's continuousejecta deposits is a far more irregular and

ill-deflnedprocess than floodingof a region by volcanicmaterials.

In mapping Mercury, crater materials are mapped only to the

continuous ejecta blanket. One assumes that the secondary craters
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simply excavate and rework local materials, without depositing signif-

icant quantities of primary eJecta (Morrison and 0berbeck, 1975,

1978). Some support for this conclusion comes from the color data on

Mercury and the distinctiveness of eJecta deposits. However, one may

be eliminating or weakening the possible mode of plains formation

through ballistic deposition with the above assumptions, some of which

are based on ideal lunar and terrestrial experimental craters.

The mapping bias is twofold: volcanic plains are more easily

interpreted, and ballistic deposits are eliminated from the initial

assumptions.

Areal Coverage by Craters and Plains on Mercury

Within the geologic map and each quadrangle, areas of plains

units interior to craters and exterior to craters were tabulated and

their percentage of the map or quadrangle area was calculated. These

figures are compared to the cumulative crater densities (N/km 2) for

all craters greater than or equal to 40 km in diameter, and to their

cumulative coverage, the summation of the P(D) factors for the same

set of craters. The latter value is an upper limit to the area occu-

pied by craters over 40 km; no factor has been included for possible

crater overlap or ejecta blanketing. The mechanism of plains formation

may be reflected by the areal distribution of craters and plains. One

might expect that flood-type volcanism is not correlated with the

current bombardment, whereas ballistic deposits should be strongly
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correlated. As will be seen, interrelation of volcanism and craterlng,

as well as ballistic deposition and craterlng, can be more complex.

Unit Coverage over the Entire Geologic Map

Figure 86 compares the area of plains located interior and

exterior to craters to the cumulative number density of craters of

that age, displayed in a manner similar to that of Trask (1977).

"Interior" plains are not differentiated by the age of the crater in

which they are located; i.e. P3 plains noted as "interior" may lle

within C3 or C4 craters. In general, the area of plains units

exterior to craters decreases with time to the present with the

exception of a slight increase in plains production in the Class 3

period. The area of exposed plains materials located interior to cra-

ters increases with time, up to the Class 2 period. The P2 plains

located interior to craters exceed in area those exterior to craters,

while the P1 materials are primarily found interior to craters. The

cumulative crater frequency (N/km 2 ) changes as well over the five

periods, apparently increasing from Class 5 to 4 to 3, and then

decreasing after C3 time. The addition of C5' craters to the C5 popu-

lation is dashed in Fig. 86 because the ancient depressions are

queried. Plains burying these units were marked as "exterior" units,

rather than "interior" units; they are continuous over the C5' rims.

The surge in C3 crater density is partially due to larger numbers of

"small" craters relative to the older crater populations as seen in
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Fig. 86. Area of Plains Units and Number Densities of Craters
Within Boundaries of the General Geologic Map

Histogram displays the area of plains units of a given class lying

exterior (Pe) and interior (Pi) to craters plotted to either side of
the number of craters over 40 km of the same class per I0_ kmz. C5'

craters (queried) are often buried by P5 plains. Many "smaller" cra-

ters (40-70 km) may be included within the C3 population.
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the coverage statistics and in Chapter 3. No clear pattern relating

plains area and crater densities is indicated in Fig. 86.

A better comparison is made between plains coverage and crater

coverage. The latter, weighted by crater diameter squared, represents

the maximum percent area covered by craters of all diameters _40 km.

Table 8 lists brief unit descriptions and the percent of mapped area

covered by craters and plains. Fig. 87 presents the same information

in histogram form for the general geologic map and the restricted area

map. Because very little change occurs in the two sets of data, the

general map figures are considered representative and used in the

following analyses.

If C5' craters are included, crater coverage decreases with

age for each younger class, in contrast to crater areal density (N/km2).

Craters of more recent periods are smaller, cover less area, and, at

least in the C3 era, are more numerous. Greater percentages of basins

contribute to the coverage of older craters, as was noted in more

detail in area plots of Chapter 3.

Plains coverage is similar to that described above for Fig.

86. Interior plains make up an increasingly larger part of the sample,

partially because the plains which fill younger craters are less sub-

ject to crater overlap and obliteration unlike older landforms, which

are also buried by plains deposits. Impact melt comprises some of the

interior plains, but cannot account for all the P2 plains interior to

craters: many P2 deposits fill older, more degraded craters. Very

268



Table 8: Description of the Geological Map of Mercury's First Quadrant

Era Plains/Crater % of mapped d
Class Brief Description of Materials area covered a'

PI Very smooth plains material 0.95 (0.01,0.94)b
Post- C1 Fresh and/or rayed craters 1.3 c

Caloris P2 Smooth plains material where thick, rougher 9.3 (3.3,6.0)

where thin, burying rough topography

C2 Moderately fresh craters 5.4

P3 Moderately smooth to hummocky plains 14.4 (11.4,3.0)

_ Caloris C3 Moderately subdued craters_ roundedrims i0.0

P4 Moderately rough to hilly intercrater plains 11.3 (9.8,1.5)

C4 Subdued, dissected craters 12.5

Pre- P5 Very rough, knobby and pitted plains 18.6 (18.5,0.1)

Caloris C5 Highly subdued craters 7.6

C5' Ancient circular depressions; vague rims 10.5

Hilly and Hilly and lineated material, large massive 0.06

Lineated hills and troughs

a. Total mapped area A = 1.0284.107 km 2

b. In parentheses are % area of exterior and interior plains, respectively

c. Crater area percentage = _(_D2N'I00)/(4A) for each crater class over all diameter

bins of geometric mean bin size D_40 km, N craters per bin.

d. From Leake (1980a).
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Fig. 87. Coverage by Plains and Craters of the Geologic Map

Histogram of percentage coverage by plains and craters of Mercury's

first quadrant. Area covered by g_neral map is 1.0284.107 km2; Re-

stricted map encloses 4.985.10 ° kmz (see Fig. 61). Plains coverage

equals plains area divided by total map area. (Plains comprise 55%

and 56% of the general and restricted map areas respectively.) Cra-
ter coverage is the sum of coverage P(D) for all craters in diameter

bins of D _ 40 km, and constitutes an upper limit to the area occu-

pied by craters, as crater overlap is not adjusted for. (See formula

in TaBle 8.) Note that the restricted and general map histograms are
so similar that the general map data is used to draw further conclu-
sions.
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little P5 material is noted interior to C5 craters because they are

usually embayed by younger materials.

Exterior plains coverage does not appear to be well correlated

with the relative crater coverage, although both are of the same gen-

eral magnitude and decrease in more recent eras if one includes

coverage by the C5' craters. P5 plains cannot be a product of the C5'

if the latter are often buried by P5 materials, unless in sltu erosion

by small craters converts the C5' form to intercrater plains (Malin,

1976b).

Crater clustering, burial of older plains by younger units,

the absence of mapped plains in the smaller 40 km craters, and con-

tinuous ejecta blanket area affect the relative coverage in ways not

recorded in Fig. 87. Clustering of large craters decreases actual

crater coverage. Burial of older plains by younger units implies that

plains production in older eras is underestimated. This forms a strong

argument for volcanism because of the enormous volumes of plains

generated in ancient times. Yet, since C5 craters are also underesti-

mated, and since cratering was greater at earlier times, ballistic

deposition should also have been greater. However, pre-C5 ballistic

deposition may not be the source of the existing, exposed plains.

Continuous ejecta blankets are excluded from the mapped plains units

because they are included with the crater materials on the geologic

map; they also are not included in the calculated crater coverage, but

can be modelled as demonstrated below.
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Variousmodels were constructed to test the relation between

crater and plains production.The cumulativearea of crater plus con-

tinuous ejecta deposits (Gaultet al., 1975)was calculated and then

comparedto plains coverageor to the area actuallyoccupiedby crater

materials (the map area mlnus total plains coverage).The latter com-

parison yields an estimate of the degree of overlap of crater

materialswithin the specifiedarea. In a similar manner, the amount

of interior plains was estimated using an approximate floor-to-rim

diameterratio, and then comparedto the coverageby interior plains.

An estimate of clustering and infill of older cratersby younger

plains can be obtained.

Estimatescan be made of the amount of material ejectedbeyond

the continuous ejecta blanket. Appendix E presents the estimated

thicknessof depositsassuming the materialsimply blankets that sur-

face to a uniform depth.This "plainsdepth" is then comparedto the

rim heightsof mercuriancraterswhich may be buried by the deposits.

Assumptions and models include: areal distribution of terrestrial

ejecta deposits (Oberbeck, 1975),hemisphericalcrater volume,and rim

heights and depths of fresh mercuriancraters (Cintala,1979b;Malln

and Dzurisin, 1977, 1978).From such simplemodels, cratersof 43 and

317 km diameterdepositenough material (0.2 km and 0.4 km respec-

tively)to bury cratersof 5 and i0 km beyond a range of two primary

radii of the crater center. Studiesby Croft (1978), Morrison and
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Oberbeck (1978), and Malin and Dzurisin (1977, 1978)may refine the

estimateof crater volume ejected and those of Ahrens and O'Keefe

(e.g. 1978) can better define ejecta depths. The ratio of local

materialsexcavatedby secondariesto the primary ejecta should then

be calculated (Morrison and Oberbeck, 1978) and compared to the

assumptionthat local materialsdominateejectabeyond the continuous

deposits.If the estimated ejecta depths are reasonable,then the

plains producing potential of mercurian craters is substantial.

However, it is more likely to be an overestimatebecause of the sim-

plified assumptionsand models used.

Plains depositsmay be more extensive than the observedcover-

age if younger units embay older plains materials. If the plains do

not bury any C5 cratersor younger craterswhich are now recognized,

the P5 throughP1 coverageexteriorto cratersis 43%, 24.5%, 14.7%,

3.3%, and 0.01% of the map surface, respectively.Assuming only C5

craterscontributeP5 plains material,C4 craters contributeP4 mate-

rial, and so forth, the ratios of plains-to-crater coverage, not

counting overlapped craters (whichincrease the amount of exposed

plains),have the estimatedvalues shown in Table 9.
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Table 9: Ratios of Plains to Crater Coverage

1 2 3 4 5 6
Age Cumulative Crater Ratio Plains Ratio

ext. Plains Coverage #2/#3 Coveragea #5/#3
Coveragea (int. & ext.)

5 43.0% 7.6% 5.7 18.6% 2.4

4 24.5 12.5 2.0 11.3 0.9

3 14.7 i0.0 1.5 14.4 1.4

2 3.3 5.4 0.6 9.3 1.7

1 0.01 1.3 0.01 0.95 0.7

a. Exterior plains ("ext."); Interior plains ("int.")

From the values of cumulative plains coverage divided by cra-

ter coverage (Column 4), it appears that the mechanism of plains

production changes with time. If the plains are ballistically

emplaced, these figures imply that the craters of the ancient past,

age 5, were able to produce 500 times more material than fresh craters

of age I. Since the resurfaclng potential of craters and basins is

apparently small, based on the lack of significant target materials

outside the continuous ejecta blanket and the survival of craters

beneath the continuous ejecta deposits of some basins, a solely bal-

listic ejecta origin for the intercrater plains is unlikely. Even if

ancient craters are buried by plains material, there appears to be a
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contribution to ballistic eJecta deposits which was greater in the

earliest history of the planet. This contribution is postulated to be

volcanic.

The decrease in plains coverage with time indicates that vol-

canic activity declined in recent ages. Volcanically produced plains

material may be correlated with the crater flux if craters and basins

tap subsurface reservoirs.
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Unit Coverage of the Quadrangles

Regional variations in plains emplacement and crater coverage

are noted when statistical data are presented for the four major

quadrangles comprising the geologic map (Fig. 88). Part of the varia-

tions are due to the smaller areal sampling of the Bach and Victoria

regions; the larger quadrangles, Discovery (H-If) and Kulper (H-6),

have comparable but unique distributions of plains as well as craters.

The variations reinforce the conclusion that plains and crater cover-

age are not related. In particular, it does not appear that plains

form strictly by ballistic emplacement of crater ejecta.

Most of the quadrangles exhibit a decrease in plains coverage

with time, with P5 deposits the most extensive. P5 plains usually

exceed, by a factor of 2, the C5 coverage. If the existing exterior P4

and P3 materials cover older P4 and P5 materials, the older inter-

crater plains unquestionably dominate the surface in all quadrangles.

Plains emplacement during the heavy bombardment of C4 and C5 craters

is uncorrelated with area covered by those craters. In each

quadrangle, P3 coverage increases relative to P4 coverage, but by

different extents and interlor/exterlor modes. The great expanse of P3

plains in the Victoria quadrangle has noticeably affected the crater

statistics (Chapter 3). Each quadrangle displays a different ratio of

exposed P3 to C3 units, including the large H-6 and H-If regions.

The apparent increase in P3 production may be relative only,

for P3 material covers P5 or P4 units, or C5' - C4 craters, or lies in
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Percentage of Quadrangle Area Covered by Craters and Plains
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Fig. 88. Percentage of Quadrangle Area Covered by Craters and Plains

Outer boundaries of General Map used. Plains and crater coverage are

computed as described in text and Fig. 87. Mapped areas of Victoria

and Bach comprise only half their total quadrangle, unlike the nearly

complete sampling of Kuiper and Discovery. Note the similarities of

plains and crater distribution within the larger quadrangles in con-
trast to that on the smaller sampled regions. P3 plains, for instance,

dominate the Victoria region; P5 plains dominate the Bach region.
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basins and crater depressions of some ancient era. P3 exposures

increase due to decreases in coverage by the younger cratersand

plains.

Younger plains,often designatedsmoothplains, are more often

locatedinterior to craters than in exteriorpositions.Measurements

of floor diameterof fresh craterssuggeststhat the ratio of interior

plains to crater area is 0.5 to 0.36; this figuremost likely repre-

sents the impact melt material.The P2-C2 relation in the Bach

Quadrangleappearsto be that expected for P2 impact melts fillingC2

craters, as in this model. Elsewhere,P2 materialwithin cratersoften

exceeds the calculatedfloor areas of the existingC2 cratersand must

thereforefill older craters,as observed.The most significant fea-

ture of young plains in the four quadranglesis that plains production

exteriorto cratershas decreasedmarkedly.

The emplacement of smooth plains material is correlatedwith

crater coverage only insofaras the productionof impactmelts which

usually fill the younger craters_and which are not overlappedby even

younger materials. Because the relationship of plains to crater

coverage in the post-Caloris periods of Class 1 and Class 2 is not

duplicated in earlier periods, one may surmisethat the style (or

mechanism) of plains formationchanges with time as noted above.

Alternatively,the intensityof plains formationmay fall with time.

Thus the percentage of quadrangle area covered by plains

represents primarily emplacement of volcanic materials; secondly,
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inevitablecontributionsfrom ejecta deposition,especiallyduring the

heavy bombardment;and thirdly,impact melts. Crater coverage affects

plains production directly through the impact mechanism, and

indirectly throughthe production of vents which allow subsurface

magmas to gain access to the surface.The mode of emplacementchanges

from positionsexterior to craters to positions interiorto craters;

not all the plains interior to cratersare impactmelts. These con-

clusions are supportedin the followinganalysesof the paleogeologic

maps.

PaleogeologicMaps of Mercury'sFirst Quadrant

The CalorisConnection

The hilly and lineatedunit (Fig. 19) forms a criticallink

between the relative ages establishedon the first and secondquad-

rants of Mercury. Rather than designatethis area as a separate unit

or deposit,as was done by Trask and Guest (1975)_it was treated as a

region disturbedby some distinctevent. To determinethe relativeage

of this disturbance, plains and cratermap units were continuedinto

this region from the surroundingarea. Sectionsof rims of Class 3

cratersare modified where they extend into the hilly and lineated

area; exterior to this boundarythe rims are intact (Fig. 89). Class 1

and 2 craters superposedon this surface are unmodified;the distal

edges of their continuousejecta blankets reflectthe hummocky topog-

raphy beneath. As can be seen in Fig. 90, smooth plains in this zone
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Fig. 89. West Edge of the Hilly and Lineated Area

The rough boundary of the hilly and lineated area determined by Trask and

Guest (1975) is outlined by dashes. A C3 crater A is cut by this boundary;

its rim and ejecta blanket are disturbed to the east, yet intact to the

west. The crater to the north, joined by a plateau of continuous ejecta

blanket materials, may be the same age, but lies entirely within a linear

array of 3 - 4 domes (see Fig. 19). Nearby are two very old C5 craters

designated as B and C. B lies near the domes; C is filled and surrounded

by smooth plains lying in between the remnants of rougher topography. Post-
event, smooth P2 plains fill larger older craters such as Petrarch (Fig. 19).

The scarp in the oblong crateriform (arrows) may be a volcanic flow front
(Strom et al., 1975b).

FDS 27379. North at top. Crater A is about 75 km in diameter.
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Fig. 90. Craters and Plains Units Within the Hilly and Lineated
Terrain

In general, Class 1 and Class 2 units formed after the disruption event;

Classes 3, 4, and 5 formed before the event. Note the hummocky P3

plains, as if they were sifted on top of jumbled debris, and the very
smooth, relatively uncratered P2 surface. Massive P4 materials extend

downward to the rim of the C5 crater beneath Petrarch; three parallel

troughs roughly radial to this crater may be covered by the P4 plains.

Some areas also are filled with massive, less blocky, smooth plains.
Note the P4 plains within craters to the northeast.

FDS 27423. See also Fig. 19. Note the large crater at right; its

diameter is approximately 70 km.
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are undisturbed and fill older, heavily disrupted craters such as

Petrarch. These stratigraphic relations suggest that the disturbance

occurred sometime between the formation of Class 2 and Class 3 cra-

ters. Crater diameter-frequency studies of the hilly and lineated area

also suggest a disturbance in the late C3 period, or possibly early C2

period.

Independently, geologic mapping of the Caloris basin quad-

rangles (H-3 and H-8) by McCauley et al. (1978) indicates that the

Caloris impact occurred between the formation periods of (LPL) Class 2

and 3 craters within the error of classification. Substantiating this

result, Woronow (in Strom, 1977) finds very few Class 3 craters on the

smooth plains of the Caloris basin and periphery. (Watkins, 1980,

supports this.) Wood et al. (1977) find two cratering episodes marked

by different degradation styles which are demarcated by the end of the

heavy bombardment episode, between Classes 2 and 3. From crater sur-

veys using the Brown University Mercury Crater Library (Cintala et

al., 1976), the rim and ejecta facies of Caloris might be a young as

early Class 2 period. Watkins' (1980) evidence indicates that plains

emplacement after the Caloris impact obliterated many craters on the

Caloris eJecta facies.

This agreement of relative ages of the Caloris impact and

hilly and lineated terrain formation lends support to the proposal by

Schultz and Gault (1975a,b; 1976) that the hilly and lineated terrain

was formed by seismic waves which were generated by the Caloris impact

282



and focused on its antipodal area (Hughes, App, and McGetchin, 1977;

different formation mechanisms are postulated by Moore et al., 1974,

and Wilhelms, 1976a).

The "Caloris Connection" is then the probable cause-effect

relationship between the impact forming the Caloris basin and the

disturbance forming the hilly and lineated terrain. From cratering

data there is only minor ambiguity in the date of the Caloris event,

being either late Class 3 or early Class 2 periods. Despite this

ambiguity, the Caloris event at the end of the Class 3 period was used

as a "time horizon" to date the crater and plains units relative to

the Caloris event. "Paleogeologic" maps were constructed by grouping

units of Class 1 and 2 as "Post-Caloris" features, Class 3 craters and

plains as "Caloris" features, and units of Classes 4, 5, and 5' as

"Pre-Caloris" features. This dating nomenclature has been used pre-

viously in analysis of cratering data. Details of the construction of

the paleogeologic maps are given in Appendix F. The reconstruction of

the paleogeologic map ("paleomap") essentially presents the material

laid down within that time period, and is not strictly a "snapshot" of

the geology at the ends of the Class 4, Class 3 and Class 1 periods.

The plains represented on the maps better correspond to the cumulative

plains coverage discussed in the previous section.

283



The "Post Caloris" Surface

The Post-Caloris surface is sparsely populated by both cra-

ters and plains as shown in Fig. 91. Relatively few large craters are

included, and these are randomly distributed over the surface. Crude

clusters of the post-Caloris craters (e.g., the Lu Hsun--Donne area

and the SStatsu--Andal area) roughly correspond to concentrations of

central peak craters in studies by Carusi et ai°(1977). Absences of

craters occur east of Ts 'ai Wen-chi, south and west of Titian, along

the western llmb of Bramante and perhaps within the hilly and lineated

boundaries. Fewer of the large fresh craters occur near the limb,

where large expanses of post-Caloris plains material lie within the

C5' depressions.

The plains distribution indicates several regularities. All

craters, except the smallest of about 40 km diameter, which are mapped

as one unit, have plains-covered floors. These are likely to be impact

melts. Most plains lie in depressed regions, including crater inter-

iors. The small, circular patches of plains material on the map are

usually young plains filling older craters. They occur both adjacent

to or far from younger craters, so origins as ballistic fill or vol-

canic intrusion respectively may both be possible. Irregular areas of

plains material occur in two modes, one adjacent to young craters and

another isolated from young craters, both within depressed regions.

The former type, illustrated between Handel and Lu Hsun (Figs. 22b and

85), may contain ballistically deposited materials, especially since
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Fig. 91. Paleogeologlc Maps of Mercury's First Quadrant

a. Pre-Calorls surface, consisting of Class 4,5, and 5' units.

Queried ancient circular depressions are a darker shade. Rims of
mapped C5' structures and buried craters are marked with dashed

lines and dash-dot lines respectively. Pre-Caloris plains, not

shaded, are hypothesized to occupy most of the surface. Appendix

F explains the construction of these maps.

b. "Calorls" surface, consisting of Class 3 craters and plains. Note

location of plains exterior to basins, surrounding smaller craters,
and isolated from C3 craters and basins, sometimes within much

older crater-depresslons. Actual age of "Caloris" units may pre-

date the Calorls impact, since the latter event is proposed to

occur near the end of the Class 3 period. Extensive plains em-
placement must have extended into this Caloris era. See text.

c. Post-Caloris surface, consisting of Class 1 and 2 units. Basins

are few and cratersand plains are sparselydistributed. Many
plains units lie far from young craters,and as above, are so_e-
times confined to older depressions. A few post-Calorisplains lie
betweencratersof a similarage, suggestingballisticemplace-
ment. Isolatedexposuresare likely to be volcanic.

Hillyand lineatedregionismarkedby a heavylinein (b)and (c).
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the associated craters are large. The irregular, isolated

post-Calorls plains are probably volcanic deposits. They are noted

especially in the limb region, enclosed within the ancient circular

depressions. Often these materials are physically separated from

younger craters by older plains units, and therefore are unlikely to

be ballistically deposited. Most of the post-Caloris plains within the

hilly and lineated area are located within older, degraded craters far

from young post-Caloris craters. These exposures are also interpreted

to be volcanic materials. The two largest expanses of smooth plains

occur within the C5' depressions; the areal extent is great enough so

that fairly large impacts have occurred on the plains' surface.

Further information on the post-Caloris surface is obtained

from the various crater statistics discussed in Chapter 3, plains and

crater morphologies, specific examinations of plains distribution,

analysis of tectonic events, and analyses of the albedo and color of

the post-Calorls materials. These topics are summarized below.

Summary of Post-Caloris Data. Craters from 40 to 120 km in

diameter cover 6.7% of the mapped surface; plains cover 10%. Plains

occur within floors of craters of the same age or older, and exterior

to craters at varying distances from fresher craters and basins. Many

plains are isolated, irregular in plan, remote from fresh crater

units, and interspersed with older materials. The more-clrcular expo-

sures fill older craters and ancient depressions. These low lying
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units, sometimes associated with volcanic landforms, are interpreted

to be volcanic in origin. Other exposures of plains are interpreted t9

be impact related--as impact melt, or as deposits of ballistically

emplaced ejecta. Albedo of the plains material may be bright (0.23) or

dark (0.13), with no apparent transition between the two (Dzurlsin,

1977b).

This era is also marked by continued tectonic activity includ-

ing scarp formation, ridge formatio_ and some faulting constrained

within crater floors. The seismic disturbance forming the hilly and

lineated terrain at the onset of this era may have contributed to mass

wasting and degradation, forming subdued areas which are later embayed

and buried by smooth deposits. Because most scarps transect smooth

plains material and because PI plains exterior to craters of the first

quadrant of _rcury are very rare, it is likely that most plains for-

mation occurred early in this era, shortly after the Caloris impact.

Smooth plains formation around the Caloris basin is much more exten-

sive, but also appears to be distinct from the basin event, and

continues throughout Class 2 and Class 1 periods (Watkins, 1980; Wood

et al., 1977).

In the first quadrant, plains and crater formation of the

Post-Caloris Era is far less than that of previous eras. Distribution

of craters on the post-Caloris surface is apparently random, with

minor clustering. Distribution of plains materials is affected by
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local topography and may be spatially random (although larger expo-

sures occur in the equatorial area and limb regions of the larger

quadrangles). Plains preferentially occupy topographically lower

regionssuch as crater floors_ancientdepressions,or channelscurbed

by continuousejecta depositsor older plainsmaterials.

Origins of the materials are varied, but as was shown in

Chapter 2, the smoothplains are predominantly volcanic,with some

additionsof ballistic ejecta,impact melt, and mass wasted debris.

Although scarp formationis more active early in the Post-CalorisEra,

as it progressesinto the Class 1 period, fewer plains units are noted

exterior to craters.Continued scarp formationand decliningplains

formation signal the cessationof surfacevolcanismor the increasing

difficultyof magma's access to the surface. Thus, the interpretation

that contractionand coolingof the planet caused compressional thrust

faults on the surface (Stromet al., 1975b) is consistentwith most

crater and plains distributionsof the Post-CalorisEra.

The "Caloris"Surface

The Calorlssurface,as illustrated in Fig. 91, comprisesthe

C3 and P3 units, and serves to emphasizethat a heavy bombardmentby

fairly larg$ projectilesand extensiveplains production continued

into the Class 3 period before ending in the early Post-Caloris Era.

Most of these materialswere emplacedbefore the Calorls impact, for

that event occurrednear the end of the Class 3 period.
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The crater distributionis fairly random on the Calorls sur-

face. The basin size craters (150 km - 250 km) are randomly

distributedfrom terminator to llmb and from high to low latitudes.

That randomness must also characterizethe originaldistributionof

smaller craters_ before resurfaclngand proximityweatheringoccurred.

(Becausemost of the overlyingpost-Calorls population consists of

smaller,randomlydistributedcraters, their proximityweathering of

older cratersmay not be as great as that of the Caloriscraters on

the pre-Calorisunits.)

Degradation by superposedlarger cratersor nearby C3 basins

may reduce the contrastin originaldegradationstatesof those cra-

ters, so that they are mapped as clustersof equallydegraded craters.

(Forinstance, the craters S6tatsu,Lu Hsun, and Ts'al Wen-chl have

affectedthe degradationstatesof the cratersaround them.)

Smaller craters,40 to 50 km in diameter,appear to have lower den-

sities in the Homer-Handel area. The hilly and llneatedarea has

normal C3 densities.If the paleomaps of the Calorisand post-Caloris

surfacesare compared,one notices the greaternumber of basins of the

older surface;smaller cratersequallypopulateeither surface.

The distribution of Class 3 plains materialsis varied and

suggests several origins. Four types of plains are noted on the

Calorissurface similarto, but more extensive than_ the general

exposuresof the post-Calorissurface.The paleomapshows that plains
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occur (i) interior to Class 3 craters, (2) interior to Class 4, 5, and

5' structures, (3) exterior but adjacent to or between Class 3 cra-

ters, and (4) exterior to and isolated from similar age craters.

Plains interior to older craters also vary with distance from C3

crater materials. The paleomap does not show which units are hummocky

and which are smoothj but often the exposures within mapped craters

are smooth. Textures of exterior plains can vary greatly, depending in

part on the texture of the underlying unit, and the depth of the

overlying deposit. The deposits listed have characteristic shapes, or

plans: the first two, confined by crater rims, are circular in plan;

the latter two exposures are irregular in plan, asymmetrically dis-

tributed around nearby craters, are much greater in area, and

sometimes surround smaller members of the Calorls population. As will

be discussed below, a volcanic origin is inferred for plains of type 2

and 4, a mixed ballistic and volcanic origin for type 3 plains, and

impact melts for type i. Exterior P3 plains are more extensive than

both P2 materials and P3 interior materials, but appear to be defi-

cient east of Homer, north of S6tatsu, and possibly in the hilly and

lineated region; all are areas of severe degradation. However, because

neither the Caloris nor post-Caloris plains are unusually abundant in

the hilly and lineated area, its formation was not accompanied by

local volcanism and flooding in any large amounts exterior to craters.

If the Caloris event did not trigger extensive volcanic flooding at

the antipode, it is unlikely that it triggered flooding at less

stressed areas.
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Summary of Caloris Era Data. Plains formation appears

extended throughout the CalorisEra, in Part continuing the emplace-

ment of intercrater plains, and in part, marking the beginning of the

preservedsmooth plains. The majority of the Calorisage plains are

interpreted to be volcanic. Other exposures have ballistic, impact

melt, or mass wasting origins.Volcanic landforms--domes,ridges, and

scarps of distinctive albedos--may have been constructed during this

period, signalling the closing of various conduits to the surface and

related changes in the composition of the magma source. Scarp forma-

tion begins early in the C3 period. Not all conduits closed with the

onset of scarp formation, for post-Caloris plains emplacement is

fairly extensive.Exteriorplains productionfalls by about a factor

of four; interiorplains productionactuallydoubles.Crater produc-

tion drops by about half after the Calorisperiod.

Production of plains and cratersis more complexthan first

noted. Plains emplacementmay be related to crater formation in the

followingways: (I) crater formation may fracture the crust (creating

a locally thinner region) to create conduits for plains-forming

materials, (2) cratersmay become sites for later plains emplacement

within depressions,(3) the plains may be ballisticdeposits of crater

and basin ejecta, and (4) crater and basin impactsmay enhance local

mass wasting and differential compaction to level the surrounding

terrain.P3 interiorplains of impact melt origin are directlyrelated
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to the number and size of the impactingbodies (seeHawke and Head,

1977). Survivalof all these faciesdependson superposed materials

and subsequentdegradation.

The "Pre-Caloris"Surface

Large basins I00 to 400 km in diameterand ubiquitousplains

characterize the Pre-Caloris surface (Fig. 91), which consists of

Class 4, 5, and 5' units.Most of the small craters are C4 in age;

they seem to be more numerous in the Discoveryand Bach Quadrangles

where fewer basins are located. The equatorial latitudes (Kuiper

Quadrangle)contain many ancientdepressions200 to 300 km diameter;

superposedcratersare usually smaller. Comparedto other areas of the

map, the hilly and lineated region contains no unusualnumbers of

pre-Calorisstructures. (Note that C4, C5 and C5' structuresare

grouped in pre-Calorisstatistics,so that this observationis not

contrary to the abundant C5 population indicatedby the hilly and

lineated crater statistics.)

Plains materials of pre-Caloris age are presumed to underlie

all younger material, and so are located wherever identified

pre-Caloris cratermaterials are absent. They also embay recognized

pre-Caloris craters, e.g. the south rim of Chekov.Plains interiorto

pre-Caloriscraterswere originallyimpact melts and floormaterials.

Summaryof Pre-Caloris Era Data. The Pre-Calorissurfaceis

exceptionalfor its numerous large cratersand basins of 100 to 400 km
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in diameter, and its widespread plains. The existing intercrater

plains cover many of the ancient circular depressions: these craters

are not "ballistic" sources of the existing plains material but may be

sites of localized extrusions. The remaining craters and basins of

C4-C5 ages do not have the resurfacing potential to cover the 30% of

the mapped area covered by P4 and P5 plains, compared to the 20%

covered by craters greater than 40 km. The widespread plains, volcanic

landforms, and evidence of features preserved as lineaments (or

ancient graben) suggest a volcanic origin for the pre-Calorls plains.

Within this terrain, small craters and secondaries of C4

basins are preserved. High numbers of small craters 5-10 km in size

have formed on this surface, yet the associated brecciation and

ejected debris have not erased older features, nor weakened the sur-

face with respect to its mare-like morphological behavior (Cintala et

ai.,1977). The intercrater plains are not completely flat surfaces

however, but rolling and hummocky (as first described by Trask and

Guest, 1975). Buried or highly degraded craters are noted in stereo

pictures (see Malin, 1976b); the plains share the topographic contours

of the ancient basin rims and depressions. The intercrater plains

often form a local highland; elevated sites may help preserve P5-P4

units, since the low-lying regions are filled with younger plains.

Restriction of ballistic ejecta by gravitational forces has prevented

burial of features by ejecta deposits.
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The geologic analysis and cratering studies of the previous

chapters suggest that volcansim was a major factor in altering the

(lunar-like) spectrum of craters caused by impacting projectiles. Most

of Mercury's basin size impacts (including those designated C5') seem

to have occurred in the earliest stages of heavy bombardment. Inter-

crater plains were emplaced during the continuing heavy bombardment

represented by craters of the pre-Caloris and Caloris surfaces.

Reduction of densities of intermediate to large craters in the

intercrater plains may be attributed to ancient basin-size impacts and

subsequent volcanism. The heavily cratered and intercrater regions

suffered the same bombardment, but different obliterationmechanisms.

Secondary cratering appears to be responsible for the high densities

of small craters on the intercrater plains.

Tectonic history of the pre-Caloris surface includes a wide

range of activities. Basin-produced seismic disturbances are likely

and may affect degradation of surrounding craters (Ronca and Green,

1969; Schultz and Gault, 1975b). Expansion of the planet produced

tensional, possibly normal faulting (graben production), and extrusion

of molten materials onto the crust (Solomon, 1976), although little or

no evidence of that expansion remains (see Chapter 2). Tidal spin-down

may produce stresses and strains in equatorial regions. These stresses

spread poleward as the planet relaxes to spherical shape (Melosh,

1977a,b; Melosh and Dzurisin, 1978). They may be recorded as

lineaments in the intercrater plains, a sort of jointing fabric not
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preserved in, or felt by, the younger materials (Strom et al., 1975b;

Dzurisin, 1978). Thus the intercrater plains may h_ve formed during

the period of planetary expansion and minor tidal heating (Burns,

1976), and were cut by lineaments and then by scarps during the

periods of tidal spln- down and the initial cooling of the planet,

respectively.

Other observations about the "Pre-Caloris" intercrater plains

include identification of domical structures and the lack of albedo

variations. The domes appear to be as old as the pre-Caloris surface,

but other constructions, such as ridges, are formed in later eras on

the intercrater material. The intercrater plains have a moderately

high albedo, and do not contrast strikingly with smooth materials, or

heavily cratered units. Some albedo differences are noted across scarp

contacts of P4 and P3 material, where P3 units are darker, but in

general, there is a "lack of photometric contrast between and within

intercrater plains, heavily cratered plains, and Caloris plains

units," (Dzurisin, 19775, p. 134). If volcanism contributes to forming

all three units, whose materials are then redistributed as crater

ejecta, a lack of contrast is likely if the composition of the

volcanic materials does not change significantly over that period. The

existence of minor areas of albedo and color contrast--across two

scarps, in some crater floors, and across some ejecta blankets--may

imply that compositional changes are muted by other processes.
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Summary

This part of the chapter attempts to correlate the geologic

and cratering histories in Chapters 2 and 3, respectively. Major

plains origins were examined first by isolating proposed examples of

volcanic and ballistically emplaced materials. Secondly, the relative

areas and coverage of craters and plains on Mercury's surface were

examined for correlations. Such a comparison may not be able to

determine a volcanic versus ballistic origin because cratering and

volcanism appear to be complexly related. Although both crater and

plains coverage roughly decrease with younger ages to the present,

variations within each quadrangle, and variations with respect to

successive plains ages and interior-exterior modes challenge plains

emplacement strictly as impact ejecta.

Various simple models were tested which estimate the amount of

plains-forming ejecta, the amount of material exclusive of continuous

deposits and impact melts, and the amount of plains buried by

subsequent deposits. Plains-producing potential may in fact be large,

but because this is not indicated from observations of craters and

basins on Mercury, further refinements of this estimate should be

made. It appears likely that both plains production by ballistic

deposition _nd volcanic emplacement were greatest during the early

heavy bombardment represented by the C4 and C5 craters. However, the

P5 plains which cover C5' craters, C5 craters, and regions exterior to
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them, are anomalously extensive. In addition, plains-to-crater-

coverage ratios become lower in more recent ages. This does not

suggest a change in the physical mechanism of ballistic ejection, but

rather an addition of volcanic materials which has decreased since the

P5 period.

In a third exploration of the crater and plains history,

paleogeologic maps were constructed, maps which present surface units

laid down in that era. It is clearly seen that the mode and quantity

of plains emplacement changes from vast exterior tracts in pre-Caloris

time to plains restricted to the interiors of craters in the

post-Caloris period. That change may result from lessening of volcanic

plains production.

Similar tests and analyses are applied to the synthesis of

lunar geologic and cratering data in the following section. Later

chapters discuss remote sensing and chemical data pertinent to inter-

crater plains formation and the planet's history. A surface history,

or "igneous chronology," can be constructed which provides constraints

for thermal history modelling.

The Lunar IntercraterPlains:

Synthesisof Geologicand CraterlngHistory

The surfacehistoryof the lunar intercrater plains consists

of episodes of cratering, plains formation,and tectonic activity

somewhatsimilar to those of Mercury.Plains surfacesincludebasaltic
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maria, light smooth plains, older light plains, and the disputed

pre-Imbrian pitted plains (the intercrater plains of the lunar

surface). The geologic and cratering histories of the southern high-

lands and related terrain have been discussed in Chapters 2 and 3.

Origin of the highland pitted plains and some comparisons to Mercury's

intercrater plains are discussed below.

Origins

Cratering and stratigraphic studies indicate a complex origin

for the pre-lmbrian plains, one that may involve basin influences to

an extent greater than on Mercury. As on Mercury, the primordial-

origin hypothesis for the plains can be ruled out because of evidence

of buried craters and topographic forms. However, plains and terra

within the nearside southern highlands may span a great period of

lunar history, from the heavy bombardment of pre-Nectarian time to the

quiescent Copernican period. Furthermore, that range in history is not

as obscured by the recent Orientale and Imbrium impacts as are other

regions of the earth-facing hemisphere. Regions around the Clavius

area (not within the plains unit) may represent a basic ancient sur-

face from which the earliest cratering records after crustal solidi-

fication can be obtained (Strom, 1977; Oberbeck et al., 1977). The

plains themselves "sample" a slightly later part of lunar history, the

period around the Nectaris impact.

Volcanic flooding and ballistic erosion and ejecta emplacement

are still viable mechanisms for pre-Imbrian (pitted) plains formation.
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Volcanlc-orlgln arguments center about stratigraphic relations in the

area which indicate an extended, post-Nectaris emplacement, tentative

volcanic landforms, including a flow lobe near Mutus, and plains of

variable thickness occupying lower topographic levels over a wide

tract of southern lunar highlands. As noted in Chapter 3, this region

also exhibits crater degradation patterns charac=eristic of volcanic

flooding (Strom, 1977).

However, proximity to the Nectaris basin demands that this

area was once greatly affected by that event. Chapter 3, sections i

and 2 discuss the direct and peripheral effects of basin impacts.

Craters less than 50 km may be severely degraded within the extent of

the continuous ejecta blanket (Woronow et al., 1979). Beyond that

range, for at least a basin diameter, additions of secondary craters

from ii to 19 km will exceed the former primary population. A thinner

sheet of ejecta facies, similar to the outer Hevelius Formation of

Orientale, may both overlie or underlie these secondaries; pre-impact

terrain should be discernible beneath the blanket (Scott, McCauley,

and west, 1977). The morphology of this outer facies may vary from

lineated to smooth and obviously will lose its distinctive character-

istics by erosion over time. The ejecta blanket and secondaries will

be emplaced over a time-scale of minutes. Degradation from the basin

impact beyond the continuous ejecta blanket should abnormally age

existing craters, producing an abundance of C4 and C5 structures, as

302



illustrated in the Albategnius and Werner regions (Strom, 1977). The

areas around Cuvier and Manzinus do not exhibit the peripheral basin

degradation patterns.

Stratigraphic dating argues that the plains are post-Nectarian

and pre-lmbrian (Scott, 1972; Mutch and Saunders, 1972). But the

interval between the Nectaris impact and the pre-lmbrian plains

formation is unknown, as was the interval between the Imbrium impact

and the Imbrian plains (Cayley-like) formation. Secondaries from

Nectaris visible beneath the pip unit do not necessarily imply a

lengthy post-lmpact interval. Post-basin, pre-plains crateriforms have

not been identified, but Nicolai and Spallanzani are possible

candidates.

The oldest plains surface mapped to date--the pre-lmbrian

plains or Nectarlan plalns--were emplaced during the heavy bombardment

represented by Class 4 and Class 3 craterlng periods. This was deter-

mined by dating the plains relative to the enclosed craters (Chapter

2) and by correlating the tlme-stratigraphic sequence with the LPL

crater classes (Wood, 1979). Because this "heavy bombardment" period

•also includes at least I0 basins formed prior to the Nectaris event,

and two dozen more following it, the primary dispute is whether the

plains are basin and crater ejecta (Wilhelms, 1979).

The basin formation may hold some complexities which are more

consistent with the "preservation" of the pitted plains. Craters which
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predate the basin forming impact and are located just southwest of the

Altal Scarp are not severely damaged--Zagut, for example. Woronow et

al.'s (1979) study of Orlentale implies that Zagut would be severely

deformed if it were located just 150 km from the topographic rim of

the basin. One explanation is that the excavation crater of Nectaris

is the intermediate rim, R = 310 km; craters nearer the Altal Scarp

may have suffered less degradation. If the Rook Formation is the

excavation crater of Orientale, this "intermediate ring" theory will

not ensure preservation of materials outside the topographic rim.

(Compare Schultz' 1979 hypothesis in which the Nectarian rings are

"tectonic adjustments" made soon after basin formation, and do not

correspond to Orientale-like excavation craters.) If the Nectarls

impact was oblique, secondary craters and ejecta facies and associated

destruction may be less in the uprange zone of the projectile's tra-

jectory. From the discussion in Chapters 2 and 3, an oblique impact

from the southwest forming the Nectaris basin implies that (i) fewer

Nectarian secondaries impact the Intercrater region, (2) ejecta facies

are confined within 1.5 R to 2.0 R from the basin center (almost

inside the northernmost limit of the pre-lmbrian plains), and that (3)

there is less destruction to existing craters (Gault and Wedekind,

1978). If such corrections are warranted, the lunar intercrater plains

were subjected to less basin influence than many other regions of the

lunar highlands.
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Similarities and Contrasts of the Lunar to Mercurian Intercrater

Plains

There are several similarities and contrasts of the lunar

intercrater area with the mercurian intercrater plains which should be

emphasized. On both planets there are episodes of plains emplacement

during the ongoing cratering of the surface. Intercrater plains--lunar

pip or mercurian P5-P3 units--are emplaced during a heavy bombardment

characterized by many basin-forming impacts. Smoother plains,

flat-lying and less cratered, are emplaced in periods of less intense

bombardment--on the Moon, early to late Imbrian (Ip) or younger (e.g.,

the mare units, Im, Em) and on Mercury, the post-Caloris units, P2 and

PI. A major difference is that the age of the lunar intercrater plains

appears restricted to Class 3 period. Terra surfaces (e.g., ridged

pre-lmbrian terra), defined as heavily cratered, flat-to-rolling

plains, may be analogous to P4 units, widening the lunar intercrater

plains age "spectrum."

The observed areal distribution of these units is not uniform;

later deposits and impacts markedly alter the smooth plains exposures,

especially on the Moon. Both planets show asymmetries with respect to

large young basins (Caloris and Imbrium). Older units are absent

there, and younger units (e.g. mare), postdating the basins, are con-

centrated in deep basin interiors.

In areas unaffected by young basin events_ plains productian

appears to decrease with time to the present. This occurs for the
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southern highlands, where pip exposures are greater than Ip and Im

exposures, and in Mercury's first quadrant, where pre-Caloris plains

are more extensive than Caloris plains, and the latter are more

extensive than post-Calorls plains. The second quadrant of Mercury

would probably show that post-Caloris plains are more than or equally

as extensive as existing intercrater units. The lunar farside, in a

similar manner, contains more Imbrian plains than Imbrian-Nectarian

plains. The Nectarian plains of the farside are the least abundant

(Gifford and EI-Baz, 1979).

Plains distribution is also similar on the two planets with

respect to elevation of the surface. Younger plains usually lie within

depressions, enclosed, or curbed by higher relief structures, such as

crater _ims, fault scarps, and ejecta masses. Older intercrater plains

occupy higher areas which block further embayment by volcanic

materials. Often the intercrater plains (PS-P3) occupy shallow C5'

depressions on Mercury; the lunar pip unit and the farside Np units

may lie within similar ancient basin sites, and were emplaced in

regions of thinner planetary crust during episodes of post-basin

volcanism.

Plains regions on both planets show lesser densities of large

craters and higher densities of small craters, less than 10 km in

diameter, compared to terra. Small crater coverage on pre-lmbrian

plains may exceed that on older terra units, because the craters are
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better preserved by consolidate_ subsurface layers (of volcanic

materials?) which may overlie a widespread lunar megaregolith.

Secondary craters form a large percentage of the high coverage by

small craters, on both the heavily cratered terrains and the sur-

rounding intercrater plains.

Loss of large craters on lunar plains is not consistent with

degradation by nearby basin impacts, but perhaps with direct impacts

at some ancient time. Crater deficiencies on Mercury are also linked

with the presence of the C5' _tructures. Schaber et al. (1977) suggest

that Mercury may have had an early period of a low viscosity crust, in

which largestructures were lost through isostatic equilibration; on

the average, however, Mercury's viscosity is the same as the Moon's.

Mercury's surface is unlike the lunar highlands in morphologic

preservation of large craters: Cintala et al. (1977) propose that

Mercury's megaregolith is not as deep nor widespread as the lunar

megaregolith. Pike et ai.(1980) agree that the mercurian surface is

"harder" and more consolidated, but argue that it may still represent

a megaregolith of 2 km depth.

Other differences between the plains regions on the two

planets concern the (I) extent of intercrater plains exposure; (2)
d

light plains distribution; (3) details of recorded crater popula-

tions--e.g, duration of heavy bombardment, (4) dearth of 15-40 km and

D_225 km craters on Mercury, and the lack of 3-14 km craters on the
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pip of the Moon; and (5) extent of basin influences(secondaries,

ejecta deposits,and megaregolithformation).

Tectonichistoriesdiffer also. The lunar surfacelacks great

scarps,interpretedas thrust faults, indicative of planetary con-

tractionof Mercury. Both planetshave lineamentsystemsof great age;

the lunar system is more pronouncedthan that on Mercury.The dif-

fering tectonicfabric may indicatea difference in the progressor

magnitudeof thermalevolutionof each body (Chapter6).

Comparisons between lunar and mercurian intercraterplains,

among lunar light plains,lunar maria, and mercurian smooth plains,

and between highland terra and the heavily cratered terrain of

Mercury, provide furtherinformation into processesresponsible for

emplacementof the intercraterplains of the Moon. The principledif-

ferenceis that the lunar area is no___ttas free from basin influences

(andthereforenot as primitive)as earlierstudieshad implied. More

extensive compositonaldata may provide definitiveclues for the ori-

gin of the pre-Imbrianplains.
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CHAPTER 5

REMOTE SENSING AND PHYSICAL DATA

OF MERCURY AND THE MOON

Imagery date from Mariner I0 and Lunar Orbiter IV form the

major base of observations thus far analyzed. But a variety of other

information aids in constraining the composition and structure of the

Moon and Mercury, and in particular, provides input to the problem of

the nature and origin of their intercrater plains. This information

for Mercury is remotely sensed from Earth or from the Mariner i0

spacecraft. Lunar data includes, of course, ground truth information

from the Apollo landing sites. Since neither intercrater region was

sampled, lunar and mercurian data are similar in type and limitations.

Constraints on surface and interior composition and structure

are reviewed below. Albedo and color data detected by the Mariner 10

spacecraft were reviewed in the Geologic Mapping section of Chapter 2.

Other summaries of physical data are found in Strom (1979), Ferrari

and Bills (1979), Gault et al. (1977), and Morrison (1970).

Remote Sensing Observations of Mercury

The composition and microstructure of Mercury's uppermost soil

layer appears to be globally homogeneous, as determined by polarimetry

and infrared data (Dollfus and Geake, 1975; Chase et al., 1974, 1976).

Together with albedo and ultraviolet information, these data are
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consistentwith a silicate,lunar-likesurfacewhose upper centimeters

form a fine, powdery regolith (e.g. see Morrison,1970; and Matson,

Johnson, and Veeder, 1977).

SpectrophotometricMeasurements

The closestanalog to the mercUriansoil over the wavelengths

0.33 to 1.06_m is that of the mature highland soil of the Apollo 16

site (McCord and Adams, 1972;Vilas and McCord, 1976).An anorthosltic

crustwould be consistent with the planet's lunar-likealbedo (Adams

and McCord, 1977).However, recentevaluations indicatea mafic crust

(basicto ultrabasic)would also be consistentwith the observations

(Hapke and Rava, 1980). By analogywith the mature Apollo 16 soils,

the Fe0 contentof Mercury's soll is estimatedto be less than 6%

(McCord and Adams, 1972; Vilas and McCord, 1976). Hapke (1977)

constrains the lowermostFe0 content to 3%, based on models of

darkening process efficiencies. Submicroscopic metallic Fe° in

concentrations less than 2% provides Mercury with its reddened

spectrum.From these data, Hapke concludesthat the surface is poor in

iron metal, Fe0, and Ti. A greaterabundanceof Fe=and Ti would reduce

the albedobelow observedlevels.

Spectralbands are so indistinctas to make identificationof

any mineral speciesdifficult.The presence of pyroxeneon Mercury's

surfacehas not been confirmed by all observers (namely Vilas and

McCord, 1976).McCord and Clark (1979)claim detection of a pyroxene
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feature, Suggesting low-Ca, low-Fe orthopyroxene (pigeonite?) or

low-Fe olivine. Tepper et al. (1977) report a hlgh-Capyroxene

(augiteand dlopside),and conclude that the surfaceis diopside-rich.

McCord and Clark (1979)conclude that Mercury'ssurfacecontains the

products of "familiar processes leadingto basaltic surface volcan-

ism," (p. 790). This opinionis supportedby the other groups noted

(Tepperet al., 1977; Adams and McCord, 1977;McCord and Adams, 1972).

Based on the longitudeson Mercury'ssurface sampledby these

various observers, pyroxenedetectionmay be position dependent. A

more complete longitudinalsamplingis needed. Differencesin average

reflectivltyof the third and fourth quadrantsof Mercury (Vilas and

McCord, 1976) may imply a differencein compositionbetweenthe hy-

pothesizedCalorissmooth plains and the intercrater plains which

dominateeach quadrant. Hapke et al.'s (1980a,b)color map of Mercury

supports a chemical dichotomybetween the Calorissmoothplains and

intercrater plains of the first and second quadrants. Higher reso-

lutionmultispectralphotometryis clearlynecessary to resolve these

ambiguities. Improvementin spatial resolutionmay aid in determining

the spectral signatureof recentlyexcavated(ray)materials.

In summary,spectroscopicdata appear to confirmthe existence

of pyroxene on Mercury'ssurface,and with it, the great likelihoodof

basaltic volcanism,becauseFe0 is not initially condensed on the

planet's surface (Lewis,1972). Color and albedovariations are not

striking, but do not support subtle chemicalvariationsbetween
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morphologicalprovinces such as intercraterplains and smooth plains

around Caloris. Mercury's surfaceappearssimilar to a mature lunar

highland soil, but containsless Fe0, Fe metal, and Ti; its higher

albedo and reddenedspectrum imply anorthosltlcor mafic materials.

Processesmust subdue or disguisemany of the older compositional

variations,otherwise,one must concludethat the ancientsurfaceand

source regions for the plains materials (whether volcanic or

ballistic)are homogeneousin composition.

Thermal InfraredData

Thermal infrareddata indicatethat the mercurian soil behaves

as if it were lunar soil exposed to the higher insolationreceivedat

Mercury's heliocentric distance (Morrlson, 1970; H_meen-Anttila,

Pikkaralnen,and Camichel,1970).Althoughsolar insolationis usually

modelled as the effective black body temperatureof the planet (440° K

for Mercury, compared to 270° K for the Moon), Mercury's highly

eccentricorbit and high inclinationcause temperatures on its surface

to vary 600° K, uniquelydependenton the longitude(Table i). In the

176 day insolationcycle, temperatures fall to I00° K (Murdock and

Ney, 1973),and rise to maxima in the range of 590° K to 725° K (Sorer

and Ulrichs, 1967). Thermoelastlc stresses (Liu, 1972), thermal

magnetic resonance,and outgassing (Kumar,1976) may be affectedby

such temperature cycles. McKinnon (1980) suggests that Mercury's

crustal thickness varies with latitude (and longitude?)due to the
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impressed surface temperatures. (Thicker crust may be expected at the

north and south poles.)

Thermal inertia measurements of materials of Mercury's dark

side hemisphere are characteristic of low density, porous material

near the evening terminator and more consolidated, rockier materials

approaching the western rim of the Calorls basin (Chase et al., 1974,

1976). Anomalies with greater thermal contrast, such as those detected

outside the Caloris rim, may result from impacts into a consolidated

surface, namely, the young smooth plains; lesser contrasts would

result from impacts into a highly cratered megaregolith, perhaps llke

the ancient intercrater plains (Thompson et al., 1979). Albedo maps

and radar altimetry profiles suggest that the intercrater plains

extend across the observed evening terminator, and that smooth plains

encircle the western rim of Caloris (Camichel and Dollfus, 1968;

Murray et al., 1972; Zohar and Goldstein, 1974). Further investigation

of the unlmaged hemispheres of Mercury have been made using Doppler

delay range maps and radar altimetry profiles (Zohar and Goldstein,

1974).

Orbital Data and Implications

Klaassen (1975, 1976) has refined measurements showing that

Mercury rotates three times in two revolutions about the sun (Table

i). The 3:2 resonance of spin to orbital periods suggests that the

planet was slowed from more rapid rotation (10-20 hours) by solar

313



tides (Burns, 1976). Heating of the planet through dissipation of

energy during the relaxation of the oblate spheroid (the "tidal spin-

down") may have been minimal according to Solomon (1976), but it

may have produced stresses which fractured the crust in predictable

patterns (Melosh and Dzurisin, 1978; Burns, i976; Melosh, 1977a,b;

Pechmann and Melosh, 1979). Peale and Boss (1977) argue that if the

planet had a molten core, .passed through the 2:1 resonance, and was

captured into the 3:2 resonance, without acquiring higher.order, less

stable resonance configurations, then the viscosity of the possible

core can be constrained to a broad set of values similar to

viscosities in the Earth's molten core. However, if Mercury was

initially a solid body, there are no constraints on its initial

obliquity and spin.

Magnetic Field

Analyses by Ness et al. (1974, 1975a,b) and supporting data

from other experiments aboard Mariner I0 (particles and fields,

electron densities, plasma densities) confirm that Mercury possesses

an intrinsic magnetic field. An active regenerative dynamo or a

magnetized shell are the two mechanisms consistent with the

observations. Since Mercury is protected from the solar wind by its

magnetic field, and since polar darkening is not observed, solar wind

darkening cannot be the primary mechanism by which albedo features are

altered or their contrasts reduced (Hapke, 1977). If Mercury's
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magnetic field is produced by an active regenerative dynamo, the

planet must have a partially molten iron core of sufficient thermal

energy to support convective motions (Ness et al., 1974, 1975a,b;

Stevenson, 1975). Gubbins (1977) and Stevenson (1975) find that, at

present, Mercury rotates fast enough to satisfy criteria for

regenerative dynamos, and that Coriolis forces "control core

dynamics."

A molten core of high conductivity--composed of iron, the

heaviest, most common element available in the early solar

nebula--implies that Mercury differentiated, consistent with its

silicate, Fe0-poor surface, detected by spectroscopic studies, and its

high density (see Table 1). Reynolds and Summers (1969) estimate that

the radius of the iron core would be 0.75 to 0.80 the radius of

Mercury (implying a 600 km thick silicate mantle). The question to be

addressed by modellers of thermal histories is whether this core is

molten, how much of it is molten, and whether there is an energy

source to produce convective activity.

Mercury's magnetic field can also be produced by remanent

magnetization within a spherical shell (Stephenson, 1976). Although

this does not imply a presently molten core, it does not exclude

differentiation and core formation. Various conditions must be

satisfied (concerning iron content of the shell, shell thickness, and

thickness of the sub-shell with temperatures above the Curie
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temperature of the remanence-carrying mineral), which Ness argues are

unreasonable for Mercury (Stephenson, 1976; Ness, 1978). The debate on

the source of the magnetic field is closely linked to the planet's

thermal history, discussed in Chapter 6. Most thermal models are based

on the dynamo interpretation of Mercury's field, and on the

silicate-rich, Fe0-poor, basaltic-type surface interpretation of the

spectrophotometric data.

Thus the implications of Mercury's physical data and remotely

sensed observations with respect to the origin of the intercrater

plains seem to be that (i) Mercury is a differentiated planet; (2) it

has a presently convectlng, molten, iron core; (3) it has undergone

tidal spin- down and its associated _ress history; (4) there may have

been local thermal stresses (Liu,' 1972); and (5) the composition of

Mercury's crust, mantle, and core are consistent with the above.

Finally, the physical data and imagery analyses suggest that Mercury

has a thermal history of global resurfacing through volcanism, and

associated global tectonism.

Remote Sensing Observations of the Moon

Remote sensing observations and lunar sample ages provide some

support to the assumptions and tentative conclusions reached in Chap-

ters 2, 3, and 4, regarding (I) the age of the Nectaris and Imbrium

impacts, (2) the thickness of the crust and its relation to lunar

basins and plains emplacement, (3) the chemical distinctiveness of the

pitted plains and smooth plains units, and (4) possible plains

origins.
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Age and Petrologic Data From the Apollo 16 Site

The age of the Nectaris event is less certain than that of

Imbrlum or Orlentale, and is quite important in estimating the inten-

sity of bombardment during the Nectarlan and pre-Nectarian periods,

and in constraining the duration of emplacement of the pre-lmbrlan

plains. Maurer et al. (1978) use rock composition, crystal histor_ and

shock history to determine the sequence of basin events as recorded at

the Apollo 16 site. They reason that basin impact ages can be deter-

mined by geochronological dating of rocks affected by those impacts.

From this data, the authors determine two ages and magnitudes

of craterlng. In the earliest episode, over 4.1 b.y. ago, craters of

moderate size, less than 200 km in diameter, were formed. These

impacts apparently reset the Ar exposure age (gas retention age) but

did not excavate deeper than the "feldspathlc, anorthositic highland

crust." The next craterlng episode (visible at the Apollo 16 site),

occurring from 3.9 b.y. to 4.0 b.y., was dominated by basin events.

Excavations penetrated to deeper crustal levels, reset the Ar ages of

affected rocks, and produced a wider variety of crystal textures and

compositions, including excavated KREEP basalts. Using further

assumptions, they date the Imbrium event at 3.88 b.y., and the

Nectaris event at 3.98 b.y.; Humorum, South Serenetatls, and Crlsium

formed in the I00 m.y. interval between the Nectaris and Imbrlum

impacts.
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The 8.98 b.y. age of Nectarls is much younger than prior

determinations. Geological mappers place the Nectaris event in the

early middle pre-lmbrlan period, about 4.1 b.y. according to Wood's

(1979) chronology (Offield and Pohn, 1969; Wilhelms and McCauley,

1971; Scott, 1972). Schaeffer and Husain (1974), using Ar exposure

ages and estimates of ejecta debris depths from each basin impact

(like the Maurer et al. group, 1978), set the Nectaris event at 4.25

0.05 b.y. and the Imbrlan event at 3.95 ! 0.05 b.y. These two dates

had been accepted as the standard ages for these events. As noted in

Chapter 2, the age of the P3 intercrater surface (4.0 b.y. in Wood's

19.79 chronology) is nearly contemporary with the Nectaris impact as

dated by Maurer et al. (1978). This does not imply that the two units

(plains and Nectaris basin ejecta) are related. Maurer et al.'s study

constrains the time of emplacement of pre-lmbrium plains to a I00 m.y.

interval which nearly overlaps the time of mare basalt emplacement,

and falls within the estimated ages of KREEP basalt genesis 4.3 to

3.85 b.y., reported by Ryder (1976), Ryder and Spudis (1979), and

others. Maurer et al.'s study does not answer the question of whether

the pre-lmbrian plains deposit is part of the highland KREEP basalt

volcanism.

Compositional Data

Highland areas are, by definition, high in elevation, high in

albedo, and overlie a thick lunar crust. Compositionally, they are
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high in Al/Si, low in Mg/Si, low in F_ and usually lower in radiogenic

elements, U, Th, and K than the mare regions (Clark et al., 1978;

Hubbard, 1979; Arnold, Metzger, and Reedy, 1977; Haines, Parker, and

Metzger, 1977; Metzger et al., 1977). Adams and McCord (1977) esti-

mate 5.5% Fe0 occurs in the Descarte highlands of the Apollo 16 site,

near the Cayley plains material. The generally high albedo of the area

and the returned samples indicate an anorthositic composition. Varia-

tions in color and albedo contrast in the highlands are few (Whitaker,

1972). Smooth light plains which show no spectral contrast_ with sur-

rounding highland material are likely robe Cayley plains materials of

locally derived brecciated debris (Conca and Hubbard, 1979).

Exceptions to this dominant spectral pattern have been noted

recently and attributed to highland basalts, i.e., to highland

volcanism (Haines, Etchegaray-Ramlrez, and Metzger, 1978; Bielefeld et

al., 1976), KREEP volcanism may have occurred during the Pre-Nectarian

to Imbrian eras (e.g. Hawke and Head, 1978). KREEP basalts, richer in

Mg, K, Th, and Fe than mare basalts or highland materials, may form a

widespread layer under the eastern and western maria (Andre, Wolfe,

and Adler, 1979b), may underlie Imbrlan-Nectarian plains near Balmer

(Haines et al., 1978; Hawke, Spudls, and Clark, 1979), and may form

the Apennine Bench Formation (Spudls, 1978). Duration of emplacement

is extensive: from 4.3 aeons (as dated in KREEP samples and con-

strained by granulltic Impactites, Warner et al., 1977) to 3.8 aeons,
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prior to emplacement of Mare Imbrlum (Ryderand Spudls, 1979; Spudls,

1979; Metzgeret al., 1979, Haines et al., 1978).Smooth plainswhich

appear spectrally distinctmay be chemically distinct as well. The

light plalns--Imbrian plains to Nectarianplalns--probably have a

variety of origins, includingpre-marehighland volcanism (Andreet

al., 1979a;Conca and Hubbard, 1979; Charetteet al., 1977; and EI-Baz

and Wilhelms, 1975).

Studies by Pieters (1979),Seeger,Potter,and Wolfe (1979),

and Seeger (1979) confirmthat the pre-Imbrianpitted plains unit is

distinct from youngerplains units and distinctfrom Nectarls eJecta.

Only minor amounts of the Janssen Formation"signature"are included

in the pip unit (Seeger, 1979), suggesting that the pIj unit may

underlie the pip, and may be exposed by subsequent excavations, con-

sistent with the geologic analysis of Scott (1972). Pieters (1979)

suggests that this common, Fe0 rich highland soll may be volcanically

derived,even thoughit is not a mare basalt, as determined by its

orthopyroxene and plagloclase composition. This material was not

sampled in the Apollo missions. Recognition of other, possibly wide-

spread, pre-lmbrian basaltic materials strengthens the argument for

ancient highland volcanism as the source of the lunar intercrater

plains.

Longer wavelength data. Longer wavelength data indicate a

surface uniformly cooler than the mare, with temperature contours
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paralleling the mare-highland boundaries (Keihm and Gary, 1979; Gary

and Keihm, 1978; Shorthill and Saari, 1965; and Raine et al., 1975).

The highlands appear to be more pulverized than the mare, forming a

brecciated zone (a megaregolith) of 2 km depth. Small craters of the

highlands eject fewer blocks than small craters on the mare (Thompson

et al., 1979).

One may conclude that the uppermost layers of the intercrater

plains are local breccias and eJecta deposits, similar to those com-

prising many Cayley plains. However, beneath this layer may be another

of distinct composition related to the episode of KREEP basalt

emplacement prior to the Imbrian period. KREEP-rich light plains are

detected by compositional variations from local deposits; so too, the

pre-lmbrian plains may have been detected by Pieters and Seeger.

Because of the greater age of this intercrater unit, deeper amounts of

local debris may cover the KREEP-rich deposits (cf. Hawke et al.,

1979).

Physical Data

Physical data indicate that (i) the southern highland crust,

determined to be 50 to 80 km in depth (Bills and Ferrari, 1977;

Thurber and Solomon, 1978), is thin enough to be consistent with KFZEP

volcanism because the KREEP basalts are emplaced beneath a crust of

less than 60 km (Spudis, 1979); (2) craters of Imbrian age may be

locally intruded by magma (Dvorak and Phillips, 1978); and (3) near-

side and farside Nectarian plains are found in topographically low
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areas, such as basins or lowermost fault blocks (Gifford and Ei-Baz,

1979; Scott, 1972; Mutch and Saunders, 1972). Neither an anomalously

thin crust, nor a mascon feature appears to be located beneath the

pitted plains region, within the latitudinal confines of the data.

Magnetic data are not inconsistent with the formation of a

small lunar core, and possibly indicate that the surface field

increased in Imbrlum time and has decreased since. The field appears

to be relatively high during the pre-Nectarian era (Russell et al.,

1977; Srnka and Mendenhall, 1979). Apparently the core formed during

the rapid melting of the Moon, after crustal formation. More recent

data suggest that the magnetic fields detected in lunar orbit result

from surficial sources only; these sources most likely are F_-rich

breccias magnetized in impact cratering events. The strongest fields

are located over high-albedo swirl features near the antipodes of

major recent basins (Hood, Coleman, and Wilhelms, 1979).
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CHAPTER 6

THERMAL HISTORIES OF MERCURY AND THE MOON

Thermal Histories of Mercury

To determine a planet's thermal history, a wide range of data

is necessary. These data include remote sensing results, photogeologic

evidence, magnetic field and remanent magnetization data, composition

and ages of samples, and physical parameters of the planet and its

orbit. Few of these data form unambiguous constraints for thermal

models of Mercury. Toks6z, Hsui, and Johnston (1978) provide a general

list of constraints set by the data (Table i0). They define the

"igneous chronology" as the "time history of the differentiation and

igneous activity," (p. 293). "Igneous Chronology" is used here in the

sense of the apparent igneous or relative chronology of geologic

events, such as plains formation (through whatever mechanism) relative

to the crater production and tectonic history (lineament and scarp

formation).

The preceding chapters summarize much of the available data

used as constraints for thermal modelling. The "igneous chronology"

and tectonic features are discussed in Chapters 2 and 4. More complete

discussions of Mercury's thermal history appear in Gault et al.

(1977), Ness (1978), Toks_z et al. (1978), Solomon (1976, i977b,

1978a), Siegfried and Solomon (1974), Fricker, Reynolds, and Summers

(1974), Fricker et al. (1976), and Strom (1977, 1979).
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Table I0: Data Needed to Constrain Thermal History Models

Data Constraint

Moment of inertia Interior structure; core

Uncompressed Density Pressure and density gradients

Seismic data Subcrustal layers and molten zones

Magnetic field Presence of molten core, dynamo; remanently

magnetized shell; paleofield

Surface heat flow Radioactive materials, differentiation

Electrical conductivity Composition, densit_ and temperature
gradients

Imagery: Igneous Surface record of igneous activity (volcan-
Chronology ism), crust and lithospheric growth, core

formation

Imagery: tectonic Global stresses (expansion/contraction)

features local to regional stresses (basin loading

and dynamical thermal activity)

Imagery: Cratering* Indirect dating mechanism for igneous
chronology, basin events

Spectrophotometry* Composition and small scale structure of
surface.

* Added to Toks_z et al.,'s (1978) list, pp. 293-294.
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Compositional Constraints of Mercury's Surface and Interior

Equilibrium nebular condensation theory predicts that Mercury

contains minerals which condensed at average temperatures of 1400° K

and pressures of _ 10-3 atm (Lewis, 1972). Predicted components formed

by cooling to those temperatures are mostly high temperature refrac-

tories, iron-nlckel, and Mg-rich silicates. These include: perovskite

CaTi03 , melilite Ca2MgSi207 (which may re-equilibrate at 1450°K to

form diopside), spinel MgAI204 , diopside CaMgSi206, forsterite Mg2Si04,

and possibly pyroxene MgSi03 (at 1349°K). Fe-Ni condenses at 1475°K.

Anorthite CaAI2Si208 forms from spinel at 1362° K. The lower temper-

ature minerals are included within the temperature range allowed by

Lewis (1972), 1550°K to 1300°K; pressures may be as great at 10-2 atm

according to Lewis' Figure 2 (1972). Rare earth elements are expected

to condense out with perovskite, melilite, and diopside in solid

solution. The incompatible refractories uranium and thorium will enter

the refractory compounds. In later re-equilibration U and Th will

enter the Mg-silicates (Grossman and Larimer, 1974).

Goettel (1976) used Lewis' theory to predict the following

composition for Mercury at T = 1400°K and P = 10-3 arm.

Refractory condensates: 15.43%

AI203 5.81%; Ca0 5.31%; Mg0 1.04%

Si02 3.02%; Ti02 0.25%

FeNi alloy 65.07%

Mg2Si04 (Forsterite) 19.52%
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Lewis' model assumes equilibrium condensation and homogeneous accre-

tion of planeteslmals in the immediate locale of Mercury in its orbit.

Goettel (1976) claims that the above composition will not change much

if gas/solld equilibrium is not active. However, should mixing of high

and low temperature condensates or fractlonatlon processes occur (e.g.

Weidenschilling, 1978), the following changes may be expected in the

following order:

(I) Replacement of Mg2Si04 (olivine) with MgSi03 (pyroxene)

(2) Addition of K and Na

(3) Addition of FeS

(4) Addition of Fe0

It thus appears likely, comparing these expected changes with spec-

trophotometric data (which suggest Fe0 and pyroxene), that mixing or

fractionatlon processes have occurred to a limited degree on Mercury,

as concluded by Ringwood (1979). Endogenlc processes may have gener-

ated some Of these minerals, so some caution is necessary in the

conclusion that they are "primordial." The more volatile components

.

are not likely to be abundant; Mercury's silicate chemistry may be

modelled by mixing high temperature refractories with a small amount

of anhydrous chondritlc material, as Seltz and Kushiro (1974) have

done with Allende meteorite in modelling Earth's mantle.
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Condensation and Accretion. A planet's thermal history begins

with condensation and accretion. These processes determine the

planet's initial temperature, its initial composition, and the physi-

cal distribution of its components, especially the heat-producing

elements. The accepted (but sometimes challenged) models are equilib-

rium condensation and homogeneous accretion, discussed above (see

e.g. Grossman and Larimer, 1974; Lewis, 1972; and Goettel, 1976).

In this model, heat producing elements U and Th occur in the

Mg-silicates, homogeneously distributed throughout the body prior to

differentiation. Initial temperatures used in thermal models vary from

the planet's present effective temperature (440°to 350°K), to its

condensation temperature 1400 ° K (Lewis, 1972). More rapid accretion

rates increase surface temperatures; larger impacting bodies may

deposit heat at greater depths, possibly initiating melting of the

planet.

Condensation rates (fast or slow cooling) determine whether

different chemical species have time to equilibrate. A fractional

condensation occurs if condensates are removed from equilibration from

the solar gas, usually by condensing, accretin_ and being buried in

layers of primitive aggregates. One expects U and Th to enter the high

temperature refractories, perovsklte and melilite, rather than magne-

sium silicates. If inhomogeneous accretion then occurs, these

refractory rich materials are buried at the core of the planetesimal,

327



covered by Fe-Ni and then by the silicates (see Cordell, 1977).Had

equilibriumcondensationoccurred, followed by Inhomogeneous accre-

tion, the heat producing elements may occur in the silicatemantle,

not in the core of the body. Other processes,such as iron-silicate

fractionation and magnetic field interactions, may have affected

Mercury's composition,as arguedby Weidenschilling(1978)and Alfven

and Arrhenius (1976).Mixing of planeteslmals accretedat different

solar distances introduceslow temperaturecondensates,like K, S, and

Fe0, to Mercury; substancessuch as these are invoked to maintain a

molten, convectlngcore. Ringwood (1979) considersthat Mercury is

composedof a small amount of low temperaturecondensates(Fe0,K,and

S) plus a large proportion of the high temperaturerefractoriesand

Fe-Ni.

A large number of initialstates can be produced by combina-

tions of the condensation,accretion,and fractionation hypotheses.

These include:

(I) A cool homogeneousbody of iron and silicateswith radio-

isotopes (U, Th) distributedthroughoutthe silicates (e.g.Solomon,

1976).

(2) A hot body, whose temperaturescause meltingand differen-

tiation (possiblyduring accretion)so that iron metal sinks to lower

layers of the molten material,and U and Th differentiateto the crust.

In this process,an iron core will form (Frickeret al., 1974).

(3) A cool heterogeneousbody with a refractorycore, iron

mantle, silicateupper mantle,with U and Th in the uppermostsilicates.
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(4) A Ca-A1 rich refractory core with U, Th within it, sur-

rounded by FeNi_ with an upper mantle or crust of Mg silicates

(Cordell, 1977). This configuration may be unstable.

(5) A cool (or hot) homogeneous mixture of low temperature

condensates and high temperature condensates, with the latter pre-

dominant (e.g., Kaula, 1976).

Thermal history models accommodate the initial conditions by

beginning with a body of the observed mass and density and of compo-

sition regulated by position in the solar system. If other information

is known--the moment of inertia, seismic, or compositional data--the

interior structure can be approximated; otherwise a homogeneous,

self-gravitating sphere is assumed. (Some models begin with a differ-

entiated body.) Initial temperatures on Mercury have been set to the

(a) effective temperature of a reflecting surface (344° K), (b) tem-

perature of the solar nebula at that distance and pressure (1400°K,

condensation temperature), (c) melting temperature of the body,

O
assuming a rapid, hot accretion, 2000+ K, (d) present surface temper-

atures, assuming a cold accretion (100°to 700°K), or (e) a temperature

based on other information. Radioactive element content of the bodies

varies from chondritic ratios, to lunar, to terrestrial, as listed in

Table I, Toks6z et al. (1978). Although the (Th/U) ratio is nearly

equal for the solar system bodies (3.5-4.0), the (K/U) ratio varies

widely because K is a volatile element and U a refractory. (In mineral
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melts, both are incompatible.)At Mercury, (K/U)is expectedto be

zero. Otherheat sourcedensltlesandmodelparametersare listedin

TableII of Ness (1978,p. 541).

Basic ThermalEvolutionModels

The earliest thermal evolution of a planet is dependent on

its initialtemperature and the heat source strength;this determines

the likelihoodof core formation.Later evolution and the planet's

present condition are governed primarily by its size (ToksDzet al.,

1978; Walker, Stolper,and Hays, 1979). The observationsfor Mercury

apparentlyrequire(I) very early core formation,prior to the end of

heavy bombardment,and (2) a presentlymolten core, required by the

active dynamo interpretationof the magnetic field data (Ness et al.,

1975a,h). Satisfying these constraints and others presents the

greatest challenge to thermalhistorymodels. Both constraints are,

moreover,model dependent,as describedearlier.

The models of ToksOz et al. (1978) and Solomon (1976, 1977b,

1978a)best fit the constraintsset by previous authors,as summa-

rizedby Gault et al. (1977), Strom (1979),and Ness (1978).Earlier

models of Majeva (1969),Siegfried and Solomon (1974), and Frickeret

al. (1974)have been improvedwith better constrainedmelting curves

and heat source densities. For example,Majeva (1969)used chondrltic

values of K, U, and Th; the planet did not melt and differentiate.

Recent modellingomits K as a heat source,based on Lewis' (1972)
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/
conde_satlonsequences,and scalesU and Th to the amount of silicates

/
/

in the planet,based on lunar, chondrltlc,or terrestrialvalues.The

iron melting curve of Higglns and Kennedy (1971)is improvedby that

of Liu and Basset (1975).Frlckeret al. (1976) suggestedthat sepa-

rate melting relationsfor the iron core and the silicatemantle be

used after differentiation. Toks6z et al. (1978)use the dlopside

melting curve of Boyd and England (1963) to approximate the

refractory-rlchmantle of Mercury. For smallerbodies (the Moon), the

basalt melting curve of Ringwood and Essene (1970)is commonly used

(Toks6zet al., 1978).

Thermal conductivityvalues have also becomemore sophisti-

cated. Siegfried and Solomon (1974) averaged silicate and iron

conductivities,with a resultingconductivitysimilar to that measured

in mesosiderites and pallasites,the stony-lronmeteorites.Frickeret

al. (1974, 1976) separatethese conductivitiesafter differentiation,

with the result that the low conductivity of the silicate mantle

insulates the high conductivitycore, reinforcingthe discontinuityof

their melting temperatures at the boundary. ToksOz et al. (1978)

include the radiativeand electrical conductivity with the lattice

conductivity term. Other complexities includethe inclusionof con-

vection,(Schubert, Cassen, and Young, 1979;Turcotte, Cooke, and

Willeman, 1979_ solid state creep or convection (Tozer,1972, 1974;

Meissner and Labge, 1977),and differentdistributionsof heat sources
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(Daly and Richter, 1978; Schubert, Stevenson, and Cassen, 1980;

Stevenson et al., 1980; Horedt, 1980; Kaula 1979a; Gubbins, 1977; and

Liu, 1972). Some of these models are reviewed in Appendices G and H.

Variations between the Toks6z et al. (1978) and Solomon

(1977b) models centers on the time of initiation of core formation and

the subsequent events.

The "Toks6z" model. The Toks6z et al. (1978) model of Mercury

begins with surface temperatures of 1400°C (base temperature 1400°K),

U heat source abundance of 44 ppb., and rapid initiation of partial

melting to a depth of_900 km. (See Figs. i0 and 12 of Toks6z et al.,

1978.) The core separation begins at 0.5 b.y. as melting advances to

deeper levels in the homogeneous planet; the energy released from

these processes raises the temperature 600 ° C to 700°C globally. By 1.5

b.y. core separation is complete and cooling begins. Solid state con-

vection within the partial melt zone keeps the planet "active" for

another 1 b.y. This zone, located at the 1200°C isotherm, descends in

depth from i00 km at i b.y. to 150 km at 2 b.y., to 200 km at 2.5 b.y.

At present, the base of the lithosphere, defined as the 1000°C iso-

therm, extends to 250 - 300 km depth; solid mantle continues to 500 km

depth, consistent with the 3/4 R radius of the core-mantle boundary.

The core remains partially molten only when a heat source abundance of

H _ 1.5 10-8 ergs/cm3/sec is included; if H = 0, the core would be

solid. The minimum heat source abundance is equivalent to 2 ppb U

remaining in the core (Toks6z et al., 1978, p. 303).
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Mercury's internal energy and activity may have peaked at 0.8

b.y., during the surge of thermal energy produced in core formation.

Tectonic activity lasts 2 b.y. after planet formation. Energy within

the planet starts to decrease more rapidly at 2.5 b.y., after the

cooling of lithosphere and mantle, and cessation of solid state creep.

According to Toks6z et al.'s (1978) Fig. 18, the duration of activity

on Mercury exceeds that of the Moon. Unless this applies only to the

scarp formation activity, it contradicts Solomon's (1977b, 1978a)

prediction that the youngest plains on Mercury's surface should be

older than those on the Moon. Strom (1977, 1979) appears to support

Solomon's conclusion based on the crater population recorded on the

Caloris smooth plains.

Intercomparisons of planetary energy output shows that the

time of peak energy output (thermal evolution) occurs in the order

Moon, Mercury, Venus, and Mars, with the value and rate of decrease in

energy greatest for the Moon, followed by Mercury and Mars. Venus has

had nearly constant activity since its core separation, i b.y. fol-

lowing accretion. Venus and Mars may still be active (with partial

melt zones), but Mercury and the Moon are currently inactive.

The "Solomon" models. Solomon's 1976 model is very similar to

Toksoz et al. (1978) model. Solomon's (1976) initial conditions are a

nearly flat temperature gradient with T(center) = 1400° K. Core forma-

tion occurs from 1.2 to 1.8 b.y., accompanied by radial increase of 17

km, and heal generation equivalent to 700c K increase in temperature.
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The major part of core formation occurs between 1.4 to 1.6 b.y. The

upward differentiation of heat sources contributes to rapid heat loss;

the core is solid N I.5 b.y. after it separates completely. The radial

contraction due to lithospheric cooling is 2 km. Core solidification

brings the total radial decrease to 17 km.

The "thermo-tectonic" models of Solomon (1977a,b; 1978a,b) are

directly applicable to the parallel history of volcanism and tectonlsm

on Mercury. The basic model is simple. Radioactive materials (or

another heat source) _thin a homogeneous body cause melting and dif-

ferentiation of iron and silicates, often leading to core formation.

The body expands from the thermal expansion, redistribution of iron

and silicates, and phase changes in core and mantle. During this

extensional tectonics period, extrusion of volcanic materials occurs

through opened vents. Following core formation, the planet cools, and

enters a compressional tectonics stage, during which contraction of

the lithosphere closes off source vents, ending the phase of

volcanism.

Solomon (1977b, 1978a) predicts that the intercrater plains

formed during core formation-expansion episode, and that scarp forma-

tion occurred during the cooling and contraction of the planet,

accompanied by the cessation of volcanism.

Apparent inconsistencies in this model are (I) the lack of

global scale tensional features on the surface, (2) the approximate

334



limit of radial contraction of 2 km (Strom et al., 1975b), and (3) the

probability of a molten core at the present (Ness, 1978). The conclu-

sions of this research and earlier observations (e.g., Strom et al.,

1975a,b) suggest in addition that scarp formation is concurrent with

smooth plains formation, that the average viscosity of the surface is

1026.5 poise, similar to that of the Moon's (Schaber et al., 1977),

and that the compositions of Mercury's old and young plains do not

differ substantially (Hapke et al., 1975, 1980a,b; Hapke, 1977;

Dzurisin, 1977b).

Solomon (1977b), addressing these constraints, argues that the

extrusion of intercrater plains materials during the core formation

period and the heavy bombardment erased the tensional features.

Therefore, the age of the oldest visible plains surface must be

younger than the extensional tectonic period, confining differenti-

ation and core formation to a period prior to the end of the heavy

bombardment. From arguments noted earlier, it is assumed that

Mercury's heavy bombardment, like the Moon's, ended about 4.0 b.y.

ago, setting a span of 0.6 b.y. for core formation on Mercury. To

ensure such rapid core formation (as compared to ToksSz et al.'s or

Solomon's earlier models), Solomon starts with a high initial temPer-

ature (T= = 1600°K). Radioactive elements (uranium concentration of 38

ppb) become concentrated in the upper 80 km of the crust. The (700°K)

increase in global temperature is accompanied by global tensional
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stresses and fractures, and magmatic extrusions through the vents.

Radial increase of this model (Fig. 8 in Solomon, 1977b, p. 141) is 7km.

Following core formation the planet cools and compressional

stresses dominate as the radius of the planet decreases. Compressional

stresses are greatest, and produce the most pronounced contraction,

about 400 m.y. after "core segregation." A tangential stress factor Aa_

--_% can be computed which measures the change in thermoelastic

tangential stress with time (Solomon, 1977b, p. 138). This factor

(defined in Appendix I) is positive for tension and negative for

compression. Solomon comments that this factor is negative to 40 km

depth, i.e. implying a global compression. From 40 to 120 km depth,

the factor is positive, indicating subsurface tensional pressures

which persist for "several billions of years," (p. 142, Solomon,

1977b). This creates a favorable mechanism for extrusion of molten

materials after the onset of scarp formation (Solomon, 1977b; Leake,

1980b), consistent with smooth plains formation during the P3 through

P1 episodes.

Craters of 40 km or larger are likely to have fractured the

crust to 40 km depth (Roddy, 1977; Croft, 1978). Magma may be extruded

into the tensional layer; Solomon notes, (1977b, p. 142), "...thermal

stress will readily permit upwards propagation of magma to shallow
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crustal levels, from which it can travel to the surface if fluid

pressure exceeds lithostatic or if the overlying crust is weakened by

impacts." Because the radius decrease is apparently confined to 2 km,

only 60% or less of the core can be solidified at present. Although

this is consistent with the conclusion of a molten, convecting core-

dynamo producing Mercury's intrinsic magnetic field (Ness et al.,

1974, 1975b), it nevertheless requires extra heat sources in the core.

The other two constraints, those of Schaber et al. (1977) and

Hapke and Rava (1980) and others, are met by Solomon's model to some

extent. Core formation prior to 4.0 b.y. ago is consistent with an

average viscosity of 1026.5 poise only if Mercury's current crustal

viscosity is higher than average (for about 4 b.y.). Values of 1027

poise are predicted for Mercury at a depth of I00 km at the present,

decreasing to 1021"5 poise at 400 km depth (Meissner and Lange, 1977).

Compositional changes within extruded lava flows are expected

for extended fractionation times, as may occur on large bodies with

active volcanism (Walker et al., 1979); these changes may also be

correlated with the source depth (Stolper, 1980). Further discussion

is given in the Implications section of the next chapter. The lack of

striking compositional differences may imply that Solomon's subcrustal

tensional layer is too deep, that the tensional conditions were

shorter in duration than "several billions of years, or that com-

pressional stresses above or below the tensional layer were too great
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to overcome, or that his model is wrong. Otherwise, the onset of scarp

formation may signal the deepening of the source region of the young

plains extruded during that time. Only a few smooth plains deposits

are chemically distinct from older plains units (as, for example, the

red unit on Murasaki's floor, Hapke et al., 1980b).

In most models with reasonable heat source concentrations, a

cool initial temperature, efficient differentiation of radiogenic

isotopes to subcrustal silicates, and efficient separation of sili-

cates from iron, the core begins to form at least 1 b.y. after planet

formation, is completed in another half billion years, and has solid-

ified about 1-2 billion years before the present. In models with 30

ppb Uranium concentration in the silicates, scaled to estimated lunar

abundances, core separation and melting do not occur. The planet's

internal temperatures rise, but do not reach the Fe-liquldus in 4.6

b.y. Models with 44 ppb U, scaled to chondritic meteorites, do melt

for all initialsurfacetemperatures(Siegfriedand Solomon, 1974).

Efficientdifferentiationof these heat sources causesmost models to

cool before the present.Methodsproposed to keep the core molten are

summarizedbelow.

The preferredmodels of Solomon(1977a,b;1978a),accordingto

Strom (1979), show (i) rapid core formation,prior to 4.0 b.y. ago,

(2) greatest cooling and contractionrates shortlyafter core forma-

tion, (3) less severe contractionover the remaininghistory, (4) a
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molten core, or molten and convecting outer core at present, and (5)

volcanic extrusions during early compression and cooling of Mercury.

Some relaxation of these requirements may be indicated by this

study. Since ancient tensional features other than Caloris and the

hilly and lineated area have been tentatively identified, the

requirement of rapid core formation and obliterating bombardment may

be eased slightly (only slightly--these features are rare and not

regional). Because scarps of period 2 are more numerous than those of

period 3, the greatest contractive phase need not follow immediately

after core formation ends. Compositional homogeneity may require that

the proposed tensional layer be shallower or more shortlived than

1!
"several billions of years.

Toks6z' general model fits most of these revised constraints,

but may still be too sluggish to have intercrater plains formation

coincident with heavy bombardment, unless the heavy bombardment on

Mercury was nearly the same magnitude as on the Moon, but more pro-

longed, or occurred a half billion years later. Both authors show that

accelerated core formation results from high initial temperatures,

especially near the surface, or from external heat sources (see also

Appendices G and H).

Volcanism during compression results from subcrustal tensional
I

forces. Global compression is locally exceeded by impact-related

stresses: The reduction in area of smooth plains from Class 3 to

\
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Class 2 to Class 1 periods results from these competing stresses.

Solomon (1978a) predicts that "Global compression would act to shut

off volcanism associated with local stress systems faster than for a

planet under global tension. Thus the time duration of smooth plains

emplacement is predicted to be short for }_rcury compared to that for

volcanic plains on Mars or the Moon," (Solomon, 1978a, p. 462). This

would also be more consistent with reduced compositional differences

on the mercurian surface (similar to the lack of compositional variety

on the lunar highlands).

Keeping the Core Molten. The presence of a molten core is not

directly constrained by the intercrater plains research conducted

here, nor demanded by the detection of an intrinsic magnetic field at

Mercury. But, as noted in Chapter 5, an active dynamo may be the most

plausible source of this field (Ness et al., 1975, a,b, 1976; cf.

Stephenson, 1976; Russell, 1980).

There are various proposals to keep the core molten. Heat

sources may be retained in the core if differentiation was ineffi-

cient. Mixing or fractionation during accretion may inject volatiles

which act as impurities, lowering the melting temperature (as S in a

Fe-FeS melt), or as heat sources (as K-40; Weidenschilling, 1978;

Ringwood, 1979). Solomon (1976) estimates that 20% of Mercury's U and

Th must remain in its core to maintain a molten state at present.

Toks_z et al. (1978) estimate that the necessary heat source abundance
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is 1.5"10 -8 ergs cm-3s -I , satisfied by 2 ppb U (see also Cassen,

1977). A sulfur content of 3% by mass would lower the melting point,

percolate through denser materials, and maintain rigorous convection

within a thin, molten layer according to Stevenson et al. (1980; cf.

Stevenson, 1980). An addition of 156 ppm K-40 to the core materials

would also keep it molten (Toks_z and Johnston, 1977). However, inef-

ficient differentiation of radioisotopes is "implausible" (Solomon,

1976), and mixing of volatiles K and S into Mercury's high temperature

accretion zone is not likely to introduce the substantial quantities

noted above (Goettel, 1976; personal communication, 1981).

Other energy sources are gravitational heating, tidal energy,

cooling of the inner core, and more exotic, extinct radionuclides.

Gravitational heating over the age of the planet would keep the core

molten, but produce an extended period of tensional tectonics not

observed on Mercury's surface (Solomon, 1976; Strom et al., 1975b).

Tidal energy and precessional heating are "insufficient" according to

Solomon (1976; compare Burns, 1976) and Gubbins (1977). Cooling of the

inner core provides a more viable mechanism for heating an outer core.

Fricker et al. (1974, 1976) find that the silicate mantle has a melt-

ing point 200 ° K higher than that of iron at the temperature and

pressure of the core-mantle boundary. They postulate that the low

conductivity of the silicate mantle insulates the iron core, such that

an outer molten layer _500 km thick forms. Extra heat sources are
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needed to keep this layer superadiabatic. Gubblns' (1977) mechanism

(and that of Stevenson et al., 1980) will sustain convection of the

outer core uslng the heat from the cooling of the inner core. Fields

produced by weak convective motions in Mercury's interior could be

amplified by ambient fields--perhaps remanent magnetic fields near

Mercury's surface (Levy, 1979). Extinct nucleotlde Fe-60 has been

suggested as a possible source of heat for the early core (Kohman and

Robinson, 1980; Herndon and Rowe, 1973), but its half life has not yet

been determined.

An alternative model for the intrinsic field--a remanently

magetized shell--could require that the core was once molten and con-

ducting. Should iron be inefficiently segregated from silicates, the

general conductivity of the upper mantle would rise, allowing a

thicker shell at sub-Curie point temperatures to be remanently magne-

tized (Solomon, 1976). This theory however, implies fairly shallow,

high-Fe deposits which would be excavated by basin impacts. Albedo,

color, and spectrophotometric data do not support such hi_h-Fe

deposits.

In summary, relaxations of compositional constraints, namely

the presence of volatiles, may enable the core to remain molten and

convecting up to the present. The core may be insulated by density and

conductivity discontinuities at the core-mantle boundary. Late or

extended core formation may keep it molten at present, but heat
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sources within the core or unusual initialheat distributions are

required.Some of the scenarios are inconsistentwith observations.Of

course, most photogeologic constraintsused by Solomon, Toks6z, and

others are themselvesmodel dependent. Observations of mass and den-

sity distributionsare not yet accurateenough to probe the structure

of Mercury'sinterior (Data such as J2' C/MR2 ' and obliquityare not

well constrained;see Ferrari and Bills, 1979.) Orbiters and landers,

magneticprobes, and orbitalchemicaldata would aid in answering

these dilemmas.

Results of this analysis describea planet much like other

terrestrialbodies,possibly sharingthe followingcharacteristics:

(i) Early global meltingand high initialtemperatures;

(2) Volcanicextrusionsduring core separationand melting;

(3) Tectonicforces accompanyingthe volume changesduring

core separationand heating, involvingthermalexpansionand mass re-

distribution,followedby contractionwith cooling;

(4) Globalheavy bombardmentearly in history;

(5) Subsurfacetensionalforcesproceedingduring lessening

bombardment;

(6) Local stresses leadingto local,short duration,vol-

canic episodes;

(7) Cooling of the planet's lithosphere and/or core.
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Many of these processes, namely the late thermal histories, are

dependent on the size of the body. Toks6z et al. (1978),Solomon

(1977a,b, 1978a,b), Walker et al. (1979), Stolper (1980),and others

correlate composition, tectonic activity, core size, age of last

plains emplacement,and extent of highland area to planet's size and

mass. Heliocentricdistance of the planet may determine its initial

composition and volatile content: this will affect source region

chemistry,heat source complement, and melting temperatures of core

and mantle. The earlier thermalhistoriesmay depend on conditions

which are shared throughoutthe inner solar system: radiogenicheat

sources,high temperaturephases of the sun, processes in the solar

nebula, and an early, intense accretlonalbombardment.Initial high

temperatures and global melting are apparently common occurrences

among the terrestrialplanets (Hostetlerand Drake, 1980).

Lunar Thermal Evolution: Some Comparisons

No attemptis made here to explain the complexitiesof lunar

thermal evolution, especiallywhere it involves the Moon's origins,

although such considerationsmay be necessary to model the earliest

stages of thermalhistory (Ringwood,1979; Ringwoodand Kesson, 1977).

Chapters 3, 4, and 5 review the pertinent constraints; here, the

models of Toks6z et al. (1978),Solomon and Chaiken (1976),and

Solomon (1977b,1978a,b) are used to comparethe genesis of the
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intercrater plains and mare in the Moon's thermal history. Further

comparisons are made to Mercury's thermal history.

Lunar Thermal Evolution

Both Mercury and the Moon qualify as 'one plate' planets in

Solomon's (1978a) thermo-tectonic models. He and Toks6z et al. (1978)

use as constraints evidence for volcanism, composition and age of

volcanic rocks, lunar heat flow measurements, tectonic features, and

the relative ages of these events recorded in the impact bombardment.

The major constraint for the Solomon models is that the total change

in lunar radius since 3.9 b.y. ago is _ 1 km or less; in addition, the

age of the magma ocean is at least 4.4 b.y., and the age of mare vol-

canism is 3.9 to 3.2 b.y. (Solomon and Chaiken, 1976).

Lunar evolution begins with a high initial temperature, which

causes global melting to a depth _; heat sources U, Th,and K are dif-

ferentiated upward to the crustal layers. The interior of the Moon

remains cool and undifferentiated. Mechanisms for melting the early

Moon are similar to those noted for Mercury.

The _R constraint on the change in lunar volume restricts

global melting to 200 to 300 km in Solomon's model (1977b), less than

the 500 km depth originally proposed (e.g. Taylor and J_kes, 1974) and

used by ToksSz et al. (1978). As the planet ages, the near molten

200-300 km zone begins to cool while the cool interior heats due to

its homogeneously distributed heat sources. Although no mention of a

345



core is made by Toks6z or Solomon,its radius is restrictedto 400 km

by the moment of inertiaand has little effect on volcanismat the

lunar surface (exceptpossibly in remanentmagnetizationrecorded by

cooling lavas; Russell et al., 1977; Stephenson, Runcorn, and

Colllnson, 1975). Solomon's models prohibit the total melting proposed

by Russell's group.

Solomon (1978a) notes that changes in the lunar stress regime

have a decided effect on mare volcanism; for a positive tangential

stress factor, stresses are tensional, conducive to volcanism and open

vents. This factor remains positive in the Moon for a longer period

than on Mercury. The beginning of negative stress factors,_-< 0 ,

signals the closure of vents and the cessation of volcanism. Local

tensional stresses under the margins of large basins may allow late

extrusions when the global compressional forces are exceeded, analo-

gous to the subcrustal tensional stress factors during Mercury's

compressional period which allow smooth plains volcanism. Volcanism on

•the Moon during the Moon's global expansion period is consistent with

the age of the pre-mare KREEP volcanics and with the age of the

(possibly associated) lunar intercrater plains.

Pre-mare and mare volcanism both occur primarily in the

tensional stress regime, during different stages of the heavy bom-

bardment. In contrast, intercrater and smooth plains volcanism on

Mercury occur during its expansional and contraction phases

respectively.
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The difference in timing of volcanism and tectonism may

explain the difference in areal extent of the mare basalts versus the

smooth plains on the first quadrant of Mercury. The former were

emplaced in a tensional regime, the latter in a compressional period.

Yet if the lunar intercrater plains were emplaced during the early

phases of the lunar tensional regime, one wonders why they are not

greater in expanse or in age variation (for instance, P3 through P5

units). Subsequent degradation (basin events as well as continued

heavy bombardment), crustal thickness variations, and available magma

sources may have limited the formation and exposures of the pip

material.

Age of volcanic materials of one planet relative to the other

is also linked to the planetary "energy" cycle. In Solomon's (1978a)

model the Moon reaches a peak volume at a time later than on Mercury,

because of its protracted tensional episode (Solomon, 1978a). The

youngest "large scale plains volcanism" on the Moon is expected to be

younger than comparable volcanism on Mercury. That is, the lunar mare

basalts are younger than the mercurian (P3) intercrater plains, and

the youngest of the mare basalts (at the mare borders) are probably

younger than the mercurian smooth plains (PI and P2), where both of

the latter episodes occur under compressional regimes, and the former

under tensional regimes.
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Toks6z et al. (1978) support many (but not all) of these con-

clusions in their latest model of lunar thermal history. Heat source

abundances are K/U = 2000, Th/U = 3.5, and U = 35 ppb--values which

indicate a depletion in volatiles and a K/U ratio similar to differ-

entiated achondrites (the eucrites). Radioactive heat sources are

concentrated near the crust following differentiation. Solid state

creep (as advocated by Tozer, 1972, as a means of heat transfer) is

included in the Toks6z model.

Initial conditions are a partially molten zone to 500 km depth

(on the Ringwood and Essene, 1970, basalt solidus), and a cool

interior, of central temperature 50_ C. The first 0.5 to 1.0 b.y. are

critical, because the pre-lmbrian plains may have formed 0.4-0.6 b.y.

after planet formation. As the near surface regions cool, the partial

melt zone moves deeper into the lithosphere and is less accessible,

except by basin impacts (see McGetchin, Head, and Schultz, 1979); at

4.2 b.y., the partial melt zone occurs below 80 km depth; at 4.0 b.y.,

it lies below 120 km depth. The bottom of the lithosphere occurs 30 to

40 km above the partial melt zone. (See Fig. 8, Toks6z et al., 1978, p.

300.) Accessibility of magma sources will decrease as the crust

thickens; the latter varies with the frequency and location of basin

events. It seems likely that a period of pre-mare volcanism is con-

sistent with the Toks6z model also, especially because the planet is

most active in its earliest stages, following the cooling of the magma
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ocean. Maurer et al. (1978) however, imply that a hiatus occurred in

lunar volcanic activity, from 4.2 to 4.12 b.y., which is not predicted

by either the Solomon or Toks6z models.

The early rise and rapid decline of the Moon's thermal energy

is in part due to its small size and high surface-to -volume ratio. The

peak in its activity corresponds to "large scale magmatic activity as

evidenced by mare basin filling," (ToksSz et al., 1978, p. 311). At

3.6 b.y., the Moon's energy begins to decrease, after maintaining a

plateau of high energy from 4.6 b.y. ago.

Comparisons with l_rcury

It is interesting to compare the energy histories of the Moon

and Mercury, as illustrated in Fig. 18 of ToksSz et al. (1978, p.

311). The surge in Mercury's energy curve due to core formation occurs

about the time of the lunar pre-mare volcanism, implying that some

mare basalts may be older surfaces than the Mercurian smooth plains,

which are formed later in Mercury's 2 b.y. active period in the Toks_z

model. The rate of decrease in lunar energy is more abrupt than for

Mercury (unless Mercury's core has solidified).

Morrison and Warner (1978) theorize that planet size and the

depth of the feldspar stabilit_ field (to 12 kb) regulate the amount

of terra formed in the planets. Larger planets have thinner, more

mobile crusts. Lateral motions of the Moon's crust did not occur

because of its thick lithosphere, estimated to be 250 km early in
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history by Morrison and Warner. More complex models for the formation

of the lunar crust are presented by Herbert, Drake, and Sonett (1978),

and Schubert et al. (1979). Walker et al. (1979) speculate that the

variety of basalts on the Moon will be less than on Mercury (if such

basalts exist), because the duration of volcanism is shorter, allowing

less time for severe fractionation. Their reasoning fits the Toks6z

model better than the Solomon model. The disagreement in the two

thermal chronologies of Mercury and the Moon will be discussed

shortly.

In summary, few constraints can be added to the lunar thermal

history models, for they are already consistent with pre-mare and mare

volcanism. In fact, these two volcanic periods may be a single ongoing

phase in lunar evolution, separated by the intense late bombardment

and basin events. The activity, distinct from the original magma

ocean, occurs when the crust is fairly stable and has reached a high

enough viscosity to record craters and basins. Bombardment may act to

initiate the volcanic extrusions by fracturing (and heating?) the

crust to the depths of the partially molten zone. The duration of

volcanism, or subcrustal melting, determines the variety of basalts.

Upward differentiation of U, Th, and K during the magma ocean period

provides a concentration of heat sources to prolong the basalt frac-

tionation period.

Peak Evolution of the Moon and Mercury. The "Solomon" and

"Toks_z" models map out different sequences of peak evolutionary
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activity of Mercury wlth respect to the Moon. A variety of constraints

cause this variation. Solomon's (1977b) requirement that core forma-

tion and expansion in Mercury occur prior to 4.0 b.y. ago biases his

evolutionary sequence to Mercury--Moon--Mars, with the age of the

youngest plains volcanism decreasing in the same order. Toks_z et al.

(1978) do not accelerate core formation in Mercury, except to require

that the planet have high initial temperatures. The sequence of peak

evolutionary activity which they determine is Moon-Mercury--Mars;

activity on Mercury is predicted to last nearly a billion years longer

than lunar activity.

Were one to restrict heavy bombardment on Mercury to continue

until just after core formation in the Toks_z model, the date of this

final bombardment would be 3.8 to 3.6 b.y. ago, fully 0.2 to 0.4 b.y.

after the recorded end of heavy bombardment on the Moon. Because the

bombarding poplations are so similar in diameter-density distributions

on the two planets (Strom, 1977; Woronow et al., 1980), this temporal

offset is difficult to reconcile. One possibility is that both planets

may have suffered a heavy bombardment 4.0 b.y. ago, but cratering on

Mercury continued 0.3 b.y. longer, possibly due to its closer helio-

centric position, or to a local population.

If one fixes the bombardment period to end 3.9 to 4.0 b.y.

ago, one would expect to observe global tensional features on Mercury,

(because it has not yet reached its peak energy), and smooth Calorls-

age plains younger than lunar mare basalts. The time evolution of the
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Toks_z model for Mercury therefore seems to present more problems and

inconsistencies than that of Solomon, if the impact fluxes on the Moon

and Mercury are similar, and if global tensional features on Mercury

were indeed obliterated.
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CHAPTER 7

DISCUSSION OF THE NATURE, ORIGIN, AND ROLE

OF THE INTERCRATER PLAINS OF

MERCURY AND THE MOON

The first sectionof this final chaptersummarizes the nature

and origin of the intercraterplains of Mercury and the Moon as

determinedthroughgeologic mapping, crater statistics, and remotely

sensed data analyzed in this research.Some implications of these

results regarding scarp formation,absolute ages, and terrestrial

planet surfacesfollow the summaries.In the last section,I attempt

to define the "role" of the intercraterplains and outline futurework

which might lead to a better understanding of these units and terres-

trial planet evolution.

Summariesof Results

The intercrater plains of both Mercuryand the Moon form

flat-to-gently-rollingsurfaces between larger craters and crater

clusters.High densitiesof small (I-I0 km diameter)cratersoccur on

these plains;many of the small craters are elongated,breached,and

occur in chainsor clusters,characteristicin morphologyto secondary

craters (Traskand Guest, 1975).Intercrater plains form a major,

widespreadunit on Mercury;on the Moon, they are restrictedto the
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southern nearside highlands, southwest of the Nectaris basin, and to

ancient basin interiors, such as Lomonosov-Flemlng, on the farside.

Mercury

A geologic mapping strategy developed by Malin (1975), in

which the plains are dated relative to the degradation ages of super-

posed and embayed craters, establishes that the intercrater materials

mapped by Trask and Guest (1975) span a range of relative ages P3 to

Pb, indicating emplacement over an extended period of time, concurrent

with the period of heavy bombardment responsible for C5 to C3 craters

and basins.

From geologic mapping, the intercrater plains are interpreted

as primarily volcanic flows, severely disrupted by repeated impacts

of primary and secondary projectiles, by mass wasting and by seismic

disturbances. Ballistic deposits are interbedded with, and must

overlie, much of this surface. The flat expanses of plains, their

widespread distributions, occurrences within depressions, embayment of

craters and basins, and association with tentative volcanic landforms

(domes, and some ridges and scarps) form the bases of this conclusion.

The higher elevations of many intercrater surfaces preserv e them from

embayment by later volcanic flows, but not from ballistically emplaced

eJecta. The preservation of discernible C4 secondaries of 10-15 km on

the plains attests to the minimal deposition of impact eJecta. The

embayment of the C5' craters by the oldest plains unit (Pb) suggests
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that this plains unit is not a primordial surface. Instead, it must

overlie a still older surface.

The distribution and morphology of the younger plains units

also suggest a volcanic origin for those exposures within older cra-

ters or depressions isolated from younger basins. Many of the smooth

plains around Caloris, equivalent in texture to the P2 and P1 units,

are also interpreted as volcanic (e.g. Strom et al., 1975b; Trask and

Strom, 1976). Impact melt materials within craters of the same age,

and impact ejecta distributed between large, young craters of similar

ages, are two other sources of the PI, P2, and some P3 units of the

first quadrant.

Studies of Mercury's tectonic history suggest that the inter-

crater plains were emplaced during the tidal spin-down on Mercury, as

evidenced by the confinement of joint-llke lineaments to P5 to P3

units. Although thermal models also suggest that the P4 and P5 plains

formed during early global expansion, few tensional features which are

globally distributed have been identified. Rift-like features (within

and exterior to craters) may have been eliminated by subsequent

impacts of the ongoing bombardment and by the plains deposits them-

selves. As the planet cools, it contracts radially, causing the

formation of' scarps (high angle reverse faults or thrust faults)

during the early C3 period, near the end of intercrater plains

emplacement. Scarp formation continues throughout the younger

pl@ins-forming eras.
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Crater statistics of selected regions and mapped areas support

the above hypotheses. The lunar-like crater size-frequency distribu-

tion on Mercury has fewer 15-40 km craters, consistent with their

obliteration by volcanic plains deposits. An apparent lack of basins

of D)400 km on Mercury reduces the volume of ballistically distributed

materials. The ancient circular depressions C5', if included, minimize

this basin deficit, but imply that most basins (ejecta sources) pre-

cede much of the plains emplacement (especially P4 and P3 units) on

Mercury.

The heavily cratered areas and intercrater plains apparently

record nearly identical small crater abundances, but differ in abun-

dances of craters larger than 40 km. An early, direct basin-formin_

impact and subsequent volcanism localized to that (C5') basin's

interior may reduce large crater densities in circular areas of the

intercrater plains. The high density of 5-15 km craters consists

largely of secondary craters from CI-C3 craters and basins and from

C4 basins. The preservation of C4 secondaries may also be a result of

high ejection angles, hi£her ejection velocities, or a more consoli-

dated surface. Crater morphology studies (e.g. Cintala et al., 1977)

suK_est that the intercrater plains and Mercury's smooth plains are

more similar in physical properties to the consolidated lunar mare

basalts than to the megaregolith of the lunar highlands.

A heavy and uniform bombardment is indicated by the combined

C3 to C5 crater densities relative to C1 and C2 abundances. Regional
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variations in the first quadrant's crater statistics occur when a

particular plains unit dominates the area sampled. In general,the

older intercraterplains were emplaced during the heavy bombardment.

Both crateringand geologicdating of the hilly and llneated

region indicates it was formed in late C3 or early C2 period, concur-

rently with the Calorisbasin, and was the result of seismicwaves

created by the impact and focusedon the antipodal zone. By grouping

the cratersand plains of the first quadrantin "eras" relative to the

Caloris impact (usingit as a "markerhorizon"), paleogeologlcmaps

were compiled.These maps show that the ubiquitousplains distribution

on the Pre-Calorissurface (Class4, 5, and 5' units) lessens somewhat

durin_ the heavy bombardment of the CalorisEra (Class3 units pre-

ceding the CalorisImpact)_ and becomes increasingly localized to

basin and craterinteriorsdurinR the Post-CalorisEra, representedby

the Class 1 and 2 units. As noted earlier, those plains interiorto

older cratersor depressionswithin the older plains, and isolated

from younger basins_are interpretedto be volcanic.

The paleogeologic maps and measurements of existingplains

areas confirm that plains formationon the first quadrant of Mercury

generallydecreases with time, greatlydeclining after the C3 crater-

Ing period.The percentaKearea of craters also declineswith age,

although no___tin the matchinKproportions which might suggest plains

formationsby eiecta depositionalone, Argumentsagainst widespread
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intercrater plalns-formingejecta depositsinclude the limitedextent

of continuousand discontinuousejecta deposits of mercurlancraters

(compared to lunar craters), limited destructive resurfaclng

potential,and the large areas of plains relativeto cratersand their

uncorrelatedareal variationsbetween quadrants.There appears to be a

lack of "sourcebasins" for the intercraterand smooth plains.Resur-

facing by ballistic deposition is apparently supplemented by or

exceeded by another source of intercraterplains material,and this

source is most likely volcanic.

The color and albedo of Mercury'ssurfaceplaces constraints

on the compositionand origin of the intercraterplains.The similar-

ity in albedo of Mercury'smajor surfaceunits suKgestsa similarity

in composition or prolonged activityof a process which homogenizes

albedo variations.Color variationsare less than those on the Moon,

and usuallyuncorrelatedwith _eologicunit contactsor topography.

The exceptionsto those generalities suggest compositional

differences probably associated with volcanism, both ancient and more

recent events. Albedo differences across scarps, or within plains

which embay an older basin, and color differenceswhich are most

extremein the youngest units supporta volcanicorigin for at least

some plains units. A slight color difference(and possible spectral

variation) between the Caloris smooth plains and the intercrater

plains suggests more Fe0-rich material around the Caloris basin.
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Because this compositionaldifference is rarely presentbetween first

quadrant smooth and intercrater plains, sourcesof Calorismaterials

may be distinct from sourcesof most first quadrantsmoothplains.

Other remote sensing data suggestthat Mercuryhas differen-

tiated.It has a silicatesurfacelow in Fe0, Fe metal, and Ti, and is

possibly anorthositic,like the lunar highlands, although a mafic

surface is also consistent with the data. Infrared,ultraviolet,

polarimetri%and radar data are characteristic of lunar soils and

regolith.This evidence, contrastedwith Mercury'shigh densityand

postulated Fe-rich composition, suggests that the planet has dif-

ferentiated.The magnetic field supports planetary differentiationat

some period in history,and may suggesta currentlymolten iron core.

Temperature variations impressed on Mercury's surfacedue to its

unique orbit and rotationmay cause thermalstresses in the crust,

variations in lithosphericthicknesses, or losses of remanentmagne-

tizationin surfaceunits.

The three major competingtheoriesfor the origin of Mercury's

plains are (a) a primordialsurfaceremainingafter globalmelting and

solidification,(b) basin eJecta and melt deposits,and (c) volcanic

deposits.From the evidencepresented above,it is very unlikely that

the oldest intercrater plains P4 and P5 represent a primordial

surface.They are more likely a complexassortmentof primarilyvol-

canic depositsformed during planetarydifferentiation and expansion,
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interbedded with the impact ejecta of the heavy bombardment, and mixed

with mass wasted debris from impact and tectonic events. The plains

surface is reworked by small primary and basln-secondary impacts.

A chronological summary of Mercury's history gathered from the

above data and analyses is presented in Appendix J.

The Moon

The Pre-lmbrian plains of the lunar nearside southern high-

lands form the "intercrater plains unit" analogous to those covering

Mercury. The Pre-lmbrian Plains (pip) were emplaced during the period

of heavy bombardment, following the Nectaris impact and preceding the

Imbrian event. Some of the pre-lmbrian units may pre-date the

Nectaris impact. Emplacement does not appear to be instantaneous or

uniform, nor primordial, for older terrains are partially exposed

under the pip blanket. Some doubt remains about the ages of the plains

with respect to the "embedded" craters; in particular, it is difficult

to determine how much material was emplaced before, during, and after

the Nectarls event. Maurer et al. (1978) severely narrow the time of

emplacement to 0.I b.y. between the Nectaris and Imbrium events. Other

dates for the basin impact provide an emplacement interval from 4.25

b.y. ago to 3.9 b.y., or a 350 m.y. interval (Schaeffer and Husaln,

1974).

When the LPL degradation classes are used to date the lunar

plains, one finds that the expanse of pip intercrater plains is

interpreted to be a P3 surface. The lunar intercrater plains are less

diverse in age than plains on Mercury. The P3 to P4 Janssen Formation
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(the Nectarls ejecta blanket), the P2-P3 age Imbrian plains (Ip), and

P2-PI mare surfaces to the north form the spectrum of relative ages of

lunar nearside surfaces. The plains of the nearside southern highlands

decrease in areal extent from pre-lmbrian to Imbrian periods, whereas

production of farslde plains appears to increase with younger ages.

Most of the exposures on the farside (Np units) are within old craters

and basin remnants, not in extensive tracts such as the pip units.

(The Lomonosov--Fleming exposure of Np units is quite large.)

Photogeologlc studies of the lunar intercrater plains reveal

(I) high proportions of small craters, some of which are secondaries,

(2) different ages of intercrater plains exposures, (3) buried and

partly embayed craters, (4) crater chains which are secondary and

related to major basins, (5) structurally controlled emplacement of

cratered plains materials, and (6) flow lobes near Mutus.

Crater statistical data show that densities of small craters

on the pip units are greater than densities on older terra units

(Mutch and Saunders, 1972). This may indicate that the pip form a more

consolidated surface (possibly underlain by a megaregolith which

includes Nectarls ejecta). As noted by Strom (1977), the style of

degradation as displayed in the pip (Manzinus area) size-frequency

distribution is unlike that nearer the Imbrium basin: fewer large

craters appear to be degraded to classes 4 or 5, yet a loss of smaller

craters of the more degraded classes is noted to increase with
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decreasing diameter. This type of degradation is similar to that of

flooded basins.

The intercrater plains region displays high densities of 1-10

km craters and apparently lacks craters over 40 km when compared to

the region surrounding Clavius. As suggested by photogeologic studies,

the small crater excesses may be due to secondary cratering from cra-

ters formed following the plains emplacement, as determined by studies

of Langrenus and Copernicus. The slight deficiency of large craters in

the intercrater region may have resulted from an ancient basin impact.

The plains occupy a relatively "circular" area, and are structurally

confined to lower topographic regions. The nearside and farside

Nectarian plains exposures may thus be similar in distribution and

origin.

The intercrater plains region is located from 1.6 to 3.6 R

(Altai scarp) from the center of Nectaris, 4.0 to 5.5 R from Imbrium

and 5.0 to 6.6 R (Cordillera Scarp) from Orientale. The Nectaris

basin, as expected, has a noticeable influence on the southern high-

lands in its deposits of 8 to 18 km secondary craters, some of which

are embedded in the intercrater plains. Basin influences are more

critical on the Moon because of the greater resurfacing and destruc-

tive capabilities of lunar eJecta, and also because there are more

large basins on the Moon than Mercury. As noted above, the youngest

basins are quite distant, and their influence minimal. But, in addi-

tion, the Nectaris basin, which has clearly affected a region east of
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the intercrater plains, may have been formed by an oblique impact, and

thus caused less damage to the area southwest _ of the basin--the

intercrater plains area (Wilhelms, 1980).

Volcanic features are not common in the intercrater plains

regions, similar to their apparent absence on Mercury. However, areas

containing evidence for pre-lmbrian volcanism include the Apennine

Bench Formation, INp regions near Balmer on the eastern limb, older

plains of Mare Australe (Whltford-Stark, 1979), and the highland domes

of the western mare (Head, 1976a; Spudls, 1979). Such volcanism

appears to occur in areas of thin lunar crust, and continues and

overlaps with emplacement of the mare basalts. Estimates of crustal

depth of 60 to 80 km do not exclude the intrusion of KREEP basalts

into the Intercrater highlands region. Bouguer anomalies around unity

imply that some compensation other than infilllng by breccias or by

mantle intrusions may have occurred here (Dvorak and Phillips, 1978).

Tectonic activity after the Imbrium impact is slight and

includes formation of graben and ridges radial and concentric to the

major basins (Hartmann, 1963, 1964). Lineaments, fault scarps, and

other linear features often trend along the lunar grid pattern (Strom,

1964); no global system of compressive thrust faults is found on the

lunar Surface.

Composition of the pre-lmbrian plains and the southern high-

lands is predominantly anorthosltlc. Slightly younger plains (INp

rather than Np) near the eastern llmb-crater Balmer have high thorium
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contents, indicating a subsurface KREEP or MKFM (Medium-K, Fra Mauro)

basalt. Most Imbrian plains' (Ip) compositions match those of the

surrounding highlands, supporting interpretations of locally derived

impact debris. No striking variations in color (UV/IR), albedo,

infrared, cm, or radio wavelength data occur in the southern highlands

intercrater region. Recent attempts to study compositional variations

in the highlands with spectrophotometry are as yet inconclusive. The

pre-Imbrian plains material is a common rock unit in the highland

area_ although it may not have been sampled in the Apollo missions.

Pieters (1979) indicates that, although the pip unit is not a mare

basalt, its plagioclase and orthopyroxene composition does not rule

out a volcanic, high iron basalt. Seeger's (1979) results suggest that

the pre-Imbrian plains, the Janssen unit, and the Imbrium plains are

all chemically distinct.

In summary, the lunar intercrater plains display a range in

ages if one includes among the plains surfaces the pre-Imbrian

plains, the Imbrian light plains, and the maria. No primordial surface

is indicated. Although a complete resolution of this problem has yet

to be made, the origin of the lunar intercrater plains appears to be

related to KREEP volcanism in the shallow crustal areas of the high-

lands. Geologic evidence--embayment and transection relationships,

tentatively identified volcanic flow lobes, the areal distributions of

the plains--and the crater statistical data support a volcanic origin
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for the intercrater plains. Basin influences are decidedly more

severe than on Mercury; the Nectaris impactmay have depositedloosely

consolidatedmaterialwhich is now overlainby the pip unit. Nectarian

secondaries occur in this region.Local impacts subsequentto pip

emplacement have covered the regionswith highland-like regolith.

Continuingremote sensingstudies and the resolutionof the mercurian

intercraterunits' origin should reduce the uncertaintiesnoted here.

A synopsisof the lunar chronologyregarding the emplacement

of the intereraterplains is given in AppendixK.

The products of this researchwhich clarifythe nature and

origin of the intercraterplains are: (I) Geologic terrain map of

Mercury's first quadrant, includingthe hilly and llneated terrain

(6hapter 2), (2) Paleogeologic maps of Pre-Caloris, Caloris,and

Post-Caloris surfaces (Chapter4), (3) Plains coveragewithin each era

for Mercury (Chapter4), (4) Crater diameter-densitydistributionsand

crater coveragefor selectedlocal areas and regions used in mapping

of Mercury and the Moon (Chapter 3), (5) Crater statistics for the

secondary crater fields of Copernicus and Langrenus on the Moon

(Chapter3)_ (6) Determination of the onset and durationof scarp

formationrelative to ages of cratersand plains on Mercury (Chapters

2 and 7), and (7) Incorporationof remote sensingdata into the geo-

logic and crateringsyntheses(Chapter5).
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Implicationsfor TerrestrialPlanet Evolution

Many of the implications of this research involve better

understanding of apparentlysimplemechanisms which are in reality

quite complex. The link betweencrater and plains productionis one

such relation which has been discussedthroughoutthe text. Thermo-

tectonicmodels are another conceptof deceptivesimplicityintroduced

in the precedingchapter.The constraints appliedoften dictatethe

outcome of the model. Becauseintercrater plains formation is an

intermediateprocessin thermal history, the heat sourcesand initial

temperatures (whichgovern the initial evolution)andthe size of the

planet (which governs later evolution) may not directly apply.

Furthermore, one must determinethe extent to which bombardmentcon-

trols a planet's thermalhistory, as opposedto the extent to which

thermalevolution and plains productionmerely produce surfaceswhich

record various stages of impact bombardment.Given these uncertain-

ties, as well as those within the remote sensinginterpretations,the

resultsof this work are applied to the problem of the source depth of

magmas forming the intercraterand smooth plains and the problemof

the relativeand absoluteages of the plains on Mercury and the Moon.

Scarp Formationand Magma SourceDepth

The onset of scarp formationroughlydivides the expansion--

extrusion phase of Mercury's thermal history from the

contraction-coolingphase. From evidencegiven earlier, smooth plains
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of a volcanicnature are formedduringthe scarp formationperiod.

Thisis mechanicallypossible if surface compressionalforcesare

exceededby magmapressuresfroma partiallymoltenzone beneaththe

_ompressionallayer. Solomon (1977b)predicts such tensionalforces

willexistfor about twobillionyearsaftercoreseparationat depths

of 40 to 120km. Becausethe isotherm forpartialmelt zonesretreats

deeperinto themantleas cooling continues,plainsformedat different

timesby thismechanismshouldhavedifferentsource region depths.

The implicationis that the youngersmooth plains were formed at

greaterdepthsandin differentsourceregions.

Surface compositionmay be governedby conditionsin the upper

fifthof Mercury's600km silicatemantle.Walkeret al. (1979) main-

tain thatthemostvoluminousbasaltson a planet'ssurface musthave

compositionsgovernedby dry, low pressure"crystal/liquidequilibria"

relations,i.e.,by processesoccurringat less than 10kb (to80 km

depth on Mercury,250 km depthon the Moon). The most voluminous

mercurian plainsare the intercraterplains,formed when theplanet

expanded due to core segregation.Morrison and Warner(1978)link

terra formation to planetsize and theresultantstabilitydepthof

feldspar at pressureslessthan 12 kb. Smaller planetshave deeper

regionsof feldspar stability,and thususually have thicker, less

mobile, less active crusts.However,becausecore separationis a

globalprocess, involvingformationof 600km of silicatemantle,low
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pressure relations for terra and intercrater plains may not be the

only process governing their composition.

Stolper (1980) outlines the source depth compositions for 0-I0

kb, 10-25 kb, and pressures greater than 25 kb for the terrestrial

planets (see Table ii). These pressures (0, I0, and 25 kb) correspond

to the surface, 80, and 220 km depths on Mercury; or the surface, 250,

and 600 km depths on the Moon. The source region of the smooth plains

must be at depths greater than or equal to 40 to 120 km, or at pres-

sures of S-14 kb (Meissner and Lange, 1977; Solomon, 1977b). Thus for

the youngest plains, source region chemistry may change from

spinel-plagioclase-wehrlite (ol+di+sp+pl) to spinel lherzolite

(ol+di+sp+en), a change of plagioclase (pl), to enstatite (en) within

a melt of olivine (oi), spinel (sp), and dlopside (di). The composi-

tion of extruded materials is not certain; neither of these systems

has been adequately modeled (with the exception of work by Seitz and

Kushlro, 1974). The expected change in spectral signatures

(plagioclase to enstatlte) should also be investigated further.

The correlation is intriguing for two reasons: the lack of

observed color variations and the implied similarity of the 10-25 kb

source regions of the terrestrial planets.

The first quadrant shows few color variations which correlate

with geologic units (Hapke, 1977; Hapke et al., 1980a,b; Dzurlsin,

1977b), but the second quadrant shows a rough correlation of color
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Table ii: Mineral Assemblages of Planet Groups*

Pressure Range Mineral Assemblages of:

Mercury and Mars Earth, Moon, Venus, and EPB#

0 - I0 kb Spinel-plagioclase- Plagioclase lherzolite
wehrlite

= ol + sp + di + pl# - ol + di + pl + en

i0 - 25 kb Spinel lherzolite Spinel lherzolite

= ol + en + di + sp - ol + en + di + sp

25 kb Spinel-garnet- Garnet-lherzolite
wehrlite

= ol + di + ga + sp = ol + en + di + ga

* Adapted from Stolper (1980; Fig. I).

# Symbols: ol = olivine; sp = spinel; di = diopside; pl = plagioclase;
en = enstatite; ga = garnet; EPB = Eucrite Parent Body.
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with the smooth plains of the Caloris basin and the surrounding

planitia compared to the intercrater plains. This may imply that

smooth plains production of the incoming quadrant tapped shallower,

less chemically distinct, source levels than plains of the Caloris

region. Plains production may have been "shut off" by cooling and

compressional stresses at an earlier date on the intercrater plains

dominated quadrant. The first quadrant is severely lacking in large

basins (especially young ones) which could tap deeper levels. (This

compositional difference could also reflect the excavated materials

from the deeply penetrating impact.)

A second note is that deeper source regions of Mercury are

accessible by studying products from deep (10-25 kb) source regions on

Mars, the Moon, or Earth. Observation of young flows on the Tharsis

volcanoes, where source depth can be estimated from the volcano

height, may provide analogs to smooth plains on Mercury, allowing for

changes in FeO and volatiles in the martian magmas. Stolper (1980)

finds that Mars and Mercury have the same source region chemistries

(ignoring volatiles and FeO) at all three depth zones. The Moon.

Earth, Venus, and eucrite parent bodies shs.re a different set of com

positions. But both Rroups have spinel lherzolite at 10-25 kb depth.

Thus tools for studyin~ end testing Mercury's composition are in our

back yard, or on the Moon or Mars.
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Similar correlations in composition and source region depth

are still being applied to the Moon, with the result that the problem

was found to be much more complex than simple increase of source depth

with cooling (Lucchitta and Boyce, 1979; Solomon and Toks_z, 1973). But

on Mercury, scarp formation may be a marker of changing source depths

for volcanic materials. More work is necessary in geochemical model-

ling, spectrophotometric recognition of these materials, thermal

histories, and dating the intercrater and smooth plains units. These

analyses, if carried out, would also test and further constrain

Solomon's (1977b, 1978a) models and hypotheses.

Relative and Absolute Ages of the Intercrater Plains

Several references to the relative and absolute ages of the

mercurian and lunar surfaces have been made throughout the text.

Geologic mapping (Chapter 2) shows that the age of formation of

intercrater plains surfaces differs: mercurian intercrater plains are

emplaced from Class 5 through mid Class 3 periods; lunar intercrater

(pre-lmbrian plains) are emplaced during the Class 3 period. Thus the

younger mercurian intercrater plains have a degradation age similar to

the age of the lunar intercrater plains. Lunar C3 craters are 3.9 to

4.0 b.y. old, using the LPL crater age classification and Wood's

(1979) chronology. An older lunar P3 surface may be implied if

Nectaris' age is 4.25 ae (Schaeffer and Husain, 1974) rather than

_98 ae (Maurer et al., 1978). The age of the mercurian P3 surface
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would be the same if the bombarding fluxes and attendant degradation

were similar.

Various studies (Chapter 3) do suggest that the recorded

populations on highlands of the Moon, Mercury, and Mars are simi-

lar, and in production, rather than saturation (Strom, 1977; Woronow,

1977c; and Woronow et al., 1980). Lesser densities of small craters on

Mercury and Mars relative to the lunar surface population may have

resulted from the emplacement of intercrater plains, or regional ero-

sion on Mars (Gurnis, 1980). Woronow et al. (1980) argue that the

highland surfaces record the same bombarding population which ended

about 4.0 b.y. ago, throughout the inner solar system.

Solomon (1977b) uses this constraint in his thermal models of

Mercury (Chapter 6); high initial temperatures are required for the

early global melting and differentiation which leads to intercrater

plains production during the heavy bombardment. Hostetler and Drake

(1980) argue that if the Moon formed a global magma ocean, then the

other terrestrial planets underwent early global melting too. Accre-

tlonal heatlng--a process tied to bombardment--Is a major cause of the

solar system-wide planetary melting. The similar highland production

populations of Mercury, the Moon, and Mars, and the similar formation

ages of their solid surfaces, suggest to Gurnls (1980) and Woronow et

al. (1980) that the flux responsible for the heavy bombardment was the

same within the inner solar system, therefore enabling us to date and

compare the absolute ages of the terrestrial planets' surfaces.
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However, the crater statistics of Mercury and the Moon

gathered in this study are more complex and argue for more caution in

stating that the bombarding populations are the same. The heavy bom-

bardment on Mercury does not seem to be as temporally peaked as on the

Moon (cf. Chapman, 1976). Figures in Chapter 3 illustrate this com-

plexity. The total population recorded in the restricted map area is

very similar to the basic crater coveraKe on the southern lunar high-

lands, so the conclusions of Strom (1977) and others are accepted

cautiously.

Strom (1977) compared post-Caloris crater statistics with

post-Orientale crater statistics and found them essentially the same,

indicating that some of the youngest plains of Mercury (PI and P2) may

record the same bombardment as Orlentale, which formed 3.85 b.y. ago.

Post-mare densities are apparently not recorded in Mercury's youngest

plains, implying that the post-mare population did not impact Mercury,

or that the youngest mercurlan surfaces are older than the lunar mare,

and record a cumulative bombardment from 3.85 b.y. ago. The latter

interpretation is consistent with Solomon's (1977b) model of Mercury

and not consistent with the extended activity predicted by Toks_z et

al. (1978), nor with substantial extended activity from Solomon's

subsurface tension mechanism.

The mercurian smooth plains may be as old as the oldest lunar

mare (3.9 b,y.) if the results of Watklns (1980) on crater density in
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the Calorisregions and the resultsof De Hon et al. (1980)oncrater

densitiesof smooth plains in the Kuiper Quadrangleare representative

of smooth plainsI crater densities.This point is questionedbecause

of the small areas and limiteddiameter ranges of the sampledcraters.

Statistics in this study which show that CI crater densities on

Mercury over a diameter range of 7 to 150 km are the same slope

(horizontal)and magnitude (0.3% coverage)as the C1 populationon the

Moon may not be sufficientto claim a recent bombardment similarto

the post-marephase, becauseof the differentialdegradation(and age)

of smalland large craters (Woronow,1979a).

The above argumentssuggest that the mercurian P5 and P4

plains were emplaced (veryapproximately) 4.2 and 4.1 b.y. ago, the

P3 plains about 4.0 b.y. ago, and the P2-PI plains, 3.9 to 3.8 b.y.ago.

Younger surfaces (such as the interiors of fresh cratersor modified

craters)probablyexist, but do not comprisea great observedexpanse.

Whitakerand Strom (1976) propose that two populations of

objectsbombardedthe Moon, one which deliveredthe heavy bombardment,

and which may have been a remnantaccretlonalpopulation;and a second

group of objects characteristicof the quiescentcrateringphase sub-

sequent to mare basin filling.This later populationmay comprise

fragments of planetesimals similar to the asteroid population;

althoughthis group of bodiesmay not have cratered Mercury, it does

appear to have cratered the northernplains of Mars, as well as the

lunar mare. Two populations, rather than one evolvingpopulation,are

thereforesuggestedas sources for inner solar systembombardment.
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The aim of comparative studies of basins and crater popula-

tions is to determine their flux and perhaps their source(s). We have

no absolute ages for any geologic unit on Mercury, except by analogy

with the Moon as stated in the above arguments. Reasonable hypotheses

can be derived. Frey and Lowry (1979) examine basin populations on

Mercury and the Moon, concluding, with several assumptions, that the

sources of Mercury's large projectile population are_ Mars-crossing

objects (Shoemaker, Helin, and Gillette, 1976). Sources of impacting

bodies, still at the center of much observation and dynamical research

(e.g. Shoemaker et al., 1979; Wetherill, 1975, 1978; Hartmann, 1977;

Kaula, 1979b; Schultz and Srnka, 1980) include: early planetesimals,

accretlonal remnants, comets, various groups of asteroids (the

Apollos, Amors, main belt objects), outer solar system objects, local

heliocentric populations, and orbiting debris clouds. All of these

objects may contribute to the planet's accretion and later bombardment

history.

The recent data from the Galilean and Saturnian satellites

indicates increased complexity of this task of source determination.

The Galilean satellites Callisto and Ganymede do not exhibit the same

production population as that of the terrestrial planets. Strom et al.

(1980) postulate that these satellites were bombarded by objects from

a different source. A determination of such sources would enable us to

evaluate the extent of mixing in accretion (in the inner and outer

solar system), and the size and space distribution of early solar

system objects. Strom (1979) gives a summary of some recent studies.
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Summar_of SurfaceHistoriesas Shaped or
Recordedby the IntercraterPlains

Little mentionhas been made of the Earth, Venus, Mars, the

martianmoons, asteroids, or the Galileansatellites--the other rocky

bodies (with and withoutvolatiles)in our solar system. All of the

inner solar system bodies bear evidenceof cratering.Earth has the

poorest collectionof craters because of its mobile, dynamicsurface

and persistent erosion.Tectonismand volcanism also appear to be

major geologicprocesseson most of these bodies.Intercrater plains

surfacesRproduced by thermo-tectonic evolution usually coincident

with heavy bombardment--occur in various forms and origins on the

terrestrial planets. These surfacespresent clues for the thermal

evolutionof the body; they record and disguise craterpopulationsby

the resurfacing inherentin their formation; and their compositions

may provide clues to low pressure source regions.

Delmos may be the ballisticdeposition"endmember"for inter-

crater plains.Delmos' intercrater plains are certainlynot volcanic,

but an extensiveregollth,the depth of which may be a functionof

size, density,and gravity of the moonlet (Thomas, 1978; Cintalaet

al., 1978;Housen and Davis, 1978; Housen et al., 1979).

Many of Mars' surface features are the result of protracted

expansionover most of its history.This expansionhas been conducive

to extensive volcanism: during the heavy bombardment,highlandvol-

canism produced the intercraterplains surfaces in the highlands and
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bordering the plains (Malin, 1977; Greeley and Spudis, 1978). Much

later volcanism produced extensive basalt flows and volcanic con-

structs which characterize the northern lowlands (see the color-ratio

data of Soderblom et al., 1978). Huge rift valleys like Vallis

Marineris are also products of such expansion. It is not clear why

rifting is so localized; it may be a function of age and mass distri-

butions or convection within the planet. High volatile contents in the

crust and aeolian erosion further affect the nature and origin of

these intercrater surfaces.

The Moon exhibits minor expansion and contraction as grabens

and rifles respectively; total thermo-tectonic activity produces less

than 1 km change in the lunar radius. Intercrater plains form well

after crustal formation, and may be related to KREEP volcanism (4.3 to

3.9 b.y.) and to mare volcanism (3.9 to 3.0 b.y,?). The plains depos-

its are less extensive, more sporadic in emplacement, and contain

higher amounts of ballistically emplaced materials than on Mercury.

Their composition--if unique (as suggested by Pieters, 1979, and

Seeger, 1979)--is masked by ejecta from the local anorthositic high-

lands. These intercrater plains record most of the heavy bombardment.

Plate tectonics distinguishes geologic activity on the Earth

from all the terrestrial planets. Craters are preserved in the cra-

tonic shields, Earth's ancient granitic crust. Volcanism and tectonics

are much more diverse and complex processes, and not simply coupled
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with heating and cooling episodes. Continental flood basalts may be an

analog to intercrater plains on Earth (without the craters). As Strom

(1979) notes, basaltic volcanism on Earth has the unique function of

producing the oceanic basins.

Venus has ancient cratered surfaces, rolling plains uplands,

volcanic constructs, basins, lowlands, rift systems, but thus far, no

evidence of plate tectonics (Masursky et al., 1977, 1980; Malin and

Saunders, 1977; Pettengill, Nozette, and Ford, 1980). The rolling

plains plateau of Venus covers 65% of its surface and has many inter-

crater plains features: craters, rolling topography, evidence of

volcanism. Ejecta deposition may be a major source of plains

materials; ejecta distribution is more widespread because particles

are lofted into the dense atmosphere and transported by venuslan winds

(Cutts, Thompson, and Lewis, 1980; Warner, 1980; Greeley et al.,

1980). An equatorial blanket of such deposits may cover the lowland

regions. Evidence for sorting in rock sizes appeared in the Venera

9 and I0 photographs. Tectonlsm on Venus is implied by rift valleys,

llneated ridges, and mountain chains. Volcanism has occurred in Beta

and Aphrodite Terra and in the lowland regions. Application of

thermo-tectonlc models should be made with caution since it is uncer-

tain that Venus is a one-plate planet. The craters preserved on its

surface suggest no plate tectonic-like activity, but the planet's size

places it in the transition zone between Mars and Earth.
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Mercury may be the other endmemberin intercrater plains

origin, i.e. primarilyvolcanic.These plains form as a result of core

separation,and their early formation allows them to record much of

the heavy bombardment and be "tapped"by that bombardment.Mercury is

unique in that it exhibitscompresslonalstressesover a major portion

of its history. Plains formationcontinuesinto the period of Scarp

formation, indicating availabilityof sources, subsurfacetensional

regimes, and pressuresexceeding the surface compression. Source

regionsare predicted to become deeper and possiblymore fractionated

with time; these chemlual changesshould be exhibitedin the youngest

plains. Compositionalstudiescan furtherconstrainthese models.

The Role of the IntercraterPlains

The "role" of the intercraterplains is that they comprisean

intermediate product of the thermo-tectonlc-ballistlcevolutionwhich

is shared by most of the terrestrial bodies.Thermo-tectonlcmodels

applicable to one-plateplanetspredict such a surfacemay form during

expansion and heating of the body. Becausehigh initial temperatures

characteristic of most terrestrial planets lead to early melting

(partialor total), the intercraterplains are usuallyvery old units,

formed over, a span of time during the heavy bombardment.Mercury's

intercrater plains surface may be among the oldest in the solar

system. Resurfacing processessuch as intercraterplains formation,

whether volcanic or ballistic, destroy information about smaller
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craters,and begin the recording process at different times. Basin

impacts destroy information about larger and older craters. Heavy

bombardment or a high temperaturephase, or some process synchronous

throughout the solar system,may produce the remarkableage similar-

ities seen in the highlandsand intercrater plains of Mercury, the

Moon, and Mars. The high densities of small craters,which were orig-

inally used to define such surfaces_are a result of the surfaces'age

and the cumulative secondarycratersof the large crater population,

and more importantly, of the more consolidatednature of this primar-

ily volcanic surface.

Future Work

The intent of this research has been to determinethe origin

of the intercraterplains of Mercuryand the Moon. With respect to

that task, much more researchcould be done. On Mercury in particular,

one needs systematiccrater statisticsfor the plains units used in

mapping, a thoroughanalysis of the color and albedo "problems,"map-

ping of the remainingobservedsurface in a manner similarto that

used here_ and refinement of thermal models which incorporate the

resultsof this research.A "molten core" still remains a problem.

Lunar history is still being unraveled,and the southernhighlands

have only recentlybeen the focus of concentratedresearch.

Many advances are being made. Geologic maps of Mercury's

quadrangles will soon be available.A project is underway to achieve
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higher resolution spectrophotometry of Mercury's surface. Higher

resolution radar data exist which will reveal Mercury's third and

fourth quadrants. Spectrophotometry of the southern lunar highlands is

proceeding.

In the course of this research a whole host of other problems

and unknowns in Mercury's history have been uncovered. One unknown

involves the formation of transition size craters and the source of

the inner deposits. Another involves the distribution of basins and

craters of different morphology (e.g., terraced craters, or double to

triple-ringed basins). A few of the other perplexing features on

Mercury are the rim-troughs of old basins, sinuous valleys (near

Hawthorne, Petrarch, Simelz Vallis, Bramante, and others), a row of

overlapping 80 km, spatulate depressions extending several hundreds of

kilometers, and breached "lava lakes." The full extent of ballistic

impact ejecta distribution has yet to be adequately modeled and

adjusted for conditions on }_rcury. Ejection mechanisms themselves are

unclear regarding the sequence of formation of secondary craters ver-

sus deposition of material, especially within layered substrates.

Cometary impacts on Mercury and the Moon may spread ejecta to greater

distances, but excavate to shallower depths.

There is definitely much more to be studied: Mercury is far

from being a dull body, and deserves much more attention. In partic-

ular, the latest data on the Galileanand Saturnian satellites
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present to researchersbodies of mercurianand lunar size but with far

different masses,compositions_ and geologicand crateringhistories.

The intercraterplains study conductedhere may help strengthenthis

newly expandedfield of comparativeplanetology.
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APPENDIX A

DESCRIPTION OF UNITS

TO ACCOMPANY THE GEOLOGIC TERRAIN MAP OF MERCURY'S FIRST QUADRANT

PI: Materials of very smooth plains. Few to no superposed craters

at moderate resolution. Albedo may be high (0.22 - 0.44,

Dzurisin, 1977b)or low (0.13). Usually found as floor material

in CI craters, less often in C2 and C3 craters.

Interpreted as impact melt in C1 craters; as volcanic material

within older craters. May include mass wasted materials from

steeper slopes and later volcanic alterations.

Type Area: Interior plains of Hitomaro (-16°, 16°W).

CI: Materials of very fresh and/or rayed craters. Crisp rims and

interior forms (central peaks, peak rings, terraces), and very

few to no superposed craters. Ejecta blankets distinct.

Interpreted as young impact craters surrounded by ballisti-

cally emplaced deposits. Satellitic craters interpreted as

secondary crater materials.

Type Area: Hitomaro (-16° , 16°W).

P2: Materials of smooth, sparsely cratered plains filling irregu-

lar depressions or crater interiors. Often rough where they

appear to overlie hummocky and ridged topography. Albedos

0.13 to 0.23.
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Interpreted as impact melt in C2 craters, as volcanic materi-

als in exterior locations and within older craters. Similar

to PI materials which have undergone more degradation by cra-

terlng, ejecta deposition, and mass wasting. Includes ballis-

tic ejecta component from large craters.

Type Area: Plains east of Andal (-47°, 33°W) and east of

Handel (2=, 28°W); also within Andal.

C2: Materials of moderately fresh craters. Distinct but modified

rims, interior features, and secondary crater fields. Terrac-

ing common. No rays. Basin size examples have discontinuous

rims.

Interpreted as in CI, but degraded by subsequent impacts,

tectonic processes (scarp formation), and plains formation (P2).

Type Area: Mahler (-19 °, 19°W).

P3: Materials of moderately smooth to hummocky plains. Low to mod-

erate densities of 1-15 km craters often forming chains and

clusters. Occur in depressed regions, interior and exterior

to craters. Often cut by scarps and ridges. Albedos not dis-

tinctive, averaging 0.17 - 0.21 (Dzurisin, 1977b).

Interpreted as volcanic extrusions in large expanses exterior

to craters, and in coeval or older craters. Includes impact

melt in C3 craters and accumulations of impact ejecta of nearby

basins and craters.

Type Area: Plains east of Schubert (-43°, 48°W).
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C3: Materials of moderately subdued craters. Rounded rims, in-

distinct interior forms and discontinuous deposits, except

around basin size objects.

Interpreted as C1 type craters but more degraded by subsequent

craters, plains formation, scarp formation, and mass wasting.

Type Area: Crater pair west of Ibsen, (-25°, 44°W) and

(-26° , 47_5 W); Brunelleschi (-815, 22_5 W).

P4: Materials of rough to hilly intercrater plains. High and uni-

form densities of small ( ! 15 km) superposed craters, many

elongated and aligned in chains. Form raised, plateau-like

areas, flat to gently rolling. Albedos average 0.17.

Interpreted to be volcanic flows from fissures subsequently

buried by flows. Very rarely impact melt in C4 craters or ba-

sins. Interbedded with ballistic ejecta deposits.

Type Area: West of Vostok Rupes (-38°, 23°W), east of Equiano.

C4: Materials of subdued craters. Rounded and crater-pitted rims

of usually low relief. Satellitic crater fields and radial

chains visible around a few basin size (D > 150 km) craters only.

Greater numbers of superposed craters (i0 - 30 km) than on C3.

Outer rim often extended and shelf-like, or cut by trough paral-

lel to rim crest.
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Inferpreted as modified impact craters, but more degraded than

above. Isostatic equilibration may cause uplift of floor and

subsidence of loaded rim. Impact scouring and tectonic pro-

cesses may create rim trough. Landslides in pre-existing topog-

raphy may extend rim materials.

Type Area: Kenk5 (-21°, 1615 W) and Ma Chih-Yuan (-59 °, 72°W).

P5: Materials of very rough, knobby, and pitted intercrater plains.

Form gently rolling to level surfaces between and around

larger craters, with a high density of small 1 - 15 km craters.

Smaller superposed craters elongated, in chains and clusters,

as on P4 material. Plains bury and/or embay vague circular de-

pressions. Albedos average 0.18, with rays 0.22.

Interpreted as volcanic flows, severely disrupted by repeated

impacts of primary and secondary projectiles, and by mass

wasting and tectonic processes. Sources (vents) of volcanic

material buried by plains or destroyed by subsequent cratering.

Ballistic deposits interbedded with, and must overlie, much of

these plains. Not primordial.

Type Area: East of Homer and Handel (2°, 31°W); east of Rodin

(23 °, 13°W); and north of Po Ya (-44°, 20°W).
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C5: Materials of highly subdued to indistinct craters. Dissected,

pitted, and/or collapsed rims of usually low relief. No interi-

or facies, except rarely on basin size craters. No remaining

satellitic crater fields. Exterior rim contacts indistinct and

queried when adjacent to P5 materials. Usually filled with

younger plains material.

Interpreted as ancient, degraded impact craters. Degradation

processes noted above.

Type Area: Crater north of Handel (615 , 31_5 W).

C5': Vague Circular Depresslons (also Ancient Circular Depressions).

Materials of vague circular depressions, nearly unrecognizable

landforms. Sometimes bounded by inward facing scarps. Inter-

ior often has fewer large craters than the exterior, and is

filled with P5 or younger plains materials. Large depressions

sometimes double-ringed, with deeper central depression.

Interpreted as ancient impact basins and craters which were

formed before and during major intercrater plains formation and

duringthe continuing early heavy bombardment by large objects.

Scarp-llke rims may form later as tectonic adjustment of crust.

C5' features buried by intercrater plains.

Type Area: Two crateriforms south of Murasaki (-21 °, 47°W),

and depression east of Handel at (215 , 2715 W).
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Buried Craters: Materials of raised circular forms of undetermined

age within plains or crater materials.

Interpreted as craters buried by crater ejecta and plains

materials.

Type Area: Within P3 material east of Antoniadi Dorsum

(29 °, 25°W).

Dome Material: Material forming domes or small plateaus, often sub-

dued and cratered, occurring on plains or on crater rims. Some

domes have rimless summit depressions; another group of 3 to 4

domical features is aligned north-south.

Interpreted to be volcanic domes at centers of volcanic acti-

vity, overlying central vents or fissures. Remnants of plains

formation, with more viscous material.

Type Area: Dome on crater rim and unit contact northwest of

Lu Hsun (4°, 25°W).

Rimless Depressions: Materials forming rimless depressions or pits.

Circular to irregular in plan, steep inner slope, hummocky to

flat floor, located along fault, scarp trace, contact, or sum-

mit of dome. Commonly within crater floor.

Interpreted as collapse depressions due to movement along fault,

shallow volcanic calderas, or compaction of porous breccia lens

deposits beneath crater cut by scarp.

Type Area: On floor of C2 crater (27 °, 1915 W).
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Hilly and Lineated Area: Materials of the above units divided by

troughs of I0 km width. Form linear valleys and massive angu-

lar hills or knobs, of 5 - i0 km horizontal dimensions, and of

0.I to 1.8 km height (Trask and Guest, 1975, p. 2471). Bases

of hills and valleys locally filled with smooth units. Most

craters and plains severely degraded; smooth plains or hummocky

plains can be found in craters with dissected rims. Normal

craters superposing the area are of Classes 2 and I. Youngest

crater partially displaying the area's characteristics is late

C3 in age.

Interpreted as craters and plains disrupted by seismic event

associatedwith Calorisimpact,antipodalto this area (Schultz

and Gault, 1975a,b, 1976). Disruptive event was apparently

sudden,and occurredin late C3 period or early C2 period.

Hummockyplains formed initiallyas smoothmaterialswhich were

then disrupted;smoothplains were depositedafter the event.

Tensionalstressesformed linearvalleysalong the global linea-

ment directions. Smooth facies in valleysare mass wasted

materialsfrom steep slopes of hills.

Type Area: Area aroundPetrarch,-24° to -40° latitude,10°W

to 37°W longitude.

389



APPENDIX B

AREAL MEASUREMENT OF MERCURY'S FIRST QUADRANT

This appendix contains discussions of various linear and

areal measurements of Mercury's first quadrant which were used in

geological map preparation, map analysis, and statistical surveys of

crater densities. Accuracy of each method rests on the determination

of the scale of the photograph, i.e., the conversion factor between

distances on the planet (in km) and distances on the photograph (in

cm). Measurement errors arise due to uncertainty in Mercury's radius,

poor resolution, poor coverage, high sun angle illumination in the

limb regions, planetary curvature, limited precision in measuring

instruments, and inaccuracies in the printed map scales. Estimates

are given for these errors.

Limiting Diameter and Scale

Detail within the geological terrain map is limited to fea-

tures larger than about 40 km, or 5 mm on the base photomosaic.

Plalns-filled, linear troughs of widths less than 40 kmbut lengths

greater than 40 kmwere included. As a consequence of this reduction

in detail, crater outlines are smoothed out, circular, and cartoon-

llke, rather than lobate or rayed. Detail within the convoluted unit

boundaries of the hilly and lineated area remains slightly greater
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than that of the rest of the map. Failure to include features of 40 km

or greater because of scale factor errors across the photograph of the

planet's disk is not expected to be significant.

The scale across the photomosalc, roughly 1 to 7,700,000, is

preserved in this perspective projection (similar to orthographic) for

distances measured parallel to the llmb (or its tangent). The scale

was first determined by measurements of features near the center of

the disk, approximately near the center of the hilly and lineated

area, where foreshortening is not a problem. The pixel and llne sizes

(given in SEDR volumes in kilometers) were converted to km/pixel and

then km/mm by determining the average pixel length. (The I cm eye-

piece scale and 30 cm ruler described below were used to measure the

length of 100 plxel elements marked along the edge of the Mariner I0

image.) This method of scale determination is informally called the

"pixel-photoscale method."

Other scale determinations were used to verify that derived

from pixel size. For instance, published crater diameters were

ratloed to their diameters in the photomosaic measured parallel to the

llmb; a similar scale was obtained. Another verification applied the

network of control points (Davies and Batson, 1975). When these

points formed lines parallel to the limb, the calculated distance and

resultant picture scale were nearly equal to those derived in the

plxel photoscale method at the center of the disk. In a few

instances, irregularities in the photomosaic cause crater diameters to
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be too long or too short. (Near the east llmb at 0° N, 60°W, the mosaic

is not Joined correctly; a large 60 km crater there appearstwice,

offsetby a small amount laterally.)

There is a slight ambiguityin rim to rim diameter due to

curvature of the surface (chord lengthversus arc length over the

sphere), but the correctionis minimal for craters less than 700 km.

Although errors in linear dimensionsdue to scale and curvatureare

not great, some uncertainties result from the loss of resolution

toward the limb, principallyin recognition of cratersand plains and

determinations of their boundariesfor measurement. AppendixC con-

tains a short discussionof scale factorsused in measurementsof the

selected regions.

Map Boundaries and Area

In order to determine the extent of the area mapped (Fig._ i0,

text), the boundaries of the map region were transferred onto the USGS

Shaded Relief Maps. The terminator position marks that boundary where

features of 40 km or greater could no longer be distinguished. This

boundary extends roughly along the i0° (West) meridian in the northern

half of the mosaic and along the 12° to 17° meridian in the southern

half. The enclosed map area was extended to the South Pole, following

the 140° meridian to latitude -72° and then in staggered latitude-

longitude blocks to the limb zone of the planet. Areas were included

if coverage and resolution were adequate. The map extent is slightly

greater than that used by Trask and Guest (1975) and others (e.g.

Murray et al., 1974b; Wood et al., 1977), who set conservative limits
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on the regionof discriminability.The southernlimbarealimits

reflecttheuse of secondencounter,southpolarphotography(Stromet

al., 1975a). The northern limb limit was extendedonly slightly more

than that of Trask and Guest;high sun angles,poorer resolutionand

coverage argued for such caution.The limit of coverageto the north

was about the 45° latitude.

Map Areas

Using the shaded relief maps, areas were marked off in swaths

of latitude and longitude zones and computed from formulas for the

area on a sphere of radius 2439 Pun. The areal extent of the general

geologic map is 1.0284 • 107 km 2 , about one seventh of the planet's

surface. A+_I km uncertainty in Mercury's radius translates into a

_8_103km 2 uncertainty in the general map area. The moreconservative map

extends from 70° S to 30° N, slightly inward from the terminator on

the east and inward to the 60°or 50° meridians on the west, enclosing

4.985.106 + 4.103 km 2.

Hilly and Lineated Area. The area of the hilly and lineated

zone was computed using latitude and longitude of bounding points (in

Davies et al., 1978, Atlas) for the surface area on a sphere. The

area enclosedwas irregular,but was approximatedby reducingit to a

grid of square degrees (or fraction thereof) where appropriate. The

eastern (terminator)boundarywas adjustedto the generalmap area and

the restrictedmap area. The resulting areas are, respectively,

5.744-105+ 5.102km2and4.776.105+ 4.102 km2.
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Selected Regions. Areas marked "Heavily Cratered Areas" and

"Intercrater Plains" were Used for the small-crater statistical

studies. These regions were measured initially by the pixel-photoscale

method and later by the latltude-longltude grid method. Errors in

areal measurements using the latter method stem from uncertainty in

Mercury's radius, and the approximation of irregular areas by a square

degree grid. Further error may occur in averaging scale factors over 5

or I0 degree latitude intervals. Errors in the pixel photoscale

factors are discussed in Appendix C.

Areas of the Plains Surfaces. The areas covered by the var-

ious plains units were measured by planlmeter after transferring the

geologic map from the 16" by 24" photomosalc onto the six quadrangle

maps of the incoming side. Plains boundaries were reproduced as on the

1:7,700,000 scale map but with slightly more definition and occasional

inclusion of features smaller than the 40 fun cutoff size. Unit bound-

aries and designations were further reviewed and corrected if

necessary. Where the shaded relief maps overlap in latitude, the

plains and crater units were duplicated as accurately as possible,

given the different map projections in each quadrangle. The area of

each plains unit, too complex to be marked off on a latltude-longitude

grid, was measured with a planimeter. Because the scale changed across

the map with latitude, measurements were made in 5 or I0 degree

swaths between the mapped latitutes, up to the longitudinal boundary

of the restricted map and then to the general map boundary.
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Plains exterior and interior to the craters were measured and

recorded separately. Many of the ancient depressions which are covered

with plains material were considered part of the "exterior" plains. If

the rim of a breached crater was nearly closed, the terrain was con-

sidered "interior;" if the crater rim was less than half complete, the

plains were considered exterior to the crater. Many plains fill cra-

ters much older than themselves; this value can be estimated (or

modelled) but was not recorded in the planimeter measurements

(described below). Although measurements were not made of the exposed

cratered area, that information also can be derived by the same pro-

cedures. A crude estimate can be made of the total area occupied by

craters merely by subtracting the exterior plains area from the total

map area, and by modelling the crater area using the collected crater

statistics. Results of the distribution of plains and crater coverage

are discussed in Chapter 4 of the text.

In some cases differences were noticed in the latitude and

longitude of control points included within the overlapped strip of

the shaded relief maps (Davies and Batson, 1975). These gaps were

determined and the area included within them was added to the appro-

priate quadrangle.

Planimeter Measurements. The planimeter measures the area

encircled by the movements of a small wheel on a flat, level surface;

the area in arbitrary units is read from a micrometer dlal on the

moving "cursor." The planimeter was calibrated on known areas of
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simple shapes (a 6 x 5 cm rectangle and a 3 cm radius circle): a

conversion factor to square centimeters was computed and checked for

consistency before each round of measurements. Accuracy of the bound-

ary tracing of the user, reproducibility of the planimeter's recorded

area, and the accuracy when measuring more complexly shaped areas were

also checked at regular intervals. From calibration trials, the con-

version from units to square centimeters was 63.48 + 0.70 cm2 /unit2

for 130 trials of mixed shapes. Translating this figure into square

kilometers on Mercury's surface depended upon the scale of the shaded

relief map at that latitude.

The printed scales bounding each 5° latitude strip were

measured (with a I mm ruled 30 cm ruler and a 0.2 mm ruled i cm eye-

piece scale), averaged, squared, and multiplied by the area in square

centimeters. When compared to the areas determined by latitude and

longitude, the arithmetic average differed by 1.5% to less than 0.5%

for the Lambert Conformal Projections (Discovery, Victoria, and

Michelangelo quadrangles) and the Equatorial Mercator Projections

(Kuiper and Beethoven quadrangles), but differed by nearly 10% in the

Polar Stereographic Projection of the Bach Quadrangle. In the latter

(H-IS) quadrangle, errors due to the cm2-to-_n2 scale conversion were

greater than the planimeter unit-to-cm2 conversion. The opposite was

true in other middle latitude projections. Symmetry and slowly

changing scales enable scale factors in some regions to be averaged
O

over a i0 (not 5°) latitude strip (as in Discovery and Michelangelo
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from -30°to-60° and in KuiperandBeethoven from -20° to +20° about

the equator).Latitudesduplicated_y adjacent shaded relief maps

could provide a checkon themap scalesof differentprojectionsof

the samearea. Generally,the scaleswere the same; accuracy of the

planimeterwas good enoughto considerits error no higherthanthe

map scaleerrorin thisregion.

A final errorestimate combinesthatdueto measuredscales

with that due to planimetermeasurements(Table BI). The map's

restrictionin detailand smoothunit5oundariesprobably exceedsthe

above errors,estimatedto be less than I0%, and usuallylessthan

1.5%. Also, the increaseddifficultyin recognizingandmeasuring

crater and plainsunitsin the llmbregion causethe uncertaintyin

plainsareaon the generalmap to be greaterthanthatof the restrict-

ed map. Error estimatesfor areas measured by latitude-longitude

formulas,usingtheshadedreliefmapsto providethe referencegrid,

are slightly less (--1%)thanthoseof areasmeasuredby planimater

(_I_5%toI0_).The lattererrors includethosedue to approximationof

regionsnot bounded by squaredegrees,errorsin the referencegrid,

and theuncertaintyin Mercury'sradius.
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Table BI: Uncertainties and Estimated Errors

in Linear and Areal Measurements

Factor Estimated Uncertainty

Radius of Mercury, _ 2439 ! 1 km

Errors in latitude, longitude due to

uncertainty in RM < _ 0.01%

Shaded Relief Map: Position

Stated error between image on base mosaic and < 2 km for H-2,
computed control point positions (Davies and H-6,H-15
Batson, 1975) <5 km for H-If

Observed error in regions of overlap

(20_25° lat, and -65 to -7_ fat) _ 0.3° fat., lon.

Measuring Instruments

1 cm scale eyepiece precision 0.2 mm

accuracy + 0. i mm

30 cm ruler precision 1.0 mm

accuracy + 0.5 mm

Planimeter precision -- 0.001 unit_
accuracy + 0.001 unit

Protractor precision -- 1°

accuracy 0?5

Diameters, Lengths (L)

Errors due to instruments' uncertainties, for
L --1 mm + 10%

1

L--I cm ! 1% (eyepiece)

LNI cm ! 5% (ruler)
L > 5 cm + 1%

On the Shaded Relief Map base, L is 5, 50 and 250 km respectively.

On the General Map, L is 7.7, 77.4, and 287 km respectively.
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Table BI: Uncertainties and Estimated Errors--Continued

Factor Estimated Uncertainty

Scales of Shaded Relief Maps
H-2 and H-II i: 4 623 000 at 2275 latitude

H-6 I: 5 000 000 at 0° latitude

H-15 i: 4 290 000 at -6_ latitude

Uncertainty due to instruments _1%

Uncertainty due to interpolation between
marked values at 5 degree intervals < 5%

Uncertainty due to using average scale
across 5° latitude interval <5%

Error in average scale versus latitude-

longitude calculation for area <1.7% in H-2, H-6, H-II
_I0% in H-15

Planimeter Calibration 63.45 _ 0.70 cm2/unit 2
+ 1.1%130 trials of varied shapes

(includes errors in reading vernier dial,

repeatability, and complex shapes)

Resulting error at scale of Shaded Relief
+ 1750 km 2 at _lat.Maps:

Areas: Boundaries and values (Shaded Relief Maps) o
Errors due to latitude - longitude 0.3 lat., lon.

or 153 km 2 at + 20°fat.

69 km 2 at _ 65°lat.

Errors due to transfer of map from base mosaic

to Shaded Relief Map < 10%

Error in mapping at terminator and limb < 10% (estimate)

Error in 1 x 1 grid round-off estimates _ 1812 km at 0°lat.
+ 16 km at poles

This error is less than 0.4% of the Hilly and

Lineated, Restricted, and General Map regions.

Combined error estimates (measuring device, planimeter, scale,

and radius of Mercury)

Victoria H-2 _ 1.3%

Kuiper H-6 _ 1.8%
Discovery H-II _"1.3%
Bach H-15 _12.2%
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APPENDIX C

MEASUREMENT AND ERRORS OF CRATER STATISTICS

The collection of cratering data from planetary imagery has

been described in the text. Further clarification of techniques,

errors in measurement or degradation assignment, and statistical for-

mulas is presented here. Section 1 contains a discussion of base map

photograph preparation, measurement of crater diameters and sampled

area, and instruments used. Section 2 contains a discussion of pos-

sible uncertainties, such as sun angle, scale factors, degradation

classification, and biases in crater recognition. A third section

presents the mathematical formulas used in crater statistics compiled

in Appendix D.

Section I: Materialsand Techniques

DataSources

Negativeprints of 20" by 24" Lunar OrbiterIV imagery and

positiveprints of Mariner I0 imagerywere used for most crater mea-

surements.Hard copy prints were obtained throughthe Space Imagery

Center of the Lunar and PlanetaryLaboratory(LPL) of the University

of Arizona,Tucson, and the photographicservicesat LPL. Additional

specially processed images, stereo pairs, and photomosaics were

obtained from the Image Processing Lab of the Jet Propulsion

Laboratory (JPL/IPL),Pasadena,California.
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Measurement Techniques

Base Photograph. The photographs were covered by transparent

acetate which could be marked with pencil; grids of some small size

were drawn on the counting area. Crater parameters within each square

were measured directly on the photograph surface with instruments

described below and tabulated on a prepared data sheet. Crater rims

(circled in pencil on acetate) were numbered for identification to

prevent recounting the crater.

Crater Diameters. Crater diameters were measured from rim to rim

as outlined in the Catalog of Lunar Craters (Wood and Andersson,

1978a). On most of the lunar images, the distance between the sharply

shadowed sunward rims, parallel to the sun's azimuthal direction, was

taken as the best approximation to the crater's rim-to-rim diameter.

However, often on the Mercury imagery, the crater appeared foreshort-

ened near the picture edges or in oblique viewing angles; in those

cases the long axis of the crater was measured, parallel to the limb

of the planet. Shadows defining the rim ansae tend to disappear in the

mid-disk limb regions, increasing the uncertainty of the diameter

measurement. Two measurements were recorded for truly elliptical cra-

ters and for large craters with irregular and ill-defined rims, but

the average diameter was used in the crater statistics.

Measured Areas. Determination of the areas over which the

craters were sampled was critical to later statistical studies. If the

area was rectangular and described by one scale factor, as on most
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lunar photos, simple measurements of the length of the bounding sides,

multiplied by the scale factor squared, gave an area in km2 with

approximate accuracy better than 1%-5%. Irregular areas could be

blocked off into geometrical shapes, measured, and the cm2 value con-

2verted to km with the appropriate scale factors. (Errors in the scale

factors, as discu~sed shortly, are critical because the term is

squared.) Lunar count areas were only part of a high resolution

photograph, so errors due to change in scale factor with distance from

the principal point, or with foreshortening and tilt, were insignifi-

cant. Changes in scale factor across the Mariner 10 images may be more

significant for the lower resolution, oblique photos containing limb

regions, but not for the higher resolution coverage near the center of

the disk. Other methods of determining the count surface area are

described in Appendix B.

Instruments. The same measuring devices were used to deter-

mine crater diameters, scale factors, and areas of counted regions on

both planets. For craters less than 1.0 cm on the hard-copy photo, a

magnifying eyepiece, I-em scale with 0.2 rom divisions was used with an

estimated accuracy of ±p.1 rom for sharp rimmed craters. Craters as

small as 1.0 mm were measured in some lunar areas; maximum error is

~10%. Craters larger than 1 cm on the photo were measured with a pre-

cision 30 cm ruler of 1 mm divisions, with an estimated accuracy of

0.5 rom; maximum error of a "1 cm" crater is 5%. Sharp rimmed craters

of larger diameters within the range of each instrument will have

smaller maximum errors, but the error associated with more degraded

landforms is greater.
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Section 2: Discussionof Errors

In general,diametersof lunar craters measured on OrbiterIV

imagery are judged to be more accurate than those on Mariner I0

imagery because of higher resolution, differentimagingsystems,and

lower,more uniformsun angles.OrbiterIV imageryhas a resolutionof

100 m, as compared to Mariner 10 imageryof _I km for most of the

photos used in this study. Scale factorsfor lunar imageryappear to

be more easily determined (and precise) than Mariner I0 figures.

Crater degradationand rough topographylimit the accuracieson either

surface.

Sun Angle

Varying sun angle illumination may be one factor contributing

to inaccuraciesin diameter measurements.In Orbiter IV imagery, the

o o
sun angle is _22 from the horizontalnear 42 latitudeand_lO° at 72°

latitude, and approximatelyconstant over the measured area (Table

CI). Sun angle illumination on Mercury'sincoming side varies from 0°

to 90° . Changes in sun angle affect diametermeasurementsas well as

crater recognition and apparent morphology (Young, 1975; Schultz_

1976a, 1977). The effects on crater diameterand recognitionby the

imaging system (vidiconTV image as opposedto photographicimage) and

by resolution are outlinedby Schultz (1976a, 1977) and discussedin

Chapter 2 of the text.
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Table C1: Lunar Orbiter IV Photographic Data from Wood and Andersson (1978a)

LO IV High¢ Spacecraft Latitude Scale at Scale at Nominal Range
Resolution altitude at center center corner ground of sun

(km) of photo (km/rom) (km/rom) resolution elevations
at center

~ Equatorial 2700 + 14° .62 .63 .06 15° 23°
0
~ 0 0

24°Temperate 2900 + 42 .66 .68 .06 14

Polar 3500 + 12° .80 .83 .08 0
0 - 24°

(N) ° 1.5/1 0° - 50°Sunset 5500 + 34 1.3 .12
5800 (S)

/I At limb

¢ Photographs all 20" by 24" glossies, transparencies, positives, and negatives.



Scale Factors

Lunar Orbiter IV Photos. Scale variations over the standard

Lunar Orbiter IV photos have been calculated by Andersson and are

reproduced in Table C1 below (from Wood and Andersson, 1978a). Inter-

polations of scale factors for varying spacecraft altitudes or

principal point latitudes were made using a fit to a quadratic curve.

Published diameters (Wood and Andersson, 1978a) and measured diameters

were ratioed across the photograph and averaged to ascertain the

effective scale factor. Agreement was usually satisfactory. Instru-

mental errors are of the same order (1% - 3%) as the published errors

in the dlameter of small, 3.5 - 7.0 km, craters. Wood and Andersson

(1978a) state an accuracy of 0. i km (about the limit of resolution)

for small craters, and an internal accuracy of 2% to 5% for catalog

data. The appropriate scale for the portion of the photo used for

counting was then applied to all measurements. Calculations of crater

diameter in kilometers were completed after the values in mmwere

recorded, tabulated, and binned. A conversion table of mm to km was

prepared for each photograph before measuring the small craters, after

calculation of the photo scale.

Mariner i0 Mercury Images. Scale factors derived from Mariner

I0 imagery proved to be a problem. Initially these factors were

derived by dividing the published pixel size, or resolution per pixel,

given in km, by the measured and averaged pixel size in _m. (Tick

marks of 5, i0, and i00 pixels and TV lines appear on the Mariner I0
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images.) Although some differences in pixel width and llne width

occur, the initial scale factorwas based on plxel width. The scale of

the Discovery mosaicwas derived from the measured and publishedsize

of the crater Rameau (D = 55 km, Murray et al., 19745). Foreshort-

ening, for a true perspectiveprojectionfrom great distances,is not

expected to seriouslyaffect the dimensions parallelto the limb. For

the large photomosalcof Mercury's first quadrant,variationsin scale

by 1% to 2% occur depending on the slant range of the individualpic-

tures and the processingof the scale across the mosaic.Most of the

higher resolution,closer-range photos used here were targetedcloser

to the disk center,and thus not as affectedby foreshortening.

However, scales computed along the horizontalaxis of the

Mariner i0 images may not be valid for measurementsmade at angles to

that axis, i.e. parallel to the llmb. Therefore,a precise scale was

determinedfor the center of the first quadrant mosaic and used to

recompute the scale factors for the images in the mosaic. If this

revisionis correct, the former plxel scale factorscould be too high

by 10% to 20%. Relative densitiesin one area are not expected to

change, for both crater diameterand measured areas are affectedby

the km2 factor. However, a shift in the number of cratersper bin

could occur for those craters of dlamtersapproximatelyequal to the

boundariesof the bin. The net shift shouldbe toward lower diameters.

After rebinningthe data accordingto the revisedscales, minor shifts

in bin populations to lower diameterswere noted, but did not change

any of the conclusionsdrawn (Chapter3).
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Table C2 below lists the areas of the selectedregions as

determined by the pixel-photoscale method,the revised mosaic-scale

method,and the latltude-longltudegrid method.The variations in the

first value could be attributedto failureto use a sphericaltriangle

approximationof the photo area, or similarly, using a horizontally

directed scale (km/pixel)for featuresforeshortened at an oblique

angle. The latitude-longitudegrid method is the most accurate of the

methods used.

DegradationClass

Although a detailed discussionof degradationclass criteria

appears in Chapter2, some particularproblemsare reviewed here. The

LPL system, based on criteriaof rim sharpness and continuity (Wood

and Andersson,1978a),was appliedto selectedregionsof the Moon and

Mercury. A slightlymodifiedLPL systemwas used in mapping the first

quadrantof Mercury.In both systems,Class 1 cratersare fresh and/or

rayed, and Class 5 cratersare highly subdued.The slightmodification

of degradationclass criteriabetween the cratercount project on the

selectedareas and the geologicmapping produced conflicting results

in degradation class densities. In general, over half the large

(greaterthan 40 km) cratersof the selectedareas were assigned to

the sam____edegradatlonal class in mapping. However,a large percentage

was reassigned to fresher craterunits by a changeof one crater

class. The shift in class was most commonfor C3 and C4 craterswhich
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Table C2: Areas of Selected Regions

Selected Areas (km2)
Region

Using Pixel Using Revised Using Lat. Long.
Size Mosaic of Shaded Relief

Scale Scale Maps

Area 1HCA 1.6559.105 1.3495.105 1.7294.105

Disc. Scarp
ICP 6.4275-104 6.422.104 7.1575.104

Area 2 HCA 8.5226.104 5.1302.104 6.4654.104

Area 2-1CP 1.397.10 5 8.3171.104 1.2696.105

Area 55' 1.3628.105 9.1228.104 1.0784-105

Area 6(6') 1.7595.105 1.3196.105 1.3222.105

Area 6 ICP 1.0175.105 7.6309.104 1.4777.105

Area 6 1.5400.105 1.155.105 1.2266.105

Area 3* 5.0529.104

Area 4* 5.9553.104

* Areas not sampled in small-crater statistics.
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were then mapped as C2 and C3 craters respectively. In effect, many of

the selected regions when mapped appear younger than when analyzed by

the crater-diameter frequency relation. The large C4 population

decreases slightly in the map statistics; the C2's increase. Table C3

presents these changes for the general map for craters over 40 km.

Roughness of the terrain also affects the assessment of

degradation classes. Nowhere is this more clearly illustrated than in

the hilly and lineated area of Mercury (Fig. 19, text). The high

relief terrain appears to affect superposed craters by mass wasting

from topographic highs and by differential erosion along lines of

pre-existing weakness (cf. Mutch and Saunders, 1972). For all lunar

and mercurian crater statistics, information on the background unit

could prove helpful in evaluating uncertainties in diameter and

degradation class.

Biases in Crater Counts

A bias appeared to be introduced by setting a lower size limit

for the counted craters prior to measurement; craters of the "cut-off

diameter" size were recognized more easily. This recognition may be

just the result of the increasingly larger numbers of small craters on

the planet surface. In two adjacent areas of the southern lunar high-

lands, the larger area with the higher Dmi n has higher densities of

4.2 km craters than the smaller region with the smaller Dmi n. Crater

recognition sometimes appeared to change with the time spent counting

craters. The possibility of "missed" craters makes it advisable that a
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Table C3. Degradation Class Shift

Degradation classes of craters _ 40 km in selected regions of Mercury
when measured, compared to their classes when mapped.

Classes as Mapped
C1 C2 C3 C4 C5 Total

Classes C1 4 4

as C2 5 i0 3 8

Measured C3 14 22 3 39

C4 12 19 3 31

C5 4 7

Total 9 24 37 26 3 99

Of 99 craters in HCA and ICP areas:

58 remain in the same class,

35 are reclassed to one fresher unit when mapped,

6 are reclassed to one more degraded unit when

mapped.
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recount of a certain area be conducted to establish statistirallythe

average number of craters miscounted or unrecognized. Repeatability of

diameter values and degradation class assignments could be tested in

such a recount exercise. Greeley and Gault (1970) performed such

studies in an extensive crater survey involving many cratercounters.

Recounting the same area on a different photograph, or at different

sun angles could establish the effect of those variables on crater

statistics (Young, 1975). Such tests were not conducted in this

survey, but may be valuable in future study.

&
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Section 3: Mathematical Formulas for Crater Statistics

The statistical formulas which follow are presented in the

report of the Crater Analysis Techniques Working Group (1978, p.

16-17). Let D be the crater diameter, and D the geometric mean of a

diameter interval from D1 to D2, where D2= 2_DI; thus D = (D1.D2) ,

or DI° 2¼ . If N is the number of craters with diameters D such that

DI_ D_D 2 over an area A of crater sampling, then the various statistical

functions are:

Differential Size Frequency Distribution F(D)

dF(D) = dN = bD adD where N = dDa. Note that

(d logN)/(d logD) equals the "slope" a.

Cumulative Size Frequency Distribution C(D)

C(D) =IA /_ maxF(D)dD

Relative Size Frequency Distribution R(D)

R(D) = F(D)/S(D) where S(D) is a differential

-3
reference distribution, S(D) = D .

R(D) = aN/(aD.A-D -3) = aN i
aD D--m-SA

= (C(D2 - C(DI))
D-J o (D2 - DI)

3
-- 5 .N

A • (D2 - DI)

Area Plot P(D)

P(D) = ,TD---2"N,100 = 0.0365 R(D)
4-A
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APPENDIX D

CRATER STATISTICAL DATA

The tables presented below llst, for each area A, the total

number of craters N within a bin of mean diameter D-and the number of

craters of each degradational type (CI-C5, C5') within that bin.

Rim-to-rim diameters were measured at arbitrary azimuths for rectified

photos or photos taken at vertical incidence (most lunar photos), and

at azimuths paralleling a local tangent to the limb for oblique

images.

Although not presented here, additional information was

gathered for some regions, including (I) diameter of crater floor, (2)

shadow length of sunward crater wall, (3) presence of crater in a

chain or cluster of craters, (4) background unit if known, (5) posi-

tion relative to significant objects, and (6) presence of a central

peak, peak ring, fault, or scarp. These data are available on request.

The support data included with each table provide necessary

information on the materials used, the area measured, and the method.

Information on materials includes image identification, type of pro-

cessing, source of photo, and the photo scale (km/mm). Information

about the area measured includes the region's boundaries or exact

location (center coordinates or a finding chart) and its dimensions in

km 2. Included as data on the method are the measurement technique and

instruments used co measure diameter and regional area, estimates of

413



instrumentaccuracy and errors, commentson the area's subdivisions,

the lower diameterlimit ("cut-offdiameter")of measured craters,and

any necessarynotes on degradationclasses or the surfaceitself.

Criteria for the latter are discussed and illustratedin Chapter 2.

More quantitative morphologicparameters for Mercury and the Moon are

not presented here but have been published by Malln and Dzurisln

(1977, 1978),Smith and Hartnell (1978),Carusi et al. (1976a,b),

Caputo et al. (1976a,b), Wood et al. (1977), Wood and Andersson

(1978a,b,c),Pike (1976, 1977a,b)and others.

Abbreviationsused in the followingtables are listedbelow.

LPL L._unarand _lanetaryLaboratory, Universityof

Arizona, Tucson,Arizona.

JPL J__et_ropulsionL__aboratory,California

Instituteof Technology,Pasadena,California.

IPL Image ProcesslngLaboratory, Jet Propulsion

Laboratory,Pasadena,California.

USGS U__nitedStatesG__eologlcalS_urvey

SEDR SupplementaryExperimenterData Records

FDS Flight _ataS__stem

LO IV L_nar O__rblterIV

Pixel P__!ictureE_.!ement

H-If H.ermes Quadrangle l__!l, Discovery Quadrangle

HCA _Heavily C___rateredA__rea

ICP Intercrater Plains
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Table DI: Lockyer G Region of Lunar Southern Highlands ("Area I")

Pre-lmbrlanPitte_ Plglns Pre-lmbrlanTerra a_d C_aters
Area = 4.085.10-hn- Area = 5.327-10-km-

Diameter Bin N(bin) N(Degradatlon Class) N(bln) N(Degradatlon Class)
(km) i 2 3 4 5 I 2 3 4 5

0.62 -- 0.88 142 11 21 71 31 9 181 30 17 66 54 14

0.88 -- 1.24 265 22 42 105 70 26 184 9 18 49 74 34

1.24 -- 1.75 232 19 33 90 51 39 157 7 13 59 54 24

1.75 -- 2.47 65 9 19 13 12 12 73 3 i0 30 19 i0

2.47 -- 3.5 27 2 I0 6 2 7 32 6 5 7 4 i0

3.5 -- 4.95 8 2 2 1 1 2 ii i 2 2 2 4

4.95 -- 7.0 3 i 0 0 0 2 7 1 0 I I 4

7.0 ~- 9.9 3 I 1 0 0 I 3 2 0 i 0 0

9.9 -- 14.0 0 0 0 0 0 0 4 i 0 2 0 i

14.0 -- 19.8 0 0 0 0 0 0 2 0 0 I 0 I

19.8 -- 28.0 0 0 0 0 0 0 3 1 0 2 0 0

28.0 -- 39.6 I 0 0 0 i 0 1 0 0 i 0 0



Supporting Data for Table D1 Lockyer G Region

Source. Lunar Orbiter IV 88--H2, negative print, full size

(20" by 24"), prepared from positive transparency at the Lunar and Plan-

etary Lab, using the facilities of the Space Imagery Center and the

photography lab.

Measuring Devices. Hand lens eyepiece with i cm scale, preci-

sion 0.2 mm, accuracy _ 0.i mm; and a ruler, 30 cm, precision i mm, ac-

curacy + 0.5 mm.

Location. Principal Gzound Point of LO IV 88: (24.9_ E,

42.69°S), Southeast corner of the H2 photo used, bounded by the coor-

O O O

dinates: (27.5°E, 43.0°S), (31.2°E, 42.5°S). (34.0 E, 47.0 S), (31.5 E,

47.5°S). Pre-lmbrian Pitted Plains mapped by Scott (1972) marked as the

pip region; Pre-lmbrian Terra and larger craters for the non-pip re-

gion. Areas measured in cm2, converted to km2 using the scale factor.

Scale. Scale determined to be 0.686 km/mm by measurement of

catalogued craters within the area (i.e. using the known diameters re-

corded in Wood and Andersson, 1978a). Scale assumed to be constant over

the area of data collection.

Cut Off Diameter. 1.0 mm, or about 0.7 km.

Degradation Classes. LPL scheme: Class i freshest, Class 5

most degraded. Explained further, with examples and criteria, in text,

Chapter 2, and Fig. 6.
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Table D2: Spallanzani Region of Lunar Southern Highlands ("Area 2")

Pre-lmbrian Pitted_Pla_ns Pre-lmbrian Terra an_ Craters
Area = 2.0188.10- km-- Area = 7.4825.10 _ km-

Diameter Bin N(bin) N(Degradation Class) N(bin) N(Degradation Class)
(kin) 1 2 3 4 5 1 2 3 4 5

1.24 -- 1.75 13 6 1 5 0 1 1 1 0 0 0 0

1.75 -- 2.47 299 46 55 120 58 19 66 4 16 20 24 2

2.47 -- 3.5 271 42 37 87 57 48 89 16 14 32 20 9

3.5 -- 4.95 76 14 13 17 15 16 31 7 9 4 4 7

4.95 -- 7.0 28 4 6 5 5 8 13 3 1 4 3 2

7.0 -- 9.9 20 2 4 5 2 7 3 2 0 1 0 0

9.9 -- 14.0 5 0 0 3 l 1 7 1 2 1 1 2

14.0 -- 19.8 8 1 2 5 0 0 7 0 0 5 0 2

19.8 -- 28.0 2 0 0 2 0 0 4 0 1 3 0 0

28.0 -- 39.6 0 0 0 0 0 0 1 0 1 0 0 0



Supportlng_Datafor Table D2 SpallanzaniRegion

Source. Lunar OrbiterIV 88--H2,negativeprint, full size

(20" by 24"), preparedat Lunar PlanetaryLab from positive transpar-

ency from the Space ImageryCenter.

MeasurinB Devices. Hand lens eyepiecewith I cm scale, pre-

cision 0.2 ram,accuracy_+0.I ram;and a ruler, 30 cm, precision1 ram,

accuracy+ 0.5 mm.

Location. PrincipalGroundPoint of LO IV 88: (24.94°E,

42.69°S). Lower third of that photo used, southwestpart, bounded by

coordinates: (19.5°E,45.5°S), (27.5°E,43.0°S), (31.5°E,47.5°S),

(22.0°E,50.5°S). Pre-ImbrianPitted Plains regionmapped by Scott

(1972)marked off as the pip area; Pre-ImbrlanTerra and remainingcra-

2
ters for the non-pip region. Both areas measured,convertedfrom cm

to km2 using the photo scale factor. This region is adjacent to Area

1 describedin Table DI. (See also Fig. 44.)

Scale. Scale of 0.686 km/mm determinedfrommeasurementsof

cataloguedcraters in the photo area (Wood and Andersson, 1978a).

Scale assumedto be constantover the area of data collection.

Cut Off Diameter. 2.55 mm or 1.75 kin.

DegradationClasses. LPL scheme: Class I cratersfreshest,

Class 5 most degraded;applied to all sizes of craters. See text, Chap-

ter 2, and Fig. 6.
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Table D3: Ascelpi Region of Lunar Southern Highlands ("Area 3")

Area = 3.63.104 km2

Diameter Bin Number of Craters Number within Degradation Classes
(kin) in Bin I 2 3 4 5

1.24-- 1.75 347 30 55 i19 93 49

1.75 -- 2.47 402 49 80 122 lO1 48

2.47 -- 3.5 241 44 29 56 69 43

3.5 -- 4.95 97 16 8 23 23 25

4.95 -- 7.0 61 6 7 23 8 17

7.0 -- 9.9 24 1 7 4 4 8

9.9 -- 14.0 28 2 5 8 6 7

14.0-- 19.8 16 3 2 7 0 4

19.8 -- 28.0 6 0 3 3 0 0

28.0 -- 39.6 4 0 2 2 0 0

39.6 -- 56.0 3 0 1 2 0 0

Supporting Data for Table D3 Ascelpl Region

Source. Lunar Orbiter IV 82-H3, negative print, full size

(20" by 24"), p_epared from a positive transparency at the Lunar and P1

Planetary Lab. Space Imagery Center and photography lab facilities used.

Measuring Devices. Hand lens eyepiece with 1 cm scale, preci-

slon of 0.2 mm, accuracy _ 0.I mm; and ruler, 30 cm, precision of 1 mm,

accuracy of + 0.5 mm.
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Supporting Data Table D3--Continued

Location. Principal Ground Point of LO IV 82 is (32 o.47E,

72.37°S); spacecraft altitude 3502.94 km. Northern part of photograph

used, west to Pitiscus. Bounding coordinates are: (21._E, 51.5°S),

(30.25°E, 51._S), (30.0°E, 57.0°S), (20. o o .0 E, 59.8 S) No Pre-lmbrian

Pitted Plains mapped in this region; units were undifferentiated in

the counting statistics. Region illustrated in Fig. 33a; boundaries

shown in Fig. 44.

Scale. Scale of 0.822 km/mm determined from measurements of

catalogued craters on the photo. Scale assumed to be constant over

this region.

Cut Off Diameter. 1.5 mm, or 1.24 km.

Degradation Classes. LPL scheme: C1 freshest, C5 most de-

graded. Fig. 6, Chapter 2 illustrates the degradation classes.
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Table D4: Mutus Region of Lunar Southern Highlands ("Area 4")

Area = 1.0135.104 km2

Diameter Bin Number of Craters Number within Degradation Classes
(kin) in Bin i 2 3 4 5

0.62 -- 0.88 360 24 29 177 115 15

0.88-- 1.24 438 35 44 201 130 26

1.24 -- 1.75 310 23 61 ll5 89 22

1.75 -- 2.47 ll4 13 21 35 32 13

2.47 -- 3.5 69 16 6 16 20 Ii

3.5 -- 4.95 20 5 1 3 8 3

4.95 -- 7.0 9 i 0 4 2 2

7.0 -- 9.9 i0 i 0 2 3 4

9.9 -- 14.0 4 0 0 I 1 2

14.0-- 19.8 3 0 0 1 I i

19.8 -- 28.0 2 0 0 0 I 1

Supporting Data for Table D4 Mutus Region

Source. Lunar Orbiter IV 82--H3, negative print, full size

(20" by 24"), prepared from positive transparency at the Lunar and

Planetary Lab, using the photography lab and Space Imagery Center facil-

ities.

Measuring Devices. Hand lens eyepiece with I mm scale, preci-

sion 0.2 ram, accuracy + 0.i ram; and a ruler, 30 cm, precision 1 ram, ac-

curacy + 0.5 ram.
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Supporting Data Tahle D4 --Contln,lpd

Location. Principal Ground Point of LO IV 82 is (32.47°E,

72.37°S). Southeast corner of photo used, east of Mutus in the "Flow

Lobe" area noted by Strom (1977). Bounding coordinates are: (36.5°E,

61.5°S), (41.5°E, 61.0°S), (43.0°E, 65.0°S), (36.0°E, 65.2°S).

Scale. Scale of 0.822 km/mm determined by measurements of

catalogued craters (Wood and Andersson, 1978a); scale assumed constant

over the region sampled.

Cut Off Diameter. 1.0 ram, or 0.82 kin.

Degradation Classes. LPL scheme used: Class 1 freshest, Class

5 most degraded; applied to all craters. See Fig. 6 and text of Chap-

ter 2 for details.
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Table DS: Jacobl Region of Lunar Southern Highlands ("Area 5")

Southern ("ABC") _egi_n Northern ("DEF") _egign
Area = I.1567-10- km- Area = 1.0282-I0_ km-

Diameter Bin N(bln) N(Degradation Class) N(bin) N(Degradatlon Class)
(kin) i 2 3 4 5 _ 2 3 4 5

0.88 -- 1.24 229 30 24 62 89 24 327 28 22 90 141 44

1.24-- 1.75 245 16 31 64 99 34 358 19 21 122 132 60

1.75 -- 2.47 135 13 26 46 33 18 236 21 42 92 53 30

2.47 -- 3.5 52 12 9 ll 13 7 75 16 31 17 6 6
LO

3.5 -- 4.95 18 5 4 6 2 1 27 lO 9 3 3 2

4.95 -- 7.0 15 3 4 4 3 1 17 3 2 4 4 4

7.0 -- 9.9 4 1 0 2 0 1 i0 0 0 5 1 4

9.9 -- 14.0 5 1 2 2 0 0 5 l 1 1 0 2

14.0 -- 19.8 4 2 0 0 1 1 2 0 0 0 1 1

19.8 -- 28.0 3 0 1 1 1 0 1 0 0 0 0 1

28.0 -- 39.6 1 0 1 0 0 0 1 0 0 1 0 0

39.6-- 56.0 3 0 0 2 1 0 1 0 0 0 1 0



Supporting Data for Table D5 Jacobl Region

Source. Lunar Orbiter IV 112--HI, negative print, full size

(20" by 24"), prepared from positive transparency at Lunar Planetary

Lab. Facilities of Space Imagery Center, photography lab used.

Measuring Devices. Hand lens eyepiece with 1 cm scale, preci-

sion 0.2 mm, accuracy _ 0.i mm; and a ruler, 30 cm, precision I mm,

accuracy _ 0.5 mm.

Location. Principal Ground Point of LO IV 112is (1.35°W,

42.5_S), fromaltitudeof 2986.04km. The westernpart of thisphoto-

graphwas dividedin two halves: thenorthernpart (namedDEF) contains

Imbrian-pre-lmbrian terra (Iplt), Imbrian cratered plains (Ipc), and

craters; the southern half, named ABC, contains the Iplt unit and cra-

ters. The Ipc unit is mapped as pre-lmbrian plains by Wilhelms and

McCauley (1971). The bounding coordinates of the entire area are:

(O.O@E, 55.1fS), (7.5°E, 55.0°S) o , , ., (15.5 E, 60.f S) (9.0°E 62.5°S)

The endpoints of the line dividing the ABC southern block and the DEF

northern block are: (3.5°E, 59.3°S) and (9.5°E, 57.7°S). The region

is illustrated in Figs. 33b and 44.

Scale. Scale of 0.717 km/mm determined from measurement of

catalogued craters within the area (Wood and Andersson, 1978a). Scale

assumed to be constant over the area.

Cut Off Diameter. 1.2 mm, or 0.88 km.

Degradation Classes. LPL scheme: Class 1 freshest, Class 5

most degraded; applied to all craters. See Fig. 6, Chapter 2.
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Table D6: Combined Southern Highlands Statistics

Diameter Bin N(bin) N(Degradation Class) Surfac_ Area
(hn) I 2 3 4 5 (hn")

0.62 -- 0.88 683 65 67 314 200 38 1.9547-104

0.88 -- 1.24 1443 124 150 507 504 154 4.1396-104

1.24 -- 1.75 1649 114 214 569 524 228 7.7696"104

1.75-- 2.47 1390 158 269 478 332 152 1.0537-105

2.47 -- 3.5 856 154 141 232 191 141 1.0537.105

3.5 -- 4.95 288 60 48 59 58 60 1.0537-105

4.95 -- 7.0 153 22 20 45 26 40 1.0537.105

7.0 -- 9.9 77 i0 12 20 i0 25 1.0537"105

9.9 -- 14.0 58 6 I0 18 9 15 1.0537"105

14.0 -- 19.8 42 6 4 19 3 i0 1.0537"105

19.8 -- 28.0 21 i 5 ii 2 2 1.0537"105

28.0 -- 39.6 9 0 4 4 i 0 1.0537"105

39.6 -- 56.0 7 0 I 4 2 0 1.0537-105

Supporting Data for Table D6 Combined Statistics

Source. Combined crater statistics from the previous tables

were used in Table D6. These areas are: LO IV 88 H2, Lockyer G, Area

of 9.412-103 km2; LO IV 88 H2, Spallanzanl, Area of 2.767"104; LO IV

82 H3, Ascelpl, Area of 3.630"104 km2; LO IV 82 H3, Mutus, Area of

1.014"104 km2; and LO IV 112 HI, Jacobl, Area of 2.185"104 km2.

Other Data. Specified in Tables DI through Db.
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TableDT: SouthernHighlandsPre-ImbrinnPittedPlains

Diameter Bin N(bin) N(DegradatlonClass) Surface_Area
(km) 1 2 3 4 5 (kmz)

0.62 -- 0.88 142 11 21 71 31 9 4.085'103

0.88 -- 1.24 265 22 42 105 70 26 4.085.103

1.24 -- 1.75 232 19 33 90 51 39 4.085.103

1.75 -- 2.47 364 55 74 133 70 31 2.427.104

2.47 -- 3.5 298 44 47 95 59 55 2.427.104

3.5 -- 4.95 84 16 15 18 16 18 2.427.104

4.95 -- 7.0 31 5 6 5 5 lO 2.427.104

7.0 -- 9.9 23 3 5 5 2 8 2.427.104

9.9 -- 14.0 5 0 0 3 1 1 2.427.104

14.0 -- 19.8 8 1 2 5 0 0 2.427-104

19.8 -- 28.0 2 0 0 2 0 0 2.427'104

28.0 -- 39.6 1 0 0 0 1 0 2.427"104

Supporting Data for Table D7 Combined pip Statistics

Source. Combined pre-lmbrian pitted plains data from Tables

D1 and D2. Areas and Cut Off Diameters specified above and in the prop-

er tables. Methods previously specified.
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Table D8: Southern Highlands Non-Pre-lmbrlan Pitted Plains

Diameter Bin N(bin) N(Degradation Class) Surface_Area
(k=) 1 2 3 4 5 (_ z)

0.62 -- 0.88 541 54 46 243 169 29 1.546.104

0.88 -- 1.24 1178 102 108 402 434 128 3.731.104

1.24 -- 1.75 1417 95 181 479 473 189 7.361.104

1.75 -- 2.47 1026 103 195 345 262 121 8.109.104

2.47 -- 3.5 558 110 94 137 132 86 8.109.104

3.5 -- 4.95 204 44 33 41 42 42 8.109-104

4.95-- 7.0 122 17 14 40 21 30 8.109,104

7.0 -- 9.9 54 7 7 15 8 17 8.109.104

9.9 -- 14.0 53 6 I0 15 8 14 8.109-104

14.0 -- 19.8 34 5 2 14 3 10 8.109-104

19.8 -- 28.0 19 I 5 9 2 2 8.109"104

28.0 -- 39.6 8 0 4 4 0 0 8.109-104

39.6-- 56.0 7 0 1 4 2 0 8.109"104

Supporting Data for Table D8 Combined Non-pip Statistics

Source. Regional statistics combined for this table include:

#

pit of Lockyer G area, plt of the Spallanzani area, all of Ascelpi,

all of Mutus, and all of Jacobi. Sources, locations, measuring de-

vices, and other data are given in the previous tables.
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Table D9: Boundariesand Areas for Sectorsof SouthernHighlands

Crater s_atlstlcsboundedwithin the followingsectorsare compiled
within the Lunar and PlanetaryLaboratoryCatalogof Lunar Craters

(Wood and Andersson,1978a).

Sector Name LPL Catalog Boundaries* Surfac_Area
Xi Eta Zeta • (km_)

D012 0.0 to 0.3 -0.7 to -0.4 ~0.9 to 0.7 3.3577"105

C01 0.0 to -0.2 -0.7 to -0.4 0.9 to 0.7 1.8736.105
-0.5

T012 0.0 to -0.3 -0.97 to -0.7 0.2 to 0.7 5.0780.105

SO 0.0 to 0.I -0.97 to -0.7 ~ 0.2 to 0.7 1.6787.105

S123 0.I to 0.4 -0.97 to -0.7 ~0.2 to 0.7 4.9624.105

* Boundaries illustratedin Fig. 50 of text, Chapter3.
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Table DI0: Crater Statistics of Divided Sectors Combined

Heavily Cratered _rea_ Non Heavily Crater_d A_eas
Area = 4.4198"10_ km- Area = 4.4907"10- km-

Diameter Bin N(bin) N(Degradatlon Class) N(bin) N(Degradation Class)
(km) 1 2 3 4 5 1 2 3 4 5

7.0 -- 9.9 163 14 55 72 21 I 192 19 33 83 46 II

9.9 -- 14.0 96 16 22 35 21 2 147 13 27 57 39 ii

14.0 -- 19.8 65 12 14 26 9 4 102 14 19 37 21 II

19.8 -- 28.0 69 6 12 34 14 3 59 4 9 26 i0 I0

28.0 -- 39.6 55 2 6 31 i0 6 31 3 4 12 6 6

39.6 -- 56.0 42 1 3 25 II 1 8 0 1 4 2 1

56.0 -- 79.2 25 1 4 16 3 1 0 0 0 0 0 0

79.2 -- 112.0 12 0 I 7 2 2 1 0 1 0 0 0

112.0 - 158.4 3 0 1 2 0 0 0 0 0 0 0 0

158.4 - 224.0 1 0 0 0 0 1 0 0 0 0 0 0



Table DII: Crater Statistics of Divided Sectors, Werner Area

Heavily Cratered _rea_ Non Heavily Crater_d A_eas
Area = 1.7548.10 J km_ Area = 1.6030-10 km

Diameter Bin N(bin) N(Degradation Classes) N(bin) N(Degradation Classes)
(km) i 2 3 4 5 i 2 3 4 5

7.0 -- 9.9 65 5 20 27 12 i 64 6 13 26 16 3

9.9 -- 14.0 49 6 12 18 12 1 66 7 15 24 15 5

0 14.0-- 19.8 26 3 6 11 5 1 34 5 8 6 8 7

19.8-- 28.0 21 1 4 8 6 2 23 1 2 6 6 8

28.0-- 39.6 15 1 0 6 4 4 12 i 0 4 2 5

39.6 -- 56.0 12 1 0 4 6 i 6 0 0 4 1 1

56.0 -- 79.2 I0 1 2 4 2 1 0 0 0 0 0 0

79.2 -- 112.0 4 0 0 2 0 2 1 0 1 0 0 0

112.0 - 158.4 3 0 1 2 0 0 0 0 0 - 0 0 0

158.4 - 224.0 1 0 0 0 0 1 0 0 0 0 0 0



Table D12: Crater Statistics of Divided Sectors, Manzinus Area

Heavily Cratered !rea2 Non Heavily Crater~d A2eas
Area = 1.2894'10 km Area = 8.0882'10 km

Diameter Bin N(bin) N(Degradation Classes) N(bin) N(Degradation Classes)
(km) 1 2 3 4 5 1 2 3 4 5

7.0 -- 9.9 25 0 11 13 1 0 23 2 4 11 6 0

9.9 -- 14.0 17 3 4 5 5 0 16 2 3 8 3 0

14.0 -- 19.8 14 5 5 3 1 0 12 2 2 4 3 1

19.8 -- 28.0 16 2 0 10 4 0 12 1 1 8 2 0

28.0 -- 39.6 16 1 3 9 2 1 2 0 0 1 1 0

39.6 -- 56.0 14 0 1 10 3 0 0 0 0 0 0 0

56.0 -- 79.2 5 0 1 3 1 0 0 0 0 0 0 0

79.2 -- 112.0 5 0 1 3 1 0 0 0 0 0 0 0



Table D13: Crater Statistics of Divided Sectors, Cuvier Area

Heavily Cratered !rea2 Non Heavily Crater~d A!eas
Area = 1.3756·10 km Area = 2.0788·10 km

Diameter Bin N(bin) N(Degradation Classes) N(bin) N(Degradation Classes)
(km) 1 2 3 4 5 1 2 3 4 5

7.0 -- 9.9 73 9 24 32 8 0 105 11 16 46 24 8

9.9 -- 14.0 30 7 6 12 4 1 65 4 9 25 21 6

14.0 -- 19.8 25 4 3 12 3 3 56 7 9 27 10 3

19.8 -- 28.0 32 3 8 16 4 1 24 2 6 12 2 2

28.0 -- 39.6 24 0 3 16 4 1 17 2 4 7 3 1

39.6 -- 56.0 16 0 2 12 2 0 2 0 1 0 1 0

56.0 -- 79.2 10 0 1 9 0 0 0 0 0 0 0 0

79.2 -- 112.0 3 0 0 2 1 0 0 0 0 0 0 0



Supporting Data for Tables DI0-DI3, Divided Sectors

Sources. Lunar Orbiter IV photographs, 20" by 24" positives

and negative prints, Lunar Orbiter IV Atlases SP-206 (Bowker and Hughes,

1971) and SP-241 (Gutschewski et al., 1971), geologic maps (e.g. Cum-

mings, 1972), the LPL Catalog of Lunar Craters (Wood and Andersson,

1978a), and charts from the System of Lunar Craters (Arthur et al.,

1966).

Measuring Devices. Hand lens eyepiece and ruler, as previous-

ly described.

Location. The Werner, Cuvier, and Manzlnus sectors are de-

scribed in Strom (1977). The Werner area corresponds to region D012

described in Table 9. The Cuvier sector includes the northern two

thirds of SO, SI, $2, $3 regions, while Manzlnus comprises the southern

third. These sectors were divided into heavily cratered regions (clus-

ters of large craters) and non-heavily cratered regions (plains, terra,

and isolated larger craters). Using finding charts from the lunar cat-

alogs, the craters were located and assigned to Heavily Cratered (HC)

or Non-Heavily Cratered (NHC) units.

Scale. Scales were determined for each photo or atlas picture

needed to cover the three sectors. Scales of the atlas pictures usu-

ally given. Those for L0 IV photos computed from the size of measured

catalogued craters.

Cut Off Diameter. Statistics in the LPL Catalog are complete

above 7 km diameter.

Degradation Classes. LPL classes i through 5 specified in the

Catalog.
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SupportingDatafor TableDII,WernerDivided Sector

Sources_LunarOrbiterIV prints: 88 H2, 88 H3, 112H2, I00

H2, Atlasphotos: LO IV 107H3, 107H2, I00H3, 95 H3, 101HI, 96 HI,
89 HI.

Location. Sameas D012region. LPL coordinatesin TableD9.

Seealso Fig.50,and Strom(1977).

Supporting Data for Table DI2, Manzlnus Divided Sector

Sources. Lunar Orbiter IV prints: 82 H2, 82 H3; Atlas pho-

tos: 106 H2, 70 H2, 70 H3 (LO IV).

Location. See Strom (1977). SO, S123 regions with Eta from

-0.97 to -0.93.

Supporting Data for Table DI3, Cuvier Divided Sector

Sources. Lunar Orbiter IV prints: 82 H3, 94 H3, 112 HI, 107

H3, i00 H2, 88 H2, 118 H2, and geologic map of Clavius area (Cummings,

1972). Portions of LO IV 88 H3, and 112 H2 also used.

Location. See Strom (1977). SO, S123 regions with Eta from

-0.93 to -0.7 on the meridian (Xi = 0). Total area determined from

bounding latitudes and longitudes of each sector. HC and NHC regions

were blocked off, measured, and converted to km 2 using the appropriate

scale factor of the photo.
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TableDI4: LangrenusSecondaryStudy,RingsL0.5 to LI.0

L0.5 (0.5R--_I.0.R) LI.0 (1.0g --_I.5^R)
Area = 0.364"10_ kmz Area = 3.211"109 kmz

Diameter Bin N(bln) N(Degradatlon Classes) N(bln) N(Degradatlon Classes)
(kin) 1 2 3 4 5 1 2 3 4 5

to
u_ O. 88 -- 1.24 8 0 0 4 3 1 25 0 0 4 14 7

1.24 -- 1.75 19 0 0 6 12 1 52 0 1 I1 19 2I

1.75 -- 2.47 8 0 1 4 2 1 39 0 1 7 8 23

2.47 -- 3.5 3 0 0 2 1 0 30 0 0 0 8 22

3.5 -- 4.95 I 0 0 1 0 0 16 0 0 1 5 10

4.95 -- 7.0 0 0 0 0 0 0 9 0 0 0 6 3



Table D14: Langrenus Secondary Study--Continued, Rings Ll.5 to L2.0

Ll.5 (1.5 R -- ~.O R) L2.0 (2.0 R -- 3.5 !)
Area = 5.135·10 km2 Area = 6.918·10 km

Diameter Bin N(bin) N(Degradation Classes) N(bin) N(Degradation Classes)
(Ian) 1 2 3 4 5 1 2 3 4 5

0.88 -- 1.24 28 0 2 5 10 11 33 0 1 0 18 14

1.24 -- I. 75 71 0 1 2 9 59 104 1 4 14 51 34

1. 75 -- 2.47 81 1 1 4 12 63 126 2 2 17 66 39

2.47 -- 3.5 42 0 1 1 6 34 69 2 0 16 34 18

3.5 -- 4.95 42 0 0 2 16 24 37 0 4 16 13 4

4.95 -- 7.0 12 0 1 1 3 7 8 0 0 7 0 1

7.0 -- 9.9 0 0 0 0 0 0 4 0 1 0 1 2

9.9 -- 14.0 0 0 0 0 0 0 0 0 0 0 0 0

14.0 -- 19.8 0 0 0 0 0 0 0 0 0 0 0 0

19.8 -- 28.0 0 0 0 0 0 0 0 0 0 0 0 0

28.0 -- 39.6 1 0 0 1 0 0 1 0 0 1 0 0



Table DI4: Langrenus Secondary Study--Contlnued, Rings L2.5 to L3.0

L2.5 (2.5 R -- _.0 _) L3.0 (3.0 R -- 3.5 R)Area = 9.153-10_ km Area = 10.908"103 km2

Diameter Bin N(bln) N(Degradatlon Classes) N(bln) N(Degradation Classes)
(kin) I 2 3 4 5 1 2 3 4 5

0.88-- 1.24 62 9 2 7 23 21 61 2 4 ll 24 20

1.24-- 1.75 145 6 1 11 70 57 172 9 9 15 65 73

1.75 -- 2.47 I13 0 3 16 62 32 Ill 4 8 33 30 35
L_

-4 2.47 -- 3.5 72 1 4 23 31 13 48 1 9 8 15 15

3.5 -- 4.95 35 3 15 5 6 6 24 1 ll 3 3 6

4.95 -- 7.0 ll 1 4 4 0 2 8 3 2 3 0 0

7.0 -- 9.9 5 1 2 l 1 0 1 1 0 0 0 0

9.9 -- 14.0 0 0 0 0 0 0 0 0 0 0 0 0

14.0 -- 19.8 0 0 0 0 0 0 0 0 0 0 0 0

19.8 -- 28.0 0 0 0 0 0 0 0 0 0 0 0 0

28.0 -- 39.6 0 0 0 0 0 0 0 0 0 0 0 0

39.6 -- 56.0 1 0 0 1 0 0 0 0 0 0 0 0
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Table D14: Langrenus Secondary Study--Continued, Rings L3.5 to L4.0

L3.5 (3.5 R -- 4.0 ~) L4.0 (4.0 R -- 4.5 R~
Area = 12.75,103 km Area = 12.09·10 km

Diameter Bin N(bin) N(Degradation Classes) N(bin) N(Degradation Classes)
(km) 1 2 3 4 5 1 2 3 4 5

0.88 -- 1.24 87 5 3 19 29 32 79 4 9 25 32 9

1.24 -- 1. 75 197 8 9 41 70 69 157 5 18 50 41 44

1. 75 -- 2.47 90 3 11 19 31 26 47 4 1 16 13 12

2.47 -- 3.5 28 3 1 4 6 14 8 0 1 2 1 4

3.5 -- 4.95 5 2 1 0 1 1 7 1 3 1 0 2

4.95 -- 7.0 1 0 0 0 0 1 0 0 0 0 0 0

7.0 -- 9.9 1 1 0 0 0 0 0 0 0 0 0 0

9.9 -- 14.0 1 1 0 0 0 0 1 0 0 0 0 1



Table DI4: Langrenus Secondary Study--Continued, Rings L4.5 to L5.0

L4.5 (4.5 R -- 5.0 R) L5.0 (5.0 R -- 5.5 R)
Area = 12.99.103 km2 Area = 6.555,103 km2

Diameter Bin N(bin) N(Degradation Classes) N(bin) N(Degradation Classes)
(kin) 1 2 3 4 5 1 2 3 4 5

0.88 -- 1.24 75 1 2 22 27 22 24 1 0 8 8 7

1.24 -- 1.75 112 4 7 33 35 33 49 0 3 I0 15 21

1.75 -- 2.47 37 4 5 7 7 14 19 2 3 4 8 2

2.47 -- 3.5 9 1 1 0 0 7 5 1 0 2 2 0

3.5 -- 4.95 2 1 0 0 0 1 1 1 0 0 0 0

4.95-- 7.0 2 1 1 0 0 0 0 0 0 0 0 0



Table DI4: Langrenus Secondary Study--Contlnued, Ring L5.5

L5.5 (5.5 R-- 6.0 R)
Area = 3.535.103km2

Diameter Bin N(bin) N(Degradation Classes)
(kin) 1 2 3 4 5

0.88 -- 1.24 14 0 0 7 5 2

1.24 -- 1.75 16 0 0 7 6 3

1.75 -- 2.47 4 0 I 2 i 0

2.47 -- 3.5 1 0 0 i 0 0

3.5 -- 4.95 0 0 0 0 0 0

4.95-- 7.0 2 2 0 0 0 0

Support Data for Table DI4, Langrenus Secondary Study

Source. Lunar Orbiter IV 53 H3, glossy print, 20" by 24".

Measuring Devices. Hand lens eyepiece with i cm scale, preci-

sion 0.2 mm, accuracy _ 0. I mm; ruler, 30 cm, precision I mm, accuracy

+ 0.5 mm; simple protractor, accuracy i degree.

Location. Principal ground point is (43.52°E, 71.0_ S). South-

east corner of photo contains the northwest quarter of Langrenus (Dia-

meter 136 km, center located at (60.9°E, 8.9°S) ).

Scale. Scale of 0.636 km/mm determined by measurement of cat-

aloged craters. Scale assumed constant over the photograph.

Cut Off Diameter. 1.8 mm or 1.14 km.
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Table DI5: Langrenus Secondary Crater Study: Ring Totals

Diameter Bin Total N of craters D >11.14 km within each ring nR to (n+0.5)R
(km) Areas of each sectionlisted in last row

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.88-- 1.24 8 25 28 33 62 61 87 79 75 24 14

1.24 -- 1.75 19 52 71 104 145 172 197 157 112 49 16

1.75 -- 2.47 8 39 81 126 113 IIi 90 47 37 19 4

2.47 -- 3.5 3 30 42 69 72 48 28 8 9 5 1

3.5 -- 4.95 1 16 42 37 35 24 5 7 2 1 0

4.95-- 7.0 0 9 12 8 II 8 1 0 2 0 2

7.0 -- 9.9 0 0 0 4 5 I 1 0 0 0 0

9.9 -- 14.0 0 0 0 0 0 0 I 1 0 0 0

14.0-- 19.8 0 0 0 0 0 0 0 0 0 0 0

19.8 -- 28.0 0 0 0 0 0 0 0 0 0 0 0

28.0-- 39.6 0 0 1 1 0 0 0 0 0 0 0

39.6 -- 56.0 0 0 0 0 1 0 0 0 0 0 0

Area •103 km2 0.364 3.211 5.135 6.918 9.153 10.908 12.75 12.09 12.99 6.555 3.535



Supporting Data for Tables DI4 and DI5, Langrenus Secondary Study

Source. Lunar Orbiter IV 53 H3 glossy print, 20" by 24".

Measuring Devices. Hand lens eyepiece with 1 cm scale, pre-

cision 0.2 mm, accuracy _ 0.I mm; ruler, 30 cm, precision 1 mm, accura-

cy _ 0.5 mm; simple protractor, precision, accuracy both I degree.

Location. Principal ground point of LO IV 53 is 56.82@E

longitude, 14.81@S latitude. (Slant distance of spacecraft 2740.47 km.)

Southeast corner of photo contains the northwest quarter of Langrenus.

The center of Langrenus (136 km diameter) is located at (60.9@E, 8.9°S).

Scale. Scale of 0.636 km/mm determined by measurements of

cataloged craters on the photo. Scale assumed constant over the entire

photograph.

Cut Off Diameter. 1.8 mm or 1.14 km.

Degradation Classes. LPL classification used, C1 freshest,

C5 most degraded. Langrenus classed as C2 crater by Arthur et al.

(1966).

General. The region around Langrenus was marked off into

0.5 R (R = 68 km) sections starting 0.5 R inward from the rim. The

rlm visible on the photo was fitted with a circle of radius approxi-

mately 68 km given the photo scale, 0.636 km/mm. Using the estimated

center of Langrenus, circles of radii (n/2)R were marked onto an ace-

tate sheet. Area of each ring was calculated by measuring the angles

subtended and miscellaneous forms, then converted to km 2 using the

scale above. Diameter and degradation class of craters as large as the

cut off diameter and larger were measured. The LO IV 53 H3 photo in-

cludes the Langrenus secondaries northwest of the primary on Mare
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SupportingData, Tables DI4 and Dl5--Continued

Fecunditatis. No attemptwas made to eliminateobvious small and large

primariesfrom this study. Most of the cratersin the diameterrange

5-14 km are primaries;the three larger cratersLangrenusB, C, and D

are older primariespartiallyinundatedby mare flooding.
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Supporting Data for Tables DI6 and DIT, Copernicus Secondary Study

Source. Lunar Orbiter IV 121 H2 and 121 H3 used; both 20"

by 24" glossy prints. Lunar Orbiter V M145 used for high resolution of

ray area. Other information obtained from charts of Arthur et al.

(1963) and Wood and Andersson (1978a).

Measurin 8 Devices. As described in Langrenus study.

Location. Principal Ground Point of LO IV 121 is (16.7_W,

IS.8_N). Center of Copernicus located at (20._W, 9.7ON). See illus-

tration in text, Fig. 37.

Scale. Scale of 0.612 km/mm for LO IV 121 H2 and 0.621 km/mm

for LO IV 121 H3 determined by measurements of cataloged craters.

Scales assumed constant over the photograph.

Cut Off Diameter. 2.45 km (4 mm) out to 4 R from center of

Copernicus; 1.84 km (3 mm) out to 6 R from center, and 1.22-1.24 _n (2

mm) beyond that radii.

LO V M145 Scale and Cut Off Diameter. Ray area located

4 R to 5 R from center of Copernicus. Scale of photograph was 198 m/mm

and cut off diameter was 3 mm or 594 m.

Degradation Classes. LPL classes CI through C5 used as de-

scribed in the text.

General. Annuli of one radius width (R = 47.5 km) marked off

from rim of Copernicus as illustrated in Fig. 37 of text. A0 desig-

nates center of crater; AI the ring from IR to 2 R; A4 the ring from

4 R to 5 R, and so forth. Data were taken in increments of theta

(azimuth) around the annulus, and on equaradial bands about Eratosthe -
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Supporting Data, Tables DI6 and Dl7--Continued

nes or Pytheas within each Copernican annulus, so that effects of

secondaries from those craters could be determined. Total area sampled

was 1.069.105 km 2. Areas of each annulus are given in Table DI6.

Table DI6: Areas of Copernican Annuli and Sampled Areas

Annuli Span in Range Area km 2 Cut Off LO # Photo Scale

R = 47.5 km Diameter km/mm

A0 0 -- i R 5.23"103 2.45 IV-121 H2 0.612

AI i R -- 2 R 8.442.103 2.45 IV-121 H2 0.612

A2 2 R -- 3 R 1.153,104 2.45 IV-121 H2 0.612

A3 3 R -- 4 R 1.493'104 2.45 IV-121 H2 0.612

A4 4 R -- 5 R 1.663.104 1.84 IV-121 H2 0.612

A5 5 R -- 6 R 1.342'104 1.84 IV-121 H2 0.612

121 H3 0.621

A6 6 R -- 7 R 1.275.104 1.22- IV-121 H2 0.612

1.24 121 H3 0.621

A7 7 R -- 8 R 1.227,104 1.22- IV-121 H2 0.612
1.24 121 H3 0.621

A8 8 R -- 9 R 1.166"104 1.22- IV-121 H3 0.621
1.24

A9 9 R -- I0 R 1.168,104 1.22- IV-121 H3 0.621

1.24

East ray/ 4 R -- 5 R 4.152,103 0.594 V-MI45 0.198

West ray 2.165.103
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Table DIT: Secondary Study of Copernicus, Annuli Totals

Diameter Bin Total number of craters within bin, within each annulus
(km) A0 A1 A2 A3 A4 A5 A6 A6 A7 A7 A8 A9

1.24 -- 1.75 1 0 2 0 28 9 2 75 26 156 119 148

1.75 -- 2.47 4 8 2 2 248 148 93 21 II 63 31 23

2.47 -- 3.5 7 95 286 257 123 56 30 6 1 I0 2 3

3.5 -- 4.95 1 39 52 60 24 5 i 0 0 3 0 1

4.95 -- 7.0 0 9 Ii Ii 3 2 2 0 0 0 0 0

7.0 -- 9.9 0 2 2 0 0 0 0 0 0 0 0 1

9.9 u 14.0 0 1 0 0 0 0 0 0 0 0 0 0

Area-103 km2 5.230 8.442 11.534 14.93 16.63 13.42 5.849 6.902 0.773 11.50 11.66

12.75 12.27 11.68



Table DI8: Area 1 -- Heavily Cratered Area

FDS 27390, 27392, 2_393Area 1.6559.105 bn

Diameter Bin N(bin) N(Degradation Classes)
(kin) i 2 3 4 5

4.95 -- 7.0 278 3 19 106 I00 49

7.0 -- 9.9 597 13 35 216 224 109

9.9 -- 14.0 112 7 11 19 41 34

14.0 -- 19.8 34 3 6 5 7 13

19.8 -- 28.0 15 1 I 2 9 2

28.0 _ 39.6 12 1 5 3 0 3

39.6 -- 56.0 I0 0 2 5 0 3

56.0 -- 79.2 4 0 0 1 2 1

79.2 -- 112.0 4 0 0 2 2 0

112.0 - 158.4 3 0 0 1 2 0

158.4 -- 224.0 2 0 0 i I 0

Supporting Data for Table DI8, Area HCA 1 on Mercury

Source. Flight Data System (FDS) images 27390, 27392, 27393,

and 27465 from Mariner I0 first encounter at Mercury. Mariner i0 pho-

tographs processed at Jet Propulsion Laboratory with computer enhance-

ment (high pass filter). Additional copies printed at LPL. All

supporting data given in Mariner SEDR volumes.

Location. General area of HCA i is bounded by latitudes -41°

to -5_, and longitudes 15°W to 3_ W (see Fig. I0 of text). The center
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Table DI8: Area 1 -- Heavily Cratered Area, High Resolution

FDS 27495
Area 8.804.10 km2

Diameter Bin N(bin) N(Degradation Classes)

(km) i 2 3 4 5

1.24 -- 1.75 97 0 I 29 41 26

1.75 -- 2.47 218 0 8 59 108 42

2.47 -- 3.5 119 0 2 39 55 23

3.5 -- 4.95 77 I i 23 32 17

4.95 M 7.0 59 0 I 18 30 i0

7.0 -- 9.9 24 I 0 5 13 5

9.9 -- 14.0 6 0 0 2 I 3

14.0 -- 19.8 2 0 1 0 0 i

19.8 -- 28.0 I 0 0 0 0 I

28.0 -- 39.6 1 0 0 0 0 i

Supporting Data--Continued

of each image is given in Table D24.

Scale. Scale determined for each photo by the ratio of size of

pixels in mm (measured along the base of the photo) to the published

"Resolution" or pixel size (PIX SZ) in km/pixel. Each Mariner photo is

832 pixels by 700 TV lines. Tick marks of 5 pixels occur at photo base.

Measuring Devices. Hand lens eyepiece of I cm scale, preci-

sion of 0.2 mm, accuracy + 0.i mm; ruler, 30 cm, precision i mm, accura-

cy + 0.5 ram. Crater diameters measured parallel to limb.

448



Table DI9: Area 2 -- Heavily Cratered Area and Surrounding Intercrater Plains

HeavilyCratere_Area IntereraterPlains ArEaArea = 8.523.10- km2 Area = 1.397"105 km

Diameter Bin N(bln) N(Degradation Classes) N(bin) N(Degradation Classes)
(km) 1 2 3 4 5 1 2 3 4 5

4.95 -- 7.0 487 5 24 141 197 120 893 38 81 261 262 251

7.0 -- 9.9 325 i0 24 88 125 78 342 21 37 87 83 iii

9.9 -- 14.0 91 1 8 26 29 27 77 ii i0 15 19 22

14.0 -- 19.8 19 2 5 2 3 7 18 4 2 1 I i0

19.8-- 28.0 6 0 3 1 1 1 7 1 0 0 1 5

28.0 -- 39.6 6 i 0 1 i 3 5 I 1 1 0 2

39.6 -- 56.0 I 0 1 0 0 0 2 I 0 0 0 1

56.0 -- 79.2 4 0 0 2 2 0 3 0 0 0 3 0

79.2 -- 112.0 1 0 0 0 1 0 2 0 0 0 1 1

112.0- 158.4 3 0 0 3 0 0 0 0 0 0 0 0



Supporting Data for Table DI9, Area HCA 2 and ICP 2

Source. FDS 27395, 27386. Original prints and negatives pre-

pared from real time transmissions of Mariner i0 data; hard copy pro-

duced at JPL/IPL, with copies made at LPL in Tucson.

Measuring Devices. As described above.

Location. General boundaries of HCA 2 are -44@ to -48 @ latitude

and 35°W to 46@W longitude. Boundaries of ICP 2 are -40@to -50@latl-

rude, and 33.50W to 57.50W longitude. Region illustrated in Fig. i0 of

text. Areas and locations of image centers given in Table D24.

Scale. Scale (Table D24) derived from measured pixel width,

mm/pixel, ratloed to the published resolution, or km/pixel. Scale as-

sumed to be constant across the image. (This assumption may be unsatis-

factory for images containing the limb.)

Cut Off Diameter. For NCA 2, 2.4 to 2.5 mm (5.6 kin); for ICP

2, 2 mm or 4.7 km cut off diameter was used.

DeBradation Classes. The mercurian degradation classes corre-

spond to those of the Moon (CI to C5) in general characteristics.

More subtle differences noted in Chapter 2 of text, Sections i and 2.

Note. Much of the general data in this section applies to all

selected area supporting information. Table D24 lists cut off diame-

ters, scales, areas, location of center of image, and resolution or

pixel scale. Fig. i0 of text illustrates the selected area location

on Mercury's first quadrant.
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Table D20: Area 2 Intercrater Plains Within Eight Subreglons

DiameterBin N(bin) Number Within Each Region of IntercraterPlains N(bln)
(kin) i 2 3 4 5 6 7 8 without sec.*

4.95 -- 7.0 893 98 83 74 161 151 185 49 92 714

7.0 -- 9.9 342 32 29 42 74 64 62 II 28 263

9.9 -- 14.0 77 9 5 6 26 13 12 1 5 67

14.0-- 19.8 18 2 3 2 2 1 5 1 2 17
Ln

19.8 -- 28.0 7 0 1 0 4 0 0 0 2 7

28.0 -- 39.6 5 1 0 1 i 1 0 1 0 5

39.6-- 56.0 2 0 0 0 0 I 1 0 0 2

56.0-- 79.2 3 0 0 i 0 1 1 0 0 3

79.2 -- 112.0 2 0 0 2 0 0 0 0 0 2

Area. 104 km2 13.971 1.280 1.922 1.578 3.822 2.285 1.658 0.543 0.882 13.971
u

* Total number of cratersin bin withoutthose arranged in chainsor clusters (i.e. secondaries).



Supporting Data for Table D20, Subregions of Area ICP 2

Source. FDS 27395, as described above.

Measuring Devices. Described above.

Location. Area surrounding HCA 2 divided into 8 subregions

along rough plains boundaries. The dominant plains and crater units of

each region are listed below, as determined in subsequent geologic map-

ping. Areas of each subdivision are given in Table D20. Total area is

1.397.105 km2. See the accommpanying figure (Fig. DI) corresponding to

Fig. 63 of text.

Scale, Cut Off Diameter, Degradation Classes. As described

above and in Table D24.

Subregion Major Units Mapped

1 C3> P4 >> P3

2 P2 >>P4 > P5

3 C4 > C5 .v P4

4 P3 >_P2-,,P4

5 C3, C2 _P3"vP2

6 P4 >>P3 > C4

7 P4

8 C4 _ P3
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Table D21: Discovery Scarp Area -- Intercrater Plains

West of Discovery Scarp East of Discovery Scarp
Area = 3.520"104 km2 Area = 2.908.104 km2

Diameter Bin N(bin) N(Degradatlon Classes) N(bin) N(Degradation Classes
(km) 1 2 3 4 5 1 2 3 4 5

3.5 -- 4.95 689 Ii 32 160 256 230 614 II 45 211 220 127

4.95 -- 7.0 183 I 14 36 67 64 173 5 19 57 51 41

7.0 -- 9.9 41 2 2 7 I0 20 28 0 1 13 I0 4

9.9 -- 14.0 13 2 0 1 4 6 7 1 0 2 2 2

14.0 -- 19.8 3 0 0 0 0 3 5 0 1 1 I 2

19.8 -- 28.0 3 0 0 1 I 1 3 2 0 0 0 I

28.0 -- 39.6 4 0 0 2 0 2 3 0 I 0 1 1

39.6 -- 56.0 1 0 0 1 0 0 0 0 0 0 0 0

56.0 -- 79.2 1 0 0 1 0 0 0 0 0 0 0 0



Supporting Data for Table D21, Discovery Scarp ICP Area

Source. Mosaic of Discovery Scarp made by JPL for images FDS

27386, 27393, 27397-9, and 528881-4. Reproduction from negative made

at LPL.

Location. General boundaries are 31°W to 45°W longitude, and

-47°to -57° latitude. Locations of centers of each photo are listed

below, as found in the Mariner I0 SEDR volumes, encounters I and 3.

Measuring Devices. As described above.

Scale. Derived scale of 1.7187 km/mm; determined from pub-

lished diameter of 55 km for Rameau, a crater in the center of the mo-

saic. Resolution varies across the photo (Fig. 8, text). Scale factor

is assumed to remain constant across the mosaic.

Cut Off Diametert Degradation Classes. As described above.

FDS No. Location of Center Pixel Size* TV Line Size*

27386 (36°.26W, -45°.77) .62 .56

27393 (200.00W, -47°.37) .52 .51

27397 (18°.29W, -55°.05) .50 .56

27398 (31°.41W, -55°.61) .53 .56

27399 (450.18 W, -54°.41) .60 .60

528881 (36.°91W, -49°.69) .37 .36

528882 (46°54 W, -520.99) .41 .43

528883 (30°.97 W, -50°.42) .33 .34

528884 (380.69 W, -53°.41) .36 .38

* In km.
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TableD22: Area5 and 5', KulperRegion-- HeavilyCrateredArea

Area 5 Area 5[
6.7045.104 km2 6.9240.104 km2

Diameter Bin N(bin) N(Degradatlon Classes) N(bln) N(Degradatlon Classes)
(km) 1 2 3 4 5 I 2 3 4 5

4.95 -- 7.0 246 0 4 71 99 72 (20 2 0 2 ll 5_

7.0 -- 9.9 196 0 9 39 84 64 290 0 12 76 116 74

9.9 -- 14.0 86 0 3 30 36 17 54 2 3 15 17 17

14.0-- 19.8 17 0 1 5 6 5 24 0 5 2 7 i0

19.8 -- 28.0 5 0 0 3 1 1 7 1 0 0 1 5

28.0 -- 39.6 2 0 1 0 0 1 5 1 0 2 0 2

39.6 -- 56.0 6 0 0 3 2 1 1 0 0 0 0 l

56.0 -- 79.2 4 0 1 3 0 0 2 1 0 1 0 0

79.2 -- ll2.0 0 0 0 0 0 0 1 0 0 1 0 0

112.0 - 158.4 1 0 0 0 1 0 1 0 0 0 1 0

158.4 - 224.0 0 0 0 0 0 0 1 0 0 1 0 0



Supporting Data for Table D22, HCA 5+5'

Source. FDS 27362 for Heavily Cratered Area 5 (HCA 5); FDS

27362 and 27363 for HCA 5'. Data obtained as noted above.

Measurln_ Devices. As described above.

Location. Kulper Area HCA 5 is bounded by longitudes 23.5°W

to 29._W, and by latitudes -7.5° to -15.0° . HCA 5', further to the

west, is bounded by longitudes 29°W to 37°W, and by latltudes -8° to

-15.0°. Center of each frame given in Table D24.

Scale. See Table D24. Determined as described above, and as-

sumed to be constant over the plcture (HCA region).

Cut Off Diameter. 2.5 mm (6.5 km) for FDS 27362, and 2.2-2.4

mm (or 7.05-7.69 kin)for FDS 27363.

Degradation Classes. As described above.

* Incomplete data set within diameter bin.
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Table D23: Area 66' -- Heavily Cratered Area and Surrounding Intercrater Plains

Heavily Cratered A_ea _6' Intercrater Plains 66'
Area = 1.7595.10- km_ Area 1.0175'10_ km2

Diameter Bin N(bin) N(Degradatlon Classes) N(bln) N(Degradation Classes)
(kin) 1 2 3 4 5 1 2 3 4 5

4.95 -- 7.0 249 2 6 79 114 48 201 3 3 39 91 66

7.0 -- 9.9 535 4 24 156 230 121 478 4 4 102 175 190

9.9 -- 14.0 116 6 4 31 45 30 120 3 3 32 39 43

14.0 -- 19.8 32 0 3 I0 I0 9 28 0 I 5 13 9

19.8 -- 28.0 16 2 8 2 2 2 II 1 2 2 4 2

28.0 -- 39.6 12 I 6 0 I 4 I 0 1 0 0 0

39.6 u 56.0 6 0 0 2 3 I 0 0 0 0 0 0

56.0 -- 79.2 6 0 2 2 2 0 I 0 0 0 i 0

79.2 -- 112.0 6 0 0 3 3 0 1 0 0 i 0 0

112.0 - 158.4 2 0 1 0 i 0 0 0 0 0 0 0



SupportingData forTableD23,HCA 66' and ICP 6

Source. FDS 27358. Processingas describedabove.

Measurin5 Devices. As describedabove.

Location.Centerof photoat (25_68W, -0105). See Fig. 10.

HCA 66' includes,but lleseastof, Lu Hsun. The ICP regionincludes

theC5' basinnortheastof Homer(Fig.85, text),althoughthebasin

was not recognizedwhen thesestatisticswere compiled.

Scale. Scaleof 2.754km/mmderivedfromthe image'splxel

lengthand the publishedresolutionor pixelsize (km/pixel).Pixel

Size= 0.74;TV Line Size= 0.64. Resolution0.745km/pixel.

Cut Off Diameter. 2.4mm or 6.6 km.

DegradatlonClasses. LPL classesC1 throughC5,modifiedfor

Mercuryas describedaboveand in textChapter2.

Areaand UnitsIncluded. HCA 6 Area= 1.54.105km2. HCA 6'

area= 2.195.104km2. TotalHCA 66' is 1.7595.105km2. ICP 6 has an

area of 1.0175.105km2. Majorunitswithintheheavilycrateredarea

are C2, C3, C4, CI, and some P3 plains interior to craters. The inter-

craterplainssectoris comprisedmainlyof P2, PS, P4, and P3 units.
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Table D24: Supporting Data for Selected Regions of Mercury

Selected FDS No. Location of Center Resolution Derived Cut Off Are@

Area Name (Long., Lat.) Pixel Size Scale Diameter (km_)
(km/plxel) (km/mm) mm km

HCA 1 27390 (300.46 W, 145_61) 0.577 2.715 2.4 6.5 9.698'104

HCA 1 27392 (16176 W, -49188) 0.517 1.86 3.6 6.7 5.483"104

HCA 1 27393 (20_00W, -47137) 0.527 1.894 3.5 6.5 1.378"104

HCA I 27465 (17197W, -44123) 0.199 0.751 2 1.5 8.804"103

HCA 2 27395 (44168 W, -44_43) 0.65 2.342 2.4 5.6 8.144"104

HCA 2 27386 (36126 W, -45_77) 0.62 2.232 2.0 4.5 3.784-103

ICP 2 27395 (44168 W, -44143) 0.65 2.342 2.0 4.7 1.397"105

Dis. So.E Mosaic Rameau(380W,-54_ variable 1.719 2.0 3.4 2.908-104

Dis. Sc. W Mosaic Rameau (38°W, -5_) Variable 1.719 2.0 3.4 3.52 -104

HCA 5 27362 (27128W, -I0_50) 0.726 2.63 2.5 6.5 6.704"104

HCA 5' 27362 (27128W, -10150) 0.726 2.63 2.5 6.5 2.243'104

HCA 5' 27363 (40147W, -I0[14) 0.87 3.204 2.2 7.0 4.681"104

HCA 66' 27358 (25_68W, -0105) 0.745 2.754 2.4 6.6 1.760"105

ICP 66' 27358 (25_68W, -0_05) 0.745 2.754 2.4 6.6 1.018'105



Table D25: Combined Statistics for Heavily Cratered Regions

Diameter Bin N(bin) N(Degradation Classes) Surfac_ Area
i 2 3 4 5 (kin

4.95 -- 7.0 1260 I0 53 397 510 289 4_938.105

7.0 -- 9.9 1943 36 104 575 779 446 5.6305 • 105

9.9 -- 14.0 459 16 29 121 168 125 5.6305.105

14.0 -- 19.8 126 5 20 24 33 44 5.6305.105

19.8 -- 28.0 49 4 12 8 14 ii 5.6305.105

28.0 -- 39.6 37 4 12 6 2 13 5.6305.105

39.6 -- 56.0 24 0 3 10 5 6 5.6305.105

56.0 -- 79.2 20 1 3 9 6 1 5.6305.105

79.2 -- 112.0 12 0 0 6 6 0 5.6305.105

112.0 - 158.4 I0 0 1 4 5 0 5.6305.105

158.4 - 224.0 3 0 0 2 1 0 5.6305.105

SupportingInformation

Sources,MeasuringDevices,Locations,and so forth are given

in the precedingtables,Table D24 in particular. Cut Off Diameters

vary, but statisticsare completeabove 7.0 km.
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Table D26: Combined Statistics for Intercrater Plains Regions

Diameter Bin N(bin) N(Degradatlon Classes) Surfac_ Area
(kin) 1 2 3 4 5 (km_)

3.5 -- 4.95 1303 22 77 371 476 357 6.4276"104

4.95 -- 7.0 1450 47 117 393 471 422 3.0572"104

7.0 -- 9.9 889 27 44 209 278 325 3.0572"104

9.9 -- 14.0 217 17 13 50 64 73 3.0572'104

14.0 -- 19.8 54 4 4 7 15 24 3.0572"104

19.8 -- 28.0 24 4 2 3 6 9 3.0572"104

28.0 -- 39.6 13 I 3 3 1 5 3.0572'104

39.6-- 56.0 3 I 0 1 0 i 3.0572"104

56.0 -- 79.2 5 0 0 I 4 0 3.0572"104

79.2 -- 112.0 3 0 0 1 1 1 3.0572"104

112.0 - 158.4 0 0 0 0 0 0 3.0572"104

Supporting Information

Supporting data is given in the previous tables and text. Note

that cut off diameters vary from 3.4 km to 6 km (Table D24), such that

the 7.0 km to 9.9 km bin is generally complete. Location of inter-

crater regions shown in Fig. I0 of text.

461



Table D27: Combined Selected Area Statistics

Diameter Bln N(bln) N(Degradation Classes) Surface Area
(kin) 1 2 3 4 5 (kin2)

3.5 -- 4.95 1303 22 77 371 476 357 6.4275 104

4.95 -- 7.0 2710 57 170 790 981 711 7.995 105
o

7.0 -- 9.9 2832 63 148 784 1057 771 8.6877 105

9.9 -- 14.0 676 33 42 171 232 198 8.6877 105

14.0 -- 19.8 180 9 24 31 48 68 8.6877 105

19.8 -- 28.0 73 8 14 11 20 20 8.6877 105

28.0 -- 39.6 50 5 15 9 3 18 8.6877 105

39.6 -- 56.0 27 1 3 11 5 7 8.6877.105

56.0 -- 79.2 24 1 3 10 9 1 8.6877.105

79.2 -- 112.0 15 0 0 7 7 1 8.6877.105

112.0 - 158.4 10 0 1 4 5 0 8.6877.105

158.4 - 224.0 3 0 0 2 i 0 8.6877.105

Supporting Information

Source. FDS Mariner i0 pictures: 27390, 27392, 27393, 27465,

27386, 27395, 27362, 27363, 27358, and the Discovery Scarp Mosaic.

Location. See Flg. I0 in text. Other information given in

the individual tables used in this compilation. Detalls of imagery

given In Table D24.
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Table D28: General Geologic Map Crater Statistics

Area = 1.0284'107 km2

Diameter Bin Number of Craters N(Degradatlon Classes)

(kin) in bin I 2 3 4 5 5'

28.0 -- 39.6 174 29 45 55 32 12 2

39.6 -- 56.0 241 19 43 95 42 29 13

56.0-- 79.2 180 9 32 51 36 29 23

79.2-- 112.0 i00 6 17 37 20 13 7

112.0- 158.4 56 2 6 15 18 ii 4

158.4 - 224.0 26 0 6 4 9 6 I

224.0 - 316.8 7 0 0 2 2 0 3

316.8 - 448.0 7 0 0 0 3 0 4

448.0 - 633.6 2 0 0 0 0 1 1

Supporting Data for Table D28, General Geologic Map

Source. Geologic map base--a 24" by 18" photomosalc of the

incoming side (first quadrant) of Mercury, "Perspective Projection,"

assembled by JPL, reproduced at the Lunar and Planetary Lab. Com-

posed of 70 medium to high resolution Marlner i0 pictures; limb

areas and northern latitudes west of 40°W to 50°W received poorer,

low resolution coverage.

Location. Outer boundary of Fig. i0 in text. Total area

mapped and used for crater statistics was 1.0284' 107 km2. The hilly

and lineated region comprises 5.7438'105 km 2 (Table D29).
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Supporting Data for Table D28--Continued

Measuring Devices. Hand lens eyepiece with 1 cm scale, pre

cision 0.2 mm, accuracy + 0.1 mm; and ruler, 30 cm scale, precision

1 mm, accuracy + 0.5 mm. Accuracy of diameter of sharp, fresh cra

ter better than that of more degraded, less distinct crate; especial

ly c5 and C5'. Measurements of larger FDS photos or the Shaded

Relief Maps helped veri~y measurements on the photomosaic.

Scale. Scale of 7.74 km/mm (or 1:7,740,000 on the Perspec

tive Projection) determined from measured diameter of craters near

the center of Mercury's disk which were previously determined by the

pixel width in mm and km method described above. Changes in scale

across the photo are minimal if craters are measured parallel to the

limb. See Appendix C.

Cut Off Diameter. Craters over 40 km were measured and com

piled. Some smaller ones are recorded. 40 km corresponds to 5 mm

on the photomosaic.

Degradation Classes. Classes Cl (freshest) through C5 (most

degraded) and CS' (vague circular depression, queried) used in the

geologic mapping. Degradation classes correspond to those used in

previous tables; Chapter 2, Sections 1 and 3 describe the degrada

tion criteria.

Note. These supporting data apply to all the following ta

bles. Areas of each surface are given in the respective crater sta

tistics.
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Table D29: Hilly and Lineated Area of General Geologic Map

Area = 5.7438 105 km2

Diameter Bin Number of Craters N(Degradatlon Classes)
(kin) in bin 1 2 3 4 5 5'

28.0 -- 39.6 15 2 2 6 5 0 0

39.6 -- 56.0 ll 1 0 4 2 3 I

56.0-- 79.2 8 0 2 2 i 2 I

79.2N 112.0 12 0 0 2 4 4 2

112.0- 158.4 2 0 0 2 0 0 0

158.4 - 224.0 3 0 1 0 1 1 0

Supporting Data for Table D29, Hilly and Lineated Area

Source. Mariner I0 photomosalc of incoming side, as de-

scribed above.

Location. Region bounded by the hilly and lineated terrain

shown as dlagonal-line area of Fig. I0.

Other Data. See supporting data of Table D28 above.
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Table D30: Restricted Area Geologic Map Crater Statistics

Area a 4.9852.106 km2

Diameter Bin Number of Craters N(Degradation Classes)
(km) in Bin 1 2 3 4 5 5'

28.0 - 39.6 103 19 23 33 20 6 2

39.6 -- 56.0 131 8 20 52 19 21 11

56.0 -- 79.2 109 8 16 31 24 15 15

79.2 - 112.0 65 5 9 25 15 7 4

112.0 - 158.4 32 2 4 6 13 4 3

158.4 - 224.0 9 0 2 1 3 3 0

224.0 - 316.8 4 0 0 2 1 0 1

316.8 - 448.0 5 0 0 0 1 0 4

448.0 - 633.6 0 0 0 0 0 0 0

Supporting Data for Table D30, Restricted Area Map

Location. See the footprint map. Fig. 10. A more restricted

area was outlined to approximate the "Discriminability Limits" cited

or used by other authors (Murray et al., 1974a,b; Trask and Guest,

1975; and Wood et al., 1977). Boundaries were moved inward from the

terminator, limb, and north and south latitudes as described in text,

Chapter 2, Section 2.

Other Data. See supporting data of Table D28 above.
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Table D31:. Bach Quadrangle Statistics

Area _ 8.0998'105 _ 2

Diameter Bin Number of Craters N(Degradatlon Classes)
(km) in Bin 1 2 3 4 5 5'

28.0 -- 39.6 10 1 4 2 2 1 0

39.6 -- 56.0 19 0 2 9 5 1 2

56.0 -- 79.2 14 0 2 6 3 3 0

79.2 -- 112.0 2 0 1 0 1 0 0

112.0 - 158.4 4 0 1 1 0 2 0

158.4 - 224.0 4 0 1 2 0 I 0

Supporting Data for Table D31, Bach Quadrangle

Location. Shaded Relief Map H-15 Quadrangle from latitudes

-90° to -70_ Craters greater than 40 km were sampled on the correspond-

ing area of the photomosaic.

Other Data. See supporting data for Table D28.
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Table D32: Discovery Quadrangle Statistics

Area = 3.9197-106
km

2

Diameter Bin Number of Craters N(Degradation Classes)
(km) in Bin 1 2 3 4 5 5'

28.0 -- 39.6 72 14 13 24 17 4 0

39.6 -- 56.0 98 8 24 32 19 13 3

56.0 - 79.2 71 5 9 16 22 9 10

79.2 -- 112.0 40 2 2 15 11 6 4

112.0 - 158.4 18 0 2 5 7 4 0

158.4 - 224.0 11 0 2 1 6 1 1

224.0 - 316.8 3 0 0 0 2 0 1

316.8 - 448.0 0 0 0 0 0 0 0

448.0 - 633.6 1 0 0 0 0 0 1

Supporting Data for Table D32, Discovery Quadrangle

Location. Shaded Relief Map H-11, Latitudes _70
0
to -25~

This area corresponds to the sampled area of the photomosaic.

Other Data. See Table D28, supporting data.
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Table D33: Kuiper Quadrangle Statistics

Area = 4.4327'106 kln2

Diameter Bin Number of Craters N(Degradatlon Classes)

(km) in Bin 1 2 3 4 5 5'

28.0 -- 39.6 79 13 22 26 11 6 1

39.6 -- 56.0 99 5 i0 45 17 15 7

56.0 -- 79.2 81 5 16 22 i0 16 12

79.2 -- 112.0 44 3 9 17 8 6 i

112.0 - 158.4 30 2 2 9 9 4 4

158.4 - 224.0 i0 0 2 i 3 4 0

224.0 - 316.8 4 0 0 2 0 0 2

316.8 - 448.0 6 0 0 0 2 0 4

448.0 - 633.6 i 0 0 0 0 I 0

Supporting Data for Table D33, Kuiper Quadrangle

Location. Area bounded between -25°and +25 ° latitude on the

Shaded Relief Map H-6 sampled on the photomosaic.

Other Data. See Table D28, supporting data.
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Table D34: Victoria Quadrangle Statistics

Area = 9.1564'105
km

2

Diameter Bin Number of Craters N(Degradation Classes)
(lan) in Bin 1 2 3 4 5 5'

28.0 39.6 12 0 5 4 1 1 1

39.6 56.0 24 5 8 8 2 0 1

56.0 -- 79.2 11 0 4 6 0 1 0

79.2 -- 112.0 13 1 5 5 0 1 1

112.0 - 158.4 4 0 2 0 1 1 0

158.4 - 224.0 1 0 1 0 0 0 0

Supporting Data for Table D34, Victoria Quadrangle

Location. Area bounded between latitudes +25°to +45
0

on

Shaded Relief Map H-2 corresponds to the sampled region of the photo-

mosaic.

Other Data. See supporting data for Table D28. Craters on

the photomosaic which fall into the Michelangelo and Beethoven Quad-

rangles (H-12 and H-7, respectively) are very few and not recorded in

this set of tables. For more information, and for statistics of the

quadrangles bounded within the Restricted Area Map, please notify the

author. Areas in which crater statistics were compiled are the same

areas in which plains areal measurements were made, using a planimeter

on the base Shaded Relief Maps.
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APPENDIX E

ESTIMATED THICKNESS OF EJECTA DEPOSITS COMPARED TO

CRATER RIM HEIGHTS

Using Gault et al.'s (1975) formula for the radial extent of

the continuous eJecta blanket on Mercury,

Rcb/D = 0.44 - 10-3"Dr r

where Rob is the width of the continuous ejecta blanket, one calcu-

lates that area of the continuous deposits varies from 2.24 to 0.64

times the crater's area for those of diameter 40 km to 300 km.

Because crater boundaries on the geologic map include the detectable

continuous eJecta blanket, plains exterior to these deposits must

consist of farther-flung ejecta (of that or other craters), or vol-

canic deposits flooding the intervening areas. Ejecta models are

explored here.

Oberbeck (1975) notes that 50% of terrestrial craters'

(explosion or lab impact) ejecta is deposited in the continuous ejecta

blanket within two radii from the crater center, and the other 25%

(lab impact) to 40% (explosion) is deposited between two to four

radii from the crater center. These limits are close to those

observed for mercurian craters; the edge of the continuous ejecta

blanket lies approximately 1.88R from the primary center and the zone

of greatest areal density of secondaries lies 2.5R from the center
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(Gaultet el., 1975). Oberbeck'smodel can be tentatively appliedto

mercurlancrater deposits,as follows.

If 50% of the ejectedvolume falls within a dlstancsof 2R to

some averagedepth (cylindricaldisk model),thenthe 40% of the ejecta

which falls within dR, over four times the area, has an averagedepth

one-flfththat of the continuous eJectablanket. Accumulationof such

deposits from many craterswould be substantial. However, plains

formingmaterialsare not noted at the edge of the continuous ejecta

blanket nor at the distal edge of secondary swarms. Target ejecta on

Mercurymust thereforebe more greatlydispersedto escape detection,

or, as Gault et el. (1975)have shown,be more closely confinedand

containedwithin the continuouseJectablanket and rim of the crater.

Based on rim heights and crater depthsdetermined by Cintala

(1979a,b)for fresh, small, mercuriancraters,the thicknessof plains

materialsnecessary to embay an intact 5 km diameter crateris at

least 0.2 km. To completelyfill this crater, 0.85 km thickness is

required, or 0.6 km to fill the crater level with the surrounding

surface. To bury a i0 km crater, 0.4 km plains thicknessis necessary

to embay the crater rim, 1.7 km to fill the crater to the rim crest,

or 1.2 km to fill it level with the surface (the apparentdepth of the

crater,after Pike, 1977b). Of course,if the 5 and lO km cratersare

older, shallower,or breached,as might be expected of some secondary

craters, the plains thicknessnecessary to fill those crateriformsis

less. Burial of fresh 5 to 10 km cratersby one primary in its 2R-dR
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zone impliesa continuous eJectablanket depth of 3 _m to 6 km or

greater (much too high for normal craters);embaymentof the rims of

small cratersrequires lesser continuous ejectablanket helghts, i to

2 km, averaged over the disk annulus. Note that secondarycratering

may extensivelydamage the rims of existingcraters,enough so that

they are more readily filled by the primary crater's later eJecta

deposits.

If the volume of a primarycrater is representedas the volume

of a segmentof a sphere of radius R and depth Ra (the apparent

depth),all of which is ejected in impact,the calculated primary

radius for an ejecta blanket depth of i km is 44 km, and for an ejecta

blanket depth of 6 km is 264 km, using the followingformulas:

2
V = (1/6) =R (3R + R ) Volume of spherical

a a segment;

- Volume of cylindrical
0.bV = =(4R2 R2)" tej ejecta blanket.

= 0.133D for Mercury'sfresh
Using Cintala's(1979b)relationthat Ra r

unmodified craters, ejecta thicknesstej = 0.0227 R. The thickness

beyond 2R to 4R, where, at most, 40% of the crater volume is

deposited,is

t = tej/5 = 0.00454"R

This implies that deposit depths of 0.2 and 0.4 km, sufficientto

embay the 5 and 10 km craters,are producedby cratersof diameters97

km and 194 km.
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However, the calculated eJecta heights shouldnot exceed the

observed crater rim height. If Cintala's (1979b) relation of rim
0.349

height of craters greater than 18 km is used, Re = 0.268 Dr

(whereRe is rim height), and if the ejected volume forms an annulus

as thick as the rim height to a distanceof 2R, and 1/5 that to 4R,

cratersof 43 km and 317 km diametercould bury 5-10 km craters re-

spectivelyat a range of 2R-4R. These diametersare quite likely to be

underestimates. Radial exponentialdecay of continuous eJecta de-

posit'sdepth (McGetchin, Settle,and Head, 1973; and Cintala, 19795)

would predict that much larger craters (220 km and 1602 km) are

necessaryto produce such eJecta depths. Such calculationssuggesta

reduced plains-formingpotential of mercurian craters relative to

lunar craters.
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APPENDIX F

CONSTRUCTIONOF THE PALEOGEOLOGICMAPS

Construction of the paleogeologic maps is complex only for

older units. The Post Calorls surfacewas easily derived from the

geologic map simplyby plotting all Class i and 2 features. To con-

struct the Calorlssurface, Class 3 craterswere plotted onto the map,

as well as all Class 3 plains. However, if P3 plainswere adjacent to

P2 units, and appearedcontinuouswith other exposuresof P3 material,

the P2 unit was assumedto overlie the C3 and P3 material. The

younger superposed craterswere "ignored"with respect to the Class 3

surface. The boundariesof P3 materialswere then continuedunder the

superposed units, using a minimum of reasonable assumptions. For

instance,if P2 and P4 plainswere adjacentunits, no P3 plainswere

presumed to lle under the P2 material. Similarly,all C3 craterswere

consideredto have some depositsof impactmelt after formation,even

if they are mapped containingyoungerunits. C3 craters which were

superposedwith younger units, CI or C2 craters, and perhaps P2
i

plains,were redrawnas if later materialshad not Been emplaced,i.e.

in their post impact, pre-degradatlonstates.

Thlsreconstructlon of the geologic map essentiallypresents

the materials lald downwlthln that time period, and is not strictlya

"snapshot" of the geo!ogyat the ends of the Class 4, Class 3, and

Class 1 periods.
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The older units were similarlydrawn. Crater rims of C4 and

C5 craterswere left incomplete if buried by P4 or P5 material. A

dot-dash line designates visibly buried rims. Ancient circular

depressions, C5', were marked distinctly to emphasize (1) their

queriednature, (2) their burial by intercraterplains. P4 and P5

plainswere grouped together,and presumed to underlieall P3, P2 and

P1 materials;therefore,the intercraterplains overlie all areas not

specificallycoveredby crater materials. The C4 and C5 structures

are also presumed to be filled with impactmelt, or material syn-

chronouswith the impact. Basin and crater rims were reconstructed

"under"the superposedmaterials of Classes3, 2, and I. The shapes

and interiors of cratersand basins were not adjusted for degradation.

Although it is probable that continuouseJectablankets were once

larger,and that the floor diameterwas once smaller,basins and cra-

ters were left in their degradedplans, since reconstructioninvolved

too many assumptions. Some rims of ancientdepressionsare marked as

heavy dashed lines, indicatingambiguous,indistinct, or interpolated

information. No allowanceswere made in the hilly and lineated ter-

rain to correctfor the unusuallysevere degradationthere.
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APPENDIX G

THERMALMODELS OF MERCURY

Recent and more complex thermalmodels of Mercury and the

terrestrialplanets are discussedor noted in this appendix. These

models isolatea particularaspect of the planet's thermalhistory in

an attempt to understandthat parameter. Includedamong these topics

are thermal conductivity,convection, radiogenic sources of heat,

other heat sources, and the problemof the molten core and regener-

ative dynamo. Much material has been omitted, especially more

detailed models of lunar history. Early papers on thermal models

which might prove useful are: Anderson and Phinney (1967); Wood

(1967); Lubimova (1969);Reynoldsand Summers (1969); Tozer (1967,

1972, 1974); Johnston, McGetchin, and Toks6z (1974); Cassen and

Reynolds (1974);and Sonett,Colburn,and Schwartz (1975).

Thermal Conductivity

The transport of heat occurs through radiation, convection,

and conduction. The slowest process of the three, and that which

therefore controls many thermal models, is conduction. The homogenous

planet, a mixture of silicates and metal, is well represented in

melting and conductivity by ferrobasaltic substances. Mercury's

internal temperature and pressure, determined By the distribution of

mass, can be modelled without the many extrapolations to high T and P

necessary for earth's interior.
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Siegfriedand Solomon (1974) use iron and silicate conduc-

tivityvalues to model the core and mantle respectively. Silicate

inclusions within an iron melt, or iron inclusionswithin a silicate

melt (similar to the stony- iron meteorites)are used to simulatethe

core-mantle boundary area, assuming a continuous compositionaltran-

sition across the boundary. Conductivityand melting curves are

estimatedfor these mixtures, using the melting curves of iron from

Higgins and Kennedy (1971) and of diopside (a reasonable,high tem-

perature silicate)of Boyd and England (1963).

Fricker et al. (1976) re-evaluatethe problem of a molten core

in Mercury, using improved iron phase curves of Liu and Bassett

(1975). Assuming early melting and core separation, they find that

the melting temperatures of the silicatesat the temperature and
o

pressure of the core-mantle boundary is 200 C higher than that of

iron. The lower conductivityof the mantle causes this discontinuity

to be a "barrier"to heat transfer, if there is no solid mantle con-

vection. The silicate mantle insulates the iron core. The thermal

gradientat the boundarydecreases,and the temperatureof iron rises

above the melting temperaturein a 500 km thick outer core. If this

barrier is absent, core solidification could occur in less than 2

billionyears; its presence,however, ensures a molten outer core

today (and a solid inner core). Although the model meets the condi-

tion for a molten core, the temperaturegradient is subadiabatic,so

convection--also necessaryfor a dynamo--is probably inhibited. For
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the outer core to be convective, some form of energy must drive fluid

motion in that region (possibly Gubbins' 1977 mechanism?). Fricker et

al. (1974) note that Mercury's radiogenic sources are less than the

earth's or the Moon's if scaled to the silicates present in each

planet. Thus high initial heat is necessary for core separation.

Possible initial heat sources are high accretion temperatures and/or

rates, short lived radioisotopes, electrical unipolar induction, and

Hayashi or T-Taurl phases of the sun (Sonett and Herbert, 1977).

Core FormationMechanisms

Stevenson(1980)exploresa differentmethodof core forma-

tion. He finds that the Elsasser-drop model and slnklng-layermodel,

which are ultimatelygoverned by conductivity, are too slow for the

rapid core formation usually requiredin thermalhistory scenarios. A

"catastrophicasymmetry"model predictsmeltingproceeding downwardas

the cool, buoyant regions of the inner, primitive core break away and

"raft" upward beneath the molten convecting mantle. The fluid layer

of iron in which the inner homogenous core floats is churnedup by

this motion helping to produceor maintain a dynamo field. A layer

only a few kilometers thick is required. With this model, the mag-

netic field at the surface would declineas the molten source layer

moved furtherinward.
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Convection

Subsolidusconvection,and viscosity v(T) controlthe thermal

historiesmodelled by Schubertet al. (1979): they assume a hot ini-

tial state with no internalheat sources. Their calculations may be

applicable to the lower mantle, after total melting and upward

differentiationof radiogenicsources. Calculations for Mercury show

that subsolidusconvection ends at 1.62 5.y. with the growth of a

lithosphere246 km thick. A 0.6 b.y., the crust is I00 km thick. The

growth of the lithospheremay be impeded by such processesas vigorous

convection(whichmight follow the separation of the core), or the

disruption and heat produced by heavy bombardment. Since both of

these processes end near 0.6 b.y. (from Solomon, 1977b,and others),

the I00 km thickness may be an overestimate. Viscosityincreases

rapidly over this period for Mercury. Values of 1021"8 cm2 /sec are

predictedfor 0.6 b.y., with lower values prior to that time and

higher values afterward. The mercurlanand lunar viscositiesare both

1022 cm2 /sec at 1.2 b.y. after formationof both bodies. Schaberet

al. (1977) find averageviscosities of similar but higher values for

the Moon and Mercury at the present, consistentwith the variationin

viscositiesnoted above. (Coreviscositiescalculated by Peale and

Boss, 1977, constrained by Mercury's spln-orblt resonance, are a

separateproblem. They predictthat Mercury's core must have had

viscositieslike that of the Earth'score to be capturedinto the 3:2

spin-orbitresonance.)
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Tozer (1972) argues that solid state creep controls the

internal state of large terrestrialplanets; its influence changes

with size of the body. The capacity for viscous dissipation and

chemical differentiation increases with radius of the planet_ the

largestplanets have not ceased this quasi-staticevolution. Convec-

tive cores may become hotter and smallerwith time.

Convectionis modelled by Turcotte et al. (1979) by using

uniformlyheated, self gravitating spheres. Heat is generated by

"radioactiveheat and transient heatingor cooling" by whole mantle

convection. Two scales of convection occur, one involving surface

plates of the body, the second involvingmaterialsbeneath that sur-

face cell. Turcotte et al. (1979) neglect the differentiation of

radiogenic elementsand contributionsof heat from the core. Internal

temperaturesregulateviscosityas expressedin the Rayleighnumbers.

Initial temperatures of 1400° K in Mercury decreaseonly to 1200° K

after 4.5 aeons. Due to the decay of radioactive heat sources, the

viscosity rises and the Rayleigh number decreases within this

once-fluld layer of 610 Pun. The slight decrease in temperaturemay

not be likely to affect the extent or type of volcanismin that plan-

et. However, they acknowledgethat neglectingthe heat input of the

core of Mercuryis a poor approximation.

As others have concluded (e.g. Hsui and Toks_z, 1977),

Turcotteet al. (1979) find that initial conditionshave little effect

on present thermalevolution of the planet. The Earth and Venus are
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affected by T for the first 500 m.y., the Moon, for 2 b.y., and
o

Mercury is probably intermediate in the duration of influence of its

T . Meissner and Lange (1977) parameterlzed convection and solid
O

state creep within the terrestrial planets. They find that creep

halts when temperatures fall below about 0.65 T , where T is the
m m

melting temperature in the silicates which varies with pressure and

depth. 0.65 T becomes a "steady state" temperature of planetary
m

mantles. Planets with similar mantle compositlons--and thus similar

behavior of minerals with pressure-dependent melting temperatures

T (P)--may behave similarly, with temperature gradients scaled inversely
m

with gravity or planet size. They expect Mercury to have a litho-

sphere of -250 km depth at the present, where T(P) = 1000° + K, or

0.7 Tm. The lithosphere's viscosity above i00 km depth is presently

greater than 1025 poise, similar to present lunar viscosities (see

also Schaber et al., 1977). Viscosities are 1021 poise at 100-400 km

depth; between 400 to i000 km depth viscosity varies from 1020 to 1022

poise.

Radiogenic Sources and Heat Output

Because of the slow nature of conduction, and the inefficiency

of true convection, heat flow from a planet's surface is not in

equilibrium or "steady state" balance with heat production in the

interior. Turcotte et al. (1979) found that present heat flows of the

terrestrial planets are 7-12% greater than values determined by the
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steady state approximation. Daly and Richter (1978) also caution that

convection with decaying heat sources is not sufficient to "result in

equilibrium betweenheat production and heat flow." Surface heat

losses reflectearlier heat source densities of greater (or lesser)

magnitude, so that present calculationsmay overestimate(or under-

estimate) radiogenic sources. As Schubertet al. (1979) explain, a

low heat flow is observedfor a cool, primitiveplanet Just beginning

to warm up internallyfrom radiogenic sources;while an evolvedplanet

with decayingheat sources in its interior appearsto have a higher

heatflow from the surface. Schubertet al.(1980)find that earth's

radiogenicheat is only 65-85% of its heat loss; the 15 to 35% dif-

ference is called "secular cooling." Lunar radiogenic heat,

correcting for the imbalancesuggestedby Daly and Richter (1978),is

only 70-80Zof its surfaceheat loss. In fact, the primordial heat

(accretionor condensation)componentmay 5e as high as i/3 to i/4 the

presentheat flux of the earth and other planets (Schubertet al.,

1979). In most of the Toks_z and Solomon models discussedin the

text, this imbalanceis ignored, and steady state conditions are

assumed to hold. The relationbetween the surfaceheat flow and the

surfaceactivity (volcanismand tectonism)may be important: prior to

core formation,surfaceheat flow activity may be less than predicted;

while it might be greaterthan predictedafter the core forms and heat

sources differentiateupward. Extendedsurface activity may occur

while the heat sourcesdecay.
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This effectmay have some bearingon estimatedtemperaturesin

the core. Despite these caveats,as noted by Solomon (1976, 19775),

Toks_z et al. (1978), Frickeret al. (1974, 1976), and Stevenson

(1975),the core may need internalheat sourcesto sustain convection

within its liquid shell layers. Once the radiogenic heatsources have

been partitionedinto the shallowcrustalsilicates, the core cools

fairly rapidly. High heat flows from the planet's surface may not

imply a molten core.

Other Heat Sources

Horedt (1980) explores three different types of gravitational

heating for planets: accretional heat, adiabatic compression, and

core formation. Core formation is the most dramatic heat source for

the larger terrestrial planets, although accretional heating is

important for bodies of all sizes early on. Kaula (1979a) examines

accretional heating by impacts of planetesimals on the earth and moon.

Growth times of 50 m.y. for the earth raises temperatures high enough

to vaporize the outer layers of proto-earth if more than 12% of the

heat energy of impacts is retained, possibly as hot fall-back eJecta.

Heating may increase with growth time, contrary to some models where

heating is negligible if distributed over long periods. In this case,

Kaula (1979a) notes that larger planeteslmals are likelier to impact

earth after lengthier periods of time; larger objects bury their heat

deeper in the target planet, where it may be retained. According to

Kaula's (1979a) model, the Moon does not melt during accretion, even
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if the presence of the earth "focuses" objects onto the Moon's sur-

face. Heat sources such as cooling of an inner core are cited by

Gubbins (1977) as sufficient to keep the temperature gradient super-

adiabatic in the outer molten core. Tidal heating is dismissed as a

viable heat source for the core by many authors (e.g. Burns, 1976).

Stevenson et al. (1980) argue that the core and mantle thermal

histories are coupled through the temperature dependence of theology.

Alloys may be necessary to depress the melting temperature of iron;

otherwise, temperatures below that melting point occur in the deep

mantle. Stevenson et al. (1980) assume radiogenic hBat sources are

absent from the core. If the core formed by differentiation, rather

than heterogeneous accretion (as discussed by Cordell, 1977), then

core convection is driven by cooling the fluid from above, and adding

heat from below as the inner core becomes solid (see also Gubbins,

1977). Impurities of lighter elements percolating through this core

material will aid convection. They suggest that Just 3% sulfur by

mass could decrease the melting point, and act as the percolating

light element.

Heatingby tidal actionis discussedby Liu (1972) who pre-

dictstwo thermal bulgeson Mercuryat thehot poles,0° and 180° W

longitude. Thebulges raisedby differentialsolarinsolationare

actedon as a tidalbulge, and furtherheatmay be released.Thermal

stress may be as great as _ -108 dynes cm-2. This heat, dissipated

probably in Mercury'suppercrustallayers, may causelocalheating
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(volcanism)or tectonic activity, but is unlikely to directly affect

the core. Liu's (1972)work must be re-evaluatedwith differentphys-
-3

ical parameters,speclflcallypa silicatedensity of 3.0 to 1.5 gcm

(brecciated rock) insteadof the mean density of 5.3 gcm -3 used in

his calculations. Burns (1976) notes that tidal stresses may raise

temperaturesby i00° C, dissipatedmainly at the poles. The effects

of such an increasein temperatureare debatable.

Mercury'ssurfacetemperaturemay reach 725° K at 00 and 18_

longitudeon the equatorevery 176 days. No one(otherthan Liu,

1972) has determinedwhether that periodicthermalimprintis commun-

icated to the mantle, although Stevensonst al. (1980)note that the

770° K surfacetemperatureon Venus is communicatedto its mantle.

Convectionin Mercury'ssilicate mantle may once have been affected,

and possiblymanifested in, lithospherlcand cratermorphologlcdif-

ferences. (The Calorlsbasin and hilly and lineated areas lle near

the hot poles, but off the equator.) Radioactive heat sources may

have differentiatedto shallowerlevels near the hot poles, contrib-

uting to a thinner lithosphere there than at the warm poles.

McKinnon (1980)finds that polar--equatorialasymmetries in litho-

spheric thickness may be more pronouncedthan warm pole-hot pole

differences. The evidenceis inconclusive. A basic uncertaintyin

equatorial heat input is the durationof the 3:2 resonancewhlch is

responsible for longitudinaldifferencesin thermal insolation. If

Mercury's spin was greater in the past, longitudinal temperature

486



excursionswould be lesspronouced,and closerto Mercurytseffective

reflectancetemperature.Tidalspln-downcoulddissipatemoreheatin

polarregions, off-settinglatitudinalheat differences(Burns,1976).

If _thermal stresseshad occurred,one mightexpect evidenceof loss

of large cratersby isostaticrelaxation.If tidalspin-downformed

the lineamentsregisteredin theintercraterplains, thenthehot

pole/warmpole phasemay have persisted sincethetimeof heavybom-

bardment. Cratermorphologymay changewith longitudeas lithospherlc

thicknessesvary.

The Problemof a Molten Core and RegenerativeDynamo.

Stevenson (1975) outlinedfour necessary, but "probably not

sufficient," requirements for a regenerative dynamo. The first

requirementof the regenerativedynamo is a molten core, or molten,

highly conductivelayer; the second is an energy source to drive con-

vectionin the molten layer; the third is a magneticReynoldsnumber

greaterthan unity (in which the time scale for convectionis much

more rapid than the time scale for decay of the magnetic field); and

the fourth is the influenceof Coriolisforces to drive the Cowling

fluid motions. These conditionsmay be alternately satisfied in

Mercury's core or mantle,but not all are satisfied in the core.

Stevenson (1975) concludedthat a regenerativedynamo in Mercurywas

unlikely.

It has been noted that various studiesappear to relax some of

these conditions. Gubblns(1977) assertsthat Coriolis forces domi-

nate in Mercury'sinterior, despite its slow rotation, and that
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planetary coolingmay provide adequate energyto drive convection.

Levy (1979)findsthatan ambientfieldmay be amplifiedby weak con-

vection(insufficientfor regenerativebehavior on its own), thus

creatinga dynamo-llkefieldexteriorto the planet. Yet most thermal

historiesthus far reviewedleadto the conclusionthatinternalheat

sources are necessaryfor MercuryVs core to be molten at present

(Cassen,1977; Hsui and Toksbz,1977;Toks6zet el., 1978; Solomon_

1976,1977b;Siegfriedand Solomon,1974).

Stephenson(1976)foundthatthe intrinsicfieldcouldreflect

a remanent magnetizationlockedwithin a cool (T<T(Curie))shell.

Shellthicknessesof 20 to 200km are possiblewith ironcontentsas

smallas --3 wt % Fe°. Solomon (1976)concedesthat inefficient

differentiationcould leave Fe within the silicate mantle_ thus

increasingelectricalconductlvity_allowing a thicker layer to be

below the Curie temperature. Others (Ness, 1978) disagreewith

Stephenson'scondltlonsparguingthat the requiredshellis too thick

and the Fe contenttoohigh. Iron contentssliEhtlyhigherthanthat

Of lunar ferrobasaltsmay be necessary.FeO on _ercuryVssurfaceis

apparentlyrestrictedto 3% to 6% (Hapke_1977). Furtherdiscussion

canbe foundin Chapter6 of the text.
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APPENDIX H

ALTERNATIVE THERMAL HISTORIES

A differentiated, once active Mercury is based on the fol-

lowing interpretations: (I) the observed magnetic field represents an

active dynamo; (2) the high density of the planet results from a high

iron content, presumably in the core; (3) the silicate surface layers

indicate a 600 km thick lithosphere formed by differentiation; (4) the

intercrater plains are volcanic materials; (5) regional tensional

features were destroyed by volcanism and impacts; (6) scarps are com-

pressional faults produced in a global contraction; (7) young plains

include volcanic materials extruded for limited times during surface

cooling; and (8) the heavy bombardment involved the same population of

objects, at the same time, as on the Moon.

Although all the above conclusions are the most reasonable,

competing interpretations may spell out a simpler history for Mercury.

The magnetic field may be due to remanent magnetization of an

iron-rich shell, magnetized by an ancient dynamo or external field.

Mercury's high density also is represented by a homogeneous mixture of

65% iron and 35% silicates and refractories. The silicate surface

layers may be superficial (meteoritic debris), with composition and

albedo variations recently disguised (by a late heterogeneous

accretion?). The intercrater plains may be dominated by ballistically
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emplaced materials, breccias, as argued by Wllhelms (1976b). In fact

plains formation solely by balllstlc mechanisms excludes surface vol-

carLlsm. Regional tensional features may not have occurred if the

planet never expanded (Cordell, 1977); on the other hand, regional

tensional features may yet be identified. Most scarps are tectonic.

Two are well identified thrust faults_ others are high angle faults

which, in a few cases, may be normal faults, as proposed by Scott et

el..(1980) and Dzurisin (1977a). A global distribution of scarps may

be imprinted on the tectonic fabric of tidal spin down, which will

also generate compressional faults in equatorial areas (Melosh and

Dzurisin, 1978). Young plains may also be impact melts or other

impactgenerateddebris,depositedin low-lyinglandforms.The young

plains show slight compositionalvariationsprimarily around the

Caloris basin. And finally,Mercury'sheavybombardmentmay comprise

a different population occurring at a later time, or the same popu-

lation recorded later on the surface, or combined populations, one of

which is unique to Mercury.

Various combinations of these alternative scenarios are pre-

sented below. Many contradictthe evidence,but otherscenarios are

remotelypossibleand warrant furtherstudyandmore data.

As noted earlier, various initial conditions are possible if

condensation and accretion are "non-standard" or if fractionation and

mixingprocessesoccur. Weidenschilling's(1978)metal-silicate

fractionationhypothesisaffectsMercury's composition,but does not

490



affectthe planets'mode of accretion.Differentiationis affectedif

otherheat sourcesor alloyingelements are introducedinto the sys-

tem. It may be possiblethatsilicate-richfragmentsaccreted later

than the iron-rlchmaterials,in a heterogeneousaccretion. Some

influxof silicatematerials drifting intoMercury'saccretionzone

from fartherradial distances couldcontributelow temperaturecon-

densates,whichare accretedin eithermode.

Cordell(1977)buildsa scenarioforMercurybased on inhomo-

geneousaccretion,eliminatingthe need for rapidcoreformationand

significantglobalexpansion.A (rapid) hot accretioncreatesa glob-

al magmaoceanof theuppermantlesilicates.U and Th are trapped

in a refractorycorewhich melts and subsequentlymeltsthe surround-

ing Fe-Ni mantle. Because these phases are already at high

temperatureand pressure, littlevolume increase is expected from

element redistributions.To keep the core molten and drive the

dynamo,20% of the U and Th must remaintrappedin the core.The rest

of theU andTh migrateto crustalregions, causingIntercraterplains

volcanism.Sinceexpansionof the planet is minimal, there areno

largeriftvalleys--tensionalfeatures--tobe erased by crater and

plains formation. Scarp formationbegins after the surface and

lithospherecool.

Strom (1979)describesan alternativescenariowheremelting,

core formation,expansion,and initialplainsformation(resurfaclng)

substantlallyprecede the recordedheavy bombardment.Intercrater
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plains (some of which are remnants of the early resurfacing) are

emplaced throughout that bombardment via the mode of ballisticdepo-

sition of brecciated ejecta and impact melts. The early core

formationpresumably forms an ancientdynamo,which magnetizescrustal

layers as they cool. Energy sourcesin the core were not sufficient

to keep it molten. Scarp formationfollowscrustal cooling,primarily

during the early bombardment. Younger plains are also emplacedbal-

listlcally,like the lunar Cayleyplains.

This researchindicatesthat Mercury'ssurfacebegan to record

impacts very early in history,and that impacts occurred throughout

plains formation without a substantial low viscositysurface. Some

rifts may be evident,as remnants,within the intercraterplains. The

new data presentedabove on the onset of scarp formation(i.e.,in the

P3 period during late intercrater plains formation and late heavy

bombardment) and its duration (throughthe P1 period)argue against

Strom's(1979) alternativemodel.

High initial temperatures are attainable through several

mechanisms,many of which have been discussedin the literature (e.g.

Sonett et al., 1975). These include rapid accretion, short lived

radionuclides, unipolar induction,electrical heating, and high tem-

perature or high magnetic field phases of the early sun. Other

mechanismsare tidal friction,gravitationalheating, and core forma-

tion. Each process causes early melting, and perhapsthe creationof

a magma ocean; both even_would certainlycontributeto resurfacingthe
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planet. Impacting objects would not be recordedon this surface until

it cooled substantially.

Althougha primordialsurface is ruled out by observationsof

ancient circulardepressions buried by plains, this observation may

not necessarily exclude an incompletely differentiated planet. In

support of this, Schaber et al. (1977) note that viscosities on

Mercuryhave been high (1026.5poise) for 4.0 b.y. Scarp formation

may occur throughtidal relaxation, or cooling of a deep-lying par-

tiallymolten zone. 0nly a heat source abundance less than 30.4 ppb U

fails to melt the body; insufficient or marginal abundancesmay have

been enough to raise a subcrustallayer,still Fe-rich, above the

Curie point, to cool in an ambient magnetic field. Followingcold

accretion, as discussedby Sharpe and Strangway (1976),Mercury's

crust or core may have acquired the field of an external magnetic

source. However, if Fe were that close to the surface (withinthe

Curie isotherm),greatercompositionalvariations aroundbasin impacts

may be expected,but are not observed.

It is importantto note that better determinationof Mercury's

magnetic field, its moment of inertia,and its surfaceheat flow could

easily distinguish between many of these models. Sharpe and Strangway

(1976)show that the latter two parametersdiffer greatlyin the cold

accretion and hot accretioncore formationmodels. (Siegfried and

Solomon, 1974, and Kozlovskaya,1969, also demonstrate this.) Russell

et al. (1977) have shown that magnetic field analyses of the Moon

better define its internalhistory.
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Alternatives to an active dynamo are a Fe-rich shell magne-

tized by an ancient dynamo, as discussed in Appendix G and in the

text, and a low temperature core magnetized by an external paleofield.

An ancient dynamo is quite consistent with predictions of a core

which solidifies 1.5 to 2.0 b.y. following its formation. Solid state

convection in the mantle would hasten core cooling. Ness (1978),

however, objects to the amount of Fe required in the shell, the

shell's thickness, and the strength of the dynamo field. Core forma-

tion is not expected to be an inefficient process with respect to Fe

left in the mantle or heat sources left in the core. Concurrent with

core dynamo processes, the surface units or subsurface layer must be

cooling through the Curie isotherm. Since this form of remanence is a

second order effect, field intensities of i-i0 gauss are required

(Stephenson, 1976). Magnetization by an external field requires that

the planet's surface layers cool in the presence of a stable external

field. Thermal events subsequent to field decay (e.g. impacts) may

destroy the TRM field.

A ballistic plains origin demands no volcanic episodes; the

only molten materials are impact melts and hot ejecta sheets. Impact

erosion from much smaller impacts or secondary craters from basins,

may subdue cratered terrain to mimic the intercrater plains (Malin,

1976b; Trask, 1976a,b). However Mercury's cratering history, the

contemporaneous areas of craters and plains, the reduced ejecta dis-

tribution relative to the Moon, and the lack of similar plains on the
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Moon except in a specific area, argue against plains production by

impact eJecta. Since ancient basln-slzed depressions appear to be

embayed by the intercrater plains, and since fewer, younger, large

basins occur in the vicinity of these structures, ballistic materials

necessary to create the second generation of plains material are

insufficient.

Another alternative thermal history worth exploring concerns

the link between heavy bombardment and surface volcanism. Although

the surfaces of Mercury and the Moon do not record the major accretion

of the planet (i.e., the surfaces are not primordial), they record a

very heavy bombardment which, on Mercury, ends near the onset of scarp

formation in period 3, and on the Moon, ends about 3.9 b.y. ago with

the last of the basin impacts. Heavy bombardment accompanies highland

and intercrater plains volcanism. Accretional bombardment has been

suggested as one mechanism for producing the magma ocean (Ahrens and

O'Keefe, 1978; cf. Kaula, 1979a). The later "terminal" bombardment

may also inject heat into the crust, and create excavated areas and

hot, insulated areas which disturb the local isotherms (Bastin, 1974).

Bastin's "liquefaction" theory for the lunar Cayley plains involves

in situ formation by subsurface heating and relaxation of topographic

relief. Differential insulation by crater ejecta blankets and rego-

lith variations cause lateral thermal gradients which aid in the

spread of these flat-lying regions. Ahrens and O'Keefe (1978) discuss

impact ejecta heat distribution more fully.
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Furthermore, craterlng fractures the crust to a depth equal to

the crater diameter. Should molten zones exist beneath that surface,

the number of conduits through which magma may rise increases with

time as the cratering continues. Global compressional stresses of

"one plate planets" may close these vents if the planet cools and

contracts. Thus plains formation may be tied to impact cratering

through heat production and fracturing of the crust. Concurrent heavy

bombardment and intercrater plains production occur on Mercury, the

Moon, Mars, and possibly the Gallilean satellites Callisto and

Ganymede. (Basin rings and crustal thickness are discussed in

McKinnon, 1980.) Plains formation by impact eJecta, impact erosion,

and liquefaction exclude the need for volcanism on the surface.

Observations of Mercury's Intercrater plains indicate that the most

attractive mechanism is formation by volcanic extrusions.

In each of these models, it is important to note how they

satisfy such constraints as the nearly uniform color and albedo of

Mercuryls surface. A homogeneous, undifferentiated object would not

be expected to exhibit major changes in color and albedo due to crater

excavations. However, it would be expected to show higher Fe concen-

trations than observed. Color variations in initial surface melts

depend on the duration of melting and fractionation in the source

region and in the access of highly fractionated materials to the sur-

face. Before further interpretations are made, it would be wise to
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• obtain higher resolution multicolor spectrophotometry of Mercury's

surface. Albedo and two-colorratiosmay not be adequatelydiagnostic

of surface composition.

In summary,alternative scenariosof Mercury'sthermalhistory

involve different internal distributions of accreted materials,

includingU- and Th-richmaterials,variations of early melting, and

different modes of plains and scarp formation. Arguments in this

paper stronglyfavor plains formationby volcanism,lack of a primor-

dial surface, and possible identification of remnant tensional

features. Studies ofremote sensing data which suggesta modestly

homogeneous surface of silicates strongly imply core separation.

Better constraints on timing of these events and the volume and nature

of plains productionenable us to reject Strom's(1979) alternative

hypothesis.Rejection of Cordell's (1977)hypothesis is more diffi-

cult, but is based on tentative identification of tensionalrifts and

evldsnce for an anorthositiccrust. In general,the better hypotheses

for thermal histories of Mercuryare those of Toks_z and Solomon,

modified by the observationsof onset and durationof scarp formation

and later plains formationby volcanism.

497



APPENDIX I

TANGENTIAL STRESS FACTOR

Solomon (1977b, p. 138) notes that radial and tangential

stress in the crust are a result of "non-uniform thermal expansion or

contraction" acting over a time interval at = t2 - tI and associated

with a temperature change aT(r) = T(r,t2) - T(r,tl). The change in

radial thermoelastic stress is given by

a (r) = 2E (I(R) - l(r))
r _)

and the change in the tangential thermoelastic stress is given by

 ot(r)=E • ( =(R)+3(I- _) -
where I(r) is the expression

l(r) = 13/_ _(r) AT(r) r2 dr

Other parametersare: E, Young'smodulus, assumed to be spatially

uniform and of value lOl2dyn/cm2; _, Poisson'sratio, also assumed to

be spatiallyuniformand equal to 0.25; and (_(r), the thermalexpan-

sion coefficlent. The tangential stress factor used by Solomon

(1977b, p. 138) is actually the rate of change of tangential stress,

or aft/at. If stress is tensional, the stress factora_t/at ist

positive,and if compresslonal,the factor is negative.
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APPENDIX J

CHRONOLOGYOF SURFACEHISTORYOF }_RCURY

The following chronology of Mercury's history is similar to,

but not as detailed as_ those reported by Dzurisin (1978), Strom

(1979), and Gault et al. (1977), but follows their basic guidelines.

(i) Condensation and Accretion. The initial phases of

Mercury's history are condensation and accretion. Unlike Cordell's

hypothesis (1977), equilibrium condensation followed by homogeneous

accretion are likely starting conditions (Lewis, 1972).

Metal-silicate fractionation or mixing of high and low temperature

condensates (Weidenschilling, 1978) may introduce other heat producing

(K-40) or alloying (S) elements to Mercury's refractory, iron-nickel,

and magnesium silicate-rich composition (Goettel, 1976). Fe0 may have

been incorporated with more oxidized planetisimals; however, it is

believed to be a product of later differentiation in Mercury's crust.

(2) Heating. A second, or concurrent, stage is heating of

the planet. Rapid accretion, external heat sources (like an active

T-Tauri solar phase), or extinct radionuclides (Fe-60?) contribute to

high initial temperatures, on the surface or throughout the planet,

which lead to melting, differentiation, and formation of an iron core.

(3) Planetary Expansion During Heavy Bombardment. The

redistribution of silicate and iron within a formerly homogeneous
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cause substantial expansion and tensionalMercury is likely to

es in addition to higher temperatures. Plains extrusions

stress-

follow.

Emplacement of these intercrater plains occurs during an ongoing heavy

bombardment of Mercury by large planetesimals. The graben and fis

sures formed during planetary expansion are destroyed in the

bombardment and embayed by the plains materials which they conduct to

the surface. A few of the later-forming tensional features may still

exist in the PS and P4 plains.

(4) Tidal Spin-Down and Lineament Formation. Mercury's ini

tially high rotation rate (10 to 20 hours; see references in text) was

slowed by solar tides and eventually assumed a value 2/3 that of its

orbital period. The relaxation of the tidal bulge, or tidal spin-

or jointing in the

may also exert some

extruded. Because of

down, may produce lineaments by faulting

emplaced and stressed plains units, and

over the vents through which plains are

newly

control

tidal

spin-down, tensional features due to expansion may be more numerous in

middle to high latitudes; : small numbers of

not expected, contrary to what Cordell (1977)

to Mars.

isolated great rifts are

has suggested in analogy

(S) PS Plains Emplacement. The earliest recorded plains are

not part of the primordial surface. The CS' depressions may have

formed as impacts into the recently cooled, high viscosity surface.

PS plains surround and bury many of the CS' structures. Thermal

heterogeneities in the crust and subsurface partially-molten areas may
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have caused extended plains formation, or induced isostatic relaxation

of basins and craters in particular areas. The PS plains are the most

widespread unit and probably formed during the surge of energy asso

ciated with core formation (Toksoz et al., 1978).

(6) P4 Plains Emplacement. Plains emplaced in the Class 4

period are slightly less widespread; thermal heterogeneities may

remain. Bombardment is still heavy; many 200-300 kID basins form dur

ing this period. Lineament formation continues. Dome formation may

occur during intercrater plains emplacement PS through' P3.

(7) Peak Planetary Volume in P3 Period. Peak planetary

volume is reached in this period, marking the completion of core for

mation. Plains emplacement is slightly less extensive than the PS

units and has become localized to depressions, interior and exterior

to clusters of craters. Crater clusters appear to be preserved in

part because they are at higher elevation; in addition, their massive

continuous ejecta blankets act to channel exterior deposits, and pro

tect the cluster from external embayment by volcanic plains.

Subsequent craters have left the imprint of their secondaries on Class

5, 4, and 3 plains and craters, out to distances of 1-2 diameters from

the primary craters' rims.

(8) Scarp Formation. Scarp formation begins early in the

Class 3 period following core formation as the planet's lithosphere

starts to cool. Plains formation continues because of availability of

molten material, subsurface tensional forces which allow pooling of
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magma, and impact cratering or tidal fracturing which provides con

duits through the surficial compressional zone. Lithostatic pressures

and magma pressures are able to overcome the initially weak compres

sional stress. The scarps are thrust faults or high angle reverse

faults, which, in their entirety, imply a radial contraction of

Mercury of 2 km or less (Solomon, 1977b; Strom et al., 1975b). Ridges

form during the Class 3 and 2 periods, possibly as the last extrusions

along fissure vents, or as "squeeze ups" of material in fissures dur

ing the compressional era.

(9) Caloris Basin Formation, Late Class 3. The Caloris basin

formed late in the C3 period or early C2 period, creating the hilly

and lineated area when its seismic waves were focused at the basin's

antipodal area. The degree of destruction of pre-existing terrain

within the hilly and lineated area depends on the age of the material,

the consolidation of that material prior to the disturbance, and the

distance of the affected zone from the epicenter of the focused seis

mic waves. The Caloris basin forms extensive deposits of rim

materials, ejecta facies, and secondary crater fields. Hummocky

plains are also formed around the basin rim at the time of impact.

(10) Scarp Formation and P2 Plains Formation. Scarp forma

tion continues and plains formation decreases as the planet's

lithosphere continues to cool and as source regions retreat from the

surface. Scarps are most numerous in the Class 2 period, while plains

become increasingly confined to local depressions (e.g., the cst), and
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to interiorsof oldercratersand basinsof the firstquadrant.Many

P2 exposuresare impactmelts;some are ballistic depositsoverlying

roughtopography. Those which are isolatedfromyoung basins and

which occur in older structuresare interpretedas volcanic. Cra-

teringintensitydecreases.Tidal spln-downhas ceasedby thistime,

for theassociatedlineamentsare not recognizedin the P2 and P1

plains.

(11) SmoothPlains FormationIn andAround LargeBasins.

Large basin-formingimpacts, like thatwhich formedB_ethoven,the

Copley basin, the North,polarbasin, Caloris,and others, have

fracturedthe crust and createdsufficientlydeep tonduitsfor extru-

sion of materialfrom deep-lyingmoltenzoneslocalto thebasin.The

Calorisbasin has lengthenedsmooth plains activity on the second

quadrant of Mercury,regionallyreversingthedecreasingplains for-

mationtrendnotedfor thefirstquadrant.

(12) Late or LocalTectonicStress. In thelate P2 periodor

Cl period,the Caloris basinappearsto have undergonea subsidence,

formingridgesradialand concentricto the basincenter;the subsi-

dencemay be associatedwith localplainsformationas magma withdraws

fromcavitiesbeneath thebasin floor(Dzurisin,1977a). Subsequent

isostatic compensationand uplift produced tensional features

(fractures)in radial and concentricpatterns on thebasinfloor.If

normalfaultsdid formon the first quadrantduring the Class2 and 1

periods,theytooare likelyto be local--perhapslocaladjustmentsto
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retreat or exhaustion of magma chambers. Scott et al.'s (1980) sug-

gestion of a late tensional regime is not well documented by the

controversial identifications of normal faults in the first quadrant.

(13) Quiescent Class 1 Period. The last stage of the planet

is marked by greatly reduced crater fluxes and reduced plains and

scarp formation. Scarps transect some C1 craters, indicating late

compressional stresses. Most smooth P1 plains form as impact melts

in CI craters; a few exposures occur in older craters and are inter-

preted as volcanic. Bright young units occur on the floors of young

craters; Dzurisln (19775) interprets these as possible chemical

alteration products. Ray craters make up a sizeable sample of the CI

craters (Allen, 1977); their blue rays cross all types of terrain and

are rarely embayed by plains.

(14) Present Conditions. Although cooling and contraction of

the lithosphere are complete, the core remains molten as an active

dynamo, producing the magnetic fields detected by Mariner I0. The

plains produced since core formation (P3-PI) should record its magnet-

ic activity. Only _23% of the core volume (or 60% of core radius;

r/Re = 0.6) may have cooled and contributed to Mercury's 2 km radial

decrease. Color Homogenization: Cratering during the Class 2 and

Class 1 periods is probably not enough to distribute ballistic

materials and homogenize any color differences. Some color variations

are located in the younger plains materials, whereas older plains

appear more homogeneous. This effect may be a chemlcal-compositional

one, or simply related to decreased impact fluxes.
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APPENDIX K

CHRONOLOGYOF SURFACEHISTORY OF THE MOON

The scenariofor the lunar surfacehighlights the formation

of its intercraterplains. The sequenceof events is quite similarto

those sequencesproposedby lunar mappers (e.g,Scott, 1972).

(i) Ancient crust solidificationabout 4.4 5.y. ago; anor-

thosltichighlands (plagioclase rockbergs of Herbert et al., 1977)

dominate the surface.

(2) Ongoingheavy bombardmentand accretionact to mix the

crust with subsurfacematerialsand with the incomingprojectiles.

(3) During the magma ocean stage, radioactive elements are

concentratedJust beneath the crust. As the crust founders and is

cratered,these mineralsare more evenly distributed.

(4) Long- term tensionalstressesare produced by the magma

ocean genesis,althoughactual increasein the Moon's radius is small.

(5) As the crust cools, partialmelt zones move deeper into

the planet; fractionated basalts are concentrated under the chilled

crust.

(6) The heavy bombardmentand heat sourcesremeltmuch of the

upper crust and excavate fractlonatedbasalts. The initialextrusions

of partial melts (LKFMbasalts?)may have produced some intercrater

plains possiblylocalizedin an ancientbasin southwestof Nectarls.
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(7) Ancient basin impacts locally reduce large crater and

small crater densities in the area.

(8) The Nectaris impact excavates some KREEP rich materials.

The Janssen Formation is emplaced as the Nectaris ejecta blanket, and

may fill surrounding depressions with smoother materials at its distal

edges. The impact appears to do little structural damage to the large

craters southwest of the basin in the intercrater plains region.

Secondaries of Nectaris occur on Zagut, Hommel, Dove, and Nearch.

This may be a consequence of oblique impact of the Nectaris projectile

from the southwest.

(9) Large amounts of pre-lmbrian plains are formed by local

melting of the highland crust and extrusions along fissures and vents

which trend along the lunar grid direction or which are localized to

an ancient basin. Plains are deposited sporadically over time in

topographic lows and embay the Janssen Formation. Adjustment of fault

blocks may elevate some regions, so that different thicknesses of

materials build up (Mutch and Saunders, 1972). Small craters are

buried by the plains; large craters are embayed or surrounded, their

rims intact.

(i0) Ongoing heavy bombardment ejects and deposits local

anorthositic highland materials onto these pitted plains units, dis-

guising most compositional variations.

(11) The Imbrium impact ejects secondary swarms onto the

northernmost reaches of the pre-lmbrian plains. Craters of this
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periodand the Imbrium basinhelp formthe Cayleyplainsunits from

thebrecciatedeJectadepositswhichare then concentratedin topo-

graphiclows.

(12) As partial melting continues,themare 5asalts are

extruded;hlgher Fe0 contentsmay result from greater durationof

fractionation.The Moon is still underglobalexpansionand tension,

so open vents and availablesourcematerialscombineto aid emplace-

ment of widespreadmarebasalts. Grabens form. The occurrenceof

ridges and graben aroundmajorbasinsdependson thecombinationof

globalandbasin-localstresses.

(13) Global contraction(cooling)beginsaround 3.3 b.y.;

late-stagebasalts are emplaced at basin margins wherefractures

penetratetosubsurfacetensionalzones.

The lunarintercraterplains may be linkedwith earlyKREEP

volcanism,theLKFMbasaltsourceregion,and the firststagesof mare

volcansim. Agesof KREEPbracketthepossibleagesof thepre-lmbrian

plains, and overlaptheinitial stagesof mare basalt emplacement.

Both plainsare extrudedunderthesame tensionaltectonicregime.
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SECTIONII





These abstracts were prepared by the 1981 participants
in the Planetary Geology Undergraduate Research Program.
Each summer, the NASA-sponsored program matches qualified
undergraduates with Principal Investigators who supervise
their research projects. Students whose findings are in-
cluded in this publication are:

Carlos A. Atallah, senior, University of California at Davis.
Hosted by Dr. Stephen Saunders, JPL, Pasadena, CA.

Steven E. Heckendorn, senior, Wittenburg University, OH.
Hosted by Dr. Duwayne M. Anderson, State University of
New York at Buffalo.

Maureen Kilcoyne O'Toole, junior at the University of Massa-
chusetts. Hosted by Dr. Elliot Morris, USGS, Flagstaff,
AZ.

Lynn M. Reding, senior, James Madison University, VA. Hosted
by Dr. Ronald Greeley, NASA Ames Research Center, Moffett
Field, CA.

Henry Schuver, senior, Western Washington University. Hosted
by Dr. Charles A. Wood, Johnson Space Center, TX.

Alejo Verdes, senior at Hunter College, NY. Hosted by
Dr. Elliot Morris.

Stephen J. Wetzel, sophomore, Franklin and Marshall College, PA.
Hosted by Dr. James Head, Brown University.

The papers of Dennis Rashka, Ellen Sugarman, and Mary
Mei-ling Yang will appear in a future edition of this
publication.
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THE PLANET-CROSSING ASTEROID SURVEY

INTRODUCTION:

The planet-crossing asteroid survey is a continuing systematic

search of the sky for fast-moving, planet-crossing objects and for

slower main belt asteroids. This project has been in operation since

1973 under the direction of Eugene M. Shoemaker and Eleanor F. Helin

of the California Institute of Technology. The purpose of this search

is to discover new objects and obtain and refine orbits for new and

previously known asteroids, giving new insight into their populations,

their origin, their collision frequency with other bodies of the solar

system, and their role in the cratering history of the terrestrial

planets (ref. I). Moreover, knowledge of the population of earth-

crossing asteroids could be of interest for future e_loration with

spacecraft, and perhaps they may ultimately become a source for raw

materials (ref. 2 & 3).

METHO DOLOGY:

There are currently two programs of search: the first one is

carried out by using photographic exposures obtained, on a monthly

basis, with the 18" Schmidt telescope at Mount Palomar Observatory.

Generally, a pair of exposures is taken of a predetermined region of

the sky. These exposures are then developed and inspected at the

observatory. The major emphasis of this,effort is to search for

fast-moving asteroids. They are somewhat easy to identify due to

their characteristically long trails displayed on the plate as a

result of their close proximity to the earth. However, a discovery

of this sort is relatively rare. Orbits are determined for new high

motion objects found on tb_s films. As many as 25 new asteroids,

mostly main-belt o _ects, are found in any film. During the August
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1981 observing runs no fast-moving asteroids were discovered, although

a new long-period comet, 1981 d, was discover and 2100 Ra-Shalom was

photographed to improve its orbit.

The second project involves the use of the 48" Schmidt telescopes

at Palomar Mountain Observatory in California, and Siding Springs

Observatory, New South Wales, Australia. The photographic plates

obtained with these telescopes cover a 42 square degree region of the

sky. One can find from 100 to 400 asteroids on each plate taken near

the ecliptic plane. During June, July and August of 1979, E.F. Helin

and S.J. Bus obtained a total of 14 plates using these telescopes.

The plates were obtained using fixed field centers of each of the

three lunations. Therefore, some objects were lost due to their motion

out of the field of view during the observing run. Nevertheless, 109

asteroids were measured and preliminary orbits were determined by $.J.

BUS.

RESEARCH:

Using the ephemerides computed from the orbits and the 48" Palo-

mar Schmidt log book I determined the number of objects that might

have appeared in plates taken in years other than 1979. Thus, new

positions could be calculated aiding the refinement of the prelimina-

ry orbits of these asteroids, eventually leading to their permanent

number designation. From these 109 asteroids, 35 were potentially

on 97 plates taken at Palomar between the years 1976 and 1981.

Unfortunately, only 27 plates were readily available and the number

of tentative asteroids was reduced to 10. Furthermore, upon examina-

tion of the films, only 6 objects were found to be in the region

predicted by their ephemeriges. The remaining 4 objects were not

found in their predicted positions primarily due to less than
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optimal film quality or the faintness of the object. The position of

the 6 objects identified were measured to one arcsecond precision and

they have been reported to Brian Marsden of the Smithonian Astrophysi-

cal Observatory.
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IN PLANETARYEXPLORATIONMISSIONS

Steve Heckendorn Faculty of Natural Sciences Buffalo, NY
and Mathematics 14260

Planetary Geology State University of NewYork U.S.A.
Undergraduate Research at Buffalo
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Through several experimenters (Chernyak, Nikodem, Thomas, Lundien,

Cihlar and Ulaby, Hipp, Hoekatra and Delaney, Chudobiak, Topp, Davis, and

Annan) it has been shown that a time domain reflectometry technique can be

used to determine free volumetric liquid water content in a soil, and since

Patterson and Smith (1981) have demonstrated the application of this technique

to frozen soils, the possibility of using it for planetary exploration has

been opened. A time domain reflectometer, (TDR), is used along with a

coaxial transmission line or a balanced parallel transmission line which is

more apt to field use. With the two rods, or parallel probes, of known length

inserted into a soil, the TDR sends electromagnetic waves through the

transmission lines where some of the energy of the pulses is reflected back

to the TDR. The TDR output is commonly displayed on an oscilloscope and

then photographed or plotted on an x-y recorder. From the output of the TDR,

which shows the reflection coefficient versus distance, the apparent dielectric

constant, Ka, can be determined. This physical property, the dielectric

constant, of the soil can°give one the volumetric water content because Ka is

primarily dependent on it.(6) The reason is the substances' dielectric

constant values, which are 87.7 for water at OoC and around 3.0 for dry soil

and most geologic materials. The method also works in frozen ground since

water-ice has a value very close to dry soils, approximately 3.

Figure i shows a typical TDR trace for a wet soil. One arrives at the

volumetric water content, 8v, by first finding the one-way travel time of an

electromagnetic wave in the probe. This is accomplished by converting the
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Figure 1. Typical TDR trace for a wet soil (8)
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distance axis to a time axis by dividing the horizontal scale setting

(in cm/DlV) by 30 cm/nsec (the speed of light in cm/nanosecond). (8) Then

points A and B are located (See Fig. 1), and the number of horizontal

divisions between them is counted.

The number of divisions times the time per division gives one the travel time.

All the values for the following equation are now known and the Ka can be

determined.

c = the speed of light
t = the travel time
L = the transmission line length

Topp et al. have determined the empirical relationship between Ka and 0v by

fitting a third-degree polynominal equation to their data and getting

Ka = 3.03 + 9.3 8v + 146.0 8v2 - 76.7 8v 3

or

8v = 5.3 x 10-2 + 2.92 x iO-2Ka - 5.5 x lO-4Ka 2

+ 4.3 x lO-6Ka 3

or a tabulated table can be used to get 8v from the Ka. (10)

I became familiar with the TDR technique by using it on samples, and

then I listed all of the advantages and disadvantages I thought it has,

especially if it were to be applied for remote sensing exploration. I used

a Tektronix 1502 for my TDR instrument and two extreme soil types for my

samples, a local sandy soil and Wyoming Bentonite. Two types of probes, or

transmission lines, were used. One is a coaxial line with a length of 15 cm

and of cylindrical shape. (See Fig. 2). The soil samples were placed in

between the inner and outer conductors. The other probe is a parallel

transmission line with a 20cm line length. (See Fig. 2). This probe was
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Figure 2. Probe Configurations (6)
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quicklyand physicallyimplantedby hand intoan opencontainerholdingthe

sample.

I manuallyaddedthe sameamountof soiland water,(to the bestof my

ability,usinga top loadingbalanceand a graduatedcylinder),to three

coaxiallines. I was convincedof the technique'sprecisionwhen I

obtainedalmostthe exactlysame shapedoutputfor all threeand arrivedat

the samewater contentvaluefor eachto the bestof the resolutionof the

oscilloscopeon the instrument.

I got expectedvalueswith the localsandysoil fromdry to saturated

water contents. With the WyomingBentonite,which is 90% montmorilloniteand

absorbswater nearlyfive timesits weight,therewas an appreciableamountof

signalloss to the pointthat therewas noneof the wave being reflectedback.

The outputresembledthat of a shortedcable. This is probablydue to the

clay'selectricalproperties.Since therewas no opencircuitriseat the

end of the trace,it was impossibleto locatepointB and determinethe water

content. I believethatnoneof the experimentersof thistechniquehaveever

useda samplewith greaterthan 80% clay content. A samplewith an extremely

largesalt content,whichmight be foundon Mars,.maygive the sameresults.

This problemcould be dealtwith by eitherusinga shorterlengthprobe,at

the sacrificeof resolution,or possiblyby increasingthe signalstrength.

Once, I frozea pureWyomingBentoniteand water samplewith the

parallelprobe insertedin it for 24 hoursat -10°C. An innercoreof the

sample,where the probewas inserted,was not frozen;however,the outputwas

verymuch likea typicaltrace.(SeeFig. 3) This allowedme to fix a

pointB, but I am not sureaboutthe accuracyof the measurement.As the

sampledefrosted,the end riseof the tracedegeneratedbackto the unfrozen

tracewhich I previouslydescribedfor the clay. When a sampleof local

sandysoil and waterwas frozenin a coaxiallineand thenallowedto defrost,
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the shape of the trace continuely changed relative to itself, but always

resembled a typical trace and a water content measurement was possible.

(See Fig. 4) The distance between points A and B increased as the amount

of unfrozen water increased. Patterson and Smith have shown the promise of

using the TDR technique for determiningthe unfrozen water content in frozen

soils. (6)

I will first mention many of the attractive advantages to this technique.

The commercially available Tektronix TDR is a rugged portable instrument

which without its panel cover, handle, and knobs has the approximate

dimensions of 12 cm in height, 26 cm in width, and 31 cm in length. Its

performance requirements state an operating temperature range from -15°C to

+55°C and a non-operating range from -62°C to +85°C with the batteries removed.

(3) It consumes little power, and the requirementsfor the probe are simple.

Once the probe is installed, the TDR technique gives immediate, in-situ, and

easily attainable measurements. It can be used for several or different

seasonal readings. The TDR gives an average value over the probe length with

a probable maximum error of _ 2½%in volumetric water content. (6) The

parallel transmission lines can be used with known discontinuities along

its length to give a vertical profile of water content versus depth. (2)

This technique has been used on different soil types, ranging from sandy loam

to clay, and has been found that it is not critically dependent on soil type,

bulk density, temperature, or solute content. Due to the TDR using a

frequency range of 1MHz to 1GHz, an increase in solute content will cause an

increase in signal attenuation but not an appreciable change in the measured

value. (9)

No one has found a significant temperature dependence, but not one

has studied extremely low temperature measurements. As the temperature gets

lower, will the dielectric constant of water change enough to require

recalibration of the water content_ Ka relationship? The soil type
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encounteredon an explorationmissionwill probablynot pose a problemunless

it deviatessignificantlyfrom the rangeof typicalterrestrialsoils,such

as havingan extremelyhighclay or salt content,whichmay causesignalloss.

Thereare somepossibleproblemsassociatedwith the installationof

the probe. The probe shouldbe implantedso as to causea minimaldisturbance

to the soil. If an air gap is presentbetweenthe transmissionlineand the

surroundingsoil,the measuredvaluefor the apparentdielectricconstant

will be lowerthanthe truedielectricconstant. The deviationbetween

the two increasesas the valuefor the constantincreases.(1) If a gap

betweenthe soil and the probe is filledwithwater,the watercontentwill

be overestimated.Though,the error is much lessthanfor an air-gap.(1)

Next,the deviationof the transmissionlinesfrombeingparallelshouldbe

smallcomparedto the signalwave lengthin the soil. (2) Anexternally

appliedvoltagegreaterthan 5V can damagethe samplinggate or tunneldiode

of a TektronixTDR. (3)

A definitedisadvantageand a major sourceof uncertaintyliesin

determiningthe pointsA and B of a TDR trace,for the reasonof the

individualityof each trace. It could posea difficulttaskto systematize

the locatingof the pointsin order for a machineto do. Otherwise,a

remotesensingdevicewould have to digitizethe shapeof each tracefor the

whole traceto be sent back.

The TDR techniqueseemsto be lesseffectivewith low or highwater

contentextremes. A measurementof volumetricwatercontentbelow 5%, which

may likelyoccuron a planetarymission,can easilyresultin a largeamount

of error for three reasons. First,the resolutionof the trace for such

smallvalueswill be poor. Next,the standarderrorof estimateis 1.3%

overthe completerangeof water contents.(10) The smallervalueswould
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have a greater percent of error. Plus, measurements for low water content

would be more sensitive to the differences in the soil dielectrics. Greater

precision and accuracy would require calibration for the particular soil

that is under investigation.

Several things would have to be studied and evaluated before applying

the TDRtechnique to a planetary mission. A material would have to be

selected for the transmission line conductors that would be physically

strong enough for installation and would minimize physical and thermal

disturbance to the soil. Determination of the optimum method of installation

is needed. The probe could be installed from a surface penetrator or soft

lander by using a spring or explosive with or without the aid of pilot holes.

The TDRtechnique may be particularly well suited for use with surface

penetrators, elongated missile-shaped instrument carriers. A TDRinstrument

could probably withstand the hard landing of a penetrator into a solid

planetary body. Once a penetrator has come to rest in the sub-surface, the

probe could be implanted into the regolith through two small holes in the

side of a penetrator. A length for the probe would have to be chosen. Lengths

from 6 cm to 200 cm have been used. (8 + 2) The shortness of a transmission

line is restricted by the system's resolution, and the length by the signal

attenuation and the ability to fix point B. Samples at very low temperatures

and with low water content must also be examined.

The Time Domain Refl_ctometry technique for determining volumetric

water content in a soil holds great promise as a non-destructive, terrestrial

field method. As for applying the technique to planetary exploration missions,

it still holds promise, but there is somequestion as to its effectiveness

under these conditions. Measurements at low temperatures and with low water

content will have to be studied, and it must be decided how points A and B

are to be determined.
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ASSESSING THE VOLCANIC PROBABILITY
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BRANCH OF ASTROGEOLOGIC STUDIES

JUNE-JULY 1981

It is known that volcanism has been a very important process on Mars. Large
volcanic constructs such as Olympus Mons, Arsia Mons and Elysium Mons have been

identified and studied by the planetary community. More difficult to identify are
smaller volcanoes that are not clearly associated with major volcanic provinces

such as Tharsis and Elysium. This paper provides a scheme to aid in assessing the
probability that landforms are volcanic in nature.

Eight types of known volcanic features and associations are described in table I.

Each is assigned a point value based on the degree to which it is thought to be

characteristic of volcanoes. Fewer points are alotted to features that may be
ambiguous in that non-volcanic processes such as erosion, tectonics and meteorite

impact could have produced similar features. The classic volcanic combination of

general volcanic shape, summit depression and lobate flanks recieves extra points

because they mutually enhance the probability of volcanic origin.

It is recognized that this point system is completely subjective and can

neither positively identify nor eliminate martian landforms as being volcanoes.
However it does provide a means for quantifying confidence levels in volcano

identification and for the comparison of these features. The table also provides
an easy method for referencing descriptive information.

Table 2. shows how some well known martian volcanoes were rated using this

system. The large shield volcanoes of the Tharsis Region have very high scores,

with Olympus Mons receiving the maximum possible score of 21 points and Arsia

Mons 19 points. Elysium Mons, a composite volcano with a single, circular summit

crater, accumulated 18 points. Tyrrhena Patera,an old, eroded volcano with
degraded flows has 12 points.

Using this system to evaluate possible volcanoew in other areas, I found
cratered cones, domes and shields which were assigned as few as 4 or 5 points.

More complex landforms recieved as many as 16 points. Features having low

point scores may or may not be volcanoes and alternate origins should be considered
before identifying them as such.

It is hoped that this point system will be useful in the evaluation of the

volcanic probability of martian landforms when studying and mapping the martian surface.
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Table I.

Landform Name: Location

Characteristic Description amt. pts. CommentsL

I l-Circular 2

FORM 2-Elongate 1
A. _iAP 3-Irregular
OUTLINE 1

im. CROSS l-Gentle slopes, low relief I

SECTION 2-Steep slopes, high relief I

3-Steep sides, flat top i

II
1 Circular 1

SUI_IT

DEPRESSION 2-Slot-shaped 2
3 Irregular, coalescing

3

III

LOBATE FLANKS Tongue-like extentions of material

around base of feature, lava flows
A. DEGRADED

FLOWS Eroded, fractured, cratered
1

B. FRESH Evidence of channels and tubes,
FLOWS buries other features

4

iv
COMBINATION OF Feature has general vo!canic form,

I,II,III summit crater and lobate flanks 3

V

RADIAL PATTERN Radial pattern of possible lava
ON FLANKS flows, tubes and channels 1

POSSIBLE Concentric fractures of grabens
VOLCANO-TECTONIC associated with the landform

FEATURES itself I

. o

Vll i

STRATAGRAPHIC Feature appears to be younger than

POSITION surrounding material and features I
i
I

VII I [

P_ELATION TO 1-Located on prominent fracture 2
REGIONAL STRESSES 2-1ocated on intersection of

two or more fractures 3 f

i-x i
RELATION TO Landform is in c!ose proximity to i

OTHER POSSIBLE or in a linear pattern with other i t
VOLCANOES similar features

i

ADDITIONAL TOTALS

CO_MENTS AND

MEASUREMENTS
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TablL_ndforme2-Name: see below Location:

Characteristic Description amt. A. R. c
I .l-Circular 2 ? ? ? ?
FORM 2-Elongate i
A. MAP 3-1rregular
OUTLINE 1

"lB.CROSS l-Gentle slopes, low relief 1 ] ] ]
SECTION 2-Steep slopes,,hi$h relief 1 ]

3-Steep sides, flat top 1

II
1 Circular 1 1 1SUMMIT

DEPRESSION 2-Slot-shaped 2
3-Irregular, coalescing

3 3 3
III

LOBATE FLANKS Tongue-like extentions of material
around base of feature, lava flows

A. DEGRADED

FLOWS Eroded,fractured,cratered
1 i i i i

B. FRESH Evidence of channels and tubes,
FLOWS buries other features

4 4 4 4
IV

COMBINATION OF Feature has general volcanic form,
l,II,lll summit crater and lobate flanks 3

3 3 3 3

RADIAL PATTERN Radial pattern of possible lava
ON FLANKS flows, tubes and channels 1 1 1 1 1

POSSIBLE Concentric fractures of grabens
VOLCANO-TECTONIC associated with the landform
FEATURES itself 1 1 1 1 1

Vll

STRATAGRAPHIC Feature appears to 5e younger than
POSITION surrounding material and features 1 I 1 i

VIII i

RELATION TO 1-Locatedon prominent fracture 2 Z
REGIONAL STRESSES 2-1ocated on intersectionof

two or more fractures 3 3 3
IX

RELATION TO Landform is in close proximity to

OTHER POSSIBLE or in a linear pattern with other 1 I 1 1 1VOLCANOES similar features

ADDITIONAL TOTALS
COMMENTS AND

A. Olympus MonsMEASUREMENTS
B. Arsia Mons

C. Elysium Mons

D. Tyrrhena Patera
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Aeolian processes on Earth and Mars have been studied _th wind tunnel

simulations. Geologic applications have been made to soils, sand and snow

_ove_lent,and with the aid of recent Viking images, investigations have

included aeolian transport of surface _aterial on Mars. The effects that

various roughness elements have on an aeolian process is Of _reat significance

and application to the study of material transport. Previous tests conducted

at the _,L_RSWITfacility dealt with a surface lacking non-erodible rough

surface elements. A floor with pebbles-lcm in diameter and spaced lcm apart

was used for this _udy. The object was to perform a preliminary investigation

of the effects of varying surface roughness on aerodynamic and aeolian processes.

A boundary layer survey was conducted over the rough surface. Profile8

were made with various sand bed heights. _e rough surface profiles did not

resemble that of a smooth surface but were still found to be turbulent. The

boundary la_er profiles were used to deterxr_nefriction velocity ratios,

V_/V_. This value _'asdetermined for various sand depths and was found to

increase as roughness increased. The straight log-height v.s. velocity plot

confirmed the assw_ption inferred from the profile that the boundary layer

was in fact turbulent. Next, _nd friction threshold speeds, V_t, were

determined for 350 }Izand 95 _ sand beds. The beds were superimposed over

the pebble surface and V_t values were determined for various heights of the

bed as it was allowed to erode. V_t was found to increase _lth increasing

surface roughness (Fi_. 1). Values for V_t where the roughness height was

zero, and V_t determined for the smooth I_D_RSWITsurface revealed similar

values. Finally, particle flux, q(gm/cm2/sec) as a function of height above

the pebble base, and total flux Q,(gm/cm/sec), _¢eredeter_Aned for both sand

sizes. The s_id beds were 75 percent of a full bed or 7.Srmuthick, q decreased
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are also included.
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with height, Q increased with free-stream velocity, V_. Interpolatin_ both

sets of data showed Q for the smooth surface to be slightly less than Q for

the rough. Tables 1 and 2 are compiled charts of boundary layer and flux

data.

The results obtained in the rough surface _nd tunnel _laybe applied to

geologic and possibly Martian analo_es. Understanding the effects of wind on

various sand surfaces enables prediction and control not only of sand movement,

but snow, soil and dust as well. Erosion rates, ripple for_mtion and migration

and other aeolian related processes are also better understood through tests

of this nature. Applications of this knowledge may be applied to the study of

such geologic areas as flat fa_lands, desert sands, snow fields and even the

rugged surface of l_ars.

Fundmtlentalto understanding the aeolian regime on the Fmrtian surface is

the knowledge of wind characteristics and parameters on a geologic surface.

Knowing the effects that surface roughness has on geologic aeolian parameters,

one may extrapolate the data to apply to the Martian surface. In conjunction

with theoretical considerations, actual simulations of _rtian conditions are

informative and aid in the understanding of the aeolian process which occur

on the surface of the planet. Therefore, wind tunnel experiments using the

rough surface at Martian atmospheric conditions, are also planned for the

future.
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TABLE I

BOU_DARYLAY_]_SURVET DATA

run V_(m/s) H,(mm) V_/V. Cf k roughness (rr_)sand size (_um)

6-11-81-A 8.49 221 .100 .020 4 lO ---
6-12-81-A 4.40 350 •0955 .018 " " ---
6-12-81-B 4.31 232 .100 .020 " " ---
6-15-81-A l0.19 240 .102 .021 " " ---
6-15-81-B ii.39 252 .098 .019 " " ---

6-16-81-A 7.70 180 .080 .013 1.3 1 350
6-17-81-B 9 •80 234 .071 .011 1.3 6 "

6-17-81-A 12.80 240 .073 .011 0 0 95
6-19-81-B 4.20 152 .080 .013 1.1 2.5 "
6-19-81~C 5.70 180 .084 .014 1.6 7•5 "
6-19-81-D 8.14 216 .090 .016 2.6 l0 "

TABLE II

BOUNDARY LAYEX SUR%r_"fDATA

run V.(m/S) Q(ym/cm/sec) roughness (mm) sand size (_m)

6-30-81-B 7.20 3.5x l0-4 2.5 350
6-30-81-C 8.34 7.5x l0-4 " "
6-30-81-D 8.78 8.6x l0-4 " "
7-2-81-D 8.96 3.6x l0-4 " "
7-7-81-B 9.26 8.4x l0-4 " "
7-2-81-A 9.32 1.3x 10-3 " "
7-7-81-A 9.49 3.2x 10-3 " "
7-1-81-A 9.55 1.3x l0-2 " "
7-1-81-B 9.60 5.6x 10-3 " "

6-23-81-A 5.50 a 2.0x l0-3 " 95
6-29-81-D 5.99 1.6x l0-3 " "
6-30-81-A 6.42 1.2x l0--2 " "
6-29-81-C 6.99 2.1x lO-2 " "
6-23-81-C 7.50 2.8x l0-2 " "
6-29-81-A 7.87 5.0x lO-2 " "
6-23-81-B 8.59 8.3x lO-2 " "
6-22-81-B 9.49 2.7x l0"l " "

4-81_ 9,0 a 0 0 350
4-81_ 5.5 A 0 0 95

A V" valves
Greeley unpublished data, 1981
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MORPHOLOGY OF VOLCANOES: Henry J. Schuver, NASA Planetary Geology Intern,

Advisor: Charles A. Wood, Johnson Space Center

Introduction

Direct knowledge of extraterrestrialvolcanoes is limited to photos of the
volcanoes'morphology. An understandingof the parameters that influence the
morphology of terrestrialvolcanoes will expand our ability to understand
extraterrestrialvolcanoes.

Compositionof Lava

There are many variables that influence the morphologyof terrestria!
volcanoes, however one parameterhas generally been accepted as the most
important. It has long been known that an increase in the percentage of silica
in a lava increases its viscosity. From this it has been assumed that highly
viscous, siliceous lavas build steep sided volcanoes, and low silica, less
viscous lavas build gently sloped volcanoes. From an analysis of 45, mostly
composite and some shield volcanoes, I have found no correlationbetween the
amount of silica and s!ope of the volcanoes (Fig. I). I have used the mean
silica value for chemical analysis of each volcano listed in the Catalogueof
Active Volcanoes. For the slope of the volcanoes I used height and flank width
measurements by Pike (1978), so slope values are of the average geometric slope.
It is easy to see why a simple correlationbetween silica abundance in lavas and
the slope of volcanoes does not hold true. The amount of silica is considered
an important influenceon morphology because silica effects a lava's viscosity.
However, there are other parameters that also influencea lava's viscosity. The
amount of volatiles and temperatureof a lava have an important influence on
viscosity and may override the influenceof silica on viscosity.

I have compared height, flank width, slope and volume of 45 composite
volcanoes to various compositionalparameters that influence lava viscosity such
as silica, Si0_, potassium alkali ratio _a20 + K20) average serial

_Na20 + _20_z ' K20, , ,Fe203 AI203
index SIO2_43 , and iron ratio, ( Fe----_'an indicatorof the amount of water

vapor contained in the lava). I found only weak correlationsbetween volcano
morphology and these chemical parameters.

Physical Processes

:I:believe physica! processes involved in cone building are more important
than chemical compositionsof the cones' lavas. Correlationbetween lava
compositions and volcano morphology is limited because chemical analyses can
only be made of surface lavas whereas the morphology of a volcano may be the
result of earlier buried lavas possibly of another composition. The strongest
argument against a simple relationshipbetween chemical content and volcano
morphology is the number of cone building processes that are not directly
related to the chemical content of lavas. Ash fall, ash flows, mud flows,

avalanche, flank eruptions,parasitic cones and caldera collapse all effect
volcano morphology. It has been suggested that the percentageof pyroclastics
that make up a cone effect its morphology. Volcanoes with a high percentageof
pyroclastic material are expected to have high slopes because pyroclasticsare
deposited near their repose angle of "30°• Some data support the theory that
the rate of effusion of lava from a vent determineshow far that lava will flow
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(Walker, 1973; Malin, I9SO). It has been inferred that the effusion rate

influences the morphology of the entire volcano. It is apparent that many
parameters influence the morphology of a volcano and no single parameter alone

controls morphology. A technique, called factor analysis, could assess the
individual parameters that influence morphology.

Difficulties in Investigating Volcanic Morphology

The biggest problems in studying volcanic morphology are the lack of data,
and ambiguity of data that are available. No data are available on the amounts

of pyroclastics in a cone to test the theory that pyroelastics increase the
slope of a cone. Several workers have suggested the lo:_erslopes of some
volcanoes consist almost wholly of lahar, avalanche and ash flow deposits
(Crumpler, 1978). Thus only the upper portion of the cone results directly from
deposition of lava and pyroclastic, but no data are available to document this.

For only a handful of eruptions has the rate of effusion of lava been

determined. It has also been suggested the effusion rate changes radically
during an eruption. For some eruptions the effusion rate reaches a maximum
shortly af%er the eruption begins and decreases rapidly to a !ower rate that

continues until the eruption ends (Scandone, 1979). Since a low effusion rate

produces short lava flows a long period of low effusion rate eruptions may cause
short compound lava flows to pile upon one another at the vent, forming a steep,
high angled cone. I{owever there are not enough data available to test this
theory.

Ambiguity in determining volcano morphology centers on the definition of
quantities being measured. The flank width of a volcano is a very important
measurement of a volcano's morphology. The flank width determines the elevation

of the base of the volcano and thus determines the height, average geometric
slope and the volume of the volcano. There is no obvious or genetic definition
of the edge of a volcano. Pike (1978) defines flank width as the distance from

"rim crest to edge of edifice." Measurements of flank width are made from

topographic maps and defined by a break in slope between volcano topography and
surrounding terrain. Definition of the edge of a volcanic edifice is confused
by lava flows that extend beyond the nominal radius of the volcano. One volcano
(Kefildyngja) in Iceland has a radius of ~lO km but has a recent lava flow that
is 85 km long! Perhaps the edge of a volcano should be considered the maximum

radius where all radiating lava flows are in contact with their neighbors such
that they all contribute to the volume of a cone. However, such a measurement
would be nearly impossible to make on all but a few well mapped volcanoes.

Lava Flow Lengths

Data on the primary factors that influence volcano morphology are not

available. Data on the lengths of lava flows are available and the length of
lava flows strongly reflect the effusion rate (Walker, 1973). However, the

length of lava flows may also be related to the volume of lava produced during
the eruption, the temperature of the erupted lava, the composition and the

volatile content of the lava. I averaged the lengths of historic lava flows for
each of 17 composite and shield volcanoes and plotted the average length of lava

flows against the geometric slope of the volcanoes (Fig. 2). I found a good
correlation between the length of lava flows and the slope of volcanoes,

considering that a number of volcanic processas other than lava flows possibly
contribute to the morphology of a volcano. None-the-less, the data in Figure 2
suggest that the effusion rate of a volcano, as indicated by lengths of lava
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flows, influences ultimate volcano shape to a remarkable degree.

Discussion

Because many of the factors that influence volcano morphology have not been
measured in the past and are difficult to determine I see the major developments

in understanding volcanic morphology resulting from experimental modeling of
volcanoes. In experimental simulation individual parameters can be isolated and
varied to observe their influence on morphology.
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Two MethodsforDeterminingVolumesfor Explosionand ImpactCraters

AlejoN. Verdes
NASA Intern,U.S.GeologicalSurvey

2255NorthGeminiDrive,Flagstaff,Arizona 86001

INTRODUCTION.Dimensionaldatafor impactand explosioncratersis important

in a numberof studiesof crateringmechanics.The researchdescribedin this

paperdealswiththe developmentand testingof two techniquesdesignedto

determineapparentand rim crestvolumesof impactand explosioncraterswith

a highlevelof accuracy(1). One exampleof the use of thisdata is the

calculationsof crateringefficiency,i.e.,the apparentvolumedividedby the

totalenergyand normalizedto volumeperton of TNT-energy.Two techniques

wereemployedto collectthe volumedata. One methodinvolvesa measurement

of diametersacrossthe craterprofile,calculationof thin-diskvolumes,and

summationof the totalthin-diskvolumeincrementsobtainedfromthe crater

bottomto the originalgroundlevel. The secondmethodwas to digitizethe

detailedtopographicmap of the craterand utilizea sequenceof computer

programsto calculatethe cratervolumes. The pointof usingthesetwo

methodsis to comparethe accuracyof the two techniques,theirrelativecost,

and the timeto completethe volumecalculationswith eachtechnique.

BACKGROUND.In 1973,the DefenseNuclearAgencyconducteda seriesof

explosivecrateringtrialsat YuccaFlat,NevadacalledPre-MineThrowIV.

Two of the trialswere conductedusinga 7.1-tonand a lO0-tonTNT sphere.

Bothexplosionsyieldedlargebowl-shapedcraters. The lO0-tonexplosion

produceda craterwith a 'diameterof 25.0m measuredat the rimcrest,and the

7.1-tonexplosionproduceda craterwith a diameterof 17.2m measuredat the

rim crest. The chargeswere detonatedlyingtangenton the surfaceabove

flat-lyingdry playasediments. The cratershad similarmorphologicas well

as structuralsimilarities(1). With respectto morphology,both craters
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sharedthe followingsimilarities:a) bowl-shapes,b) smallflatfloors,

c) irregularrim crests,d) ejectablankets,and e) talus-coveredlower

walls. Bothcraterssharedthe followingstructuralsimilarities:a) breccia

lens,b) disruptedzonesbelowthe breccia,c) upliftedrims,d) overturned

layersin the ejecta,and e) faulting,fracturedand upliftedrim strata.

PRIMARYMETHOD. Takingthe algebraicexpressionV=_R2H,the volumefor a

cylindricalshapemay be calculated.A cratermay be viewedas an inverted,

truncated,conicalprojection.The diameterof the craterfloor (Dcf)and the

diameterof the craterrim crest (Drc)are shownin Figure1. In this

technique,volumesare summedfromthin-disksfromthe floorof the craterto

the rim crestwith eachdiskprojectingslightlybeyondthe craterwalls (see

Fig. 1). The disksintersectthe craterwallsat eachDn measurement

(Fig.1). Two righttrianglesappearsharingone point(in Fig.1 at x or

y). The triangleoutsidethe slopewall is omittedsinceit is approximately

equalto the trianglewithinthe wall. The smallerrorin volumedue to the

R2 effectfor the baseof eachdisktriangleof volumeis reducedby keeping

the H intervalas smallas is practical.In the specificcaseof Pre-Mine

ThrowIV, eachdiskhas an H valueof 0.1 meter. The diameterusedin each

disk is measuredhalfwaybetweenthe disktop and bottom(Figs.1, 2).

Referringto Fig.1, lineab is consideredthe disktop,while linecd is the

diskbottom. D is definedas a diameter,whilen is one specificdiameter

beingmeasured. The horizontaldistancebetweenpointx and pointy is the

numericalvalueusedfor a Dn measurement.Eachdiskhas a constantH value,

and fromthe Dn value,R2 is obtained.Usingthe formulaV=_R2H,a volumeis

computedfor thatspecificdisk. The summationof allthe disksconstitutes

the total volumeof the crater. Figure2 showsthe stackof disksusedin

thistechnique.
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DIGITIZEDMETHOD. The secondmethodinvolvesthe use of an Electrak

digitizer. Thissytemconsistsof a digitizingboardand supporthardware,

which recordsx and y coordinateswith a Z valuefor everycontourlineof the

topographicmap insidethe crater. Thishardwareallowsthe systemmatic

productionof a digitizedassemblageof positionaldatafor eachcontour

line. Usingthe appropriatesoftware,a plotterwas usedto aid in the

necessaryeditingof informationfromthe digitizedcontourmap. In this case

a Calcompplotterwas usedto editerrorsto producethe correctedcopyshown

in Figure3. Frownthe editedtape,furthercorrectionsweremade using

displayhardware(DeAnzasystem)whichassignscolorvaluesto specificZ

values. This systemalsoallowsvisualdepthperceptionof the digitizeddata

sheets. This isthe "fine-tune"stage,whereany remainingerrorsare

eliminated,thusallowingthe finalsoftwareprogramsto be processedfor the

volumecalculcations.In this phaseof the computerdatareduction,the

computerassignsthe finalZ valuesto the existingcontourlines. This is

accomplishedby averagingthe distancesbetweentwo existingZ valuesand

addinga topographicline,therebynumericallyincreasingthe numberof

contourlinesavailablefor the volumecalculations.The finalproductmay

onceagainbe displayedfor corrections.A shadingprogramis usedto contour

relieffor viewingpurposes. Thisprog;_amincorporatesdifferentsun angles

and createsa "shading"effect. A histogramof the interpellatedfile is also

generated,givinga pixelcountof allthe Z values. Manualcalculationsof

volumesare then compiledusingthe map scale.

RESULTS. Forthe Pre-MineThrowIV lO0-toncrater,fourdifferentprofiles

weremeasuredand the 7.1-toncraterhad two profilesmeasured. The results

of the volumecalculationsfor bothcratersare listedbelow.

570



Vap = volumeapparent,fromcraterfloorto the originalground

level.

Vag = volumeaboveoriginalgroundlevelto rim crest.

Vrc = total volumefromcraterfloorto rim crest.

7.1-TONCRATERPROFILES

Volume 090°E,270°W 360°N,180°S AVERAGEVOLUMES

Vap 21.37m3 22.72m3 22.15m3

Vag 9.98m3 12.75m3 11.37m3

Vrc 31.35m3 35.47m3 33.41m3

IO0-TON CRATER PROFILES

Volume 045°NE 360°N 135°SE 090°E AVERAGE VOLUMES

Vap 522.56m3 555.85m3 518.89m3 522.88m3 530.05m3

Vag 476.08m3 515.96m3 460.69m3 502.04m3 488.69m3

Vrc 998.64m3 1071.81m3 979.58m3 1024.92m3 1018.74m3

The resultsof the firstdigitizedvolumefor the 100-toncratergavethe

followingresultsfor the crateras listedbelow:

Vap = 555.39m3

Vag = 643.37m3

Vrc = 1198"76m3

CONCLUSIONS.We are stillin the processof reviewing the resultsof the two

techniquesusedto determinethe cratervolumes. The digitizingtechniqueis

expectedto givethe mostaccurateresults,howeverthe datareductionof the
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seconddigitizeddatabaseof the lO0-toncrateris notyet reduced.The best

comparisonbetweenthe two techniquesis to comparethe apparentvolumesthat

are calculatedfromthe craterfloorto the originalgroundlevel,i.e,the

Vap. Thisavoidscomparisonsof volumedatatakenfromthe very irregular

topographyof the rim crest. The Vap valuesare certainlythe most important

volumedatafor examiningcrateringprocesses,suchas the determinationof

crateringenergyefficiencies,and the datareducedto dateclearlyshowsthat

bothtechniquesgivecomparableVap values. The apparentvolumesdifferonly

by about5% and indicatebothtechniquesgivecomparableresultfor Vap.

Afterthe seconddigitizedmap valuesare completed,a muchbetter

determinationcan be maderegardingthe accuracy,cost,and time for each

technique.

REFERENCES. (1)Roddy,DavidJ. (1976)Large-scaleimpactand explosion

craters: Comparisonsof morphologicaland structuralanalogs,Impactand

ExplosionCraterinq,p. 185-246.
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EJECTA DISTRIBUTION AROUND A SMALL LUNAR CRATER

Stephen 3. Wetzel
NASA PGUR Intern, Brown University

July 1981

The ejecta deposit surrounding a one-half kilometer lunar crater was

examined with the goal of finding a pattern to its distribution. The

unnamed crater selected for the study was taken from Lunar Orbiter III,

frame 153 H2. A 19.125 x 18.750 inch enlargement (covering an area of

2.250 x 2.206 kilometers) was digitized. Conversion of the raw data into

a coordinate system based upon the subspacecraft point was accomplished by

an angular translation, photographic length contraction correction and

photographic scaling. Based upon this corrected data, many forms of final

data expression were possible. Figure I explains the three phases of data

reduction.

Fiqure I: Three phases of data reduction

Raw Data Semi-reduced Data Data For Analysis
Crater data: Crater data: Crater data:

5 sets of 3 rim points Average center Average center
Block data: Block data: Block data:
Block number Block number
Number of axes Number of axes Quality factor
Quality factor Quality factor Number of axes
2 endpoints per axis 2 endpoints per axis Magnitude of length axis

2 framelet strip pnints All data in lunar-based Distance from crater center
for photo orientation coordinates to midpoint of length axis

All data in digitizing Magnitude of width axis
board coordinatec Distance from crater center

to midpoint of width axis
Bearing from north
Ratio: length/width

Once the data existed in the final reduced form, the blocks were grouped

according to size. The size ranges were based upon a 5log2 L scale, where

L is the block length in meters. In this manner, small size ranges were

established in the lower block sizes where many blocks occurred, and larger

bin sizes were used for the larger blocks.
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total size -frequency distribution resulted in a very clean normal

where block sizes 1.74 -5.27 clearly dominated. More specif-

size bins from 2.64 - 3.48 meters together comprised one-third of

population, as is displayed in Table 1.

Table I: Size-Frequency Data for Total Population

Percentage of

Bin Number Size Ranqes Size Variation Total Number of Blocks
I up to 1.00m 1.48

2 1.00- 1.15 .15 0.67

3 1.15- 1.32 .17 0.7g

4 1.32- 1.52 .20 1.76

5 1.52- 1.74 .22 3.01

6 1.74- 2.00 .26 4.55

7 2.00- 2.30 .30 9.47

8 2.30- 2.64 .34 12.36

g 2.64- 3.03 .3g 16.8g

10 3.03- 3.48 .45 16.06

11 3.48- 4.00 .52 13.11

12 4.00- 4.5g .5g 8.54

13 4.59- 5.28 .69 4.39

14 5.28- 6.06 .78 2.61

15 6.06- 6.g6 .go 1.31

16 6.96- 8.00 1.04 1.09

17 R.O0- 9.19 1.19 0.5g

18 9.19-10.56 1.37 0.44

19 10.56-12.13 1.57 0.32

20 12.13-13.93 1.80 0.16

21 13.93-16.00 2.07 0.08

22 16.00-18.38 2.38 0.12

23 18.38-21.11 2.73 0.04

24 21.11-24.25 3.14 0.02

25 24.25-27.86 3.61 0.02

26 27.86-32.00 4.14 0.06

27 32.00- 0.04

examining size-frequency plots for individual 50 meter range groupings

200-1700 meters from the crater center, a secondary peak appeared

sizes just less than the dominant 2.64-3.48 meter pe_k in ranges

meters, but with increasing range this secondary peak disappeared

just greater than 450 meters reappeared as a minor peak at

larger than 3.48 meters.

range-frequency plot resulted in a concentration of blocks within

(i.O - 2.2 R) range followed by a gradual decrease as range increased.
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Incremental plots, comparing c

the number of blocks in a size _ _ _.5_
_._
N_

_ang_ divided by the change in ._

block length within the size range c
._

versus the size range itself, _ _ _.5
OC

became useful. In the incremental o

plot of the total population _ w
_N

(shown on the right), a smooth o _ 1.5

curve resulted with the exception _ 1

of a slope change at block size _

3.6 meters, suggesting a resolution 0.5

drop-off at this point. The incre- o
O,

0
mental plots of individual 50

meter range groups showed a 0.5,

decrease of larger blocks with

increasing range. The incremental

plot of the 600-650 meter range -Io_ .....i i _ l ;
0._ 0 0.5 1 1.5 2

group indicaLed a lack of both large

and small block sizes. It consisted Log10 Length

of blocks approximately I - 8

meters. Fiqure 2: Incremental Plot

A slope b value (see Hartmann, for Total Block Population

1969), although having a correlation

coefficient of 0.705, was calculated

to be 0.337.

Admitedly, this data has a somewhat tentative nature since only one-half

of the area around the crater was examined. Other problems included the

fact that the crater latitude, longitude, and diameter were interpolated

from the Lunar Orbiter Postmission Photo Support Data. The Lunar Orbiter

photos_ although Of good quality, lost precision in their mosaicking process.

It is estimated that meters to a few tens of meters of the lunar surface have

been lost between som_ of the framelets.

The true ramifications of the study will not become evident until this

and a few other craters have been completed. It is interesting to note the

normal distribution of the total block frequency, indicating a single rock

formation rather than several of varying strengths and fracturing tendencies
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was impacted. The calculated b value of 0.337 indicates a very simple level

of fracturing (Hartmann, 1969).

As work on the project continues at Brown University, many more

far-reaching conclusions may be revealed. The possibilities are numerous.

Perhaps substrate thickness and strength will be more clearly defined. Depth

of penetration, impact velocity, and volume of ejected blocks may become

known. Other projectile characteristics and perhaps an absolute age for the

crater could conceivably be determined.
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