General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA $\cdot 9 \cdot-107757$

Copy No. \qquad

COMPUTER MODELING OF A WIDESWATH SAR CONCEPT EMPLOYING MULTIPLE ANTENNA BEAM FORMATION TECHNIQUES

Final Technical Report under: Contract NAS9-16437

James M. Estes

APPLIED RESEARCH LABORATOHIES

THE UNIVERSITY OF TEXAS AT AUSTIN POST OFFICE BOX 8029, AUSTIN, TEXAS 78712-8029

Prepared for:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TX 77058


```
(NASA-CR-167757) CCMFUTER MCEEIING CF A
                                    N63-12305
wIDESWATE SAR CCNCEFT EMPLCYING NUITIFLE
ANTENNA BEAM FORMATICN TECHAIGOES Final
Report, 28 Sep. 1981 - 27 Jun. 1ç& (lexas
Univ.) }54 F HC AO4/MF AO1

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

17. DI.TRIBUTION STATEMENT (of the abstract entored in Block 20 , 11 difforent from Report)
18. SUPPLEMENTARYNOTES

19 KEY WOROS (Continue on rovorso alde Il nocossary and identify by block number)
synthetic aperture radar
oríital SAR
simulation
wideswath SAR

20 ABSTRACT (Conllnue on reverao sido ll necossary and idonllfy by block number)
A technique for wideswath synthetic aperture radar coverage, develoned at the Texas A\&M's Remote Sensing Center, was implemented into the ARL:UT OSS (orbital sar simulation) computer programs. This report describes the OSS modifications, and the implementation and simulation of the concept. The wideswath technique uses formed multiple antenna beams.

\section*{PRECEDING PAGE BLANK NOT FILMED}

\section*{TABLE OF CONTENTS}
Page
LIST OF FIGURES ..... \(v\)
I. INTRODUCTION ..... 1
II. MULTIBEAM CONCEPT ..... 3
III. IMPLEMENTATION OF A MULTIBEAM COMPUTER SIMULATION ..... 7
A. Stracegy for the Verification of the Multibeam Concept ..... 7
B. Limitations of the Orbital SAR Simulation's Adaptability to the Multibeam Technique ..... 8
C. Procedure for Execution the Multibeam Simulation ..... 9
IV. COMPUTER PROGRAMS ..... 11
A. Overview of Program Additions for the OSS ..... 11
B. Program MECHO ..... 12
C. Program MBEAM ..... 13
D. Data Exchange Programs ..... 14
V. MULTIBEAM SIMULATION RESULTS ..... 15
A. First Model ..... 15
B. Second Model ..... 22
VI. CONCLUSIONS ..... 27
APPENDIX A - LISTING Of PROGRAM MECHO ..... 29
APPENDIX B - LISTING OF PROGRAM MBEAM ..... 41

\section*{PRECEDING PAGE BLANK NOT FILMED}

\section*{LIST OF FIGURES}
Figure Page
1 The Geometry of the Multiple Beam SAR ..... 4
2 Multibeam Formation Geometry ..... 5
3 One-Way Antenna Beam Patterns of an Antenna Element ..... 16
4 SARCON Data - Multibeam Model 1 ..... 18
5 Terrain Plot of the Ambiguity Loca+ions for the Multibeam Model ..... 19
6 Terrain Model for the First Multibeam Simulation ..... 20
7 Images from the First Multibeam Simulation ..... 21
8 Terrain Model for the Second Multibeam Simulation ..... 23
9 SARCON Data - Multibeam Model 2 ..... 24
10 Images from the Second Multibeam Simulation ..... 25

\section*{I. INTRODUCTION}

Under NASA Contracts NAS9-15401 and NAS9-15217, Subtask 1, Applied Research Laboratories, The University of Texas at Austin (ARL:UT), developed a computer simulation of an orbiting synthetic aperture radar (SAR). The simulation is a computer model of a terrain to be imaged, an antenna pattern to be used in the imaging, and the complete specification of a satellite orbit along with radar systen parameters (e.g., range pulse compression codes and length, radar orientation with respect to a defined planet, SAR image patch centers and offsets, pulse repetition frequency (PRF), etc). The simulation uses these inputs and "flies" the terrain model placed on a planet (of user specified mass, size, and shape). Synthetic in-phase/quadrature (I/Q) video data are generated, just as in a real system. These data are then processed through a SAR processor and an image of the terrain model is created for analysis. The set of computer programs written and documented \({ }^{1}\) under the abovementioned contracts ale known collectively as the orbital SAR simulation (OSS). The OSS provides a powerful tool for analysis of proposed orbital SAR concepts as well as parametric SAR studies, etc.

This report under Contract NAS9-16437 describes the effort undertaken by ARL:UT to verify a concept for an orbital SAR. The concept was developed at the Remote Sensing Center, Texas A\&M University (TAMU/RSC), and makes use of simultaneously formed antenna beams along the surface of a cone intersected by the ground plane. The technique, known as multibeam formation, has been documented. \({ }^{2}\) The OSS was adapted to incorporate the basic ideas of this technique; then the model was executed to verify the feasibility of the concept.

II. MULTIBEAM CONCEPT

The multibeam technique allows wideswath SAR image coverage at a constant angle of incidence (but not aspect). By properly combining the phased and weighted outputs of multiple receiving antenna elements in an array antenna, multiple simultaneous beams may be created; see Fig. 1. \({ }^{3}\) These beams are formed along a cone of half-angle \(\theta_{0}\). One of the antenna array elements acts as a transmitter which transmits a redl beam of angle \(\psi\) in the image plare and has a narrow teamwidth in tise elevation plane \(\beta_{e}\). In addition to the wideswath coverage, the narrow elevation beamwidth permits the use of a high PRF (due to the short unambiguous slant range interval), thus reducing transmitter peak power and providing reduced ambiguity levels in the Doppler dimension because of the increased Doppler sampling rate, i.e., the PRF.

The multiple beams are created by combining the outputs of the receiving antennas with proper phase shifts applied to each element. Referring to Fig. 2, \({ }^{4}\) the phase shift \(a_{j}\) between each element required to point the ith beam in the \(\theta_{i}\) direction is
\[
\alpha_{i}=\frac{2 \pi d_{h} \sin \theta_{0} \sin \left(\phi_{i}-\phi_{0}\right)}{\lambda}
\]
where \(d_{h}\) is the spacing between the antenna elements and \(\lambda\) is the transmitted wavelength. \({ }^{5}\) Thus the basic operation required to generate the ith beam is to implement the following sum over the \(N\) antenna receiving elements


FIGURE 1
THE GEOMETRY OF THE MULTIPLE BEAM SAR


FIGURE 2
MULTIBEAM FORMATION GEOMETRY
\[
E_{i}=\sum_{n=0}^{N-1} E_{n} e^{-j n \alpha_{i}}
\]
where \(E_{n}\) is the sampled output of the signal of the nth receiving element. \({ }^{6}\) Finally, the first-null beamwidth of the formed beam is 7
\[
\begin{aligned}
\beta_{h}(1 \operatorname{stn} \text { null }) & =\arcsin \left[\sin \left(\phi_{i}-\phi_{0}\right)+\frac{\lambda}{N d_{h} \sin \theta_{0}}\right] \\
& -\arcsin \left[\sin \left(\phi_{i}-\phi_{0}\right)-\frac{\lambda}{N d_{h} \sin \theta_{0}}\right]
\end{aligned}
\]

\section*{UNGMPS RKín in
OF POOR QUALITY}

\section*{III. IMPLEMENTATION OF A MULTIBEAM COMPUTER SIMULATION}

\section*{A. Strategy for the Verification of the Multibeam Concept}

Due to limitations in the flexibility of the OSS and limited time and computer resources, a full simulation of the multibeam concept utilizing the outputs of all the formed beams for full wideswath coverage was impractical. The approach taken was to create a squint mode model with specified parameters (such as the antenna 3 dB beamwidth) which correspond to hose of one beam formed from a multibeam model. In this way the maximum compatability with the current OSS configuration was achieved.

The OSS calculates the PRF and some of the other parameters based on the specifications of one of the multibeams to be formed. When the simulation is executed, the phase centers of the antenna elements making up the antenna array for multibeam processing are specified. Synthetic \(I / Q\) video is created from each receiving element; one of the elements is also used to transmit a real beam antenna pattern with the beamwidth necessary to encompass all the possible formed beams. Since the OSS-multibeam model is specified with an antenna beamwidth less than that used when the I/Q data are formed, processing of the I/Q data from any one of the elements (without multibeam formation) should produce an image containing ambiguities; these ambiguities can be suppressed by processing the \(I / Q\) data resulting from the multibeam formation between all the antenna elements. It is possible to process the I/Q data from one antenna element and from one of the formed beams to demonstrate the amount of ambiguity suppression.

To minimize the amount of computer time necessary to execute the multibeam simulation, an OSS feature is used to locate the points in a
terrain model (given the planet, orbit, radar, and synthetic array formation specifications) which will map ambiguously into the patch center of the created image if not suppressed by the proper antenna pattern. \({ }^{8}\) Placing scatterers around these points makes full use of the point scatterers' terrain positions and minimizes the number of scatterers needed in a terrain model to demonstrate suppression by the multibeam technique. The computer time required to execute a simulation is proportional to the number of scatterers in the terrain model.

While the approach taken does not fully test the multibeam concept as it would be implemented in a real system, it does demonstrate some of the advantages and disadvantages associated with the radar, orbit, and antenna pattern specifications for multibeam formation. Aside from the use of a single beam insten of 011 the possible beams, the greatest departure of the multibeam simulation fron a real implementation is in the signal processing and image formation process. The OSS processes the \(I / Q\) data into an imaged patch perpendicular to the line of sight (LOS) of the antenna boresight (or formed beam), thus not taking full advantage of the simplicities of the multibeam geometry; however, this does not detract from the verification of the multibeam formation technique.
B. Limitations of the Orbital SAR Simulation's Adaptability to the Multibeam Technique

The current implementation of the OSS terrain modeling and image formation procedures place some severe restrictions on possible multibeam implementations. An \(0 S S\) terrain model is created by specifying two-dimensional coordinate positions at which point scatterers are specified along with a relative scattering intensity. The coordinate system is defined such that \((\emptyset, \emptyset)\) is the center of the terrain model and it will be the patch center of the imaged area. This presents no problem for creating \(I / Q\) data for the multibeam simulation; however, it makes it difficult to process images from beams not formed about the patch center. For this reason, we concentrated of forming
and imaging only one arbitrary beam, whose coordinates are chosen prior to the start of OSS execution. Simultaneous imaging of more than one beam would require major changes to the signal processing routines and would add little to the demonstration of the multibeam technique, i.e., the problem of beam formation and imaging of each beam is separated from the task of combining all the beam's images into one wideswath image.

Program ECHO is the OSS routine which computes the slant ranges and echo strencth levels from the point scatterers. The distance to each scatterer at each orbit position at which a pulse is transmitted must be determined along with the angle to the scatterer from the antenna boresight. Input to ECHO consists of the terrain model, antenna model, and SARCON data created by the controller program, SARTREK. ECHO places the terrain model on the planet; currently this is done by placing the terrain origin center \((\varnothing, \varnothing)\) at a user selected planet latitude and computing the longitude at which the antenna boresight will intersect the selected latitude. \({ }^{9}\) The terrain plane is rotated so that its \(x\) axis is perpendicular to the LOS from the radar at some user specified squint and nadir angles. The plane is then radially projected onto the planet's surface. A: he radar "flies" the array the distance to the patch center at eai transmitted pulse is recorded and the received echo is automatically range gated such that the center sample of the echo always contains the patch center, thus eliminating the need for range walk corrections. The slant range data are used later in the focus operation. To process more than one beam per multibeam simulation run would thus require revision of this procedure and changes to the focus routines. It should be pointed ouc that all the multiple beams from one model could be generated by repeated runs with changing patch center locations. Again, these restrictions do not detract from the demonstration of the multibeam technique.

\section*{C. Procedure for Executio: of the Multibear Simulation}

The procedure for execution of a multibeam simulation is similar to that used for execution of the general OSS. OSS programs TERAIN,

ANTENA, and SARTREK are run to set up the terrain and antenna models, and to specify the general theoretical parameters for a simulation. A program developed for the multibeam simulation, MECHO, replaces the OSS program ECHO. The output file of slant range/echo strength data generated by MECHO is then reorganized into several files, each one identical to the output file that program ECHO creates. There is one echo strength data file for each antenna element in the multibeam antenna array. These files are then processed one at a time into files of synthetic video I/Q samples by OSS program SAMPLE. If range pulse compression processing is selected, then OSS program COMPRES is executed next on each of the I/Q video data files. Program MBEAM, the beamforming processor, is executed next; MBEAM combines the \(I / Q\) data files to form a multibeam at scme specified squint angle. Program MBEAM creates a file of \(I / Q\) data which is identical in format to the files produced by OSS program SAMPLE. The I/Q video data file for the formed beam is then processed through the remainder of the OSS programs: FOCIJ - ILTER, and POST. The output of program PNST is sent to the ARL:i nigh resolution image display system for analysis and, optionally, to be photographed.

\section*{IV. COMPUTER PROGRAMS}

\section*{A. Overview of Program Additions for the OSS}

The OSS program ECHO has been modified (into rogram MECHO) to calculate and output the slant range/echo strength data for all the antenna elewents in the real antenna array. The multibeam simulation could have been constructed by using one set of SARCON data (output from the controller program SARTREK) and running program ECHO one time for each antenna element specifying the proper phase center for that. element (i.e.; specifying the position of the element in the real antenna array in orbiter coordinates). niowever, for a modest size terrain model, ECHO is the most expensive program in the simulation (in terms of computer time), and executing it separately for each antenna element would be very costly. Program MECHO makes use of the redundant coursinate transformations which comprise the greatest expense in the execution of program ECHO.

The output file of MECHO is reorganized into files which are processed by the program SAMPLE (and COMPRES if required) into I/Q video data. Program MBEAM was written to perform the multibeam formation. MBEAM uses the squint and nadir angles stored in the SARCON data recorded on the I/Q video data files. The squint and nadir angles are in the direction of image formation used by the OSS, so MBEAM forms the multibeam in the direction specified by these angles.

Routines were also developed to convert the I/Q floating point data files to files of \(I / Q\) data which contain scaled integer values of arbitrary bit precision. A program is available to transfer 32-bit I/Q intege data to computer compatible tape for transfer to other computers. These routines were used to transport data to TAMU/RSC for beam formation and image processing.

\section*{B. Program MECHO}

A listing of program MECHO is available in Appendix A. It is identical to the OSS program ECHO with the following additions. A file, ANTPOS, has been added for additional input to define the phase center positions of the antenna elements. The positions are defined in the body axis coordinate system of the orbiter. \({ }^{10}\) The file is a standard text file and has the structure listed below.

Line No. Description

1 Numbei of elements in the antenna
\(2 \times\) position of element \(1, Y\) position of element 1 , \(Z\) position of element 1
\(3 \times\) position of element 2, Y position of element 2, \(z\) position of element 2
\(N+1 \quad X\) position of element \(N, Y\) position of element \(N\), \(Z\) position of element \(N\)

In ! oogram ECHO the variables PHCPBX, PHCPBY, and PHCPBZ contain the \(x, y\), and \(z\) phase center coordinates, and variables \(X, Y\), and \(Z\) contain the phase center coordinates transformed into the Greenwich TOD (true-of-date) coordinate system. In program MECHO, these variables have been made into arrays which contain the element coordinates. These arrays are currently dimensioned at 16 so that an antenna with up to 16 elements may be specified.

In the ECHO programs, all the scatterers are placed on the planet and then transformed into the Greenwich TOD system. After the positions of the orbiter at the pulse transmission locations are computed and transformed into the Greenwich TOD system, the orbiter.to-scatterer distances and echo strength levels are computed. In MECHO, the array

SREL, which stores the computed slant ranges and echo levels, was dimensioned to accommodate all the element positions, whereas this dimension in ECHO was for a single element.

MECHO outputs data sequentially first by pulse, then by element, so that all the data for each element at one pulse position is output, and then all the data for each element at the next pulse position is output, etc. The output file must then be reorganized by the antenna element so that each element's echo data can be input to the next routine, OSS program SAMPLE. This is accomplished by program MEREORG, which reorders the MECHO output file into ECHO-compatible data files, one file for each elemrnt.

\section*{C. Program MBEAM}

A listing of program MBEAM is included in Appendix B. Program MBEAM uses as input the video \(I / Q\) data files generated for the elements of the array antenna along with some interactive input and ihen produces an I/Q data file for one of the possible multibeams. The interactive input required is specification of the squint angle of the array antenna \(\phi_{0}\) and the inter-element spacing of the antenra in meters.

The program reads the SARCON data record from the first \(I / Q\) data file, then the SARCON records on the rest of the I/Q data files are skipped positioning the files at the start of the first video data records. The \(\operatorname{inN} C O N\) record is copied to the \(I / Q\) data output file. Using the squint angle, nadir angle, and radar wavelength specified in the SARCON data along with entered antenna array squint and element spacing, MBEAM calculates the phase shift to be applied to the video I/Q data from each element of the antenna array according to the equation given in Section II. One record is read from each I/Q data input file; the phase shift for each \(I / Q\) data record is applied to every \(I / Q\) data point in the record. Next, the corresponding I/Q data points from each record are summed and the resulting data record, the \(I / Q\) data of a formed multibeam, is written to the video I/Q data output file. This process is repeated for each set of I/Q data input records.

\section*{D. Data Exchange Programs}

Programs were written to allow interchange of video I/Q data with TAMU/RSC. ARL:UT and TAMU/RSC jointly agreed on a format for exchange. Since the ARL:UT computer, a Control Data Corporation CYBER, and the TAMU/RSC computer, a Digital Equipment Corporation VAX, do not have the same internal number representation, it was decided that exchange of integer data would be the easiest approach. The programs first calculate statistics on the I/Q data generated by OSS program SAMPLE; these statistics are used to appropriately scale the \(I / Q\) data, and then they are converted to 32-bit integer format.

After conversion from the one's complement format (used by the CYBER) to the two's complement format (used by the VAX) the I/Q data are output. One record is output for each received pulse. Each record contains the \(I / Q\) data from all the antenna elements, the data for element 1 followed by element 2, etc. Each element's data consist of 256 I/Q samples; if less than 256 samples per element per puise were synthesized, then each element's data are padded with zeroes to make up the 256 samples.

\section*{v. MULTIBEAM SIMULATION RESULTS}

\section*{A. First Model}

The model parameters were jointly specified by ARL:UT and TAMU/RSC with TAMU/RSC supplying the antenna pattern used for the transmitting and receiving elements and the multibeam locations in the ground plane. The rest of the model's parameters closely correspond to the SEASAT-A based parameters used in the test model documented in Ref. 1; thus the non-multibeam simulation's results described are of some use in interpreting the results of the multibeam simulation.

Figure 3 contains the antenna beam patterns used by the transmitting element and the receiving elements of the antenna array. The multibeam parameters are (referring to Figs. 1 and 2)
\[
\begin{gathered}
d_{h}=1 \mathrm{~m}, \\
\phi_{0}=3 \emptyset^{\circ} \\
\phi \text { of beams }=18^{\circ}, 26^{\circ}, 34^{\circ}, 42^{\circ} \\
\theta_{0}=2 \phi^{\circ}, \\
S W
\end{gathered}
\]

The antenna array contained four elements with phase center positions:
\[
(\emptyset, \emptyset, \emptyset) \quad,
\]
\[
(-0.5,0.866, \varnothing),
\]
\[
(-1,1.732, \varnothing)
\]

ORIGINAL FRTE GS OF POOR QUMLI IS

(a) AZIMUTH PATTERN

(b) ELEVATION PATTERN

FIGURE 3
ONE-WAY ANTENNA BEAM PATTERNS
OF AN ANTENNA ELEMENT
and
\[
(-1.5,2.598, \varnothing) .
\]

The beamwidth in the \(x-y\) plane of a formed beam is \(8^{0}\). For the simulation execution described herein, only the beam at \(\theta=34^{\circ}\) was created and processed.

Figure 4 is a listing of the SARCON data which contains the OSS parameters for the first model. Figure 5 is an OSS produced plot of the ambiguity locations which map into the patch center based on the SARCON data of Fig. 4; imposed on the plot is the radar platform's ground projected location, the platform's velocity vector, and the 3 dB beamwidth of the array antenna's elements \(\left(30^{\circ}\right)\). The points which approximately define a circle are azimuth ambiguities (i.e., points at the same slant range as the patch center whose Doppler frequencies will alias into the Doppler frequency of the patch center) while the points lying approximately on a line are range ambiguities (i.e., points which differ in slant range to the radar platform by an amount equal to the distance light travels between two successive radar pulses). Figure 6 contains plots of the scatterer positions for the terrain model used in the first simulation model. The fields were placed at azimuth ambiguity locations so that they would be imaged about the patch center if not suppressed by the beam pattern of the multibeam to be formed. The OSS calculated the SARCON data assuming that a beam pattern of \(8^{\circ}\) beamwidth was to be used in imaging; however, the \(30^{\circ}\) real beam pattern was used so that ambiguities will be introduced if the multibeam formation is not performed.

The multibeam simulation was then executed to the point of obtaining \(I / Q\) data for each element. The \(I / Q\) data from element 1 was processed into an image; since no multibeam processing was performed, we expect to see ambiguities in the image. The \(I / Q\) data from all the elements were also processed through the beam formation processor. The results of these simulations are shown in Fig. 7. The suppression of the imaged ambiguities is contrasted in Figs. \(7(a)\) and \(7(c)\);


FIGURE 4
SARCON DATA - MULTIBEAM MODEL 1


FIGURE 5
TERRAIN PLOT UF THE AMBIGUITY LOCATIONS FOR THE MULTIBEAM MODEL

(a) COMPLETE TERRAIN MODEL ( \(240 \mathrm{~km} \times 60 \mathrm{~km}\) )

Field at right: \(E=2 \quad\) All other scatterers: \(E=1\)

(b) AREA OF THE TERRAIN MODEL TO BE ImAGED
( \(6.375 \mathrm{~km} \times 6.375 \mathrm{~km}\) )

FIGURE 6
TERRAIN MODEL FOR THE FIRST MULTIBEAM SIMULATION

ORIGINAL PAGE IS

\section*{OF POOR QUALITY}

(a)

NO MULTIGLAM PROCESSING
\(2 \mathrm{~dB} / \mathrm{GRAY}\) SCALE - 16 SCALES

(b)

NO MULTIBEAM PROCESSING
\(2 \mathrm{~dB} / \mathrm{GRAY}\) SCALE - TOP 6 SCALES

(c)

MULTIBEAM PROCESSING
\(2 \mathrm{~dB} / \mathrm{GRAY}\) SCALE - 16 SCALES

(d)

MULTIBEAM PROCESSING
2 dB/GRAY SCALE - TOP 6 SCALES

FIGURE 7
IMAGES FROM THE FIRST MULTIBEAM SIiqULATION

Figs. 7(b) and \(7(\mathrm{~d})\) show only the top 12 dB of the images and demonstrate more clearly the significance of multibeam processing. The beam formation processing was not shaded, and so sidelobes of approximately 13 dB are expected (application of a weighting or shading function to the antenna element outputs should reduce this level); as illustrated in Fig. 7 the level of the imaged ambiguities from the multibeam processing are approximately 13 dB below the level of the imaged ambiguities with no multibeam processing.

The images are observed to be slightly "skewed" in azimuth, a result of the squint mode geometry and OSS image processing. If a line is drawn through the range ambiguity points of Fig. 5 (including the patch center), then all the points on this line have the same Doppler frequency as the pacch center. The OSS currericly processes all the range bins of one patch (synthetic array) with the same focus and filtering functions and lines up all the azimuth filters into vertical lines. Therefore, the azimuth filters are shifted in the range bins about the range bin containing the patch center. Program POST removed some of the skewing by shifting the azimuth lines based on their position reiative to the center range bin.

\section*{B. Second Mode I}

Except for the terrain model, the second simulation's parameters are identical to the first simulation discussed above. The section of the terrain model to be imaged is shown in Fig. 8. Fields were placed at the locations shown in Fig. 6, but they consisted of many more scatterers; a total of 933 scatterers were used in the second terrain model compared to only 126 for the first model. Figure 9 contains the SARCON data generated for this simulation.

The resultant images of the simulation are shown in Fig. 10. The photographs show that the multibeam processing suppresses the imaged ambiguity fields by over 12 dB ; the fields would probably be less pronounced if the area being imaged contained a background reflectance


FIGURE 8
TERRAIN MODEL FOR THE SECOND MULTIBEAM SIMULATION

AREA OF THE TERRAIN MODEL TO BE IMAGED
( \(6.375 \mathrm{~km} \times 6.375 \mathrm{~km}\) )

Large Discrete: \(\mathrm{E}=20\)
Field at lower left: \(E=0.2\) Field at upper right: \(E=0.5\) All other scatterers, including the ambiguity scatterers not shown on the plot: \(E=1\)

\title{
ORIGINAL PSETE \\ OF POOR QUALITY
}


ORIGINAL PAGE IS OF POOR QUALITY

(a)
\(? \mathrm{~dB} /\) GRAY SCALE - 16 SCALES

(b)
\(?\) dB/GRAY SCALE - TOP 6 SCALES

FIGURE 10
IMAGES FROM THE SECOND MULTIBEAM SIMULATION
instead of being composed strictly of point scatterers. The skewing in the azimuth direction discussed above for the first model is more evident in this model. The skewing also caused the scatterers in the extreme left top and bottom right of the terrain model to be pushed off the image, and they do not appear in the photographs of Fig. 10. Reference 1 includes photographs (see Ref. 1, p. 11/2) of images produced under the test simulation which that document describes. That test simulation and the simulations described in this report contain some identical parameters, i.e., wavelength, orbit specification, and planet specification. The multibeam simulations were squint mode simulations (as opposed to sidelooking) and the synthetic array formation parameters are different for the models. The images shown on page \(11 / 2\) of Ref. 1 contains a scatterer of amplitude 26 dB above the calibration target just as the second multibeam simulation model does. However, the test simulation shows the large discrete target to have much higher sidelobes than the multibeam models; the higher PRF and multibeam processing appear to suppress the sidelobes even though the same azimuth weighting functions are used.

While some concessions had to be made in adapting the OSS to implement the wideswath multibeam SAR technique, the basic concept was successfully incorporated into the OSS for verification. Overall, the OSS proved to be versatile and, in particular, was completely (and efficiently) adapted to the task of generating synthetic \(I / Q\) video data from a multiple antenna element orbital SAR model.

The multibeam technique for generating wideswath SAR images has been verified. No serious design problems were encountered in the implementation of the multibeam technisue. However, the advantages of the technique compared to conventional SAR image techniques are still not completely clear. The multibeam technique allows for higher PRF's, implying lower transmitter peak power and greater Doppler ambiguity suppression, but the possible advantages in wideswath image formation and registration are still not clear. A study of signal processing and image formation algorithms and the development of a Doppler processor incorporating multiple beams and the multibeam geometry would be necessary to adequately address the possible advantages. Also a study of the effects of antenna array and platform errors on the formation of multibeams (using the OSS-multibeam simulation) would prove useful.

APPENDIX A
LISTING OF PROGRAM MECHO
 IINPIIT，OUTPUT，TAPECS＝OI COMMON SAFCNNI，PI，TPI．DIH，RIU，DTR．CL
COMMON KLLAT，PHF，HE，PCR，PRR，HTM
CONMON KORF．OSMA，CE，OTNC，OLON，OPERI，UTD．ORA，TINIT，XER
．KRFTNR，KWTFTNA．SHADFAF．PCOFFR．PCOFFA，SW，NA，STLAT
CONMON KANT．SNAC．SGUINT，ARW，ERW•PHCPM（コ），AGHPY（3），POPDY（3）
COMMON KGNC．NDICC，AFLNS，NSCATS．EMEAN，UTSTX，DISTY，TCP，TCLAI．

COMMON IA，ATO，AL，AT，PLATP（3），PDMAG，PLATV（3），HVMAG，SHPR．XSUPC．
ZNOJaVS＇SM．J．（E）dJHA NOWWOJ



NI SJ\＆U1S ONV H 11980 FHI NO VNNFINV HJ甘ヨ HU」 ヨS lind HJVZ dUJ

SARCON－SARCOA NATA，INPUT．

\(82 \zeta+\mathrm{H}^{\circ} \triangleright \mathrm{NL} \ddagger\)
PROGRAM ME．CHO

InATA－IFPHATA DATA，INPUT．
ANATA－ANTEANA PATTERN MATA，INDIT．
ANTPOS－ANIENNA POSITION DATA．INPUT


\(\begin{array}{ll}\text { COABO } \\ \text { COOBA } & \text { ANTPOS－ANIENNA POSITION DATA，INPIIT．}\end{array}\) \(\#\)
\(i\)
\(i\)
\(i\)
\(i\)

\(-1\)
 C 온 욷 돈 둔온 온 온온돈 돈온온 온온운 온 동옹 돋 돈 돈 돈돈운 온온 온온돈 둔온 MECHO
MECHO
MECHO

\section*{}
\(\square\)

\section*{ORIGINAL FAGE :
OF POOR QUALITY}


\[
\text { PHOGRAM MFCHO } 73,171 \text { OPT=2 }
\]
FTN 4.8.528


i
-a0a ARNYINIL

DATA
NASKP- NC. OF AHAAYS TO SKIP ON FILES SARCON ANU APSKP- NC. OF ULUSES TO SKIH ON FILE EDATA.
\(\neq\)



\section*{original preze is OF POOR QUALITY}


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 4 & 16 & 14 & 1 c & , 4 & 'c & 16 \\
\hline \(m\) & \(\stackrel{ }{*}\) & \(\stackrel{+}{*}\) & ก & 10 & 0 & 0 \\
\hline \(\sim\) & N & N & N & \(N\) & N & n) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { CONTINUE } \\
& \text { CONTINUE }
\end{aligned}
\]



\[
\begin{aligned}
& \text { IF (UNITGUNSRE) } 2460,455,455 \\
& \text { STRD } \neq . F \text { O ON LUNSRE }
\end{aligned}
\]
\[
\begin{aligned}
& \text { IF(TA.NE.NA)GOTO } 410 \\
& \text { ENDFILE UNSRE } \$ \text { PRINT } 1060 \cdot L U N S R E G \text { IRECSRE }
\end{aligned}
\]
\[
\begin{aligned}
& \text { IF (TPULSF•AE•O) CALL PLTEND(O.0) } \\
& \text { GOTO } 1 \\
& \text { PLOT SLANT PANGE, ECHO LEVEL DATA. }
\end{aligned}
\]
502z
\[
\begin{aligned}
& t \\
& 0 \\
& i \\
& i \\
& i \\
& 4
\end{aligned}
\]program\(\infty\)
\(\infty\)
\(\infty\)~~\(K=K+1\)
\(X X=(S R E L(1, K)-R O)=4 . / \cap F N O M+2\). \(\$ \quad Y Y=S R E L(?, K)\)CALL PLT(XX.YY,3) \& CALL PLT(XX,0.02) \& GOTO 502CONTINUE
IFIIRECS.EG.NRECS.AND. TPONLY.ED.IIGOTO 480GOTO 452
ROGRA
PR
\[
\begin{aligned}
& \text { CONTINUE } \\
& \text { CONTINUE } \\
& \text { T=T. XIPP }
\end{aligned}
\]
\[
\begin{aligned}
& T=T \times X P P \\
& I F I T A . N E .
\end{aligned}
\]
\[
\begin{aligned}
& \text { GOTO I } \\
& \text { PLIANT PANGE, ECHO LEVEL OATA. }
\end{aligned}
\]
\[
\begin{aligned}
& Y Y=\subseteq R E L(? ; K) \\
& I F(x x \cdot L T, O . O R \cdot x X \cdot G T .4 . \text { goro } 505
\end{aligned}
\]
\[
\begin{aligned}
& 2 \\
& 1 \times x, \\
& 510
\end{aligned}
\]
\[
x, y y, Z 1
\]



APPENDIX B
Listing of program mbeam
freceong page blank not fllmed
ORIGINI: PACE IS
OF POUK QUALITY

ORIGINA PACE 19 OF POOR QUAL:iY
PROSRAM MAEAM 82109107.16 .17 .01
COOD VECTMR (DHIO) AND THE TNTER ELFMENT SHACING MUST RE FNTFREC INTO

INTFGEG I (1NI(4)
REAI XIG(204(H) •XIGPFAM (512)

FOITVALENCE (XIO(1).EN(1)). (XIOREAM(1).EI(1))
NAN:TC=4

LIINI \((2)=6 L I O D A T 2\)
LINII 4\()=6 L I O D A T 4\)
CMPI \(x J=\) CMPLY(0..1.)
COOAO REAN THE SADCON PLCORN OFF IONATI ANII SKIP THE ONES OAI THE COOOQ OUTDIT +TLF. IUNAIA. THEN NRITE THE SARCON OATA UNTO
LUATTS=LIINI(1)

Sind AP.F. On LIINIlf


으웅
\(r\)

RUFFFR UIT (LIJNO.1) (GARCONI-SARCONZ)
IF (INNII(LUNO)) \(31,33.33\)
33 PRINT \#ッOP.F. ON LUNO - SARCON RECOKI
STOP AP.F. AN LUNU - SARCON RECORD \(\neq\)
CONTINITE
37 cONTINHE
 PHIn=PHIOQCTR
"
is
is
\(\stackrel{i}{~}\)

\section*{ORIGINAL FALE LE} OF POOR QUALITY
82109107.16 .17 .0
\begin{tabular}{|c|c|}
\hline MHEAM & 73171 OPT=2 FTN 4.8.528 \\
\hline 10000 & calcillaif the phase shift to rf applite to each element tu \\
\hline coono & gtafr thf bfam in the mirection speciften ay ihe sabcon \\
\hline cooos & nata - snlidit. Snac. \\
\hline \multirow[t]{3}{*}{} & \(A L P H A=T H I O C H * S I N(S A A C) * S I N(S Q U T N T-P H 10) / W 1\). \\
\hline & On \(75 \mathrm{JL=1,NANTS}\) \\
\hline &  \\
\hline 35 & comitinit \\
\hline \multicolumn{2}{|l|}{\(r\) r} \\
\hline \multicolumn{2}{|l|}{coasa rean. Pedfcem hfam formation and nutput thf iunata foo} \\
\hline \multicolumn{2}{|l|}{COOOO THF FORMFD DEAM.} \\
\hline \multicolumn{2}{|l|}{c} \\
\hline &  \\
\hline \multicolumn{2}{|l|}{r.} \\
\hline & D0 110 1N=1.ND \\
\hline & CALL SEI(XISHEAM(1), XTABEAM(IDWDS),0.) \\
\hline & DO \&O JL=l, MANTS \\
\hline & LUNTS=LUNI(.JL) \\
\hline &  \\
\hline & INก7=(Innl-1) + IOwUS \\
\hline & RUFFER IN (LUNIS.1) (xT0(1), XID(512): \\
\hline & IF (HNII(LIMISI) \(60.5 n .40\) \\
\hline 40 & STOP AP.F. On input - iqdataf \\
\hline 50 & STOP FEUF CN INPII - TODATAF \\
\hline S0 & CONTINLIF \\
\hline \multicolumn{2}{|l|}{OO 100 IGH=1-NHM} \\
\hline Cooou & Calcillaif an if \\
\hline \multirow[t]{4}{*}{cooun} & data frum each of the flements across the array. \\
\hline & DO \(10010=1\) NANTS \\
\hline & INDEX \(=1\) KH + (TO-1) 0 (NRH+1) \\
\hline & EI(TRR) =FI(IRH) - EN(INRFX) OPSHIFT(IO) \\
\hline \multirow[t]{2}{*}{100} & CONTINIJ \\
\hline & \(E 1(N R H+1)=E N(N R H+1)\) \\
\hline \multicolumn{2}{|l|}{C EIC} \\
\hline & RUFFER (JIT ILIJNO, 1 ) (xIOBEAM(ll, XIOREAM(IOwDS)) IF (INIIILUNO)) 110.1 ng.l05 \\
\hline 105 & PRINT **P.F. ON LUNO - NP=\#.NP \\
\hline
\end{tabular}


ORIGINAL PAGE IS OF POOR QUALITY
\[
\text { FTN 4.H.528 } \quad 02109107 \cdot 16.17 .06
\]

\section*{REFERENCES}
1. Gary L. Crow and Kermit E. Graf, "Imaging Radar Simulation andSignal Processing Software, Vol. I. An Orbital SAR SimulationProgram," Applied Research Laboratories Technical Report No. 79-58(ARL-TR-79-58), Applied Research Laboratories, The University ofTexas at Austin, November 1979.
2. Buford Randall Jean, "Multiple Antenna Beam Techniques forSynthetic Aperture Radar," RSC Technical Report RSC-99, RemoteSensing Center, Texas A\&M University, College Station, Texas,December 1978.
3. Ibid., p. 10.
4. Ibid., p. 58.
5. Ibid., p. ..... 69.
6. Ibid., p. 85.
7. Ibid., p. 69.
8. Crow and Graf, op. cit.
9. Ibid., p. 5/6.
10. Ibid., p. 4/20.```

