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Convergence Acceleration of Viscous Flow Computations

Gary M. Johnson

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio

SUMKARY

A multiple-grid convergence acceleration technique recently introduced for
application to the solution of the Euler equations by means of Lax-Wendroff
algorithms is extended to treat compressible viscous flow.

Computational results are presented for the solution of the thin-layer
version of the Navier-Stokes equations using the explicit HacCormack algorithm,
accelerated by a convective coarse-grid scheme.

Extensions and generalizations are mentioned.

INTRODUCTION

Ni (1981) introduced a multiple-grid convergence acceleration scheme for use
with one-step Lax-Wendroff algorithms and applied it to the solution of the
homoenthalpic Euler equations. Johnson (1982) extended this technique to the more
general case of two-step Lax-Wendroff algorithms and illustrated its use, in
conjunction with several members of this class, for the efficient solution of the
full Euler equations. Of the two-step multiple-grid algorithms tested, all
required substantially less work than Ni's original one-step method. The greatest
efficiency was attained by accelerating the convergence of the MacCormack (1969)
algorithm.

Although initial applications have focused on the Euler equations, the
multiple-grid scheme presently under discussion may be employed with any
hyperbolic system of conservation laws. Furthermore, it may be used to good
advantage in accelerating the convergence of time-asymptotic solutions to viscous
flow problems. Since such viscous flow computations are quite time-consuming,
improvement in their efficiency is necessary in order to facilitate their use as
design tools.

The present work discusses the extension of the multiple-grid convergence
acceleration scheme for use in solving the Navier-Stokes equations. Two
possibilities are described: the full coarse-grid scheme and the convective
coarse-grid scheme. The full scheme is a straightforward application of
previously-described principles to the Navier-Stokes system of conservation laws.
The convective scheme is based on heuristic physical arguments and results in a



simplified procedure.

Results are presented for an application of the convective coarse-grid
scheme, used with MacCormack's method, for the solution of the thin-layer version
of the two-dimensional Navier-Stokes equations. The choices to use the thin-lager
equations and to work in two dimensions were made for convenience and do not imply
any restrictions inherent in the multiple-grid scheme. Extensions to three
dimensions and to the full Navier-Stokes equations are conceptually clear and
are reserved for future work.

VISCOUS FLOW EQUATIONS

At present, the efficient numerical simulation of compressible flows by means
of model equations based on the assumed existence of a velocity potential function
is quite routine. More general inviscid flow problems may be modelled using the
Euler equations. Efficient computational procedures for solving these equations
are maturing rapidly. A limited range of viscous flows mw"y be treated through a
judicious combination of such inviscid models with correction procedures based on
boundary layer theory. In the more general case, for example where the inter-
action between inviscid and viscous flow regions is no longer weak, the usual
boundary layer approximations cannot be used. Here, the approach providing the
greatest versatility is the use of the full Navier-Stokes equations, either in
some sub-domain or in the entire f lowf ield.

It

Navier-Stokes Equations

Following Peyret and Viviand (1975), the nondimensioval Navier-Stokes
equations may be written in conservation law form as

q t	 -(f x + g y ) + Re-1 (rx + sy)
	

(1)

where :

P	 pu	 pv
q	 pu	 f	 pu2+p	

g	
puv

pv	 puv	 pv2+p
E	 (E+p)u	 (E+p)v

0	 0
T	 T

r
xx	 s	 xy

T xy	 Tyy

KPr-1 (Y-1) 1 (a 2 ) x + 
UTxx 

+ VTxy	 KPr-1(Y-1)- 1(a2)y + UT y +VT
Yyx	 i

s
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Txx - (a+2N)ux + Avy

Txy - v(uy+vx)

Tyy - (A+20vy + Au
x

Here p, u, v, p, a and E are respectively density, velocity components in the x-
and y- directions, pressure, sound speed and total energy per unit volume. The
total energy per unit volume may be expressed as

E - p (e + 2
(u2+V2) )

where the specific internal energy, e, is related to the pressure and densit7 by
the simple law of a calorically perfect gas

p - (Y-1)pe

with y denoting the ratio of specific heats. The coefficient of thermal
conductivity, K, and the viscosity coefficients, A and v, are assumed to be
functions only of temperature. Furthermore, by invoking Stokes' assumption of
zero bulk viscosity, A may be expressed in terms of the dynamic viscosity u as

a--3v

Re and Pr denote the Reynolds and Prandtl numbers, respectively.

Although, for simplicity, the Navier-Stokes equations are presented here
%Titten in Cartesian coordinates, Viviand (1974) has shown that their strong
conservation law form may be maintained under an arbitrary time-dependent
transformation of coordinates. Explicit detail concerning the generalized
coordinate version of these equations has been provided by Steger (1977) and
need not be repeated here.

Thin-!Ayer Equations

The thin-layer approximation, in the words of Baldwin and Lomax (1978), "...
evolves directly from a realistic assessment of what is really being computed in a
typical high Reynolds number Navier-Stokes simulation." A highly stretched mesh
is used to resolve the large flow gradients normal to the vorticity-generating
surface. Consequently, because of limitations on computer capacity, the diffusion
terms involving derivatives parallel to the surface are not resolved well enough
to merit their computation.

Similar viscous terms are also neglected in the classical boundary layer
approximation. However, while the boundary layer approximation replaces the
normal momentum equation with the assumption that the normal pressure gradient is
zero across the viscous layer, all momentum equations are retained in the
thin-layer approximation and no assumptions are made concerning the pressure.
Consequently, the separation point is not a singularity of the thin-layer model

I	 equations nor do the problems associated with matching a boundary layer solution 	 i
to an imriscid outer flow occur when they are used. 	 i
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In practice, the thin-layer assumption is implemented by using a body-fitted
coordinate system and neglecting the viscous terms in the coordinate direction
along the body. For Cartesian coordinates, with x representing the body-
conforming coordinate, the thin-layer version of Egn.(1) is

q t - -(fx + g y ) + Re sy 	(2)

wher e :

0
Vu

ti	 y
s - 4511 y

KPr-1(y-1)-1(a2)y + p (uuY + zVV

The extension of this assumption to generalized coordinates is straightforward
and may be found in Steger (1977).

FINE-GRID SOLUTION ALGORITHM

For convenience, Egns.(1) and (2) uzy be rewritten as

q t - -(Fx + Gy )	 (3)
	

i

where, for the full Navier -Stokes equations,

F - f - Re-1r	 G - g - Re-1s

`	 while, for the thin-layer equations.

F- f	 G=g - Re-ls

An approximate numerical solution to Egn. (3) may be computed by means of the
two-step Lax-Wendroff algorithm introduced by MacCormack ( 1969). Having chosen a
grid representative of the resolution desired in the converged solution, the
forward predictor - backward corrector version of MacCormack's method may be
written as

	

_ At	 n	 n	 _ At

	

A41,j	 Ax	 (F i+l. j - Fi . j)	 Ay (I

	

_ At	 n
	
i
n

	

,j

2Ax	 (Fi+l, j - 
Fi.j ) +

	

2AY	 (Gi,J+l - Gi.j) +

'i, j+l - G i, j )

0i,j	 i-1, J)

(^i, j	 i, j-1)

where :

Agi ' j	 qi . j	 qi•j
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dg i,j	 q(t+et) - q(t) i,j
_	 ti

i.1	 F (qi, j )
ti

i,j _G(gi,j)

First derivatives in the viscous terms are backward diff erenced in the predictor
and forward differenced in the corrector.

This approach to solving viscous f low problems is quite robust and has been	 I
in widespread and successful use for some time, both for the time-accurate
computation of unsteady flow and for the time-asymptotic solution of steady flow
problems. In the latter case, where accurate resolution of physical transients is 	 i
not required, the numerical stability limitation inherent in this explicit method
may severely restrict the speed of its convergence to the steady state. Providing
a method to accelerate convergence in this case is the object of this report.

COARSE-GRID ACCELERATION SCHEME

Schemes of Lax-Wendroff type may be arrived at intuitively by using Taylor's

	

theorem to write the approximation 	
It

q(t+et) - q(t) + Atg t + °22 q tt	 (4)

Since we seek solutions to Egn.(3), time derivatives may be expressed as space
derivatives :

q t -(Fx + G y )

qtt	 A(FX + Gy)+	 B(Fx + Gy)

	

x	 y

where A and B are the Jacobian matrices

A - aF/oq	 B	 aG/aq

Substitution into Egn.(4) results in :

q(t+Ot) - q(t) - At(FX+Gy)
(5)

+ 022	
A(Fx+Gy)	 +	 B(FX+Gy)

X
	 y J

Second-order accurate spatial discretization of Egn.(5) then yields a one-step
Lax-Wendroff method.

5
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For axasple, we may make the following finite -volume type approximations :

(F..+Gy)i,j	 8Ax	
(F	 2F

 + 
2F

i+l,j + Fi+l,j-1)

(Fi-1,j+l + 2F
i-1,j + Fi-l,j -1)

1
+ 8Ay	 (Gi-1,j+l + 2G

i,j+l 
+ Gi+l,j+l^

- (G i-1,j-1 + 
2Gi

. j -1 + Gi+l,j-1)

If we define the "change" in q at call centers such that

	

At
Aq1
	 1	 -	 2Ax	 (Fi+l,j + 

F
i+l , j+1 ) 	 (Fi,j + Fi.j+1)

	

'+2=' j  2	 1	 1	
(6)

At	 (G	 + G	 ) - (G	 + C	 )At	 i,j+1	 i+1,j+1	 i,j	 i+l,j

it then follows that

• 1- At(Fx y) i, j	 4	 Aq	
+ A

i - 2 . j- 2
	 A

q - 2 . J+.1

(7)

+ 
Aq i+ 2 , j+ Z + Aq i+ Z . j- 2

Consistent with the above approximations and definition, we may write the
approximation :

- At(Fx+Gy) I!
	 Aq 1	 1J+. 	 i+i+J +2

This motivates the definitions :

AqAF i+ 1
, j+ 1	 Ai+ 1 , j+ 1	 1+1. j+ 1

2	 2	 2	 2	 2	 2

AG i
+2,j+2 	 Bi+2	 Aq

	

,j+ 2 	 i+2.j+2

#.^

A

We then make the approximations :
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-e^	 A(Fx+Gy)
x	

i , .i
(8a)

AF i+	 -	 -

	

1	 i+1,J+1 
+ AF i+
	

eF

-1 	 1-1.j	
eF

-1 	 1-1.J+.2	 2	 2	 2	 2	 2	 2	 2

-et	 s(Fx+Gy)

.	 x	
i,j

	

l	 AG	 + AG	 - eG	 - AG

	

ley	 i+1, 	 i- 1,j+1	 i-1,j - 1	 i+ 1 _ .I

2	 2

J+ .1

2	 2

If we now define the "correction" to q at grid nodes :

	

6gi,3 a	 I	 q(t + et) - q(t)

L
we may combine Egns.(7) and (8) to yield

dq
i,

 j	 4	
eq + Ax AF + Dy AG

i- 2 . - 2

+	 1	 Lt-AFeq +
4	 Ax

- -t eG
AY 1	 1i-2, j+

2

+	
4	

eq - of AF - ny AG

i+2.2

+ 4
	

eq - -t A
Ax

 + A
t AG

i+2.j- 21

(8b)

(9)

Egns. (6) and (9) constitute the one-step Lax-Kendroff method used as a basic
integration scheme by Ni (1981). He gives the following heuristic interpretation
to these equations : the first calculates the change in q occurring in a control
volume during the increment At while the second distributes the effects of the
changes occurring in four nearest -neighbor control volumes to their common central
nodal point where they are combined to form the correction to the vector of
conservation variables, as illustrated in Fig. 1. This interpretation motivates
the construction of the coarse-grid acceleration scheme.
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Full Coarse-Gr id Schema

Given the fine-grid corrections, which may be cosputed by any one- or
two--step Lax-Wendroff scheme, as shown in Johnson (1982), we wish to use
successively coarser grids to propagate these corrections throughout the
computational domain, thus accelerating convergence to the steady state while
maintaining the accuracy determined by the :ins-grid discretisation. Given f
basic fine grid with the number of points in each direction expressible as 2 + 1
for p a natural number, let successively coarser grids be defined by successive
deletion of every other point in each coordinate direction. The full coarse-grid
acceleration scheme, as illustrated in Fig. 2, then replaces the computation of
coarse grid changes by Egn.(6) with a restriction of the latest fine-grid
correction. This restricted fine-grid correction is then distributed according to
a coarse-grid version of Eq:.(9) to obtain a coarse-grid correction which is, in
turn, prolonged to the fine grid to become the new fine-grid correction. One
time-cycle of the multiple-grid scheme is composed of an application of some
Lax-Wendroff scheme on the fine grid followed by an application of the coarse-grid
solution procedure to each successively coarser grid. The flow of information in
this process is depicted in Fig. 3.

In the basic integration scheme, a change at one grid point affects only its
nearest neighbors while, it k-level multiple grid scheme, the same change
affects all points up to 2 k-^ mesh spacings distant. Furthermore, since the
change is always determined by information from the fine grid and simply
propagated by the distribution formulae for coarser grids, fine grid accuracy
is maintained.

Convective Coarse-Grid Schem e 	 I

The multiple-grid convergence acceleration procedure using the full
coarse-grid scheme is essentially that described in Johnson (1982) for use with
the Euler equations, with the Jacobian matrices cf the flux vectors replaced by
their appropriate viscous counterparts.

Consideration of the physical processes being modelled in a viscous flow
computation leads to the form-'.,.ion of an alternative coarse-grid scheme.
Dissipative effects have a local character and their influence need not be taken
into account in the construction of coarse-grid distribution formulae. Rather, it
is the convective terms, with their global character, which are the key element in
coarse-grid propagation. Hence, a coarse-grid scheme for viscous flew
computations may be formulated on the basis of the inviscid equations of motion.
Such a convective coarse-grid scheme is inherently more efficient than the full
coarse-grid scheme because of the diminished computational effort associated with
forming the Jacobian matrices of the Euler flux vectors rather than those of the
viscous flux vectors. kn additional benefit is that the convective coarse-grid
scheme leads to a multiple-grid convergence acceleration procedure which is
independent of the nature of the dissipative terms retained in the viscous model
equations. That is to say that the coarse-grid scheme used previously for the
Euler equations may be employed, without modification, to accelerate the
convergence of viscous flow computations based on the Navier-Stokes equations, the
thin-layer equations, or any other viscous model equations which contain the full
inviscid Euler equations.

8



The correctness of the heuristic physical reasoning used in the formulation
of the convective coarse -grid scheme is verified by the computational results
presented below.

RESULTS

We illustrate the use of multiple-grid convergence acceleration in viscous
flow computations by means of a mathematically and physically simple example. We
use MacCormack ' s method as a fine-grid solution algorithm for the thin-layer
version of the Navier-Stokes equations and accelerate its convergence to a stsaty
solution with the convective ccaree-grid scheme.

We consider the subsonic flow through a cascade of unstaggered flat plates at
zero angle of attack, as illustrated in Fig. 4. The ratio of exit static pt--ssure
to upstream total pressure is 0.8430191, yielding flow Mach numbers in the
vicinity of 0.5 for the test cases to be exhibited here. The Reynolds numbers,
based on cascade gap and critical speed, span the approximate range from 8.4 X 103
to 2.0 X 10 5 . Symmetry is invoked to limit the size of the computational domain
and the flow is assumed to be lcminar. These assumptions are made for convenience
in specifying the number and location of fine-grid nodal points and do not imply
limitations on the generality of the method.

The choice of boundary conditions is also indicated in Fig. 4. At the inlet,
total temperature, total pressure and flow angle are fixed, while at the exit, 	

^t
only the static pressure is specified. Along the plate surface the no-slip
condition is applied and the temperature is specified. Along the remaining
boundary sections the tangency condition is used. Uniform flow at the isentropic
Mach number implied by the ratio of exit static pressure to inlet total pressure
is used as an initial state. The values of the dependent variables on the domain
boundaries are updated only during the fine-grid computations. This decouples the
coarse-grid acceleration scheme from the details of boundary condition
implementation.

As illustrated in Fig. 5, three different fine grids are employed in this
study. All have the same number of i.adal points and have their transverse grid
lines located at the same positions. They differ in the positioning of their
lateral grid lines. These are smoothly stretched away from the solid boundary in
a geometric progression, starting from the initial spacings indicated in Fig. 5.
These fine grids each allow the construction of four successively coarser grids,
as indicated in Table I. The members of these grid families may then be used in
combination to form multiple-grid sequences of length one through five.

Computations have been performed for the combinations of Reynolds number and,
fine grid configuration indicated in Table II. Isomach contours for the converged
solutions produced for each case are shown in Fig. 6. The contour levels
displayed are not equally spaced and are the same for all five cases shown.
Nevertheless, they provide a good qualitative indication of the 

in	
of the

computed flowfields. More quantitative information is contained in Fig. 7, where
normalized u-velocity profiles are illustrated. Here, the u-velocity, normalized
with its value at the top boundary and same streamwise station, is plotted as a

9



function of relative distance from the bottom boundary. Curves for every second
stresmwise station, starting with the plate leading edge and ending at the outflow
boundary, are displayed. They are staggered in proportion to the spacing of their
respective streamwise stations. The data displayed in Figs. 5 and 7 are for
conditions of optimal work reduction, as indicated in Table 1:I. However, in each
case the solution obtained is not a function of grid sequence length. This w"
verified by extensive computational experimentation.

Convergence histories are shown in Fig. 8. For each case, we display the
fine grid convergence history and the corresponding convergence history for that
grid sequence length which produced the best work reduction factor. Several of
the plots have been truncated to fit within the residual range displayed.

For all five test cases and the five possible grid sequence lengths, the
computational work required to reduce a standard error measure to a specified
tolerance has been recorded. In each case, based on these data, we may estimate a
work reduction factor and a corresponding optimal multiple-grid sequence length.
Here we define the work reduction factor to be that multiplA by which the work
required to produce a converged solution using a single fine grid exceeds the work
required to produce the same result using that multiple-grid sequence length which
minimizes the computational work. The results obtained are recorded in Table II.
Work reduction factors ranging from 1.5 to 4.8 have been realized. We observe
that while the work reduction factor and, possibly, the optimal grid sequence
length decrease with increasing grid stretching, they do not appear to decrease
with increasing Reynolds number.

Several issues bearing on the multiple-grid work reduction factor should be
mentioned at this juncture. When one considers convergence acceleration of the
turbulent full Navier-Stokes equaticna, greater work reduction than obtained here
will result by virtue of the inclusion of the full viccous terms and turbulence
modelling on the fine grid. The treatment of the Jacobian matrices used in the
coarse-grid acceleration -scheme has a large influence on the efficiency of the
coarse-grid computations, and hence, on the work reduction factor. Substantial
improvement appears to be possible over the current treatment of these Jacobians.
In the present computations, injection is used as the restriction operator and
linear interpolation is chosen as the prolongation oparator. These choices may
not be optimal for use on highly stretched grids. Better choices could increase
both the optimal grid sequence length and the work reduction factor. Similar
consequences might result from an alternative coarse-grid formation strategy.

Given the encouraging results obtained to date, more comprehensive testing
and more sophisticated applications of the viscous flow convergence acceleration
Ideas presented here are planned.

CONCLUSIONS

Two coarse-grid schemes for use in the multiple-grid convergence acceleration
of viscous flow computations have been presented : the full coarse-grid scheme and
the simpler and more efficient convective coarse-grid scheme.

10



The eunvaetive coarse-grid scheme is of quite general applicability and say
be used without modification with any model equations in the hierarchy ranging
from the Ruler equations to the full Xavier-Stoke equations.

Computational evidence of the utility of the preseut approach to convergence
acceleration has been provided by using the convective coarse-grid scheme, in
conjunction with MacCormack's two-step Lax-Wendroff method, to solve the thin-
layer version of the Navier-Stokes equations for a simpis model problem.

Work reduction factors ranging from 1.5 to 4.8 have been obtained in initial
testing over a fairly broad range of Reynolds numbers and grid stretchings.

More comprehensive testing and more sophisticated applications, including
extension of the techniques discussed here to three dimensions, are planned.
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TABLE I. - GRID DESCRIPTIONS

Gr id 1 2 3 4 5

Number of
65x33 33x17 17x9 9x5 5x3

Points

TABLE II. - ALGORITHM EFFICIENCY

Reynolds
Initial Optimal Work

Test Case Transverse Sequence Reduction
Number

Spacing Length Factor

a 8.4 x 10 3 0.0125 5 4.8

b 8.4 x 10 3 0.00625 3 2.7

c 3.4 x 104 0.00625 2 or 3 3.0

d 3.4 x 104 0.0025 2 or 3 1.5

e 2.0 x 10 5 0.0025 3 1.8
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Flow

Direction

Tangency Condition

p Specified
°	 I	 Computational Domain	 p specified

T ° Specif ied I	 I

v/u Specified

Tangency	 No-Slip Condition
Condition	 T Specified

FIGURE 4. - Physical Problem
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FIGURE 6b. - Isomach Contours
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FIGURE 6c. - Isomach Contours

Re = 3.4 x 10 4 ,	 Ay = 0.00625

FIGURE 6d. - Isomach Contours

Re = 3.4 x 10 4 ,	 Ay = 0.0025
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ŷ
rtl

0 0 M 9
y y y Y

00

I

O

O

I

3
0

I

0

or?, n- 1 1, 	 N;.c;r- is
	 0

OF POOR QUALITY

m
a^

0 >,O u
O

,-I
H

a49 Y.

AN
a

wau
z

00

0000

m
v
.i
u

^ vA
n	 61

H

p	 N	 J	 ^D
I	 1	 I

MION 30113 ;o So-I

O

O
.-1

I

E3 o 4 + x

V)N
t7

O

O

t^
O
u
m
r^1 m
x o
v
v ><
G
m s
m
>r ao
d
> r
G
O Cl

L) P4

A

{ate
PG

1pl
H
Dw



2
v

.r
•
u

7 ►
v ea n w
y	 y ^
• ^	 • y

v	 w •

D O 4 ♦ X

i

i
i
A
Y

Lr,N

O

O

M
W
a1	 ?,
rl !
N
Ou	 ..
W

•.1 s
x O

d
u	 1C
ad s
00
N ^^
v
7 M
G
O	 CJ
U r^L

u
00

W

V
H

w

OF POUR ^^l:>LI t""1(

0000
.-1

W
dl

.-1

O ^

8 V

Ln	 OJ

F

O
O	 N	 .?	 D	 00	 O

I	 1	 I	 1	 ti
I

MJON io113 3o Sol

a
H
OG

W
J
a
H

L

C
H

OL
c9

W
..a
C7z
H

L

O
0O

N	 .1	 ^D	 p0	 O
I	 1	 I	 1	 .-^

I

MION 10113 30 801

O
O
OOi

W

61

u
O	 >,
O U
O
u^	 a'

F

I-



as
c^
wa
a
H

0
8
p

W
61

r-1
p U

o ^
o ^

H

ORIQINAL F;1(; ri
OF POOR QUALITY

Q
1--I
O<i

w
.a

In

w
v

l	 IP
Ln	 a

H

r
i/

p	 N	 S	 00	 O
I	 1	 1	 I	 ^

W1ON 10313 )O Sol

p	 N	 J	 ^
1	 1

w10N 1011a V 1'ol

J p
m
	 O

I

I

I0

v O ^ M

$ 3 ^ 7 x

0 o e + x

Ln
N
O

O

U
:A
d	 :y.
.-a 4
1+
OL
to

rl 1

x o

v
u m

d ^
op
N ^
N

U
0

00

VH
IA.

t



ssss:
y • 1 1 •

O O ^ + X

A
F-1
a
ca
wa
v
zH

V O
0

I

N
co

I

d	 ^p
I

MION 10117 30 $Orj

O
0
0
0

0)a
C)0	 >,

0 U
0
L v

El

F

N
O
O

O

I

'H C
w
O

,i Ln
x o
v
u x
G
v o
00
w N
w
> M
q
O v
U fZ

N
00

W

C.7
N
44

O
O
O
O
r-1

--.r mmms nrr" FC

1

A
H
c1G
C9

a
a
F5

m
d
ri
Q

Co
O U0
u1	 v

13

F

O

O

1

v ^V
00

I

n

s
.r
•
u
•

n c n w
•

I	 I

UUON 10119 30 2?01


	0008A02.pdf
	0008A03.pdf
	0008A04.pdf
	0008A05.pdf
	0008A06.pdf
	0008A07.pdf
	0008A08.pdf
	0008A09.pdf
	0008A10.pdf
	0008A11.pdf
	0008A12.pdf
	0008A13.pdf
	0008A14.pdf
	0008B01.pdf
	0008B02.pdf
	0008B03.pdf
	0008B04.pdf
	0008B05.pdf
	0008B06.pdf
	0008B07.pdf
	0008B08.pdf
	0008B09.pdf
	0008B10.pdf
	0008B11.pdf
	0008B12.pdf
	0008B13.pdf
	0008B14.pdf
	0008C01.pdf
	0008C02.pdf

