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FOREWORD

This document is 2n annual report describing the results of effort by
personnel of Lockheed Missiles & Space Company, Inc., Huntsville Research
& Engineering Center, for the National Aeronautics and Space Administration
under Contract NASW-3281, ""Manufacturing in Space: Fluid Dynamics Nu-
merical Analysis.! The contractual effort described in this document was
performed during the year from September 1981 to September 1982, The
NASA Technical Director for this contract is Dr, Robert F, Dressler,

Manager, Advanced Technology Program, NASA Headquarters, Washington,
DC.
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INTRODUCTION

The research program described in this annual report is a continua-
tion of effort initiated in August 1979 to investigate natural convection in
various materials processing experiment configurations under microgravity
conditions simulating the orbiting space station environment. The investi-
gation involves the use of the Lockheed developed General Interpolants
Method (GIM) fluid dynamics computer code to numerically simulate the

development of natural convection under various loads.

Two basic tasks were performed during this year's effort:

1. Last year's investigation of the effects of changing the magnitude
and direction of the acceleration vector was extended to include
additioral acceleration change sequences.

2. An investigation was made of the effect of enclosure shape on
natural convection velocities.

The results of these tasks were published as separate documents

which are included as Parts 1 and 2 of this annual report.
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NATURAL CONVECTION IN CIRCULAR
ENCLOSURES FOR VARIOUS ORIENTATION'S
OF THE ACCELERATION VECTOR
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ABSTRACT

Numerical computations were performed for natural convection in circu-
lar enclosures under various conditions of acceleration. It was found that
subcritical acceleration vectors applied in the direction of the temperature
gradient will lead to an eventual state of rest regardless of the initial
state of motion, Supercritical acceleration vectors will lead to the same
steady state condition of motion regardless of the initial state of motionm.
Convection velocities were computed for accéleration vectors at various
angles to the initial temperature gradient. The results for Rayleign
numbers of 1000 or less were found to clesely follow Weinbaum's first order
theory. Higher Rayleigh number results were shown to depart significantly
trom the first order theory. Supercritical behavior was confirmed for
Rayleigh numbers greater than the known supercritical value of 9216.
Response times were determined to provide an indication of the time required

to change states of motion for the various cases considered.
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NOMENCLATURE

Descrigtion

cylinder diameter = 2 R

gravity force

horizontal g component
vertical g component
radial distance

cylinder radius

3
Rayleigh number = &é-%éil—

horizontai Rayleigh number

vertical Rayleigh number

temperature

initial mid-point temperature

temperture difference across circular cylinder
time

response time

velocity

spatial maximum velocity

Vmax fOr zero horizoutal gravity component
Vmax ~ Vmax,

rectangular coordinates (Fig. 1)

vi
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NOMENCLATURE (Concluded)

Symbel Description
a thermal diffusivity
B volumetric coefficient of thermal expansion
€] polar angle (Fig. 1)
u dynamic viscosity
v kinematic viscosity, u/p
v stream function
0 density
Py ©cat T ="7T.
vii
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INTRODUCTION

The investigation reported herein is basically a continuation of a pre-
vious investigation reported in Ref. 1. In the previous study, we investi-
gated natural convection in circular enclosures in which the acceleration
vector changes magnitudes and directions according to various schemes. The
interest in the effect of time-varying accele.ation foads on natural convec-
tion is due to current interest in space processing experiments in which
small time-varyinyg spacecraft accelerations in orbit will produce convective
stirring in contained fluids. The previous study considered a circular
enclosure with the acceleration load consisting of two components, & verti-
cal component, By» epplied normal to the initial temperature gradient and
a horizontal component, By» in either the positive or negative direction
parallel to the initial temperature gradient, The separate components were
applied in the following sequences: (1) the vertical component applied
until steady state, followed by the horizontal component superimposed to
produce a new steady state; (2) both components applied simultaneously until
steady state; and (3) the horizontal component applied first followed by the
vertical component. This previous investigacion showed that, for subcri-
tical Rayleigh numbers, the imposition of a given set of vertical and hori-
zontal components yields the same steady state convective flow field regard-
less of the order in which the two components are applied. The current
study extends the pre.eding study to include the following conditions: (1)
the vertic=l component applied until steady scate, followed by removal of
the vertical component and application of a horizontal componcat, and (2)

application of a constant magnitude acceleration vector at various angles to

the vertical direction.

As in the preceding study, the Lockheed-developed General Interpolants
Method (GIM) code was used in the numerical computations. The computations

were performed on the NASA-Langley CYBER 203 system.
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PROBLEM FORMULATION AND NUMERICAL SIMULATION

The problem investigated is that of two-dimensional natural convection
within the circular cylinder enclosure shown in Fig. 1.

y

r
Cold Side r g \\Hot Side

— .+é’ 01 &

Fig. 1 - Geometry for Circular Cylinder Enclosu~e

The initial temperature distribution was based on & linear horizontal gradi-

ent in the positive x direction, with the boundary points held constant in
time:

T(r,0) = T, + (8T/2) x/R
T(R,t) = T, + (4T/2) cos ®

The gravitation loading consisted of two components, a vertical component

8y in the negative y direction and a horizontal component in either the
positive or negative x direction.

LOCKHEED~HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC-HREC TR D867640

The nunierical simulation was based on a nodsl point distribution gener-
ated by the GIM code geometry module by specifying an array of 20 x 20 area
elements with 21 x 21 nodal points. The circle was treated as a four-sidnd
figure, each side being a quarter-circie arc. The circular area was divided
into generalized quadrilateral clements with curvilinear sides, with the
ncdal points located at the four corners of each element. The circular
geometry is shown in Fig. 2 with the computational grid network super-

imposed.

For convenience in the nuwerical simulation, we assumed a cylinder
radius R of 1 cm and a temperature difference AT of 100 C. The gravity com-
ponents were changed accordingly to yield the proper Rayleigh number
values, The fluid was assumed to have the thermophysical properties of
water and to behave as a Boussinesq fluid in its thermel expansion charac-
teristics. The thermophysical properties used in the numerical simulation

are l.sted as follows:

Property Value
Viscosity, M 1 centipoise
Thermal conductivity, k 0.00143 cal/c¢m~sec-C
Density, p 1 gm/cu cm
Specific heat, Cp 1 cal/gm~C
Thermal expansion coefficient, B 2.07 x 10~4/c
3
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Fig. ? - Geometry and Computatonal Grid for Numerical Simulation
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RESULTS

Computed results are shown in Figs. 3 and 4 for the cases in which a
vertical acceleration is applied until steady state followed by removal of
the vertical acceleration and application of horizontal accelerations of
various magnitudes in both the positive and negative x directions (see Fig.
1). Vertical Rayleigh numbers of 1000 and 5000 were considered, and their
results are shown in Figs. 3 and 4, respectively. As indicated earlier in
Rcf. 2, a vertical Rayleigh number of 1000 is withiu the low Rayleigh number
range for agreement with the first order theoretical results of Weinbaum
(Ref. 3), while a vertical Rayleigh number of 5000 is somewhat out of that
range. Horizontal accelerations corresponding to horizontal Rayleigh num-
bers of +1000, +2000, +5000 and +10,000 were considered. Results for the
positive horizontal Rayleigh number of 10,000 are uot shown on Figs. 3 and &
because of its supercritical nature, as will be discussed lacer. Note in
both Figs. 3 and 4 that the negative ho-izontal Rayleigh numbers result in a
slowing down of the initial counterclockwise circulating flow, leading to a
reversal in flow direction and followed by a continuous approach to a state
of rest. The positive horizontal Rayleigh numbers, however, result in a
continual decrease in flow velocity approaching zero without a flow
reversal. A simplified analytical model described in the appendix basically

confirms the validity of these trends,

Decay ~esponse times were calculated for the results in Figs. 3 and 4
to provide a quantitative indication of the time required for the flow to
decay down to a state of rest atter removal of the vertical acceleration and
imposition of the horizontal acceleration. For the positive Ra

H
the decay time is defined as the .ime required for the spatial maximum

values,

velocity to reach the fraction l/e {(.368) of the initial vaiue. Because of
the flow re' - sal that takes place for negative RaH values, the decay time
for th-se cases is d2fined as the time required after passing through the

minimum (maximum negative value) to reach the fraction 1l/e of the minimum

5
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Fig. 3 - Spatial Maximum Velocity Histories After a Vertical
Rayleigh Acceleration of 1000 is Removad and Various
Yorizontal Accelerations are Applied.
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Fig. 4 - Spatial Maximum Velocity Histories After a Vertical
Rayleigh Acceleration of 5000 is Removed and Various
Horizontal Accelerations Are Applied
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value. The decay times for initial vertical Rayleigh numbers of 1000 and
5000 are shown in Fig. 5. Note that the decay times for both Rayleigh
numbers are essentially identical except in the range near a horizontal
Rayleigh number of 5000. Decay times for negative Rayleigh numbers range
from approximately 0.25 to 0.45 Rz/v, and for positive Rayleigh numbers
from approximately 0.1 to 1.6 Rz/v. According to Weinbaum's theory, in

the absence of a vertical acceleration component and for horizontal Rayleigh
numbers less than the critical value of 9216, any velocity perturbation will
be damped oui, and convective motion will not develop. This critical value
also follows from the simplified analysis in the appendix. 1in horizontal
Rayleigh numbers greater than the critical value, however, a small
perturbation in velocity will grow, and convective motion will develop.
Shown in Fig. 6 is a comparison of convective motion resulting from a
supercritical positive horizontal Rayleigh number of 10,000 applied to
various initial states of motion. The initial states resulted from vertical
Rayleigh numbers of 0, 1000 and 5000 applied until steady state and then
removed. (It was necessary to initialize the fluid flow with a small
perturbaton for the zero vertical Rayleigh number case for convective motion
to develop.) Note that regardless of the initial state of motion, the
convective motion proceeds toward the same steady state condition. In each
case, an overshoot in the spatial maximum velocity occurs, followed by a

continual decrease to the steady state value.

A comparison is made in Fig. 7 of convective wmction resulting from the
two supercritical horizontal Rayleigh numbers of 10,000 and 20,000. A
vertical Rayleigh number of 5000 was used to initialize the state of motion
in both cases. The 10,000 horizontal Rayleigh number case is the same as
that shown in Fig. 6. The 10,000 Rayleigh number case shows an initial
increase and subsequent continued decay to steady state. The 20,000
Rayleigh number case displays a strongly oscillating, although dawmped,
approach to a steady state spatial maximum velocity approximately twice the
10,000 Rayleigh number case. These limited results suggest a proportional

relationship between horizontal acceleration aad the resulting spatial
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Fig. 5 - Decay Time for Flow Initialized by Vertical Acceleration,
Followed by Removal of Vertical Acceleratiom and Imposition
of Horizontal Acceleration
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maximum convective velocities for supercritical cases., Such a relationship
would certainly break down near the critical Rayleigh number, however, since

the steady state velocity goes to zero for Rayleigh numbers less than the

critical value.

The results shown in Figs. 8-10 are for acceleration vectors of cons-
tant magnitude applied at various angles to the vertical direction. The

magnitudes of the acceleration vectors correspond to Rayleigh numbers of
1000, 5000 and 10,000.

The steady state results are compared in Fig. 11 to the low Rayleigh
number (first order) theory of Weinbaum which considers only the vertical
component. The Ra = 1000 results are very nearly identical to Weinbaum's
theory, thus indicating "low Rayleigh number" conditions. The Ra = 5000
results show considerable skewness in the curve, indicating deviation from
low Rayleigh conditions, but still goes to zero at ¢ = 90 deg, indicating
subcritical conditions., The Ra = 10,000 results are clearly out of the low

Rayleigh number range, and indicate supercritical conditions, since non-zero
st.eady state velocities occur at ¢ = 90 deg.

Transient response times were calculated for the results in Figs. 8, 9
and 10 to provide an indication of the time required for development of con-
vective flow, Since some of the results showed an overshoot in velocity
followed by decay to steady state, the response time was defined as the time
required to reach the fraction l-~1/e (.632) of the maximum velocity acheived
either at steady state or during the overshoot prior to steady state, which-
ever is greater, The resulting response times are shown in Fig. 12 as a
function of the horizonta® Rayleigh number component for the various abso-
lute Rayleigh number values. The simplified analytical development outlined
in the appendix indicates that response times should be horizontal Rayleigh
number dependent. The results shown in Fig. 12 indicate a general variation
in response time from approximately 0.05 R2/v for negative horizontal
Rayleigh numbers to approximately 0.20 Rzlv for positive horizontal
Rayleigh numbers. Note that, except for some scatter in the 5000 Rayleigh

12
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Fig. 8 - Spatial Maximum Velocity History Starting from Rest for Ra = 1000
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Fig. 10 - Spatial Maximum Velocity History Starting from Rest for
Ra = 10,000 and Various Off-Vertical Angles
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number data, the results over the range of Rayleigh numbere considered

closely follow a general t.-erd indicated by the faired curve,

contour plots «f temperature, absolute velocity and stream function are
shown in Figs. 13 through 16 for the case of a 1 cm radius circular eaclo-
sure containing water with a temperature difference ¢. 100 K across the
horizontal diameter. The acceleration vector was varied to correspond to

the noted Rayleigh number values.

The temperature contours at steady state are presented in Fig. 13 for a
vertical Rayleigh number of 1000 and horizontal Raylieigh numbers of C, +1000
and +5000. The positive horizontal components are shown to noticeably
increase the distortion in the isotherms as expected. The negative hori-
zontal components decrease the distortion somewhat, but not as noticeably ar

in the positive case,

The velocity contours at steady state are shown in Fig. 14, again for a
vertical Rayleigh number of 1000 and horizoantal Rayleigh numbers of 0, -10v0
and +5000. The exhibited f1Cw appears to b nearly perfectly circular in
all caeses with the maximum velocity indicated roughly near the r = 0.5 to
0.6 radial position, The theoretical maximum occurs at r = R/\{S-- 0.58 R.
Some of the departure from circular symmetry in the velocity contours is
probably due to the numerical noise in ~omputing such small velocities. The
circularity of the flow is morc clearly indicated by the streamline contours

shown in Fig. 15. A nearly perfectly circular flow pattern it shown in all
cases.

The development of convective flow from rest for the supercritical
R‘H = 10,000 case is illustrated by the contour plors of temperature and
streamlines in Fig. 16, Steady state was reached in this case without break

up into multiple convective cells because of the low value of RlH.

18
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CONCLUSIONS

The following general conclusions may be drawn from this study:

1. Subcritical accelerations applied in the direction of the initial
temperature gradient will result in an eventual return to a state of

rest, regardless of the intensity of the initial state of motion.

2. Supercritical accelerations applied in the direction of the initial
temperature gradient will result in an approach to the same steady

state convective motion regardless of the initial state of motion.

3. The variation in steady state velocities with angle at which the
acceleration vector is applied closely follows Weinbaum's first
order theory for absolute Rayleigh numbers of 1000 or less. For
Rayleigh numbers greater than 1000, the deviation from Weinbaum's

theory becomes significant.

23
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Appendix

SIMPLIFIED ANALYTICAL MODEL FOR NATURAL CONVECTION
IN A HORIZONTAL TWO-DIMENSIONAL CIRCULAR ENCLOSURE

A simplified analytical model was developed to predict natural convection
in two~dimensional circular enclosures. The purpose of the simplified model is
to provide a basis for verifying the GIM code numerical results, and to assist
in defining time constants for the computed transient response. The model

development is similar to that reported in Ref. A-1. The geometry is indicated

in Fig. A-1l.
Cold Side Hot Side
T R
8 X
. j
By :
1
|
AT AT
T i T - '2— TO TO + 2

Fig. A-l - Geometry for Circular Cylinder Enclosure
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The initial temperature distribution was based on a linear horizontal gradient

in the positive x direction, with the boundary points held constant in time:

T(r,o) = '1‘o + (AT/2) x/R

L)
T(R,t) = T° + (AT/2) cosb

We assume the usual circular flow pattern with the velocity profile given by

ey

v=3B v - aw?em @)

with vmax varying with time during the transient flow period. We take the
counter clockwise direction as positive, since the convective flow will assume

this direction for a positive vertical acceleration component.

We also assume the transient temperature distribution given by

Ta= To + é% (r/R) cos8 + T' &)

where T' is a perturbation term due to convective flow given by

TI

- —‘25 T (- (x/R)%] (x/R) sind (4)

with T;ax varying with time. Along the y axis (6 = m/2), the perturbed temper-
ature distribution follows the same form as the velocity distribution given by
Eq.2.
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The fluid densiy, distribution is based on a Boussinesq variation with
temperature:

pP=p, ll-e(T-To)] (5)

The torque, Mv. on the fluid mass due to viscous shear stress on the interior
cylinder surface is given by

dv
= 21 Ry ~—
MV or r =R

(6)
= - 6T V; M Voax R

The torque due to gravity Mt 1s found by:

M, = - gp(gvx+%y)ds o))

where the integration is carried out over the circular region. The vertical
gravity component 8y is always positive and acts in the negative y direction.
The horizontal component, gy» may be either positive or negative according

to its direction with respect to the x axis. Carrying out the integration of
Eq.(7) yields

2mn R

MG = -// p(gv cosf + 8y 8inf) r2 dr 46 (8)
o o

.-1 3 L
5 P,B0T R (gv+y’§ T . )

A-3
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The instantaneous angular momentum of the fluid mass is given by:

P = @rpvds 9)

where, again, the integration is carried out over the circular region. Carry-

ing out this integration yields

= —— 1R 0 VY, (10)

By balancing the rate of change of angular momentum to the net torque on

the fluid mass, a differential equation is obtained for the variation of v

max
with time:
dP/dt = MG + Mv
y’_:—s- 3 . _T 3 , ) - '
= TR p V. =g 0 BATR (gv+ 3T gy) - 6T Y3 R Voax (1D
or
Tl
. 1 av max v
v =—— =2 [Ra, + V3 ——= -2~ v (12)
max 166 R3 (V AT Ra'ﬂ) RZ max

This differential equation contains two dependent variables, Voax and T'max' A
second equation is thus required for a solution. We used the unsteady conduction
equation,

A-4
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-,33 +V ¢ VT = avz'l‘ (13)
t
evaluated at the point of maximum velocity and temperature perturbation along
the y axis, r = 1/¥3 (x =0, y =1/ ﬁ), for the required second equation.,
Finding the temperature gradient and Laplarian at x = 0 and y = lly’? from
Eqs.(3) and (4) and solving Eq.(13) yields:

. ' - Ar - l_ '

max 2R 'max 12 R2 Tmax (14)

A single differential equation in terms of Voax is obtained by differentiating
Eq.(12) and combining with Eq.(14):

vV  +1ppiPkEtls +ﬂ(1-::*1'6)’\7 -igz’--o (15)
max Pr max Pr max  ,./3 Pr
where the tilda denotes normalization of the veiocity to the characteristic
velocity, V/R; time to the characteristic time, Rzlv; and temperature to the
temperature difference, AT. The general solution of Eq.(15) is
ot m,t Ra
~ 1 2 1 \'
= Ce + C.e + (16)
max 1 2 384"5- Pr (1 - Ra“
9216 )
where
m - -6 _(.Z_P;?*'_l.). [1 _¢ -8 __;P_r__z Qa - -92_—-!:6)] (17)
(2Pr+1)
m, = -6 Q2Prtl) P;: 1 [1 +J1 S QP . 7 (1 - ——-—:’1’6)] (18)
(2Pr+1)

A-5
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Ra
c, = 65.2__1.’;:_*‘_11[”#1-3 Pr (1-““-)][(? ), = e 4 ]

2 9216 max’0 ~ 3843
(2 Pr +1) PeCl - :;Ts)
L -Ra“(?' )+ 25 ) -
16 Js Pr 16 max’ 0 max’ 0
12_(3_3'_:_&{- 9216) (19)
(2 Pr + 1)
(2 Pr + 1) 0 384Y3 , () _ M
9216
Rav RaH Yo - 26 V) -
16V- Pr 16 max 0 max’'0
(2 Pr + 1) Pr Ra,
21 - 8 —m——— (1 = ——=) (20)
Pr J (2 Pr + 1)2 9216

where the zero subscripts denote initial conditionms.

We are particularly concerned with the following sequence. First a vertically
downward gravity force is imposed until a steady state condition is reached. The
vertical gravity force is then removed, and a horizontal gravity force is imposed
until a new steady state condition is reached. Considering the instant of imposi-

tion of the horizoatal force as the starting time, the initial conditions are as
follows:

A-6
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(Ra,,)
(G;ax)o - R‘V :
384Y3 Pr

(Ra,,)
(T;‘x)o = _v_g._
9216V3

where (Ra )0 is the Rayleigh number corresponding to the initially imposed
v
vertical gravity force.

For this case, Eq.16 becomes:

(21)

(22)

- (V. ) 1 +

(2 Pﬁl)[l -Jl -8 —-35——-2 a - E‘i—)] -4pPr (1- j-‘-“-l)

(2 Pr+l) 9216 9216

Pr Ray
2(ZPH1)‘/;-8—————2(1-9:£—16)

(2 Pr+l)

|F

2Pr +1 Pr
exp { -6 ,1-J1-8————-—-(1- — )|t
3 Pr [ 2 Pr+1)2 9216
RAH

(2 Pr+l)[1 -‘/1 -8 —— Lz pr+1) a - 9216)] 4 Pr (1 - 9216)

naﬂ
2(2 Pr+1)J; -8 —— (Ll = =)
2 Pr+1)2 9216

2 Prel Pr Ray |
- L Ertl 1+\/1-s (a1 - =23 (23)
Pr [ 2 preny? 9216] ‘>

exp

A-7
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For Pr = 7 (water), Eq.(23) reduces to the following double exponential equa-
tions for the noted Rau values.

e Ra_ = -5000

H
Vo T ) = (- 0.69 e 276 T | 9 "22:96 T (24)
. RAH = +5000
VG g = 0.577 O TIZE | g 4gy 72495 T (25)

These equations are shown plotted in Fig. A-2 compared with GIM ~ode numerically
computed results for initial vertical Rayleigh number, (Rav)o. values of 1000

and 5000. Note that the analytical curves predict a flow reversal prior to an
eventual decay to a state of rest for the negative horizontal Rayleigh number
cases (RaH = -5000). The GIM code results show good zgreement with the analytical
results for Rau = -5000 for both the 1000 and 5000 (Rav)0 values. Good agree-
ment is also shown for the (Rav)0 = 5000, (Rav) = +5000 case. (Rav)0 = 1000,

Ra“ = +5000 care does not exhibit the same degree of agreement as the other

cases, but the exponential decay trend is roughly the £r:me for both the analytical

and numerical results.

A-8
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ABSTRACT

A numerical analysis was performed to compare natural convection
velocities in two-dimensional enclosures of various shape. The following
shapes were investigated: circle, square, horizontal and upright 2 x 1
aspect ratio rectangles, horizontal and upright half-circles, diamond
(square oriented with diagonal vertical) and triangle (equilateral with
horizontal base). 1In all cases, the length scale in the various dimen-
sionless parameters, such as Rayleigh number, is defined as the diameter of
the equal area circle. Natural convection velocities were calculated for
Rayleigh numbers of 1000 and 5000 with the temperature difference taken to
be across (a) the maximum horizontal dimemsion, (b) the median horizontal
line (line through centroid) and (c) the horizontal distance such that the
temperature gradient is the same for shapes of equal area. A Rayleigh
number of 1000 is within the '"low Rayleigh number" range for agreement with
first order theory for circular enclosures. A Rayleigh number of 5000 1s
slightly out of this range. For the class of shapes including the square,
upright half-circle and upright rectangle, the computed velocities were
found to agree very closely with that of the equal area circle when the
temperature difference is taken to be across the maximum horizontal
dimension (condition (a)). The velocities for the horizontal rectangle and
half circle were found to be approximately one-half that of the equal area
circle for the same condition. Better overall agreement among all shapes
was obtained by setting the temperature difference across a distance such

that the temperature gradients were equal for shapes of equal area.
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NOMENCLATURE
Symbol Description
d equal area circle diameter
g gravity force
R circle radius
Ra Rayleigh number = §f@£§£i
va
AT temperature difference
t time
v velocity
a thermal diffusivity
B volumetric coefficient of therwmal expansion
H dynamic viscosity
v kinematic viscosity, U /P
1% stream function
P density
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1. INTRODUCTION

A number of fluid mechanics experiments are to be performed aboard
orbiting spacecraft, primarily to investigate the possible use of the
near-zero gravity environment in various materials processing applications.
A knowledge of the intensity of convective stirring due to residual accele-
rations is required in order to properly plan and evaluate the experiments.
Various shaped containers will be used in these experiments. Theoretical
results have been obtained which yield exact predictions of natural convec-
tion velocities in an idealized container, i.e., the two-dimensional cir-
cular enclosure (Ref. 1). It would be helpful for estimation purposes if a
reasonable means existed for the extrapolation of the circular enclosure
results to more complex shapes. A previous study demonstrated extremely
good agreement in computed natural convection velocities for circular and
square enclosures of equal cross-sectional area (Ref. 2). Dressler (Ref. 3)
made use of this noted agreement in circular and square enclosure results,
in addition to the more general results documented herein, to analyze
natural convection in the proposed Lal, Kroes and Wilcox crystal growth
experiment to be performed infight on Spacelab 3. The purpose of this
investigation is to develop reasonable extrapolétion criteria by comparing
uumerically computed natural convection velocities for various two-
dimensional enclosure shapes with the circular enclosure results. The
Lockheed-developed General Interpolant Method (GIM) computer code (Ref. &)

was used in the numericai computations.
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2. METHOD OF APPROACH AND NUMERICAL SIMULATION

The following set of two-dimensional enclosure shapes was considerea:
circle, square, 2 x 1 aspect ratio rectangle in both upright and horizontal
orientations, half-circle in both upright and horizontal orientations,
diamond (square oriented with diagonal vertical) and triangle (equilateral
with horizontal base), The baseline condition was selected for equal area
with the temperature difference set across the maximum horizontal dimen-
sion, The initial temperature distribution was based on a uniform hori-
zontal gradient with the boundary points held constant in time. The gravity
vector wa: considered to be constant in the downward direction. The fluid
was assumed to behave as a boussinesq fluid in its thermal expansion

characteristics.

The numerical simulation was based on dividing the various enclosures
into a computational grid consisting of a network of generalized quadri-
lateral elements with curvilinear sides, with the nodal points located at
the four corners of each element. Each of the enclosures considered in this
study was treated as a generalized quadrilateral region divided by inter-
polaticn into an array of 20 x 20 elements. For example, the circle was

treated as a four-sided figure, each side being a quarter-circle arc.

The triangle was treated by forming a parallelogram such that two
adjacent sides and the diagonal formed the desired triangle. The entire
parallelogram was divided into a computational grid, but the diagonal points
were treated as boundary points., The parallelogram with the diagonal
boundary thus formed two independent triangular regions, The computational

grids for the enclosures considered in this study are shown in Figs. 1 - 5,
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The grids for the square and diawond are the same since the diamond is
simply a square with the diagonal in the upright position. The rectangle
and half-circle grids are identical in either the upright or horiszontal

positions.
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3. RESULTS

The velocity histories for the various shaped enclosures are shown in
Figs. 6 and 7 for Rayleigh numbers of 1000 and 5000. The various enclosures
are all of equal area, with the dimensionless velocities and Rayleigh
numbers defined based on a temperature difference AT across the maximum
horizontal dimension, and a length scale equal to the diameter d of the
equal area circle. Note that, for a Rayleigh number of 1000 the steady
state velocities of the equal area circle and square are very close to
identical, with the upright rectangle and half-circle being within about 5%
of the circle value. The horizontal rectangle and half-circle, and the
triangle steady state velocities form another grouping of values approx-
imately one-half the circle value. The diamond results appear approximately
midway between the two extremes. Roughly the same trend of steady state
values appear for a Rayleigh number of 5000. Overall, the steady state
velocities for the various equal area enclosures are in agreement within a

factor of approximately 2.

Response times for the various enclosure results are shown in Fig. 8
for both 1000 and 5000 Rayleigh number. Agreement within a factor of
approximately 2 1s shown for all enclosures. These response times are
defined as the time required to reach the fraction 1 - l/e (0.632) of the

maximum or steady state velocities, whichever is greater, in Figs. 6 and 7.

An attempt was made to find other bases for correlating the data to
yield better agreement between the results for the various shaped enclo-
sures. Including the base line correlation, described earlier, correlations
were made for the following sets of conditions concerning the distance over

vwhich the temperature difference was taken:

¢ Temperature difference across maximum horizontal dimension
(base line correlation).
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e Temperature difference across wedian horizontal line (line
through centroid)., Omnly the triangle and horizontal
half-circle results changed in this correlation from the
baseline correlationm,

o Temperature difference taken across a distance such that the
temperature gradient is the samc for all shapes.

The steady state results for the above sets of correlations are sum-
marized in Fig., 9 for a Rayleigh number of 1000, and in Fig. 10 for a
Rayleigh number of 5000. For each of the correlation sets, the length scale
in the Rayleigh number and dimensionless velocity is taken to be the diam-
eter of the equal area circle. A comparison of the three correlation sets
shows improved correlation for the triangle and horizontal half-circle by
taking the temperature difference across the median horizontal line rather
than the maximum horizontal dimension. Generally better correlation is
obtained by setting the temperature graadients equal, Thae is equivalent to
taking the temperature difference across a distance equal to the diamecter of

the equal area circle.

Computer generated streamline, absclute velocity cnd temperature con-
tour plots for all of the enclosures are shown in Figs. 1l through 34 at
steady state for both 1000 and 5000 Rayleigh numbers.
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4. CONCLUSIONS

Natural convection velocities within two-dimensional enclosures of
various shape, for Rayleigh numbers up to at least 5000, may be estimr :d
with reasonable accuracy by comsidering the area to be equivalent to a
circle of equal area, For the class of f.gures including the square,
upright half-circle, and upright 2 x 1 aspect ratio rectangle, excellent
agreement is obtained by considering the temperature difference across the
maximum horizontai dimension to be equal to that across the equal area
circle horizontal diameter. The agreeuwent of the two upright oblong shapes

indicates probable agreement for any similar upright oblong shape of roughly

the same aspect ratio.

The horizontal oblong shapes have natural convection velocities
approximately one-half that estimated based on the equal area circle with
the temperature difference across the maximum horizontal dimension taken to
be equal to that across the equal area circle diameter. As with the upright
shapes, this probably indicates a general pattern for similar oblong shapes

of roughly the same aspect ratio.
Better overall agreement among &all shapes is obtained by setting the

temperature difference across a distance equal to the diameter of the equal

area circle, thus making the temperature gradients equal for any shape.
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Plots for Circular Enclosure
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Fig. 12 - Absolute Velocity Contour
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Ra = 5000

Ra = 1000

Fig. 17 - Streamline Plots for Upright 2x1 Aspect Ratio Rectangular Enclosure
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Fig. 22 - Temperature Contour Plots for Horizontal 2x1 Aspect Ratio Rectangular Enclosure
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Fig. 23 - Streamline Plots for Upright Half-Circle Enclosure
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Fig. 28 - Temperature Contour Plots for Horizontal Half-Circle Enclosure
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Fig. 34 - Temperaturc Contour Plots for Triangular Enclosure
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