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1.0 SUMMARY 

This report summarizes the results of a study of thermal bus concepts. 
The purpose of the thennal bus will be to provide a nentralized thennal 
utility for large, multi-hundred kilowatt space platforms projected for the 
1990's. Objectives of the study were identification of the:nnal bus concepts 
and selection of the most promising concept(s) for development based on the 
results of system level trade studies. 

The study was conducted in three major tasks. A schedule of the study 
is presented in Figure 1. In Task I, concepts were generated, defined, and 
screened for inclusion in system-level thennal bus trades. In Task II, 
parametric trade studies were conducted with the concepts surviving Task I 
screening in order to define the operational envelope, performance, and 
physical character.Lst~cs of each. As a result of this task, two concepts were 
selected as offering the most promise for thermal bus development. Task III 
consisted of the study reporting including monthly progress reports, the final 
program briefing, and this final report. 

Four concepts were generated as a result of Task I. All of the 
concepts involved two-phase flow in order to meet the required isothermal 
nature of the thennal bus. Two of the concepts employ a mechanical means to 
circulate the work~ng fluid, a liquid pump in one case and a vapor compressor 
in another. Another concept uhlizes direct osmosis as the driving force of 
the thermal bus. The fourth concept was a high capacity monogroove heat 
pipe. After preliminary sizing and screening, three of these concepts were 
selected to carry into the trade studies. The monogroove heat pipe concept 
was deemed unsuitable for further consideration because of its heat transport 
limitations. One additional concept utilizing capillary forces to drive the 
working fluid was added at the Concepts Briefing at NASA's request. 

Parametric system-level trade studies were performed on the four 
concepts which were carried into Task II. Sizing and weight calculations were 
performed for thermal bus sizes ranging from 5 to 350 kW and operating 
temperatures in the range of 4 to l200 C (39 to 248°F). System level 
considerations such as heat rejection and electrical power penalties and 
interface temperature losses were included in the weight calculations. The 
following conclusions were reached as a result of the thermal bus trade 
studies: 

1. System weight is not a significant factor in selecting a thermal 
bus concept. The weight variation between the concepts was 
between 2 and 4% for all concepts except the osmotic concept 
which was approximately 15% heavier than the other concepts. 

2. Ammonia is the best working fluid from a weight and performance 
standpoint. It's toxicity and flammability, however, make it 
unsuitable for use in a manned cabin. Water is unattractive for 
a low temperature bus « 400 C) because of its low vapor 
pressure. 

3. The mechanical pump driven concept offers the most promise for 
near term development. It has good perfo:nnance characteristics, 
requires minimum development, and requires li~tle power (only 12 
W for a 350 kW bus). 

1 
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4. The capillary pumped concept offers promise as a passive heat 
transport system. Such a system would be self regulahng and 
would require no power input. However, its development risk is 
higher and up-front research and development of the capillary 
pump would be required. 

5. The osmotic pumped thermal bus concept offers good performance 
and a passive system. It has problems however with flow control 
and requires much research and development work. 

6. The electrical power weight penalty has a small effect on the 
total system weight for the compressor driven concept. However, 
the optimum system configuration is significantly impacted. 

It 

7. A redundant thermal bus is required for all of the concepts in 
order to reach the reliability goal of 0.99 for 10 years. In 
addi tion, redundant components and/or scheduled maintenance is 
required on a component level. 

As a result of this study the following recommendations are made for 
development of a thermal bus. 

1. Develop the thermal bus using the pump driven approach initially: 
build and test a thermal bus prototype, develop heat reject~on 
and temperature control techniques, develop the pump and heat 
exchangers. 

2. Develop the capillary pump separately: build and test a capillary 
pump and establish its characteristics and limitations. 

3. Continue laboratory materials and concepts studies for the 
osmotic pump module. 

3 



2.0 INTRODUCTION 

In previous space systems, thermal management has been achieved either 
passively or through the use of pumped liquids and electrical heaters. The 
Shuttle Orbiter and Spacelab are examples of this technology. Evolving future 
apace platforms, however, will require a much more Significant role of thermal 
management because of the multi-year mission durations, large quanti ties of 
waste heat to be dissipated, long physical distances involved, and variety of 
payloads and missions which must be accommodated by the platform. 

The idea of a thennal "utility" has evolved to effectively serve these 
growing thermal management needs. The central element of the utility concept 
is a Thermal Bus, which would provide the function of heat transport at a 
given temperature level(s). Desirable perfonnance requirements include: ,. 

o Provide a uniform thennal control source (cooling and heating 
insensitive to the addition or removal of loads) for space 
platform electrical, life support, mechanical, scientific, and 
experimental equipment. 

o Provide heat load/payload interfaces. Accommodate payload change 
wi th maximum ease of interfacing (connection and disconnection) 
and with minimum impact to other payloads. 

0, Transport the heat from payloads to the heat rejection system for 
rejection. 

o Provide interface with the heat rejection system which permits 
flexibility in maintenance, growth, and reconfiguration. Provide 
the heat load control. 

, 
The primar,r purpose of this study was to perform a parametric system 

level trade study of prom1sing thennal bus concepts in order to se~ect one or 
more concepts for development. 

4 
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,.0 REQUIRro1ENTS, GUIDELINES AND CONSTRAINTS 

In the overall scheme of central the mal management, the thermal bus 
would be most useful if heat could be added or subtracted at several 
locations, and if the bus provided a constant temperature source or sink 
insensitive to the quantity or distribution of heat added or subtracted. 
Since heat sinks are needed at various temperature levels (i.e., about 40C 
(40°F) for condensing heat exchangers in manned modules, 20°C 400C 
(68°F - 104°F) for many equipment items, and on the order of l200 C 
(248 F) for· space processing furnaces), and interfacing modules may have 
shorter thennal bus length requirements, it is possible that a single bus 
concept will not be optimum for all cases. The objectives of our Requirements 
and Guidelines were to pennit the detennination of the most promising concepts 
and their regions of applicability. 

Figure 2 lists the Requirements, Guidelines and Constraints used in 
this study. They were meant to provide the needed guidance to conduct a 
meaningful trade study while not being restrictive to the point of excluding 
potential concepts which may offer advantage in only a part of the entire 
spectrum of interest. 

5 
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FIGURE 2 

REQUIREMENTS, GUIDELINES AND CONSTRAINTS 

PERFORMANCE 

• 

• 

Desired capability for localized heat 
Haa t Remova 1 Load : 

Te mp era ture s 
Localized Heat De1iver,y 
Isothermal Character 

: 

· · · · 

removal or deliver" 
5 kW to 350 kW, Max/Min Load 
Ratio 10 to 1 
40 to 1200 (400 F to 2500F) 
o to 50 kW 
Goal of 50 C band 

PHYSICAL CHARACTERISTICS 

Centralized System Length 
Interfacing Module Length 
Minimum Weight and Volume 

: 15 m to 50 m (50 ft to 164 ft) 
: 3 m to 15 m (10 ft to 50 ft) 

DESIRED OPERATIONAL CHARACTERISTICS AND TIMING 

• 

Modular growth capability 
On-orbit reconfiguration capability 
Capability for simple make and break of interface with equipment 
Minimize monitoring and control required 
Minimize on-orbit maintenance 
Early 1990's technology readiness 

ENVIRONMENTS 

• 
• 

• 

Pressurized compartment or unpressurized area 
Assume thermal control and micrometeoroid protection is provided by 
surrounding structure in either case 
Launch vibroacoustic and acceleration per Space1ab User's Handbook 
(pressurized module and pallet) 

INTERFACES 

• Not to be addressed in detail in this parametric study - but concepts 
should not preclude feasible interfaces 

• Consider open-fluid or heat exchanger interfaces between modules 

I • 
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FIGURE 2 (CONT'D) 

REQUIREMENTS, GUIDELINES AND CONSTRAINTS 

TRADE PENALTIES 

-. 

• Power 
Launch r.osts 
Heat Rejection 

: 45 to 159 kg/kW (100 to 350 lb/kW) 
: $1540/kg ($700/1b) 
: From constructable radiator concepts in 

NAS;-22270 at -40or, environmental 
• 

sink 

SAFErY 

• 

No toxic or flammable fluids in pressurized compartments 
Fluid toxicities compatible with practical ground handling tor bus in 
unpressurized areas 
No contact temperatures above 450 r, (ll;oF) 
General guidelines trom Rockwell Blase B Modular Space Station • 

• 

RELIABILITY 

10 year life design goal at 0.99 probability (where practical) 
• Redundancy and minimal maintenance to achieve life goal 

Indetinite life with further maintenance 
• Minimize moving parts 

OTHER 

• Minimum life cycle cost 
• Minimum vibration 
• Minimum EM! generation 
• Minimum contamination threat to payloads 
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4.0 CONCEPT GENERATION 

The purpose of a thermal bus, in analogy to an electrical bus, is to 
provide a uniform thermal control source (cooling or heating insensitive to 
the addition or removal of loads) for space platform electrical, life support, 
mechanical, scientific, and experimental equipment. 

Because of the isothermal requirement of a 50 C (9 0 F) temperature 
band for the thermal bus, only concepts employing two-phase flow were 
considered. During Task I, four concepts were identified as candidates for a 
thermal bus. Those concepts were a mechanical pump driven system, a vapor 
compressor driven system, an osmotic heat pipe system, and a high-capacity, 
monogroove heat pipe. Preliminary sizing of these concepts were performed 
during Task I in order to screen these concepts for inclusion in the system 
level trade studies. 

As a result of this preliminary screening, it was decided that the 
monogroove heat pipe concept of Roference 1 was unsuitable for use over much 
of the heat load range of interes~ because of its heat transport limitations. 
Figure 3 illustrates a cross-section of the monogroove heat pipe design. This 
design ends up being wall wick limited for most cases, i.e., there is a limit 
on how large the diameter may be without drying out the circumferential 
grooves on the wall of the evaporator vapor passage. As a result, the 
capacity of the heat pipe cannot be increased by increasing the heat pipe 
diameter past some limit. Figure 4 presents the maximum heat -transport 
capability in kilowatt-meters of the monogroove heat pipe for various 
temperatures and fluids. Figure 5 shows how this heat transport limit 
translates into maximum heat load as a function of heat pipe transport 
length. Because of the relatively low heat loads that can be transferred ovor 
long distances, this concept was not carried into the Task II trade studies. 

At the suggestion of NASA/JSC another concept was added to replace the 
monogroove heat pipe. This concept is a capillary pumped concept which was 
first proposed by the Lewis Research Center in 1966 (Reference 2) and is 
described in Section 4.2. 

4.1 CONCEPT 1 : MECHANICAL PUMP DRIVEN 

The mechanical pump driven concept is illustrated schematically in 
Figure 6. A pump located in the' liqUid portion of the loop provides the 
driving force for circulation of the working flu~d. The evaporators, located 
in parallel, could be flow-through heat exchangers such as a tube-in-shell 
heat exchangers or coldplates. Flow to each evaporator could be controlled by 
metering the liquid flow. This may be done by controlling the pressure drop 
through each evaporator with orifices to get the desired flowrate. The flow 
distribution would be set beforehand to allow adequate flow for the maximum 
heat load expected at each evaporator. At less than full heat input, all of 
the liquid will not be evaporated and there will be a vapor/liquid mixture 
exiting the evaporator. The vapor flows to the condenser where it is 
condensed to a slightly sub-cooled state. A pre-charged accumulator 
(pressurized with gaseous nitrogen) located just upstream of the pump sets the 
saturation pressure of the loop (and therefore the evaporating and condensing 
temperatures) at the desired level. The loop pressure may be set at a fixed 
value or, if different temperature set points are desired, a pressure 
regulating device may be used to vary the accumulator pressure. 
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VAPOR PASSAGE, Dv 

MONOGROOVE GAP 

LIQUID PASSAGE, DL 

HIGH CAPACITY MONOGROOVE HEAT PIPE DESIGN 

FIGURE 3 
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The pump for this concept could be a centrifugal pump. The pump 
flowrates requlred are presented ln Figure 7 for var~ous heat loads, work~ng 

fluids, and temperatures. figure 8 g~ves the performance characterlstlcs of 
the Orblter coolant pumps. It can be seen that two Orbiter Freon 21 pumps ~n 

parallel could pump 28.2 l/m~n (7.45 gal/m~n) which is close to the 
requ~rement of 29 l/m~n (7.66 gal/m~n) for a 200 C, 350 kW thermal bus w~th 
ammonia as the work~ng flu~d. A problem w~th us~ng a centr~fugal pump ~s its 
lim~ted lifet~me. It seems unl~kely that such a pump could operate 
contlnuously for the des~red 10 year l~fet~me of the thermal bus. Redundancy 
or replacement of the pump package would be necessary to meet thls goal. 

Another poss~bil~ty for pump~ng of the llqU1d 1S a b1morph pump concept 
such as the one descnbed 1n Reference 3 and ~llustrated 1n F~gure 9. The 
advantage of th1S pump concept 1S that 1t has few mOV1ng parts and therefore 
should have a long I1fet1me. Th~s concept makes use of the unique 
characterist1cs of b1morph elements. A b1morph is made up of two layers of 
ferroelectric crystal or ceram1C cemented together w~th electrodes attached as 
illustrated 1n hgure 9. Apphcahon of an electnc voltage to the bimorph 
causes it to bend due to the p~ezoelectnc effect of the ferroelectnc 
crystals. Revers~ng the voltage causes the b1morph to bend 1n the opposite 
direction. The author of Reference 3 constructed a cyhndncal pump made up 
of b~morph elements separated by an elast~c mater1al. By supplying an 
alternat~ng current to the electrodes, the volume of the pump ~s var1ed 
resulting 1n llqu1d flow through the check valves as shown. The pump Narasak1 
buil t and tested ~s l11ustrated 1n F1gure 9 with dlmenslons glven ln mm. 
Flgure 10 presents exper~mental flowrates ach1eved w1th th~s pump. The flu1d 
used 1n the exper1ments was not 1dentLfied but reportedly had a V1SCOS1ty of 2 
cSt. The pressure nse ava11able w~ th th1S pump was not reported but the 
effic1ency was glven as between 4 and 10%. A literature search was conducted 
to find any other references of bimorph v1brator pumps but none were found. 

4.2 CONCEPT 2 : CAPILLARY PUMP DRIVEN 

The capillary pumped concept is ~l1ustrated schemat1cally 1n F1gure 
11. Th1S concept makes use of cap111ary forces to dr1ve the work1ng flu~d as 
1n a heat p1pe. The evaporator and the pump are one and the same. In th~s 

concept the liqU1d and vapor phases are separated by a w1ck 1n the evaporator 
and there 1S vapor flow only 1n the vapor line. As 1n the mechan1cal pump 
driven concept, the temperature of the thetmal bus is set by a pressur~zed 

accumulator. 

The evaporator ~n th1S concept is a capillary pump illustrated in 
Figure 12. Th~s evaporator concept is s~m~lar to one reported ~n References 2 
and 4. The pump ~s made up of an aX1ally grooved pipe with a wick on 1 ts 
interior surface as shown. Th1S w1ck may be a quartz felt as 1 t was ~n 

Reference 2 or a metal felt. The liquid, Wh1Ch should be Sllghtly subcoo1ed, 
enters the pump as illustrated and saturates the w~ck. Heat 1S appl~ed to the 
exter10r surface of the evaporator and is conducted through the fins to the 
wick interface. At this p01nt the 11qu1d 1S evaporated out of the saturated 
wick. The evaporat1on of liquid results 1n h1ghly curved liqU1d-vapor 
interfaces (men~sc1) in the w~ck pores Wh1Ch' provl.des the capillary pressure 
rise to dr1ve the fluid. The magn1 tude of thl.s cap111ary pressure 1S a 
function of the w~ck pore Slze and the surface tension of the work1ng fluid. 
By choosing a wlck with a very small pore s~ze, a relat~vely large pressure 
rise may be achieved. figure 13 shows the capillary pressure nse aval.lable 
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FIGURE 7 
PUMP REQUIREMENTS 

HEAT LOAD TEMP FLOW RATE (l/min) 

(kW) (OC) NH3 R-11 H2O 

5 4 0.37 1.1 -
20 0.42 1.1 -

120 2.0 1.8 0.14 

25 4 1.9 5.2 -
20 

. 
2.1 5.5 -

120 9.9 9.1 0.70 

350 4 26 73 -
20 29 . 77 -

120 138 128 9.8 

FIGURE 8 
PERFORMANCE CHARACTERISTICS OF ORBITER PUMPS 

PUMP 

SPACE LAB 

ORBITER 

SPACELAB 

ORBITER 

FLUID 

WATER 

WATER 

F-21 

F-21 

14 

FLOW (l/MIN) liP (kPa) 

3.90 134 

7.23 372 

16.7 352 

14.1 483 

1 ---... -_~, ___ ------

, , 
I 

I 

~ I 
f 
I· 
f 

I 
I 

I , 
I 
! 
I 

I 
I 



... 
\J1 

.. 
FIGURE 9 BIMORPH PUMP CONCEPT 
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FIGURE 10 
EXPERIMENTAL CAPACITIES OF BIMORPH PUMP* 
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FIGURE 11 
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FIGURE 12 
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EFFECT OF WICK PORE DIAMETER ON CAPILLARY PRESSURE 
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as a function of pore diameter for ammonia and water at various temperatures. 
For this study an effective pore diameter of 25 l1m (9.8 x 10-4 in) was 
assumed. This results in a pressure rise of approximately 3.5 kPa (0.5 
Ib/iIF) with ammonia and 10 kPa (1.5 Ib/in2 ) with water. A challenge with 
such a system is to design it such that the total pressure drop is lower than 
these values. This requires larger flow cross sectional· areas than in the 
mechanically pumped concept. 

4.3 CONCEPT 3 : OSMOTIC PUMP DRIVEN 

The osmotic pump driven concept is illustrated in Figure 14. This 
concept employs direct osmosis as the driving force to circulate the working 
fluid. An osmotic pump module is located just upstream of each evaporator. 
This osmotic pump module consists of an osmotic membrane separating pure 
solvent on one side of the membrane and a solvent-solute mixture (SOlution) on 
the other side. The pure solvent flows through the semi-permeable membrane 
and into the concentrated solution due to direct osmotic forces. The membrane 
is impermeable to the solute. Large pressure differentials, orders of 
magnitude greater than that of capillary wicks, may be achieved with osmotic ~ 

pumping. This provides the capability to transport large amounts of heat over 
long distances with a passive device. 

In the evaporator, the solvent is evaporated leaving behind the 
solute. A wick structure must be employed in the evaporator to prevent solute 
from being carried over with the solvent vapor and "poisoning" the system. 
The pumping force of the osmotic membrane is dependent on the concentration 
gradient across it. If solute is carried to the solvent side of the membrane 
this pumping action will be degraded as the concentration gradient is 
lessened. Eventually the concentration gradient could become so low that 
pumping would cease. 

Extensive testing of osmotic heat pipes has been performed by Hughes 
Aircraft Co. under Air Force funding (References 5 and 6). During this study 
Hughes was given a subcontract to provide support in generating concepts for 
an osmotic thermal bus and in predicting performance and weights of such a 
system. 

To date,· all of the testing of osmotic heat pipes has been with 
cellulose acetate membranes, water as the solvent, and sucrose as. the solute. 
This combination, however, is not compatible over the entire range of 
operating temperatures to be addressed in this study. The vapor pressure of 
water is too low for operation at temperatures much below 400C (1040F). 
Sucrose breaks down and oxidizes at temperatures near 1000C (2120F). 
Also, the cellulose acetate membrane cannot withstand sustained operation at 
temperatures higher than 750C (167°F). 

For these reasons, an advanced technology approach is proposed which 
would extend the operating capability throughout the desired temperature range 
of 4°C to 1200C (3g0 F to 2480F). The recommended approach consists of 
a Polybenzimidazole (PBI) membrane, ammonia or methanol as the solvent, and 
aluminum sulfate as the solute. This approach will require extensive 
development befo re it can be implemented. It is felt the t methanol and 
ammonia will be compatible with PBI. However, compatibility and membrane 
pumping experiments are recommended. A detailed investigation of solutes was 
not conducted. Aluminum sulfate was selected primarily because of it's good 
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• 
solubili ty and separation characteristics with water. It IS solubility and 
separation characteristics with methanol and ammonia must be investigated, 
however. 

In order to apply osmotic heat pipe technology to space applications, a 
means for operating in a zero-g environment must be devised. With the 
non-existence of gravitational forces to contain the liquid, the capillary 
attraction forces of wicking material is required to eliminate any 
free-floating or unattached liquid. In addition, a means is necessary to 
actively direct the concentrated solution at the evaporator towards the 
membrane where it can mix with dilute solution and increase the concentration 
in the vicinity of the membrane to promote increased osmotic pressure. In 
one-g operation this function is carried out by free-convection currents 
induced by gravitational forces. Several techniques have been considered to 
induce return of solute to the osmotic membrane during zero-g operation. The 
two most promising of these are an electrostatic technique and a displacement 
technique. 

The electrostatic technique. is illustrated in Figure 15. By using an 
electrolytic solute such as aluminum sulfate, a voltage could be imposed 
across the membrane to maintain the solute concentration in the vicinity of 
the membrane surface. The required voltages are very small. Figure 16 shows 
the voltage required for several electrolytes. This concept is not a 
circulation technique but merely a means of holding the solute ions in place. 
Consequently it requires little or no power consumption. Any slight current 
leakage would be due to secondary currents in the electrolyte and could be 
determined experimentally. 

If the solvent flow can be preferentially channelled (e.g. path of 
least resistance) then the solvent pumping velocity can be used to drive the 
solution circulation. As the solvent flows through the membrane into the 
solution compartment, it carries a portion of the solution with it toward the 
evaporator. If a return line is prOvided, new solution will be drawn into the 
module to maintain continuity. Likewise, when the dilute solution reaches the 
evaporator the solvent will evaporate and the resulting concentrated solution 
will be displaced from the evaporator. Figura 17 illustrates an evaporator 
concept that will provide for return of the concentrated solut10n back to the 
pump module. It is similar in construction to the capillary pump descr1bed 
earlier. 

Another consideration for O-g operation is the control technique. A 
flow control technique is necessary since the osmotic pumping rate is not 
coupled to the heat input rate as in a capillary pumped heat pipe. Without a 
means of control, the solvent will continue to flow at a constant rate into 
the solution compartment even after the heat input is reduced or shut off. If 
this is allowed to happen, the solution will eventually be forced through the 
wick and into the solvent compartment. 

Three possible techniques for O-g control are solvent depletion, 
control valve, and potential difference. The most simple and direct approach 
is to size the solvent condensate volume such that it can be stored in the 
evaporator or an accumulator on the solution side of the membrane under a 
no-load condition. Pumping will stop when all of the solvent has been pumped 
into the solution side. A control valve may be used to regulate the flowrate 
if it is located on the solvent side of the loop. Otherwise the solvent would 
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FIGURE 15 
ELECTROSTATIC TECHNIQUE FOR SOLUTE RETENTION 
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continue to flow across the membrane until the full osmotic pressure of 
several hundred psi is reached. This could damage the membrane or membrane 
seals. Finally, ~f the electrostatic method of solute retention is used, the 
applied voltage could be varied to control the concentration of ions near the 
membrane surface and therefore control the flowrate of solvent across the 
membrane. Although each of these control concepts appear feasible for on/off 
control, their ability to accurately control flowrates at reduced loads is 
uncertain and would have to be verified by laborator,y experiments. 

In order to reduce weight, it is desirable to reduce the volume of the 
osmotic membrane modules. This may be accomplished by increasing the ratio of 
membrane surface area per unit volume. Two types of compact osmotic membrane 
modules, spiral wound and hollow fiber, have been investigated. Figure 18 
illustrates the increased performance per unit volume of these types of module 
over a shell-and-tube type. Figures 19 and 20 illustrate the spiral wound and 
hollow fiber modules respectively. 

4.4 CONCEPT 4 : COMPRESSOR DRIVEN 

The compressor driven concept is illustrated schematically in Figure 
21. This concept employs a vapor compressor, located just upstream of the 
condenser, to circulate the working fluid. The advantage of this concept over 
the mechanical pump driven is that the condenser is at the highest pressure 
(and therefore the h~ghest temperature) point ~n the loop - rather than the 
lowest pressure point. This results in reduced radiator area and weight. A 
disadvantage however, is the increased power required by the compressor 
compared to a pump. Temperature control in this concept, as in the previous 
ones, is maintained by a pressurized accumulator. 

Because of the nature of vapor compressors it is necessar,y to avoid a 
liquid/vapor mixture entering the compressor. This requires a wicked 
evaporator to separate the liquid and vapor phases. The proposed evaporator 
design for this concept is the same as for the capillar,y pump shown prev~ously 
'in Figure 12. In order to control the pressure d~fferential across the wick 
so that liquid is not forced into the vapor passage, a pressure regulator is 
required as illustrated in Figure 21. 

4.5 RADIATOR CONTROL CONCEPTS 

In order to assure that the liquid entering the evaporators is 
saturated or slightly subcooled under varying loads and radiator sink 
temperatures, a means of radiator or heat rejection control must be devised. 
Otherwise, at low loads or low sink temperatures, the liquid returning from 
the radiator/condenser interface could become subcooled to the point that 
evaporation would not take place in the evaporators and the thermal bus would 
no longer operate as a isothermal, two-phase device. Two concepts proposed 
for radiator control with any of the themal bus concepts are a passive 
regenerative concept and an active radiator bypass control concept. 

The passive regenerator concept is illustrated in Figure 22. Vapor 
flowing to the condenser first flows through a regenerative heat exchanger 
where it reheats the subcooled return liquid to a slightly subcooled or 
saturated state. At the design maximum heat rejection level, the temperature 
of the liquid leaving the condenser will be only slightly lower than the vapor 
temperature and no heat transfer will occur in the regenerator. However, at 
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a reduced heat load the condenser return will be subcooled and heat will be " 
transferred to the liquid return. As a result, some of the vapor will be 
condonsed in the regenerator and the vapor entering the condenser will be at a 
lower quality. This in turn results in an even lower liquid outlet 
temperature and, therefore, a lower average radiator temperature. The 
radiator will eventually reach a steady state temperature that will allow the 
radiator heat rejection to match the heat input at the evaporators. This 
concept offers promise of a passive, highly reliable means of heat rejection 
control, however, the method is untested and would require some development. 
Because of its passive nature this concept was baselined for all thermal bus 
concepts. 

An alternate, active radiator bypass control concept illustrated in 
Figure 23 uses an active control valve to bypass some of the vapor by the 
radiator to mix with the liquid condenser return. A temperature sensor 
located downstream of a mixing chamber measures the mixed liquid temperature 
and an electronic controller adjusts the amount of bypass to control this 
temperature to a slightly subcooled value. This concept is less reliable than 
the regenerative method and would require development of a control. valve to 
handle two phase flow. 
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5.0 TRADE STUDY RESULTS 

The four thermal bus concepts surviving the Task I screening were 
included in parametric, system-level trade studies during Task II. System 

• level considerations such as heat rojection penal ties and electrical power 
penalties were included in order to obtain a fair comparison between the 
concepts since radiator temperature and ,pump power are both functions of 
pressure drop. A heat rejection penalty of 5.9 kg/m2 (1.2 lb/ft2 ) was 
imposed based on the required radiator plan area. The radiator area was based 
on the following assumptions: a two-sided radiator, equivalent sink 
temperature = -400 C (-400 F), fin effectiveness = 0.90, emissivity = 0.76 
(silver Teflon coating), and a 50 C (9°F) temperature drop between the 
condenser and the radiator. A power penalty of 159 kg/kWE (350 Ib/kWE) 
was assumed based on current power system designs. In addition, the 
compressor driven concept was also evaluated at a power penalty of 45 kg/kWE 
(100 Ib/kWE) in order to evaluate the effect of low-weight, advanced 
technology power systems on this concept. System weights were calculated 
parametrically as a function of thermal bus size (heat transport capacity and 
transport length), temperature, transport line diameters, and working fluid. 
Pressure drops, power requirements, radiator area, weights, and 10-year 
reliabili ties were calculated. A trade matrix was developed in order to 
compare the thermal bus concepts based on these quantitative as well as 
qualitative elements. 

Four sizes of thermal bus were evaluated for each concept. The heat 
loads for these sizes ranged from 5 to 350 kW and the thermal bus length 
varied from 19m to 50m (62 to 164 ft.). The number, arrangement, and maximum 
heat input of the payload interfaces are shown in Figures 24 through 27 for 
each of the four cases. Thermal bus evaporator temperatures assumed were 4, 
20, 40, and 1200 C. Working fluids evaluated included ammonia, Freon 11, and 
water. Figure 28 presents a matrix that shows the design points at which each 
concept was evaluated. 

5.1 WEIGHT AND SIZING ANALYSIS 

At each design point, thermal bus weight was calculated as a function 
of vapor line diameter in order to find the weight optimum diameter. For 
simplicity in calculations, the liquid line diameters were sized such that the 
liquid flow pressure drop equaled the vapor flow pressure drop •. The weight 
calculated included the line weight, fluid weight, radiator weight, and power 
penalty weight. Heat exchanger and pump weights were not included at the time 
since they were not functions of line diameter. After the weight optimum line 
size was determined, the heat exchanger, pump, an~ accumulator weights were 
calculated to include in the total thermal bus system weight. For the 
capillar,y pump driven concept, the weight optimum line diameter usually 
resul ted in a pressure drop greater than the pressure rise available with 
capillary pumping. In this case the minimum diameter that resulted in a 
suitably low pressure drop was determined, as discussed in Section 5.1.2. 

The results of the optimum weight calculations are presented in Figure 
29. The conclusions that can be reached from this figure are: 

1. Ammonia is the best working fluid (lowest thermal bus weight) 
over the entire temperature range. 
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2. With ammonia, the concept weights are within 5% of each other 
except for the osmotic concept which is 10-24% heavier. 

3. The capillar,y pumped concept is heavy at l200 C with both 
ammonia and Freon 11 but is the lowest weight concept with water. 

4. If the low power penalty (45 kg/kW) is assumed, the vapor 
compression concept is the lowest weight in all cases except with 
water. 

A detailed breakdown of weights, line sizes, power, and radiator area 
for each concept and design point are presented in the Appendix. 

5.1.1 Mechanical Pump Driven • 

The mechanical pump driven thermal bus was sized as discussed in the 
previous section. In calculating weights, it was assumed that the evaporator 
was a flow-through heat exchanger such as a shell-and-tube type. Only the 
weight of the tubes was calculated; the payload side of the heat exchanger was 
not included. The assumption of a flow-through heat exchanger required a 
larger accumulator than would have been necessar,y with a wJ.cked evaporator. 
Since under a low or no-load condition the vapor passage can be almost 
completely filled with liquid, the accumulator was sized large enough to 
contain the entire vapor volume of the thermal bus. In calculating pump 
weight it was assumed that there were two centrifugal pumps with one being 
redundant. 

5.1.2 Capillarr Pump Driven 

As mentioned previously, the weight optimum line diameters for the 
capillar,y pump driven concept usually resulted in a pressure drop larger than 
the capillar,y pump could overcome. By plottJ.ng the thermal bus pressure drop 
as a function of vapor line diameter, the minJ.mum diameter that would still 
allow capillar,y pumpJ.ng could be found. In calculating the maximum pressure 
rise available with capillary pumping, a 2511 m (9.8 x 10-4 in) pore diameter 
was assumed. Metal felt wicks of this pore size are readily obtainable. 

Figures 30 through 33 illustrate the effect of line diameter on the 
capillar,y pump thermal bus weight for different bus sizes assuming ammonia as 
the working fluid. The weights shown include lines, fluid, power penalty, and 
radiator p6lnalty. Also shown in the figures is the point at which pressure 
drop equals capillar,y pressure rise. At diameters larger than these values, 
capillary pumping is achievable. It is evident from these figures that, 
although line diameters much larger than the optimum values are required, the 
impact on weight is small due to the flatness of the curves. Part of the 
reason for this flatness is that the radiator weight is dominant and the line 
weight is a relatively small percentage of the total. Also, the increase in 
line weight with increasing diameter is partly offset by the decreasing power 
penalty and radiator weights which occur because of reduced pressure drop. 

5.1.3 Osmotic Pump Driven 

Experimental performance data was used by Hughes to scale-up and 
predict osmotic pump performance and sizes. Baseline design parameters were 
established from experimental data of a prototype Hughes osmotic heat pipe 
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.c~ntaining a cellulose acetate, spiral-wound membrane and a 1 molality 
(molality is defined as the number of moles of solute per lOCOg of solvent) 
water/sucrose working solution (Reference 6). Figure 34 ahows that the 

• osmotic pressure rise with such a combination is approximately 2.8 x 106 
N/m2 (400 lb/in2). The membrane was contained in a cylindrical module 
7.32 cm (2.88 in) in diameter and 28.58 cm (11.25 in) in length. The unit was 
tested to 500 watts in 1-g at temperatures of 40 to 600 C (104 to 1400 F). 
Dimensional and detail information of a more compact hollow-fiber membrane 
module was used in conjunction with performance data from the spiral-wound 
module to obtain a second set of baseline design parameters. Inherent in this 
approach is the assumption of a viable solution circulation technique to 
permit equal pumping rates across a unit membrane area. Although this is an 
optimistic' assumption, it does portray the improvement expected from future 
development. Performance predictions at temperatures below 200 C (680 F) 
introduces the evaluation of ammonia as a working fluid and corresponding new 
membrane materials. Sufficient osmotic pump performance data with these 
fluids is not available. The expectation of successful future developments 
justifies assuming new membrane/solution combinations performing equivalent to 
the baseline. The baseline units were constructed of copper and were not 
weight optimized. For this study it was assumed that the module container was 
made of stainless steel and wall thicknesses were based on containment of the 
working fluid vapor pressure. 

Osmotic pump performance and size predictions were performed for both 
the spiral-wound and hollow fiber designs. Scaling up for heat load increases 
was accomplished by keeping the module length constant and increasing module 
diameter as necessar,y. Figures 35 and 36 present the results of module sizing 
for the spiral-wound and hollow fiber designs, respectively. The compactness 
advantage of the hollow fiber construction is evident in the smaller volume 
and weight. Figures 37 and 38 present the module component weights for the 
spiral-wound and hollow fiber designs, respectively, with water as the working 
fluid. For the purposes of this study the hollow-fiber module design was 
assumed in calculating the osmotic thermal bus weights. The osmotic pump 
weights used for the various evaporator heat loads are presented in Figure 39. 

5.1.4 Compressor Driven 

In sizing the compressor driven thermal bus concept, two electrical 
power penalties were used. The standard 159 kg/kWE penalty (used for the 
mechanical pumped concept also) was meant to be typical of current power 
system designs. The lower 45 kg/kWE penalty was used to evaluate the effect 
of potential advanced technology power systems on this concept. Figures 40 
through 42 compare the weights of the compressor driven concept with these two 
power penalties. Also shown for comparison is the mechanical pumped concept 
weights. These figures show that with the 159 kg/kWE power penalty, the 
compressor driven concept offers no significant weight advantage over the 
mechanical pumped concept and, in fact, is heavier in most cases. However, 

. with the 45 kg/kWE power penalty, the compressor driven concept does offer a 
_ weight advantage over the mechanical pump concept in some cases. The most 

'significant weight advantage is at the low design temperature (40 C), where 
the optimum diameter also varies significantly. At low temperatures, close to 

·the assumed sink temperature, a change in radiator temperature has a larger 
effect than at higher radiator temperatures. Reducing the flow passage 
diameters increases the pressure arop which both decreases the radiator weight 

'(by increasing radiator temperature) and increases the power penalty weight. 
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SPIRAL-WOUND MODULE COMPONENT WEIGHTS 
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HOLLOW-FIBER MODULE COMPONENT WEIGHTS 
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FIGURE 39 
OSMOTIC PUMP MODULE WEIGHTS 

T MODULE SIZE MODULE WEIGHT(KG) 
( °e) (kW) AMMONIA* WATER 

4 1 3.17 -
5 14.0 -

12.5 36.1 -
25 73.9 -
50 154 -

20 1 3.28 -
5 14.5 -

12.5 37.3 -
25 76.5 -
50 159 -

40 1 3.50 2.09 
5 15.4 9.3 

12.5 39.7 22.4 
25 81. 4 43.9 
50 170 86.9 ---~-:23 

.--
120 1 -- -- -------

5 
, - 9.86 

12.5 - 23.8 
25 - 46.5 
50 - 92.0 

* CONTAINER WEIGHT BASED ON VAPOR PRESSURE AT 40°C 
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. FIGURE 40 
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FIGURE 41 
COMPARISON OF PUMP AND COMPRESSOR DRIVEN CONCEPTS 
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5 6 

FIGURE 42 
COMPARISON OF PUMP AND COMPRESSOR DRIVEN CONCEPTS 
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For the 4°C thermal bus, as diameter is decreased the reduced radiator 
weight mo re than offsets the increased power penalty weight up to a pOint. 
The "result is a smaller optimum line diameter but much higher power 
requirements. 

5.2 RELIABILITY, REDUNDANCY AND MAINTENANCE TRADE STUDY 

A trade study was conducted to determine the maintenance and redundancy 
approach to achieve the reliability goals delineated in Requirements and 
Guidelines (Figure 2). The reliability goal was a 0.99 probability of no 
failure for a 10 year life. 

The components of each of the four concepts were identified and failure 
rates assigned based on previous studies (References 7 and 8). A listing of 
the components for the four concepts with the corresponding failure rates are 
presented in Figures 43 through 46. The number of components for the four 
cases considered, i.e. heat loads of 5, 25, 150 and 350 kW, are also given 
wi th the summation of failure rates for each case. Failure rates are also 
given for selected redundant components. The redundant components were chosen 
based on the criteria of both having high failure rates and being logically 
feasible to place fully redundant components into the configuration. For 
Concept 1 the pump and accumulator were considered redundant, for' Concept 2 
the accumulator only, for Concept 3 the osmotic pumps and the accumulator and 
for Concept 4 the compressor, accumulator and bypass valve. 

Figures 47 through 49 show the effect of maintenance on the system 
~liability. Selected components were considered for replacement at intervals 
)f 5 years (1 replacement), 3-1/3 years (2 replacements), 2 years (4 
replacements) and 1 year (9 replacements). The effect on reliability for 
Jingle system/single component approaches are shown. In no case did 
~eplacement result in reliability near the 0.99 goal. 

Figure 50 presents the 10 year life reliability for the four concepts 
Ind four cases. Reliabilities are given for: single system single 
:omponents, single system - redundant components, and redundant system -
oedundant components. These reliabili ties were calCUlated using the failure 
'ate data given in Figures 43 through 46. The single system - single 
omponent reliability is calculated by: 

-tAt R=e 
\ 

R a probability of no failure for period of time, t 
t .. design life 
A - failure rate, No. of failures/time 

1e reliability of redundant components is found from: 

R - -At + A (-At -(A + As)tl -e - e -e 
As 

R .. pro babi li ty of no failu're 
A- - component failure rate 
As .. failure rate of failure detection and switch system 
t - design life 
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FIGURE 43 FAILURE RATES FOR CONCEPT 1 - PUMP DRIVEN 

SINGLE COMPONENT 
FAILURE RATE ).. 

COMPONENT CASE QTY x 10-6 HRS 

PUMP ALL 1 2.9 

ACCUMULATOR ALL 1 0.22 

EVAPORATOR HX 5 kW 5 0.20 
25 kW 5 . 0.20 

150 kW 8 0.20 
350 kW 12 0.20 

LINES ALL 100 M 0.05 

CONDENSER HX ALL 1 0.20 

REGENERATIVE HX ALL 1 0.20 

TOTALS 5 kW 
25 kW 

150 kW 
350 kW 

* SWITCH TO REDUNDANT PUMP PROBABILITY OF SUCCESS - .99 

---"-'--~-~~~ ~~,-----­, , 
" 

t I...t.oo' 

E>" 

2.9 

0.22 

1.0 
1.0 
1.6 
2.4 

0.05 

0.20 

0.20 

4.57 
4.57 . 
5.17 
5.97 

SYSTEM WITH 
REDUNDANT COMPONENT 
FAILURE RATE ).. 

x 10-6 HRS E>" 

.327* .327 

.009 .009 

. 

1. 786 
1. 786 
2.386 
3.186 

, , . 
I, 



. . . . 

COMPONENT 

CAPILLARY PUMPS 

ACCUMULATOR 

CONDENSER HX 

REGENERATIVE HX 

LINES 

TOTALS 

- .. -- ---- - ----- 1'---

.. . . 

FIGURE 44 FAILURE RATES FOR CONCEPT 2 - CAPILLARY PUMPED 

SINGLE COMPONENT REDUNDANT COMPONENT 

FAILURE RATE A FAILURE RATE A 
CASE QTY x 10-6 HRS tA x 10-6 HRS kA 

5 kW 5 0.50 2.50 
25 kW 5 0.50 2.50 

150 kW 8 0.50 4.00 
350 kW 12 0.50 6.00 

ALL 1 0.22 0.22 0.009 0.009 

ALL 1 0.20 0~20 

ALL 1 0.20 0.20 

ALL 100 M 0.05 0.05 

5 kW 3.17 2.959 
25 kW 3.17 2.959 

150 kW 4.67 4.459 
350 kW . 6.67 6.459 

_~I::-I --- -- ------ -~. -- II 
-- -~ ---- ----:-:--:- --~ 

, ,/ I. • --- _ ....... --

I ---\ 
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COMPONENT 

OSMOTIC PUMP 
(MEMBRANE ASSY) 

EVAPORATOR HX 

CONDENSER HX 

ACCUMULATOR HX 

REGENERATIVE HX 

LINES 

TOTALS , 

, I' If. 

'. 
FIGURE 45 FAILURE RATES FOR CONCEPT 3 - OSMOTIC PUMP " 

SINGLE COMPONENT REDUNDANT COMPONENT 

FAILURE RATE A FAILURE RATE A 
CASE QTY x 10-6 HRS LA x 10-6 HRS LA 

5 kW 5 0.50 2.50 .021 .105 
25 kW 5 0.50 2.50 .021 .105 

150 kW 8 0.50 4.00 .021 .168 
-350 kW 12 0.50 6.00 .021 .252 

5 kW 5 0.20 1.00 
25 kW 5 0.20 1.00 

150 kW 8 0.20 1.60 
350 kW 12 0.20 2.40 

ALL 1 0.20 0.20 

ALL 1 0.22 0.22 .009 .009 

ALL 1 0.20 0.20 

ALL 100 M 0.05 - 0.05 

5 kW 4.17 ,. 1.564 
25 kW 4.17 1.564 

150 kW 6.27 2.443 
350 kW 9.07 3.327 

I 

- ... -~". , - .... - - - .... - ... - ""'of _ 

,-- - ~_ .......... - J... ..... -- _ - ~-_-:::: _- .. -:- ......-- ""-"'- - - ..... ' ------'-....->.-I'7-~---'----------------..------
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.. FIGURE 46 FAILURE RATES FOR CONCEPT 4 - COMPRESSOR DRIVEN 

: 

COMPONENT CASE QTY 
~ 

COMPRESSOR ALL 1 

ACCUMULATOR ALL 1 

CONDENSER ax ALL 1 

EVAPORATOR HX 5 kW 5 
25 kW 5 

150 kW 8 
350 kW 12 

LINES ALL 100 M 

BYPASS VALVE ALL 

REGENERATIVE ax ALL 

TOTALS 5 kW 
25 kW 

. 
150 kW 
350 kW 

-----­.. _----- - --- -- - - --;-.--
7,--~~--

1 

1 

, 1\ \ 

o. 

SINGLE COMPONENT REDUNDANT COMPONENT 

FAILURE RATE >.. FAILURE RATE >.. 
x 10-6 HRS EX X 10-6 HRS 1:>-

2.90 2.90 0.327 0.327 

0.22 0.22 0.009 0.009 

0.20 0.20 

0.20 1.00 
0.20 1.00 
0.20 1.60 
0.20 2.40 

0 

0.05 0.05 

0.43 0.43 0.010·0 0.0100 

0.20 0.20 

5.00 1.795 
5.00 1.795 
5.60 2.396 
6.60 3.196 

.... __ -- -_ .--0--;-;----- .----.. --~---- -----.' --- - -
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REPLACED PART 

PUMP PACKAGE 
(PUMP & ACCUMULATOR) 

EVAPORATOR HX 

REPLACE PUMP PKG AND 
EVAP HX 

* .• t 

I , 

FIGURE 47 
MAINTENANCE EFFECT ON RELIABILITY . 

CONCEPT 1 - PUMP DRIVEN 

PROBABILITY OF NO FAILURE 

SINGLE SYS. REPLACE REPLACE REPLACE 
CASE SINGLE COMP. ONCE TWICE 4 TIMES 

5 kW 0.670 0.761 0.794 0.821 
25 kW 0.670 0.761 0.794 0.821 

150 kW 0.636 0.722 0.753 0.779 
350 kW 0.593 0.673 0.702 0.726 

5 kW 0.670 0.700 0.710 0.719 
25 kW 0.670 0.700 , 0.710 0.719 

150 kW 0.636 0.682 0.698 0.711 
350 kW 0.593 O.§58 0.682 0.701 

5 kW 0.670 0.795 0.841 0.881 
25 kW 0.670 0.795 0.841 0.881 

150 kt'l 0.636 0.774 0.827 0.827 
350 kW 0.593 0.748 0.808 0.859 

. . 

v , 

~ 

J' 

j 

~ " " 

I' 
' ' 

, 
~~ 

( . 

. r 
., 

~ . 
REPLACE 

.. ;. 
..' 

9 TIMES , 

0.842 
0.842 
0.799 
0.745 

0.725 
0.725 
0.721 
0.716 

0.911 
0.911 
0.906 
0.900 
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REPLACED PART 

CAPILLARY PUMPS 

- ~----- ,. .-.... -

FIGURE 48 
MAINTENANCE EFFECT ON RELIABILITY 

CONCEPT 2 - CAPILLARY PUMPED 

, . 

PROBABILITY OF NO FAILURE 

SINGLE SYS. REPLACE REPLACE REPLACE 
CASE SINGLE COMPo ONCE TWICE 4 TIMES 

5 kW 0.758 0.845 0.877 0.902 
25 kW 0.758 0.845 0.877 0.902 

150 kW 0.664. 0.791 0.839 0.879 
350 kW 0.558 0.725 0.791 0.849 

. . 

REPLACE 
9 TIMES 

0.922 
0.922 
0.910 
0.895 

-- - ---.. -----------------_ ........ ---_ .. -

-- ..... - .. -"" -­
.~ ~-- ----

I I _~::.:- - - -~ - - ------ --
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OSMOTIC PUMP AND 
EVAPORATOR HX 

FIGURE 49 
MAINTENANCE EFFECT ON RELIABILITY 

CONCEPT 3 - OSMOTIC PUMP 

5 kW 
25 kW 

150 kW 
350 kW 

REPLACE 9 TIMES 

0.914 
0.914 
0.S67 
0.S76 

CONCEPT 4 - COMPRESSOR DRIVEN 

I," •• 

REPLACED PART CASE 

PROBABILITY OF NO FAILURE 

REPLACE 9 TIMES 

COMPRESSOR, BYPASS VALVE, 
AND EVAPORATOR HX 

5 kW 
25 kW 

150 kW 
350 kW 

0.90S 
0.90S 
0.903 
0.S97 

J 
I. 
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FIGURE 50 
II \ 

RELIABILITY COMPARISON - 10 YEAR LIFE ,t 

PROBABILITY OF NO FAILURE 

SINGLE SYSTEM SINGLE SYSTEM* REDUNDANT SYSTEM* 
CONCEPT CASE SINGLE COMPONENTS REDUNDANT COMPONENTS REDUNDANT COMPONENTS 

1-PUMP DRIVEN 5 kW 0.670 0.855 0.984 
25 kW 0.670 0.855 0.984 

150 kW 0.636 0.780 0.971 
350 kW 0.593 0.756 0.949 

2-CAPILLARY PUMPED 5 kW 0.758 0.772 0.946 
25 kW 0.758 0.772 0.946 

0\ 150 kW 0.664 0.677 0.892 0 
350 kW 0.558 0.568 0.809 

l-OSMOTIC PUMP 5 kW 0.694 0.872 0.982 
25 kW 0.694 0.872 0.982 

150 kW 0.577 0.807 0.961 
350 kW 0.452 0.748 0.934 

4-COMPRESSOR DRIVEN 5 kW 0.645 0.854 0.984 
25 kW 0.645 0.854 0.984 

150 kW 0.612 0.811 0.970 
350 kW 0.571 0.756 0.948 

* PROBABILITY OF SUCCESSFUL SWITCH ~ 0.99 
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And the reliability of redundant systems from: 

R .. RA RD (3) 
( 

RA .. probability of no failure for active system 
RD = probability of no failure for dormant system 

RD is detennined for dormant components from Equation (2) and RA for 
active components from: 

RA = 3e-E~At + e-~st _ e-(E~A + ~s)t 
( 4) 

~A = failure rate of active components 

The only components considered dormant in this analysis are those no~ 
subject to primary modes of failure when not active such as pumps, 
compressors, valves, etc. Other components such as lines, heat exchangers and 
heat pipe type components such as the osmotic and capillary pumps are 
considered active at all times since they are subject to p~imary failure modes 
whether or not they are in an active system. 

The analysis results shown in Figure 50 indicate some difficulty may be 
encountered in achiev~ng the 0.99 reliability goal, especially for the larger 
size systems. The redundant system with selected redundant components 
approach will result in reliabilities close to the goal for Concepts 1, 3 and 
4 at the 5 and 25 kW size. Care in component selection and an aggressive 
quality and testing program could result in lowering the expected fa~lure 
rates enough to achieve the 0.99 goal. Failure rate data used in this 
analysis represent the nominal values in the cases where a range of values 
were available. For the capillary pumped system, Concept 2, the low 
reliabili ties are a result of the larger number of components and the fact 
that the characteristics of the capillary pu:nps prohibit effective use of 
redundant components since these devices are subJect to the same failure modes 
whether fully active or not. A program of replacement combined with a 
redundant system approach is necessary to bring the reliability to the goal. 
Replacement of the capillary pumps every two years for the 5 and 25 kW cases 
and every year for the 150 and 350 kW cases would be required to. achieve the 
0.99 goal at the assumed failure rates. If a failure rate of 0.1 x 10-6 
could be achieved for the capillary pumps (0.5 x 10-6 was assumed from 
Reference 8 values for high capacity heat pipes) the 0.99 goal could be met 
with the redundant component/redundant systems approach. 

A program of replacement of the evaporator heat exchangers at 3.3 year 
intervals for the 150 kW case and 2 year intervals for the 350 kW case 
combined with a redundant component/redundant system approach will achieve the 
0.99 goal for Concepts 1 and 4. A similar approach with two and one year 
replacements of the evaporator heat exchangers for the 150 kW and 350 kW cases 
respectively will achieve the goal. If the failure rates of the evaporator 
heat exchanger could be reduced to the equivalent for lines (0.05 x 10-6), 
the 0.99 could be achieved in all Concept 1, 3 and 4 cases, except the 350 kW 
case for Concept 3, with a redundant component/redundant system approach. 
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A redundant thermal bus is inevitability required to achieve the design 
mlJ.ability goal unless dramatic reductions in the failure rates from those 
assumed can be achieved. 

~.3" CONCEPT COMPARISON 

The four concepts studied were evaluated to select the most promising 
·concept for future development. The trade criteria were grouped under the 
t'ollowing major categories: Performance, Reliability and Life, Development 
Considerations, and Operational Considerations. 

The trade matrix presented in Figure 51 shows the evaluation of each 
concept. The performance evaluations were made at heat loads of 5, 25, and 
350 kW based on a nominal operating temperature of 200 C (680 F) and 
assuming ammonia as the working fluid. The concept comparison for each 
category are described below. 

Performance 

The concepts were compared for four key performance items: weight, 
power, radiator area, and controllability. The mechanical pump concept is the 
lowest weight overall and the osmotic pump concept is the heaviest. All of 
the weights however are relatively close and weight probably would not be a 
leciding factor. The capillary and osmotic concepts have an advantage in 
requiring no power, although the power requirement for the mechanical pump 
:oncept is low (1 to 12 watts). As expected, the power requirements for the 
~ompressor concept are relatively high. Radiator area differences between the 
:oncepts are insignificant. The capillary pump concept is rated best in 
ontrollability since it is self regulating in flow control to the 
vaporators. The osmotic concept controllability is unknown since a proven 
eans for regulating flow was not identified. Controllability for the 
echanical pump and compressor concepts were judged equal and both were given 
good rating. 

Reliability and Life 

This category includes complexity and number of pieces, component life, 
Id projected la-year system reliability. The capillary pump concept is 
Insidered superior in this category even though its la-year reliability is 
ightly lower than the others. It requires the least number of pieces and 
mponent life should be high because of its passive nature. It's reliability 

lower due to the relatively high failure rate assumed for the capillary 
np/evaporators. The mechanical pump and compressor concepts follow closely 

this ca tego ry wi th the mechanical pump given a slight edge ove r the 
Gpressor in complexity. The osmotic concept is given the lowest rating in 
lplexity and component life based on the current state of development of the 
l~tic system. 

Development Considerations 

~e concepts were compared in four areas: date of technology readiness, 
elopment risk, potential for success, and potential for growth. The 
lanical pump concept is considered superi.or overall in __ this _ category 
luse" of the developed nature of its components.--The-compressor concept is 
~d a close second with the only difference being longer lead time· for 
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FIGURE 51 CONCEPT COMPARISON TRADE MATRIX 

CONCEPT 

MECH CAPILLARY OSMOTIC COMPRESSOR 
RANKING CATEGORY PUMP PUMP PUMP 159 kg/kW 

PERFORMANCE1 

• WEIGHT (KG) 
- 5 kW 111 110 125 112 
- 25 kW 555 566 624 

_ 2 

- 350 kW 7578 7620 8700 7607 

• POWER ( W) 
- 5 kW 1 0.0 0.0 7.~82 - 25 kW 6 0.0 0.0 
- 350 kW 12 0.0 0.0 571 

(M2) 
. 

• RADIATOR AREA 
- 5 kW 17 17. 17 :72 - 25 kW 86 85 86 
- 350 kW 1192 1189 1192 1183 

• CONTROLABILITY GOOD EXCELLENT UNKNOWN GOOD 
(SEMI-
PASSIVE) 

RELIABILITY & LIFE 

• COMPLEXITY & NO. GOOD EXCELLENT POOR
3 

FAIR 
OF PIECES 

• COMPONENT LIFE FAIR GOOD POOR
3 

FAIR 

• PROJECTED 10 YEAR4 '0.98 0.95 0.98 0.98-
SYSTEM RELIABILITY 

1FLUID : AMMONIA 
BUS TEMPERATURE : 20°C 

2VALUES NOT CALCULATED 

3W1TH CURRENT STATE OF DEVELOPMENT 

4WITH FULLY REDUNDANT THERMAL BUS 

COMPRESSOR 
45 kg/kW 

1:42 

7485 

90.86 _ 2 

5499 

:62 
1153 

GOOD 

. 

FAIR 

FAIR . 
0.98 

,­',-

.' 
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FIGURE 51 (CONT/D) 

CONCEPT 
, MECH CAPILLARY OSMOTIC COMPRESSOR COMPRESSOR 

RANKING CATEGORY PUMP PUMP PUMP 159 kg/kW 45 kg/kW 

DEVELOPMENT 
CONSIDERATIONS 

• DATE OF TECHNOLOGY 1984 1987 1993 1985 1985 
READINESS 

• DEVELOPMENT RISK LOW MEDIUM3 HIGH3 LOW LOW 

• POTENTIAL FOR GOOD FAIR3 POOR3 GOOD GOOD 
SUCCESS 

• POTENTIAL FOR GOOD FAIR GOOD GOOD GOOD 
GROWTH 

OPERATIONAL 
CONSIDERATIONS - . 
• FLEXIBILITY FOR GOOD FAIR GOOD GOOD GOOD 

LOCALIZED HEAT 
REMOVAL 

• AUTONOMOUS POOR EXCELLENT GOOD POOR POOR 
OPERATION 

• EASE OF STARTUP GOOD FAIR FAIR GOOD ... GOOD 

• FLEXIBILITY FOR GOOD GOOD GOOD GOOD GOOD 
RECONFIGURATION . 

3WITH CURRENT STATE OF DEVELOPMENT 

___ ------- ----r-, ---- -
... - ...-.; 

-- ------ .. ---~ ---- -- - ---, ..-:::::-- - - --
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compressor development. Because of development required for the cap~llary 
pump, thl.s concept was rated as a medl.um nsk. The osmotic concept is 
considered the highest risk concept because of the development required in the 
areas of membranes, solvents, solutes, zero-g operation, and control technl.que. 

Operational Considerations 

This category l.ncludes flexibility, autonomous operation, Rnd ease of 
startup. Flexibility for locall.zed heat removal includes consl.derations such 
as the abl.lity to locally add heat loads (heat exchangers) or l.ncrease the 
heat load at a given heat exchanger. The capillary pump concept was only 
given a fair ra tJ.ng in flex~ bility Sl.nce the addition of heat loads could 
exceed the relatively low pumPl.ng hmits of the capillary pumps unless the 
pumps are oversized to begin with. The other concepts were rated good because 
of thel.r high pumPl.ng potentl.al. The capillary pump and osmotic~ concepts are 
supenor in autonomous operation. Both require zero power but the osmohc 
concept could requl.re batteries l.f the electrostatl.c control techmque 1S 

used; therefore l.t was rated slightly lower than the capillary pump concept. 
In ease of startup, the mechamcal pump and compressor concepts were rated 
superior and in flexibility for reconfl.guratl.on all concepts were rated equal. 
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6.0 CONCLUSIONS 

A number of conclusions were reached as a result of this study. The 
f~llowing conclusions were reached on the concepts considered: 

. (1) The mechanical pump concept has the lowest development risk and 
shortest lead time. This concept offers good performance, 
simplicity, and reliability. 

(2) The capillary pump concept is promJ.sl.ng because of its passive 
nature and its long life potential. The development of a 
capillary pump results in a longer lead time and more development 
risk than the mechanical pump. 

• 
(3) The osmotic pump, while having many attractive features, has many 

unanswered questions in the areas of heat load control techniques 
and availability of membrane materials with suitable performance 
and life characteristics. These unanswered questions cause 
excessive risks with selection of'this concept. 

(4) The compressor driven concept offers no significant advantage 
over the other concepts. 

ther conclusions reached from this study are: 

(1) Ammonia is the superior working fluid in terms of weight and 
perfonnance over the range of conditions oonsidered in this 
study. No suitable fluid was identified for use in a manned 
cabin at temperatures below 400C (1040F). 

(2) The capillary pump concept's vapor and liquid flow lines require 
approximately twice the flow area as the mechanical pump for most 
cases. 

(3) Power penalty has a small effect on the t9tal system weight for 
the compressor driven concept. However the optimum system 
configuration is significantly impacted. Compared to the nominal 
power penalty (159 kg/kW), the low penalty (45 kg/kW) resulted in 
reduced line diameter and radiator area, but Significantly 
inoreased power requirements. 

(4) Fully redundant systems are required for the thermal bUB to 
obtain relia bili ties approaohing the goal of 0.99 pro ba bili ty of 
success for 10 years. Scheduled maintenance wi thout the 
redundant bus will not aohieve the desired goal. 
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. 7.0 RECOMMENDATIONS 

Based on this study, the following recommendations are made for 
• development of a thermal bus to meet the needs of thermal management on large, 

long life space platforms projected for the 1990's. 

(1) 'lhe mechanical pump driven concept should be developed 
initially. A prototype thermal bus should be built and tested to 
develop the heat rejection and temperature control techniques, 
the pump, and the two-phase heat exchangers. 

(2) 'lh~ capillary pump should be developed separately to establish 
its characteristics and limitations. 

(3) Laboratory study should be continued on the osmotic pump to 
address the unresolved questions of material selection and 
control technique. 

A set of abbreviated specifications for the thermal bus development are. 
provided below. 

GENERAL 

.. 

THERMAL BUS SPECIFICATION 

The thermal bus shall provide the transport of heat between the 
collection interfaces and the rejection interfaces under near 
isothermal conditions. 

• The bus must operate in the space e~vironment of low earth orbit. 

PERFORMANCE 

• 

• 

• 

Total Heat Transport 
Bus Temperatures 

Isothermal Character 

Individual Heat Loads 

· · 

· · 

25 to 100 kW 
Controllable from 40 C to 400 C 
(390 F to 104°F) 
50 C (9 0 F) Band at Control 
Temperature 
1 to 50 kW 

PHYSICAL CHARACTERISTICS 

• 
• 

• 

Centralized System Length - 15 m to 50 m (49 ft to 164 ft) 
Capable of interfacing multiple payload heat loads 
Must interface with the space constructable radiator 
Minimum weight and volume 

DESIRED OPERATIONAL CHARACTERISTICS AND TIMING 

• 
• 

On-orbit deployment, start-up, and shut-down capability 
Modular growth capability to 200 kW 
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• 
• · . 
• 
• 
• 

• 

- ENVIRONMENTS 

• 
• 

• 

INTERFACES 

• 

--_.-.... -, I ><'f 

.,.. 

On-orbit reconfiguration capability 
Capability for simple make and break of interfaces with equipment 
Minimize monitoring and control required 
Minimize on-orbit maintenance 
1990 technology readiness 
Shall be operational for quiescent periods or full up periods of 
up to 6 months without Orbiter re-supply 
A method for detecting, locating, isolating and repairing fluid 
leaks within the system on-orbit 

Unpressurized area 
Assume the~al control and micrometeoroid protection is provided 
by surrounding structure 
Launch vibroacoustic and acceleration per Spacelab User's 
Handbook (pressurized module and pallet) 

Heat load interface to the Thermal Bus shall be through two types 
of devices 

(1) 
(2) 

liquid-to-thermal bus evaporator heat exchangers 
thermal bus evaporating coldplates 

• Heat rejection interface to the Thermal Bus shall be through 
space conatructable radiator contact heat exchangers 

conTROL 

• 

• 

The Thermal Bus must provide uniform temperature (wi thin the 
perfonnance requirement) with varying individual and total heat 
loads. Individual heat loads can vary from 0% to 100% of rated 
load; total heat load can vary from 5% to 100% of total rated load 

The Thermal Bus must provide the heat rejection system control 

~RADE PENALTIES 

• 
• 
• 

• 
• 

• 
• 

~h' 1 ..... := .. .' .. ' 

Power 
Launch Costs 
Heat Rejection 

t : 159 kg/kW (350 lb/kW) 
$1540/kg ($700/lb) 
5.9 kg/m2 (1.2 lb/ft2), from 
constructable radiator concepts in NAS3-22270 
at -400 C environmental sink 

No toxic or flammable fluids in pressurized compartments 
Fluid toxicities compatible with practical ground handling for 
bus in unpressurized areas 
No contact temperatures above 450 C (ll30 F) 
General guidelines from Rockwell Phase B Modular Space Station 
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RELIABILITY 

• 
• 
• 
• 
• 

OTHER 

• 
• 
• 
• 
• 
• 
• 

THERMAL BUS SPECIFICATION (CONTINUED) 

10 year life design goal at 0.99 probability 
Redundancy and minimal maintenance to achieve life goal 
Indefinite life with further maintenance 
Minimize moving parts 
Minimize complexity 

Minimize life cycle cost 
Minimize vibration 
Minimize EMI generation f 

Minimize contamination threat to payloads 
Minimize power 
Minimize heat rejection surface area 
Minimize subcontract launch site support 
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APPENDIX 

Included in this Appendix are detailed breakdowns of component weights, 
pump power, radiator area, and line sizes for each design point evaluated. 
They are arranged in order of fluid, case number, temperature, and concept 

number. 

• 
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS StrmRY 

CASE I CONCEPT' 
AMMONIA ,,-e. 

OTY WEIGHT (KG) 

38", z." 

" ,"0 , (JoIIl 

u..c. tfI& 1~8 

o.41W 0.06 

t. ,.81 

"8.3 . 

PHYSICAL CHARACTERISTICS Stm'1ARY 
CASE' CONCEPT Z 

"MM.DNIII 'I.e. 

QTY WEIGHT (KG) 

3& '" 3.'7S 

" ,"0 

I 0.1t. 

Z,,"SM" lSf .. l 

0 0 

0 0 

'Go".? 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT 3 

AMMONIA 4°C. 

QTY WEIGHT (KG) 

3811 2..'7'3 

Co ,.0 , 
O.IS' 

Z".' H' 1S'C..8 

OW 0 

5' 15.8S' 

18/. fa 

12 

COMMENTS 

" H LIQUID LINE Ii 

I, H VAPOR LINE Ii 

'. • 

COMMENTS 

.It H LIQUID LINE Ii I, H VAPOR LINE Ii 

COMMENTS 

I~ H LIQUID LINE Ii 

., H VAPOR LINE Q 

. 

O.soCH ID 

I.n CH ID 

O.c.o CM 10 

I.Sl. CM ID 

O.SO CM ID 

"".'7 eM I D 

," 

, 
I 
I. 

I' 
I 
t , I 

, 
~' 



COMPONENT 

I-
i LINES (WET) 

HEAT EXCHANGERS (\iET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS h~ET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

I • 

I: 

, 

I 

PHYSICAL CHARACTERISTICS SU1'V1ARY 
CASE I CONCEPT f1\ 

AMMONIA fee. 

aTY WEIGHT (KG) 

36M ~.8f 

fo r..o 

I O.IS 

~c..'! M'" 15'''.' 
1'.1 "" 'L.o, 

'Z. t.' 
'''8.~ 

PHYSICAL CHARACTERISTICS SUMMARY 

CASE I CONCEPT +& 

AMMONIR t·e.. 

QTY WEIGHT (KG) 

36M r." 

C. fo.o 

I O.I'Z. 

2.1." M'" IU.lS 

4'10.+"" t'Z. .1 

l. 11.8 

'''8.' 
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o.vfo CH 10 

0.(.0 CM 10 



COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

IHEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

• ACCUMULATOR (WET) 

RADIATOR PENALTY 

• POWER PENALTY 

PUMP -

TOTAL 

(£ 

------~· ___ ·h~!'_·"h~·"~~~~~··~;~'M~~W~~X~~~.~~'~-______ •• -e_~ 
~::"';-f~ 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1 CONCEPT I 

AMMON'A lO·C. 

QTY WEIGHT (KG) 

3811 Z.oS" 

Ct ,.0 , 
I 0.S"1 

17., ,..1. 100., 

0." W 0.1(. 

'Z. 1.61 

II r.'2. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT t. 

AMMONIA to·c. 

QTY WEIGHT (KG) 

36M ,o.Co. 

c. c..o 
I 0.1.'1 

3. 'Ill 11'" ''I • .,Co 
ow 0 

0 0 

'3 Co., 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT.3 

AMMONIR to·c. 

aTY WEIGHT (KG) 

38M t.oS' 

(., ".0 
I 0.1, 

17.1 M'" ,00.' 
OW 0 

S ,"'<f-
,1. S". '3 

COMMENTS 

,,11 LIQUID LINE a 

I' H VAPOR 1.1 NE a 

. 

COMMENTS 

I' M LIQUID LINE a 

" M VAPOR 1.1 NE a . 

COMMENTS 

,., M LIQUID LINE a 

I' M VAPOR LINE &I 

0.45' CI1 ID 

I.Ol.. eM 10 I 

1.'1' CM 10 

2..10 CM 10 

O.4S CM 10 

'.CI'L eM 10 

• 

I 
4 
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I 
I 
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

I POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS h~Er) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

I : 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT fA 

AMMONIA 1.0·(. 

QTY WEIGHT (KG) 

3SM '2..5" 

(" ".0 
I 0.,. 

,Co • ., M'" ".S 
'7., W ,,,1.1. 
to 1.4 

111.1. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT 48 

AMMONIA 1.0·(. 

Qry WEIGHT (KG) 

3SM '.+t. 

'" ",.0 

I o.n. 
II .... M'" ,t..c., 

'0," W +.0' 

2- (..0 

11 .... 3 
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I' H VAPOR LI NE a 
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COMPONENT 

LINES (WET) 

., 
HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (wET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 
-

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT I 

AMMONIA 4J0·c. 

QTY WEIGHT (KG) 

-,.,., ,,'0 

(. Gt.o 

, o.'n 

1/.' H' CoS. to., 
I,SOW o.t.+ 

'Z. I·e I 

,,..,, 

PHYSICAL CHARACTERISTICS SUMI1ARY 
CASE I CONCEPT 2 

AMMONIA 4Io·c.. 

QTY WEIGHT (KG) 

35M " .. 8 

Gt ,",0 

I 0.'" 
/I.o,! M'" ,"s.1 

0 'IN 0 

0 0 

7+., 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT 3 

AMMONIA 40·(. 

QTY WEIGHT (KG) 

38M ,."10 

e- ".0 

I t).l3 

11.0' M'" ,"5 • ., 

o 'IN 0 

5 17.S 

,0.8 

76 

COMMENTS 

,~ H LIQUID LINE a O.4$' CM ID 

I, H VAPOR LINE Q O.S, CM ID 

• 
~ 

COMMENTS 

'0) H LIQUID LINE a 0."" CM ID, 

I' M VAPOR LI NE a '.'S8 CH ID 

COMMENTS 

'0) M LI QUID LI NE a o •• s CM 10 

" M VAPOR LI NE a 0.8' CH ID 

. 

j 
I 
I 
I 
I 

I 
I 
1 

I 

, . 
I. 
I 

i 
I ,-



! 

t 
I" 
I 

t· , 

, 
I 

1 

I , 

I 
1 

f , 
• 
t • 
• L 

" 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUHULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUr-lULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAt: 

PllYS I CAL CHARACTERI STl CS SUHMARY 
CASE I CONCEPT tA 

AMMONIA 1o-c. 

QTY WEIGHT (KG) COMMENTS 

36M to."" J~ H LIQUID LINE Q O.ss CH 10 

J, H VAPOR LINE a ,.10 CH 10 

r. (..0 

I 0,'''' 
11.01 M'I. 45".0 • 
of.",w 0.,"' IC'"I J<r./KW 

t. 2..0 

. 7".1. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT ~8 

AMMONIA 4o-C. 

QTY WEIGHT (KG) COMMENTS 

36M 1·"10 J~ H LIQUID LINE a D.to CM ID 

I' H VAPOR LINE Q 0.80 CM 10 

<. ".0 

I 0.11 

,0.'ISM'I. " .... «-
,.,.low o.ec. 4S kt:./I<w 

L 3.4-

7".' 
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS ~WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 
, ~, 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS CliET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 
\ 

RADIATOR PENALTY 

POWER PEIIALTY 

PUMP 

TOTAL 

¥4P'.3i\!Pl't .k;~ 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT I 

AMMONIA 11.0·C 

QTY WEIGHT (KG) 

3."" %."8 

t. ,"0 

I 0.'14-

3.U H' "Mr-
z.'7a W 0.f.4 

l. t.'7t,. 

31.8 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT t 

AMMONIR It-O°C. 

QTY WEIGHT (KG) 

36M '0.(04-

(,. c,..o 

I 0.1.'7 

'.'SI M'L I,.,t. 
oW 0 

0 0 

1 c.., 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT +A 

AMMONIR Il.o·c.. 

QTY WEIGHT (KG) 

36M '2.. 1& 

C'. Go.o 

I 0.1 0 

-
1.18 M'L ".')t 
3.''1 W o.s-, 

l. ,.'0 

30." 

18 

COMMENTS 

'" H LIQUID LINE a 
I' H VAPOR LINE a 

. 

COMMENTS 

I' H LIQUID LINE a 
I' H VAPOR LI NE a 

. 

COMMENTS 

" H LIQUID LINE a 
"H VAPOR LI NE a 

'5' kC./kkl 

0.'7'1 CM ID 

0.'10 CH ID 

1.'71 CM ID 

Z.II CM ID 

o.c.s CM ,n 
O.~O CH ID 

. 

1 I 

I­
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS h"ET) 

ACCUMULATOR (WET) 
-

RADIATOR PENALTY 

PowER PENALTY 

PU~IP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT 1-\\ 

AMMONIA 11.o·C, 

QTY WEIGHT (KG) 

36M /,Go' 

f# f#.O 

I 0.08 

3.'" M" 'tt," I 
,+.S" w 0.(,S" 

'Z. I 3,0 

31.~ 
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

> ""44[1] 44(4) AI i !JiW4_ ..,P if 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 2 CONCEPT I 

AMMONIA 4°(. 

QTY WEIGHT (KG) 

'0011 Z4.1 

" 1.4." 

, 8.S 

,n.t Ii' '81,' 

e." W o.t" 

2. 1." 
,,,,,e. . 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 2 CONCEPT l 

AMMONIA ... e. 

QTY WEIGHT (KG) 

10011 fl. lie. 

" ~+.+ , '.0' 
"t.f Ii' '81.t. 

o W 0 

0 0 

848.5' 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE Z. CONCEPT '3 

AMMONIA "0e. 

QTY WEIGHT (KG) 

/0011 2.+.1 

" 2. ..... , 0."111 

''33.4 H' 781.1 

oW 0 

5 7+.5 

""1.' 
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COMPONENT 

LINES (WET) 

.\ HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY . 
PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT I 

AMt10NIA Zo°Co 

QTY WEIGHT (KG) 

'0011 IC •• & 

Co 1. ... ,-

1 $'.~ 

85., K1. Sos.f 

$'.n.W 0." 
1. 1. •• 

sss.s 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT t 

AMt10NIA 2.0°c. 

QTY WEIGHT (KG) 

'0011 3.,,+ 

Go 2. ... s 

I ,.0 
s+., K1. 50\.' 

o W 0 

0 0 

5fo~.O 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 2 CONCEPT 3 

AMt10NIA 'to·Co 

QTY WEIGHT (KG) 

/0011 ''''.8 

r. 'L'I.S 

, 0.'0 

8S.' Kl SbS.4 

o W 0 

5 '7'7.0 

"1.'1-.'1 

81. 
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

" ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE l CONCEPT I 

AMMONIA 'tot. 

QTY WEIGHT (KG) 

'0011 ,0.,-

t. z. ... S , Z.8 

ss.a ,.,1. 31'.~ 

.S.'3 W 2.4 

't. t., 
:nt.4 

PHYSICAL CHARACTERISTICS S~~RY 
CASE z. CONCEPT Z 

AMMONIA 4O.C. 

QTY WEIGHT (KG) 

10011 '38.S 

~ 'Zo ... s 
, ,.08 

S$.I,.,' 'loS' .1-

o W 0 

0 0 

:J"'.~ 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE l CONCEPT 3 

AMMONIA .:to·c. 

QTY WEIGHT (KG) 

10011 ,o.c, 

" 'Z.4-.s , o.t.O 

S's.I,.,' 31.,·1-

o W 0 

$ 8t.o 

+4(..8 

82 

. COMMENTS 

R H LIQUID LINE iii 

5b H VAPOR LINE iii 

. COMMENTS 

SO M LIQUID LINE a 
so H VAPOR LI NE a 

. COMMENTS 

SO H LIQUID LINE a 
50 M VAPOR LI NE iii 

. 

O.U CM 10 

,.~O CH ID 

• 

,.5t) CM 10 

1.'4 CM ID I 

0.75 CM 10 

, .SI) CI1 I 0 

I: 
I 
I 

Ii 
I 

I. 
I 

, ! 

, I 
I] 



COMPONENT 
, 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (weT) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RAOfATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

• tT tCr""ik+--W 

PHYSICAL CHARACTERISTICS StI'lMARY 
CASE l CONCEPT I 

AMt10JIIIA "-e. 
QTY WEIGHT (KG) 

'00 M .,C .. , 

, , .. S • ., 

I 3+.0 

,.".S .... ' 4'110 •• 
7.1" W I.'L 

Z. 4.c. 
.. .,.,., 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 3 CONCEPT ~ 

AMt10JIIIA 'tee. 

OTY WEIGHT (KG) 

'OOM '(,2..4· 

, 14",,, 

I +., 
,,..." .... ' 4108' 

0 W 0 

0 0 

soo, 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 3 CONCEPT 3 

AMt10JIIIA 4ee. 

QTY WEIGHT (KG) 

100M "".1 

., '4s., 
I +.1 

7"·S .... ' 'I'll' 

0 W 0 

8 .,..".S 

$+40 

83 

. COMMENTS 

SOH LIQUID LINE iii 

5'D M VAPOR LINE iii 

. COMMENTS 

50 H LIQUID LINE iii 

SO H VAPOR LINE iii 

. COMMENTS 

50H LIQUID LINE iii 

so H VAPOR LINE iii 

..,8 CM 10 

5'.00 CM ID I 

Z.~8 C"I 10 

c..so eM 10 I 

'.'8 CM 10 

5';00 CM 10 I 

V·..,. 
Vi1 
~. 

~, 

i. 
~' .. t 

, 

i. ... 

, ' 

\ . . 



COMPONENT .-

- - - ----
l.INES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 
- -

PUN!' 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 
-

TOTAL 
. 

1';a= ~.I..$-2.Aaj£ • 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE ~ CONCEPT I -

AMt10NIA to"c. 

---arv-- WEIGHT (KG) 
- - - .. -

'00,., r.4;' -

, ,4C..S 

I zo .• 

513.4"' __ 30Z.'.~ - -
t1,l. W 2.~ 

1. i.1. 

- - - nc.& 

PHYSICAL CHARACTERISTICS SUMMARY 
'CASE 3 CONCEPT 2-

AMt10NIA lo·e. 

QTY WEIGHT (KG) 

100,., 15'1.0 

., ,.,to.S 
/ f;.o 

5~,S"' 300r.. 

o W 0 

0 0 

3)11 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 3 CONCEPT 3 

AMt10NIA to'e. 
--

QTY WEIGHT (KG) --

, COMMENTS 

SOH l.IQUID LINE a 
Sl) H VAPOR LINE Ii 

-
- COMMENTS . 

f;o H LIQUID LINE Ii 

• 50 M VAPOR LINE a 

, COMMENTS 

-
'00,., ,,,./ f;O H l.IQUID LINE Ii 

SO M VAPOR LI NE a 
'J ,4<..S' 

/ 3." 
511.4"1 .10~" 

0 W 0 

--
8 "''IM, 

- -
-")'.,~ 

84 

'."7 CM 10 

~oo eM 10 

-

2.U CH 10 

Go"S CM 10 I 

I 

I,,)' CM 10 I 
".00 CM ID I 

I 
I 

I 

t 
1 

I 
t= 
I 
I 
I 
I 

10 

00 

i-
I-

I 

1-

00 

I 



COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POwER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POwER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 3 CONCEPT J 

AMMONIA 1O-c. 

QTY WEIGHT (KG) 

,00M 44 .... 

., '''1.0 
I 17 •• c. 

333.SM" ,.,,,1., 
Z.,.I'tII 4-.f. 

1.. 5'.0 

'2.191 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 3 CONCEPT 2-

AMMONIA 1O"C. 

QTY WEIGHT (KG) 

100M ,4'\., 

, 1+1.0 

I 5'.1 

3lo., M"- -- ''IS-I 

0 'til 0 

0 a 

'2.1.Sl 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 3 CONCEPT ~ 

AMMONIA 40-" 
QTY WEIGHT (KG) 

/00,., ....... 

'\ 14,.0 

I " ... 
"ll1oS M" ""8 . 

0 'til 

8 SI.',' 
t.~'O 

. 
COMMENTS 

so H LIQUID LINE Q I.f.' CM 10 

So H VAPOR LINE Q 3.U) CM 10 I 

-

. COMMENTS 

SO H LIQUID LINE iii Z • .,c. CM 10 

so H VAPOR LINE iii 5.88 CM 10 

~ 

. COMMENTS 

SO H LIQUID LINE iii I.'" CM 10 

SO H VAPOR LINE iii "3.10 CM 10 

r 
i' . I ' _I 
f . -
r' 
\ -

f 

j 
; , 



COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUKOLATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADlATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE.,. CONCEPT I 

AMt10NIA ,.c. 
QTY WEIGHT (KG) 

1001'\ ra&.? 

rl ~ .. r.'L , ".(,0 
18(,0' ,.,' '0""6 

8." W , .... 
t. ".1 

"5"81. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE f CONCEPT ~ 

AMt10NIA +'c, 

OTY WEIGHT (KG) 

'001'\ 'Z." •. o 

I'! '!41.'L 

, 1001 

18S-4 ,.,' 10')~' 

o W 0 

0 0 

IISS1 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE + CONCEPT 3 

AMt10NIA "'e.. 

QTY WEIGHT (KG) 

1001'\ 188.1 

13 3fl.'L , .,.0 
,SCot ,.,' 10'1'78 

0 W 0 

1'1. IItCo 

'U,+3 

86 

. COMMENTS 

SO H LIQUID LINE a 
SO H VAPOR LI NE a 

. COMMENTS 

5'0 H LIQUID LINE a 
so H VAPOR LINE a 

. COMMEIITS 

5'0 H LIQUID LINE a 
so H VAPOR LI NE a 

1."78 CM ID 

'7.00 CM ID 

'3.~1 CM ID 
,.,,, CM ID 

%."74 CM ID 

7.00 CM ID 

. 

" ,. 
I 
I 
I 

\ 

I 
I 
I 

\. 

I: 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RAtlATOR PENALTY 

PO~ PENALTY 

pulCP 

TOTAL 

, 

L 

1 • 

j 
i 

PHYSICAL CHARACTERISTICS SltlMARY 
CASE + CONCEPT i A 

AMt10NIA ,\-Co 

QTY WEIGHT (KG) 

1001'\ 169"~ 

I~ 341.'t. 

I ,.0 
leUM" ,06-z.'I 

,00-z.W ,~.~ 

'Z. " .. ~ 
1/5''f-) 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE + CONCEPT 48 

AMt10NIA "'.c. 
QTY WEIGHT (KG) 

100M '3'\.c.. 

n • '341.1-

I "7.1 

138S M& 6'"10 

53Q'1.' W lAo4-

Z. "1..f. 

t'D'l.O 

87 

COMMENTS 

5'0 M LIQUID LINE a 
50 M VAPOR LINE a 

In Kc./rcW ,. 

, 
COMMENTS 

5'0 M LIQUID LINE a 
50 M VAPOR LINE a 

4s- kt> I K'IJ 

2."76 CM 10 

7.00 CM 10 

1.1, CM 10 

3.00 CM 10 I 

H' '6'b ........ 

'-

I . 
j 
I 



- ~ 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (~ET) 

ACCUMULATOR (WET) 

RADI~TOR PENALTY ~ 

POWER PENALTY . . 
, 

PUMP . 
TOTAL ..... 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS StmARY 
CASE 4 CONCEPT I 

AMMONIA lO·C. 

QTY WEIGHT (KG) 

100M ,45." 

I~ 3+1.C. 

1 <K.8 

'''1. HI 703S 

'2 ... W Z.O 

2- c..~ 

75'8 

PHYSICAL CHARACTERISTICS SUMMARY 

CASE 4 CONCEPT Z. 
AMMONIA loo·c. 

QTY WEIGHT (KG) 

,OOM zn .. s 

'3 34M. 

I 10.1 

liS' HI 7015 

oW 0 

0 0 

7"to 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE + CONCEPT 3 

AMMONIA loo·c. 

QTY WEIGHT (KG) 

'OOM ,45.,., 

I~ 341..,., 

I 8.1'0 

II'n.. HI 7014.'1» 

o W 0 

/'Z. ""'.& 
8700 

88 

. COMMENTS 

50" LIQUID LINE a '2.'" eM ID 
.5b Ii VAPOR LINE a c..oo CM ID 

It 

• COMMENTS 

SO" LIQUID LINE Ii 5.S!) CM ID 

so Ii VAPOR LINE a ,.'0 CM ID 

, 

. COMMENTS 

5'0" LIQUID LINE Ii z.c.c. CM ID 

50" VAPOR LINE Ii (,.00 CM ID 

\. 
j. , 

1 

I 
I 
I: 
I 

\ 

\ 

L 
\ I 
; 

f I 
Ii 

\: 
\ 
\ 

t 
\ 
I 
! 

I 

I 
I-
I' 

I 
I 



• COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP . 
TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 

CASE '" CONCEPT ,\B 
.... Mt10N'" 1.o·c. 

QTY WEIGHT (KG) 

'OOM "ifo.' 

'1 ,41.e. 

I '1.4-

1151 ,..1 "'00 
ssoo"" t.4,.$" 

1- ~t.' 

'749S 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT fA 

AMt10NIA 1.0·Co 

QTV WEIGHT (KG) 

'OOM /7D., 

11 341.1. 

I I., 
"8'1 M' ",81.S 

In,"" !jo.' 
t Ia •• ' ,,,0, 

89 

. COMMENTS 

SO H LIQUID LI NE iii 

5D H VAPOR LINE iii 

4Sl<6/KW 
. 

. COMMENTS 

SO H LIQUID LINE a 
50 M VAPOR LINE iii 

In kG./kW 

't" CM 10 

".00 CM 10 

Z.8a CM 10 

".50 CM 10 

• . -

I 1 

, , 
'~ 
1 



-

------------------____ '-__ ~. __ ...... ~ __ .~ .. _."'~._, ..... _ .... - -... '" ..... " .............. " ...... ___ ~ h .- < " 

- --'-'~ -~ 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP, 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAl CHARACTERISTICS SUMMARY 
CASE t CONCEPT I 

AMt10NIA 4o-c. 

QTY WEIGHT (KG) 

100M fit, .... 

1'3 J41.fIt , 
".fIt 

71-' ",' 45'8 
5'M. W ".$ 

'l l..s 

S'O,,"' 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT ~ 

AMt10NIA 4O·c 

QTY WEIGHT (KG) 

lOOM 2.4'1./ 

13 3~~.C. , 10.'1 

71 •• ., ",' <KSl 
o W 0 

0 0 

. ... ,s4-

PHYSICAL CHARACTERISTICS SUMMARY 
CASE -1- CONCEPT 3 

AMt10NIA 4O.C. 

QTY WEIGHT (KG) 

,OOM ".+ 
1'3 341.C. 

, '.3 
n,.tK' ma 

o W 0 

n. '&.4, 

flt1.c.c-

90 

.. 

. COMMENTS 

. 
50H LIQUID LINE jj) ~.ol CH ID 

SO H VAPOR LI NE iil .... 00 eH ID 

. COMMENTS 

~o H LIQUID LINE jj) 1."7' CM 10 

5/) H VAPOR LINE iil 7.$$ CM 10 

. 

COMMENTS 

~o M LIQUID LINE Ii 2.01 CM ID 

5/) H VAPOR LINE iil i-oo CM 10 



" ~ 

iddt's; $"" ... 'e &. !zt 1 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT ExeHAtlGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE.. CONCEPT +" 

AMtiON,/\ .... c.. 

QTY WEIGHT (KG) 

,OOM , .. ,."1-

. 
13 1+1.r. 

I 8 ... 

1'0 ,.,1. 4s'4) 

+"10 W 1M 

1- lI.ta 

5"113 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE ~ CONCEPT ~ 

AMtiON,A 40·e. 

OTY WEIGHT (KG) 

,OOM 81.& 

13 ')41.1. 

/ "lIt-

7Co1.,,.,1. +~"Uo 

/2.00 W S"f,o 

'2. 17."1-

S03<' 

91 

'''iG 9' .... 'toema. 

. COMMENTS 

SOH LIQUID LINE a 2. • .,,, CM 10 

511 H VAPOR LI NE a 5'.5"0 CM 10 I 

"" 

. COMMENTS 

50 H LIQUID LINE a l.u.. eM 10 

50 H VAPOR LI NE a +.~O CM 10 I 
. 

Ii 
I! 
" . . 

. ' 



COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIAfOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS S~RY 
CASE' CONCEPT' 

AMt10N'A /10'(. 

QTY WEIGHT (KG) 

,DOM 'o'.s 

13 3+l.~ 

/ I~.C. 

&1,.1 Hl 'l~' 
,fi,.o W ~".1. 

to '0.0 

18"0 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE + CONCEPT t 

AMt10N'A /10·C 

QTY WEIGHT (KG) 

100M S'Z,4.C. 

11 3"'1.(0 

1 ,~."l 

Z,3Co •• Hl /1·" .... -
0 W 0 

0 0 

1st$' 

92 

COMMENTS 

S'OH LIQUID LINE a l.u.. CM ID 

so H VAPOR LI NE a +.00 el1 ID 

... 

. COMMENTS 

SO H LIQUID LINE a '.10 Cft ID 

so H VAPOR LI NE a 1/.4 CM ID I 

, 

. 

r. 
,~ 

I 
I 
t 

I. 
r 
I' 
I 

'. 
I' 

I 
I: 

! 
I 
! 
I , r: 

\. 



I • 

t 
: , . 

COMPONENT , 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE + COt~CEPT 4A 

AMt10NIA IlDeC. 

QTY WEIGHT (KG) 

,OOM 101.S 

1'3 3+3.(, 

, s . ., 
2o'3".5t'1' I'"'' 
4o<.w "f,t,. 
1. /0., 

1-,1.1. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE + CONCEPT 48 

AMt10NIA 12.0·C. 

QTY WEIGHT (KG) 

,OOM .".e 

/3 . 'fl." 
I s.+ 

2.1C..3 t'I' I~'+ 

7Ct3 W ,t., 
l- IS.+ 

'6' , 

93 

, COMMENTS 

so H LIQUID LINE Ii 

50 H VAPOR LINE Ii 

(} 
~ 

• 

. COMMENTS 

so H LIQUID LINE Ii 

50 H VAPOR LINE Ii 

l.U. CM ID 

t.oo CM ID 

2,.6<0 CM ID 

).so CM ID 

I: , 
/ 
I 
! 

I 
J 
I 

f -. -



PHYSICAL CHARACTERISTICS SIJ1MARY 
CASE I CONCEPT I 

FREON " -tee.. 

COMPONENT . QTY WEIGHT (KG) 

LINES (WET) 39 M 
8,(,0., 

HEAT EXCHANGERS (WET) " 11.5" 

ACCUMULATOR (WET) I ,s.", 

RADIATOR PENALTY z.c. • ., M' IS'S.'" 

POWER PENALTY o.s .. W 0.0") . 
PUMP 1. '2..~ 

TOTAL I'" .1. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT 1. 

FREON 1\ 1--c.. 

COMPONENT . QTY WEIGHT (KG) 

LINES (WET) 39M 8."" 

HEAT EXCHANGERS (WET) " n.") 

ACCUMULATOR (WET) I I.e..+ 
RADIATOR PENALTY ZIo,' M' 'S-8.+ 
POWER PENALTY o W 0 

PUMP 0 -- 0 

TOTAL - -- lec...' 

94 

. COMMENTS 

I., H LIQUID LINE a 
" M VAPOR LI NE a 

. . 

. COMMENTS 

• ., H LIQUID LINE S 

"H VAPOR LINE a 

,.1(, CM 10 

,.SO CM 10 

" 

Io/r.. CM 10 

,.SO CH 10 

I , 
I: , 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

PowER PENALTY 

PUMP 

TOTAL 

... 
1 . 

i • 

I 

, 

PHYSICAL CHARACTERISTICS SlftI.ARY 
CASE t CONCEPT -1-" 

FREON 1\ 4\ t 

QTY WEIGHT (KG) 

~M e.f.' 

" II.S 

I ,.~<+ 

U..OM' In .... 

.. ,.r.w '7,A 

t- 4" 

""." 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT '1-8 

FREON 1\ 4-C. 

QTY WEIGHT (KG) 

lSM f.'U .. 

" II.S 

I 0 • .,8 

u.s...,' IUo.8 

51.f. W ... ,., 
t- l'l.' 

I" • ., 

95 

\ 

COMMENTS 

I~ M LIQUID LINE a 1.1r, CM ID I, M VAPOR LI NE a 3.so CH ID 

. COMMENTS 

I~ M LIQUID LINE a 0.'" CM ID 

I' M VAPOR LI NE a z..oo CM ID 

-- - --- ~. ",,"0 -'",.:.;--_ .... !'I! ¥1or..'"'!'.:---

. 
! 

t • . 

.. 

f. 
f 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

- COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT I 

FREON 1\ ZO·Co 

QTY WEIGHT (KG) 
-

39 M '7.'0 

" l'l.'l. 

I 10.' 

"., M' 101.' 

O.C.SW 0.10 

1. z..'l 

134.'l 

PHYSICAL CHARACTERISTICS S~~RY 
CASE' CONCEPT ~ 

FREON II to·c. 

QTY WEIGHT (KG) 

39M e.os 

" 18.C. 

1 1.C.4-

,.,.1 M' '01.0 

0 W 0 

0 0 

11."'~ -

. COMMENTS 

I~M LIQUID LINE a "'I CM ID 

"M VAPOR LINE a 3.00 CH ID 

. COMMENTS 

I' M LIQUID LINE a ,.1+ CM ID 

" H VAPOR LINE a 1.10 CH ID 

- - -

--------

I. 
I' 
I 
I 
I 

I 

L 
I. 

I 
I 
I 
I 
I 
I 

I, 

i: 

i 
1-,-



PHYSICAL CHARACTERISTICS S~RY 
CASE 1 COlfCEPT-tA 

FREON 1\ 1.O-c.. 

COMPONENT . QTY WEIGHT (KG) 

LINES (WET) !91'\ .,.,0 

HEAT EXCHANGERS (WET) " 
,,,.1-

ACCUMULATOR (WET) I 1.1.' 

RADIATOR PENALTY 1".8 M' ,.,. , 
POWER PENALTY 

"." III 
+."1 

PUMP to .... 0 

TOTAL ,,.,.'1. 

PHYSICAL CHARACTERISTICS SUWlARY 
CASE' CONCEPT 4& 

FREON II 'to-Co 

COMPONENT . QTY WEIGHT (KG) 

LINES (WET) !9 M +.51 

HEAT EXCHANGERS (WET) " Il.1. 

ACCUMULATOR (WET) I 1.04-

RADIATOR PENALTY IS ... M' .,,,.c. 
POWER PENALTY Ie, III 8." 
PUMP 1. .,., 
TOTAL n.,., 

91 

. COMMENTS 

I~ M LIQUID LINE a ,.11 CM 10 

"M VAPOR LINE a '3.0. CM 10 

" 

, COMMENTS 

I' M LIQUID LINE a 0.,+ CM 10 I, H VAPOR LINE iil 1..00 CM 10 

I: 
I' 
I' 
I 

I 

I 
I-
I 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) . 
ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COI1PONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSiCAl CHARACTERISTICS SUMMARY 
CASE I CONCEPT I 

FREON 1\ 40·C. 

QTY WEIGHT (KG) 

38 M 5'.0' 

" It,.' , ... foB 

".14M' ".3 
~ ... 'W 0.40 

't. t ... 

",.S . 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT 1-

FREON 1\ Ito"c. 

QTY WEIGHT (KG) 

38 M 8.02-

" /'.1 

I I ... ., 

".DC, M' "S". 'L 

o W 0 

0 0 

'4.1 

. COMMENTS 

" H LIQUID LINE iil 

"M VAPOR LINE iil 

. COMMENTS 

I~H LIQUID LINE iii 

I' H VAPOR LJ NE iii 

---------~ 

98 

QS+ CM 10 

2.oD CK 10 

1./' eM ID 

Z.SS CH 10 

. 
- -

------

,. 
,~ 

I 

L 



• anW -rS .... i· .. &'trZPftHYAi"¥?b· ~.o R bC 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUl'lMARY 
CASE' CONCEPT +11 

FREON I' 'f<)-(. 

QTY WEIGHT (KG) 

!8M ".'1 

" ,~., 

I I.'ll. 

10.,S 1'1' r.M 

1.1.1' '" l.S8 

t. l.S 

't.~ 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT l\-& 

FREON 1\ 1o-c.. 

QTY WEIGHT (KG) 

!9 M 5.01 

" l'l., 

I /.11 

ro." 1'1' ~l.' 

(./.+ '" t.1c-

t. $.'1 

'0.' 

99 

COMMENTS 

,~ H LIQUID LINE a r.os I, H VAPOR LINE Q ~.so 

• 
. 

. 
COMMENTS 

"H LIQUID LINE iii 0.14 

I, M VAPOR LINE Ql %,00 

. 

CM 10 

CH 10 

eH 10 

CH 10 

-. 
\~ 

II 

I 

;~ 

i _ 

, 
I • 
! 

I 
, . 

-~-..---... - "'-1 



- "! 

COMPONENT • 

LINES (WET) 

. 
HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAl OfARACTERISTlCS SIJ1MARY 
CASE' CONCEPT I 

FREON II ,'to-Co 

QTY WE'GHT (KG) 

38 M +.1& 

" '1.& 
I t.~1. 

,.,," 11' '1.0.0 

l.c.ow 0.41 

1. f..e. 

43.6 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT Z 

FREON II Ito°C. 

aTY WEIGHT (KG) 

38M ,o.l. 

" 1.0.'l. 

I M.I) 

J.",I1' %0.0 

Ow 0 

0 0 

5'7..'S 
-

-, -- ---- ----

100 

. COMMENTS 

'" H LIQUID LINE iii 

" H VAPOR LINE Q 

. 

. COMMENTS 

'" M LIQUID LI NE iii . 
" H VAPOR LI NE iii 

0."1') CM ID 

,.SO at 10 

• 

I.~' CM 10 

l.n. at 10 

, 

I 
i' 

-,-



"' .. ~ .. 't-,.. - ~ 'U 

t4u snt=6. we + 
-.,. ... - -, 

~C'iN1te_?-'<'"1*~.w.td.i*;g,"'*.J '-% f<""H--';~ f it f+--e 

.. 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUHU~TOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCCMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SIR'MRY 
CASE' CONCEPT +~ 

FREON II 11.0-" 

QTY' WEIGHT (KG) 

38 M "'.78 

" 1'.8 , 1.'4-

1.17 M' 1"1."1 

/1.1. W I." 
't. 1..' 

- +4.1 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT +8 

FREON JI 11.0·C. 

CTY WEIGHT (KG) 

38 M ".,c.. 

" n.6 
1 1.0"1 

l.?Ct M' ".' 
210 ... "" , .'"1 

'Z. ".7 
43.i 

101 

, COMMENTS 

" H LIQUID LINE iii O.'l CM 10 

" M VAPOR LINE iii I.SO CM 10 

-

, COMMENTS 

I' H LIQUID LINE a 0.78 CM 10 

" H VAPOR LI NE iii 1.1.S CM 10 t 

I 

j: 
I 

! 

I 
~ . ,-



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1- CONCEPT I 

FREON II i'e. 

QTY WEIGHT (KG) 

100M 44'S ,0 

I!> 838.0 

I I)OS 

189'1 Ml ,,11O 

Go," W III 

'L ','1 

'10105' _ 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1- CONCEPT 1.. 

FREON II .. ~ 

QTY WEIGHT (KG) 

100M 441,0 

I!> 1'11.) 

I 1104:'1 

I&'S M' II oC.1 

o W 0 

0 0 

11.",S1. 

102 

. COMMENTS 

SOM LIQUID LINE a ',r." CM 10 I , 
~M VAPOR LINE a 'ttI,O CH 10 ! 

I , 
I 
I 
I 
I 
I 

. COMMENTS 

. so Ii LIQUID LINE a "r.f CM 10 
I 

~ M VAPOR LINE a U.O CH 10 I 
I 
I 

I 
I 

:. 

i I 

,­,-
I 
I 

! 
I 

! 
i' 

f 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATO~ PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1- CONCEPT ~A 

FREON J' "-Co 

QTY WEIGHT (KG) 

100M +41.0 

I~ 838.0 

I "1..1. 

161.1. M' '0'4, 
2.,01. "" 4101. 

Z. 1.0.0 

. 
11.looS 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 4- CONCEPT IT6 

FREON II 'fee. 

CTY WEIGHT (KG) 

100M 11'.'5 

I 
I~ en I 
I 1.1.10 

'++1. M' 8S10 

4s444"" 1..04-$ 

'Z. s+ . .,. 

1I1o~" 

. COMMENTS 

SOH LIQUID LINE a 
so H VAPOR LINE a 

• . 

. COMMENTS 

SOH LIQUID LINE a 
so M VAPOR LI NE a 

, 

I 
! 

".c,.f CM ID 

1.0.0 CM 10 

I 
I 
I 

3.~ CM ID I 
I 

'o.s CM 10 I 
I . 
I , 
I 

I 
I 
I 
I 

--~ 

I, , , 

" 
I, 
I-
I 
I 
I 

i 
/: 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUHULATOR (WET) 

RADI·ATOR PENALTY 

POWER PENALTY 

PU/1P 

TOTAL 
-

PHYSiCAl CHARACTERISTICS SUMMARY 
CASE + CONCEPT I 

FREON II to-c. 

QTY WEIGHT (KG) 

IOOt\ ~a.,.1 

I~ es,.1. 

I "t,s." 
,to? M' ',1.'1 

I'.S' III 1.o"t 

2- 8.+ 
"lou~' 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT z. 

FREON J I 'to-c. 

QTY WEIGHT (KG) 

100M 10]., 

I~ ',Co., I 
I 1~1.'J 

",. M' 7O,"' 

0 III 0 

0 0 

"'" . 

104 

COMMENTS . 
50H LIQUID LINE iii s.n CM 10 , . 
SO H VAPOR LI NE a ,s.o CM 10 I , 

1 . 
I 

. 

, COMMENTS 

50H LIQUID LINE iii u.+ CM 10 , , 
$'0 H VAPOR LI NE a IVI CH 10 ! , 

I , 
I 

I . 

.. 
I_ 

I' 
I 

. l 
I 

i: • t 
I 

I 
I 
I 

i , ' 
,. 

I. 
I • 

,­
I 

i 



i~.1~0~{~'~!-~'~'~E~3W;~<QN~4~'~!*~*~~i~·~i"~1~Wf~&~'·y*~6~1j~r.·.·~'~k'S~'~n~ ____ __ 

.... 

, 
COMPONENT . 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINfS (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PEIIALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL OIARACTERISTICS SUt1MARY 
CASE -1- Co.'iCEPT + A 

FREON II 2.I>-c.. 

OTY WEIGHT (KG) 

100M 40".'\ 

I 
I!> 881,1. I 
I "".10 

.. " Ml Co'S$" 

1~4W 1.47.0 

t. 11.1 

. 1"01 

PHYSICAL CHARACTERISTICS SUMMARY 

CASE -1- CONCEPT + B 

FREON I I 20-C. 

OTY WEIGHT (KG) 

100M ISIo.S" 

I!> 881." I 
I ,..' 

,11Co Ml "700 

mil. W )",. 
'to. U.S 

81.C.~ 

105 

. COMMENTS 

$OM LIQUID LINE a ".(of CM 10 : 
I 

SOM VAPOR LINE a ".0 eM ID I 
I 
I 
I 
I 
I 
I 

I 

/. 

I 

I 

I 

I 
I 
I' 

. COMMENTS I 
so M LIQUID LlIIE a I .... n CM 10 , 

I 

so M VAPOR LI NE ; 11..0 CM 10 ! 
I 

i 
I 

i 
I 

I 

I 
t 
I 



COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (IiET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

I HEAT EXCHANGERS h"ET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

PowER PENALTY 

PUMP 

I TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT I 

FREON 1\ 'fo°c.. 

OTY WEIGHT (KG) 

100M I&$";'l 

I~ ctlS'.$' 

I ,,2..'-
'~.s ,.,' 4<040 

Jf>3 W S.1O 

l. - 8.c.. 

",1..& 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT 'l. 

FREON 1\ 'foec. 

OTY WEIGHT (KG) 

100M 31.1..1 

I~ '+01. 0 I 
I 

I 11.$'.0 I 
77+.',.,' 4-S'C.' I 

o W 0 

0 0 

""IS' 

106 

, COMMENTS 

50H LIQUID LINE III 

50 H VAPOR LI NE a 

.. 

COMMENTS 

50 M LIQUID :'IIIE III 

50M VAPOR LINE a 

4.1.' C"I 10 I , 
11.0 CH 10 I 

I , 
I , 

I 
I 

"SB CI1 10 : , 
IS., C11 10 I 

I , 
I , . 
I 

I 
I 
I 

·1 
I 

r 
I 

! 

:1 

. I 

\ ,-

I' 



COMPONENT . 
liNES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
liNES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

I TOTAL 

Itt -

PHYSICAL CHARACTERISTICS SUMMARY 
CASE of COrlCEPT 4 A 

FREON 'I ~.c. 

CTY WEIGHT (XG) 

1001'\ n.,." 

I 
I~ 'I5'.S" I 
I ").& 

7('8.3 M' +531 

10'5' vi "1.0 

t- n." 
,"0,"& 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE of CONCEPT 1-6 

FREON 'I 4<lec, 

CTY ~IEIGHT (KG) 

1001'\ 19S'.,) 

I 
I~ .,.S'.$ I 
I 80.& 

7S".8 M' #",. 
~')3 vi l"o.S 

'l.. 1.0.') 

5'8,.8 

1.07 

COMMENTS 

SO M LIQUIO LINE iii '.~8 CM 10 , · , 

I 
! 

50 M VAPOR LI NE Cii 15.0 CM 10 I 
I · I 
I · I , 
I 
I 

I 
I· 
I 

COMMENTS J 
I 

SDM LIQUID U::E a +.(" C:1 10 : · 50 M VAPOR UNE Ii) 1/.0 CM 10 I 
I · , , 
· I , , 
I 

./ 
J 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

CO~'PONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 4 CONCEPT I 

FREON 1\ Il.O"e. 

QTY WEIGHT (KG) 

100M 1'38.1 

I> ~"'l,c. 
I 
1 

I I~C.." 

t.~8.1. ,.,l IiOS' 

"0 'oil .,.S 
l. 10.0 

z.c..;o 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 4 CONCEPT l. 

FREON 1\ 1'2.0'e. 

QTY WEIGHT (KG) 

100M of13r.' 

I> (+'7& 
I 

1 I'SS.1. 

U".8 ,.,l \'30"1' 

DW 0 

0 0 

'3~t. 

108 

1<> 1 

COMMENTS 

S'OH LIQUID LitlE; i 4.3e. CM 10 I , 
50 M vAPOR LI NE Gl ',00 CM 10 I 

I 
I 

\ , 

. I: 
f 
I 

·1 

COMMENTS I 
-! 

S'OM LIQUID LJIIE Gl S.,1. CM 10 

50M VAPOR LINE Gl 14,0 CM 10 

1 ( 
I, 



COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

PowER PENALTY 

PUMP 

TOTAL 

C()/o\PONENT . 
LINES (WET) 

lHEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENAl.TY 

POWER PEN"l.TY 

PU~\P 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 4- CONCEPT fA 

FREON II n.'o-c. 

OTY WEIGHT (KG) 

100M 1.18 •• 

I 
'1'1t..!. I~ I 

I eM 
2.'3f.,1' ,.,1 ''3'15 

SI'VI 91." 

t- n .• "1 

'L'1&<' 

.. 
PHYSICAL CHARACTERISTICS SUMMARY 

CASE 4- CONCEPT ~6 
FREON J 1 1'2.0·C 

OTY WEIGHT (KG) 

100M I,Q.I 

I 
I~ I 'S'I1..I. I 
I "1,.0 I 

1.\5'.4 ,.,1 I'lS, I 

'loSe. VI '5'." 
l- I •• ' 

"Le."I' 

109 

COMMENTS J 
SOH LIQUID LINE iii ~r.o CM 

! 
10 : 

I 

SO H VAPOR LI tiE a; ,.00 C:1 I;) I 
I . 
I 
I 

i 

I 
I 
I 
I 

COMMENTS I 
I 

SOH LIQUID LWE Cil Me. C1 10 : 
I 

so M VAPOR l.1 NE iil 7.00 CM I:; I 

J 

I 
I 
I 
I 

I 

t 

I 

I 
I I 

I' I 

! 

I 1 
, i 

I 

J 



COMPONENT 

LINES (WET) 
, 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUI1P 

TOTAL 

COI1PONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

I 
HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I CONCEPT I 

W"'TER 'Io·c. 

aTY WEIGHT (KG) 

36M " .. ~ 
Go ".1. , ,., 

11.1'04 H~ 1'08.'1 

0.01. W 0.01 

'L ,.e. 

'01.' 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE I COIiCEPT 'Z. 

W"'TER 40-c. 

aTY WEIGHT (KG) 

39M 1e..3 

Go 11.1. 

, 0.'1.5' 

".tA- HI r.."." 
0 W 0 

0 0 

~c..S" 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE \ COIiCEPT ~ 

W"'TER 4O-c.. 

QTV WEIGHT (KG) 

39M I"'~ 

Go '10,. , (I.U 

II.",," HI c..e." 

o W 0 

!: lo.s 

10"" 

110 

COMMENTS 

I,M LIQUID LINE Ii O.~S CI1 ID 

I' M VAPOR LI HE Ii ,.5'0 CM ID 

COMMENTS 

.,11 LIQUID LINE a o.SS CM ID 

I, M VAPOR LINE Q l.S'II CM ID 

COMMENTS 

"" LIQUID LINE Q o.ss eM 10 I 
I, M VAPOR LI NE &1 3.$'0 CM ID I 

• I 

, 
~ , 
l 
I 

~ t 
I~ 

{ 

I 
t 
I' 
! 

I 
I 
I , 

-,-
I-

i 
I 
L. 
r. 

I 
I 

~ I 

f 
~ , 



COMPONENT . 
\ 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

IHEAT EXCHANGERS (WET) 

ACCUMULATOR- (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT +1\ 

WPaTE R 40·C. 

QTY WEIGHT (KG) 

3eM Z,1.o 

t- ".'L , 0."'') 

/0.-"0 ttl t-'h'3 

,'0 W 1,.4 

L (0.+ 

''Lo.c-

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT ~ 

WI\TE R 4O.C. 

QTY WEIGHT (KG) 

3e 1"\ ,eo.'!. 

t- ,"'L , O.l.S 

IO.c.+ ttl C.t.9 

leCo W s.+ 
l. ,." 

101. • ., 

111 

COMMENTS 

I'M LIQUiD LINE Q 0.'0 CM ID 

I, H VAPOR LINE a 4$0 CM ID 

I 

COMMENTS . 

I' M LIQUID LlrlE Q O.SS CM ID c 
I'M VAPOR LINE Q '3.$'0 CM ID 

I 



LA!"- :10_"'" k .... !N.-'+?4'Wmi et t'<l";~'Wd !&!"'''W' I! ( ?rt..efi iteltzdp'*G as. h' f -.t.eW" tt 

COMPONENT .. 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCuriULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCllMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOT4L 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1 CONCEPT 1 

WATE R I 'to -c.. 

QTY WEIGHT (KG) 

39M $.5'\ 

(. /1,'1-, o:n 
,,4., til to." 

O.8sW o.Il 

t- /.", 
1"M!. 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1 CONCEPT 'l. 

WATE R 12.0-C. 

QTY WEIGHT (KG) 

36M ,.s 

(. /1.1-

, O.'!.I 

"3.+1 til 'to.\ 

0 W 0 

0 0 

3"-1.0 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE \ CONCEPT 3 

WATE R Ito·Co 

QTY WEIGHT (KG) 

39M $.5'1 

(. ".1-

I O.~O 

3.'" til 1.0.(. 

o W 0 

5 /J.IS 

+6., 

l12 

r 

COMMENTS 

., M lolQUID LINE Gl 

I, M :-'APOR lol NE a 

COMMENTS 

I,M LIQUID LINE a 
I, M VAPOR LI NE Gl 

COMMENTS 

., M LIQUID LINi; a 
I, H VAPOR LI NE a 

0.1.8 CM 10 

1.00 CM ID 

//.1' CM ID 

/.'18 CM 10 

0.1.& CM 10 

1.0 0 CM 10 I 

: ,. 

I 
'-

i' 
I: 
I 

I 
J 
I 

t 
1" 



.,. 

COM~ONENT . 
LINES (WET) . 
HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

PowER PENALTY 

PUMP 

TOTAL 

COMPONENT 

LINES (WET) 

I HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE' CONCEPT 4hA 

W~TE R 1'1.0-(. 

QTY WEIGHT (KG) 

36 t1 a.I 

c- I\.'t. 

, 
O.'l'l. 

l.'S." H' J, . ., 
2.0.0 III .,.1' 

1. '3.4 

4-<..0 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE 1 CONCEPT 48 

WATE R 'to·Co 

OTY WEIGHT (KG) 

36 t1 (..8 

c- ".1. 

I 0.1.1 

.,.,s H' 1"1.8 

~1.1-111 ,."lS 

'L 4.S 

4t·4 
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COMPONENT 

LINES (WET) 

HEAT EXCHANGERS (WET) 

ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL --

COMPONENT . 
~----I LINES (WET) 
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I .. EAT EXCH;'lIGERS ~WEi) 

I ACCU:1ULATOR (WET) 

RADIATOR PENALTY 

I POWER PEIIALTY 

PUMP 

TOTAL 

COMPONENT . 
LINES (",er) 

I 

I 
I HEAT EXCHA.lGERS ~WET) 

I Accur1UlATOR (WET) 

_l~ADIATCR PENALTY 

I PC~/ER PENALTY 

PUMP 

T01AL 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT 1 

WATER 40°,-

- - -
CTY -- WEIGHT (KG) 

100M 'l'l2..6 

I~ (,,'lI.S' 

I 12.'6 

So').'7 Ml 4-'~~ 

o.u.W 0., 
to ... ~ 

-
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PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT "Z. 

WATER 40-(' 

CTY WEIGHT (KG) 

--- -~ --~ -
100M 3~~.13 

I I 
I I 

I~ t.,)1.5 I , /'7., 

80]., Ml .. ,41. 

OW 0 

0 0 
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PHYSICAL CHARACTERISTICS SUMMARY 
CASE t CONCEPT 3 

WATER 40·C. 

CTY WEIGHT (KG) 

100M 3~1..6 
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SO'J., Ml ... ,+t. 

o W 0 

/1- "I}.O 

... ·n' 
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COMPONENT . 
LINES (WET) 

I i HEAT nCHA:lGERS lWET) I 
I ACCUI1ULATOR (WET) 

I
RADIATOR PENALTY 
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I PUMP 

I TOTAL 
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I !.INES (WET) 
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. 
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WI\TE R ,\o·c. 
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CASE t CONCEPT +S 

WI\TE R 4foec. 

QTY WEIGHT (KG) 

100M 30S • ., 
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I 

1 11..' 

75'8.5' I"Il #71 

8"1soW +0+.\ 

2.. t.+.'S 

sec.1 
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COMPONENT · 
LINES (WET) 

I HEAT EXCHA11GERS ~WET) 
ACCU/1ULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL 

COMPONENT · 
LINES (WET) 

1 
1 
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• HEAT EXCHA:IGERS lWET) 

I ACCUMULATOR (WET) 

RADIATOR PENALTY 

POWER PENALTY 

PUMP 

TOTAL . 
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LINES (hET) 
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PUMP 
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PHYSICAL CHARACTERISTICS SUMMARY 
CASE q. CONCEPT , 

WI\TE R 120-(" 

QTY WEIGHT (KG) 

100M 9'.0 

I'!> "ll.S 
I 

I ·fl.'" 
%.41.(, ",1 '41.C, 

n .. " W t-.I 

'to 'M' 
'I.·U.S' 

PHYSICAL CHARACTERISTICS SUMMARY· 
CASE q. CONCEPT , 

WI\TE R I~o·c.. 

QTY WEIGHT (kG) 

100M /IS. I 

I~ C.,\I.~ 

I It-oS 

2.38.+ ",1 ,40," 

0 W ., 
0 0 

7.1 CoCo 

PHYSICAL CHARACTERISTICS SUMMARY 
CASE q. CONCEPT ) 

WI\TE R Ito·c.. 

QTY WEIGHT (KG) 

100M 8,,).0 

I 
I I 

I~ "ll.S 

1 II.' 
1.41.e. ",1 '+16 

o W 0 

11. C.+"I.3 

2.801 
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LINES (hET) 
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CASE t CONCEPT +A 

WATE R Il.O·Co 

QTY WEIGHT (KG) 
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QTY WEIGHT (KG) 

100M '''0.8 
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'",0 W 4t,S' 
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