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1. CURRENT TECHNICAL OBJECTIVES

1. Optimal Utilization of Laser and VLSI Observations for Reference
Frames for Geodynamics (Grant NSG 5265)

2. Utilization of Range Difference Observations in Geodynamics
(Contract NAS 5-25888)

3. Development of Models for Ice Sheet and Crustal Deformations
(Grant NS/A' 5265)

2. ACTIVITIES

2,1 Effects of Adopting New Precession, Nutation and Equinox Corrections
on the Terrestrial Reference Frame

A paper on this topic was presented at the XVII General Assembly of

the International Astronomical Union, Patras, Greece, August 17-26, 1982W

and appears in its entirety below. It will also appear in Bulletin

Geodesique.
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PREFACE

These projects are under the supervision of Professor Ivan I.

Mueller, Department of Geodetic Science and Surveying, The Ohio State

University. The Science Advisor of RF 711055 is Dr. David E. Smith,

Code 9 •.1, Geodynamics Branch, and the Technical Officer is Mr. Jean

Welker, Code 903, Technology Applications Center. The Technical

Offia,er for RF 712407 is Mr. C. Stephanides, Code 942. The latter

three are at NASA/GSFC, Greenbelt, Maryland 20771.
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EFFECTS OF ADOPTIMG NEW PRECESSION, NUTATION AND EQUINOX CORRECTIONS

ON THE TERRESTRIAL REFERENCE FRAME 1

Sheng-Yuan Zhu* and Ivan I. Mueller
Department of Geodetic Science and Surveying

The Ohio State University, Columbus, Ohio 43210 USA

ABSTRACT. First, the paper is devoted to the effects of adopting new

definitive precession and equinox corrections on the terrestrial reference
i

frame: The effect on polar motion is a diurnal periodic term with an amplitude
a

increasing linearly in time; on UT1 it is a linear term. Second, general

principles are given the use of which can determine the effects of small rota-

tions (such as precession, nutation or equinox corrections) of the frame of a 	 '.

Conventional Inertial Reference System (CIS) on the frame of the Conventional

Terrestrial Reference System (CTS). Next, seven CTS options are presented,

one of which is necessary to accommodate such rotations (corrections). The

last of these options requiring no changes in the origin of terrestrial

longitudes and in UT1 is advocated; this option would be maintained by even-

tually referencing the Greenwich Mean Sidereal Time to a fixed point on the

equator, instead of to the mean equinox of date, the current practice.

Accomodating possible future changes in the astronomical nutation is discussed

in the last section. The Appendix deals with the effects of differences which

may exist between the various CTS's and CIS's (inherent in the various observa-

tional techniques) on earth rotation parameters (ERP) and how these differences

can be determined. It is shown that the CTS differences can be determined

from observations made at the same site, while the CIS differences by comparing

the ERP's determined by the different techniques during the same time period.

i.

INTRODUCTION

New general precession and equinox corrections are being introduced in the

1984 star catalogues and ephemerides. These corrections in turn will affect
}

the earth rotation parameters (ERP)_, i.e., polar motion coordinates and UT1, and

thus may change the frame of the Conventional Terrestrial Reference System
g

*On leave from Shanghai Observatory, China.
'Presented at XVIII General Assembly of the International Astronomical Union,
Patras, Greece, August 17-26, 1982.
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(CTS) [Mueller 1981]. Williams and Melbourne [1981] have already given a

detailed discussion of these effects on UT1 and on the origin of terrestri

longitudes. In fact, it was this work which gave us motivation to expand

discussion to include the effects on all ERP's and offer additional options

on ho g the necessary changes in the CTS could be accommodated. The approach

is strictly geometric, i.e., we try to answer the question how definitive

corrections to precession, nutation and the equinox affect the ERP's, and thus

the CTS. Williams and Melbourne [1981] emphasize the point of how UT1 and the

origin of longitudes will be affected in the future by the uncertainties in the

newly adopted corrections or how these corrections can be improved in the future

from ensembles of Very Long Baseline Interferometer (VLBI) or Lunar Laser Ranging

(LLR) orbservations, with the desire that no or minimum additional changes result

in the CTS. They assume that VLBI sources are observed randomly over the sky,

while LLR observations are equally distributed only along the ecliptic, and

therefore the resulting equations defining the changes of the origin of terres-

trial longitudes and UT1 are t echnique dependent, whereas ours are not. (Putting

it differently, they imply that if the analysis of future VLBI or LLR ensemble

observations indicate necessary changes in UT1 and in the origin of terrestrial

longitudes, such changes are due to the still existing imperfections in the

newly adopted corrections to precession, equinox, etc., and when determined

they will be biased with respect to each other because of the different sensi-

tivities of the two ensembles of observations.) This difference in the results

should not confuse the reader who recognizes the different purposes for which

these papers were written.

1. EFFECTS OF ADOPTING NEW PRECESSION AND EQUINOX CORRECTIONS ON THE FRAME

OF THE CONVENTIONAL TERRESTRIAL REFERENCE SYSTEM

1.1 Transformation Between Conventional Inertial (CIS) and Terrestrial

Reference Frames (CTS)

The transformation at an epoch T between the CIS at some fundamental epoch

(e.g., 1950.0) and the CTS is

[CTS] = SNP(M) [CIS] 	 (1)

(see [Mueller 1981]). Here

S	 R 2 (-xp ) R 1 (-yp ) R3(e)

3



is the earth rotation matrix, in which x  and y  are the polar motion components,

and a is the Greenwich Apparent Sidereal Time (corresponding to the epoch T)

computed from

$ = (GMST)o + we UT1 + Eq. E.

where (GMST)o is the Greenwich Mean Sidereal Time at Oh UT1, we is the conver-

sion factor from mean time to mean sidereal time, and Eq. E. is the equation

of the equinox (nutation in right ascension). The other matrices N, P, M in

equation (1) are the nutation, precession, and proper motion matrices respec-

tively [Mueller 1969, p. 1231. Parentheses around the M matrix indicate

that proper motion is applied only in the case of a stellar CIS.

Let prime (') denote the case with the precession, nutation and equinox

changes introduced. The transformation equation (1) also holds for the cor-

rected case:

[CTS]'	 S'N'P'(M') [CIS]'	 (11)

In this section only the precession and equinox changes are considered so that

N' = N. From the definitions (or stipulations), one can determine directly or

indirectly the relations between P' and P, M' and M, and [CIS]' and [CIS] at

some epoch, leaving S' and [CTS]' to be solved for.

One cannot solve for both S' and [CTS]' simultaneously, hence some addi-

tional constraint is needed. There are several options for the constraint, and

they will be discussed later in Section 2.2. For the time being we will conform

with the IAU adopted constraint, namely: Let the new ERP's be the same as the

old ones at some epoch T  (in this paper T denotes the epoch, and t the time

interval between T and some fundamental epoch, e.g., 1950.0); solve for [CTS]'

at this time, then keep it time invariant and solve for the resulting time

variations in the new ERP's.

1.2 The Effect in the Case of a Stellar CIS

The new (1976) corrections for lunisolar precession in longitude and

planetary precession in right ascension are [Williams and Melbourne 1981]

op l	1':1 /cy

AX	 -0."029/cy

4
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The correction to the equinox is Eo + Et, where Eo = 0 1.1 525 is the offset at
.

1950.0, E	 1 1.1 275/cy *, and t is the time elapsed from 1954.0 [Fricke 1981].

The new precession matrix P' can be written with sufficient approximation

as

P' = R 2 (Ant) R 3 ( -Amt) P
	

(2)

with

An = Ap l sine

Am = Ap l COSe - AX

where a is the obliquity of the ecliptic, and An, Am are the general precession

changes in declination and in right ascension. Due to the equinox correction,

the equation for the Greenwich Mean Sidereal Time is to change(without terms of

higher order) to [Aoki et al. 19821

(GMST)o = (GMST) o + Eo + it	 (3)

For the stellar (i.e., classical optical) CIS the change caused by the equinox

correction at the fundamental epoch 1950.0 is

[CIS]' - R 3 ( -Eo) [CIS]
	

(4)

The new proper motion matrix is

M' = R 2 ( -Ant) R 3 [(Am - E)t] M	 (5)

The proper motion components in right ascension and declination are

(ua)' = (ua ) + E - Am - An sin g, tan6

(U 6 )' = ( u 6 ) - An coca

Substituting the above new values of P', M', [CIS]' and (GMST) (i,e., eqs. (2)

- (5)) into eq. (V), one gets

[CTS]" = R 2(-xp) Ri(-yp) R 3 1(GMST) 0 + we UTl' + Eq. E.] R3(Eo + Et) N

• R 2 (Ant) Rs( -Amt)P R 2 ( -Ant) R 3 [(Am - E)t] M R 3 ( -Eo) [Uls]

Except for (GMST)o, all rotation angels are small; neglecting the second-

order terms, approximately,

ICTS ]' = R2(-xp) Ri(-'yP) R 3 C(GMST)o + we UT1' + Eq. E.] NPM [CI S]	 (6)
1 

5
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.	 N(For the above given, Ap l and E values, neglecting the modulation of NP will

cause an error of less than 0 0.1 0001 in t = 10 yr.) Combining the above equation

with the mentioned constraints at epoch Tu : xp = xp , yp = y p , and UT1' = UT1,

one obtains

[^ CT5]' _ [CTS]

y

The well-known conclusion is that in the case of the stellar CIS, the CTS

and ERP's are unaffected because changes in the proper motion compensate for 'the 	 ►

equinox and precession changes. This statement is naturally valid not only at

the epoch Tu but at any time before or after.

1.3 The Effect in the Case of a Non-Stellar CIS
9

For any non-stellar (e.g., VLBI or LLR) CIS, the proper motion matrix is

no longer taken into consideration; the P and (GMST)o are the same as in the

stellar case (eq. (2) - (3)). The relationship between [CIS]' and [CIS] depends

on the particular CIS under consideration. Generally, 	 j

[CIS]' = E I [CIS]

If the considered CIS is aligned with the dynamic equator and equinox, then

E I	I, where I is a unit matrix.

If the non-stellar CIS is aligned with the stellar system equinox at some

epoch To, then E  will be a little complicated. At this time due to the equi-

nox correction,

[CIS]T o = R3(-Eo - Et ' ) [CISJTo	(7)

(More exactly, a second-order term could be considered.) The precession effect

on the CIS's for the'time interval to between the fundamental epoch 1950.0

and the al ignment epoch To is

[CIS] To = P(to) [CIS]

[CIsjT o = P'(to) [CIS]'

With equations (2) and (7) one gets at the fundamental epoch

[CIS]' = R 2 ( -dnto) R 3[(om	 E )to] R3(-Eo) [CIS] = Cj [CIS] 	 (8)

6
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E I = R 2 (-Anto) R3[(Am - h to - Eo]	 (9)
P

The corresponding corrections its. right ascension (Aa ) and declination (4d ) are
E I 	EI

4aE 	Eo + (E - Am)to - Anto sins tand
I

46 E - -onto cosu
I

Now, substituting P', (GMST)p, and [CIS]' (i.e., eq. (2), (3) and (8))

into eq. (11),

[CTS]' = R 2 (-xp) Rl(-yp) R 3 [(GMST)o + Eo + it + we UTV + Eq. E] N .

• R 2 (Ant) R3( -amt) P EI [CIS]	 (1")

As stated before, the ERP's are continuous, that is, at the alignment epoch Tu,

xp = xp , y7 = yp, UTV = UT1. Thus

[CTS]' = R =(-xp) Ri(-y p ) F[(GMST)o + we UT1 + Eq. €] R 3 (Eo + Etu ) N

R.( Antu) R3( -Amtu) P E I [CIS]

= SNP R 2 (4nt u ) R 3 [Eo + ( E - Am) t u ] E I [Cis]	 (10)

If the CIS is linked with the stellar system equinox at epoch To, i.e-, E I is

expressed by eq. (9), then

[C-Ts ' L SNP R2[An(tu-to)] R3[(E-Am)(tu-t0)][CIS]

	

s S R2[An(tu-to)] R3[(E~Am)(tu -to )] NP [CIS]	 (101)

As pointed out previously, the modulation of NP is negligible, but the modulation

of R 3 (8) 1 included in S, must be taken into consideration.

R 3 (e) RI [An(t u-to ')] = ( R 3( e ) R 2 [An(tu-t0 )] 
R 3 (-6)} R3(8)

R I [An(tu -to ) sine] R2[on(tu -to ) cose] R3(e)

Substituting this into equation (101),

[CTS]'	 R 1 [An(tu - to ) sine] Rz[An(tu-to ) cose] R 3 [(E-Am)(tu - t
0
)] SNP [CIS]

Thus for the case of CIS alignment with the stellar system

7
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r;^;TS1' = R [An(tu-tQ ) sin e] R2C4n(tu - t4 ) cose] 	 ITS 1
	

(11)

If the CIS is aligned with the dynamic equinox, that is, E I	 I, then

[CTS]' _ SNP R 2 (An tu ) R A EO + (E-Am) tu1[CIS]

Thus

EMS]' = R1 (An to sine) R2(An to rose) R3[E0 + (E-Am) tu1[LT4]
	

(12)

If the alignment is made over some time period (say, five days or so) T u is the

mean epoch of alignment, and the values sine and cosA are the mean values

within this time span and can be averaged to zero. In this case

[CTS 1' = R sC( E-Am)( tu- to )1[CTS1	 (11')

for the CIS linked with the stellar system equinox, and

[CTS]' = R3[ Eo + (E-Am) tu1CCTS 1 (12')

when aligned with the dynamic equinox. Thus the relation between the new and

old CTS's is a small rotation around the third axis. Expressed in longitude

(positive to the East),

bX = X , - X _ (Am-E)(tu -t0 )
	

(11" )

for the CIS linked with the stellar system equinox, and

8a	 a' - a = (Am-6 to - Eo	 (1211)

when aligned with the dynamic equinox.

For a CIS linked with the stellar system, if t o = to , then dX = 0

otherwise a shift in longitude is necessary. As for a CIS aligned with the

dynamic equinox, the CTS longitude origin shift generally cannot be avoided.

1.4 The Effect of the Time-Invariant CTS on the ERP's

The new CTS' at the time of alignment T  can then be determined as out-

lined in the previous section, i.e., in the stellar CIS case [CTS]' _ [CTS],

and in the non-stellar cases as given by eqs. (11), (11 1 ) or (12), (121).

k

8
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The next step is to keep the new CTS time invariant and to find the resulting

ERP's at any time other than Tu,. Substituting eq. (11 1 ) for the left side of
eq. (1"), and eq. (9) in the right-hand side, after some derivation and

neglecting second-order terms, one gets

[CT] a Rz(-xp) Ri(-yp) R 3 [(GMST)o + we UT1'+ Eq. E] -

.

- R2[4n(t-t
0
)] R3[(E-om)(t-tu)] NP [cIS]

Comparing this equation with eq. (1),

R2(-xP) Rl(-yp) R 3 [(GMST)o + we UT1' + Eq. E] R2[on(t-t o )] -

- R 3 [(E-Am)(t-tu )1 = S

or

R 2 [-xp + An(t-t
0
)cose] Ri[-yp + An(t-t

0
)sine] R3 {(GMST)o + Eq. E +

+ [we UT1' + (E-om)(t-tu)]} -

R2(-x p ) Ri(-yp) R 3 [(GMST)o + we UT1 + Eq. E]

From the above it is obvious that over a limited time span (otherwise second-
order terms must be added),

Axp = xp - xp = 4n(t-to ) cose

Ay p = yp - yp	 4n(t- to ) sine	 (13)

AUT1 = UT1' - UT1 = (Am-E(t-tu)/we

The above are in the case of a non-stellar CIS linked with the stellar system.
For the dynamic equinox alignment, substitute eq. (12 1 ) for the left side of
eq. (1") and let E I _ I. The results are

Ax p = ant cose

Ay p	 Ant sine	 (14)

AUT1 = (dm-E)(t-tu)/we

For both cases AUT1 is the same; so is the rate of AUT1:

ddf—- (Am-')/we = -0.157 ms/yr	 (15)

9



In
C)r POOR QUAW-11Y

In conclusion, in the case of a non stellar CIS, changes 
in 

the preces.

sional constant and the equinox will result in changes in both the QTS And the

CRP's, 
The 

CTS change is a longitude origin shift, The CRP changes Are diurnal

terms in the polar motion components with amplitudes linearly increasing with

time and a constant rata change in UTI. One point worth stressing 14 that these

are the differences of tho same system (technique) between the now and old

oases, not the differences between different systems, , (techniques), Also the

diurnal tom which is evident in polar motion is not 
the 

diurnal jru..Q,. polar

motion, but an Artifact due to the time invariant CTS constraint applied,

Z, UNERAL SOLUTION; VkL CIS ROTATIONS AND THEIR EFFECT ON THE CTS

2 * 1 Changes in the EarthA Rotation Parmetars
In the general ma, eel, (13) or (14) can be written in the following

f o rill

Up
 
^ -^Xj 5ino + iIa Q00

op 
* kit COO + AA sing
	

(16)

4k,) A %ql

where the 
small anglosa aj represent 

the 
changes in the sense

N I P I M I [gal l a Rj(iNj Rw( qz) R l ( % 4 ) NPM C U13

Since

t) % (OMST)o + wQ QT1 + Eq, E

there are several possibilities for changing C If the lluttktiol l is ammod

to be unchanged, %d either may be absorbed into (Wil-T)o , i,o, t it bocomes 4

change in the Greenwich Mean Sidereal Time-, or, 4s before, it may go into
OTI (AUTI 1& im/%kle); or it can be incorporated partially In (QMST) Q and pdr-
tiolly in UTI, When as is placed (fully or partly) Into OT1 1 then if UTI

is still to 
be 

oontinuovs At the epoch Tuk the longitude N has to absorb the

one-time dis;mntinuity as shown before, Finally, if q 4 is a notation corrocA

tion, thou ^) A must be combined with Eq. E (sea Section 3)*

10
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The corrections for procession * for the equinox, and for proper motion
may be written 

in 
the following forms respectively

4p a RaOnt) W-mit)

E 1 a WE 1 4 ) R3(El)

4M a WMz) R3(4M3)

where, from comparisons with earlier results, in the case of the stellar CIS,

4M% Pt -4ntj Ma a ( gym-0 v Elz * O^ E
I 3 4 -Co; for the non-stellar CIS

	aligned with the dynamic equinox, R
I'a 

;R E
13	

0, A"'Id in the case

of the non-stellar CIS linked with the stellar system, Elz	 m4nto t E	 EQ +

In 
any of the above cases

(i 1 11011 0

cq A Ant + E l , + Az	 (17)
c* 3 A -00t + E" 3 + AM3

Thus, for example, in the case of the stellar CIS

E,	 E t	 (171)
40 Eq + Rt

If we let 40 be the 4(GMST ) Q , as we did before, then eq, ( 17 1 ) Is equivalent

to eq, (3)k

In the case where the non,stollar CIS ifi linked at To with the stellar
system,

0

Qz	 4n(t-to)	 (17")C(3	 -EQ + (41R-O)^q - 41111

40	 R.0 + (E-m) to + Amt

If we let 4(GMST ) o a Eo + Eta and let the ERP's be continuous at T., then

eq, (17 11 ) is equivalent to e9s, (11") and ( 13), The analogy can also be

established for the case of the non-stellar CIS linked to the dynamic equinox

(eq, (14)).

i 
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2.2 Options to Change the CTS (Due to Ae)

As shown, in the case of equinox and precession constant corrections,

AG a Eo + it	 for the stellar system, and

Ae = - E I3 + emt	 for the non-stellar systems

Ae can also be written (assuming no change in nutation and the one-time

discontinuity in UTI absorbed in the longitudes, 5X, mentioned earlier`',

Ae = A(GMST)o + we AUT1 + 6X

Thus, as stated above, one can absorb a either in A(GMST)o, or AUT1, or 61,

or in some combinations of these. To get a definite (unique) solution, some
3

constraint is needed. Mathematically, there are quite a number of possible

choices for such a constraint, but practically only a few are meaningful.

Below we deal with three sets of options. Which option is the best surely

will be the subject of many discussions.

Set A Options. Here the basic requirements are: (i) no discontinuity

in ERP's at the epoch T u , (ii) the change in the Greenwich Mean Sidereal Time

formula is the same for all CIS's, though different for each option.

Stellar CIS Non-stellar CIS
Set A Options

Ae = Eo + Et Ae	
-EI3 

+ Amt

A(GMST)o Eo + Et Eo + Et

Option . l 	 w e AUT1 0 (Am-E)(t-tu)

SA 0 (Am-E)tu	
EI3	

_ Eo

A(GMST) o 0 0

Option II	 we AUTI E(t-tj Am(t-tu)

61 Eo + Etu -EI3 + Amt 

A(GMST)o Amt Amt

Option III	 we AUT1 ( E=Am x t-tu ) 0

d1\ Eo + (E-Am)tu -E13

1

Options I, 11, and III above are similar to Tables 1, 2, and 3 respec-

tively in [Williams and Melbourne 1981]. (The main difference appears to be

12



that for the non-stellar cases the general precession in right ascension Am

is replaced by what they call "the average value over all observations of

the effects of the precession corrections in right ascension"- <6 p>. For

VLBI <a p> = A p i cose - AX = Am, but for LLR <a p> = AP, - AX # Am.) We

already elaborated on Option I in Section 1.1. Option 1 is the presently

accepted approach for the new FK5 CIS, But, as pointed out by [Williams

and Melbourne 19811, for future possible new improvement of the precession

constant and equinox corrections, this option might not be the best. They

favor Option III because the space techniques are becoming the dominant source

of information about the transformat-11 on parameters between the CIS and CTS

frames and because this option keeps UT1 invariant to improved values of the

precession constant and the equinox position for the space techniques. The

common geodetic disadvantage of Set A options is the required shift in the

longitude origin (except in Option I for the stellar CIS case), the worst

thing being that these shifts are different in the cases of stellar and non-

stellar CIS's.

Set B Options. Here the basic requirements are; (i) no change in the

CTS, i.e., sa = 0, (ii) as before, the Greenwich Mean Sidereal Time formula

change is the same in all CIS cases, but different for each option.

The major inconvenience of Set B options is the change in UT1, not only

in the rate, but also in the necessary discontinuity. The value of the dis-

continuity would need to be added with opposite sign to the UTl at the epoch

when the changes (new constants) are introduced.

13
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Set B Options
Stellar CIS Non-stellar CIS

oe = Eo + Et
oe = -E 13 + Amt

a ^, 0 0

Option IV	 A(GMST)o 0 0

we AUT1 Eo + Et -E + Amt
13

da 0 0

Option V	 A(GMST)o Eo + tt Eo + Et

we AUT1 0 -E 13 - Eo + (Am-E)t

8a 0 0

Option VI	 A(GMST)o -E 13 + Amt -E 13 + Amt

we AUT1 Eo + E I3+ (E-Am)t 0

Set C Option. Here the basic requirements are. (i) no change in CTS,

(ii) no change in UT1, i.e., Ae is entirely absorbed in A(GMST)o.

Stellar CIS Non-stellar CIS
Set C Option Ae = Eo + Et oe = -E I3 + Amt

as 0 0
Option VII	 we AUT1

A(GMST)o

0

Eo + Et

0

-E 13 
+ Amt

Although this option is probably the preference of geodesists, it may seem

to be unorthodox from the traditional astronomical point of view. How can

the formulae for Greenwich Mean Sidereal Time for different CIS's be differ-

ent? What will the astronomical meaning of (GMST)o be? However, one can

view the formula for Greenwich Mean Sidereal Time as composed of two parts:

The first part, (GMST)o, has its original astronomical meaning, while the

second part, A(GMST)o is only a correction particular fora given CIS. It

would make sense that since the changes in precession and the equinox affect

different CIS's in different ways, this correction should also be different.

From this point of view, Option VII seems plausible and even preferable for

apndptir use_

i
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It should also be noted that after the new equinox and precession

changes are introduced (once) into A(GMST)o, this option could become the

equivalent of referencing the GMST to a fixed point on the equator, instead

of to the mean equinox of date, the current practice. As pointed out by a

number of authors, the advantage of such a change would be overwhelming and

would make the future CTS stable against changes in the precession constant,

etc. [Guinot 1979, Murray 1979, Williams and Melbourne 1981, Mueller 1981].

3. EFFECT OF ASTRONOMICAL NUTATION CHANGES ON EARTH ROTATION PARAMETERS

According to the principle in Section 2.1, it is also easy to deal with

any future changes in nutation. The nutation matrix N is [.Mueller 1969]

N

	

	 R l (- E - Ae) Ra(-Af) R I (e)	 i

s R l (-Ae) R 2 (4 sine) R 3 ( -A^ cos e )

where A^ and-Ae are the nutation in longitude and obliquity respectively, and

e is the obliquity of the ecliptic. if 6Ae and SAS are the respective cor-

rections to Ae and A^, then one can easily obtain the nutation correction

matrix,

AN = Ri(-6Ae) R204 sine) R3(-6A* core)

a	
I

Thus in the notation of eq. (16),

-6AE = al

6A* sine = a2

-6A^ cose = a3

and, therefore,

Axp = 6Ae sine + 6A^ sine core

Ayp	-6Ae cose + 6# sine sine

Ae = -a 3 = 64 COSE

Thus, as expected, the effects on polar motion components are diurnal terms

(6A* and 6Ae are long periodic). Again, this is a diurnal artifact in polar

motion due to the introduction of the new nutation and not diurnal true polar

motion.

As far as the term Ae = 6A* cosc is concerned, if it is incorporated

into the Eq. E, neither the longitude orig i n nor the UT1 will be affected.

15
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APPENDIX

EFFECTS OF DIFFERENCES BETWEEN VARIOUS CTS'8 AND CIS'S ON EARTH ROTATION

PARAMETERS AND THE DETERMINATION OF SUCH DIFFERENCES

The two CIS's (and two CTS's) inherent in two different techniques (e.g,

SLR and VLSI) are generally not exactly identical [Mueller 1981]. Suppose the

relation between the two CIS's at any epoch is (common nutation (N) and

precession (P) matrices are assumed to be used in both techniques)

[CIS] II 	 R i( ai) R2(a2) R3(a3) [CIS] I	(A.1)

Similarly, the relation between the two CTS's is

[CTS] II = Rj(^,) Rz(oz) R3(s3) [CTS] I	(A.2)

where a  and 0i are small rotation angles about the axes "i".

The transformation from CIS to CTS again is

[CTS ] I = Si N P [CIS ] , 	(A.3)

and

[CTS] II = S II N P [CIS] II	(A.4)

Substituting eq. (A.1) for the last term of the right-hand side of eq.

(A.4), and eq. (A.2) for the left-hand side,

R1(01) R2(02) R3(03)[CTS] I = SII N P RI(al) R2(a2) R3(a3)[CIS]I

After some reduction, neglecting second-order terms,

[CTS ] , = R l (-0 1 + a, cose + a 2 sine) R2 (-02 - a l sine + az cose)

• R3(-a3 + a3) SII N P [CIS],

Comparing the above equation with (A•3)

S I = R l (-$ + a l cose + az sine) R 2 (-R2 - ax sine + a 2 cose)

R3(-$3 + a3) SII

Or

-Ay p = - (yI - J/pI) 	 + a, cose + a 2 sine

-oxp = -(x I - xp , ) 	 -0 2 - rc i sine + a2 cose

16
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we 4UT1 = we (UT1 I - UT1 II ) = - 03 + a 3	 (A.5)

Thus the CTS differences (s angles) cause biases in all earth rotation

parameters. Because of the modulation of the earth's diurnal rotation, the

effect of CIS differences (a l , a2 ) on polar motion components are diurnal

terms, while the effect of a 3 on UT1 is again a bias.

The direct way to determine all the 0 angles is the method of station

collocation, i.e., to position two different types of techniques at the same

location.

The "observation" equation is

d l 	 0	 03	 -02	 xi	
xi

l^x i 	xi
I
 - X

II
i = -	 62	 +	 -S3	 0	 al	 yi	 + c	 y i 	

+ Vi

6 3	 02	 -sl	 0	 z 	 z 

where xi and 
x1I 

are the determined coordinates of the same collocated station

i in the two CTS's, a i is the translation vector, and c is the scale difference.

One must have at least three collocated stations if all seven unknowns are to

be solved for.

For connecting the CIS's, there are a few methods such as the use of

space astrometry to connect the stellar CIS and the radio source CIS, or

using differential VLBI (which, for example, was used when the Viking Mars

Orbiters and a quasar were near eclipsing) to connect the planetary and radio

source CIS's (see [Kovalevsky and Mueller 1981]). These are direct approaches.

One indirect method is via station collocation, i.e., using the earth as an

intermediate body (see [Kovalevsky 1980]): First by station collocation one

determines the CTS difference (a angles) as above, then through earth rotation

parameter differences determined over the same time period one finds the CIS

difference (a angles). Eq. (A.5) is the basi's for connecting the two CIS's.

More details on this subject may be found in [Mueller et al. 1982].

When considering the above method one should note that the diurnal

polar motion difference terms in eq. (A.5) will show up as long as there

are differences between the two CIS's (i.e., a l and a 2 exist). This may even

17
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be the case in situa-ons when one (or both) of the techniques solve for

rotations of its CTS, resulting in no (individual) diurnal polar motion.

This, of course, would mean that the adopted precessional constant is

discarded.
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2.2 Utilization of Ranee-Ditference Observations
in Geodynamics (Research Contract NA55-25088)

-------------...	 ---------------

2.21 Utilization of Simultaneous Lageos Range-Differences
in Geodynamics

In troduction

The following is a summary of the research performed during

the past six months under the Lageos project, dealing with the

utilization of simultaneous laser ranqe-differences (SAD) for the

determination of earth orientation and baseline variations.

Reported are some results from the Aug. 1980 Lageos data

collected during the short MERIT campaign, and simulations for a

possible station arrangement for the main campaign (to begin in

1983) .

2.211 Simulations for a proposed MERIT83 laser network.

Based on an optimal global laser station distribution (likely

to be realizable by mid-1983) 'proposed at a recent meeting of the x

study group (cf. COTES proposal in last semiannual report), a

simulation study for baseline recovery was perfocmed. Except for

the fact that different stations (seventeen total) are involved,

this simulation was similar to the one previously reported for

the MEaIT80 netf:ark in the last report. The station locations

and the data distribution are given in Table 1 [ (a) -, (b) ].

Baseline estimates and their statistics were computed for both

the range and the SED adjustmRnts. In crier to assess the effect

t
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of orbital biases on the baseline recovery, the orbit used in the

adjustments (range and SRD) Was biased as follows

Radial .bias2.00 m
Along track bias :	 0.60 m
Across track bias	 -1.20 m

Two different adjustments Were perf ormed.in the first case

the coordinates of all stations were obtained in a simultaneous

adjustment based on the data collected from all taseline pairs.

on the basis oz this solution the baselines bo;tween all possible

station combinations were obtained alono With their formal

accuracies and d..ifferencPs with respect to their "true ll values.

The results of this solute,>)n for the station coordinates are

given in Table 2 for the range adjustment and in Table 3 for the

SRD adjustment. The baseline results are shown in Table 4.

As it can he seen from the las* table, in all Cases except

for two, the basaline lengths have been overestimated although

the errors in thy SRD case are about an order of magnitude

smaller than the ones for the range adjustment. Since the radial

bias results in an "expansion'O of the network of satellite

positions, this should coma as no surprise. The stations have a

global distribution and since the observations from all stations

are adjusted simultaneously, their positions become

interdepeude.nt and the aforemantio'ned expansion affects all of

then similarly.

The results of this first adjustment prompted us to tast the

recovery of baselines from individual adjustments. In this

second case the data collected from each pair of stations are

20
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adjustod independently and the estimated baselines are only the

ones dofined by coobserving station pairs. The results of this

second type solution are shown in Table S. What is obvious again

is that the SRD results are again superior to the range results

for baselines and station coordinates alike. The quality of the

results with respect to the latter is characterized by the norm

XII of the six coordinate differences between the true and

estimated positions of the stations defining each baseline.

The most interesting observation though in this solution is

that on they basis of the same data, the range adjustment now

underestimatps the baselines and the recovery errors are all

negative. For the SRD results, there seems to be no bias

preference and those errors are rather randomly distributed and

in almost all cases at the centimeter level. The three baselines

for which the range adjustment has given better results than the

SRD, all have lengths in excess of 7000 km and very few

observations. As it has been previously reported the SRD mode is

much more geometry depend+at than the range made, and as the

results of this table. show it admits of its limitations very

eagerly (note the formal accuracies on those baselines !).

Unlike the SED mode, the Formal accuracies for the range mode

give no hint whatsoever as to the real accuracy of the results.

Even though the rs% covery errors are of the order of a few

decimeters in ali cases, the reported ct's are hardly ever higher

kFF !

	 than 2 cm !
i
r	

On the basis of these simulations one can conclude that the

11
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Table 2	 Recovered Station Coordinates (Range Mode)

STATION	 NO. 1	 7051 x
-%Of,

K z
APRIORI ESTIMATE -2516274.896042 -4198043.469419 4075134.388717
ADJUSTMENTS -10287283 1.351438 1.822092

ADJUSTED POSITION -2516276.103325 -41958446820917 4075156.410809

STATION NO. t 7063
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION N0. S 7069
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

VATION ND. + 7086
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION N0. t 7090
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION N0. t 7091
APRIORI ESTIMATE
ADJUSTMENTS

ACJUSTEO POSITION

STATION NO. t 7093
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

x
1130304.1117676

-0.267394

1130304.550200

x
961533.600910

-0,264610

9615339336300

x
-1324510.442,3 73

-0:902349

-1324511.344721

x
-2389125.331291

-0.975459

-2389126.306750

x
1492212.741998

-0.037315

1492212.704682

x
3392750.871854

1.469007

3392752.340862

Y
-4031721.449137

-1.93761,8

-4831723.386754

Y
-5674186067561

-x.204506

-5674189.172147

Y
-5332139.932091

-3.830874

- 5332141.762964

Y
5042839.03?557

1.621840

5042840.659397

Y
-4458121.790935

-L.836603

-4458123.627538

Y
783270.256723

-0.126506

783278.130219

z
3993759.624496

1.8'34899

3993761.479395

z
2740519.740502

1.526215

2740521.266717

z
3231791055906

1.691947

3231792.747852

z
-3078750.728221

-1.389841

-3078752.088062

z
4296005.408571

1.862805

4296007.331456

z
5325906.606633

2.043865

5323908.650490

STATION NO. s 7120
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION N0. s 7901
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

x
5464096.682969

-•2.035242

-5464098.738211

x
3844346318863

1.470786

3844342.789649

V
-2402363.153199

0.3955526

2402363.540725

Y
134247.357044

0.208830

-134247.565874

z
2240358.272655

1.552520

2240359.825103

Z
3070549,689834

1.992617

$070351.682451

k

E
{
F

r

r
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$TATION NO. 1 74 0	 r
AOMORI ESTIMATE	 4128437450674
AOJUSTMIRNTS	 W331d3

AOJUST90 POSITION	 41' N430«.933a43

STATION	 NO* 1 7942 11
APRIORI 43T1MAT0 4030759»350444
ADJUSTMENTS 1+d 14610

ADJUSTED POSITION 4090760!070054

STATION	 NO% 1 7943 0
APRIORI OSTVAT0 -4114081A•d0 Og7
ADJUSTMENTS '•0.001172^

ADJVST 0 POSITION X4345017.495094

STATION	 NO!	 1999 Y
APRIORI 0STIMAT11 41300310409074
ADJUSTMENTS 14644699

A040T00 POSITION	 4130033.134314

ORIGINAL PAQLP IS

^Ct111G ^^TAbl Q # Of POOR QUALITY

STAT ION 	 NO,. 1 1907 x Y 1
APRIORI WIMATO 1941.330m1,14913 -0401014.112161; -1794)IZ*943770
ADJUSTMENTS -0»333499 -3«373d46 001 7451'

ADJUS T40 POSITION 19413390081414 -34006439540T - 4, 1'963IA 41197

STATION	 NO! 1791# X Y X
APRIORI OSTIMATO 401303x.767630 000 4933950%635330
AOJUSTMONTS 1.390633 -0,30076 61103931

A04USTOt1 POSITION 404037115446A -0,343076 4033039+136696

3TA TIIIN	 NO. # 7914 x Y 3

APRIORI k3TIN011 4074034304979 931943.47033+: 4401 93!371034
AOJUSTMRNTS 1«947344 -9.IU9697 3!0594 s

ADJUSTED POSITION 4074614.051123 93 06 3 * 484539 4801.494.330699

STATION	 NO# 1 7933 x Y
APNIOR-1 &STIMATO -4121631!199501 3330#.76.;170404 363'1071!319704
ADJUSTMENTS -1071023M 10138149 14791909

AOJUSTB p POSITION -4131639!509015 3340178,108633 36371173.11014

♦ 	 3

	1910493^4h1139	 3Q17397l7914`72

	

^0l08g5d4	 1.999699	 ;
9

	

3.410493.301..111	 a^1139@,7'6113x	
''

Y 1;
439x67030471,1 4400094.973499

»0.303134 2.033975
s

639367.301319 4408490!996474

y z
13433301881948 x^4408060075056

«;4071160 ^1331x8x

1343352.953700 -+4488043.3064#0	 ''

Y
3104631!!442427 i7168t12l01499Q

-X 0.0433011 1,99833,9

110411341$50919 471A8d4.Or31N7	 wi
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Table 3 Recovered Station Coordinates (SRO Mode)

STATION	 NO.	 17051 x Y z
APRtORI ESTIMATE -2$1612740896042 - 4193843.469479 4075154.308717
ADJUSTMENTS -046Z246 01077679 00552635

ADJUSTED POSITION -2$16275.458207 -41906436391000 4075135.141S52

STATION NO. 3 7063
APRtORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION NO. 11069
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION NO. 1 7086
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION NO, 17090
APRtORI EST M ATE
ADJUSTMENTS

ADJUSTED POSITION

STWON NO. 1 7091
APIIIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION Nov 17095
APRIORI C3TIMAtE
ADJUSTMENTS

ADJUSTED POSITION

x
1130304.81761'6

-0,>412984

1130104.404692

x
961533 »600910

-0.493799

961533.107111

x
-1324510.447373

-0.614059

-1324511.056431

x
-2389125,331291

0.207srad
2389125.043703

x
14922120141998

-0.348909

1492212.393095

x
33927500811654

0.250456

3392751.122310

V
-4331721,449131

-0.339656

-4831721008792

Y
-5674186.967561

-10.372649

-5474187)340210

Y
-5332139.932091

-0.110826

- '3332140.042917

Y
$042839.037557

0.400930

$042839. 5111487

Y
-4438121.790935

-0.341854

-4458122.138789

Y
?83278.256725

0.30.9695

763277.947029

3993759.624496
0.568841

39931'60.1933!7

z
27405190740502

0.504026

27405204244528

z
3231791.055906

0.512840

3231791.568746

z
-3078750.728221

0.2.2993

-3078750.505229

z
.	 42'9i^005.488571

0.591585

4296oD6.Den137

z
$3239049606633

0.704342

$325907.310973

STATION NO. s 7QO
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION NO. : 7901
AP91ORI ESTIMATr
ADJUSTMENTS

ADJUSTED POSITION

x
r-5464096.682969

-0.589684

5464097.212654

x
3844341.310863

0,.115161
3644341.494631

V
-2402363,15319'

0.4d6807

^34tIZ'362.666393

y
134247.357044

0.30336
-134247454300

z
2240358472655

0.474197

2240388.74605:!

z
5070549.689534

0.686121

507035003765'35

25
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Table 3 (cant' d)	 OF POUR QUALITY

STATION	 NO, t 7907 x Y l
APRIORI ESTIMATE 1941330,114913 -9802024.122161 -1796312,985770
ADJUSTMENTS -0,444374 -0.527985 0.256872

ADJUSTEO POSITION 1941329.670539 -5802024,645146 -1796312,728099

STATION	 NO, t 7911 x Y Z
APRIORi OSTIMATE 4022035.767630 000 4933950.635338
ADJUSTMENTS 0.198181 -0,407657 0.673034

ADJUSTED POSITION 4022038.969012 -0.407657 49335151008392

STATION	 NO. t	 7914 x Y x
APRIORI ESTIMATE 4074613,304579 931963.678222 4801492,211,034
ADJUSTMENTS 0301S24 -0.373080 00668115

ADJUSTED POSITION 4074613,606103 931963.305142 4801492.939149

STATION NO, t 7933
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

x
-4121637.799507

0,044690

-4121637.754097

3220176310484
0,300912

3220176.951396

l
7637871.319 70 4

0.490394

1637471*61009n

STATION	 NO, t 7940 x Y Z
APRIORI	 ESTIMATE 4728637.250670 1910493.461733 3817397,791492
ADJUSTMENTS 0.444374 -09381945 0.619332

ADJUSTED POSITION 4728637.695252 1910493.073790 3817390.410824

x Y
r

x	 E
4350799.258444 639567.504711 4408096.973499

0.2963Z3 -0.433382 0,648499

4550759.394764 639567.071329
z

4400097.621998	 i
n.

x Y t
-4245816,653287 1545350.881948 -4488060.975056

-0.249"47 0.494039 0.067337

-4245816.902734 1543331.375987 -44811060007719
i,

x Y Y
4130031.489674 1106538.602427 4716882474958

0.324886 -0.372003 0.668722

4130031.814759 1106638.230423 4716882.143680

STATION NO. i 794+
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION NO. 1 7943
APRIORI ESTIMATE
ADJUSTMENTS

ADJUSTED POSITION

STATION NO. s 7999
APRIORI ESTIMATE
"JUSTIIENTS

ADJUSTED POSITION
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SRb mode will in all likelihood provide more meaningful results

in the presence of unmodeled orbital biases than the range node,

and it will also give more reliable accuracy estimates for those

results. Comparing the batch (global) solution to that of

individual adjustments, the latter seems to be by far a better

approach in the case of SRD observations, although the opposite

is true for the range observations. compare for instance the

level of recovery errors between 'fables 4 and 5.

2.212 Preliminary Results from Lageos Data Analysis.

Lageos :ranging data collected from ten stations over the

period dueyust 14-29 t !980 ( coring the short MER17 campaign) were

used in GEOSPP81 for baseline recovery. A total of 24240 ranges

were selected with effort to balance the distribution among

stations whose observability performance shows wild variations

(cf. station 7090 with over 60000 ranges during August, and

station 7092 with hardly over 3000 in the same period of time).

The summary of the data distribution per pass per station is

given in Table 6 [ (a) - (j) ]. The ill -conditioning of the normal

equations dui to the lack of origin of longitudes definition is

overcome by applying a small weight in all three coordinates of

all stations, corresponding to a 0'= +50 m. This way the origin

of longitudes does not depend on a single station but rather the

ensemble of them. Th p separation of the X and Y coordinates is

thus not as good as it would be if one longitude ware fixed

absolutely, but that has no effect on the haselines. This high

correlation between X and Y is also reflected in the estimated
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formal accuracies for these coordinatesr Table 7. The orbital

model and the constants used in the solution are shown in

Table 8. Baseline results of the adjustment are given in

Table 9, and an analytical breakdown of the residuals after the

adjustment are given in Table 10 [ (a) - ( j) ]. Notice that the fact,

that statioa 7907 (ARELAS) is the one with the fewest

observations (only 489) shojis very clearly in the estimation of

baselines which emanate from that station (Table 9).

care should be taken in comparing these results with other

solutions for the fact that these baselines are reckoned between

the optical canters of the corresponding laser instruments and

not the stations' validation points.

This investigation is now being completed, and the final report is in

preparation by E. Pavlis, to appear in the report series of the Department

of Geodetic Science and Surveying, The Ohio State University.
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Tabl e 9

bA111L1NJ tSrIMAlE!b MW KcLAII:o STATISTICS i
n rMrarrarl.aa.taazwraar nraraaarasaaurarrrar

YAS&LIN06 STAIIUNA TAT ► uNd APKIUN1 SST. ADJUSTED VAL. U ► FF.iA-01 S16MA NtLA71Vb ALI:.
► 7ub3 0w1 7u,0u U645951.7bl 11b4b950.u47 -O.V14 0.u ► u 3.940 -UV
2 7ub3 ay 7091 buko3a.143 602032.169 U.Ut6 U.uio 1.44Uw 7
3 7ub3 ah1 7uv2 100u3296.315 laoual950dil -4.602 0.025 b6uiu-u9
4 7063 aro 7096 Vd9b413.055 94690471. %l0 -1.3246 O.Ut.t b.l9U-09
S 7u63 n r> 1114 3:101136.713 jAes137.44t -Lail u.u4 ► .1.74U-04
6 7063 n 0 7113 .i5U1bV3.17Y 3bOMM .797 -1.361 U.037 2.y2U-%)b
7 7061 a.> 1110 7244020.742 7244019.tb1 -1.462 U.02b 90230-09
0 7063 a v 7407 5918036.9D1 $9.10191003 -17.4-146 0.005 3.410-Ud
9 ?"A a y 7943 UIUA539.054 12lub33 4 ) 4..064 -0.990 0.ulb 3.4d0-09

l0 1U9u a0 1091 ►a aldlbu.oe2 12638160,, 21V 0.136 0.u1 4 4 .b1U-UV
11 7090 =0 7092 0674009.770 6674006.743 - 1.02'1 0.u14 b.blu-09
11 7090 a y 7uV6 71419.10,432 T141540.743 0.311 O.U13 7.680-u9
11 7uVo a Al 1114 11768618.014 1176db10.337 0.31! O.UIi 3.070-09
its 1090 aa) 7111 ► lb ►obtd.ab. 11U1ob29.U14 11.1bd 0.u1b 3.200-09
13 IOU awl 7llu 9"b454.579 9656430.910 4.33► 1 O.u11 ].120-0
►b 7090 aaO 7907 11 7bu456.119 1175U43d.640 2.bou O.u34 6.VAD-u9
17 7090 a0 79,3 1196326.733 3lvbiab.b4b -0.uul u.ut ► 1.550-00
►d 7091 is y 1094 lu141371.223 10141371.6" 0.379 0.031 '1.210-u9
19 7091 a 6T 7096 10199643.124 1U199641.6 .f6 -J. %467 U.u2b 5.d4U-U9
to 7091 arJ 7114 3 10tV72u.bU4 3V19'12N.U19 -0.7461 0.uJ9 4.34u-Nd
21 1U91 a 0 711D 3 W096.445 3900597.570 -0.4lb 0:0.'.4 A.070-le
k.1 7091 a NO 712u 7b40t73.d24 7540273.113 -0.701 u.u29 10.1UU-U9
23 7u9[ a•J 7907 0257037.782 b25701u.171 -1'/.bll U.Jud :1.33U-Od
44 7091 aa) 7,0-13 a a%v%9b.t ► 1 1224934b.t71 0.05,0 0.Ott 4.980-uv
t3 749.1 a 0 7u9b 1514b9b.6db 331455-1.371 -2.3 ►b 0.ul/ 1.44u-Od
26 7092 a 711-1 7479017.'196 7479U1d.4b1 0.8bb o.u27 6.600-119
27 Iuvl A0 711$ 1"4600.410 7!W46b1.155 0.745 U.Wd d0bu-J9
td 7 010 ars 714u 4016536.43o 4015536.979 0.5>0 0.utd 1.Odu-U8
29 ?U41 a 0 7Vul 11171115.715 1117 ► 11o.414 -1.291 U.U4l 6.740-09
3U 7U94 awl 7943 5 k9t643.026 5192640.1i32 -2.0-14 0.024 1.11D-u•
41 70,06 --> 7114 7414696.951 7414896.912 -0.040 u.u2a 7.400-09
31 10106 a.p 7115 74016946.901 740t641.731 -O.17U 0.043 b.U30-09
331 10'16 a*> Iuu 411tt20.34t 4112220.461 -0.04l 0.01.1 1.4rD-08
34 1096 -4 7907 9373094.052 937304301097 -0.1354 0.0%4 1.110-ub
35 7096 awe 794.4 4554%71.701 4554571.165 0.464 0.014 I*a4U-0d
S6 1114 MP1 7115 150169.936 23dt90.1e7 0.110 U.030 3.330-07
37 7114 'a -> 7110 4022969.6.7 40t2939.DJb -O.Ul2 U.-J31 l.d1U-ob
36 7114 a 0 7907 7243b01.178 7243Dd6.024 -14.1b4 O.u76 2.4VU-016
39 7114 a w 194.1 lODb770t.2d1 1058 17ulto ?W1 u.4t0 0.uLd 4.05U-J9
40 7113 at MW 406904.174 4U90VU4.14b -u.ut7 U.u3 ► 1.79U-Ud
41 7113 n y Ivul 7wy7tb.637 7u3671t.246 -► 4.411 0.074 2.blu-ub
42 7115 a o 794! 10 D9%990.172 10D9bv9u.445 0.9" U.UIb 4.u'/U-uV
43 7110 '4LO 19ul 9097407.6ul 9U973".369 -46.212 U.USc l.abu-Ud
44 7110 a y 7443 7b609bb.dVv 7640106V.3u0 0.W ► U.utt 0.160-uv
43 7907 . 10 794A 107117494.016 ►0767496.736 3.b/b 0.u4► d.V60-oV
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Table 10 Residual Summaries by Station

( a ) CONSOLIDATED STATISTICS FOR STATION t	 7063

PASS USSERV RES1D MEAN RMS DEVIATION LENGTH MIN RESU MAX RFSU MEAN CLOS
naaaa+^sao+aasaa^+wu+a+ua+a:aa+aaaau o+++as uauu+^aaaasaaaua n aaa+uaaaasaaaau a aaa uan •aa n ra

1 4 -0.9288 5.38! 6.123 1292.00 -8.493 5.007 -0.93

2 477 0.1070 0.07 0.212 1641.00 -2.866 0.398 0.11

3 202 0.1237 0.641 0.632 1494.00 -6.840 5.480 0.12

4 6 -2.0976 3.459 3.012 1689.00 -5.903 1.408 -2.10

5 859 0.1242 0.225 00187 2358.00 -2.436 0.473 0.12

6 1 0.0458 0.046 04 0.0 0.046 0.046 0.05

7 1550 0.0139 0.322 0.321 2810.00 -4.383 8.987 0.01

8 4 -4.4022 5.625 4.043 1503.00 -9.652 -1.045 -4.40

9 14 -0.4962 2.473 2.514 2550.00 -4.545 5.946 -0.50

LO 1167 -0.1706 0.464 0.442 2484.00 -6.694 7.124 -0.17

(b)
CONSOLIDATED STATISTICS FOIL STATION	 7090

PASS OBSERV	 RESIO MEAN RMS DEVIATION LENGTH MIN RESD MAX RCSD MEAN CLUS
a^++aaaaaaaasasaasasasauaraaasa+aaaaaaasaa+ara+aa+aaas+asassaYya s^sraasaisaa n+as aa:a a wasa^a+aaaaassaa

1 97 0.0872 0.130 0.095 2156.00 -0.221 0.344 0.09

2 167 -0.0325 0.104 0.099 2182.00 -0.337 0.177 -0.03

3 182 -0.0892 0.131 0.096 2519.00 -0.513 0.131 -0.09

4 207 0.0322 O.L09 0.105 2471.00 -0.282 0.264 0.03

5 196 0.0335 O.L40 0.137 2631.00 -0.433 0.448 0.03

6 L41 -0.0832 0.142 O.L16 1810.00 -0.306 0.192 -0.08

7 263 -0.0764 0.11,9 0.091 2853.00 -0.427 O.L77 -0.08

8 119 0.0891 0.138 0.106 2037.01 -0.153 0.384 0009

9 67 -0.0531 0.093 0.078 1040.00 -0.235 0.145 -0.05

10 171 -0.0780 0.122 0.094 2787.00 -0.471 0.181 -0.08

Lt 136 -0.0981 0.138 0.097 2036.00 -0.451 O.L01 -0.10

L2 203 -0.0640 0.112 0.092 2481.00 -0.526 0.145 -0.06

13 50 0.0123 0.080 0.079 574.-00 -0.157 0.216 0.01

14 29 0.0674 0.143 4..128 1287.00 -0.219 0.286 0.07

15 136 -0.0940 0.124 0.081 2339.00 -0.347 0.092 -0.09

L6 104 0.1106 0.435 0.422 2645.00 -3.875 0.378 O.LL

17 55 0.1305 0.233 0.:194 13LB.01 -0.282 0.690 0.13

Is 162 -0.1606 0.204 0.126 2171.00 -0.472 0.071, -O.16

L9 L73 0.0735 0.136 O.L14 2491.00 -0.272 0.326 0.07

20 136 -0.1598 0.212 0.140 2409.00 -0.567 O.LLI -U.L6

21 155 0.0943 0.185 0.154 2421.00 -0.323 0.378 0.09

22 4L 0.0313 0.069 0.062 1090.00 -O.113 0.143 0.03

23 88 0.1992 0.218 0.088 1438.00 -O.LO2 0.348 0.20-

24 233 -0.0433 0.1/2 O.LU4 2842.00 -0.591 0.195 -0.04

25 115 0.1264 0.1,56 0.092 1947.00 -0.168 0.345 0.13

26 6 0.1585 O.L72 0.073 93.00 0.011 0.280 0.16

27 189 0.0197 0.128 0.126 2638.00 -0.289 0.294 0.02

28 154 0.0887 0.123 0.085 2L09.00 -0.164 0.328 0.09

29" 154 -0.0249 0.223 0.223 2088.00 -0.567 0.398 -0.02

30 214 0.0598 0.128 0.114 2700.00 -0.379 0.292 0.06
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Table 10	 (cont Id)

(C) CONSOLIDATED STATISTICS FOR STATION :	 7091
PASS OBSERV RESID MEAN RMS DEVIATION LENGTH MIN RESO MAX RESD MEAN CLOSuaaro^aratarlaaaassaa>!saarara^aas^otuuraasaaaaaasaarrrsaaataaaaaaaassaaaasasaaausassrrasuaaua

I^ 137 0.0824 0.271 0.259 1149.00 -00750 0.683 0.08
2 352 -0.0646 0.182 0.171 171d.00 -1.040 0.346 -0.06
3 240 0.0505 0.169 0.162 1819.00 -0.545 0.450 0.05
4 439 -0.0202 0.314 0.313 1965.01 -1.142 4.742 -0.02

(d)
CONSOLIDATED STATISTICS FOR STATION 4 7092

PASS OBSERV	 RESIO MEAN RMS DEVIATION LENGTH MIN RESO MAX RESO MEAN CLOSuua^r^saarsrsaasaarsassrraa.aaaasa asauaaa RrYeraasarraaa>raaazzaasasasarssraraaamsirmmaaaa n nassa eras
1 322 0.2185 0.268 0.156 L761.01 -0.258 0.527 0.22
2 286 -0.1712 0.266 0.206 1153.00 -0.845 0.666 -0.17
3 1273 -0.0004 0.239 0.239 2380.00 -1.234 0.986 -0.00
4 363 -0.0324 0.304 0.303 2271.00 -1.293 0034 -0.03
5 9 0.0926 0.331 0.337 174.00 -0.367 G:"A6 0.09

(e)
CONSOLIDATED STATISTICS FOR STATION =	 7096

PASS UBSERV	 RESIU MEAN RMS DEVIATION LENGTH MIN RESO MAX RESD MEAN CLCS
a^psaasaaaarrarassas:aataaaaasa^arrrrasr:arsaaaaaaaaaaasaaasaasasasasm zassaaaaasasatasassaaaasrasam

l 969 0.0078 0.189 O.L89 2389.00 -0.583 0.546 0.01

2 461 0.0359 0.150 U.146 2008.99 -0.73L 0.331 0.04

3 268 -0.1355 0.257 0.219 1109.01 -0.931 0.313 -0.14

4 91 -0.3075 0.391 0.244 652.00 -0.953 0.122 -0.31

5 45 0.0547 0.166 0.158 924.JO -0.451 0.354 0.06

6 616 0.0351 0.213 0.210	 ' 1366.01 -1.019 0.531 0.04

(f)
CONSOLIDATEU STATISTICS FUR STATION 7114

PASS OBSERV	 RESID MEAN RMS DEVIATION LENGTH MIN kESD MAX RESO MEAN CLOS
Saasarnsa uaaasaamsaazsasarsassarrssaa n aaasasaaaaasrzseasasxsrs:aszasaasaaassa ssamzas......aassamsa

1 182 -0.0405 0.176 0.172 L18L.99 -0.458 1.003 -0.04

2 17 -0.1346 1.475 1.51.4 1136.00 -4.979 2.632 -0.13

3 855 0.0155 0.263 0.262 2535.00 -3.965 1.966 0.02

4 9 1.1201 2.490 2.358 1367.00 -.1.729 5.392 1.L2

5 161 0.0939 0.155 0.124 1009.99 -0.310 0.465 0.09

6, 390 -0.0036 0.129 0.129 2102.99 -0.387 0.968 -0.00

7 6 -00358 3.655 3.922 887.00 -4.838 6.072 -0.74

8 228 -0.0292 0.350 0.349 1045.00 -0.384 4.296 -0.03

9 7 0.0771 0.111 0.086 676.00 0.001 0.236 0.08

LO 7 0.4243 0.703 0.606 !080000 0.099 1.779 0.42

11 4 -4.5052 5.795 4.208 400.00 -8.096 0.651 -4.51

I
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Table 10	 (ccnt I d)

(9) CONSOLIDATED STATISTICS FOR STATION t 7115
PASS OBSERV	 RESID MEAN q"'s DEVIATION LENGTH MIN RESO MAX RFSD MEAN CLOSu^^aw^•a^ussuauauwaasarrrrrrtarry ^lauuraasaauua.aaaaarauuu n uasaruararurauaraaaaarasaa

l 26.4 000850 0.13L 0.099 1224.01 -0.118 0.319 0.08
2 Z9 0.2660 0.280 0.088 711.00 0.077 0.410 0.21
3 384 -040730 LOST 1.056 2001.00 -6.960 0.595 -0.01
4 27 -6.7929 6.793 00090 1021.00 -6.969 -6.617 -6.79
5 500 0.0934 0.151 0.119 2271600 -0.422 1.167 0.09
• 38 0.3169 0.328 0.086 L31.3.00 O.L20 0.488 0.32
7 172 0.3589 0.511 0.364 1346.00 -0.025 4.824 0.36

a

63 -0.0468 0.145 0.138 889.00 -0.346 0.257 -0.05
9 lL9 -0.2538 0.3L2 0.181 1913.00 -0.739 0.504 -0.25

10 see 0.1106 0.213 0.128 2727.00 -0.255 1.811 U.L7
11 317 0.1305 0.165 0.102 L608.00 -0.075 0.363 O.L3
12 44 0.2436 0.286 0.151 652.00 -0.040 0.949 0.24

(h) CONSOLIDATED STATISTICS FOR STATION s 7120

PASS OBSERV	 RESID MEAN RMS DEVIATION LENGTH MIN RFSD MAX Rk SD MEAN CLOS
'	 srs urraarasssas^aaaarao s^asa^rraaaals eras a n ralaaita raysaraaassasaa^aaaaasasa^awrramfrrraasraarara7rr

1 225 -0.1.213 0.142 0.073 1964.00 -U.380 0.120 -0.12

2 44 -0.0037 0.157 0.159 829.00 -0.172 U.LdO -0.00

3 160 0.0996 O.L40 0.098 1297.00 -0.225 0.3L3 0.10

4 42 -0.0689 0.108 0.084 61,0.00 -0.218 0.098 -0.07

5 187 0.0268 0.133 0.131 2614.00 -0.337 O.dST 0.03

6 346 -0.0766 0.1.14 0.085 2759.00 -0.348 0.247 -0.08

7 401 0.0931 0.138 0.102 2573.00 -0.259 0.298 0.09

8 50 -0.2583 0.294 0.141 865.00 -0.511 0.034 -0.26

9 L21 -0.1879 0.216 0.107 1655.00 -0.380 0.104 -0.19

l0 328 0.1102 0.163 O.L20 2417.00 -0.221 0.409 O.LL

(^)
CONSOLIDATED STATISTICS FOR STATION F 7907

PASS OBSERV	 RESIO MEAN RMS DEVIATION LENGTH MIN RFSD MAX RFSD MEAN CLUSsr^rua uararasasaras srasu waassa aaaaa uau assaarsaaaarsaaaasas asaaa as as uassssoss sassasassaar ar uas:
L 12 0.1231 0.366 0.360 292.40 -0.408 U.939 0.12
2 4L -0.OL35 0.604 0.611 1L32.95 -L.520 0.761 -0.01

3 51. 0.0917 0.509 0.505 862.51 -1.2.91 0.803 0.09
4 L9 -0.0486 0.335 0.341 1027.16 -0.76T 0.561 -0.05

5 5 -0.0084 0.596 0.666 360.15 -1.164 0.446 -0.01
6 52 0.1667 0.521 0.498 892.90 -0.951 2.032 0.17
7 24 0.0601 0.401 0.405 660.27 -0.925 0.724 0.06
8 l9 -0.2028 0.393 0.346 607.64 -0.868 0.360 -0.20
9 35 0.0493 0.288 0.287 1162.58 -0.648 0.640 0.05

10 53 -0.061.6 0.408 0.408 914.95 -L.008 0.88L -0.06

11 34 -0.0226 0.398 0.403 967.53 -1.199 0.697 -0.02

12 5 0.2501 0.257 0.065 360.LO 0.169 0.303 0.25
13 24 -0.59L8 L.005 0.830 1110.02 -2.043 0.962 -0.59
L4 IT 0.0004 0.843 0.838 689.98 -1.536 1.569 0.00
15 8 002717 0.528 0.484 420.00 -0.434 1.126 0.27

16 9 -0.1124 0.568 0.590 465.05 -1.312 0.451 -0.11
17 22 -0.1859 0.744 0.737 847.96 -L.970 L.863 -0.19
18 28 0.2387 0.405 0.333 1012.50 -0.646 0.796 U.24
19 2 -0.3987 0.425 0.207 90.00 -0.545 -0.252 -0.40
20 29 0.0272 0.411 0.417 779.97 -0.855 0.698 0.03

44
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Table 10	 (cont'd)

CANSOLIOATED STATISTICS FOR STATION i	 7943

PASS O6S[FV	 RESIO MEAN AM$ OEVIATION LENOTH MIN RESO MA X RESO MEAW CLUS•rurwuurrurrasarrrrrsrraarwsrur.arousaarrauruaarwwrpraas .^wrararrrur rr^rrra^raaur rruu rsa
1 56 0.0012 0.433 0037 1154.92 -1.019 0.959 0.00

2 122 0.0426 0.336 0.336 ;2325.29 -1.432 0.815 0.04

3 82 -0.0666 0.439 0.437 1905.tU -1.252 1.074 -0.07

4 96 -000301 0.408 0.409 2272.34 -0.410 0.715 -0.03

5 83 0.0633 0.426 0.424 1484.75 -1.229 1.222 0.06

6 85 0.0516 0.337 00335 150.79 -0.911 0.872 0.05

7 90 0.1315 00292 0.259 142409 -0.489 0.991 0.14

6 212 -0.0196 0.318 00309 2744.95 -0.864 0.679 -0.08

9 159 0.0983 0.344 0.330 2910.00 -0.720 O.a6l 0.10

10 47 -0.0243 O.SII 0.516 1934.416 -1.052 1.198 -0.02

11 5.4 00337 0.429 0.432 1514.65 -L.L93 1.353 0.03

12 75 -0.1024 0.552 0.546 L605.00 -1.306 0.974 -O.LO

13 139 0.0414 0.239 0.236 1822.48 -0.681 O.S94 0.04

l4 100 -0.0034 0.375 0.377 1897.49 -0.851 19041 -0.00

IS 170 -0.0420 0.414 0.413 2955.00 -1.041 L.295 -0.04

16 106 -0.0837 0.347 0.338 1890.00 -1.137 0.715 -0.06

17 90 -040132 00280 0.281 1919.92 =0:915 0.103 -0.01

l8 44 -0.0969 0.470 0.467 2L67.47 -1.129 0.643 -0.09

19 79 0.1661 0.424 0.392 2287.55 -0.943 0.849 0.17

20 178 0.0212 0.262 0.282 2489.80 -0.607 1.253 0.02

21 38 -0.1376 0.625 00617 1492.55 -1.638 1.460 -0.14

22 86 -0.0665 0.485 0.483 2092.54 -1.141 1.249 -0.07

23 172 -0.0355 0.263 0.261 2827.32 -O.o71 0.611 -0.04

24 73 -0.3053 0.399 0.259 629.94 -0.896 O.L19 -0.31,

25 67 0.0351 0.448 0.450 1619.87 -1.124 0.798 0.04

26 96 -0.0945 0.596 0.592 1619.69 -1.605 1.349 -0.09

27 163 -0.1419 0.279 0.241 1914.90 -0.771 0.511 -0.14

28 191 0.1105 0.330 0.Jl2 1994.97 -0.727 0.d98 O.L ►
29 262 0.1799 0.365 0.318 2999.78 -U.819 O.d37 0.LB

30 97 0.1417 0.282 0.245 1942.65 -0.677 0.701 0.14
31 61 0.1396 0.466 0.448 2115.10 -0.751 0.875 0.14

32 41 -0.Od45 0.485 0.483 1507.44 -1.351 0.607 -0.04
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2.22	 Doppler Experiments

2.221 Geometric Adjustment of Simultaneous Doppler-Derived
Range Differences

The results of work on this topic are described in a paper presented

at the Third Internationl Symposlum on the Use of Artificial Satellites

for Geodesy and Geodynamics, Ermloni, Greece, September 20-25, 1982. It

appears on the following pages and will be published in the proceedings

of the symposium obtainable from the National Technical University, Athens.

Y
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GEOMETRIC ADJUSTMENT OF SIMULTANEOUS DOPPLER-DERIVED

RANGE DIFFERENCES

Chengze Zhang* and Ivan I. Mueller
Department of Geodetic Science and Surveying

The Ohio State University, Columbus, Ohio 43210 USA
k	 ^

kk

E

ABSTRACT. A mathematical model for the use of simultaneous Doppler-
4

	

	 derived correlated ranges in the geometric mode is presented. The model is
tested with data taken during the EDOC=2 campaign with different integration
intervals. The results of this adjustment are compared with the EDOC-2
adopted solution and those from an uncorrelated model [Schneeberger et al.
1982] used earlier to provide more economical calculations.

i
a

The analysis of the comparison shows that the correlated mode is
superior to the uncorrelated one when the optimum integration interval of
23 seconds is used.

't	

¢	

3

1. LNTRODUCTION

The geometric purpose of satellite geodesy is to tie remote stations
together in the same geometric system. Its ultimate aim is to determine
the coordinates of unknown ground stations [Mueller 1984].

Satellite geodesy with Doppler techniques is based on the principle
that a frequency transmitted from a satellite-borne transmitter moving
relative to a ground receiver is observed shifted by the Doppler effect.
The observations are Doppler counts which are measures of the range change
between the satellite and the receiver during the integration interval
[Wells 19743.

In the geometric mode for Doppler observations, the satellite is
regarded as a benchmark in space and its coordinates at the observation
instants are unknowns which are solved in an adjustment with the unknown
coordinates of ground stations. Such solutions are based on geometric
rather than dynamic principles; therefore the calculations are relatively

3 simple and do not require extensive computer programs.

On leave from the Institute of Geodesy and Geophysics, Chinese Academy of
	 I

Sciences. Wuhan, People's Republic of China:
a
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In a previous study [Schneeberger et al. 19821, the Doppler-derived
ranges were regarded as uncorrelatedseudo-observations as a further
simplification ( to save computer time). In fact, since the Doppler-derived
ranges are calculated from Doppler counts, it is obvious that there exist
correlations between them in a given pass. The purpose of this study is
to investigate the use of Doppler-derived correlated ranges in the geometric
mode.

This method is then tested against a data set from which a dynamic
solution is available. The results are compared with both the dynamic
solutions and the uncorrelated geometric one.

2. SUMMARY OF THE PREVIOUS STUDY BASED ON UNCORRELATED OBSERVATIONS
[SCHNEEBERGER ET AL. 19821

2.1 Definitions

The cooed i.nate .ay,6tem in which the computations are performed is an
earth-fixed Cartesian system. It is defined by the assigned six coordinates
distributed among at least three ground stations. A Aat¢.tU to point is the
position of a satellite at a certain epoch. An event is the set of all obser-
vations to a satellite point. A pa-AA is a set of satellite points between two'
epochs which are observed without interruption from at least six ground sta-
tions. A Vopptet-derived range is a pseudo-observation derived by adding the
range differences computed from Doppler counts to an estimated initial range.

2.2 Doppler-Derived Ranges

The basic equation which related the ratio between the received frequen-
cy f and the transmitted frequency fo to the range rate between transmitter
and receiver (>) is accredited to Doppler (1803-1853);

= ( C
where c is the velocity of propagation for electromagnetic.waves in a vacuum.
This equation has to be integrated to find a relation between the shifted fre-
quency and the range difference during a time interval t. A detailed derivation
can be found in [Brown and Trotter 1969] resulting in

-XO(N^- efoot) + S 	 (1)
where

i^

r
i
	 = range between receiver and transmitter at epoch T^

rj
- 1
	- range at epoch 

Ti
-1

N^	 = the integrated Doppler shift over time interval t  = T
i
 - T3-1

(referred to as the Doppler count)
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afoo

	

	 w the difference between the transmitted frequency and the reference
frequency generated in the receiver

ao'JL : wavelength corresponding to the frequency of transmission fo

S

	

	 = correction term representing all systematic errors such as bias in
the difference between the adopted transmitted and reference fre-
quencies, and/or the drift rates of transmitter and receiver frequen-
cies,

>ubstituting the range difference computed from the Doppler count

Ari 0 ao(N3 + Afoo t3)

into equation (1), the range at epoch T 3 is

r] a rJ-1 + Ar] + Si

If the range ro at an initial epoch To is known, the range for an epoch T k can
then be calculated from ( taking into account that most instruments reset the
Doppler count for each interval)

k
rk ° ro +J 1

1 
Ark + Sk	(2)

=

This equation is correct only in a vaev)um. Since the signal is passing through
the ionosphere and the troposphere, the range has to be corrected for refrac=
Live effects. The ionospheric refraction is automatically compensated (to
first order) by measuring the Doppler shift of the two different frequencies
(400 and 150 MHz) [Krakiwsky and Wells 19711. Each range has to be corrected
therefore only for the tropospheric refraction ATr. The tropospheric refrac-^
tion model used in this study is the one outlined in [Brown and Trotter, 1973],
usin the Smith-Weintraub model for the index of refraction [Jordan et al.
19663.

Since the initial range in equation (2) is not known, we must use-an
approximate initial range ro and add a correction term ao to be estimated from
the adjustment,

ro = ro + ao

ao is considered part of the systematic error term S  in equation (2). The
modelling of the other systematic effects inS is 	 given in great detail in
[Brown and Trotter 1969; Kouba and Boal 1976. In this study only two major
terms are used. a + bt. The main cause of the constant term a is the possible
bias in the adopted frequency fo, and the initial range error ao above. The
time dependent term bt is caused mainly by the difference in the adopted val-
ues for the transmitter and receiver frequencies (frequency offset) Afoo•
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Other terms in the systematic error model mentioned by Brown and Trotter [19693
but not considered in this study are range dependency, a function of the
second power of time, and a function of the elevation angle (for residual
refraction errors). An explanation of why only the above two terms are used
here may be found in CSchneeberger 19821.

Substituting all terms for S and the correction for tropospheric refrac-
tion equation (2) can be written as

k

rik 0 ro + JZ1 
er, + &Tr + a i + bitk

where the subscript i refers*to ground station i. Defining the VoppteArde&L'ved

range as

k
rpk . r o + 

J
I erg + Or	 (21)

and recalling that

ri k = Vf(xk -- X	 + k	 + `'k Z

and changing the signs of a and b, we arrive at the mathematical model

rDik " Xk Xi + (k - Y i ) + 2k " ^i^ + a iR + b3^tk	 (3)

where 
rDik 

is the Doppler-derived pseudo-range (derived from the measured
Doppler	 counts and corrected for tropospheric refraction), and the unknown
parameters to be solved for in a least squares adjustment are

X i , Y i , Zi	 the unknown station (i) coordinates

kk, Yk, 
Zk	

the unknown satellite (k) coordinates

a i Is b,* ^

	

	 the unknown coefficients used to model systematic errors
for each station (i) and pass (z)

t  is the time elapsed from the epoch of the initial range ra.

2.3 Least Squares Adjustment

The mathematical model developed above has the form of an observation
equations

La s F (Xa )	 (4)

ORIGINAL PAGE IS
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where La is the adjusted Doppler-derived range, and `t a is the vector of the
unknown parameters which can be divided into three 	 subvectors:

XGa m XG O + XG containing the coordinates of the ground stations

XCa = XCa + XC containing the error coefficients a, b

XSa s XSo + XS containing the satellite coordinates

Equation (3) can be written in, linearized form

rDik^ + vikn 
a F

ik^ + I FGI	
i + 

IF ( •XC i, +IFF̂ SI
XSk

+ X°	 X.	
.(5)

or, after neglecting higher-order terms

v'ikt = Aiki
'XG

i + Cikk
-XC

iR + Sikz
.XS

k - WikZ

where

AikR 
z 

aXG
IF I

	

XG ° 	 XC O XSO	C r, i 	 ro	 .r0	 )
it	 k	 ik^,	 ikR	 ik^

IF
Cikt W XG° XC O

 XSO s (1, tk)

	

, i	 it	 k

IF
Sikx a 97S-

XG° XC° XS O -Aiki

	

i	 it	 It

wiki r rDikz - (ro ikz + ao i, + bOixtk)

r°ik =
V(Xk-X i ) 2 +	 Y k-Yi)	 + (Zk-Z?)2

In this study all pseudo -range observations are assumed to have equal
weight. For reason of convenience in programming, the a priori variance of
unit weight is chosen to be equal to the variance of a range observation

Q0 CDR w

Therefore all observations have the weight one. Further details of this
least squares adjustment as used in the Geometric Doppler (GEODOR) computer

program may be found in [Schneeberger 19821.
1
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3. ADJUSTMENT WITH CORRELATIONS CONSIDERED	
OF POOR QUALITY

3.1 Mathematical Model

The correlation existing in the Doppler-derived ranges are considered
'n this study by assuming that the range differences (computed from the
Doppler counts) are independent observations.

Under this consideration, substituting eq. (2 1 ) into (3) and moving
al ,l the terms to the left side, we obtain

k
3(X k -X i ) z + (Yk-Yi)2 + (Zk-Zi)2 + a ig + biktk - ro - E Ar - AT  = 0

J = 1	 ^
(6)

Thus the model becomes the form of a condition equation with parameters:

F(L a , Xa ) = 0	 (7)

Eq. (6) can be written in a linearized form, using the same notation as
before,

k
A 
W 

X 
i + C i k XC i kZ+ Silo, XS  + ,j=1 Bike, 

vj - 
W i kQ	 0	 (8)

where Biku stands for the derivatives of F with respect to Qr^, i.e.,

B ikz	 aor.	 _	 0	 if j > k(9)

All the observations are assumed to have equal weight. For convenience
in programming, the a priori variance of unit weight is chosen to be equal to
the variance of a range difference observation

2	 2Q = oA r

Therefore, all the observations have unit weight. For the detail of the
derivations of the mathematical model and the method of solving this prob-
lem, see [Zhang 1982].

3.2 Construction of Normal Equations

The solution of the normal equation system for the least squares
model of condition equations with parameters has the following form
[Uotila 19761:

X = -(ATM-1A)-1 
AT 

M-1W	
(1p)

where

M-1	 (B P -1 BT)-1

52



1	 1 1 1 ...	 1

1	 2 2 2 ...	 2
1	 2 3 3 ...	 3

1	 2 3 4 ...	 n

M = B P"1BT (13)

ORIGINAL PAGE IS
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Therefore, before constructing the normal equation system, M -1 has to be
found first. Fortunately, the matrix B has a regular configuration, and
so does the matrix M- [Ashkenazi et al. 19801. For the sake of simplicity,
we investigate a matrix B for one station and one pass. From eqs. (8) and
(9) it is evident that the matrix B has the form

-1	 0	 0	 0	 ...	 0

-1 -1	 0	 0	 ...	 0

B	 -1 -1 -1	 0	 ...	 0	 (12,)

If one assumes uniform weight and no correlations between the range differ-
ences, and chooses the variance of unit weight equal to the variance of
range difference observation, the matrix P will become an identity matrix.
Then the matrix M can be written as

where n is the number of observations in this pass. M_ 1 is found by
inverting M:

2 -1	 0	 0	 ...	 0	 0	 0
-1	 2 -1	 0	 ...	 0	 0	 0

M-1 =	 0 -1	 2 -1	 0	 0	 0	 (14)

	

0 0 0 0	 -1	 2 -1
0	 0	 0	 0	 ..	 0 -1	 1

Since 
M-1 

is a regular diagonal matrix, it will not invite much difficulty
when constructing normal equations. For the case of more than one station
and more than one pass, matrices 6 and M - can easily be found by using the
same method [Zhang 1982].

After the matrix M
-1 

is found, all the coefficients of the normal
equation system can be calculated. Since this normal equation system is
still of the sparsity pattern, a method called second-order partitioned
regression can be used to eliminate the unknowns to save storage and
computing time [Brown and Trotter 1969].
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4. NUMERICAL TEST

4.1 Solutions and Their Comparisons

The datataken during EDOC-2 was used for 4esting the uncorrelated
and correlated modes. Fig. 1 shows the network used which is chosen from
EDOC-2. There were many solutions for each mode, but only the best

p tee



one of each mode can be presented here. Table 1 is a summary of these
two solutions. Solution F4-5 is in the uncorrelated mode; solution C-5
in the correlated mode. The integration intervals of both solutions are
5 x 4.6 = 23 seconds.

The information of solutions using different integration intervals
from the correlated mode is collect?-` in Table 2. In the designation
C-i, i indicates the integration ii_t^ {-vats used, e.g., in case of i a 2,
the range change is over 2 x 4.6 = 9.2 s. Fig. 2 gives a visual comparison
of these solutions. It is obvious that the solution with i = 5 is the
best.

4.2 Test of the Systematic Error Model

In this study as in the earlier one only the two major terms are
used for modeling the systematic effects; a + bt. The residuals of the
observations of randomly selected passes from the total of 193 passes were
plotted for each station. Fig. 3 is one example. Investigating the distri-
butions of the residuals of the observations at each station, no signifi-
cant remaining systematic effect ;s found, which indicates that the two
major terms used for modeling the., systematic effects are reasonable.

4.3 Test of the Residuals

From Table 1 we can find that the correlated mode is superior to the
uncorrelated one. In spite of that, there are still significant differ-
ences between solutions C-5 and EDOC-2. In order to find the reason, the
residuals of all observations were investigated. Table 3 lists the
statistics of the residuals of the observations over the ten worst passes.

Checking this table, one can see that the maximum residual is as
large as 160 m, and the ratio of the number of the observatio,is whose
absolute residuals are larger than three times the standard deviation,
to the total number of the observations for each one of the worst passes
is high. The worst one is as high as 11.2%. This indicates that there
may be blunders in the data set.

4.4 Problem of Weights

As stated earlier, all observations are assumed to have equal weight
and the a priori variance of unit weight is chosen to be equal to the
variance of a range difference observation

00 - aAr	
1.0

In Table 2 one can see that the a posteriori standard deviations of unit
weight for all the solutions are much larger than the chosen a priori one.
For instance the a posteriori standard deviation of unit weight of the
best solution, C-5, is as large as 3.4.
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Table 1	 Summary of Solutions F4-5 and C-5

Solution No.; F4-5 C-5

Total No. of Passes.Processed 193 193
Total No. of Events 3,430 3,430

No.. of Unknowns
Station Coordinates 30 30
Error Coefficients 3,312 3,312
Satellite Coordinates 10,290 10,290

Total No. of Unknowns 13,632 13,632

Total No. of Observations 27,531 27,531
Degrees of Freedom 13,899 13,899

A Priori Weight Information;
Range (or Range Difference) 1 m 1 m
Error Coefficient oa 50 m 50 m
Error Coefficient ab 38 m / 2 min 38 m / 2 min
Fixed Station Coordinates aX, ay, aZ 1 mm 1 mm
Other Station Coordinates oX, cy, aZ 100 m 100 m
3 Satellite Events/Pass aX, ay, oZ 10 m 10 m

A Posteriori Standard Deviation 3.5 m 3.4 m
of Unit Weight

Coordinate Differences with Respect
A^	 AA AH A0	 AX AH

to EDOC-2 Solution (all	 units in m)

Station No. 220* 0.0	 0.0 0.0 0.0	 0.0 0.0

(* indicates fixed station) 221 3.5	 16.2 -4.4 3.0	 7.0 -4.6
222 3.4	 -4.3 -l.c^ 1.9	 -3.0 -1.4
223 1.5	 9.8 -7.1 1.7	 5.2 -4.2
224 5.6	 27.1 -12.6 5.3	 13.2 13.1
225 -4.8	 -10.9 6.7 -0,2	 18.4 3.0
226* 0.0	 0.0 0.0 0.0	 0.0 0.0
230 1.0	 -4.5 13.6 4.6	 3.2 9.9
231* 0.0	 0.0 0.0 0.0	 0.0 0.0
232 4.5	 -3.1 15.7 2.1	 -4.6 20.5
233 0.8	 8.7 -2.0 1.6	 2.0 -0.9
234 0.1	 -1.7 5.3 -1.0	 1.1 7.5
235 1.0	 44.2 70.0 8.2	 4.4 1.9

Average absolute difference (m) 2.6	 13.0 14.0 2.2	 5.8 6.7
(10 stations) ±2.8	 ±5.2 ±4.6 ±4.7	 t8.9 i7.9

Average absolute difference
20.8 ±21.7 10.8 ±6.6

in position (m)

Average absolute station-to-station
10.2 ±10.5 5.5 t4.5

chord distance difference (m)

R
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Table 2 Comparison of the Different Integration Intervals Used in
Adjustment

Name of Solution: C-2 C-5 C-10 C-15

Integration interval 	 (seconds) 9.2 23 46 69

Computing time (minutes)* 25.20 8.83 5.96 2.79

A posteriori standard deviation
2.4 3.4 4.5 5.9

of unit weight

Average total absolute difference 10.9 10.9 22.0 33.8
in position	 (m)	 (10 stations) ±7.3 ±6.6 ±19.3 ±37.1

Average absolute station-to-station 6.4 5.5 8.9 17.1
chord distance difference (m) ±5.6 ±4.4 ±8.2 x-19.2

*using an Amdahl 470

06 T  (min)	 Tc: computing time used
(m) ---- AB: average of absolute difference

of baselines

16 20

12 15 F4 •'^	 i`r i

Iwo	All"

8 10 C-^0000

4 4.	 5

9.2

integration interval (s)

Fig. 2	 Computing time used and average of absolute differences of
baselines plotted against the length of integration interval
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Table 3	 Statistics of the Residuals of the Observations of the
Ten Worst Passes

Pass Number of Observations
No.

No.
(vimax	

(m)(vJ	 > 3a IVI	 > 2a (yJ	 > 10.0 m
Total

Number % Number % Number %

1 49 207 20 9.7 27 13.0 17 8.2 160.8

2 46 187 18 9.6 38 20.3 13 7.0 126.1

3 187 143 16 11.2 27 18.9 12 8.4 41.4

4 21 262 19 7.3 32 11.8 10 3.8 53.0

5 43 181 9 5.0 17 9.4 8 4.4 39.5

6 180 142 9 6.3 15 10.6 8 5.6 25.6

7 51 221 10 4.5 15 6.8 7 3.2 17.2

8 26 186 10 5.4 12 6.5 5 2.7 26.0

9 25 105 6 5.7 7 6.7 5 4.8 31.6

10 16 195 7 3.6 10 5.1 4 2.1 37.4

Table 4 presents the comparison of the weights of each station
calculated from the residuals over all passes. The weights of the stations
differ from each other for solutions C-5; the largest one is ninefold as
large as the smallest one. When the ten worst passes are taken out, the
weights are close to each other, and the a posteriori standard deviation
of unit weight is decreased from 3.4 to 2.0. It is seen that the exist-
ence of blunders is probably the most important detrimental factor in the
solution.

Unfortunately, neither taking out the ten worst passes nor repeating
the computation with the different weights for each station improved the
result= it is likely that although taking out the ten worst passes removed
the major blunders, it also resulted in losing many useful observations.
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Table 4	 Comparisons of the Weights of Each Station

Station
All Passes Used W/o 10 Worst Passes

No. No. of Obs. $ p No. of Obs.	 a p

220 1579 2.08 2.7 1473 1.73 1.3

221 1668 1.72 4.0 1606 1.56 1.6

222 2912 3.30 1.1 2711 1.33 2.2

223 1862 1.30 6.9 1777 1.27 2.4

224 2821 1.77 3.7 2631 1.49 1.7

225 1893 2.19 2.4 1757 1.33 2.2

226 845 2.56 1.8 763 1.26 2.4

230 2505 2.26 2.3 2435 1.21 2.7

231 2789 3.85 0.8 2609 1.87 1.1

232 2391 2.42 2.0 2205 1.30 2.3

233 2760 1.67 4.2 2575 1,30 2.3

234 2641 2.36 2.1 2444 0.99 4.0

235 865 1.25 7.5 809 1.01 3.8

Degree of 13,899 12,910
Freedom

ao 3.4 2.0

5. CONCLUSIONS

On the basis of the comparisons, the folloiwng conclusions can be
drawn:

(1) The geometric mode of solving the problem of simultaneous Doppler
derived ranges without considering the correlation is a weak one.

(2) The correlated geometric mode leads to better results. Comparing
with the uncorrelated solution, the correlated mode reduced the average
total absolute differences (with respect to EDOC-2) in position from 20.8
±21.7 m to 10.9 ±6.6 m; and the average absolute station-to-station chord
distance differences from 10.2 ±10.5 m to 5.5 ±4.5 m.

(3) The choice of the optimum integration interval is very important
for the use of simultaneous D ,̂ apler-derived ranges in the geometric mode.
The examples of this study dewonstrate that the optimum integration inter-
val is 23 s, which agrees with that suggested by [Ashkenazi et al. 1980].
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2.222
	 Doppler Interccmpar.iscn Experiment	 r

in the previous semi-annual report, preliminary results
of the 1979 CSU comparison test of Doppler receivers are
given. Since that tima a final report on the comparison has
been completed [Archinal, 1982] as a master's thesis (and
soon as a report of the DApartment of Geodetic Science and
surveying) .

,In this report, some of the results presented in the pre-
vious re p ort are revised, and some additional final results
are presented as well. For a more detailed discussicn of
the following, refer to [ Archinal, 1982 ], and [ Archinal and
Mueller, 1982].

P7NAL BESUtTS_CF DATA fl gECTIOH

As mentioned above, some of the results presented here
are slightly different than those given in the last report.
This is primarily due to

a) The determination and use of receiver time delays in
the GEODOP processing.

b) The modification of GEODOP to allow the inFut of a
"common station noise" estimate, and use of this cp-
tion, along with the use of a variance, estimation FLa-
cess in GEODCP as well.

Therefore revised versions of the tracking statistics and
chord difference results are given here, along with new in-
f ormatior concerning the estimation of the receivers' cts_er-
vational (range rate) error and oscillator stacility.
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The statistics on the number of passes tracked # used in
PREDOP, and two types of GEODOF runs are presented in tacle
1. although several numbers have changed sulstantially from
those given in the last report, most of the results given
there are still valid. in addition to thcse results, it
should be noted that it these statistics are troken down by
antenna setup (as in [ Archinal, 1982, pp. b 1 -70 :) , it to-
comes clear that:

a) The C41A-751 and the JMH-1As generally tracked about
the same number of passes, and slightly more than the
MX1502 (when operating correctly and tracking continu-
ously).

b) There is no bias due to antenna location, 	 at least
when PABDOP rejections are considered. 	 Inc relative
percentages cf rejections stayed fairly constant for
all setups for the JM8-1A $2 and 5X1502.	 No conclu-
sions can be :p rawn for #he O ►,Ag751 due to its faulty
antenna caLle ion all but one site),, cr for the JMS-1 A
t1, since it only occupied one site.

The GEODCP statistics (for a multi-station broaucast
ephemeris ,solution and a single station rtecise ephemeris
solution)	 show a fairly consistant cbsei vation.^' ass value
for all .instruments, except for the MX1502, 6bich has a
higher value in both solutions. This higher value is due t,.-,,
the fact that the MX1502 was recording only (the better)
passes 4hi(cr -cached over 15 degrees altitude en the first
setup, wh4ch strongly affects the grand totals shown heLe.
The observations/pass for the C'MA-751 ace not rerrestntative
here either, since it was operating prop-:rly only during the
first and last setup.

Chord_D,}ffer^nce_Hesu^ts

Table 2 shows absolute differences obtained in the chord
distance between all pairs of instruments for each antenna
setup for multi-station and precise ephemeris solutions.
Aany of these values are different from those given in the
previous report, with generally smaller standard dsviaticus
and chord differences than previously reported. This is
probably due to the changes in Weighting and the Letter de-
termined delays respectively, and points out the value cf the
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more rigorus 'weighting and better determination of delay for
these solutions.

Even	 With	 the	 differsr^: s,	 the	 previous result	 still
holds,	 that	 most of	 the	 ditr̀ erences	 (all execept two) lie
within their three	 sigma value.	 a new result	 is that the A
single baseline	 determined between instruments of	 the same l
type	 (between the two JMR -1As on setup 	 #1)	 did nct stow sig-
nificantly better	 results than	 pairings between 	 any ether }

II	 instrument combination.	 In conclusion,	 it appears that ^ a
these is no	 evidence that any of	 these	 instruments are bi-
ased	 agaia,st one	 another	 for	 chord determinations 	 (over 1

!	 short distances).

Another additional result shown by this table is that the
precise ephemeris two satellite solutions for chord distanc-
es do not appear to have necessarily higher accuracy cr pre-
cision than the corresponding 	 broadcast ephemeris five sat-
ellite solutions,	 and in fact the	 precision cf the broadcast }
ephemeris solution is better in all cases. 	 This simply in-
dicates	 that the	 greater	 number	 of observations	 in the
broadcast ephemeris solution improves 	 the results more than
the corresponding increase in ephemeris accuracy of the pre-
vise ephemeris	 solution.	 This	 would imply	 that if only

f	 chord distances were needed	 from Doppler ctservaticus, then

r	 generally broadcast ephemeris solutions 	 would br preferable
to precise	 ephemeris solutions,	 since the	 forcer usually
have more data available. j

R
fiange sate Measurement Errors 1

1

Using	 procedures described	 in	 detail in [Archinal, 	 1982,
{{

pp..	 70-79],	 estimates of the common station	 noise	 and each i
instrument's	 range rate	 standard deviation	 wer._ made for
each setup and precise ephemeris satellite.	 The results are
shown in	 table	 3	 and discussed	 here..

First of all, the common .station .noise was estimated by
processing only simultaneous observatins and precise epbem-
eris orbits. the common station (cr "interstation" cr "sat-
ellite" noise) estimates were made using the ccamon station 	 ':9
estimated variance-covariance matrix output by GECDGE to cb-
tai.n the values shown in column three of table J. 	 The re-	 -'
sults vary with satellite and time during the entire test,	 I
with an amount between 3.4 and 7.5 cm/30 seconds. 	 The ove-
rall average value (weighted mean of all observation pairs)
is 4.9 cm130 seconds. 	 Since the range was not tcc great
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and rather than change the value for each setup/satellite
(perhaps based on too few observations), the GUEOP default
of 5.0 cm/30 seconds was then used for all subsequent pro-
cessing.

Secondly, the estimated receiver range rate standard de-
viations Were computed For each setup and satellite, using
the'weighted mean of the diagonal elements of thts estimated
variance-covariance matrix of the residuals. the results
for all three instrument tykes are shown in the last four
columns of tal le 3. These values were obtained from GEODOP
single station precise ephemeris solutions, in which the ob-
servations were approximately (the rejections due to statis-
tical testing cause some exceptions) simultaneous. Although
some of the individual solutions did not have enough data to
be considered significant, using at least 600 observations
in each case (but only 350 for the JMR-1A M1), the estimated
range rate standard deviations were found to be 9.7, 	 11.90
10.4,	 and 12.5 cm/3u seconds for the CMA-751, 	 JMLI #1,

JMR-02, and the dX1502 respectively, over the entire pciriod
of the tests	 The variations shown during the test may be
partially instrument related,	 Lut they are prcLaLly due
mostly to the satellite noise just discussed. 	 The relative
precision of the three instruments continuously ocserving
also stays approximately the same for all time periods and
satellites, which also indicates that tha variations are,
non-receiver relatod. It is also significant that the vari-
ation Letwe n instruments is usually less than 3 cm/30 sec-
onds, showing that these instru•aents ace generally very
milar, and that the variatioz in the common station noise is
generally greater than this. 'dine conclusion can therefore
be drawn that the variation of the measurement precision
between these instruments is not_siynificant. Zhr even more
important conclusion which can b y drawn is that tho range
rate accuracy obtainable depends in many cases more on the
time and the satellite than it does on the receiver itself.

Lastly, to obtain the best possible estimates of the fi-
nal variance-covariance matrices in GECDCE, the GECDGF op-
tion was used to allow an interuai estimate of the mange
rate standard deviation and adjacent observation ccrrelat-4.on
for each pass to be made, with the previously estimatA
range rate standard deviation value (given in the last pars-
graph) used as an input appoximate value. Although increas-
ing the computational time by over 501 (all of the passes
are processed twice), this method takes into account the
variation of the satellite noise and possitle variations in
the receiver noise during the period under consideration.
it is felt that this procedure,	 in conjunction with the



ORIGINAL RAGE IS
OF POOR QUALITY

first two above would result in the most r1gcrus processing
of the data, to provide the hest solutions.

The frequency drift of an instrument f s oscillator is an
important guanti.ty which can be determined to fairly high
accuracy auring data reduction. in general, the more stable
an oscillator (over the period of a satellite pass) the Let-
ter the timing and Doppler count measurements can he made.
if a drift is occurring, and remains fairly constant in
time, it can bo taken into account in the adjustment of the
data (as in GEODCF), although it must still Le assumed to be
linear over a pass, and should not be very large in magni-
tude. if the drift is erratic, either changing during a
pass or over just a few passes, the data will be very nc,isy
clue to t.hesu unmodeled changes in the oscillator..	 It is
therefore important to check the Frequency drift variations
of these instruments. ,Ideally, one vould like to check the
short term drift Which corresponds to the length of a satel-
lite pass (over 100 seconds to about 15 minutes), Gut this
is generally not possible unless an atcsic standard is
available for comparison.	 Instead, the long terra drift of
these instruments can be checked for variations (which gray
provide an indication of the short term stakility), or at
least checked against the manufacturer t s spatificaticns.

In the case of the data collected here,	 the trequency
drift for each instrument for each setup and precise eptem-
eris satellite has been determined. The values have Leon
obtained from the difference between the first and last
(reasonable)	 frequency otfsets computed fcL each iusti:ument
during a setup.	 Iha frequency offsets were determined from
two satellite (one satellite at a time) precise ephexetis,
single station solutions, 	 and t1a antenna setui periods
which ranged from about five to fifteen clays iu length.
Note that to octain the per day values given here, the as-
sumption has been made that the frequency drift is constant
during each setup.	 Examination of the GBCCO p fzegUenQ
plots supports this assumption.

The results for frequency drift are shown in zatie 4, and
have been graphed in figure 1. They can be summarized as
follows:

a) The CMA-751 had a fairly uniform value for frequency
drift, using either satellite, and easily met its spe

S
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TABLE 4	 LONG-TERM OSCILLATOR FREQUENCY DRIFT 
1

SETUP SATELLITE.

N0. N0. CMA-751 JMR-1A #1 JMR-lA #2 MX-1502

1 14 0.45 1.65 3.15 0.41 2

19 0.23 1.78 3.22 0.11 2

2 14 0.14 2.50
2 -- 3

19 -0.32 2.66
2

-- 3

3 14 0.50 2.57 2 -2.88

19 0.33 2.87 2 -2.72 2

4 14 0.39 2.27 2 0.47

19 0.10 2.68 2 1.11

5 14 0.27 2.06 0:78 2

19 0.50 2.47 0.74
2

SPECIFICATION;

/DAY ±1.00 ±0.50 ±0.50 ?

/100 S ±0.01 ±0.05 ±0.05 ±0.08

1 10-10 PARTS PER DAY. DETERM114ED FROM FREQUENCY OFFSET OF FIRST

AND LAST PASS OF SINGLE STATION, PRECISE EPHEMERIS SOLUTION.

2 SOLUTION SHOWS FREQUENCY JUMP AFTER FIRST OR SECOND PASS,

3 TOO FEW PASSES IN SOLUTION, WITH TWO FREQUENCY JUMPS

(OSCILLATOR DISTURBED DUE TO MAINTENANCE)

3
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cified 10- 10 pants/day precision. The frequency drift
was usually from one half to one tenth of that value,
and eveli approached its 100 second speci.tication.

b) The JMN-1A #2 also had a fairly uniform value for fre-
quency drift, using either satellite. However, both
it and the JMB-1A #1 failed to meet their 0.5 x 10-10
parts/day specified precision,	 (Note that this speci-
fication is actually for the JM&-1. it is assumed
that the JdF-1A would have the same or a ketter speci-
fication.)

c) The MX1502 did not have a consiater.t value for its
frequency drift, which shows oscillations causing the
second through fourth setups. Since the values for
the first, fourth and last setups ate at least simi-
lar, one would suspect that the frequency drift chang-
es are mostly due to the various times that the in-
strument was opened (and its oscillator turned off)
for repairs. No specification for the MX1.502 drift
per day is availatle for comparison purposes.

FINAJ CgjgENTS

The results presented here should be considered as the
final ones of this comparison, although if time permits,
some additional material will possibly be added to the re-
port version of jArcbinal, 1982] and the final version of
[Archinal and dueller, 1982].	 work is also continuing on	 f
the documentation and further testing of the 1EL version of
the GECDG.P Program System.

As to the further use of the data cntaine4, the raccamen-
elation is made here that the data from both this ccmparison
and the Ottawa comparison to finally processed together in
multi-station solutions, to provide a comparison cf bcw well
the various possible instrument Fairs can measure the long
Columbus-Ottawa baselines involved. Fortner, it is also
suggested that a similar reduction be made (if the data can
be obtained) using the "Cuebec" data descrited in [Mcreau,

	

19811, which was also obtained during the operational phase	 I_ A
of this ccmpari.cn.

Other investigations are also possible, including extend-
ing the results givea above by making further coaFarisons of
the chords, comparing the vertical aad horizontal positions

72
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of the stations through their cootJinates i and comparing the
computed coordinate with the available control coordinates.
These items were trot done in this study vainly tecause they
are considered to he of lessar importance than the other co-
su;lts presented, and due to a general lack of time for these
lengthy investi<gaticas. Other work concerning prograa oF_
tions or comparisons of programs could also re done %ith
this data.
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2.3 Earth Deformation Considerations for the Maintenance of a
Conventional Terrestrial Reference System

The role of deformation analysis in the maintenance of a new Conven-

tional Terrestrial Reference Frame has been outlined in previous semiannual

reports and in [Bock and Zhu, 1982]. Basically, a set of fundamental

coordinates xo of a global network of stations adopted at an initial epoch

define the reference frame. The initial size and shape of this network

is defined by the corresponding baseline lengths, Do. By comparing one

estimated baseline lengths at a later epoch to Do, the deformations of

the network can be estimated. This information is then used to improve

the gloLal estimates of variations in polar motion and earth rotation,

with respect to the conventional axes defined by Xo.

Mathematical Model and Preliminary Estimation Model

The mathematical model for the deformatio- analysis is simply the

chord length of baseline i-j

Dij 
= I(x j -x i ) 2 + (y j -y i ) 2 + ( zj-zi)2]i

This model is linearized about Xo to yield

L =AX+V

where the observation vector L for the k th baseline is

L k = (D ij	 Dijo)k

and the parameter vector X represents the deformations, i.e., the change in

coordinates between the initial epoch and a later one. V denotes the noise

vector.

Since the design matrix A is rank deficient by 6,, we are restricted

to a Generalized Gauss-Markoff (GGM) model.(L, AX, aoW 1 ) where

E(L) = AX

D(L)	 ao2P-1
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If there is no a priori information for the deformations, the minimum

bias P-least squares estimate for X is given by

X = N+U = API L ;	 N = AT PA, U = AT PL

using the notation of [Rao and Mitra, 1971], where P is the weight matrix

of the observations. This estimate can be shown to be equivalent to that

obtained from augmenting the normal matrix N by a set of constraints C

such that [Blaha, 19711

AC
T
 =0

CX = 0

and
X _ (N + CTS) -1 - CT {CCTCCT )"

1
 C

This means that we constrain the origin and orientation defined by the

coordinates at some later epoch t to be equivalent to that defined by Xa.

Extended Models for A Priori Deformation Information

In the case of the availability of a priori information on the

deformations of the network, e.g., as provided by absolute plate motion

models, four possible estimators have been outlined and analyzed in

[Bock, in preparation]. We briefly outline here the corresponding estimates

and their respective properties.

Consider an expanded GGM model (L, AX, Q V , QX) where

E(L) = AX

D(L)	 QV = E{VVT) = 602P-1

E(X XT ) = QX

= EX + 
uX uX

T
	

(uX = E{X) = X)

where X is an independent estimate of the parameter vector. The resulting

minimum M-norm P-least squares minimum variance estimate for X

Xi	 QXN( NQXN)+ 0

= M"i N ( NM-1 N)+ U

75
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where M = QX-1 (positive definite). X 1 has the property of minimum bias.

Therefore, this estimate is termed the BLIMBE (Best Linear Minimum Bias

Estimate). In this case, it can be shown that this estimate is equivalent

to that obtained from augmenting the normal equations by CM such that

AC
T
 =0

h
CMX 1 = 0

and

X 1 = [(N + MC CM) -1 - CT (CMCT CMCT)-1 C]-1 U

Therefore, we can say that the reference frame is maintained in a minimum

M-norm P-least squares sense by a specified number of CTS stations.

For positive semidefinite Q X , which would be the case for any plate

model

X1 a (N + M) -1 N[N(N + M)
-1 

N] + U
W

with M = QX+ . In this case, the estimate is minimum M-seminorm P-least

squares but is no longer minimum bias.

For the BLIMBE we assume that the parameter vector X is deterministic

and define a weighted norm in the parameter space on the basis of a priori

information on X. Another possible biased estimator can be obtained by

considering X as a random variable. Our estimation model is (L, AX, 
QV' QX)

where

E{X} = X

D[X] = E{(X-X)(X-x^} = EX

which gives

QX=E{XXT}=EX+XXT

The vector X includes the deformations computed from, say, a plate motion

model and EX is its covariance matrix. The distribution of L is given by

E{L} = AX

D[L] = A Z  AT + GO 2
P -1

from which

QL = E{LLT } = A QX AT + Q02p_1
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QXL = E{XLT} = QX AT

and we assume

QXV = 0

By the Gauss-Markoff' theorem [Liebelt, 1967]

Xz = 
QXL QL-1 L

= QX AT (A QX AT + o p zp % )'1 L	 .

fl

Which, for positive definite QX,

X 2	(N + 
M) - 1 U	

M = 
QX - 1 s

This estimate has been referred tows the Best (or Bayes) Linear Estimate

or BLE for short [Rao, 1973, 19761.	 While the BLIMBE has the minimum bias

property, the BL5 has minimum mean square error, i.e., it minimizes the

sum of covariance and biased squares
Al

i

MSE(X)	 = EX + [X - E(X) ][X 	- E(X)lT

E	 in the class of biased estimators.	 Note that the BLE requires some

knowledge of the deformations in order to compute Q X .	 Furthermore, while

the BLIMBE reference system is maintained through the constraints CMX 1 = 0,

the deformations estimated by the BLE are with respect to an underlying

reference frame of +he deformation model from which QX is computed.
y

The previous two estimates arc drawn from the class of biased esti-

mators.	 If QX can be constructed, that is, 	 if there exists a priori defor-

mation information, then the origin and orientation singularities are I

essentially eliminated. 	 We then are led to investigate whether an unbiased

estimate exists and we find the Bayesian estimate. 	 Consider the estimation i-

model	 (L, AX, QV , X, EX) where X is deterministic, X random and the set of

observation equations
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E 	 = X

D[X] = E{(X	 X)(X - X) T } = EX

E{L} = AX

DEL] = A EX AT + a 0 2 P-1 = EL

The least squares solution for this model yields

X 3 = EX AT (A EX AT + E L ) -1 L

+ [I	 EX AT (A EX AT + EL ) -1 A] X

for EX positive semidefinite. For positive definite EX, this reduces to

X 3 = (N+M) -1 U + [I - (N+M)
-1
 N]X ;	 M = E7-1

= X + (N+M)-1 ATP(L - AX)

(N+M) -1 (U + MX)

It is easiliy seen that given this estimation model, particularly

E{X} = X, E{X3} = X, so that X is unbiased. This estimate has the minimum

mean square error property which implies minimum variance since the bias

is equal to zero. Note that in the BLE, the a priori information is incor-

porated 0to the moment matrix Q X , while for X 31 X is applied directly, and

a residual deformation is estimated. Thus, we can consider the BLE (Xz)

as a "weak." Bayesian estimate and X 3 a "strong" Bayesian estimate:

Assume again that some a priori deformations are available. In this

case, the model may indicate that Cf =L X where LX # 0 which leads to an

alternative approach to the constraints CMX 1= 0 of BLIMBE. Consider the

following set of observation equations

L	 A^	 V
X+

L X	C	 VX

We assume the estimation model (L,AX

E{CX}	 CX

D[CX] = C EX CT

E{L}	 AX

DEL] = A EX AT + QOZP 1

LX = CX

CX = CX, EX, Qv) where
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For this model, the least squares estimate is

X 4 - [N + CTPX C] -1 U + CT P  C 7
where

PX = (C 
Ey 

CT)"l

From [Chipman, 19641

AP I = [N + CT PX C] -1 ATP

CPI	 [N + CT PX Cj -1 CT PX
X

so that

X4 ' API + L + CP X I 7

=N+ U+CP
I 7k

3

Therefore, X 4 can be viewed as a correction term to the minimum I-norm
A

P-least squares estimate X 1 , or a combination of the BLIMBE and Bayesian

approaches.

The propertiQs of the four estimators are summarized in Table 1.

Addition and, Temporary Deletion of CTS Stations

The reference frame is defined by a particular number of CTS stations.

It is quite possible that from time to time one or more of the stations will

riot be able to participate in a particular deformation analysis observing

session which should involve all stations. Furthermore, it must be anti-

cipated that new stations will be added to the frame periodically. Both

of these occurrences must be dealt with in order to maintain continuity

and avoid ambiguity in the reference frame definition. For the addition

of CTS stations we use the filtering and estimation capabilities of least

squares collocation. The model becomes

L =AX+BS+V

Where-X is deterministic and represents the coordinates of the new stations

to be estimated. The vector S, the signal, is random and includes the
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filtered deformations. The L and V vectors are as before. From

[Moritz, 1980),

X	 [AT(BQSBT + QV)-'A]+ A(BQSBT + QV)-' L

S = QSBT(BQSBT + QV)-' (L	 AX)

where QS is the same as the previous QX.

If a station cannot observe, we can use the prediction capabilities

of least squares collocation to preLict tna deformation via

S = QSBT (BQ tBT + QV ) - ' L

where

t

S=
u

t includes the deformation of the observing station, and u the predicted a

deformations of • the missing stations.

i

Conclusions

In order to test the properties of the four estimators and their

suitability in estimating deformations, a series of simulations were run

as described in [Bock, in preparation']. A 20-station, 8-plate network was

chosen for the simulations as depicted in Fig. 1 and Table 2. The AM1-2

absolute plate motion model of [Minster and Jordan, 1978] was "adopted"

(see Table 3).

The following conclusions were arrived at based on the simulations.

Assuming that the absolute motion models available today are good to within

their stated noise levels (this is reasonable considering that [Bender,

1981] indicates that their predicted deformations differ at the centimeter 	 t

level), it is found that it is advisable to adopt a deformation model than	 j

not at all. This was seen from comparing the deformation estimates obtained

with a deformation model and those oF'1ained when M = I (no model) is assumed.

If a model is adopted, then the_BLE appears to be the best candidate for

deformation analysis. This conclusion follows from several considerations. y
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ORIGINAL PAGE 13
Table 2 20-Station, 8-Plate Simulation Network and	 OF POOP QUALnV

AM1-2 Velocities

s
No. Station Latitijae Lonn4i t'ude Plate velocity (cm/yr)

X Z

1 Johannesberg* -29 10 28 02 AFRO 0.03 0.99 1.00
2 Cairo 30 3 31 15 AF&C -0.49 -0.31 1.01
3 Lagos 6 27 3 28 .AFEC -0.09 0.34 0.624 Onsala* 57 0 13 0 EUBA -0.14 -0„32 0.145 Jodrell bank 53 0 358 0 EUEA -0,.13 -0.31 0.096 Shan hai 30 45 1.21 45 EUBA -0.09 -0..20 0..217 Fairbznks 64 50 212 10 NOAM -1.38 -0.15 -0.59
8 Ft. Dais* 30 38 256 3 NOAM -2.43 -0.07 -1.11
9 Nes ,Eford 42 36 288 30 NOAM -2.27 -1.29 -0.54

10 Maui.* 20 30 203 45 PCFC -1.80 9.35 4-59
11 Tahiti -17 30 210 30 PCFC -6.11 7.59 4.4812 Marshall Isles 7 0 167 0 PCFC 2.73 9..24 4.7613 Sao 'Paulo* -23 33 313 21 SOAR -2.26 -1.94 -0.3314 Buenos Aires -34 37 301 36 SOAM -2.,44 -1.30 -0.25
15 Caracas 10 35 293 40 SOAM -2.75 -1.26 -0.26
16 Orroral* -35 18 149 8 INDI -1.63 1..70 5..6317 Yaragadee -29 3 115 21 INDI -4.20 1.99 6.4718 Bombay 13 56 72 51 IND.I -0.,95 -1.25 4.3019 Easter Isle* -27 5 250 39 NAZC 6..04 -1.56 -1.0420 Arabia* 24 39 46 46 ARAB -1.42 -0.36 2.70

* 8-Station 8-Plate Network

Table 3 AM1-2 Absolute Motion Plate Model (Adapted from
[Minster and Jordan, 19811, Table 7)

Absolute Rotation Vector

Plate	 Deg QQ	 Deg (E)	 Deg/,1. Y. *

1. African 18.76 33.93 338.24 42.20 0.139 0.055
2,. Eurasian 0.70 124.35 336..81 146.67 0.038 0.057
3. North American -58.31 16.21 319,.33 39.62 0.247 0.080
4,. Pacific -61.66 5.11 97.19 7.71 0..967 0.085
S. South American -82..28 19.27 75.67 85.88 0:285 0.084
6 Indian-,Australian 19..2:3 6.96 35.64 6.57 0.716 0.076
7_ Na2ca 47.99 9.36 266.19 8.14 0.585 0.097
8. Arabian 27.29 12.40 356.06 18.22 0.338 0..067
9. Antarctic** 21,.85 91.81 75.55 63.20 0.054 0,091

10. Carribean** -42..80 39.20 66.75 40..98 0.129 0.';34
11. Cocos** 21.89 3.08 244.29 2.81 1.422 0.119

Million Years
** Not used in the Simulations
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First, the BLE provides the best estimates (in the sense of minimizing

the root mean square error between true and estimated deformations) at

the same level as the Bayesian estimate, in the case when the deformation

model is correct (and then the deformation is just being filtered from the

baseline noise). Second, and most important, it is markedly less sensitive

to errors in the adopted deformation model. This is particularly

apparent in the case that in reality there is no deformation but we assume

some deformation model. These results are due to the minimum mean square

error and minimum norm properties of the BLE and its "weak" Bayesian inter-

pretation.

Finally, we should stress that the reference system is dependent on

the choice of estimation models including the choice of M (as well as P,

but to a lesser extent). This leads to the need for investigations

concerning how sensitive the reference system is to changes in M and P.

For example, what measures should be taken as M and P improve__with time_.

The algorithms presented here are general enough to incorporate geo-

physical as well as geodetic evidence of deformations. In [Bock, im prep-

aration] only models for deformations of interplate type have been con-

sidered, to be monitored by periodic re-observations of the baseline lengths.

Other aspects to be considered include intraplate and local motions (the

site stability problem). Local effects can possibly be modeled on the

basis of on-site observations such as by tidal gravimeters and local

geodetic nets. It is necessary to investigate how to incorporate these

and other types of observations (and their corresponding reference frames)

into CTS operations.

This investigation is now being completed, and the final report is

in preparation by Y. Bock, to appear in the report series of the Depart-

ment of Geodetic Science and Surveying, The Ohio State University.

84



References

Bender, P.L. (1981) "Establishment of Terrestrial Reference Frames by
New Observation Techniques (review)," Reference Coordinate Systems for
Earth Dynamics, E.M. Gaposchkin and B. Ko4aczek, eds., Reidel, 23-36.

Blaha, G. (1971) "Inner Adjustment Constraints with Emphasis on Range
Observations," Dept. of Geodetic Science Rep. 148, Ohio State Univ.,
Columbus.

Bock, Y. (in preparation) "Estimation of Earth Deformations for the Main-
tenance of a New Conventional Terrestrial Reference System," PhD
dissertation, Dep. of Geodetic Science and Surveying Rep., Ohio State
Univ., Columbus.

Bock, Y. and S.Y. Zhu (1982) "On the Establishment and Maintenance of a
Modern Conventional Terrestrial Reference System," pres. at General
Meeting of IAG, Tokyo, Japan, to be publ. as NOAA Technical Memorandum.

Chipman, J.S. (1964) "On Least Squares with Insufficient observations,"
J. Amer. Statist. Assoc., 59, 1078-1111.

Liebelt, P.O. (1967) An Introduction to Optimal Estimation, Addison-
Wesley, Reading, Massachusetts.

Minster, J.B. and T.H. Jordan (1978) "Present Day Plate Motions,"
•3. Geophys. Res., 83(611), 5331-5354.

Moritz, H. (1980) Advanced Physical Geodesy, H. Wichmann, Karlsruhe,
and Abacus Press, Turnbridge Wells, Kent, Q.K.

Rao, C.R. (1973) Linear Statistical Inference and Its Applications, Wiley,
New York.

Rao, C.R. and S.K. Mitra (1971) Generalized Inverse of Matrices and Its
Applications, Wiley, New York.

Rao, C.R. (1976) "Estimation of Parameters in Linear Models," Annals of
Statistics ,, 4, 6, 1023-1037.

'aj..

9

i



r.

2.4

	

	 Development of Models for Studying Ice Sheet and Crustal
Deformations

The observed locations of survey markers change with time. When

random and systematic errors are accounted for, what remains is actual
	

F

movement. The movements of a network of stations can be described as the

translation and rotation of the stations as a group and the deformation

occurring within the network. Thus when a network of stations is resurveyed,

it should be possible to obtain the geophysical parameters of velocity,

rotation rate and strain rate [Dermanis, 1981; Livieratos, 1980; Reilly,

19791. If the same network is resurveyed more than once, either the

derivatives of these quantities or averaged values may be calculated.

As most stations are on the surface of the earth, it is natural to

assume that all movements and deformations are two-dimensional. This may

oe adequate in many cases. However, vertical movement and deformation may

occur because of irregularities in the surface, faulting, or from being

buried under new material. Also, for networks covering relatively large

areas, the surface of the earth cannot be well approximated by a plane.

In this case, it may be better to determine the movements in an arbitrary

(earth-centered) coordinate system and then transform these results to a

latitude, longitude and elevation coordinate system.

A model is being developed to determine these geophysical parameters

from the coordinates of a network that has been resurveyed at least once.

Several methods have been proposed for obtaining sufficiently accurate

coordinates [Brunner et al., 1981, Niemeier, 1979]. One technique that

has been proposed for studying tectonic deformation is to use positions

determined by Doppler satellite receivers [Malyevac and Anderle, 1979]. 	 s

The precision of the receivers used individually (point positioning) is

meters to tens of meters. But by using translocation between two or more

receivers, the relative positions can be determined to within decimeters

[Brown, 1976]. However, the movements and deformations of the crust are

slow even in tectonically active areas [Savage, 1978; Minster and Jordan,

19781; thus the time span between resurveying must be of the order of

decades. Because the time period between reobservations is so long, it

may be difficult to guarantee that the coordinate systems are identical.
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03.

For example, the coordinate system defining the broadcast ephemeris of

the Navy Navigational Satellite System slowly varies with time. This

Problem cUuld be overcome by using relative rather than absolute coordinates.

Thus the velocities and rotation rates would be relative to some "fixed"

stations. However, the deformation within the network can still be obtained

by calculating the strains from the changes in the chord lengths between

the stations. The only assumption needed for this is that the scale of the

coordinate system has not changed. Because the strains obtained this way

are theoretically identical to the strains obtained from coordinate differ-

ences, any differences can be attributed to rotations and/or translations

of the coordinate system.

For the purposes of testing the model, the data set being used is

from survey stations placed on the Greenland ice sheet. Seven Magnavox

1502 satellite receivers were used during the summers of 1980 and 1981 to

obtain the movement of 22 stations on the ice sheet of Greenland. Using

the data reduction program GEODOP [Kouba and Boat, 1976], the coordinates

of the stations have been obtained relative to the positions of two

stationary stations (which were located on the west coast of Greenland).

The formal accuracy of the coordinates is under 20 cm. These stations

are moving at velocities of up to 45 m per year, and the magnitude of the

maximum strain rates are over 100 ppm.
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