General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-85146) EVALUATION OF MANAGEMENT MEASURES OF SOFTWARE DEVELOPMENT. VOLUME 1: ANALYSIS SUMMARY (NASA) 142 p HC A07/MF A01 CSCL 09B N83-13836

Unclas G3/61 02142

SEL-82-001

EVALUATION OF MANAGEMENT MEASURES OF SOFTWARE DEVELOPMENT

VOLUME 1: ANALYSIS SUMMARY

SEPTEMBER 1982

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and Space Administration, Goddard Space Flight Center (NASA/GSFC) and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document. A version of this document was also issued as Computer Sciences Corporation document CSC/TM-82/6063.

The contributors to this document include

Jerry Page (Computer Sciences Corporation)
David Card (Computer Sciences Corporation)
Frank McGarry (Goddard Space Flight Center)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, MD 20771

PRECEDING PAGE BLANK NOT FILMED

100

ABSTRACT

This document reports the results of an evaluation of a large set of software development measures relevant to the Goddard Space Flight Center (GSFC) environment. Volume 1 explains the conceptual model, the data classification scheme, and the analytic procedures. This volume summarizes the analytic results and recommends specific software measures for collection and monitoring. Volume 1 also reproduces in full the results of the computer analyses. Volume 2 presents a detailed description of the data analyzed including definitions of measures, lists of values, and summary statistics.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

Section 1 - Introduction	-1
1.2 Objectives of the Analysis	-2 -4 -5
Section 2 - Data Description	-1
	-1 -3 -5
Section 3 - Analytic Procedure	-1
3.2 Factor Analysis	-3 -5 -7
Section 4 - Evaluation of Measures 4	-1
	-1 -4
4.2.1 Software Engineering Class	-11
	-30
4.3 Summary Analysis of Class Factors	-43 -47
4.4.1 High-Level Factors	-47 -56
Section 5 - Conclusions 5	-1
5.1 Findings	-1 -6
Appendix A - Factor Analyses of Classes of Measures	
Appendix B - Factor Analysis of Class Factors	
References	
Bibliography of SEL Literature PRECEDING PAGE BLANK NOT	** ****

LIST OF ILLUSTRATIONS

1

IJ

Figure	. The second of \mathcal{G} is the second of \mathcal{G} in the second of \mathcal{G} is the second of \mathcal{G} . The second of \mathcal{G}		
1-1	Software Development Model		1-3
3-1	Analytic Procedure	•	3-2
3-2	Analytic Procedure		3-4
3-3	Concept of Factor Analysis	•	3-6
3-4	Concept of Cluster Analysis	•	3-8
4-1	Cluster Map Based on Screened Measures		
4-2	Cluster Map Based on Combined Factors		4-46
5-1	Cluster Map Based on Important Measures	•	5-16
	LIST OF TABLES		
		e.	
Table			
	itan kalangan kemangan di dianggalanggan pengangan penganggan penganggan penganggan penganggan penganggan peng Penganggan penganggan penganggan penganggan penganggan penganggan penganggan penganggan penganggan penganggan		
2-1	Summary of 11 Mission Projects Studied	•	2-2
2-2	Classes of Measures	•	2-4
2-3	Interpretation of Subjective Measures	•	2-5
2-4 4-1	Example of Subjective Measures	•	2-6
4-1	Measures Excluded From Analysis	· ·	4-1
7-6	Measures		4-5
5-1	Measures		3 3
	Engineering Class		5-9
5-2	Important Measures in the Development Team		
11. 12. 11. 11. 11. 11. 11. 11. 11. 11. 11.	Ability Class	•	5-10
5-3	Important Measures in the Difficulty of		
5-4	Project Class	•	5-11
3-4	Important Measures in the Process and		5-12
5-5	Product Characteristics Class. ,	•	2-12
	Background Class		5-13
5-6	Important Measures in the Models Class	•	5-14
5-7	Important Measures in the Additional Detail		- ∀ *
	Class		5-15
A-la	Class	7.	
	Factor Loadings	•	A-2
A-lb	Factor Analysis of Software Engineering:		
	Factor Pattern	•	A-3
A-1c	ractor Analysis of Software Engineering:		
A-2a	Final Communality Estimates		A-4
n-4a "	Factor Analysis of Development Team Ability: Factor Loadings		A _ E
A-2b	Factor Loadings	•	A-5
	Factor Pattern		A-6
	요즘 등 이 집에 지어 가장 이렇게 되었다. 그 하는 사람들은 이 사람들이 되었다. 그렇게 되었다면 하는데 하다.	3.0	~ Y

LIST OF TABLES (Cont'd)

Factor Analysis of Development Team Ability:	
	A-9
Factor Analysis of Difficulty of Project:	
Factor Loadings	A-10
Factor Analysis of Difficulty of Project:	
Factor Pattern	A-11
Factor Analysis of Difficulty of Project:	
Final Communality Estimates	A-12
Factor Analysis of Process and Product	
Characteristics: Factor Loadings	A-13
	A-14
	77
	A-15
	77-7-2
	A-16
	W-T0
	A-17
	A-1/
	* 20
	A-20
	. 01
ractor Loadings	A-21
Factor Pattern	A-22
	A-24
Factor Loadings	A-25
Factor Analysis of Additional Detail:	
Factor Pattern	A-26
Factor Analysis of Additional Detail:	
	A-29
	B-2
Factor Analysis of Combined Factors:	
Factor Pattern	B-3
Factor Analysis of Combined Factors:	
Communalities	B-4
	Final Communality Estimates Factor Analysis of Difficulty of Project: Factor Pattern Factor Analysis of Difficulty of Project: Factor Pattern Factor Analysis of Difficulty of Project: Final Communality Estimates Factor Analysis of Process and Product Characteristics: Factor Loadings. Factor Analysis of Process and Product Characteristics: Factor Pattern Factor Analysis of Process and Product Characteristics: Final Communality Estimates Factor Analysis of Development Team Back- ground: Factor Loadings Factor Analysis of Development Team Back- ground: Factor Pattern Factor Analysis of Development Team Back- ground: Final Communality Estimates Factor Analysis of Resource Model Parameters: Factor Loadings. Factor Analysis of Resource Model Parameters: Factor Analysis of Additional Detail: Factor Analysis of Combined Factors: Factor Weights Factor Analysis of Combined Factors:

SECTION 1 - INTRODUCTION

This two-volume report presents the results of an analysis of a large set of management measures of the software development process. The purposes of the analysis are to characterize the current software development process in one environment by identifying important qualities and corresponding measures and to evaluate the effectiveness of specific tools and techniques in this environment. The measures studied are counts, ratios, and management-supplied ratings of various elements of the software development process. The measures are high level in that each describes some aspect of an entire software project (or a large part of it) rather than individual components of the project.

The data analyzed have been collected by the Goddard Space Flight Center (GSFC) Software Engineering Laboratory (SEL) from 25 actual medium-scale, scientific software projects developed for flight dynamics applications. Values have been determined for over 600 measures for each of the projects studied. Several different statistical procedures have been employed to investigate these measures.

This document describes the following aspects of this research effort:

- Motivation, rationale, and objectives
- Source, nature, and derivation of the measures
- Analytic procedures employed
- Results of the analysis
- Identification of specific measures useful to the management of software development activities

The data, procedures, and results are summarized in the text. Appendix A of this volume reproduces the results of computer-generated factor analyses of the data. Appendix A

of Volume 2 contains a detailed description of the data including identification of measures, lists of values, and summary statistics. Sources cited in the references provide additional useful material.

1.1 CONCEPT OF MEASURES

The need to measure the quantity and quality of developed software is self-evident. Measures of productivity, reliability, size, and complexity, for example, are vital to software planning and management. What is not so evident, however, is which are the most important quantities and qualities and what are the best measures of them. One approach that the SEL has taken to resolve these questions has been to gather as many measures as possible and to systematically evaluate their utility. This report documents that approach.

Measures should be distinguished from qualities. As the term is used here, a measure is a count or a numerical rating of the occurrence of some property. Examples of measures include lines of code, number of computer runs, person-hours expended, and degree of use of top-down design methodology. A quality is a high-level characteristic to which one or more measures may be related. For example, the measures of errors per line of code and mean time to failure are related to the quality of reliability. However, neither measure alone adequately quantifies reliability.

Measures appeal both to the researcher and the manager as potential means of defining, explaining, and predicting software development qualities, especially productivity and reliability. These goals can be realized most efficiently by developing a single effective measure for each quality of interest. That is one of the purposes of this analysis.

Measures may be classified into four groups as illustrated by the software development model presented in Figure 1-1.

 $\langle \rangle$

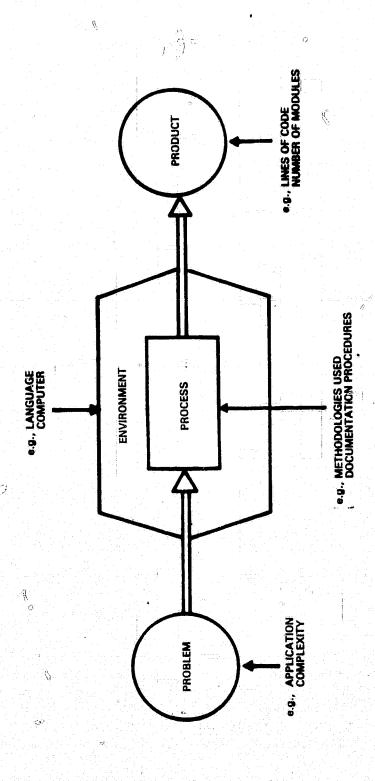


Figure 1-1. Software Development Model

-11--12-

73/6738

3

It shows these components: a problem, a solution-generating process, the environment in which that process takes place, and the solution (or software product). Measures can be used to characterize the components of this model and to show their interrelationships. For example, resource utilization measures record the rate at which resources in the environment (especially personnel and computer resources) are used by the software development process. Figure 1-1 also shows other examples of appropriate measures for each component.

Measures may be further characterized as <u>subjective</u> or <u>objective</u>. The exercise of human judgment in assigning a value for a measure makes that measure subjective. The most widely accepted and widely used measures of software development are objective measures of the software product. However, currently available objective measures do not take into account the effects of development constraints and practices on the quality of the software product.

Evaluation of software quality is, at present, a matter of the subjective interpretation of results relative to requirements. Few objective measures of software quality are available. Thus, the SEL has developed a set of subjective (or interpreted) measures that complement the more commonly employed objective measures of software development. The analysis described in this report attempts to validate those measures. Section 2 discusses the specific measures investigated by the SEL; these measures describe all facets of flight dynamics software development.

1.2 OBJECTIVES OF THE ANALYSIS

One objective, then, of this analysis is to identify the significant software development attributes (qualities) and their corresponding measures from among those measures collected by the SEL. The other objective is to define their

applicability to software development management. The definition of effective software development measures enables planners and managers to

- Recognize the characteristics of problem software early in development
- Identify the most effective development and management tools and techniques
- Estimate the costs and output of software development efforts

Section 5 recommends some specific measures to be used in these applications.

1.3 RELATED RESEARCH

A number of objective measures of software development attributes are widely accepted in the software engineering community. Lines of code and staff-hours are examples. However, few measures have been refined to the point of becoming useful management tools. Basili presents a survey of such efforts in Reference 1.

Subjective measures of software quality were among the first to be developed and actually applied to software management. The concepts of module strength and coupling (Reference 2) are examples of early work in this area. Unfortunately, these qualities have proved difficult to quantify, although a rating scheme has been developed based on the types of cohesion and dependencies that program modules may exhibit. Taking another approach, McCall (Reference 3) has developed a comprehensive system of software qualities and appropriate measures that others are still refining and extending (Reference 4). These investigations include both subjective and objective measures.

The approach to software measurement adopted for the analysis here is different from that generally followed. The usual

procedure is to specify high-level "qualities" and then to seek numerical criteria or measures of those qualities. However, the approach followed here is to identify the qualities being measured by the data collected rather than to attempt to associate measures with previously specified qualities.

A subset of this data has been analyzed previously using this approach. The results of that analysis were reported at the Sixth Annual Software Engineering Workshop in 1981 (Reference 5). This analysis extends the scope of that work.

SECTION 2 - DATA DESCRIPTION

This section describes the sources, nature, and derivation of measures used in the analysis. Specifically, the topics discussed are

- Source of the data studied
- Classes of measures included
- Methods of measurement used

A brief description of each individual measure, lists of the actual data, and summary statistics are included in Appendix A of Volume 2.

2,1 SCURCE OF DATA

The SEL, a cooperative effort of the Goddard Space Flight Center, Computer Sciences Corporation (CSC), and the University of Maryland, assembled the data set used in this analysis. The SEL collects and analyzes data from software development projects that support flight dynamics activities. The principal objective of the SEL is to identify and apply software development tools and techniques that improve the quality of the software development process. Reference 6 describes the organization, operation, and accomplishments of the SEL in more detail.

The SEL has monitored the development of 43 software projects during the past 5 years. This document analyzes a selected subset of 25 projects. The selection criteria were intended to strengthen the rigor of the analysis. The projects selected were developed in the same programming language (FORTRAN) and used the same set of computers for similar and/or related applications.

The specific type of application software studied supports ground-based spacecraft attitude determination and control. The subsystems included in a typical attitude system are

telemetry processing, sensor calibration, attitude computation, and maneuver planning. Table 2-1 shows some of the characteristics of the software studied.

Table 2-1. Summary of 11 Mission Projects Studied

Measure	<u>Median</u>	Interquartile Range ¹	
Developed Lines of Code (Thousands) 49	18	
Lines Developed Per Staff-Month	601	189	
Total Effort (Staff-Months)	96	38	
Average Staffing Level			
Duration (Months)	15 m	3	
Percentage of Effort			
Programmer	68		
Manager	20		
Other	12		

¹ Value is one-half of the difference between the third quartile and the first quartile.

The 25 software development efforts selected for study have been combined in two different ways for purposes of comparison. They are grouped into 11 mission projects composed of related efforts. The projects combined in this manner were undertaken in support of the same mission. Separately, 20 independent software systems are identified among the group of 25. These are subdivided into a class of 11 large systems (more than 30,000 lines of code) and a class of 9 small systems (fewer than 30,000 lines of code). Thus, four data groups are defined for the analysis. Appendix A of Volume 2 includes summaries of these groups.

2.2 CLASSES OF MEASURES

More than 600 measures have been assembled for this analysis. Some were suggested by other researchers. The measures are organized into seven topical classes:

- Software engineering practices--tools, techniques, and practices employed by the software development team
- 2. Development team ability--quality and performance of the development team
- 3. Difficulty of project--problems encountered with complexity, staffing, and support
- 4. Process and product characteristics -- evaluations of process performance and product quality
- Development team background--previous experience of the development team
- 6. Models--measures used in some popular resource/size estimation models
- 7. Additional detail--other objective measures of the software product and resources

Table 2-2 shows the further division of the classes into subclasses (categories). Some additional measures have been constructed by forming weighted sums of other measures.

The measures included in these classes fully describe the process and product components in the software development model as experienced by the SEL (see Figure 1-1). Section 2.1 points out that the projects studied were chosen so that the other components of the model, the software problem (application) and the development environment (computer), would be as similar as possible. Thus, consideration of these components (problem and environment) can be minimized in the analysis.

Table 2-2. Classes of Measures

M

Name of Class	Symbol	No. of Measures	Sums ¹ of Measures
Software Engineering Practices	SE	0	1
Practices and Techniques Tools Documentation	MT TS DC	30 15 15	1
Development Team Ability	AB	0	12
Experience With Application Effectiveness of Management Performance of Team	AP MG PF	15 35 40	13 0
Difficulty of Project	DF	0	1 ·
Complexity of Problem Internal Influences on Project	CP IN	15 15	5
External Influences on Project	EX	20	7
Process and Product Character- istics			
Resources Available Software Product Product/Process Performance	RA PR PP	20 20 15	5 4 3
Development Team Background	i di		
Team Rank Years of Professional Experience	RK YP	40 40	0
Years of Applicable Experience	YA	40	0
Years of Environment Experience	YE	40	0 ,
Resource Model Parameters			
Walston-Felix PRICE S3 COCOMO	WF PS CO	80 20 15	2 1 0
Additional Detail			
Miscellaneous Code Breakdown Estimated Statistics	MS SW ES	40 80 19	0 0 0

¹Weighted sums of other measures.

2.3 METHODS OF MEASUREMENT

Measurement is the process of assigning a number or a state to represent a quantity or quality. Two general methods of measurement exist: objective and subjective. This analysis includes both types of measures.

 \odot

Objective measures are often the result of counting processes; these are measures of tangible physical quantities and qualities. Examples include lines of code, staff-hours, and computer language used. Some of the objective measures collected by the SEL have been restated as relative scores determined from defined ranges of values.

Subjective measures result from classification or rating processes involving the exercise of human judgment. However, the evaluator also uses objective measures as guidelines in assigning values for some of the subjective quality measures developed by the SEL. The values of the subjective measures employed in this analysis are expressed as relative scores on a scale from 0 to 50. Table 2-3 shows the interpretation of these scores.

Table 2-3. Interpretation of Subjective Measures

Score	Approximate Percentage	Interpretation
0	0	Never, none
10	20	Rarely, very poor
20	40	Occasionally, poor
30	60	Frequently, good
40	80	Usually, very good
50	100	Always, excellent

Table 2-4 shows an example of how data composed of this type of measure might look. This technique is used extensively

and management practices. The values for these measures are determined for each project after its completion or after completion of a major phase of development. This determination occurs during a detailed review by management personnel involved in the development effort.

Table 2-4. Example of Subjective Measures

Project	MEASURE1	MEASURE2	MEASURE3	MEASURE4
1	0	30	20	50
2	10	10	40	20
.	50	20	30	0
	20	40	10	30
5	10	50	50	20
6	30	20	10	40
7	30	0	20	10
8	50	40	20	0
9	10	50	0	30
10	20	0	30	40

locative values for hypothetical measures.

SECTION 3 - ANALYTIC PROCEDURE

The measures described in Section 2 are not necessarily unique or independent. Some may, in fact, measure the same or related qualities. This analytic procedure attempts to identify the most basic set of qualities (or properties) being measured by the entire set. A basic quality is one that is independent of all other such qualities. This subset, then, identifies the basic quality characteristics describing the projects from which the data have been obtained. Studying the relationships among these basic qualities provides useful insight into how the software development process can be improved.

The procedure to be proposed is large scale. That is, the procedure is appropriate when large numbers of measures (or variables) are to be evaluated. The researcher interested in studying the relationships of only a few specific measures can probably get better results from regression- and hypothesis-testing techniques. Nevertheless, this procedure can also be useful as a screening tool for detecting confounding effects in the data before selecting other statistical techniques.

The analytic procedure followed in this experiment has several steps, as illustrated in Figure 3-1. These steps are the application of a test of normality to screen the candidate measures (data), followed by factor analyses of those not rejected by the test. Analyses are performed independently for each class of measures defined in Section 2.2; then, the results are combined. Graphic illustrations of the similarities established among the projects studied are produced by cluster analysis. Comparing the pattern of similarity based on the original set of measures with the pattern of similarity based on the basic qualities identified by the factor analysis steps confirms the interpretation and

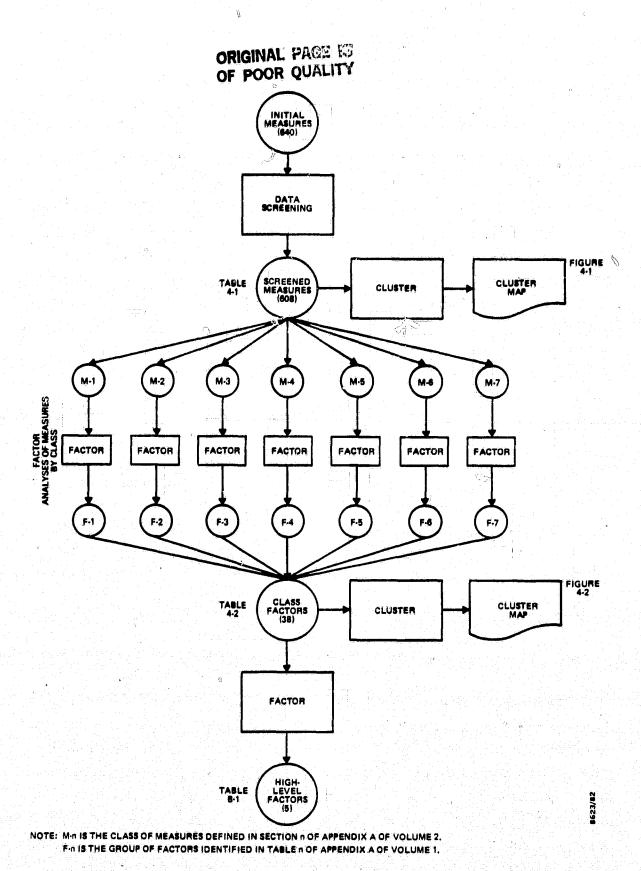


Figure 3-1. Analytic Procedure

application of these quality measures in real-world situations. Figure 3-1 also identifies tables and figures that illustrate the data at various positions in the analytic procedure.

The final result of this procedure is a descriptive, rather than a predictive, model of the data. The procedure identifies the descriptive factors common to the set of measures. Thus, the original measures are organized into a number of groups (each corresponding to a factor) smaller than the number of measures input to the procedure. These factors correspond to the basic qualities sought for in the data.

The statistical bases of the steps in this procedure are discussed in more detail in the following sections. The statistical software used throughout the analysis is the Statistical Analysis System (Reference 7).

3.1 TEST OF NORMALITY

The test of normality analyzes the probability distribution of the values of a measure. The factor analysis procedure is based on the assumption that the values of the measures input to it are normally distributed. In practice, any approximately symmetrical distribution may be processed without seriously perturbing the results (Reference 3). However, asymmetric (or skewed) data distributions can produce misleading results. They are detected by the test used in this analysis.

Figure 3-2 shows both the normal distribution and a skewed distribution. Because the values of the subjective measures are relative scores, skewed distributions result for degree-of-use measures when there are few examples of use in the data. Consequently, most projects have scores of zero for these measures, producing dramatically skewed distributions. A "t" statistic and the 0.01 significance level are

ORIGINAL PAGE TO OF POOR QUALITY

Π

Ü

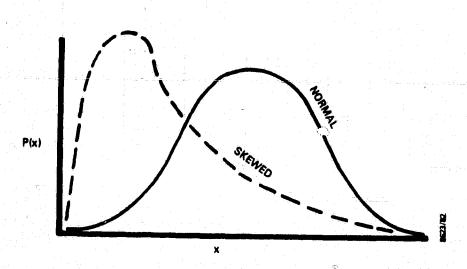
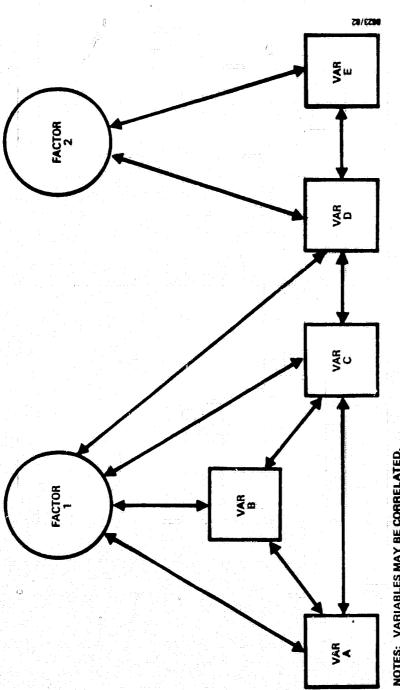


Figure 3-2. Concept of Normality

used to test the hypothesis (for each measure) that the mean of the distribution is zero.

Accepting this hypothesis is equivalent to concluding that the distribution is skewed because zero is a limit of the range of values. That is, no values less than zero are possible for these measures. Section 4.1 reports the results of the test of normality.


3.2 FACTOR ANALYSIS

The goal of factor analysis is to discover the underlying structure of the data. Factor analysis hypothesizes the existence of a set of statistically independent "factors" that cannot be directly measured by the experimenter. Measures (or variables) are the quantities that are observed in practice. However, the apparent correlations among measures can be interpreted to be caused by their joint correlation with common factors (see Figure 3-3). That is, two or more measures correlated with the same factor are correlated with each other. The desirable result of a factor analysis is the extraction of a smaller set of factors whose relationships are known (they are independent) from the larger set of measures whose relationships are more complex.

Consider this example of the factor concept. The number of errors in a piece of software and its mean time to failure are measures related to reliability and are correlated with each other. However, neither measure by itself is a full description of reliability. Such things as the location of the error and the severity of the failure must also be considered. Therefore, the reliability quality factor is not directly measurable, although a number of measurable variables are correlated with it.

A successful factor analysis explains such groups of related measures. Thus, each factor defined corresponds to a distinct basic quality being measured by the original set of

ORIGINAL PAGE IS OF POOR QUALITY

NOTES: VARIABLES MAY BE CORRELATED. FACTORS ARE INDEPENDENT.

THE INDICATES THAT CORRELATION IS PRESENT.

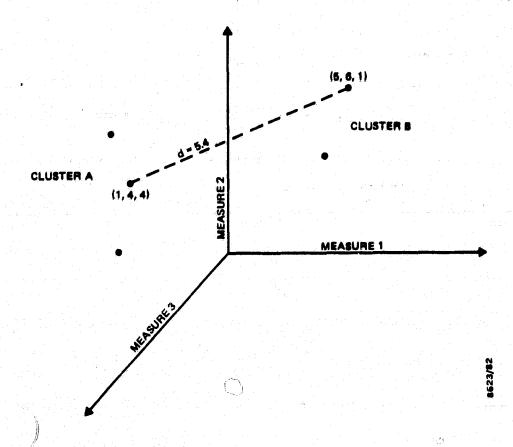
Figure 3-3. Concept of Factor Analysis

measures. These qualities are the sources of variation (or differentiation) in the measures among the projects studied; therefore, these qualities form the basis for comparisons among the projects.

The output of the factor analysis procedure includes three types of information that are essential to interpreting its results. These information types are

- Factor loading--percentage of the variance in the data accounted for by each factor; shows the relative importance of factors
- Factor pattern--correlations of all measures with all factors; shows the underlying structure of the data
- Communality--percentage of each measure's variance accounted for by all factors; shows how well each measure is explained by the factor model

Sections 4.2 and 4.3 report the results of the factor analyses of the SEL measures. The principles of factor analysis are explained in more detail by Harman (Reference 9).


3.3 CLUSTER ANALYSIS

The technique of cluster analysis (or numerical taxonomy) is an objective method of defining and displaying groups, or clusters, of objects (projects, in this case) that are similar with respect to a specified set of measures. The degree of similarity is determined by calculating a Euclidean distance measure from the measures input to the procedure.

A simple example clarifies this concept. Consider a set of three measures applied to each of several projects. Each project can be represented as a point in three-dimensional space where each of the three measures forms an axis (or dimension) as illustrated in Figure 3-4.

ORIGINAL PAGE 19 OF POOR QUALITY

· 255

LEGEND: • REPRESENTS PLOTTED LOCATION OF THE PROJECT

d REPRESENTS THE DISTANCE BETWEEN TWO POINTS (PROJECTS)

U

Figure 3-4. Concept of Cluster Analysis

The Euclidean formula for the distance between two points in a three-dimensional space is as follows:

$$D_{\circ} = \sqrt{(x' - x'')^{2} + (y' - y'')^{2} + (z' - z'')^{2}}$$

where

D = distance

x', y', z' = coordinates of point 1 &

x", y", z" = coordinates of point 2

This formula can be easily extended to the general case of n measures or dimensions. Thus, the distances between all pairs of points can be determined and any clusters can then be identified. The results are presented in a display, or map, showing the similarities of the projects. Section 4.3 summarizes the results of the cluster analyses of SEL data. Reference 10 explains the principles of cluster analysis in more detail.

SECTION 4 - EVALUATION OF MEASURES

This section presents the results of applying the analytic procedure (described in Section 3) to the SEL data (described in Section 2). Data screening, the factor analyses of classes of measures, and the summary analysis of factors are discussed. Figure 3-1 shows the sequence of these steps and identifies the data sets used by each. The four major data sets are the initial measures, screened measures, combined (class) factors; and high-level factors.

4.1 DATA SCREENING

A test of normality (see Section 3.1) was employed to screen the data (initial measures) before other analyses. The test rejected 32 measures. These are measures for which all projects were assigned the same value or measures for which there were too few different values. Table 4-1 lists the rejected measures. As indicated in the table, several of the measures proposed by Walston and Felix (Reference 11) or used in the PRICE S3 model (Reference 12) are not useful for characterizing the software studied by the SEL because they are constant from project to project. Of the 640 measures, 608 were retained; these comprise the screened measures data set.

Table 4-1. Measures Excluded From Analysis (1 of 3)

Measure _Code	Rejection Criterion	Measure Description
MT08	0.327	Use of Hierarchical Input Process- ing Output (HIPO) charts for design
MT27	0.046	Presence of an independent verifi- cation and integration team

aAny value greater than 0.01 results in rejection.

Table 4-1. Measures Excluded From Analysis (2 of 3)

Measure Code	Rejection a Criterion	Measure Description
MT28	0.079	Degree to which development team cooperated with and responded to findings of the independent verification and integration team
TS04	0.047	Use of an online requirements lan- guage tool for analysis and assess- ment of changes
TS12	0.088	Use of an online configuration analysis tool for tracking develop-ment activity
DC06	0.083	Use of unit development folders for recording, in a central repository, development plans, status, and products
AP01	0.185	Contribution from expert 1
AP02	b	Contribution from expert 2
IN03	0.161	Need for weekend overtime conditions
INO4	0.013	Staffing problems during design
IN12	0.073	Project leader turnover, i.e., replacement
EX08	0.062	Development of front-end processors by an external group
EX09	0.016	Ontime delivery of software by an external group
RA08	0.020	Availability of the primary devel- opment computer
RA09	0.187	Availability of a tertiary develop- ment computer
RA12	0.022	Availability of an online process- ing system
RA14	0.035	Availability of a convenient, un- scheduled graphic device

aAny value greater than 0.01 results in rejection.

bAll projects show the same value for the measure.

Table 4-1. Measures Excluded From Analysis (3 of 3)

Measure Code	Rejection Criterion	Measure Description
RA18	0.034	Availability of an independent test- ing group
WF01	b	Programmer experience with the application
WF17	b .	Complexity of product's external communication
WF24	b	Complexity resulting from hardware development
WF25	b	Complexity resulting from security environment
WF33	0.171	Percentage of development in terti- ary computer environment
WF38	0.172	Percentage of development in open computing environment, i.e., hands-on development
WF48	b	Percentage of effort for analysts
WF49	b	Percentage of effort for operators
WF64	b	Percentage of code for fallback and recovery
WF65		Percentage of code in "other" cate- gory
PS17	b	Code instruction mix rating
PS18	b	Personnel skill mix rating
PS19		Fraction of storage and timing capacity
PS20	b	Strictness of development standards

aAny value greater than 0.01 results in rejection.

bAll projects show the same value for the measure.

4.2 FACTORS WITHIN CLASSES OF MEASURES

After screening the initial set of measures, researchers performed a factor analysis for each of the seven classes of measures defined in Section 2.2. Appendix A of Volume 1 reproduces the results of those analyses. Table 4-2 summarizes some important features of these analyses.

The table shows that in all cases five or six factors were able to explain at least 73 percent of the variance of the class of measures under consideration. The best case is that of the Development Team Background class of measures in which 5 factors accounted for 86 percent of the variance (or information content) of the 144 measures in that class. The 38 factors produced by the 7 factor analyses form the combined factors data set.

These results demonstrate that by focusing on factors the number of measurements collected during software development can be significantly reduced without much loss of information. Section 5 suggests the measures corresponding to these factors that can be most easily and advantageously collected.

The following subsections describe the results of the factor analyses of classes of measures in more detail. Each factor is named, and correlated measures are described. Correlations between factors and measures of less than 0.56 are not considered in the discussion except when they form part of a pattern. This value is the boundary of the 0.01 significance region for a correlation coefficient from a sample of size 20. A measure having a correlation with a factor of 0.561 or greater is termed "strongly" correlated with that factor. "Moderately" correlated refers to correlations greater than or equal to 0.444 (0.05 significance region) but less than 0.561.

Table 4-2. Summary of Factor Analyses of Classes of Measures

Class of Measures	No. of Measures	No. of Factors	Percentage of Variance	Detailed Table ¹
Software Engineering Practices	43	5	80	A-1
Development Team Ability	110	.	82	A-2
Difficulty of Project	54	5	74	A-3
Process and Product Characteristics	47		85	A-4
Development Team Background	144	5	86	A-5
Resource Model Parameters	73	6	73	A-6
Additional Detail	137	6	83	A-7

¹Found in Appendix A of Volume 1.

4.2.1 SOFTWARE ENGINEERING CLASS

The factor analysis of the Software Engineering class of measures produced a model containing five factors, which explain 80 percent of the variance of the class. Together they describe the general level of software engineering technology used during development and four other independent subgroups of technologies. Table A-1 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

4.2.1.1 Software Engineering Factors

The five Software Engineering factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.1 of Appendix A (Volume 2), first for the positively correlated measures and then for the negatively correlated measures. Correlations appear in parentheses following the measure codes.

1. Factor 1 - General Software Engineering Practices (51 percent of variance). With the exception of

- a. MT09 (+0.06) -- Use of top-down design procedures
- b. TS06 (+0.25) -- Use of structured FORTRAN precompiler

all measures in this class are at least moderately correlated (0.444) with this factor; most are strongly correlated (0.561) with it.

The level of correlation is consistent with the application of software engineering technology in the flight dynamics area. In general, most methods, techniques, and practices are part of what has become, for some developers, a standard approach to software development. Depending on a particular

team's motivation, especially the motivation provided by its project manager and leader, the degree of application of the approach varies from a beginner's reluctant use to an experienced advocate's aggressive use.

The most strongly correlated (\geq 0.91) measures with this factor include the total use of design methods (MT81), coding methods (MT82), all methods (MT84), tools (TS81), documentation procedures (DC81), and overall software engineering (SE81). However, the total use of testing methods (MT83) has the lower correlation of 0.78 and points out a known weakness in the development process of this environment; that is, the testing approach is the least consistent aspect of the development process and is a major concern for development managers.

- 2. Factor 2 Batch Development (9 percent of variance).

 The only measure strongly correlated with this factor is
 - TS10 (-0.61) -- Use of terminals for interactive development. High use of terminals corresponds to low measure values.

Measures moderately correlated with this factor include

- a. MT04 (+0.51) -- Use of formal design review procedures
- b. TS02 (+0.55) -- Use of informal development training procedures
- c. TS06 (+0.52) -- Use of structured FORTRAN precompiler
- d. DC04 (+0.54) -- Use of semiformal quality assurance procedures for documentation
- e. MT20 (-0.49) -- Use of code configuration control procedures

This factor underscores the benefits of the electronics technology boom and progress in the development process; it also highlights an environmental deficiency, an archaic batch computing facility. It also emphasizes a development manager's problem resulting from the conflict of the environmental deficiency with the other two benefits.

The interactive developer has emerged in parallel with hardware and electronics technology gains. However, although the flight dynamics environment makes terminals available for development, in reality, it is primarily a batch environment with very unreliable computers (6- to 8-hour mean time to failure). Therefore, development managers have continually faced developers' increasing fascination for and dependence on the use of graphic terminals for development (TS10). Because development managers have not been able to establish the rigorous discipline necessary to develop software interactively with unreliable computers, teals that 🗹 develop interactively tend to be less coordinated and to behave more like separate groups of individuals each with responsibility for a different piece of the system. it is difficult to control the configuration of the system's code (MT20).

This factor also shows improvements in the development process (MT04, TS02, TS06, and DC04), which have emerged in parallel with the interactive developer in this environment.

- 3. Factor 3 Top-Down Design (8 percent of variance). The measures strongly correlated with this factor include
 - a. MT09 (+0.85) -- Use of top-down design procedures
 - b. MT10 (+0.69) -- Use of iterative enhancement design procedures
- c. MT26 (+0.61) -- Use of batch testing procedures

 The projects in this sample are similar and provide design and/or implementation models for subsequent projects; as a result, top-down design is not used extensively. However, this factor shows that the projects that use top-down design

methodology tend to rely on batch testing procedures. Factor 30 in Section 4.2.6 confirms this with a different class of measures (Models class). An alternative design technique, iterative enhancement (MT10), also shows this effect.

- 4. Factor 4 Structured Implementation (7 percent of variance). The only measure strongly correlated with this factor is
- TS06 (+0.62) -- Use of structured FORTRAN precompiler
 Two other measures that are moderately correlated are
 - a. MT17 (+0.54) -- Use of structured coding techniques
 - b. TS09 (-0.53) -- Development of data generators for testing

This factor represents the use of a structured FORTRAN precompiler to aid in producing structured code. The inverse
correlation with the development of data generators for
testing is coincidental. Over the timespan of the projects
in this sample, the use of a structured FORTRAN precompiler
has increased from no use to total use. Over the same timespan, the availability of simulators and data support has
increased significantly but not regularly; therefore, the
need for and use of data generators decreased, but not necessarily proportionally.

- 5. Factor 5 Development Team's Organization (5 percent of variance). None of the measures are strongly correlated with this factor. Measures that are moderately correlated include
 - a. TS07 (+0.47) -- Use of standard computer system code checking tools
 - b. MT01 (-0.45) -- Use of chief programmer; i.e., project leader directs all development activity

- c. DC08 (-0.46) Relevance of user's guide and system description
- d. DC10 (-0.47) -- Relevance of weekly/monthly progress reports

In this environment, the project leader is the lead programmer of the development team and is responsible for weekly/monthly reporting and quality assuring the user's guide and system description. The inverse correlation of using computer system code checking tools (TS07) with the degree of using a lead programmer (MT01) seems to be due to the effect of the smaller projects, which are generally led by more junior personnel who are not as familiar with the computer system as more senior project leaders.

4.2.1.2 Measures Unrelated to Software Engineering

The following list contains measures that are not correlated with any of the Software Engineering factors at the 0.01 significance level. The factor with which each measure is most strongly correlated and the value of that correlation appear in parentheses after the measure code.

- 1. TS02 (factor 2, +0.55) -- Informal training in development
- 2. TS09 (factor 1, +0.55) -- Development of data generators for testing
- 3. DC09 (factor 1, +0.56) -- Formal treatment (edit text and prepare artwork) of user's guide and system description

4.2.2 DEVELOPMENT TEAM ABILITY CLASS

The factor analysis of the Development Team Ability class of measures produced a model containing six factors, which explain 82 percent of the variance of the class. Together they describe the general level of the technical staff's ability and five other independent effects. Table A-2 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

4.2.2.1 Development Team Ability Factors

The six Development Team Ability factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.2 of Appendix A (Volume 2), first for the positively correlated measures and then for the negatively correlated measures. Correlations appear in parentheses following the measure codes.

- 1. Factor 6 Technical Staff's Ability (36 percent of variance). The measures strongly correlated with this factor include
 - a. APO3 (+0.75) -- Contribution by expert 3
 - b. APO8 (+0.57) -- Application experience of programmers
 - c. AP81 (+0.82) -- Contribution by experts
 - d. AP8x (\geq +0.73) -- Overall application experience of team (x = 2 and 4)
 - e. $MGxx (\geq +0.82)$ --Management effectiveness of project leader (xx = 2, 8, 14, 20, and 26)

- f. MGxx (> +0.61)--Overall management effectiveness
 of managers except development interface leader
 (xx = 81 through 85, 87, 88, and 93)
- g. PFxy (\geq +0.65)--On-the-job performance of programmers alone and technical staff (x = 0 through 3; y = 1 though 4)
- h. ABxx (\geq +0.90) --Overall team ability (xx = 81 through 92)

This factor indicates the overall ability of the technical staff with emphasis on contributions from experts (AP81), the project leader's effectiveness during implementation and testing (MG14, MG20, and MG26), and the on-the-job performance of the programmers weighted by the project manager and leader (PFx2), i.e., the basic team.

- 2. Factor 7 Development Interface Managers' Effectiveness and Performance (19 percent of variance). The measures strongly correlated with this factor include
 - a. APO9 (+0.63) -- Application experience of analysts
 - b. MGxx (≥ +0.56) --Management effectiveness of development interface manager and leader (xx = 5, 6, 11, 12, 17, 18, 23, 24, 29, 30, 91, and 92)
 - c. MGxx (\geq +0.64) --Management effectiveness of project manager during testing and overall life of project (xx = 19, 25, and 87)
 - d. MGxx (\geq +0.60) --Overall management effectiveness during implementation and testing (xx = 83 through 85)
 - e. PFx9 (\geq +0.64)--On-the-job performance of development interface manager (x = 0 through 3)
 - f. MG03 (-0.66)--Management effectiveness of analysis manager during preliminary design

g. PFxy (\leq -0.56)--On-the-job performance of development project and analysis managers and analysis interface manager (x = 0 through 3; y \leq 5, 6, and 8)

This factor represents the effectiveness and on-the-job performance of the development interface manager and the effectiveness of the development interface leader. This factor also shows a correlation with the analyst's application experience (APO9) and an inverse correlation with the analysis manager's on-the-job performance (PFxy).

- 3. Factor 8 Managers' Stability and Performance (11 percent of variance). The measures strongly correlated with this factor include
 - a. MG09 (+0.68) -- Management effectiveness of analysis manager during detailed design
 - b. MGxx (\geq +0.72) --Management effectiveness of analysis leader during testing (xx = 22 and 28)
 - c. MGxx (\geq +0.57) -- Stability of development project leader and overall stability of managers (xx = 32, 35, and 86)
 - d. PFxy $(\ge +0.58)$ --On-the-job performance of development project and interface managers (x = 0) through 3; y = 7 and 9)

This factor represents both the on-the-job performance of the development team managers (i.e., the project manager and leader and the development interface manager and leader) and the stability of (few number of changes in) those positions. There are also correlations with the analysis manager's effectiveness during detailed design and the analysis leader's effectiveness during testing.

In this environment, the analysis manager has considerable control over the definition of the functional specifications and requirements and changes to them. Most of the activity

in these areas occurs before the critical design review (CDR). The analysis leader becomes a more prominent figure during implementation and is the key individual involved in preparing for and conducting acceptance testing.

- 4. Factor 9 Analysis Manager's Effectiveness (7 percent of variance). The measures strongly correlated with this factor include
 - a. MGxx (\geq +0.60) -- Management effectiveness of analysis manager during implementation and system testing (xx = 15 and 21)
 - b. MG89 (+0.74) -- Overall effectiveness of analysis manager
 - c. AP83 (-0.65) -- Development team familiarity with project and teammates

This factor represents the effectiveness of the analysis manager. It appears that the analysis manager is most effective when members of the development team do not participate in functional specifications and requirements definition (AP10, -0.56) and do not work together much before the project (AP12, -0.45). AP83 is the sum of AP10 through AP12.

- 5. Factor 10 Analysis Leader's Effectiveness (5 percent of variance). The measures strongly correlated with this factor include
 - a. MGxx (\geq +0.58) --Management effectiveness of analysis leader during detailed design and implementation (xx = 10 and 16)
 - b. MG90 (+0.59)--Overall effectiveness of analysis leader
 - c. AP04 (-0.66) -- Contribution by expert 4

This factor is named for MG90, although the analysis leader's effectiveness during detailed design (MG10) is the most strongly correlated (+0.68) measure. The inverse correlation with contributions by expert 4 (AP04) is partially coincidental; that is, the higher level organization frequently staffs the development team with more senior personnel when there is a potentially weak analysis team and vice versa.

- 6. Factor 11 Project Manager's Experience and Stability
 (5 percent of variance). The only measure strongly correlated with this factor is
 - MG31 (-0.69) -- Stability of development project manager

However, the project manager's experience with the application (APO6) is moderately correlated (+0.52) with the factor. The inverse correlation with MG31 indicates that more experienced project managers are likely to be promoted to higher level management positions or moved to manage new projects.

4.2.2.2 Measures Unrelated to Development Team Ability

The following list contains measures that are not correlated with any of the Development Team Ability factors at the 0.01 significance level. The factor with which each measure is most strongly correlated and the value of that correlation appear in parentheses after the measure code.

- 1. AP05 (factor 10, +0.55) -- Contribution by expert 5
- 2. AP06 (factor 11, +0.52) -- Project manager's experience
- 3. AP07 (factor 6, +0.47) -- Project leader's experience

- 5. APII (factor 11, -0.35) -- Development team participation in design
- 6. AP12 (factor 12, -0.45) -- Number of development team interactions before start of project
- 7. MG01 (factor 6, +0.50) -- Effectiveness of project manager during preliminary design
- 8. MG04 (factor 9, +0.47) -- Effectiveness of analysis leader during preliminary design
- 9. MG06(factor 7, +0.50) -- Effectiveness of development interface leader during preliminary design
- 10. MG07 (factor 6, +0.55) -- Effectiveness of project manager during detailed design
- 11. MG13 (factor 6, +0.57) -- Effectiveness of project manager during implementation
- 12. MG27 (factor 8, -0.48) -- Effectiveness of analysis manager during acceptance testing
- 13. MG33 (factor 9, -0.39) -- Stability of analysis manager
- 14. MG34 (factor 7, -0.53) -- Stability of analysis leader
- 15. PF15 (factor 6, +0.55) -- On-the-job performance of development project managers during implementation

4.2.3 DIFFICULTY OF PROJECT CLASS

The factor analysis of the Difficulty of Project class of measures produced a model containing five factors, which explain 74 percent of the variance of the class. Together they describe the general level of project difficulty and four other independent effects. Table A-3 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

B

4.2.3.1 Difficulty of Project Factors

The five Difficulty of Project factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.3 of Appendix A (Volume 2), first for the positively correlated measures and then for the negatively correlated measures. Correlations appear in parentheses following the measure codes.

- 1. Factor 12 Project Difficulty (30 percent of variance). The measures strongly correlated with this factor include
 - a. $CPxx (\geq +0.61)$ -- Complexity of normal processing (xx = 3 through 5)
 - b. CP07 (+0.93) -- Number of subsystems
 - c. CP08 (+0.67) -- Number of data sets
 - d. CP10 (+0.60) -- Number of new algorithms
 - e. $CPxx (\geq +0.59)$ --Overall complexity and totals of constraints, processing, and communications (xx = 81, 82, 83, and 85)
 - f. INxx (\geq +0.58)--Overtime conditions (xx = 1 and 2)

- g. IN06 (+0.73)--Staffing problems during testing phases
- h. IN11 (+0.81) -- Development team with poor attitude
- i. IN13 (+0.58) -- Project leader turnover
- j. INxx (> +0.60) -- Totals of overtime conditions, staffing problems, team leadership problems, and overall internal influences (xx = 81 through 84)
- k. EX01 (+0.76) -- Changing requirements
- 1. EX06 (+0.73) -- Unresponsiveness of development interface leader
- m. EX07 (+0.68) -- Number of subsystems developed by external development group
- n. EXxx (\geq +0.63) --Overall poor quality and instability of requirements and problems with external development group (xx = 81 and 83)
- o. DF81 (+0.92) -- Overall difficulty of project, including complexity and effects of internal and external influences

This factor represents the overall difficulty of a project. The three most significant effects are the number of subsystems to be developed (CP07, +0.93), the development team's attitude (IN11, +0.81), and changing requirements (EX01, +0.76).

- 2. Factor 13 External Support (18 percent of variance). The measures strongly correlated with this factor include
 - a. EX02 (+0.65) -- Incompleteness of requirements
 - b. EXxx (\geq +0.75)--Lack of analysis support (xx = 3 and 4)
 - c. EXxx $(\ge +0.77)$ --Simulator unavailability and poor data support (xx = 10 and 12)

- d. EX13 (+0.67) -- Unresponsiveness of analysis leader
- e. EX18 (+0.58) -- Poor hardware support
- f. EXxx (≥ +0.61) --Total lack of support from external groups and poor simulator and system software/ hardware support (xx = 82, 84, 86, and 87)

This factor represents the effects of poor external support, especially poor analysis and simulator support.

- 3. Factor 14 Analysis Leader's Responsiveness and Schedule (10 percent of variance). The factors strongly correlated with this factor include
 - a. EX14 (+0.74) -- Analysis leader turnover
 - b. EX85 (+0.62) -- Overall unresponsiveness associated with analysis leader
 - c. CPll (-0.72) -- Development schedule difficulty

This factor demonstrates an environmental effect. When schedules are difficult (short), the higher level organization will not encourage, suggest, or allow a change in analysis leaders because there may not be enough time for an effective and efficient phase-in of a new analysis leader. Furthermore, analysis leaders are reliable senior personnel responsible for accepting the software; therefore, with a difficult schedule, their sense of urgency intensifies, they are more cooperative, and they are more responsive to development problems.

- 4. Factor 15 Analysis Leader's General Responsiveness
 (8 percent of variance). The measures strongly correlated with this factor include
 - a. EX16 (+0.62) -- Unresponsiveness of analysis leader during late stages of development
 - b. EX85 (+0.56) --Overall unresponsiveness associated with the analysis leader

This factor also demonstrates an environmental effect. When there are few changes in analysis leadership (analysis manager and leader), there is a higher probability that the analysis leader will be more responsive in the later stages of development. Combined with factor 14, the development team gets its best analytical support when the schedule is difficult and when there are few changes in analysis leadership.

- 5. Factor 16 High-Level Development Support (8 percent of variance). The measures strongly correlated with this factor include
 - a. EX05 (+0.59) -- Unresponsiveness of development interface manager
 - b. EX17 (+0.59) -- System software support problems
 - c. EX86 (+0.57) -- Total system software and hardware support problems
 - d. IN05 (-0.66) -- Development team turnover

This factor demonstrates a subtle environmental effect. When the development interface manager (who is the final authority for development direction, cost, and contact with customer, support, and contractor groups) is unresponsive to development problems and when there is poor support for system support software and hardware (which is controlled indirectly by the development interface manager), there is little development team turnover. Apparently, when the development team is not supported at the highest technical level, members stay with the job until it is complete; i.e., they do not desert their teammates when development conditions are difficult. However, it is not likely that anyone encourages the development interface manager to be unsupportive.

4.2.3.2 Measures Unrelated to Difficulty of Project

The following list contains measures that are not correlated with any of the Difficulty of Project factors at the 0.01 significance level. The factor with which each measure is most strongly correlated and the value of that correlation appear in parentheses after the measure code.

- 1. CP01 (factor 12, +0.54) -- Memory storage constraints
- 2. CP02 (factor 14, +0.54) -- Execution timing constraints
- 3. CP06 (factor 12, +0.28) -- Number of system programs that communicate
- 4. CP09 (factor 15, +0.52) -- Amount of old code used
- 5. CP84 (factor 12, +0.49) -- Total of unrelated complexity measures
- 6. IN07 (factor 14, -0.55) -- Need for extra help during development
- 7. IN08 (factor 14, -0.52) -- Unresponsiveness of project manager during earlier phases of development
- 8. IN09 (factor 13, -0.54) -- Project manager turnover
- 9. IN10 (factor 12, +0.53) -- Unresponsiveness of project manager during later phases of development
- 10. EX11 (factor 13, +0.53) -- Incorrectness of simulator
- 11. EX15 (factor 15, +0.55) -- Unresponsiveness of analysis leader during later phases of development

4.2.4 PROCESS AND PRODUCT CHARACTERISTICS CLASS

The factor analysis of the Process and Product Characteristics class of measures produced a model containing five factors, which explain 85 percent of the variance of the class. Together they describe the general level of process and product quality and four other independent effects.

Table A-4 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

4.2.4.1 Process and Product Characteristics Factors

The five Process and Product Characteristics factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.4 of Appendix A (Volume 2), first for the positively correlated measures. Correlations appear in parentheses following the measure codes.

- 1. Factor 17 Process and Product Quality (43 percent of variance). With the exception of
 - a. PRO1 (+0.42) -- Project cost
 - b. PRxx $(\geq +0.27)$ -- Size of modules (xx = 4 through 7)

all Software Product (PR) category measures and all Product/
Process Performance (PP) category measures are strongly correlated with this factor. The most strongly correlated
single measure, i.e., not a sum, is development planning and
follow-through (PP08, +0.97). The implication, of course,
is that higher quality development processes and products
result directly from good planning and following through
with the plans.

- 2. Factor 18 Resource Availability (21 percent of variance). With the exception of
 - a. RA01 (+0.13) -- Availability of formal training for development
 - b. RA06 (+0.39) -- Availability of simulator support
 - c. RAxx ($\leq +0.49$)--Availability of development support personnel (xx = 16 and 17)

all Resources Available (RA) category measures are strongly correlated with this factor. The two most strongly correlated (+0.95) measures are the availability of support documentation describing the development process (RA03) and the availability of instruction in the use of support software (RA04).

- 3. Factor 19 Module Size (ll percent of variance). The measures strongly correlated with this factor are
 - PRxx (≤ -0.55) -- Size of modules (xx = 4 through 7 and 81)

This factor is simply a measure of the average size of modules in the product, assuming that small modules are better (i.e., easier to design, implement, test, and maintain). Larger values of the measures correspond to smaller module sizes.

- 4. Factor 20 Support Software Support (6 percent of variance). The measures strongly correlated with this factor include
 - a. RA06 (+0.64) -- Availability of simulator support
 - b. RA82 (+0.81) -- Availability of support for system support software

This factor primarily represents the availability of personnel to maintain system support software and to provide

instruction in its use. It also represents the availability of a data simulator.

- 5. Factor 21 Formal Training (4 percent of variance). The only measure strongly correlated with this factor is
 - RA01 (-0.58) -- Availability of formal training for development

The factor is self-explanatory; however, the availability of librarians (RA16) is moderately positively correlated (+0.52). Over the timespan of this sample, librarians have always been available for a fairly high level of support. Unfortunately, because of expense and time constraints, formal training in development is very limited.

4.2.4.2 Measures Unrelated to Process and Froduct Characteristics

The following list contains measures that are not correlated with any of the Process and Product Characteristics factors at the 0.01 significance level. The factor with which each measure is most strongly correlated and the value of that correlation appear in parentheses after the measure code.

- 1. RA16 (factor 21, +0.52) -- Availability of librarians
- 2. RA17 (factor 18, +0.49) -- Availability of dedicated experts for help
- 3. PRO1 (factor 21, -0.43) -- Cost of project
- 4. PRO4 (factor 19, -0.55) -- Size of newly developed modules

4.2.5 DEVELOPMENT TEAM BACKGROUND CLASS

The factor analysis of the Development Team Background class of measures produced a model containing five factors, which explain 86 percent of the variance of the class. Together they describe the level of the technical staff's applicable experience and reputation and four other independent effects. Table A-5 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

4.2.5.1 Development Team Background Factors

The five Development Team Background factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of the measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.5 of Appendix A (Volume 2), first for the positively correlated measures and then for the negatively correlated measures. Correlations appear in parentheses following the measure codes.

- 1. Factor 22 Technical Staff's Applicable Experience and Reputation (41 percent of variance). The measures strongly correlated with this factor include
 - a. RKxy (≥ +0.56) --In general, the reputation of programmers, technical staff, and project managers alone and combined with analysis managers (x = 0 through 3; y = 1 through 6). (The sign of the correlation is reversed relative to that reported in Appendix A of this volume because low values correspond to high ranks.)
 - b. YPxy (≥ +0.62) -- In general, the professional experience of programmers and development

- organization technical staff except for testing (x = 0, 1, and 3; y = 1, 2, 3, and 6)
- c. YAxy (> +0.60)--In general, the applicable experience of programmers, technical staff, and managers, excluding development interface managers (x = 0 through 3; y = 1 through 6)
- d. YExy $(\geq +0.63)$ -- In general, the environment experience of programmers, development organization technical staff, and project managers (x = 0 through 3; y = 1, 2, 3, and 5)
- e. ZZx9 (≤ -0.71)--Experience of development interface managers (ZZ = RK, YP, YA, and YE; x = 0 through 3)

This factor basically represents the technical staff's applicable experience and reputation (rank), where the technical staff includes the programmers (y = 1 through 4) and some fraction of the project managers, (y = 2 through 7), the analysis managers (y = 3, 6, and 8), and the development interface managers (y = 4, 7, and 9). The factor shows that reputation is correlated with type of experience in the following order: applicable, environment, and professional. The inverse correlation with the development interface managers results because their organization is more stable; therefore, they tend to have more experience than the development organization for the projects in the sample.

- 2. Factor 23 Technical Staff's Professional Experience
 (22 percent of variance). The measures strongly correlated with this factor include
 - a. YPxy (\geq +0.57)--Professional experience of programmers, technical staff, and project and development interface managers (x = 0 through 3; y = 1, 2, 3, 4, 5, and 7)

- b. YAx7 (\geq +0.73) -- Applicable experience of project and development interface managers (x = 0 through 3)
- c. XAx4 (> +0.61) -- Applicable experience of programmers and development managers for testing and overall life of the project (x = 2 and 3)
- d. RK06 (-0.57) -- Reputation of project and analysis managers for design
- e. RK28 (-0.60)--Reputation of analysis managers for testing
- f. YAx8 (\leq -0.58)--Applicable experience of analysis managers (x = 0 through 3)
- g. YE18 (-0.58) -- Environment experience of analysis managers for implementation

Basically, this factor represents the technical staff's professional experience. It also shows inverse correlations with the analysis manager's experience (especially applicable experience) for different phases of development.

- 3. Factor 24 Development Interface Managers' Environment Experience (10 percent of variance). The measures strongly correlated with this factor include
 - a. RKx7 (\geq +0.57) -- Reputation of development interface managers (x = 0, 2, and 3)
 - b. YExx $(\ge +0.56)$ -- Environment experience of development interface managers alone and combined with programmers (xx = 7, 14, 17, 24, 27, 34, and 37)

This factor represents the environment experience of the development interface managers. The most strongly correlated (+0.71) measure is YE14, which combines their experience with the basic development team's experience.

- 4. Factor 25 Project and Analysis Managers' Environment Experience for Implementation (7 percent of variance). The measures strongly correlated with this factor include
 - a. YA05 (+0.58) -- Applicable experience of project managers for design
 - b. YE16 (+0.59) -- Environment experience of project and analysis managers for implementation

c. YEx8 (\geq +0.57) -- Environment experience of analysis managers overall and for testing (x = 2 and 3)

This factor is named for the most strongly correlated measure, YE16.

- 5. Factor 26 Analysis Managers' Environment Experience for Testing (6 percent of variance). The measures strongly correlated with this factor include
 - a. YE26 (+0.59) -- Environment experience of project and analysis managers for testing
 - b. YE28 (+0.65) -- Environment experience of analysis managers for testing
 - c. RK17 (-0.62) -- Reputation of development project and interface managers for implementation

This factor is named for the most strongly correlated measure, YE28.

- 4.2.5.2 Measures Unrelated to Development Team Background
 The following list contains measures that are not correlated
 with any of the Development Team Background factors at the
 0.01 significance level. The factor with which each measure
 is most strongly correlated and the value of that correlation appear in parentheses after the measure code.
 - 1. RK08 (factor 23, -0.45) -- Reputation of analysis managers during design

- 2. RK15 (factor 26, -0.54) -- Reputation of development project managers during implementation
- 3. YPx8 (factor 23, \geq +0.45)--Professional years of experience of analysis managers during all phases (x = 0 through 3)
- 4. YE08 (factor 23, +0.56) -- Environment years of experience of analysis managers during design

4.2.6 MODELS CLASS

The factor analysis of the Models class of measures for resource estimation models produced a model containing six factors, which explain 73 percent of the variance of the class. Together they describe the system's size and five other independent effects. Table A-6 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

4.2.6.1 Models Factors

The six Models factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of the measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.6 of Appendix A (Volume 2), first for the positively correlated measures and then for the negatively correlated measures and then for the negatively correlated measures. Correlations appear in parentheses following the measure codes.

- 1. Factor 27 System Size (24 percent of variance). The measures strongly correlated with this factor include
 - a. WFxx (\geq +0.66) --Overall complexity and sizerelated complexity measures (xx = 14, 15, 16, 22, 23, and 85)
 - b. WFxx (+0.87) --Total effort (xx = 51 and 52)
 - c. WFxx (≥ +0.84) --Delivered and developed graphics macros, FORTRAN, and total source code (xx = 68 through 70 and 72 through 74). (Developed assembler code (WF67) has a correlation coefficient of +0.66.)
 - d. WF75 (+0.68) -- Number of data base items

- e. WF76 (+0.93) -- Number of pages of documentation
- f. PS09 (+0.72) -- Schedule length
- g. WF44 (-0,62) -- Use of chief programmer concept
- h. PS01 (-0.62) -- Percentage of calendar schedule spent to get to CDR

This factor represents the system's size. It shows that the larger a system becomes, the less likely it is that a single person (WF44) can direct all development activities. It also shows that the larger the system, the greater the proportion of calendar schedule needed to implement and test the system (PS01). The number of pages of documentation (WF76) is the most strongly correlated (+0.93) measure.

- 2. Factor 28 Programmers' Qualifications (14 percent of variance). The measures strongly correlated with this factor include
 - a. WFxx $(\geq +0.59)$ --Programmer qualifications and graphics, application, and overall experience (xx = 4, 7, 8, and 81)
 - b. WF54 (+0.65) -- Percentage of work schedule needed to produce accepted software
 - c. WFxx (\geq +0.65)--Percentage of code that is mathematical or computational (xx = 61 and 62)
 - d. PSxx (\geq +0.72)--Percentage of calendar schedule spent in design and implementation rather than in testing only and wrapping up project (xx = 2 and 8)
 - e. PSxx (\geq +0.62)--Reduced complexity of project because of programmer experience (xx = 10, 11, and 81)
 - f. WF12 (-0.57) -- Complexity of customer interface

This factor represents the programmers' overall qualifications. It shows that more experienced programmers (1) spend little time on the project after the system is accepted (WF54), (2) spend less time in the testing phases (PS02 and PS08), and (3) tend to work on systems that are more mathematical and computational (WF62) rather than on systems that are nonmathematical and require input/output (I/O) formatting (WF61). It may be coincidental, but the factor also shows that more experienced programmers tend to have a less complicated customer interface (WF12).

- 3. Factor 29 Testing Strategy (13 percent of variance). The measures strongly correlated with this factor include
 - a. WF02 (+0.66) -- Participation in requirements defini-
 - b. WFxx (\geq +0.67)--Large amounts of graphics code and graphics testing (xx = 19, 31, 32, 36, 37, and 66)
 - c. WF63 (+0.57) -- Percentage of code needed for central processing unit (CPU) and (I/O) control
 - d. WF47 (+0.69) -- Percentage of programmer effort
 - e. WF46 (-0.78)--Percentage of administrative management effort

This factor identifies a testing strategy (correlated with code type) and possibly a management deficiency. Most of the software developed in this sample was developed for interactive operation, although it must also be possible to execute the software through batch operation. One method of testing the software is to use a graphic device as in normal operational use; a certain amount of testing must be done in this manner. However, graphics test time is difficult to obtain during standard hours. Furthermore, development groups are given lowest priority during standard hours.

Therefore, more experienced managers and senior personnel try to discourage a strong dependence on graphics test time because programmers must work nonstandard hours to get efficient test time.

The possible management deficiency is that when programmers appear to be hard at work (graphics testing), managers tend to think that everything is all right and to pay less attention to the project (WF46). In general, however, systems tested primarily through graphics testing do not have better operational performance records than those tested with more emphasis on batch methods.

- 4. Factor 30 New Project Type (10 percent of variance).
 The measures strongly correlated with this factor include
 - a. WF39 (+0.59) -- Percentage of batch testing
 - b. WF43 (+0.70) -- Percentage of top-down development
 - c. PS11 (+0.62) -- Reduced complexity of project because of programmer experience
 - d. PS14 (+0.65) -- Percentage of new design
 - e. PS15 (+0.68) -- Percentage of new code

This factor represents the new project type, i.e., mostly new design (PS14) and new code (PS15). It shows that development teams developing systems with less of a design/implementation model (1) tend to use top-down development techniques (WF43),

- (2) tend to rely on batch testing techniques (WF39), and
- (3) are composed of more experienced personnel (PS11). In addition, see factor 3 in Section 4.2.1.
- 5. Factor 31 Code Reading and Testing (6 percent of variance). None of the measures are strongly correlated with

this factor. Measures that are moderately correlated with this factor include

- a. WF42 (+0.52) -- Amount of code reading
- b. PS07 (+0.55) -- Percentage of calendar schedule spent during documentation phase
- c. PS05 (-0.45)--Percentage of calendar schedule spent during testing phase
- d. PS06 (-0.52) -- Percentage of calendar schedule spent during testing activity

This factor shows that teams that rely on code reading (WF42) as a code validation technique spend less time in the testing phases (PS05 and PS06).

- 6. Factor 32 Design Team Size (6 percent of variance).

 None of the measures are strongly correlated with this factor. Measures that are moderately correlated with this factor include
 - a. WF05 (+0.47)--Programmer familiarity with development computer
 - b. WFxx (≥ 0.45) -- Complexity of interprogram communications, data base structures, and execution timing constraints (xx = 16, 18, and 21)
 - c. WF03 (-0.48)--Percentage of programmers participating in design
- d. WF50 (-0.47)--Percentage of support service support This factor shows that projects with relatively small design teams (WF03) are composed of programmers who are experienced with the development computer (WF05) and who have to design a system with complex interprogram communications (WF16), data base structures (WF18), and execution timing constraints (WF21). In general, the use of a smaller design team is a development philosophy that has evolved over the

past few years in this environment; that is, it is desirable to start projects with smaller, more experienced staffs to get a better grasp of the problem before plunging ahead.

4.2.6.2 Measures Unrelated to Models

The following list contains measures that are not correlated with any of the Models factors at the 0.01 significance level. The factor with which each measure is most strongly correlated and the value of that correlation appear in parentheses after the measure code.

- 1. WF03 (factor 32, -0.49) -- Percentage of programmers participating in design
- 2. WF05 (factor 28, +0.54) -- Programmer familiarity with development computer
- 3. WF06 (factor 30, +0.39) -- Programmer familiarity with programming language
- 4. WF09 (factor 32, +0.40) -- Degree to which programmers worked together before project
- 5. WF13 (factor 30, +0.49) -- Number of customeroriginated design changes
- 6. WF18 (factor 27, +0.55) -- Complexity of data base structures
- 7. WF2C (factor 27, +0.55) -- Memory storage constraints
- 8. WF21 (factor 27, +0.46) -- Execution timing constraints
- 9. WF34 (factor 32, -0.48) -- Percentage of programmers participating in design
- 10. WF35 (factor 28, +0.49) -- Percentage of programmers who worked together before project
- 11. WF40 (factor 29, -0.47) -- Percentage of development that is interactive (TSO)

- 12. WF41 (factor 32, +0.37) -- Percentage of code that is structured
- 13. WF42 (factor 31, +0.52) -- Percentage of code for which code reading is performed
- 14. WF45 (factor 29, -0.46) -- Percentage of effort that is technical management
- 15. WF50 (factor 30, +0.52)--Percentage of effort that is support services charges
- 16. WF71 (factor 27, +0.54) -- Number of delivered lines of code (LOC) that is assembler language
- 17. PS03 (factor 27, +0.50) -- Percentage of calendar schedule spent during implementation phase
- 18. PS04 (factor 27, +0.53) -- Percentage of calendar schedule spent during implementation activity
- 19. PS05 (factor 28, -0.50) -- Percentage of calendar schedule spent during testing phase
- 20. PS06 (factor 27, +0.53) -- Percentage of calendar schedule spent during testing activity
- 21. PS07 (factor 31, +0.55) -- Percentage of calendar schedule spent during documentation phase

I

- 22. PS12 (factor 28, -0.55) -- Complexity of product
- 23. PS13 (factor 30, +0.51) -- Complexity of external development effects
- 24. PS16 (factor 30, +0.54) -- Percentage of new testing

4.2.7 ADDITIONAL DETAIL CLASS

The factor analysis of the Additional Detail class of measures produced a model containing six factors, which explain 83 percent of the variance of the class. Together they describe the system's size in terms of effort and five other independent effects. Table A-7 of Appendix A (Volume 1) presents details of the analysis. The following subsections describe the factors and list the unrelated measures.

4.2.7.1 Additional Detail Factors

The six Additional Detail factors are described below. Each description is composed of the factor's name, the percentage of the variance the factor explains, a list of the measures correlated with the factor, and a narrative. The measures correlated with each factor are listed in the order in which they are listed in Section A.7 of Appendix A (Volume 2), first for the positively correlated measures and then for the negatively correlated measures. Correlations appear in parentheses following the measure codes.

- 1. Factor 33 Effort-Related System Size (30 percent of variance). The measures strongly correlated with this factor include
 - a. MSxx (≥ +0.60)--Number of subsystems, input data sets, and total data sets in product; number of programs, subsystems, and total data sets needed in normal processing (xx = 2, 3, 6, 11, 12, and 16)
 - b. $MXxx (\ge +0.70)$ -- Pages of documentation (xx = 21 through 25)
 - c. MSxx (\geq +0.87)--Average staff size (xx = 26 through 28)
 - d. SWxy (\geq +0.57)--Basically, all representations that are proportional to LOC, i.e., components, modules, executable LOC, decisions, library

changes, software changes, and errors for newly developed, extensively modified, slightly modified, and total representations. Usually, old, assembler, and graphics macros representations are not strongly correlated. (In general, x = 0, 2, 4, 5, 6; $y \neq 4$ or 9)

N

- e. SW84 (+0.56) -- Decisions per module with executable code
- f. SW87 (+0.62) -- Executable LOC per baseline diagram component
- g. ESxx $(\geq +0.68)$ --All size, effort, and process activity measures except use of tertiary development computer (ES19) (xx = 1 through 18)

This factor represents the activities related to major effort areas. Measures that generally represent minor effort areas, e.g., the use of unchanged (old) code, and measures that represent smaller efforts, e.g., the use of assembler code (on the average, less than 2 percent of the product), have the weakest correlations.

- 2. Factor 34 Data Base Size (10 percent of variance).
 The measures strongly correlated with this factor include
 - a. MS20 (+0.60) -- Total data base size
 - b. SWxx (≤ -0.58) --Slightly modified and old LOC and executable LOC of graphics macros; old LOC and executable LOC of FORTRAN (xx = 18, 19, 24, 38, 39, and 44)

In general, the input and output data base size requirements do not vary significantly from project to project in this environment. Therefore, when a project has unusually large data base requirements (MS20), the likelihood is small that the project will have many similarities to other projects. Hence, fewer old graphics macros and less old FORTRAN code

can be reused (an inverse correlation with SWxx). The implication is that projects with large data bases probably require more effort to develop than the average project. Factor 30 (new project type) in Section 4.2.6 is moderately correlated (+0.47) with number of items in the data base (WF23).

- 3. Factor 35 Internal Data Set Communication (8 percent of variance). The measures strongly correlated with this factor include
 - a. SWxx (\geq +0.58)--Old and total assembler LOC and executable LOC (xx = 14, 15, 34, and 35)
 - b. MSxx (≤ -0.58) --Number of I/O data sets in product and number needed for normal processing; number of I/O data base items needed for normal processing (xx = 8, 14, and 18)
 - c. SWxx (\leq -0.56)--Extensively modified baseline diagram components, decision modules, assembler LOC, and executable LOC (xx = 2, 7, 12, and 32)

This factor represents the data processing system, i.e., systems that preprocess data (e.g., for screening or calibration) or systems that postprocess data (e.g., for smoothing, quality assurance, or packaging). These systems tend to use larger numbers of internal data sets to manipulate data. The factor also indicates that data processing systems tend to use large amounts of extensively modified code and small amounts of assembler code.

- 4. Factor 36 Use of Old Code (6 percent of variance).
 The measures strongly correlated with this factor include
 - a. SW09 (+0.65) -- Number of old modules
 - b. SWx1 (\leq -0.57)--New assembler LOC and executable LOC (x = 1 and 3)

This factor represents the use of old code. It indicates that as more old code is used, the less likely it is that new assembler code will be developed. Several other old code type measures are moderately positively correlated.

- 5. Factor 37 Code Error Content (5 percent of variance).
 The measures strongly correlated with this factor include
 - a. SW76 (-0.58) -- Errors per 1000 LOC during development
 - b. SW79 (-0.57) -- Errors per baseline diagram component during development

This factor represents the number of errors in the code. Several other error measures are moderately negatively correlated.

- 6. Factor 38 Code Complexity (4 percent of variance).
 The measures strongly correlated with this factor include
 - a. MS15 (+0.59) -- Number of output data sets
 - b. SW82 (+0.67) -- Decisions per 1000 executable LOC
 - c. SW86 (-0.65) -- Executable LOC per 1000 LOC
 - d. SW88 (-0.59) -- Executable LOC per module

This factor represents the complexity of the code as measured by decisions, i.e., number of simple arguments in IF, IF-THEN-ELSE, DO, and DOWHILE statements. It shows that as the number of decisions per thousand executable LOC (SW82) increases, the number of executable LOC per thousand LOC (SW86) and per module (SW88) decreases.

4.2.7.2 Measures Unrelated to Additional Detail

The following list contains measures that are not correlated with any of the Additional Detail factors at the 0.01 significance level. The factor with which each measure is most strongly correlated and the value of that correlation appear in parentheses after the measure code.

- 1. MS01 (factor 35, +0.53) -- Number of programs in de-
- 2. MS04 (factor 35, =0.56) -- Number of I/O data sets in developed product
- 3. MS05 (factor 33, +0.47) -- Number of output data sets in developed product
- 4. MS07 (factor 33, +0.46) -- Number of input data base items in developed product
- 5. MS09 (factor 35, +0.42) -- Number of output data base items in developed product
- 6. MS10 (factor 34, +0.56) -- Total number of data base items in developed product
- 7. MS13 (factor 33, +0.46) -- Number of input data sets needed for normal processing
- 8. MS17 (factor 34, +0.28) -- Number of input data base items needed for normal processing
- 9. MS19 (factor 35, +0.43) -- Number of output data base items needed for normal processing
- 10. SW04 (factor 36, +0.56) -- Number of unchanged (old) baseline diagram components in product
- 11. SW17 (factor 33, +0.49) -- Number of extensively modified LOC of graphics macros
- 12. SW29 (factor 36, +0.55) -- Total number of old LOC
- 13. SW33 (factor 33, +0.55) -- Number of slightly modified executable LOC of assembler code
- 14. SW37 (factor 33, +0.50) -- Number of extensively modified executable LOC of graphics macros
 - 15. SW49 (factor 34, -0.54) -- Total number of old executable LOC

 \Im

- 16. SW69 (factor 33, +0.51) -- Number of software errors in old code
- 17. SW71 (factor 38, +0.37) -- Percentage of comments in newly developed code
- 18. SW72 (factor 33, +0.40) -- Percentage of comments in extensively modified code
- 19. SW73 (factor 33, +0.49) -- Percentage of comments in slightly modified code
- 20. SW74 (factor 33, -0.21) -- Percentage of comments in old code
- 21. SW75 (factor 33, +0.31) -- Percentage of comments in all code
- 22. SW77 (factor 37, -0.51) -- Errors per 1000 executable LOC
- 23. SW78 (factor 38, +0.44) -- Errors per 1000 decisions
- 24. SW80 (factor 37, -0.56) -- Errors per decision module
- 25. SW81 (factor 34, -0.50) -- Decisions per 1000 LOC
- 26. SW83 (factor 33, +0.49) -- Decisions per baseline diagram component
- 27. SW85 (factor 38, -0.42) -- Ratio of coded LOC to expanded LOC, i.e., expansion from INCLUDE blocks of code
- 28. SW89 (factor 38, +0.33) -- Number of library data sets changed per implementation change
- 29. SW90 (factor 35, +0.38) -- Percentage of errors in implementation changes

Ü

30. ES19 (factor 33, -0.15) -- Number of computer hours used on tertiary development computer

4.3 SUMMARY ANALYSIS OF CLASS FACTORS

The analyses described in Section 4.2 identify 38 principal factors among the 7 classes of measures; this number of factors is substantially fewer than the 608 measures originally used in the analyses. The information contained in each set of measures (38 and 608) can be displayed for a parison using the cluster analysis technique discussed in Section 3.3.

Figure 4-1 shows the results of a cluster analysis of the 608 measures that passed the test of normality (see Section 4.1). Levels of similarity between projects are indicated in the table by the number of horizontal lines of asterisks connecting them. For example, Figure 4-1 can be used to divide the sample of 20 systems into 2 groups, or clusters, by tracing across the graph at the level where the "number of clusters" is equal to 2. The 20 systems appear to be divided into these 2 clusters on the basis of size. This result verifies our intuitive understanding that essential differences exist between small and large projects.

System 730, which was grouped by cluster analysis with the small systems, is the only exception to the classification of systems with fewer than 30,000 lines of code as being small (see Section 2.1). Thus, System 730 is closer to the pattern of small systems than to that of large systems. Furthermore, it is the smallest of the large systems (with 33,000 lines of code). This suggests that the classification criterion should be adjusted to include this system in the small group.

The importance of size measures is reflected in the results of the factor analyses: size factors are identified within three of the seven classes of measures. However, one property of factors is that they combine the effects of related

ORIGINAL PAGE (9' OF POOR QUALITY

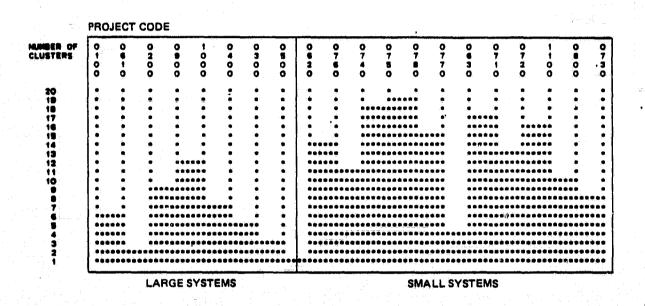


Figure 4-1. Cluster Map Based on Screened Measures

measures. Thus, the relative weights of the most frequently occurring measures, such as size, are reduced.

Figure 4-2 shows the result of a cluster analysis of the 38 factors identified in Section 4.2. Note that the classification of projects into two groups on the basis of size has been preserved, although the structure within these groups as shown in Figure 4-2 is different from that of Figure 4-1. The preservation of this basic classification confirms that the factor analyses of classes of measures have been successful in extracting the major descriptive qualities from the original screened measures.

Ñ

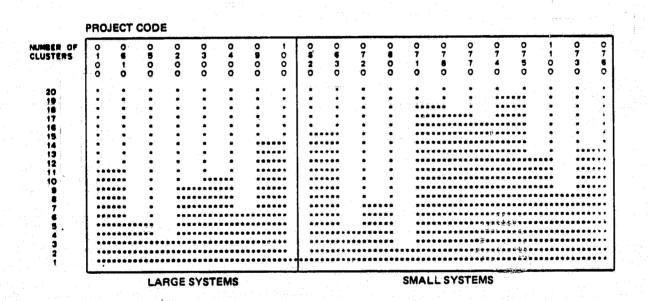


Figure 4-2. Cluster Map Based on Combined Factors

4.4 FACTOR ANALYSIS OF CLASS FACTORS

The factor analysis of the combined (class) factors data set produced a model containing 5 high-level factors, which explain 64 percent of the variance of the 38 class factors. Together they describe the small and large systems and the experience levels of the development teams. The details of this factor analysis are reproduced in Table B-l of Appendix B. The following subsections summarize these results. The high-level factors and the unrelated class factors are listed.

4.4.1 HIGH-LEVEL FACTORS

The five high-level factors are described below. Each description is composed of the high-level factor's name, the percentage of the variance the high-level factor explains, a list of class factors correlated with the factor, and a narrative. The class factors correlated with each factor are listed in numerical order, first for the positively correlated class factors and then for the negatively correlated class factors. Correlations appear in parentheses following the class factor number.

The descriptive names applied to factors in this section are intended to suggest the types of values that tend to occur together, based on the analysis of the factor pattern shown in Table B-lb of Appendix B. For example, two groups of attributes can be defined that are characteristic of small systems and of large systems. Depending on its size, any given system would possess all these attributes to a greater or lesser degree. Therefore, this section describes a set of profiles or patterns with which any given development project can be compared.

- 1. High-Level Factor 1 Small System Profile (16 percent of variance). The factors strongly correlated with this high-level factor include
 - a. Factor 8 (+0.60) -- Stability and high performance of development team managers, i.e., project manager and leader and development interface manager and leader (MG and PF)

П

[]

- b. Factor 13 (+0.67) -- Poor external support (EX)
- c. Factor 17 (+0.79) -- High-quality process and product (PR and PP)
- d. Factor 12 (-0.62) -- Less complex and difficult project (CP, IN, EX, and DF)
- e. Factor 26 (-0.63)--Low level of environment experience of analysis managers for testing (RK and YE)
- f. Factor 27 (-0.60) -- Small system size (WF and PS)
- g. Factor 33 (-0.61)--Low effort-related system size
 (MS, SW, and ES)

Factors that are moderately correlated include

- a. Factor 1 (+0.52)--Moderately high general use of software engineering practices (MT, TS, DC, and SE)
- b. Factor 5 (+0.54)--Moderately high use of chief programmer. The sign of the correlation is reversed because the signs of the correlations of the principal measures are negative (MT, TS, and DC)
- c. Factor 6 (+0.50) -- Moderate level of ability of technical staff (AP, MG, PF, and AB)
- d. Factor 29 (+0.47) -- Moderate tendency to use graphics test time rather than batch testing methods (WF)

- e. Factor 35 (+0.48)--Moderately large number of data sets for internal communication. The sign of the correlation is reversed because the signs of the correlations of the principal measures are negative (MS and SW)
- f. Factor 37 (-0.49)--Smaller number of errors in the code during development. The sign of the correlation is reversed because the signs of the correlations of the principal measures are negative (SW)

This high-level factor represents the typical small system development pattern. In this environment, small systems generally

- Tend to be mainly utility data processing applications, such as preprocessing for data reduction and calibration or postprocessing for data smoothing, quality assurance, and packaging. Therefore, small systems use more internal data sets for communication (factor 35) to manipulate data. Because small systems are usually data manipulation and inspection systems, they tend to have a large amount of interactive graphic code and, therefore, are primarily tested graphically (factor 29).
- Are not complex or difficult (factor 12). They are developed with a high-quality process that produces a highquality product (factor 17), which has moderately fewer development errors per thousand LOC (factor 37).
- Tend to have chief programmers (factor 5) because the systems are small enough for a single person to direct all technical activity.
- Have moderately able technical staffs (factor 6),
 who use software engineering practices to a moderately high degree (factor 1).

- Have more stable team management (factor 8) because the development schedules are relatively short.
- Have poor external support (factor 13) because small systems are generally not so critical in terms of cost and schedule impact compared with larger projects being developed at the same time. This is reenforced by the low level of environment experience of the analysis managers assigned responsibility for small systems during the testing phases (factor 26).
- 2. <u>High-Level Factor 2 Large System Profile (14 percent of variance)</u>. The factors strongly correlated with this high-level factor include
 - a. Factor 31 (+0.58) -- High use of code reading and less time spent during testing phases (WF and PS)
 - b. Factor 33 (+0.64) -- Large effort-related system size (MS, SW, and ES)
 - c. Factor 2 (-0.67) -- High use of interactive development techniques (MT, TS, and DC)
 - d. Factor 4 (-0.59)--Low use of structured implementation (MT and TS)
 - e. Factor 7 (-0.64)--Ineffectiveness and low performance of development interface managers (AP, MG, and PF)
 - f. Factor 14 (-0.60) -- Difficult schedule and responsive analysis leader (CP and EX)

Factors that are moderately correlated include

- a. Factor 12 (+0.54) -- Moderately complex and difficult project (CP, IN, EX, and DF)
- b. Factor 27 (+0.47) -- Moderately large system size (WF and PS)

- c. Factor 10 (-0.54) -- Moderate overall ineffectiveness of analysis leader as a manager (AP and MG)
- d. Factor 18 (-0.56) -- Moderately low availability of resources (RA)
- e. Factor 19 (-0.44)--Large average module size. The sign of the correlation is reversed because the signs of the correlations of the principal measures are negative (PR)
- f. Factor 23 (-0.45)--Moderately low level of professional experience of technical staff (RK, YP, YA, and YE)

This high-level factor represents the typical large system development pattern. In this environment, large systems generally

- Are moderately complex and difficult (factor 12).
- Have schedules with more than average difficulty; therefore, the analysis leader's responsiveness tends to be higher for larger projects (factor 14).
- Have technical staffs with a moderately low level of professional experience (factor 23). However, they tend to use primarily interactive development techniques (factor 2) and code reading to validate code (factor 31). Because larger systems tend to reuse more code from previously developed systems than do smaller systems, structured implementation is used less (factor 4) and the average module size in the system is moderately larger than the average size in this sample (factor 19).
- Have moderately low availability of resources (factor 18), which cannot be adequately supplied in a decaying, archaic computing environment. Therefore, the effectiveness of the development interface managers is generally low (factor 7).

- 3. <u>High-Level Factor 3 High Use of Software Engineering</u>
 <u>Technology (12 percent of variance)</u>. The factors strongly
 correlated with this high-level factor include
 - a. Factor 1 (+0.67)--High general use of software engineering practices (MT, TS, DC, and SE)
 - b. Factor 6 (+0.60) -- High level of ability of technical staff (AP, MG, PF, and AB)
 - c. Factor 18 (+0.58) -- High availability of resources (RA)
 - d. Factor 30 (+0.56) -- New project type (WF and PS)
 - e. Factor 8 (-0.61)--Overall instability of managers (MG and PF)

Factors that are moderately correlated include

- a. Factor 2 (+0.50) -- Moderately high use of batch development techniques (MT, TS, and DC)
- b. Factor 14 (+0.52) -- Less than average schedule difficulty and moderately unresponsive analysis leader (CP and EX)
- c. Factor 22 (+0.52) -- Moderately high level of applicable experience and good reputation of technical staff (RK, YP, YA, and YE)
- d. Factor 38 (+0.48) -- Moderately complex code (MS and SW)
- e. Factor 25 (-0.51)--Moderately low level of environment experience of project and analysis managers for implementation (YA and YE)

This high-level factor represents the high use of software engineering technology. In general, software engineering practices are used to the highest degree when

- The technical staff has a moderately high level of ability (factor 6) and a moderately high level of applicable experience (factor 22)
- The software product is mostly new design and code (factor 30)
- The team has reasonable access to resources (factor 18)

This trend occurs even though there is not much stability among the interfacing managers and leaders (factors 8 and 14).

This trend is not surprising because most programmers do not want to work with old code. High performers are more flexible, willing to embrace new technologies, able to see the benefits of them, and can find ways to obtain resources. While it is possible to train personnel and to improve their performance, it is not possible to get rid of old code because its use is deemed cost effective. The development manager's job of training programmers to use modern programming practices while modifying, enhancing, or rebuilding old systems is not an easy one.

The projects characterized by high use of software technology, high level of personnel ability, and mostly new software tend to

- Have schedules with less than average difficulty (factor 14)
- Use primarily batch development techniques (factor 2)

- Produce moderately complex code (factor 38) compared with the average complexity in this sample, measured by the number of decisions per 1000 executable LOC
- 4. <u>High-Level Factor 4 Small Design Team (11 percent of variance)</u>. The factors strongly correlated with this high-level factor include
 - a. Factor 21 (+0.62) -- High degree of formal training.

 The sign of the correlation is reversed because the sign of the correlation of the principal measure is negative (RA)
 - b. Factor 32 (+0.74) -- Small design team (WF)
 - c. Factor 15 (-0.86)--Very responsive analysis leader (EX)

Factors that are moderately correlated include

- a. Factor 19 (+0.50) -- Small average module size. The sign of the correlation is reversed because the signs of the correlations of the principal measures are negative (PR)
- b. Factor 34 (+0.56) -- Large data base size (MS and SW)
- c. Factor 5 (-0.51) -- Moderately low use of chief programmer. The sign of the correlation is reversed because the signs of the correlations of the principal measures are negative (MT, TS, and DC)
- d. Factor 9 (-0.49)--Ineffectiveness of analysis managers (AP and MG)

This high-level factor represents the small design team. In general, team members have been formally trained in development (factor 21) and work with systems that have complex interprogram communications, data base structures, and

execution timing constraints (factor 32). This trend is reenforced by the fact that the systems have moderately large
data bases (factor 34). Although there is no correlation
with system size, this factor indicates moderately low use
of the chief programmer (factor 5). The average module size
tends to be smaller (factor 19) than the average as a result
of formal training.

- 5. <u>High-Level Factor 5 Highly Qualified Team (11 percent of variance)</u>. The factors strongly correlated with this high-level factor include
 - a. Factor 20 (+0.61) -- High level of support for support software (RA)
 - b. Factor 28 (+0.58) -= Highly qualified programmers (WF and PS)

Factors that are moderately correlated include

- a. Factor 6 (+0.53) -- Moderate level of ability of technical staff (AP, MG, PF, and AB)
- b. Factor 10 (+0.44) -- Moderately effective analysis managers (AP and MG)
- c. Factor 31 (+0.48) -- Moderate use of code reading and moderately less t e spent during testing phases (WF and PS)
- d. Factor 11 (-0.51) -- Instability of experienced project manager. The sign of the correlation is reversed because the sign of the correlation of the principal measure is negative (MG)
- e. Factor 13 (-0.48)--Moderately good external support (EX)

- f. Factor 16 (-0.47) -- Moderately good high-level development support and moderately high team turnover (IN and EX)
- Factor 34 (-0.46) -- Small data base size (MS and SW) g. This high-level factor summarizes the qualifications of the development team for the application. The characteristics of a highly qualified team are highly qualified programmers (factor 28), a technical staff with a moderately high level of ability (factor 6), an experienced project manager (factor 11), a moderately effective analysis manager (factor 10), and a moderately supportive development interface manager (factor 16). This development interface manager is directly and indirectly responsible for a high level of support for support software (factor 20) and hardware (factor 16), as well as for simulator data and analysis support (factor 13). However, the team is likely to lose its project manager (factor 11) and to have a high turnover of programmers (factor 16).

4.4.2 UNRELATED CLASS FACTORS

The following list contains class factors that are not correlated with any of the high-level (hereafter referred to as HL) class factors at the 0.01 significance level. The factor with which each class factor is most strongly correlated and the value of that correlation appear in parentheses following the class factor number.

- 1. Factor 3 (HL factor 5, -0.40) -- Low use of top-down design techniques (MT)
- 2. Factor 5 (HL factor 1, +0.54) -- High use of chief programmer. The sign is reversed (MT, TS, and DC)
- 3. Factor 9 (HL factor 4, =0.49) -- Ineffectiveness of analysis' managers (AP and MG)

4. Factor 10 (HL factor 2, -0.54) -- Ineffectiveness of analysis leader (AP and MG)

- 5. Factor 11 (HL factor 5, -0.51) -- Instability of experienced project manager. The sign is reversed (MG)
- 6. Factor 16 (HL factor 5, -0.47)--Good high-level development support and high team turnover (IN and EX)
- 7. Factor 19 (HL factor 4, +0.50) -- Small average module size. The sign is reversed (PR)
- 8. Factor 22 (HL factor 3, +0.52) -- High level of applicable experience and good reputation of technical staff (RK, YP, YA, and YE)
- 9. Factor 23 (HL factor 2, -0.45) -- Low level of professional experience of technical staff (RK, YP, YA, and YE)
- 1 . Factor 24 (HL factor 1, +0.44) -- Low level of environment experience of development managers (RK and YE)
- 11. Factor 25 (HL factor 3, -0.51) -- Low level of environment experience of project and analysis managers for implementation (YA and YE)
- 12. Factor 29 (HL factor 1, +0.47) -- Tendency to use graphics test time rather than batch testing methods (WF)
- 13. Factor 34 (HL factor 4, +0.56) -- Large data base size (MS and SW)
- 14. Factor 35 (HL factor 1, +0.48) -- Large number of data sets for internal communication (MS and SW)
- 15. Factor 36 (HL factor 4, +0.44) -- High use of old code (SW)

16. Factor 37 (HL factor 1, -0.49)--Small number of errors in code. The sign is reversed (SW)

17. Factor 38 (HL factor 3, +0.48) -- Complex code (MS and SW)

Factors 3, 24, and 36 are the only class factors not correlated with any high-level factor at the 0.05 significance level.

SECTION 5 - CONCLUSIONS

This section summarizes the conclusions derived from the analysis of the SEL software management measures collected for 20 independent software development projects. Section 5.1 summarizes the findings stated either explicitly or implicitly in Section 4, and Section 5.2 recommends a course of action based on these findings.

5.1 FINDINGS

364

The findings are presented below in the order in which they were derived by the analytical procedure (see Figure 3-1).

Test of Normality. This test shows that not all measures are appropriate; that is, some measures fail to differentiate one group of projects from another. Approximately one-half of the measures rejected by the test of normality are measures that were developed for another environment or for use with several environments. The results of additional analyses of SEL measures will not change their status.

The development managers should discard these measures unless there are

- Anticipated changes in the development process and environment
- Plans for expansion of the organization's line of business
- Intentions to combine SEL data with data from other environments that use the same or similar measures

Factor Analysis of the Seven Classes of Measures. This analysis

 Shows that by producing descriptive factors, a large set of measures can be reduced by approximately an order of magnitude.

- 2. Provides a basis for selecting the most important measures by their correlations with the descriptive factors and the ease with which measurements can be made.
- 3. Shows that many measures are related to system size. Apparently, whether consciously or not, managers tend to evaluate various effects with respect to system size (for example, complexity ratings).

Cluster Analysis of the Seven Classes of Measures. This analysis

- l. Shows that the major distinction made among projects by the factors is system size and that System 730 was misclassified as a large project.
- 2. Confirms that the Walston-Felix (WF) category:of measures is an excellent set of measures and that, to a large extent, the SEL measures are basically an expansion and elaboration of the WF measures. The reader can see this by comparing Figure 4-1 (cluster map for all screened SEL measures) with Figure A.6.1-2 in Appendix A of Volume 2 (cluster map for WF category). The comparison shows that the cluster maps are very nearly identical in project pairings, although differences in the levels of similarity exist. There is one exception to this generalization: System 200's high degree of similarity with System 900 rather than with System 300.

Because the cluster maps (see Figure 4-1) of the small project group and the large project group, separately, are not similar to a cluster map of any other individual category of measures, the levels of similarity within the two groups are a reflection of the effects of all classes of measures, i.e., software engineering, experience, complexity, and projluct effects. The differences in the levels of similarity indicated by comparison of the cluster map in Figure 4-1

and the cluster map for the WF measures (see Figure A.6.1-2) result from the finer detail added by the SEL measures.

Factor Analysis of the 38 Class Factors. This analysis

- 1. Shows that the major distinction made among projects is still system size; however, experience-related effects are obvious.
- 2. Points out subtle environmental quirks and weaknesses and, therefore, can alert development managers to
 take preventive steps, plan better for contingencies, and
 generally improve the process through proper training. Two
 of the important effects are as follows:
 - The high use of software engineering technology is strongly correlated with the level of ability of the technical staff and the degree to which a system is new, i.e., amount of new design and code. An obvious relationship of high technology use with team ability has been discussed within the SEL over the past few years. However, the relationship with the degree of system newness had not been apparent. The desire of programmers to completely develop something on their own (i.e., not constrained by large amounts of existing code) so that they can improve their skills is a familiar lament when assignments are made. Even though sound software engineering methodology is taught and its use is encouraged and enforced, programmers are apparently more highly motivated to use the methodology when they are satisfying career objectives.

In this environment, the development manager is faced with a difficult challenge in training personnel to use better technologies and in motivating them to use the technologies for maintenance, enhancement, and rebuilding activities where fairly large amounts of reused code are involved.

b. Although some current thinking is to use highly qualified teams to make large improvements in productivity and/or reliability, in this environment, highly qualified teams are likely to be unstable because experienced project managers and leaders are likely to be promoted and because career-minded programmers do not want to work in the same computing environment or with the same application very long.

Therefore, in this environment, higher level managers will have to be very creative in forming highly qualified teams and in helping team members to set career goals. Otherwise, team members are likely to leave the project for one reason or another to improve their skills, and the very purpose of bringing such a team together is defeated.

Shows that the data are not ideally represented for determining what is related to productivity or reliability. For example, only the Development Team Background class factor that accounts for the least amount of the variance within the class (factor 26) is strongly correlated with any of the combined factors, although all five class factors are moderately correlated with the combined factors. Years of experience (YOE), which obviously has a direct bearing on the outcome of a software development process, can be represented better. For example, an average person with 25 YOE is not likely to be 25 times better or faster than an average person with 1 YOE; however, he/she may be 7 times better or faster. No attempt to find a suitable transformation for years of experience or to normalize system size in terms of effort or errors was planned for this analysis; however, it is planned for future analysis.

Cluster Analysis of the 38 Class Factors. This analysis

- l. Shows that the major distinction made among projects by the factors is still system size. The preservation of this distinction, in spite of the dilution of the effect of explicit size measures (Section 4.3), suggests that the effect of size is implicit in many not obviously related measures. For example, more experienced personnel may be regularly assigned to larger projects. Thus, team experience would be related to project size, although not obviously so.
- 2. Shows that the analytical technique reduces confounding effects (primarily overwhelming information in terms of system size) and points out a second major distinction among the small and the large projects: experience. The reader can see this by comparing the small project group in Figure 4-2 (cluster map for combined factors) with Figure A.5.3-4 in Appendix A of Volume 2 (cluster map of Years of Applicable Experience (YA) category). Excluding System 730, which was misclassified, comparison with the cluster maps of each category shows that the YA category has the same project pairings, considering small differences in the levels of similarity. This is encouraging because the outcome of a small development project is considered by many to be primarily related to the developers' experience.

The reader can see the experience relationship among the large projects by comparing the large project group in Figure 4-2 (cluster map for combined factors) with Figure A.2.1-3 in Appendix A of Volume 2 (cluster map of Experience With Application (AP) category). Excluding System 730, which was misclassified, comparison with the cluster maps of each category shows that the AP category is very nearly identical in project pairings, although there are some differences in levels of similarity.

The fact that different kinds of experience measures differentiate the small projects from the large projects is explained as follows. In general, smaller projects are usually staffed with more junior personnel in the environment; that is, they have little experience with the application, but they have varying degrees of applicable experience. Larger projects, however, are staffed with personnel who also have varying degrees of applicable experience and varying degrees of experience with the application.

The differences within the small and large project groups in the cluster map in Figure 4-2 are primarily because of experience levels. The differences between the cluster map in Figure 4-1, which closely resembles the cluster map for the Walston-Felix measures, and the cluster map in Figure 4-2 is a result of the finer detail in experience data provided by the SEL measures after the effects of system size have been reduced.

5.2 RECOMMENDATIONS

The analysis described in Section 4 and summarized in Section 5.1 identifies a number of significant software development qualities (or factors). That analysis evaluates the effectiveness of a large set of management measures with respect to those qualities. Thus, a basis has been established for defining a more concise set of software development measures. The measures considered cover every aspect of software development experienced by the SEL.

Although the complete set of 608 measures could be collected from every software development effort monitored, that process would be a tedious and time-consuming (expensive) process. The foregoing analysis demonstrates that a smaller set of measures oriented toward the basic qualities (factors) present in the data can be found. This smaller set contains most of the information of the original measures. A set of

38 appropriately selected measures retains about 80 percent of the information content of the complete set of 608.

Tables 5-1 through 5-7 identify the elements of such a concise set of measures. The measure(s) corresponding to each factor in the table is, in most cases, the measure most highly correlated with it. However, another highly correlated measure was sometimes selected because it appeared more representative or easier to obtain. Additional measures are included in the tables where additional information is desirable. A total of 78 measures is listed. The set of measures listed in these tables, then, constitutes the SEL's recommendation of management measures that should be collected and monitored during software development.

Figure 5-1, at the end of this section, demonstrates the accuracy of this set of 78 important measures. The cluster map shown in the figure preserves the size effect previously noted (see Sections 4.3 and 5.1), although it provides more detail. Note that three clusters are defined that correspond to large, intermediate, and small systems. The intermediate cluster is composed of the three smallest of the large systems. Furthermore, transpositions of the order of systems in the graph can be made (while preserving the relationships among the systems), which would produce a ranking of the systems from largest to smallest in terms of developed lines of code, with one exception. Thus, not only is project size a major characteristic, but, based on this analysis, developed lines of code is the most important measure of a software project of this application type in this environment.

These recommendations should not, however, be construed to imply that the study of software measures is complete. The SEL and other researchers are still engaged in an extensive review and analysis of measures. The study documented in

this report considers only one set of measures. Furthermore, it does not analyze all the interrelationships of these measures or their specific applications. Those issues will be considered in a future document (Reference 13). However, this document does show how a relatively small set of measures can be defined in such a manner as to fully characterize or describe the software development process, experienced by the SEL.

Important Measures in the Software Engineering Class Table 5-1.

I

e segment

									82	/62
MEASURE DESCRIPTION		TION TO PROMOTE TRACEAD TESTING	METHODOLOGY REESTORCEMENT BY PROJECT MANAGER AND PROJECT LEADER	USE OF DESIGN DECISION NOTEBOOK	NONUSE OF TERMINALS FOR DEVELOPMENT, i.e.,	MENT TECHNIQUES	USE OF TOP-DOWN DESIGN TECHNIQUES FOR NEW FUNCTIONS	USE OF STRUCTURED FORTRAN PRECOMPILER TO AID IN PRODUCING STRUCTURED CODE	RELEVANCE OF WEEKLY AND MONTHLY PROGRESS REPORTS IN REFLECTING PROJECT	STATUS
CORRE-	00 07	?	+0.92	+0.75	+0.61		+0.85	+0.62	-0.47	
MEASURE	MTIS		1503	DC03	T\$10		MT09	1506	DC10	
QUALITY	GENERAL SOFTWARE ENGINEER.	ING PRACTICES			BATCH DEVELOPMENT		TOP-DOWN DESIGN	STRUCTURED IMPLEMENTATION	DEVELOPMENT TEAM'S ORGANIZA- TION	
CLASS FACTOR	•				8		m	•	LG	
OVERALL FACTOR	_				N		• • • • • • • • • • • • • • • • • • •		.	

Important Measures in the Development Team Ability Class Table 5-2.

		9										25	/629(
MEASURE DESCRIPTION	CONTRIBUTION FROM ESTABLISHED EXPERT (EXPERT 3) IN THE APPLICATION AND/OR ENVI? ONMENT	EFFECTIVENESS OF THE PROJECT LEADER AS A MANAGER (xx = 2, 8, 14, 20, AND 26)	ON-THE JOB PERFORMANCE OF THE DEVELOP- MENT TEAM'S TECHNICAL STAFF, i.e., PROGRAM- MERS, PROJECT MANAGER AND LEADER, AND DEVELOPMENT INTERFACE MANAGER AND LEADER (x = 0 THROUGH 3)	ANALYSTS' EXPERIENCE WITH THE APPLICATION	EFFECTIVENESS OF THE DEVELOFMENT INTER- FACE MANAGER DURING IMPLEMENTATION	ON-THE-JOB PERFORMANCE OF THE DEVELOP. MENT INTERFACE MANAGER (x = 0 THROUGH 3)	PROJECT LEADER TURNOVER, i.e., REPLACE-MENT	NUMBER OF CHANGES IN MANAGERS AND LEADERS FOR PROJECT, ANALYSIS, AND DEVELOPMENT INTERFACE	ON-THE-JOB PERFORMANCE OF THE PROJECT MANAGER AND LEADER AND THE DEVELOP- MENT INTERFACE MANAGER AND LEADER DURING IMPLEMENTATION	EFFECTIVENESS OF THE ANALYSIS MANAGER DURING IMPLEMENTATION	EFFECTIVENESS OF THE ANALYSIS LEADER AS A MANAGER DURING DETAILED DESIGN	PROJECT MANAGER'S EXPERIENCE WITH THE APPLICATION	STABILITY OF (CHANGE IN) PROJECT MANAGER
CORRE- LATION	+0.75	~+0.85	~+0.77	+0.63	+0.78	~+0.66	+0.57	PO.70	+0.87	19 :04	10.68	+0.52	-0.69
MEASURE	AP03	MGxx	Px	AP09	MG17	PFx9	MG32	MG35	PF17	MG15	MG10	APO6	MG31
QUALITY	TECHNICAL STAFF'S ABILITY			DEVELOPMENT MANAGERS' EFFECTIVENESS AND PERFORMANCE			DEVELOPMENT TEAM MANAGERS' STABILITY AND PERFORMANCE			ANALYSIS MANAGER'S EFFECTIVENESS	ANALYSIS LEADER'S EFFECTIVENESS	PROJECT MANAGER'S EXPERIENCE AND STABILITY	
CLASS FACTOR	•			N			r			- 1	"	•	
OVERALL FACTOR	9									6	10		

Important Measures in the Difficulty of Project Class Table 5-3.

MEASURE DESCRIPTION	NUMBER OF SUBSYSTEMS TO BE DEVELOPED	DEVELOPMENT TEAM'S ATTITUDE, I.E., TEAM'S MOTIVATION AND SENSE OF URGENCY	CHANGING FUNCTIONAL SPECIFICATIONS AND REQUIREMENTS	AVAILABILITY OF SIMULATOR FOR TEST DATA AND SUPPORT FOR DATA NEEDS (y = 0 AND 2)	DIFFICULTY OF DEVELOPMENT SCHEDULE	ANALYSIS LEADER TURNOVER, i.e., REPLACEMENT. THE EFFECT IS DIRECTLY PROPORTIONAL TO THE TREVELOPMENT PHASE, i.e., THE LATER THE REPLACEMENT OCCURS, THE WORSE THE EFFECT IS	ANALYSIS LEADER'S RESPONSIVENESS TO DEVELOPMENT TEAM'S PROBLEMS IN THE LATER (PRIMARILY TESTING) PHASES OF DEVELOPMENT	DEVELOPMENT TEAM TURNOVER RESPONSIVENESS OF DEVELOPMENT INTER- FACE MANAGER TO DEVELOPMENT TEAM'S PROBLEMS
CORRE- LATION	+0.93	18.0+	92'0+	~+0.78	-0.72	1 0.74	+0.62	-0.66 +0.59
MEASURE	CP07	E.S.	EX01	EX1y	CPI	EX	EX16	(NOS
ΔυΑΕΙΤΥ	PROJECT DIFFICULTY			EXTERNAL SUPPORT	ANALYSIS LEADER'S RESPON- SIVENESS AND SCHEDULE		ANALYSIS LEADER'S GENERAL RESPONSIVENESS	HIGH-LEVEL DEVELOPMENT SUPPORT
CLASS	-			A				
OVERALL	12						•	9

28/2798

Important Measures in the Process and Product Characteristics Class Table 5-4.

							6675789
MEASURE DESCRIPTION	MANAGERS' CONFIDENCE IN PRODUCT	LEVEL OF DEVELOPMENT PLANNING AND FOLLOWING THROUGH WITH THE PLANS	AVAILABILITY OF DOCUMENTATION DES- CRIBING THE DEVELOPMENT PROCESS	AVAILABILITY OF SUPPORT PERSONNEL TO PROVIDE INSTRUCTION IN USE OF SYSTEM SUPPORT SOFTWARE	SIZE OF EXTENSIVELY MODIFIED MODULES	AVAILABILITY OF SUPPORT PERSONNEL TO PROVIDE INSTRUCTION IN THE USE OF AND MAINTENANCE FOR SYSTEM SUPPORT SOFTWARE; AVAILABILITY OF SIMULATOR FOR DATA SUPPORT	AVAILABILITY OF FORMAL TRAINING IN THE DEVELOPMENT PROCESS
CORRE- LATION	+0.92	+0.97	+0.95	+0.95	-0.90	+0.81	-0.58
MEASURE CODE	PR03	PP08	RA03	RA04	PR05	RA82	RA01
QUALITY	PROCESS AND PRODUCT QUALITY		RESOURCE AVAILABILITY		MODULE SIZE	SUPPGRT SOFTWARE SUPPORT	FORMAL TRAINING
CLASS FACTOR	-		8		ო	4	2ı
OVERALL FACTOR	17		82		6	20	21

(-2

8623/82

Important Measures in the Development Team Background Class Table 5-5.

MEASURE DESCRIPTION	WEIGHTED YEARS OF APPLICABLE EXPERMENCE FOR THE PROGRAMMERS, THE PROJECT MANAGER AND LEADER, AND THE ANALYSIS MANAGER AND LEADER (x = 0 THROUGH 3)	WEIGHTED YEARS OF PROFESSIONAL EXPERI- ENCE FOR THE PROGRANMERS AND THE PROJECT MANAGER AND LEADER	WEIGHTED YEARS OF ENVIRONMENT EXPERI- ENCE FOR THE PROJECT MANAGER AND LEADER AND THE DEVELOSMENT INTERFACE MANAGER AND LEADER	WEIGHTED YEARS OF ENVIRONMENT EXPERI- ENCE FOR THE PROJECT MANAGER AND LEADER AND THE ANALYSIS MANAGER AND LEADER FOR IMPLEMENTATION PHASE	WEIGHTED YEARS OF ENVIRONMENT EXPERI- ENCE FOR THE ANALYSIS MANAGER AND LEADER FOR TESTING PHASES
CORRE- LATION	~10.84	99701~	~ 0.61	+0.59	88
MEASURE	YAK3	11 YP.22	YEX7	YE16	YE28
סטאדודא	TECHNICAL STAFF'S APPLICABLE EXPERIENCE AND REPUTATION	TECHNICAL STAFF'S PROFESS- IONAL EXPERIENCE	DEVELOPMENT MANAGERS ENVIRONMENT EXPERIENCE	PROJECT/ANALYSIS MANAGERS' ENVIRONMENT EXPERIENCE FOR IMPLEMENTATION	ANALYSIS MANAGER'S ENVIRONMENT EXPERIENCE FOR TESTING
CLASS FACTOR		7	n		
OVERALL FACTOR	z	8	77	8	26

8053/85

Table 5-6. Important Measures in the Models Class

			Т	1/	.)					29/	53
	HE & COUNTY OF STREET	MOSCOR DESCRIPTION	TOTAL NUMBER OF PAGES OF DOCUMEN: STION, I.E., DESIGN DOCKERNT, DESIGN DECISION	GUIDE, AND SYSTEM DESCRIPTION	SUBJECTIVE EVALUATION OF PROGRAMMERS' OVERALL QUALIFICATIONS TO MEET PROJECT REQUIREMENTS	PROGRAMMERS' EXPERIENCE WITH THE APPLICATION; IN THIS CASE, INTERACTIVE GRAPHICS	METHOD OF TESTING; IN THIS CASE, PRIMARILY USING EITHER GRAPHICS TEST TIME OR BATCH METHODS	AMOUNT OF TOP-DOWN DEVELOPMENT PRO- CEDURES PLANNED AND USED	AMOUNT OF CODE READING PLANNED AND USED	COMPLEXITY OF INTERPROGRAM COMMUNI- CATION AND DATA BASE STRICTIBE (12.2)	AND 8)
	CORRE	5	+0.93		10 .65	1 0.68	-0.76	+0.70	+0.52	~+10.46	
	MEASURE		WF76		WF04	WF07	WF31	WF43	WF42	WF1y	
	QUALITY	SVOTEIN STATE			FRUGHAMMERS' QUALIFICATIONS		TESTING STRATEGY	NEW PROJECT TYPE	CODE READING AND TESTING	DESIGN TEAM SIZE	
	CLASS FACTOR	•					P	•	Ġ	9	-
	OVERALL FACTOR	27		28			3	8	5	X	
ŋ											

Important Measures in the Additional Detail Class Table 5-7.

0

Ô

-								28/6291
MEASURE DESCRIPTION	NUMBER OF SUBSYSTEMS TO BE DEVELOPED	NUMBER OF LINES OF CODE TO BE DEVELOPED	TOTAL NUMBER OF DATA BASE ITEMS USED IN NORMAL PROCESSING	NUMBER OF UNCHANGED (OLD) LINES OF CODE OF FORTRAN THAT CAN BE USED	NUMBER OF INPUT/OUTPUT (INTERNAL) DATA BASE ITEMS USED IN NORMAL PROCESSING	NUMBER OF UNCHANGED (OLD) MODULES THAT CAN BE USED	NUMBER OF ERRORS PER THOUSAND LINES OF CODE	NUMBER OF DECISIONS PER THOUSAND LINES OF EXECUTABLE CODE
CORRE- LATION	86'0+	66'0+ 66'0+	+0.60	-0.67	-0.67	+0.66	-0.58	+0.67
MEASURE	MS02	SW30 ES08	MS20	SW44	MS18	60MS	SW76	SW82
QUALITY	EFFORT-RELATED SYSTEM SIZE		DATA BASE SIZE		INTERNAL DATA SET COMMUNICATION	USE OF OLD CODE	CODE ERROR CONTENT	CODE COMPLEXITY
CLASS FACTOR			2		n		ia J	9
OVERALL FACTOR	33		34		32	36	\$	%

ORIGINAL PAGE 13 OF POOR QUALITY

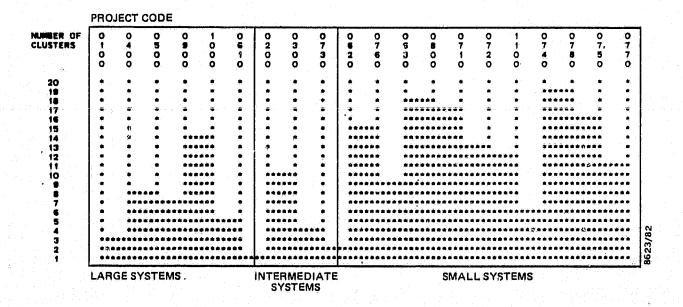


Figure 5-1. Cluster Map Based on Important Measures

APPENDIX A - FACTOR ANALYSES OF CLASSES OF MEASURES

This appendix reproduces the output of factor analyses of each of the classes of measures defined in Section 2.2.

These classes are as follows:

- 1. Software engineering practices (Table A-1)
- 2. Development team ability (Table A-2)
- 3. Difficulty of project (Table A-3)
- 4. Process and product characteristics (Table A-4)
- 5. Development team background (Table A-5)
- 6. Resource model parameters (Table A-6)
- 7. Additional detail (Table A-7)

The data used is that of the 20 independent systems described in Section 2.1. The output of the factor analysis procedure includes three types of information that are essential to interpreting its results. These information types are

- Factor loading--percentage of the variance in the data accounted for by each factor; shows the relative importance of factors
- Factor pattern--correlations of all measures with all factors; shows the underlying structure of the data
- Communality--percentage of each measure's variance accounted for by all factors; shows how well each measure is explained by the factor model

The information presented in the seven tables (one for each class of measures) is divided into three subtables (one for each type of information). The statistical software used to generate these tables is described in Reference 7.

ORIGINAL PAGE 13 OF POOR QUALITY

0.663234 0.015 0.942	22 0.000000 0.000 1.000	33 -0.000000 -0.000 1.000	
10 0.688794 0.016 0.927	21 0.000000 0.000 1.000	91 0.000000 -0.000000 0.000 -0.000 1.000 1.000	43 -0.000000 -0.000 1.000
0.811593 0.019 0.911	20 0.000000 0.000 1.000	0.000000	40 41 42 43 -0.00000 -0.00000 -0.00000 -0.000 -0.000 -0.000 1.000 1.000 1.000
8 0.936898 0.022 0.892	19 0. 106310 0.002 1.000	30 0.000000 0.000 1.000	-0.000000 -0.000 1.000
1.229209 0.029 0.870	18 0.167510 0.004 0.998	29 0.000000 0.000 1.000	40 -0.000000 -0.000 1.000
6 1.758555 0.041 0.841	0.216075 0.005 0.994	28 0.000000 0.000 1.000	39 -0.00000 -0.000 1.000
5 2.128184 0.049 0.801	16 0.244641 0.006 0.989	0.000000 0.000 1.000	-0.000000 -0.000 1.000
2.853782 0.066 0.751	0.304331 0.007 0.983	26 0.000000 0.000 1.000	36 0.00000 0.000 0.000 1.000 1.000
3.337928 0.078 0.685	0.428871 0.010 0.976	25 0.000000 0.000 1.000	36 -0.000000 -0.000 1.000
4.020055 0.093 0.607	13 0.463312 G=0/1 0.966	24 0.000000 0.000 1.000	35 -0.000000 -0.000 1.000
22.084404 0.514 0.514	0.556316 0.013 0.955	23 24 0.00000 0.00000 0.000 0.000 1.000 1.000	34 35 -0.00000 -0.00000 -0.000 -0.000 1.000 1.000
EIGENVALUES 22.084404 4.020055 PORTION 0.514 0.093 CUM PORTION 0.514 0.607	EIGENVALUES PORTION CUM PORTION	EIGENVALUES PORTION CUM PORTION	EIGENVALUES PORTION CUM PORTION

Factor Analysis of Software Engineering: Factor Loadings

Table A-la.

ible A-1b.	Factor A	Analysis Pattern	01 SOL	SOT CWATE DI	Elly Lilect	•
	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTORS	
MTO+	0.65412		0.03212	0.13958	4457	
MT03	•	0.30168		.0366	2256	
M TOTAL	0.66301	0.51384	-0.04414	-0.36612	-0.17254	
106	• ,		1230	4	-0.00814	
MT07	0.66912	0.35899	0.12983	0.29645		
MT09			.8542	,	0.07901	
MT 10	0.50122			•		
MT 15	0.87982	0.10076	.0828		0.14572	
-	0.69220		4816	ij	188	
	0.60770				1589	
E 13	0.68239		-0.07531	-0.33389	-0.21901	
MT20	0.69800			155	1725	
MT24	0.79364			.3687	0.08565	
MT25	0.78035				0.02263	
MT26	0.44269	-0.31685			.3504	
1501	0.81534	-0.17987			021	
1502	0.48535	0.54916	-0.31222	-0.20768	0.08271	
1505	0.54209	0 38974		•	193	
1506	0.25324	0.52279	0.31770	0.61936	-0.08375	
1507	0.57278	-0.28142			468	
1508	0.81329			•	. 1694	
1509	0.54815				0.32561	
1510	0.44180	-0.61114		-0.12648	0.08819	
1000	71489	0 20577	-0 25422		-0.08853	
000	0.70969			, ,	-0.14045	
DC03	0.74857			3464	-0.24992	
D C0 4	5717			.0436	-0.11076	
CO 3			28		. 1916	
DC04	0.58307	0.35453	4963	2176	3066	
10 000	4	0.12355		٠	-0.4380/	
	0.55567		0.08320	-0.06905	4717	
	9213	0.22956		0781	.0377	
MT82		-0.27650		.0768	.0294	
MT63		0.18730		.0355	0.30447	
MT84	o	-0.04204	0.09337	.0807	.0697	
1581		.0191	8	*	1999	
500	0.91000	20		٠.	-0. 19449	
2541	20986.0	.0473	5	n	*	

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

J))

1	50	90	in 6	8
	0.7120	TS	0.8289 DC	0. 853403
MIOS MIOG MIOT MIOS MIIO MIIS MIIG	0.816192	TSOS	0.804800	
Š	0.813985	TS03	DC04	DC81 DC81 D.962564
0.807948 0.709567 0.72775 MTO7 MTO9 MT16 MT15 MT16 MT17	0.756160	0.806113 0.875228 0.825083 0.700705 0.684595 0.6073	DC01 DC02 DC03	DC10 MT84 MT82 MT83 MT84 TS81 56242 0.955178 0.933333 0.752666 0.976503 0.930185
EQTIN	0.805083	1501 0.700705	DC02	MT64 0.976503
MT07	0.13	MT26 0.825093	DC01	MT83
MT06 0.709567		MT25 0.875228	1511	MT82 0.933333
WT05 0.807948		MT24 0.806113	1510 TS11 0.625763 0.833931	MT81 0.955178
MT04 0.869381		0.834918	TS09 0.704632	DC10 0.856242
MT03 0.849094	0743	0.730593 0.834918	T508 0.902375	0.833098 0.551502 0.85624
0.781006 0.849084 0.869381	4	0.686525	TS07 0.756791	DC08

Table A-1c.

ORIGINAL PAGE 19 OF POOR QUALITY

			7)									
EIGENVALUES	39,435268	30.	11.682730	7	5.836954	5.476028	4.430306	3.822976	3,016301	1.916783	1.689835	
COM POSTION	0.35g	0.159	0.106	0.067	0.053	0.050	0.040	0.035	0.027			
	2		.	ŧ.	16				8	25	22	
EIGENVALUES	1,535069	0	0.807219	0.505757	ò	9	0.067506	0.018636	0.0	0.0	0.0	
FUR. BODITON	0.014	0.00	0.00	0.00			0.00	0.00		-		
	*(6.5)	786.0	7	47.0	0.08	0.839	.000	1,000	- 80		8	
			25	200		78	29	30	Ħ	8	23	
EIGENVALUES	0.00000	ò	0.00000	0.00000	0	0.00000	di. 000000	0	0.00000	0.00000	0.00000	
PORTION	88	88	889	0.00	98	0.00	0.00	•	0.000	_	0.00	
FOX 104	3		3	8.	1.88	1.000	• •	8.	1.000	2.03	8	
			8	37	80	66	9	Ŧ	77	£#	7	
EIGENVALUES	0.00000	0.0	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0.00000	0.00000	0.00000	
PORTION	8		000.0	00.00		0,00	0.00		0.00			- 25
CUM PORTION	.00	• •	8	,- 80,-	- 8 - 8	1,000	.00	1,000	1.000	1.000	10.	1
4		. 4.	11	7		9	š	52	53	š	in in	Ġ.
EIGENVALUES	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0,00000	0.00000	0,00000	0000	000000	ć.
PORTSON	000.0		0.00	0.000	0.00		0.00	0.00	0.00			
CUM PORTION	2.80	8	8	1,000	1.00	1.000	 8	1.000	1.00	1.000	.00	
				50 50	8	5	3	63	3	16	9	
EIGENVALUES	0.00000	0.00000	0.00000	0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.0000	-0.00000	
PORTION	0.00		0.00	0.00			0.0	000	-0.00	-0.00	000	
CUM PORTION	- 200	88	1.000	2.000	-080	1.000	1,000	1.000	1,000	÷.83	1.000	
	29	***	69	70	5.2	72	73		75	31	F	
EIGENVALUES	-0.00000	-0.000	-0.000000	-0.00000	-0.000	-0.00000	-0.000.00	-0.00000	-0.00000	000	0	
PORTION	-0.00	Ţ	-0,000	-0.00		-0.000	00.0	-0.00	-000)	000	0
CUM PORTION	1.000		1.000	.000	1.000	1.000	1.00	1.000	\$,000	8		
			2	•	£2.	6	3	10	9	\	•	
EIGENVALUES	-0.00000	ò	-0.00000	-0.000000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	
PORTION	90.00	T	-0.000	T	-0.00	-0.000	-0,000	-0.000	-0.00		000	
CUM PORTION	1,000		1,000	1.000	\$.000	1.000	\$.000	\$.000	2.000	1.000	8	
		06	56	92	6	76	S	×	97		*	
EIGENVALUES	-0.00000	ò	-0.00000	-0.00000	-0.00000	000000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	
PORTION	-0.000	Ť	-0.00	-0.00	-0.000	-0.000	90,0	-0.000	-0.000	-0.00		
CUM PORTION	8	1.80 0	1.003	*. 80.	1.000	1,000	1 .80	1.000	8	1.03	1.000	
CTCCawannec	100	٢	102	103	101	105	901	107	3	5		
E JUENVALUES BOOT YOU	τ.					-0.00000	-0.00000	-0.00000	0.00000	0.00000	-0.00000	
CUR POPTION	9.5		96	88	98	88	8 8 8 8 8 8 8	9 9 9 9	9	9		
	}	3	3	3	3	1,000	8.	8	•.88	÷.8	8	

Factor Analysis of Development Team Ability: Factor Loadings

Table A-2a.

ORIGINAL PAGE 15

le A-2b.	Factor 1 Factor 1	Analysi Pattern	s of (1 o	Development f 3)		Team Abil
						1,2
	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTORS	FACTORG
₽ PO3	0.74945	1312	-0.13148	-0.03463	-0.44099	0.05066
APO4		4313	-0.09481	0.03382	-0.66656	-0.18960
APOS	0.40423			-0, 14507	0.55074	0.20188
APOG	0.22748	.0151	0.17368	0, 12358	0,25136	0.52101
AP07	0.47053	.3353		-0.04614		-0.27518
P 008	-0.00062	0.21763	-0.065/2	0.05230	0.27863	0.18810
AP 10	-0.22461	-0.25883	٠	-0.55827	0.398.0	•
AP11	0.16360	2716		-0.11007	-0.20459	-0.34BC5
AP 12	-0.04072	.3635		-0,44759	-9.02551	-0.21032
MGO:			٠		0.01581	-0.42671
MG02			0.26296	0.280	-0.06907	
	-0.02776	-0.65535	0.34435	0.27226	-0.23618	0.47150
SOUNT SOUNT	0.202.0	0.07173	18161-0-	367470	72200	. מכל מכל
9054	0.38946	0.49921	-0.49153	0.06342	0.0222	-0.08819
1000		0.50727		0.43158	-0.06411	-0.33771
805M	0.83326	-0.13424	0.37909	0.07160	-0.15303	-0.00465
609#	-0.09555	-0.41761		0.28499	-0.15684	0.39758
0101	-0.46525	0.11593		0.01027	0.67722	0.18606
	0.54669	0.56460		0.36383	0.02227	0.00195
2 5 5 7	0.47290	0.60627		1326	0220	-0.03545
719	0.51412	-0 15268	0.24679	0.05698	-0.14778	-0.23526
MG15	0.03522	-0.07389		6407	0.25035	0.40090
MG16	-0.37676	0.37554	0, 19873	-0.09295	0.57827	0.10571
MG17	0.46948	0.78253	-0.27259	0.19860	0.01847	. 1680
MG 18	0.49225	0.71258	-0.25467	-0.11588	-0. 19254	0.01749
G101	0.47138	-	-0.06603	-0.11737	-0.40237	0.03777
	0.86524			-0.25348	-0.23583	0.11331
1621	0.38607	0.36327	-0.27772	0.559944	0.38589	-0.12122
MG23	0.28731	0.68706	-0.48161	0.02146	0.04354	0.39314
MG24	0.34014	0.62697		-0.32436	-0.19492	.3150
MG25	0.47138			-0.11737	4023	0.03777
MG26			٠	-0.25348	-0.23583	0.11331
MG27	0.41570			0.47416	0,21934	-0.15988
1000 PM	0.13413	0.14792	0.75324	0.00126	0.06304	4149
C.394	0.3000			0.00		0.300.0
	0.32000	٠	2770	-0.53.0-	-0.12832	75085.0
MG32	0.30289	.0626			200	-0.11634
MG33		.2434				-0.36883
MG34	-0.14601	-0.53248	0.23786	0 24212	0.04769	
MG35		.0834	0.69580	-0.00806		
PFOI		.3896				
FF02	200	4767		*	2792	200
PF03	0.64936	-0.36257	-0.25324	0.06563	0.24835	-0.03552
,	?	,	7		7	7701.

Table A-2b.

Ability:																			<i>i</i>																				
Team Abi	FACTOR6		0.02935		-0.00044			-0.17593		0.11466	-0.0000	0.09629	0.15861		0.39750	0.33627	0.44366	-0.01688	0.06182	-0.03520	-0.03056	-0.01315	0,16498	0.25393	-0.09214	0.02156	-0.09666	-0.17942	-0.08350	-0.02063	0.07323	0.21808	0.22081	-0.30745	0.02093	0.32365	-0.00750	0.19559	0.00833
	FACTORS		-0.11920	-0.23111	-0.06183	0.21124	0.19307	0.18701	-0.20513	-0.25369	0.013/6	0.27385	0.22430	0.20821	-0.11531	-0.13414	-0.16055	-0.24200	-0.05109	0.27945	0.25595	0.28469	-0,16706	-0,21940	-0, 15245	-0.05351			-0.04770	0.00451	-0,10184	-0.02611	-0.10413	-0.04078	-0.17695	0.14906	0.58715	-0.11816	-0.05170
Development f 3)	FACTOR4	0.11768	0.16376	0,41898	0.01633	-0.14578	-0.C9190	-0, 15534	-0.01463	-0.15776	0,33133	-0.33606	-0.29598	-0.26750	0.05482	0,11879	0.03287	0.36647	5/510.0-	-0.16119	-0.11624	-0.17614	0,11495	-0.02532	0.49859	-0.09586	-0.07440	-0.65377	0.55546	0.44728	0.06471	-0.00327	0.03078	0.00003	-0.00704	0.73504	0.25654	-0.15762	0.24867
s of (2 o	FACTOR3	-0.25130	0.57671	0.22314	0.63408	C. 10894	0.10679	0.33583	0.31259	0.86903	0.11651	0.20595	0.16430	0.14616	-0.10555	-0.16100	0.62483	-0.35087	-0.02246	-0.01077	-0.00644	0.21392	0.02636	0.84073	-0.04032	0.08501	-0.01084	-0.08671	-0.00259	0.12675	0.18226		-0.28512	0.36603	0.26061	0.21434	0.39395	-0.38903	0 06517
Analysi Pattern	FACTOR2	-0.71436	0.04908	-0,66361	0.67314	-0.22769	-0.30228	-0.04521	-0,61250	0.09718	0.63373	-0.07328	-0.16153	-0.20252	-0.55698	-0.62177	0.24934	-0.74084	-0 21745	-0.33476	-0,39351	-0.15647	-0.74860	0.14812	-0.75674	-0.04465	-0.30394	-0.22993	0.30107	0.39385	0.60360		0.59954			-0.21303	0.32864	7178	0,57723
Factor	FACTOR1	0.42054	0.19399	0.27481	-0.23977	, 4		0.79502	0.56687		0.34783		0.76558	0.77107		0.55840	. *	0.24131	0.85755	0.87148	0.86370	0.68282		0.27010	0.32987	0.82544	0.73387	-0.04365	0.71604	0.72258	0.70197	0.62050	0.63834	0.00136	0.90880		-0.15241	1 1	0.74073
A-2b.		PFOS	PF07	PF08	PF09	PF 12	PF13	PFT Q	PF16	PF 17	01.10	PF21	PF22	PF23	PF25	PF26	PF27	PF28	PF31	PF32	PF23	PF35	PF36	PF37	PF38	APET	AP82	AP83	MGB 1	MG82	MG83	MG84	200 M	760	MG88	MG89	0657	MS92	E69M

ORIGINAL PAGE IS OF POOR QUALITY

lity:					-1								
am Abi	FACTORS	-0.11913	-0.09616	-0.09294	-0.08254	-0.04883	-0.03986	0.13453	0, 16014	0.16029	-0.05920	-0.03619	-0.03487
ment Te	FACTORS	0.10598	0.07241	0.05284	0.04893	-0.00650	-0.01923	0.06170	0.02855	0.01401	0.09289	0.04784	0.03302
evelopi 3)	FACTOR4	0,14219	0, 15914	0, 17553	-0.14643	-0, 15927	-0,14306	-0,28124	-0,25834	-0,24493	-0, 10243	-0.09265	-0.07465
Analysis of Deve Pattern (3 of 3)	FACTOR3	-0.08056	-0,07967	-0.06046	0.09542	0.13937	0.13956	-0.04198	-0.07352	-0.09058	0.02647	0.03187	0.03511
Analys. Patter	FACTOR2	-0.06112	-0.08723	-0.08703	0.18691	0.14652	0.13410	0.22260	0.20223	0.20420	0.08909	0.05881	0.05017
Factor Analysis of Development Team Ability Factor Pattern (3 of 3)	FACTOR	0.93825	0.93781	0.93713	0.94730	0.95238	0.95726	0.90495	0.91502	0.91779	0.97677	€.98308	0.98425
A-2b.		AB81	AB82	AB83	AB84	A885	AB86	AB87	ABBB	A389	AB90	AB91	AB92
Table A-2b													

Factor Analysis of Development Team Ability: Final Communality Estimates Table A-2c.

C

MG03	MG16 6675	9.00	. A. 19	44.00	294				
MG03 0.901046	MG16 0.676675	MG29	PF07 0.435654	PF22 0.802272	PF36 0.579090	MG86 0.480748	AB86 0.976223		
MG02 0.857736	MG15 0,839893	MG28 0.783356	PF06 0.830507	PF21 0.789914	PF35 0.924430	MG85 0,908763	ABB5 0.975706		
MGO1	MG14 0.907427	MG27 G.738029	PF05 0.778 132	PF 19 G.902592	PF34 0.961857	MG84 0.941118	AB84 0.972075		
AP12 0.497650	MG13 0.755860	MG26 0.928250	PF04 0.735418	PF18 3.901180	PF33 0.980831	MG83	AB83 0.931682		
AP11	MG12 0.754078	MG25 0.817192	PF03	PF17 0.930783	PF32 0.976972	MG82 0.893806	AB82 0.933266		
AP10 0.716892	MG11 0.839854	MG24 0.872267	9F02 0.830120	PF16 0.847534	PF31 0.960498	MG81 0.921149	ABB1 0.934115		
AP09 0.967436	MG10 0.723261	MG23 0.943462	PF01 0.828777	PF 15 0.803206	PF29 0.899733	AP84 0.822047	MG93 0.950707		
AP08 0.504653	MG09 0.909674	MG22 0.792920	MG35 0.620982	PF14 0.837293	PF28 0.945294	AP33	NG92 0.941860	AB92 0.980385	
APO7 0.433005	MG08 0.884625	MG21 0.881075	MG34 0.572184	PF13 0.871438	PF27 0.740538	AP82 0.717726	MG91 0.941648	AB91 0.983103	
AP06 0.432045	MGO6 MGO7 0.660742 0.873650	MG20 0.928250	MG33 0.428421	PF12 0.860450	PF26 0.872291	PF39 AP81 8048 O.797824	MG90 0.697038	AB90 0.985345	
AP05 0.770396	MG06 0.660742	MG18 MG19 MG20 0.865742 0.817192 0.928250	MG32 0.642775	PF11 0.830717	PF25 PF26 0.850603 0.872291	PF39 0.908048	MG89 0.814475	AB89 0.978121	
	MGO5 0,839854	MG18 0.865742	MG30 MG31 MG32 MG33 0.819275 0.837271 0.642775 0.428421	PF08 PF09 PF11 PF12 0.833878 0.916757 0.830717 0.860450	PF24 0.785034	PF37 PF38 PF39 AP81 0.914980 0.963425 0.908048 0.797824	MG88 MG89 MG90 0.935243 0.814475 0.697038	ABBB ABB9 AB90 0,976768 0.978121 0.985345	
AP03 0.794438	MG04 0.307666	MG17 0,975094	MG30 0.819275	PF08 0.833878	PF23 0.798380	PF37 0.914980	MG87 0.941611	AB87 0.971244	

Factor Analysis of Difficulty of Project: Factor Loadings Table A-3a.

				0
0,925749 0,017 0,956	0.000000 0.000 1.000	33 0.000000 0.000 1.000	-0.00000 -0.000	
10 1,137400 0.021 0,939	21 0.000000 0.000 1.000	32 0.00000 0.000 1.000	43 -0.00000 -0.000 1.000	54 -0.00000 -0.000 1.000
9 1,448499 0.027 0.917	20 0.000000 0.000 1.000	31 0.00000 0.000 1.000	42 -0.00000 -0.000 1.000	53 -0.000000 -0.000 1.000
2.225693 0.041	19 0.085632 0.002 1.000	30 0.00000 0.000 1.000	41 -0.00000 -0.000 1,000	52 -0.000000 -0.000 1.000
7 2.601864 0.048 0.849	18 0.114757 0.002 0.998	29 0.00000 0.000 1.000	40 -0.00000 -0.000 1.000	51 -0.000000 -0.000 1.000
6 3.376015 0.063 0.801	0.214231 0.004 0.996	28 0.000000 0.000 1.000	39 -0.00000 -0.000 1.000	49 50 000000 -0.000000 -0.000 -0.000 1.000 1.000
5 4.048277 0.075 0.739	16 0.251094 0.005 0.992	0.000000 0.000 1.000	38 -0.000000 -0.000 1.000	49 -0.000000 -0.000 1.000
4 6.516378 0.084 0.664	0.302701 0.006 0.006	26 0.000000 0.000 1.000	37 -0.000000 -0.000 1.000	48 -0.00000 -0.000 1.000
3 5.318222 0.098 0.580	0.339151 0.006 0.982	25 0.00000 0.000 1.000	36 0.00000 0.000 1.000	47 -0.000000 -0.000 1.000
2 9,905812 0,183 0,482	13 0.530939 0. 0.010 0.976	23 24 0.000000 0.000000 0.000 0.000 0.000 1.000 1.000	35 0.000000 0.000 1.000	46 -0.00000 -0.000 1.000
16,101457 9,905812 5, 0,298 0,183 0,298 0,482	12 0.556128 0.010 0.966	23 0.00000 0.000 1.000	34 0.00000 0.000 1.000	45 46 -0.00000 -0.00000 -0 -0.000 -0.000 1.000 1.000
EIGENVALUES PORTION CUM PORTION	EIGENVALUES PORTION CUM PORTION	EIGENVALUES PORTION CUM PORTION	EIGENVALUES PORTION CUM PORTION	EIGENVALUES PORTION CUM PORTION
	and the second second	and the second second	er in a service of	

I

J.																																																										
	rectors.	***************************************	2000	0.120	27.00	6,5350	0,25060	-6.01586	40.000	-0.225.22	23435			7	200	0,03189	6,660	-0.41155	0,37535	-0.21232	-0,13539	0.303.0	0.17142	2000			200	200	B1 - 77 - 0	2	2.256	0.0110	5000	0.32056	93250	4.356/5	O. 53855	0.06173	-0.23025	0.55	0,27025	0 05432	0,18796	9.5357	0.26779	4,66242	\$121.0°	4,06036	10,0094E	475EZ 9	0.37272	0,37333	0,07616	-0 serve	-0,32121	0.58302	0.02656	-0.01184
	NOTON'S					200	71877	23.02	152.57	50722	1357	7			3	8	22.23	9031	STATE OF	2562	17250	200	22.054	ALC:	No.		}		1		200	1818	1	7	14878	5 13	25.56	200	7713	27.75	\$338	25.53	N.	2	5	5	100 M	1769	2750	12.64	27.55	2382	25.00	7212		3535		
	7467083	A 47666			かんなん	0.14624	0,006	0, 15225	0,08870	317416	0.12515	2000	4	2000	2000	200	200	0.23458	AC843,0	-0.53552	0.27352	0,0486F	1755T'0	Q C8838	0.000		2 2 2 2		7.0566	27.037.5	0.200	1967	200	200	4,700	0,12618	0.74.74	0,153%	0,10663	0.5377	5,11123	0,46793	0.37854	0.16505	0.40125	200	6,0	-0.23244	3,2	0, 18353	G.24634	76320,0	0.45747	6,04500	0.62414	D.27016	0,01755	0.05637
	T. K.																																																							0.61204		
		2000	0 77367	-	27.00	0,7560	0.63774	0.2772.6	0,225	0.56558	0,08385	0.55773	0.4056			10000	0.102	0,7280	0.35873	0.316.0	07820	0,5222	0.40534	0.57528	6.75125	G. 175.36	a see of	2000			7,1661.0	7876.0	0.4660	2,2,0	0.45574	2	0,13836	0.74	0,13617	6,63,63	0,23750	0,387.65	0.12675	0.777.25	2	C.SCIET	0.5373	0.81284	0,59678	200	6,73082	0.1016	0,63,67	0.12820	0,03213	0,14823	0,26635	0.8224B
		8	000	1		\$	8	8	5	8	8	3	5	Š			\$!	1		ğ	ğ	2	Z	11122	Exch	EXCO	EXCE	200	Z.L.Y	3								213	2	ETE	EXTO	5	5	5	5	3		791			EXE	2X82	EXEC	EXEC	Eas	200	191	ä

Factor Analysis of Difficulty of Project: Pactor Pattern

Table A-3b.

		ble A-3c	Table A-3c. Factor Analysis of Difficulty of Project: Final Communality Estimates	or Analy 1 Cormun	ysis of nality F	Difficu Sstimate	1ty of 1 s	Project		
0.63	CP02	CPO1 CPO2 CPO3 0.596039 0.636774 0.741170		CPO4 CPO5 CPO6 CPO7 0.925763 0.785972 0.191026 0.917179	CP06 0.191026	CP07 0.917179	CP08 0.805640	CP09 CP10 0,341955 0.650713	CP 10 0.650713	CP11 0,727201
INO1 14224 0.7	1N02	1NO1 1NO2 1NO5 0.754224 0.744248 0.683264	INO6 0.812460	INOG INO7 0.812460 ().665543	INO8 0.537563	INO8 INO9 0.537563 0.855951	IN10 0.781835	IN10 IN11 IN13 0.781835 0.775640 0.589011	IN13 0.589011	EX01 0.794355
0	EX03 786687	EXO2 EXO3 EXO4 0.582140 0.786687 0.791812	EXD5 0.636736	EXO5 EXO6 0.636736 0.778387		EX07 EX10 0.810661 0.677676	EX11 0.518225	EX12 0.814700	EX13 0.685893	EX14 0.704257
0.7	EX 16	EX15 EX16 EX17 0.490811 0.759555 0.823724	EX18 0.748724	CP81 0.608562	CP82 0.913781	CP82 CF83 0.913781 0.776753	CP84 0.595311	CP85 0.919979	INB1 0.673478	IN82 0.919369
	IN84	EX81	IN84 EX81 EX82 EX83 EX84 EX85 EX86 EX87	EX83	EX84	EX85	EX86 0.847134	EX87 0.950348	DF81	

Transport of the second

Factor Analysis of Process and Product Characteristics: Factor Loadings Table A-4a.

L

5

	LUES 20.		CUM PORTION 0.429		EIGENVALUES 0.366580 0.247593		CUM PORTION 0.983		o	FORTION 0.000	PORTION 1.000		UES -0.000000 -0.	-0.000	CUM PORTION 1.000
	N.	0.209 0.107	0.638 0.7		247593 0,189834		0.988 0.99		000000 0.000000		1.000		000000 -0.000000	-0.000	1.000
	38 2.664181				34 0, 159592			27 28	•			39 40	000000-0-00		
	2,044268			17	0.130518	0.003	0.998	29	_			7	-0.000000		
Ú	1,481540	0.032	0.877	•	0.054129 0.	0.00	0.999	8	0.00000	0.00	1.000	42	0-0000000-0-	00.0	1.000
•	1.314107	0.028	0.905	6	0.028020	0.00	1.000	Ë	0.00000	000	.000	£.	.00000	-0.000	1.000
•	0.868366	0.0	0.923	20	0.00000	0000	.000	32	0.000000	0.000	1.000	7	-0.00000 -0.00000 -0-	-0.000	- 000
	0.859737	0.018	0.942	21	0.00000	0.00	1.000	33	0.00000	0.000	1.000	45	-0.00000	000-0-	- 000
5	0.710255	0.015	0.957		0.00000				0.00000				-0.000000		
	0.468093	0.010	0.967		_		3.000	35	0.00000	0.00	1.000	47	-0.000000		000
	0.391723	0.0	0.975	24	0.00000	000	.000	95	-0,000000	-0.000	1.000				

S FACTORS WILL BE RETAINED.

Factor Analysis of Process and Product Characteristics: Factor Pattern

Table A-4b.

		Ý			19	
	FACTOR1	FACTOR2	FACTOR3	FACTDR4	FACTORS	
PRO1	0.42322	-0.41947	0.26893	-0.33023	-0,42843	
PR02	0.81873	0.06867	2984	0.04724	0344	
PRO3	0.92228	0.10300	0.07309	0.14898	-0.03536	
PRO4	0.27144	-0.01322	-0.55304	-0.37382	-0.29477	
PROS		0.17588		0.16730	0	
PROG	0.18268	0.39158	•	0.00752		
PRO7	0.10536		-0.58970	0.07765		
PR08	0.67524		-0.31971		-	
PR09			.0163	-0.05577	0.24902	
P. 10			-0.13234	0.03206	-0.18697	
1 2 2 2	0.91272		-0.09071	0.14158	5 :	
PR12				0.09422	0, 13409	
F 13	0.62085	٠	4769		0.03283	
. C	0.0870	0.12035	0.7000	-0.19206	0.19180	
5	0.02988		0.23384	0.23370	٠,	
200	0.3566	0.37836	0.00	0.12390	1.	
200	0.03040	0.20404	0.00000	5050.0		
200	0.95238	0.03563	-0.04060	0.10168	0.12114	
		0.18231	75770	-0,10681	-0.16263	
	0.97186		0.09920	0.02762	0.02687	
200	0.92637	0.01260	18000	0.01283	0.04230	
PP11	0.72446	0.14832	0.04568	-0.51738	-0.09890	
RAOI	0.55135	0.12723	0.08950	-0.28342		
RA02	0.11619	0.76506	0.41890	-0.27141	-0.02390	
RAO3	0446	0.94744	-0.07748	0.03145	-0.18953	
RAO4				0.16530	-0.07410	
RAOS	0.29151	-0.74654	0.15711	0.25703	.1767	
RAOE	-0.25945	0.38546		0.63615	-0,30655	
RA07	-0.28928		-0.18156	-0.15228	0.07537	
RA 10	-0.14641	•	0.40526	0.16953	-0.02725	
RATI	-0.34226	0.91782	0.08115	0.04365	0.00235	
RA 13	-0, 18399	0.78369	-0.13000	-0.33714	0.27125	
RA 16	-0, 16222		0.24785	-0.51586	0.52100	
RA 17	-0.45284	٦,	0.39567	-0.00242	0.34350	
RABI	0.37449	0.71773	0.18068	-0.25235	-0.41149	
RAB2	-0.08844		0.15910	0.81159	-0.17506	
RAB3	-0.41961		0.16764	0.04609	0.11727	
RA84	-0.50983	٠	.3976			
RASS	-0.24282		0.28111	0.05291		
PRB1	0.19835		-0.92841	0.01683	0.01236	
PR82			-0.09673	0.10234	0.08042	
PR83	0,71964		0.41648	-0.03402	0, 15231	
PR84	0.94032		-0.29557	0.00086	-0.02493	
PP81	σ,	7	-0.01274	0.14185	.1455	
PP82	0.95704	0.12727	0.13256	-0.11936	8	
PP83	ŋ	7	0.06940	-0,00311	0.03053	

ORIGINAL PAGE IS OF POOR QUALITY

Factor Analysis of Process and Product Characteristics: Final Communality Estimates Table A-4c.

PRO1	PRO1 PRO2 PRO3	PR03	PR04 0.606337	PR05 0.889736	PRO4 PRO5 PRO6 0.606337 0.889736 0.729248	PR10 PR11 PR12 PR09 PR10 PR11 PR12 0.450045 0.581592 0.762626 0.887648 0.903562 0.891253	PR08 0,581592	PR09 0.762626	PR10	PR11 0.903562	PR12 0.891253
PR13	pp 13 pp 14 pp 01		PP02 0.948858	PP02 PP03 0.948858 0.959640	PP04 0.942838	PP04 PP07 PP08 PP09 PP10 PP11 PP04 PP09 PP10 PP11 PP11 PP04 PP09 PP10 PP11 PP04 PP09 PP10 PP11 PP04 PP09 PP09 PP10 PP11 PP09 PP09 PP09 PP09	PP08 0.956445	PP09 0.867309	PP10 0.929670	PP11 0.826385	RA01 0 747721
RAO2	RAO2 RAO3 RAO4	RA04	RA05 0.764295	RA06 0.728598	RA07 0.934166	RA05 RA06 RA07 RA10 RA11 RA13 RA16 RA17 0.764295 0.7228598 0.934166 0.848611 0.968029 0.852170 0.721860 0.716310 0.1	RA11 0.968029	RA13	RA16 0.721860	RA17 0.716310	RAB1 0.921032
0.877421	0.877421 0.932966 0.933679		RA85 0.967668	PR81	PR82 0.975803	RA85 PR81 PR82 PR83 PR84 PP81 PP82 0.966810 0.967917	PR84 0.972246	PP81	PP82 0,967917	PP83	

(4)

ORIGINAL PAGE IS OF POOR QUALITY

E I GENVALUES	59.	Ä	3	•	7.998630) bri	4.401192	8 321116	6	10	11	
PORTION CUM PORTION	0.413	0.220	0.101			0.038			0.013	•	-	0.006
EIGENVALUES PORTION CUM PORTION	0.832064 0.006 0.989	0.550651	15 0,468227 0,003 0,996	16 0.262852 0.002 0.997	0.185787 0.001 0.999	0.117753	0.059431 0.000 1.000	20 0.00000 0.000 1.000	0.00000 0.000 1.000	0.00000 0.000 1.000	80+	Ö
EIGENVALUES PORTION CUM PORTION	0.000000 0.000 1.000	0.000000	0.00000 0.000 1.000	28 0.00000 0.000 1.000	29 0.00000 0.000 1.000	30 0.00000 1.000	31 0.00000 1.000	0.00000 0.0000 0.000 1.000	o	Ö	0.0	0
EIGENVALUES PORTION CUM PORTION	0.00000 0.000 1.000	0.00000 0.000 1.000	39 0.00000 0.000 1.000	0.000000 0.00000 1.000	0.00000	42 0.00000 1.000	0.00000 0.000 1.000	0.00000	0.000000	0.00000	0	0.0
EIGENVALUES PORTION CUM PORTION	49 0.00000 0.000 1.000	0.00000 0.000 1.000	0.00000 0.000 1.000	9.00000 0.00000 1.000	0.00000 0.0000 1.000	Ö	Ö	Ö	0.000053 0.0000 1.000		0.0	ő
EIGENVALUES PORTION CUM PORTION	0.00000 0.000 0.000 1,000	62 0.00000 0.000 1.000	63 0.00000 1.000	64 0.00000 1.000	65 0.00000 0.000 1.000	0.00000 0.0000 1.000	0.00000 0.00000	o .	69 0.00000 0.000 1.000	o T	71 -0.00000 -0.000 -0.000	9
EIGENVALUES PORTION CUM PORTION	73 -0.00000 -0.000 1.000	74 -0.000000 -0.000 1.000	75 -0.00000 -0.000 1.000	76 -0.000000 -0.000 1.000	-0.00000 -0.000 1.000	78 -0.00000 -0.000 1.000	79 -0.000000 -0.000 1.000	-0.000000 -0.00000 1.000	-0.000000 -0.000 1.000	Ŷ	Ö	o T
EIGENVALUES PORTION CUM PORTION	85 -0.00000 -0.000 1.000	96 -0.00000 -0.000 1.000	67 -0.00000 -0.000 1.000	-0.000000 -0.000 1.000	69 -0.00000 -0.000 1,000	0.000000 0.000001	97 -0.000000 -0.000 1.000	92 -0.00000 -0.000 1.000		ģ	0,1	-0.00000 -0.00000 1.000
EIGENVALUES PORTION CUM PORTION	97 -0.00000- -0.000 1.000	-0.00000 -0.000 -1.000	99 -0.00000 -0.000 1.000	-0.000000 -0.000 1.000	101 -0.00000 -0.000 1.000	102 -0.000000 -0.000 1.000	-0.00000 -0.000 1.000	104 -0.00000 -0.000 1.000	0.00000 -0.000 -0.000	106 -0.00000 -0.000 1.000	-0.000000 -0.000 -0.000	104 -0.00000 -0.000 1.000
EIGENVALUES PORTION CUM PORTION	109 -0.00000 -0.000 1.000	-0.00000 -0.000 1.000	-0.000000 -0.000 1.000	112 -0.000000 -0.000 1.000	-0.00000 -0.000 1.000	-0.00000 -0.000 1.000	-0.00000 -0.000 1.000	-0.00000 -0.000 1.000	0.000000 -0.000 1.000	-0.00000 -0.00000 -0.000 1.000	-0.00000 -0.000 -0.000 -0.000	120 -0.00000 -0.000 1.000
EIGENVALUES PORTION CUM PORTION	121 -0.000000 -0.000 1.000	-0.00000 -0.000 -0.000 1.000	123 -0.00000 -0.000 1.000	124 -0.00000 -0.000 1.000	125 -0.00000 -0.000 4.000	126 -0.000000 -0.000 1.000	-0.000003 -0.000003 -0.0003 1.0003	128 -0.000000 -0.000 1.000	0.00000 -0.000 1.000	130 -0.000300 -0.000 1.000	0.000000 0.000000 0.000 0.1	-0.00000 -0.00000 -0.000 1.000
EIGENVALUES PORTION CUM PORTION	133 -0.00000 -0.000 1.000	-0.00000 -0.000 1.000	-0.00000- -0.000 1.000	136 -0.000000 -0.000 1.000	137 -0.00000 -0.000 1.000	138 -0.00000 -0.000 1.000	-0.00000 -0.000 1.000	140 -0.00000 -0.000 1.000	-0.000000 -0.000 1.000	-0.000000 -0.000000 1.000	0.00000-	144 -0.000000 -0.000 1.000
					S FACTORS	WILL BE RETAINED	ETAINED.				(

Factor Analysis of Development Team Background: Factor Loadings

Table A-5a.

0

Factor Analysis of Development Team Background: Factor Pattern (1 of 3) Table A-5b.

FACTORS	106	980	-0.11543	-0.08916	0.04872	-0.16062		-0.30435	-0.04142	9			-0.04984			.0365	7	-0.03140	ָרָאָל מילי	0.07413	0792	344		2756		5	2	-0.01421	20	17		5		-0.03091	1640		.2095	0.01342	1087	Ξ,	.26	Ę	.079	1120	0, 13039	ļ
FACTOR4	5.07673	30E-05	.03823	.00685	٦,	. 18657	.37064	Ň	1219	.25291	. 15199	20108	15672	.37537	. 10299	0.28040	46035	.00626		-0.27937 -0.37614	2785	1436	-0.13013	0.11062		81610		20161	14414	.33822	05830	.25733	47682	-0.00332	13211	14409	15739	0.57519	51494	47894	.07986	352	19382	0.08056	2904	0.07670
FACTOR3	.351	.37	.35	ų	ď	n	6	-	Ľ,	-0.22716	Ŋ	23	ņ	.230	7	0.01037	0.17506	0.34297	0.1.1628	-0.14682	-0.12320	.338	.37418	.06892	.01145		-0.24193	-0.26960	236	351	318	S.	٠, ١	0.33891	7	-0.17355	127	-0.30802	-0.13515	- 12	.32384	.39954	.01854	8	0	0.09347
FACTOR2		9		0.70933		. •		.47			0.64074				0.49283	0.88357	-0.44650	0.49062	0.00	0.63408	0.76955	0.71675	0.46289	0.88706	-0.51885	0.49266	0.63119	0.67725		744		.9057		0.49086			49B	0.22273	.07	.7291	58	.4974	₹ (.3880		5538
FACTOR1	6398	6195	9	ů			.234	0.46347	-0.77532	0.67703	0.66204		.5580	.3635	9	-0.26207			0.33860	, R	ु ज	335	w,	. 20		.7747	1000	0.64033	530	0.36540	68	2410	4183	-0.7/392	8028		.6996	9	0,77261	.,	4007	.7416	842	.8641	0.89702	7463
	YPO1	YPO2	VPO3	YPO4	VPOS	YP06	YP07	YPOB	VP09	YP11	YP12	YP13	YP 14	YP 15	YP 16	VP17	VP 18	97.73	7077	YP23	YP24	YP25	YP26	YP27	YP28	YP29	200	YP32	YP34	YP35	YP36	YP37	YP38	4739 4804	YA02	YA03	YAO4	YAOS	YA06		YAOB	VA09	₹:	VA 12	VA 13	YA 14

ORIGINAL PAGE IS

3

6

Team Background: 0.19564 -0.28651 -0.28651 -0.26973 -0.06338 -0.0638 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06388 -0.06 of Development 0.48826 0.387852 0.038789 0.03389 0.03381 0.28696 0.18057 0.08890 0.27860 0.08890 0.27860 0.46966 0.46966 0.46969 0.21639 0.31203 0.32333 .41003 .34203 .09576 0.09457 0.09481 0.029481 0.029481 0.0294837 0.166589 0.19421 0.23256 FACTORS of 2 0.37163 0.05929 0.77271 0.47392 0.47392 0.47392 0.47392 0.47393 Factor Analysis Factor Pattern 0.64135 0.76991 0.76991 0.46461 0.46461 0.72534 0.72534 0.72534 0.74738 0.7473 A32 A33 A35 A35 A39 E01 Table A-5b.

: pund		
ackgro		
Ä		
Team		ή
opment		
evel	£ 3)	
of D	(3 0	
or Analysis	Pattern	
Factor	Factor	
le A-5b.		
Table		

																			-(-																										
FACTORS	-0, 10616	0.38123	0.37074	0.37129	0.34874	0.21247	0.24462	0	0.15742	-0.13184	0.08401		0.12420	0.16201	0.14877		0.38254		0.14013	141	0.30027	0.32598	0.41808	5359		0.61678		0.15803	0.05185	0.04796	0.04813	0, 10886	0.04544	.0780	0.23192	. 1565	0.13323	0.07433	0.14654	0, 16159		.322	0.32611	u,	0.29022	*
FACTOR4	-0.06523	-0.14712	-0.07272	-0.03059	•	0.34686		0.15652		-0.04921		-0.04299	-0.05856	-0.08305	-0.33027	-0.25044	-0.45157	0.05752	-0.00519	0.37472	0.20311	0.15849	٣,	-0.29534	-0.28801		-0.10904		0.16195	0, 10357	0.10358	0.07338	.2157	-0.15554		0.08606		0.23073	0.11991		0.08180		-0.26499		-0.00867	FC600 0+
FACTOR3	0.36487	.5093		0.47572	0.68524	0.26835	0.21302	0.63717	0.03690	0.37359	-9.02229	-0.00667	-0.03812.	-0.14395	0.01084	-0.07316	-0.59545	-0.34014	-0.43596	-0,25834	-0.29478	-0.27666	-0.42560	-0.17642	-0.14364	-0.46458	0.02877	-0.41133	-0.34637	-0.33619	-0.32466	-0.44443	-0.16619	-0.11190	-0.57220		-0.37547	-0.26803	-0.26141	-0.26224	-0.42457	-0.14093	-0, 12771	-	-0.08708	A0700
FACTOR2	0.48698		۳,	-0.14359		-0, 14031	•	0.49843	-0.51844	•	0.24660	0.31389	0.34260	٣,	0.55433		-0.09963			-0.16301		-0.07314	-0.30134	0.02178	0.13161	-0.30647	0.39120	-0.48472	-0.26816		-0.16692		0.25633		-0.37249		×		-0.01315	0.02626	-0.21705	0,32143	0.39200		0,49489	
FACTOR1	-0,75820	7	0.75414		ų,	Γ,	0.63615	-0.46059	0.11474	-0.75810	-0.81210	-0.81088	-0.81324	-0.76621	-0.65992	-0.67210	0.06801	-0.44337	0.70971	-0.72843	-0.77927	-0.81227	-0.58582	-0.46319	-0.61328	0.06369	-0.61744	0.71796	-0.67744	-0.71807	-0.73556	-0.56119	-0.71035	7	٠		0.74250	-0.86027	-0.89466	-0.90743	-0.76349	-0.74755	-0.76057	•	-0.58362	72665
			4										•																				: 1													
	YE29	YE31	YE32	YE33	YESA	YE35	YE36	YE37	VE3B	YE39	RK01	RK02	RK03	RK04	RK05	RKOE	RK07	RKOB	RK09	RK11	RK12	RK 13	RK 14	RK 15	RK 16	RK 17	RK 13	RK 19	RK21	RK22	RK23	RK24	RK25	RK26	RK27	RK28	RK29	RK31	RK32	RK33	RK34	RK35	RK36	RK37	RK38	DK 30
																Α.	Jeg																													

ORIGINAL PAGE IS OF POOR QUALITY

YP 13	YP26	YP39	YA13	YA26	YA39	YE13	YE26	YE39	RK 13	RK26	RK39
0.934742	0.754648	0.955720	0.925353	0.775419	0.972136	0.916528	0.743083	0.965950	0. 873061	0.667825	0.957585
YP 12 0,940037	YP25 0.880859	YP38 0.799850	YA12 0.916350	YA25 0.807881	YA38 0.813754	YE12 0.894657	YE25 0.687106	YE38 0.653328	RK12 0.837962	RK25 0.646520	0.671419
YP11	YP24 0.894012	YP37 0.959150	YA11 0.879672	YA24 0.872187	YA37 0.956140	YE11 0.879009	YE24 0.947396	YE37 0.891158	RK11 0,784298	RK24 0.652260	RK37 0.921409
YP09	YP23	YP36	YA09	YA23	YA36	YE09	YE23	YE36	RK09	RK23	RK36
0.956696	0.886528	0.803427	0.974980	0.872397	0.932419	0.969391	0.941126	0.883365	0.957361	0.687367	0.924996
YP08	YP22	YP35	YA08	YA22	YA35	YE08	YE22	YE35	RK08	RK22	RK35
0.756778	0,889946	0,955944	0.685743	0,875578	0.909878	0.578364	0.944024	0.803856	0.663642	0.676667	0.899622
YP07	YP21	YP34	YA07	YA21	YA34	YEO7	YE21	YE34	RK07	RK21	RK34
0.931127	0.875359	0.952588	0.892240	0.863801	0.943092	0.839625	0.925577	0.958141	0.719366	0.679733	0.877461
YP06	YP 19	YP33	YA06	YA19	YA33	YE06	YE19	YE33	RK06	RK19	RK33
0.832851	0.950844	0.953204	0.897368	0.967998	0.958341	0.866835	0.959307	0.977364	0.891082	0.944630	0.928038
YP05	YP18	YP32	YA05	YA18	YA32	YE05	YE18	YE32	RK05	RK18	RK32
0.928059	0.791201	0.953038	0.847555	0.773166	0.957627	0.849253	0.677989	0.966949	0.874110	0.611054	0.904772
YP04	YP17	YP31	YA04	YA17	YA31	YE04	YE 17	YE31	RK04	RK 17	RK31
0.902457	0.929440	0.937096	0.822958	0.937299	0.942176	0.781622	0.897920	0.951464	0.677548	0.759993	0.881330
YP03	YP 16	YP29	VA03	YA16	YA29	YE03	YE16	YE29	RK03	RK16	RK29
0.906500	0.738561	0.955202	0.863150	0.892827	0.969132	0.847453	0.863803	0.960670	0.799035	0.772432	0.957900
YP02	YP15	YP28	YA02	YA15	YA28	YE02	YE15	YE28	RK02	RK15	RK28
0.908993	0,913558	0.685915	0.859435	0.835055	0.758358	0.878201	0.724289	0.832865	0.772397	0.620577	0.715537
YP01	YP14	YP27	YAO1	YA14	YA27	YE01	YE14	YE27	RK01	RK14	RK27
0.886023	0.937216	0.923374	0.832668	0.903245	0.833996	0.856055	0.875543	0.809534	0.728471	0.819394	0.628646

Factor Analysis of Development Team Background: Final Communality Estimates

Table A-5c.

 $\mathbb{R}^{n_{i}}$

ŧ

1

11 1.589455 0.022 0.914 22 .00000 -.000 -.000 .00000. 0.000 1.000 4 0000 0000 0000 0000 .000000 -0.000 1.000 66 00000 1.000 ó 10 2.428738 0.033 0.892 21 .00000 0.000 1.000 32 .00000 1.000 43 -0.000 -0.000 -1.000 54 -0.000 1,000 65 -0.000 1.000 ó Ö o o ģ 91.00000 0.0000 1.000 42 .00000 0.000 1.000 00000 20 0,000000 0,000 1,000 00000-2.712048 0.037 0.859 53 Resource Model Parameters 6 ó ó 3.229747 0.044 0.822 19 219206 0.003 1.000 0.000000 0.000001 .00000 0.000 1.000 52 .00000 -0.000 -1.000 63 -0.000 1.000 o 51 .000000 -0.000 1.000 3.567814 0.049 18 .498288 0.007 0.997 2900000 00000 00000 10000 62 .00000 -0.000 1.000 73 00000 -0.000 1.000 ó Ó 9 -0.000 -0.000 1.000 72 -0.0000 -0.000 0.00000 0.000 1.000 .00000 0.000 1.000 61 -0.000 -0.000 1.000 6 0.058 0.728 0.541002 0.007 0.990 o of 49 .000000 -0.000 1.000 71 .000000 -0.000 1.000 5 4.671458 0.064 0.671 16 .638142 0.009 0.983 27 .00000 0.000 1.000 .00000 0.000 1.000 60 00000 1.000 1.000 Factor Analysis Factor Loadings o 0 Ö P -0.000 -0.000 7.504366 0.103 0.607 15 739438 0.010 0.974 26.00000 0.000 1.000 0.000 59 .000000 -0.000 1.000 37 ó 0 ö o Ó 47 .000000 -0.000 1.000 -0.000 -0.000 1.000 14 0.014 0.964 0.00000 0.000 1.000 36 .000000 0.000 1.253 58 .000000 -0.000 1.000 3.332785 0.128 0.504 69 A-6a. 10. 181945 0. 139 0. 376 13 1, 190751 0,016 0,950 24 .000000 0.000 1.000 .0000 -0000 -0000 -0000 46.00000 -0.000 1.000 57 .000000 -0.000 1.000 00000-68 Table Ó O 17.264845 0.237 0.237 00000 0.00000 0.000 1.000 45 -0.0000 -0.000 1.000 56 .00000 -0.000 1.000 0000 1.467409 0.020 0.934 67 o EIGENVALUES PORTION CUM PORTION EIGENVALUES PORTION CUM PORTION

10

Ü

0

ORIGINAL PAGE IS OF POOR QUALITY

I

Ü

6b. F	Factor Ana	Analysis c	f Re	source M	Model P	Parameter	ü
)EI	Factor Pat	•	1 of 2)				
	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTORS	FACTORS	
PSO1	-0.61582		-0.03936	0.26185	0.32170	0.05601	
PS02	-0.01038	0.83143	-0.41250	0.01660		-0.06206	
PS03	4996	0.49380	-0.32180	-0.20295	-0.24840	-0.09918	
PSOF	. •		-0.24186	-0.24202	3215	-0.22429	
200	•	-0.50024	0.23426	0, 16200	-0.45284	-0.12031	
2000	0.33462	0.07867	-0.05556	0.15876	-0.52349	-0.42061	
PSOB	0.37815	-0.72110	0.30397		-0.16204	-0 14392	
PS09		0.24194			-0.35611		
PS 10	0.33044	-0.76711		0.25959	0.00665	0.05661	
PS11	0225	-0.61659		-0.61562	-0.15530	-0.07510	
PS12	0.13339	-0.54769		0.45610	-0.12939	0.07829	
PS13		-0,41536		0.50592	0.16904	0.08498	
PS14	-0.12911	-0.20368	-0.28223	0.64928	-0.20537	0.10893	
95.50	•	-0 20393	-0.13863	0.6637	-0.30270	-0 OFFE	
WF02	• 1	-0 42916		1200	-0.22878	-0.03804	
WF03	1	0.34502	0.46329	-0.36080	0.21058	-0.48814	
WF04	101	0.64625	0,37111	0.45790	0.09748	0.07961	
WFOS		0.53660	0.08235	0.43707	-0.09256	0.46833	
MF06	0.27975	0.35174	0.23424	0.39039	-0.01148	0.34130	
WF07	0.21854	0.68047	0.24035	0.28122	0.01056	-0.13083	
N CO	•	0.58587	0.15963	0.36913	0.04072	0.38361	
5		10.04	•	-0.20769	0.3/461	0.40044	
11 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.16583	0.42916	-0.66222	0.11209	0.01045	0.08804	
7.17		-0.36860		0.44.00	0.37270	0.02346	
ZE 17		-0.00733	-0.12604	-0.08619	-0.33667	0.27403	
WF 15		-0.11296	-0.13262	0.06175	0.02233	0.34564	
WF 16			-0.02588	0.01397	-0.15569	0.44569	
VF 18	0.54655	0.05019	-0.13568	0.18042	-0.29443	0.47124	
WF19	0.29819	0.14155	0.67074	0,14046	-0.36414	-0.32117	
WF20	0.54558	0.03735	0.12320	0.01940	0.30212	-0.03720	
WF21	0.46371	0.04087	-0.27935	-0.26810	0.01452	0.45333	
7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.72033	0.25475	-0.25511	-0.27252	-0.24259	0.25677	
200	0.07.0	0.27043	0.13595	2001	10.03	0.000	
WE32	0.27509	0.33490	0.72503	-0.34759	-0 17972	0.24168	
WF34	0.11957		0.46708	-0.36273	0 22969	-0.48108	
WF35	∵.	0.49336	0.27762	-0, 13538	-0.06241	0.01026	
WF36	0.29310		0.71864	-0.35705	-0.19610	1809	
WF37	0.27435		0.72517	-0.34673	-0.17791	0.21553	
WF39	-0.01750	-0.08748	4613	0.58820	S.	-0,14290	
WF40	-0.31462	.3130	-0.47431	•	-0.32741	-0, 15551	
474		0.31265	0.14400	0.15815	0.08797	0.37320	
NF43	0.24171	0.10033	0.3/350	0.29334	0.52310	0.03305	
VF 44	-0.61797	-0.10241		0.38720	-0.02727	-0.21662	
WF45	0.22937		. ,	-0.16421	-0.29732	0.04197	

Factor Analysis of Resource Model Parameters: Factor Pattern (2 of 2) Table A-6b.

1

Ö

	€1													0						5) :			
FACTORE	0.09022	0.24012	-0 47011	9 68829	-0.07845	10000	-C. HOLES	O CRISSIA	0.01534	02532 0-	21525 0	0, 22026	-0 15626	-O. 15387	0 15704	G 42878	-0 23C53	-0.15942	C 1283	O CITCER	-0.09758	0.05155	0.2507£	0.05665
FECTORS	-0.08853	231600	0. KOUN	0.25.55	D.24524	0.16163	-0.25£28	D 16577	0.22.29	-0.32373	-0.3253E	O WAND	E1323 0	0.35735	0.32799	0.18243	0,21567	0,42576	0.40727	-0.01379	O. 1917£	O. 115.87	-0. TSEET	G. COEE5
FACTORA	0.19978	-0.27207	THURS O	9,000,0	-0.CE333	O. \$4927	語はなる	Co. Section	0 31346	O. 64051	0,42512	0,23642	0,13700	0,04512	0.05186	DESERT OF	0.05245	06110	-0.IDS02%	C RESERVE	0,5000	0,22373	G. 21253	0,25959
FECTORS	-0.784EB	0.69085	D.34528	D.25575	0.25877	0.07284	-0.23727	-0,12851	D.OFFIG	0,56663	0.67743	-0,05303	G.CESTE	-O.11363	00000	0.05777	0,03917	D.00838	£3780.0	0, 13303	-0.2CE48	0.52443	-0.62184	0,25899
FACTOR2	0.32744	4.1323	0,05533	0,00374	0.01457	0,61823	0,24216	-0.EEC22	O. E.7122	0,21150	0.05876	-0, FETSE	80150	0.05257	D. CEESS	台、花花花	40 02 1255	0.02470	0.01231	-0.27021	0.05703	0,685,39	-0.02863	-0.7E711
FICTOR	-0.11554	-0.08EEE	-0.05562	O. 87338	0.87456	0.2253	0,71551	0.05744	-0 100es	0.30452	0.47012	0.66536	0.52344	0,87555	C. EGERS	0,54346	0.50580	0.8505	0.87207	0,67379	0.52503	O, CE1482	C. RS.FE3	0.23044
	WF45	五十五月	Din La	が印書	WF52	大川山地	出場	第 形色数	WEE2	EFE E	STEE	WE GT	WFER	14 ES	OK LAN	414	SETZ	25.35	お日山田	EL 138	51.38	10 F. C. S. S.	FE22	# 60 Kg

C23

Ć)

Factor Analysis of Resource Model Parameters: Final Communality Estimates Table A-6c.

					PS81	WF82	WF81	WF76	WF75	VF74	2737	uera uera uera uera uera uera uera pesu
WF71 G.647960	WF62 WF70 WF71 0.569735 0.827764 0.861259 0.659364 0.916660 0.936362 0.947488 G.647960	WF69 0.936362	WF68 0.916660	WF67 0.659364	WF66 0.861259	WF63 0.827764	WF62 0.569735	WF61 0.632247	0.905807 0.905993 0.528020 0.886814 0.632247	WF54 0.528020	WF52 0.905993	WF51
WF50	WF47 0.639472	WF46 0.792173	WF45 0.377506	WF44 0.639537	WF43	WF42	%F41 0.416708	₩F40 0.690216	WF35 WF36 WF37 WF39 WF40 %F41 WF42 WF43 WF44 WF45 WF46 WF47 0.344080 0.910971 0.911760 0.770846 0.690216 0.416708 0.568765 0.650263 0.639537 0.377506 0.792173 0.639472	WF37 0.911760	WF36 0.910971	WF35
WF34 0.769245	WF32 0.912380	WF16 WF18 WF3 WF30 WF20 WF21 WF22 WF23 WF31 WF32 664052 0.677020 0.814318 0.407271 0.572328 0.847889 0.772141 0.890931 0.912380	WF23 0.772141	WF22 0.847889	WF21 0.572328	WF20 0.407271	WF19 0.814318	WF18 0.677020	WF16 0.664052	WF13 WF14 WF15 0.589524 0.711876 0.622822 0.6	WF14 0.711876	WF 13
WF12 0.723361	PS14 PS15 PS16 WFO, WFO3 WFO4 WFO5 WFO6 WFO7 WFO8 WFO9 WF11 WF12 O.613411 O.586530 O.423707 O.67064£ O.761499 O.792407 O.737923 O.525873 O.664878 O.657220 O.416400 O.670645 O.723361	WF09 0.416400	WF08 0.657220	WF07 0.664878	WF06 0.525873	WF05 0.737923	WF04 0.792407	WF03 0.761499	WFO.	PS16 0.423707	PS15	PS14 0,613411
PS13 0.811133	PSO1 PSO2 PSO3 P\$\text{0.100940} 0.7022\text{0.100940} 0.7025\text{0.100940} 0.705572 0.796984 0.806279 0.886736 0.835362 0.871221 0.575899 0.811133	P511 0.871221	P510	P509 0.886736	P508 0.806279	PS07 0.796984	PS06 0.785572	PS05 0.700940	P. 34	PS03 0.709743	P502 0.866198	PS01

Y

Factor Analysis of Additional Detail: Factor Loadings Table A-7a.

ļi,

	0.040 0.030 0.028 0.023 0.023 0.023	O.850 Q.850 O.850	0 338538 0 325532 20 21 22	0.002 0.002 0.000 0.000000 0.000000 0.0	0.898 1.000 1.000 1.000	0.00000 0.00000 0.000000	0.000 0.0000 0.00000 0.000000 0.00000 0.000	1.000	42 44 44	0.00000 0.00000 0.00000 0.00000	1.000 1.000 1.000	200:	0.00000 0.00000 0.00000 0.00000 0.00000	1.000 1.000 0.000 0.000 0.000	000'1 000'1 000'1	69 89 69 69	0-000 0-000000 0-000000 0-0 00000 0-0 00000 0-0	1.000 1.000	76 75 80	-0.00000 -0.00000 -0.00000 -6.	1.000 1.000 1.000 1.000 1.000		-0.000000 -0.000000 -0.000000 -0.000000	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000	1.000 1.000 1.000 1.000	102 103	-0.00000 -0.00000 -0.00000 -0.00000 -0.00000	1.000 1.000 -0.000 -0.000 1.000 1.000	1.000	716 911 . 116 . 117 . 116	-0.000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.0000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.0000 -0.0000 -0.00000 -0.00000 -0.00000 -0.0000 -	1.000 1.000 1.000 1.000 1.000	126 127 128	-0.00000 -0.00000 -0.00000 -0.00000 -0.00000	1,000 1,000 1,000 1,000	
1 2000	0.061		0.	0.00		0.000000	0.00	1.000	0,000000	0.000		52	Š			0.000000 0.000000		8		9000	1.000	60	-0.0000	000.0	1.000	W.	P	1.000		0.00000 -0.000000		1.000	124	0.00000 -0.000000 -0.00000 -0.0000000		
13.299239 11.069012	0.097 0.061	,	0.914	0.981 0.987		0	2.00		0.00000 0.000000			. (0.000	-	62	0.00000 0.000000			75 75 -0.00000 -0.00000	: ·	1.000		•	1.000		86	-0.000	1.000	110	.000000	0.00		122 123	-9.000 -0.000		
EIGENVALUES 68.763092	CUR PORTION 0.562		_	CUM PORTION 0.972	¥,	0.0	CUM PORTION 1.000	P	EIGENVALUES 0.000000	10N		EIGENVALUES O COCCOO	}	1.000		-7-	10K		13 -0.000000	PURTION -0.000		82	00000	CUM PORTION 1.000		EIGENVALUES -0.000000 -0	-0.000	COM PURITOR 1,000		ELICENYALUES -0.000000 -0	CUM PORTION 1 COO		EIGENVALUES -0.000000 -0	-0.000	1.000	ÇÇ

6 FACTORS WILL BE RETAINED.

ORIGINAL PAGE 19 OF POOR QUALITY

N

ORIGINAL PAGE IS OF POOR QUALITY

Factor Analysis of Additional Detail: Factor Pattern (2 of 3)

Table A-7b.

FACTO SW55 SW55 SW53 SW53 SW55 SW55 SW55 SW57 SW57 SW65 SW65 SW65 SW65 SW65 SW65 SW65 SW65	ACTOR1 0.98853 0.90862 0.75049 0.82172 0.96045 0.94381 0.94534 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637 0.97637	FACTOR2 -0.05473 0.20535 -0.40309 -0.34885 -0.61206 -0.20482 -0.12704 -0.12704 -0.12704 -0.1873 -0.16283 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260 -0.08260	FACTOR3 0.01864 -0.06601 -0.37528 0.02490 0.02490 0.02671 -0.54622 -0.03027 -0.03027 -0.04721 0.16065 -0.04721 0.18659 0.18659	FACTORA 0.02529 0.12646 0.12646 0.12646 0.243914 0.11194 0.243916 0.13063 0.13063 0.13063 0.13390 0.0936 0.26583 0.26583 0.26583 0.026583 0.026583	FACTOR5 0.09759 0.21792 0.21792 0.11378 0.014612 0.14612 0.06695 -0.14041 -0.10228 -0.03181	FACTORE 0.08054 0.06089 0.05085 0.05085 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190
	10170 10170	0.20535 0.20535 0.20535 0.31208 0.25802 0.25802 0.12704 0.12704 0.12704 0.02550 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.09477 0.09474 0.09694	0.01864 -0.06601 -0.37528 0.02671 0.02671 0.02671 0.02671 0.02672 0.02307 0.06322 0.06322 0.06322 0.06322 0.06322 0.06322 0.0605	0.02529 0.12646 0.3922 0.54918 0.02139 0.02139 0.14108 0.13063 0.13063 0.13063 0.13063 0.0936 0.00936 0.00936		0.06072 0.06689 0.06689 0.05085 0.02190 0.02190 0.02936 0.02936 0.02936 0.02950 0.02960
	55049 55049 55049 55049 60045 60045 44534 44534 4453 7334 7334 7334 7334	0.20535 -0.40309 -0.34885 -0.61206 -0.25802 -0.17704 -0.12704 0.12704 0.02550 -0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260 0.08260	-0.06601 -0.37528 -0.21490 -0.02671 -0.02671 -0.08271 -0.08271 -0.0307 -0.0307 -0.04721 -0.04721 -0.0808 -0.08	0. 22822 0. 12646 0. 54918 0. 54918 0. 11194 0. 11194 0. 18925 0. 13063 0. 13063 0. 13063 0. 13063 0. 13063 0. 13063 0. 12083 0.		0.06689 0.06689 0.06689 0.15735 0.02190 0.02336 0.03992 0.0399 0.12861 0.12861
	55049 172 172 172 172 173 175 175 175 175 175 175 175 175 175 175	-0.40309 -0.34885 -0.261865 -0.25802 -0.07691 -0.17704 -0.1873 -0.16283 -0.08260 -0.08260 -0.08260 -0.16819 -0.16819 -0.16819 -0.16819 -0.06694 -0.05694 -0.05694 -0.05694	-0.37528 0.12144 0.28495 0.02490 0.02671 -0.54622 -0.32612 -0.02307 -0.02307 -0.05307 -0.05306 -0.04721 -0.0808 -0.0	0.12646 0.37282 0.02439 0.02439 0.11194 0.14108 0.14108 0.14108 0.14108 0.13063 0.13063 0.0936 0.00936 0.00936		0.05085 0.05085 0.05085 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190 0.02190
d d d d d d d d d d d d d d d d d d d	22172 10170	0.34885 0.25802 0.25802 0.25802 0.12704 0.12704 0.12704 0.12704 0.12704 0.12704 0.16283 0.16288 0.16357 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319 0.16319	0. 12144 0. 28495 0. 02490 0. 02671 0. 02671 0. 06327 0. 06322 0. 06322 0. 06322 0. 06322 0. 06323 0. 06323 0. 16005 0. 18659 0. 18659 0. 2844	0.51914 0.51914 0.021914 0.14108 0.14108 0.13063 0.13063 0.13063 0.13063 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936		0.05085 0.15732 -0.02190 -0.02190 0.1280 -0.00457 -0.00457 -0.00726 0.12861 -0.01050
d d d d d d d d d d d d d d d d d d d	100170 16045 14534 14534 1416 13799 15346 15365 17255	-0.61206 -0.20482 -0.07691 -0.1777 -0.13035 -0.09477 -0.16588 -0.16588 -0.16588 -0.16588 -0.16588 -0.16588 -0.01480 -0.014819 -0.014819 -0.016918	0.28495 0.02490 0.02671 -0.54627 -0.08271 0.06322 -0.50706 -0.04721 0.16005 0.28411 0.18659 0.28446	0.54914 0.02139 0.02139 0.14108 0.48425 0.13063 0.13063 0.13063 0.0936 0.0936 0.04593 0.0683 0.0683 0.04659		-0.15732 -0.02190 -0.02190 -0.02180 -0.02180 -0.00151 -0.00150 -0.00999 -0.12861 -0.01050
d d d d d d d d d d d d d d d d d d d	66045 44381 4534 4416 77637 77637 7398 7398 7398 7398 7398 7398 7410 7255 77410 7255 77410 7255 7410 7410 7410 7410 7410 7410 7410 7410		0.02490 0.02671 0.02671 0.02672 0.02307 0.06322 0.04721 0.16065 0.16065 0.2841 0.01081 0.01081 0.20462	0.02139 0.14194 0.14195 0.14195 0.14195 0.13063 0.13063 0.13063 0.0936 0.0936 0.00936 0.00936 0.00936		-0.02190 -0.02190 -0.02936 -0.02936 -0.00157 -0.00158 -0.00999 -0.01050 -0.01050
d d d d d d d d d d d d d d d d d d d	45381 4533 4534 44416 77637 73799 73799 737637 77255 7725 772		0.02671 -0.54622 -0.32612 -0.02307 -0.05307 -0.50706 -0.04721 -0.0808 -0.0808 -0.0808 -0.0808 -0.0808 -0.0808 -0.0808 -0.0808	0.1194 0.14108 0.14108 0.14108 0.13063 0.13063 0.13063 0.09936 0.09936 0.09936 0.09936		-0.97280 -0.02936 -0.02936 -0.00457 -0.00459 -0.1056
d d d d d d d d d d d d d d d d d d d	4533 4534 4534 13799 13065 13065 13065 17255 17255 17697 17697 17697 17697 17697 17697 17697		-0.54622 -0.08271 -0.02307 -0.05302 -0.050706 -0.04721 -0.0808 -0.0808 -0.0808 -0.0808 -0.16065 -0.18659 -0.20462	0.14108 0.43951 0.08325 0.13063 0.13063 0.13063 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936 0.0936		-6.02936 0.12423 -0.09992 -0.00756 0.12861 -0.01050
d d d d d d d d d d d d d d d d d d d	4534 4416 3799 3799 5346 5346 5346 7725 7725 7725 7725 7769 7769 7769 7769 7769 7769 7769 776		-0.08271 0.32612 0.06322 -0.50706 -0.04721 0.0608 0.28411 -0.38623 0.01081 0.21814 0.21814	-0.39951 -0.08325 -0.10432 -0.1063 -0.13063 -0.13390 -0.20583 -0.20583 -0.20583 -0.20583 -0.20583		0. 12423 -0.0992 -0.00157 -0.00726 0.00999 0. 12861 -0.01050
d d d d d d d d d d d d d d d d d d d	4416 77637 77637 7396 73065 7396 7253 7725 7725 7725 7725 7726 7726 7726 7726		0.32612 0.02307 0.06322 -0.50706 -0.04721 0.16005 -0.0808 0.28411 -0.38623 0.01081 0.01081 0.20462	0.48425 0.10832 0.13063 0.13063 0.130830 0.0936 0.20583 0.20583 0.20583 0.20583	-0,10228 -0,03181 -0,00486 -0,22165	-0.09992 -0.00457 -0.00726 0.00999 0.12861 -0.01050
d	7637 33799 33786 33065 33065 33464 7253 7410 6893 77697 77697 17697 17697 17697 17697 17697		0.02307 0.06322 0.06322 0.04721 0.16065 0.0808 0.28411 0.01081 0.20462 0.20462	0.10418 0.10418 0.104195 0.10870 0.0936 0.20583 0.04662 0.04662	-0.03181 -0.00486 -0.22165 -0.03865	-0.00457 -0.00726 0.00999 0.12861 -0.01050 -0.0402
0000000000000000 00000000000000000000	3799 55346 13065 13065 13065 17255 17410 17255 17410 17697 1		0.06322 0.50706 -0.050706 0.16005 -0.00808 0.28411 0.01081 0.18659 0.20462 0.05946	-0.10418 0.13063 -0.13195 -0.13870 0.20583 -0.24593 -0.04062	-0.00486 -0.22165 -0.03865	-0.00726 0.00999 0.12861 -0.01050 -0.00402
၀၀၀၀၀၀၀၀၀၀၀	5346 13065 11983 11983 125464 12233 17255 17255 17255 17255 17253 17253 17697		-0.50706 -0.04721 -0.04721 -0.0808 0.28411 -0.38623 0.01081 0.18659 0.20462	0.13063 -0.43195 -0.19870 -0.0936 0.20583 -0.24593 -0.04062	-0.22165	0,00999 0,12861 -0,01050 -0,00402
၀၀၀၀၀၀၀၀၀၀ ၀၀	13065 11983 12338 17255 17410 10893 10893 10892 11263		-0.04721 0.16005 -0.0808 0.28411 -0.38623 0.01081 0.20462 0.21814	-0.43195 -0.19870 -0.13390 0.0936 0.20583 -0.24593 -0.04062	-0.03865	-0.01050 -0.00402
00000000000000000000000000000000000000	1983 15464 12338 17410 10893 17697 10492 19591 11263		0.16065 -0.00808 0.28411 -0.38623 -0.38659 0.20462 0.21814	-0.19870 -0.13390 0.09336 0.20583 -0.24593 -0.04062		-0.01050
၀၀၀၀၀၀၀၀ ၀၀	12338 17255 17410 10893 17697 10492 19591 19591		-0.00808 0.28411 -0.38623 0.01081 0.18659 0.20462 0.21814	-0,13390 0,0936 0,20583 -0,24593 -0,04062	-0.42699	-0.00402
	12338 17255 174 10 10893 10492 19591 19591 11263		0.28411 -0.38623 0.01081 0.18659 0.20462 0.21814 0.05946	0.09936 0.20583 -0.24593 -0.04062 0.07856	-0.02787	CHARLE CI
	17255 174 10 10893 17697 10492 19591 11263		-0.38623 0.01081 0.18659 0.20462 0.21814	0,20583 -0,24593 -0,04062 0,07856	-0.17345	200
0000000000 000	17410 10893 17697 10492 19591 18984 11263		0.01081 0.18659 0.20462 0.21814 0.05946	-0.24593 -0.04062 0.07856	-0.36507	6
6 6 6 6 6 6 6 6 6	17697 17697 10492 19591 19591 11263		0.18659 0.20462 0.21814 0.05946	-0.04062 0.07856	-0.29185	0.08854
၀၀၀၀ ၀၀	17697 10492 19591 18984 11263		0.20462 0.21814 0.05946	0.07856	-0.50176	-0.07616
	10492 19591 18984 11263		0.21814		-0.21677	-0,11076
0000000	19591 18984 11263		0.05946	-0.29050	-0, 19800	0.36680
000000	18984 11263 11424			0.16545	0.20958	0,38916
	1263		0.12144	-0.06157	-0.17974	-0.33909
	11424		-0.05886	0.20512	0.06595	0.20305
			0.22479	-0.15612	-0.12540	0.19916
	.07549		0.16810	-0.05588	-0.57887	-0.23035
	. 15903		0.18117	-0 07777	-0.51341	0.01444
	20550		0.25236	-0.04019	-0.02626	0.44219
	.37522	0.42712	0.27685	-0.17964	-0.57402	-0.27721
SWBD 0.2	23716	0.44802	0, 16735	-0.21020	.5562	-0.45138
0	3105	-0.50005	-0,16777	O. 10626	0.32611	0.15897
	127 18		-0.01289	0.09320	0.22874	0.66504
	49425			-0.08355	0.35289	0.15019
٠,	56245	-0.43453	-0.05600	-0.14264	0.23759	-0,31911
	19826	-0.24526	0.14313	0.05016	-0.01992	-0,41784
9	16176		-0, 17655	-0.02764	0.04936	-0.65176
0	62168		0.06020		0.21347	-0.29646
SW88 0.4	43846			-0.32223	-0.00128	-0.59093
ò	12928	-0.01697	-0.20408	-0,31935	0.11368	0,32635
0	23079	0, 19662	0.37918	0.22785	33	-0,14993
MS01 0.5	51842		0,52935	.2399	0, 16947	0.03683
0.9	97548	0.01198		0.07305	Ξ,	-0.06054
0.7	71448			-0.18396	33	0.07664
	49511	0.26109		0.34295	111	0.00211
4.	46759	•	0,39571	,0635	9	441
.0	8056	,303	690	.0342	.382	. 255
0	2695	. 19	, 139	.261	3	. 299
	•	4	.662	.3037	238	10.

ORIGINAL PAGE IS

O

0

D

Table A-7b. Factor Analysis of Additional Detail: Factor Pattern (3 of 3)

	FACTOR1	FACTOR2	FACTOR	FACTOR4	FACTORS	FACTORG
MS09	0.12425	0.35637	0.42886	0.12569	0.25637	0.03740
MS 10	0.51513	0.55638		0.24973	0.35629	-0.05916
MS11		0.44725		0.13192	0.18532	0.04924
MS 12		0.15.66	0.22127	0.10743	-0.08580	.0383
MS 13				,	•	0.27095
MS 14			-0.58165			,
MS 15				•	0.26577	0.58504
MS 16	-,	•	٠,	0, 19230		0.47045
MS17	0. 19937			-0.22128	1042	-0.25884
MS 18	0.39144	0.45108	-0.66506	0.31877	0.22759	-0.01216
MS19	0.07027	٠,	0.42859	0.14843	0.22905	0.07409
MS20	0.43726	o	-0.4441	0.29504	0.31784	-0.03688
MS21	0.82525	o	0.08246	0.08137		0.15452
MS22	0.70135	o	0.09242	0.34346	-0.29179	0.33146
MS23	0.97676	ó	-0.09176	-0.07872	0,11135	-0.00892
MS24	0.95242		-0.05241	-0.00971	0.07633	0.04293
MS25	0.96571	ō	-0.00893	0.03084	-0.07366	0.09572
MS26	0.87840	ó	0.19346	0.06701	-0.18264	-0.08940
MS27		o	0.23662	0.10439	-0, 19801	-0.07132
MS28	0.90657	0	0.19919	0.06717	-0.15267	-0.03116
ES01	•	0.09081	0.06890	0.21381	0.03602	-0.05394
ES02.			0.03833	0.22228	0.05799	-0.00156
ES03	•		-0.04393	0.05848	0.09671	0.01924
ES04	•		-0.07380	-0.26977	-0.01836	
E508	•		0.08409	0.04949	0.07089	-0.04245
ES09	0.96628	0.19861	-0.06104	-0.12751	0.03222	
ES10	0.84447	-0.30691	0.06420	-0.33445	0.00623	0.04653
ES05	0.86217		0.04672	-0.02141	-0.37655	
ES06	٠.	0.12922	-0.02427	-0.08200	-0.02059	-0.00228
ES07	0.96095	0.08276	-0.01927	0.03717	-0.09784	0.10703
ES14		0.09424	0.05767	0.01674	-0.32128	0.09262
ES 15		0.10549			-0.32942	
ES16	0.90529	-0.09630		-0.18493	-0.04834	
ES 17	0.76724	-0.06857		7.		
ES18	0.82451	0.04177	0.03863	0.14840	-0.46760	0.04004
ES 19	-0.14518	0.05724	-0.04954	-0.07192	0.03166	-0.09214
ES11	0.92319	0.30095	-0.07755			-0.06986
ES12	0.75937		. •		•	,
ES 13	0.68418	-0.56182	0.31309	0.27323	0.10642	-0.09911

		**		er :							
	SW13 0,759769	5W26 0.986699	SW39 0.904439	5888 0.899957	SN65 0.957647	SW78 0.495785	MS01 0.849111	MS14 0.781394	MS27 0.904867	ES15	
	SW12 0.977597	SW25 0.989250	5N38 0.679462	SW51 0.975821	SW61 0.638534	SW17 0 506792	SW90 0.424238	MS13 0.424257	MS25	E514 0.958421	
••	SW11 0.924130	SW24 0.915428	SW37 0.699660	SW50 0.995208	SW63 0.930251	SW76 0.678099	SW89 0.280554	WS12 0.914442	MS25 0.956782	ES97 0.953060	
Detail	SW10 0.991463	SW23 0.893071	SW36 0.977886	SW49 0.966254	SW62 0.900094	SW75 0.291462	SW88 0.657350	MS11 0.854256	MS24 0.976905	ES06	
of Additional Detail: ty Estimates	SW09 0.990079	SW22 0.866141	SW35 0.880011	SH48 0.945410	SW61 0.955023	5474 0.140167	5487 0.629059	MS10 0.954860	MS23 0.981219	ES05 0.945331	
: Analysis of Addition Communality Estimates	SW08 0.919064	SW21 0.980943	SW34 0.851507	SW47 0.955061	SW60 0.977937	SW73 0.405776	SW86 0.485473	NS09 0.409277	MS22 0.816728	ES 10	
alysis munalit	SW07 0.917288	SW20 0.986901	SW33 0.740515	SW46 0.989289	SW59 0.961436	SW72 0.450384	S.35 0.297453	MS08 0.951378	₹521 0.816481	ES09	ES13 0.977566
Factor Analysis Final Communali	SW06 0.969776	SW19 0.903974	SW32 0.977597	SW45 0.990520	SW58 0.929055	SW71 0.401939	SW84 0.686930	MS07 0.481627	MS20 0.939138	ES08	ES12 0.955061
7c. Fac Fir	SW05 0.992003	SW18 0.705692	SW31 0.900374	SW44 0.932379	SW57 0.900267	SW70 0.972269	SW83 0.658905	MS06 0.918820	MS 19 0.393549	ES04 0.923642	ES11 0.989289
Table A-7	\$ V04	SW17 0.665593	SW30 0.993981	SW43 0.917134	SW56 0.970805	SW69 0.553251	SW82 0.647550	MS05 0.717705	MS18 0.952559	ES03 0.975958	ES19 0.041469
H H	SW03		SW29 0.957790	SW42 0.886797	SW55 0.987318	SW68 0.939624	SW81	MS04 0.753861	MS17 0.273404	ES02 0.984564	ES18 0.925321
	SW02			SW41	SW54 0.948462	Sw67	SW80	WS03	MS16 0.870348	ESO1 0.990337	ES17 0.869203
		SW14			SW53	SW66	SW79	MS02	MS15 0 726578	MS28 0.912154	ES16 0.956881

APPENDIX B - FACTOR ANALYSIS OF CLASS FACTORS

Table B-l reproduces the output of the factor analysis of the 38 class factors defined in Section 4.2. Appendix A (Volume 1) reproduces the analyses that generated the class factors analyzed in Table B-l. The elements of Table B-l are explained in Section 3.2 and Appendix A of this volume.

ORIGINAL PAGE 18

П

I

Tab	Table B-la.		or Anal	ysis of	Factor Analysis of Combined Factors:	ed Fact		actor 1	Factor Weights	
EIGENVALUES PORTION CIM PORTION	5.911264 0.156 0.156	2 5.487984 0.144 0.300	3 4.550632 0.120 0.420	4.254443 0.112 0.532	5 4,194758 0,110 0,642	6 3,146996 0,083 0,725	7 2.401181 0.063 0.788	1.811425 0.048 0.836	9 1.610531 0.042 0.878	10 1,213957 0,032 0,910
EIGENVALUES PORTION	0.835570 0.022 0.932	12 0.667346 0.018 0.950	13 0.531131 0.014 0.964	0.419778 0.011 0.975	15 0.292650 0.008 0.982	16 0.229489 0.006 0.988	0.203478 0.005 0.994	18 0.148694 0.004 0.998	19 0.088686 0.002 1.000	20 0,000000 0,020 1,700
EIGENVALUES PORTION CUM PORTION	21 0.00000 0.000 1.000	0.00000 0.000 1.000	23 0.000000 0.000 1.000	24 0.000000 0.000 1.000	25 0.000000 0.000 1.000	26 0.000000 0.000 1.000	27 28 30 -0.500000 -0.000000 -0.000000 -0.000 -0.000 -0.000 -0.000 -0.000 1.000 1.000 1.000	28 -0.000000 -0.000 1.000	29 -0.000000 -0.000 1.000	30 -0.007250 -0.055 1.050
EIGENVALUES PORTION CUM PORTION	31 -0.00000 -0.000 1.000		33 -0.000000 -0.000 1.000	34 -0.00000 -0.000 1.000	32 33 34 35 36 300000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000 -0.000 -0.000 1.000 1.000 1.000 1.000 1.000	36 -0.00000 -0.000 1.000	37 -0.000000 -0.000 1.000	36 -0.00000 -0.000 1.000		

S FACTORS WILL BE RETAINED.

ORIGINAL PAGE IS OF POOR QUALITY

Table B-lb. Factor Analysis of Combined Factors: Factor Pattern

	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTORS
FACTOR01	0.52285	0.26370	0.67622	0.03723	C.27397
FACTOR02	-0.26059	-0.66952	0.50424	•	
FACTOR03	•		•	•	
FACTOR04	4142	-0.58681	٠,	0.43864	
FACTOROS			-	•	0.08660
FACTOR06		0.26758	٠	.0729	
FACTOR07	•	•	-0.08156		
FACTOROB	0,59995	o	-0.61325	0.08940	0.02487
FACTOR09		,	0.23417		-0.16168
FACTOR 10	-0.27069	ທຸ	٠		4
FACTOR11		0.34452	-0.33968		
FACTOR 12	-0.62211		Ç	0.18694	
FACTOR 13		•	0.23459		-0.48441
FACTOR14	-0.15095		. 5240		
FACTOR 15	•		•	-0.86321	
FACTOR 16	0.05193			-0.09413	٠
FACTOR 17		.3187			0.41118
FACTOR 18	.0203	-0.55847	5766		Τ.
FACTOR 19			.0984	-0.4990th	0.34039
FACTOR20	-0.27002				
FACTOR21		0.10824	-0.29772	.6206	1
FACTOR22	0.02929	.31	0.52305		
FACTOR23	0.31896		•	. 1293	
FACTOR24	0.43632				0.11100
FACTOR25			-0.51270	•	
FACTOR26		•	•	0.07902	0.25327
FACTOR27		٠	0.36108	•	36
FACTOR28		•	3584	-0.03494	ĸ,
FACTOR29			٠		
FACTOR30	0.43686	0.26729	٠,	.2331	
FACTOR31	-0.05800	0.58038	-0.07950		0.48051
FACTOR32	0	•	-0.14431		-0.00690
FACTOR33	-0.61269	0.64236	•	6 .	-0.09825
FACTOR34	•		,		
	ব	•	က္	4277	. 25
FACTOR36	•	3	٠	4.	.2328
FACTOR37	٦.	.435	80	0.34876	12
FACTOR38	-0.16354	-0.29895	478 ⁶	S,	0

ORIGINAL PAGE 19

I

I

3

Communalities Factor Analysis of Combined Factors: Table B-lc.

					FINAL COM	FINAL COMMUNALITY ESTIMATES:	TIMATES:					
FACTORO 0.876626	FACTORO! FACTOROZ FACTORO3 FACTORO4 F 0.876626 0.920582 0.327504 0.792038 0	FACTOR03 0.327504	FACTOR04 0.792038	FACTOROS 0.604361	FACTORO6 0.964970	FACTOR07 0.597777	FACTORO8 0.754509	FACTOR09 0.379267	FACTOR 10 G. 632835	FACTOR11 0.656348	FACTOR 12 0.917928	FACTOR 13
FACTOR14 0.670004	FACTOR15	FACTOR16 0.297016	FACTOR 17 0.909303	ACTOR18	FACTOR 19 0.724709	FACTOR20 0.549068	FACTOR21 0.62C022	FACTOR22 0.622128	FACTOR23 0.533350	FACTOR24 0.257498	FACTOR25 0.602986	FACTOR26 0.624053
FACTOR27 0.840548	FACTOR27 FACTOR28 0.840548 0.554760	FACTOR29 0.464408	FACTOR30 0.636420	FACTOR31 0.597858	FACTOR32 0.628355		FACTOR33 FACTOR34 0.898631 0.529195	FACTOR35 0.612205	FACTOR36	FACTOR37	FACTORSS	

REFERENCES

- V. R. Basili, "Models and Metrics for Software Management and Engineering," <u>ASME Advances in Computer Technology</u>, January 1980
- 2. G. J. Meyers, Reliable Software Through Composite Design. New York: Petrocelli/Charter Publishers, 1975
- 3. Rome Air Development Center, RADC-TR-77-369, Factors in Software Quality, J. A. McCall, P. K. Richards, and G. F. Walters, November 1977
- 4. J. V. Post, "Software Quality Metrics for Distributed Systems," Software Engineering Laboratory, SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981
- 5. D. N. Card, "Identification and Evaluation of Software Measures," Software Engineering Laboratory, SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, December 1981
- Software Engineering Laboratory, SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., February 1982
- 7. SAS Institute, Statistical Analysis System User's Guide, J. H. Goodnight, J. P. Sall, J. T. Helwig, et al., 1979
- 8. R. V. Hogg, "Statistical Robustness: One View of Its Use in Applications Today," The American Statistician, August 1979, vol. 33, no. 3
- 9. H. H. Harman, Modern Factor Analysis. Chicago: University of Chicago Press, 1976
- 10. S. C. Johnson, "Hierarchical Clustering Schemes," Psychometrica, 1967, vol. 32
- 11. C. E. Walston and C. P. Felix, "A Method of Programming Measurement and Estimation," <u>IBM Systems Journal</u>, January 1977, vol. 16, no. 1
- 12. RCA, PRICE S3, 1979
- 13. Software Engineering Laboratory, <u>Measures and Metrics</u> for Software Development (in preparation)

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into two groups. The first group is composed of documents issued by the Software Engineering Laboratory (SEL) during its research and development activities. The second group includes materials that were published elsewhere but pertain to SEL activities.

SEL-Originated Documents

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory, V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May 1977

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, September 1977

D. S. Wilson, and R. Beard, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

*SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 1), W. J. Decker and W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design, K. Tasaki and F. E. McGarry, June 1978

This document superseded by revised document.

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual, M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System Description and User's Guide, C. E. Goorevich, S. R. Waligora, and A. L. Green, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich, A. L. Green, and F. E. McGarry, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for Code 580 Configuration Analysis Tool (CAT), F. K. Banks, C. E. Goorevich, and A. L. Green, February 1980

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System Evaluation, W. J. Decker, C. E. Goorevich, and A. L. Green, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/GSSS) State-of-the-Art Computer Systems/Compatibility Study, T. Welden, M. McClellan, P. Liebertz, et al., May 1980

SEL-80-004, System Description and User's Guide for Code 580 Configuration Analysis Tool (CAT), F. K. Banks, W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems, J. F. Cook and F. E. McGarry, December 1980

SEL-81-001, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-002, Software Engineering Laboratory (SEL) Data Base Organization and User's Guide, D. C. Wyckoff, G. Page, F. E. McGarry, et al., September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base Maintenance System (DBAM) User's Guide and System Description, D. N. Card, D. C. Wyckoff, G. Page, et al., September 1981

*SEL-81-004, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et al., February 1982

*SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

 $f_{\mu_{\alpha}}$

SEL-81-105, Recommended Approach to Software Development, S. Eslinger, F. E. McGarry, V. E. Church, et al., May 1982

SEL-81-006, Software Engineering Laboratory (SEL) Document Library (DOCLIB) System Description and User's Guide, W. Taylor and W. J. Decker, December 1981

TSEL-81-007, Software Engineering Laboratory (SEL) Compendium of Tools, W. J. Decker, E. J. Smith, A. L. Green, et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium of Tools, W. J. Decker, E. J. Smith, W. A. Taylor, et al., February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide, J. F. Cook and E. Edwards, February 1981

ひとがい

This document superseded by revised document.

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and F. E. McGarry, March 1981

SEL-81-010, Performance and Evaluation of an Independent Software Verification and Integration Process, G. Page and F. E. McGarry, May 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort
Distribution Over the Life of Medium Scale Software Systems,
G. O. Picasso, December 1981 (also published as University
of Maryland Technical Report TR-1186, July 1982)

SEL-81-013, Proceedings From the Sixth Annual Software Engineering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981:

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program (SAP) System Description, W. Taylor and W. Decker, August 1982

SEL-82-003, Software Engineering Laboratory (SEL) Data Base Reporting Software User's Guide and System Description, P. Lo and S. Eslinger, September 1982

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-Related Literature

Anderson, L., "SEL Library Software User's Guide," Computer Sciences-Technicolor Associates, Technical Memorandum, June 1980

Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-ware Development Resource Expenditures," <u>Proceedings of the Fifth International Conference on Software Engineering</u>.

New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design," Computer Sciences Corporation, Technical Memorandum, March 1980

Basili, V. R., "The Software Engineering Laboratory: Objectives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Research, August 1977

**Basili, V. R., "Models and Metrics for Software Management and Engineering," ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measurement and Estimation," University of Maryland, Technical Memorandum, October 1980

Basili, V. R., <u>Tutorial on Models and Metrics for Software Management and Engineering</u>. New York: Computer Societies Press, 1980 (also designated SEL-80-008)

Basili, V. R., and J. Beane, "Can the Parr Curve Help with Manpower Distribution and Resource Estimation Problems?", Journal of Systems and Software, February 1981, vol. 2, no. 1

**Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software Engineering Laboratory,"

Proceedings of the ACM SIGMETRICS Symposium/Workshop:

Quality Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Project Data," University of Maryland, Technical Memorandum, December 1981

This article also appears in SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982.

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development," Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment," <u>Proceedings of the Software Life</u> Cycle Management Workshop, September 1977

**Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-ware Engineering Laboratory," Proceedings of the Second Software Life Cycle Management Workshop, August 1978

The Basilii, V. R., and M. V. Zelkowitz, "Measuring, Software Development Characteristics in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development," Proceedings of the Third International Conference on Software Engineering. New York: Computer Societies Press, 1978

Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer Sciences Corporation, Technical Memorandum, June 1982

Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis to Evaluate Software Engineering Methodologies," Proceedings of the Fifth International Conference on Software Engineering. New York: Computer Societies Press, 1981

Church, V. E., "User's Guides for SEL PDP-11/70 Programs," Computer Sciences Corporation, Technical Memorandum, March 1980

Freburger, K., "A Model of the Software Life Cycle" (paper prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper prepared for the University of Maryland, December 1978)

This article also appears in SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982.

Lange, S. F., "A Child's Garden of Complexity Measures" (paper prepared for the University of Maryland, December 1978)

Miller, A. M., "A Survey of Several Reliability Models" (paper prepared for the University of Maryland, December 1978)

National Aeronautics and Space Administration (NASA), NASA Software Research Technology Workshop (proceedings), March 1980

Page, G., "Software Engineering Course Evaluation," Computer Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report Form," NASA, Goddard Space Flight Center, Technical Memorandum, May 1978

Perricone, B. T., "Relationships Between Computer Software and Associated Errors: Empirical Investigation" (paper prepared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and Management of Software Complexity" (paper prepared for the University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher Order Languages Study: Addendum," Martin Marietta Corporation, Technical Memorandum, September 1977

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compendium," Data and Analysis Center for Software, Special Publication, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL Software Development Data," Data and Analysis Center for Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information," Naval Research Laboratory, Technical Memorandum, July 1979

Telkowitz, M. V., "Resource Estimation for Medium Scale Software Projects," Proceedings of the Twelfth Conference on the Interface of Statistics and Computer Science. New York: Computer Societies Press, 1979

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurement Facility," <u>Proceedings of the Soft-ware Life Cycle Management Workshop</u>, September 1977

This article also appears in SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982.